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DIFFRACTION OF A PULSE BY A THREE-DIMENSIONAL CORNER

by Lu Ting and Fanny Kung
New York University, New York, N.Y.

SUMMARY

For the diffraction of a pulse by a three-dimensional corner, e.g., the
corner of a cube, the solution is conical in three variables { = r/(Ct), 8
and ;. The three-dimensional effect is confined inside the unit sphere { = 1,
or the sonic sphere r = Ct with the vertex of the cormner as the center.

The boundary data on the unit sphere is provided by the appropriate solutions
for the diffraction of a pulse by a two-dimensional wedge. The solution
exterior to the corner and inside the unit sphere is constructed by the
separation of the variable ({ from 6 and . The associated eigenvalue problem
is subjected to the same differential equation in potential theory for the
spherical angle variables 6§ and ¢, but with an irregular boundary in 6 - ®
plane. A systematic procedure is presented such that the eigenvalue problem
is reduced to that of a system of linear algebraic equations. Numerical
results for the eigenvalues and functions are obtained and are applied to
construct the conical solution for the diffraction of a plane pulse. For

the diffraction of a general incident wave by corners or edges, the solutions
are no longer conical. Two theorems are presented so that the value at the
vertex of the corner or along the edges can be determined without the con-
struction of the three-dimensional non-conical diffraction solutions.
Relevant numerical programs for the analysis are presented in the appendix.



1. Introduction

The problem of diffraction and reflection of acoustic waves or electro-
magnetic waves by wedges, corners and other two-dimensional or axially sym-
metric obstacles has received extensive investigations. A survey of these
investigations can be found in Reference 1.

The present investigation is motivated by the study of the effect of
sonic boom on structures. The pressure wave created by a supersonic airplane
is three-dimensional in nature. However, the radius of curvature of the
wave front is usually much larger than the length scale of a structure.
Therefore, the incident waves can be approximated by progressing plane waves
with the wave form usually in the shape of the letter N and are referred
to as N-waves.

For two-dimensional structures in the shape of a rectangular block,
the diffraction of a plane pulse by the first corner is given explicitly
by the two-dimensional conical solution of Keller and Blank [2]. The
solution for each subsequent diffraction by the next corners can be obtained
by the use of Green's function for a wedge [1, pp. 108-115]. For right
angled corners, the diffraction solutions can be obtained by the solution
of an Abel type integral equation [3]. By means of the integral of Duhamel,
the solution for the diffraction of a plane pulse by a two-dimensional
structure was employed to construct the solution for the diffraction of an
N-wave by the same structure [4].

For the three-dimensional problem of the diffraction of sonic boom by
structures, the first step is the construction of the solution for the
diffraction of a plane pulse by a corner of a structure., The formulation
of the differential equation and the appropriate boundary conditions for
the problem in three-dimensional conical variables is presented in the next
section.



2, Fommulation

For the acoustic disturbance pressure p, the governing differential
equation is the simple wave equation,

pxx + pyy + Pzz - C ptt =0 (1)

in the region outside a trihedron simulating the corner of a structure.
As shown in Fig, 1, two edges, OA and 0B, of the trihedron are in the
x-y plane and are bisected by the negative x-axis with half angle & and
the third edge OD, which is the negative z-axis with the vertex 0 as

the origin. Let t=0 be the instant when the pulse front hits the vertex.
The boundary condition on the three faces of the trihedron is

op/dn = 0 (2)

The three-dimensional disturbance due to the vertex is confined inside

the sonic sphere r = Ct where r = oS +y2 +-z2)%. OQutside the sonic
sphere, the pressure distribution is given either by the regular reflection
of the plane pulse from the surfaces of the trihedron or by the diffraction
of the pulse by the edges. When the pulse front is parallel to the edge,
the diffracted wave is given by a two-dimensional unsteady conical solution.
When the pulse front is not parallel to the edge, the diffracted wave is
given by a steady three-dimensional conical solution. TFor both cases,
solutions are given in two conical variables in [2] by means of Busemann's
conical flow method.

Due to the absence of a time scale and a length scale, the disturbance
pressure p nondimensionalized by the strength of the incident pulse should
be a function of the three-dimensional conical variables, x/(Ct), y/(Ct)
and z/(Ct) or in terms of the spherical coordinates by { = r/(Ct), O and.¢.
The simple wave equation for p({,9,p) becomes,

& Sp L 3 (...~ 9dp\ 1 Fp _
¢ A-C) §F 2 A-C) F H TiE B (100 $8) + sirg S0 ®

inside the unit sphere, { = 1, and exterior to the trihedron. The boundary
conditions are:

dp/Md =0 on surface 0AB, 8 =1/2, -(@~Q) < ® < T-C¢ @)
op/dp = 0 on surface OAD, @ = n-a, T-Q, /2 < B <7 (5a)
dp/dp =0 on surface OBD, ¢ = -+, /2 < 6 < 1 (5b)

and p = F(®,p) on unit sphere { = 1 outside of the trihedron.

The jump acorss the sonic sphere is inversely proportional to the

%
square root of the area of the ray tube, (dS)*%. Since all the rays reaching
the sphere come from the origin where dS0 = 0, the jump acorss the sonic

sphere is zero. The pressure is continuous across the sphere { = 1; and
F(©,p) is defined by the solutions outside the sonic sphere in two conical
variables given by [2].



To construct the solution by the method of separation of variables,
the usual trial substitution p((,8,9p) = Z({) G(u,¢) is introduced where
p = cosf and eq. (3) becomes

CCQ-c;yz'e) +20-®) 2'@) - A0+) z(@) =0 6)

for 1 > ¢ 2 0, and
§_ _2 §_ 1 F G -
S[a@) S raem e mp £ - o0 )

for the domain in p - ¢ plane with |m| < m-a when 0 > p 2 -1, and with
lml < mwhen 1 > p> 0. Since the pressure p and also G are single valued,
G should be periodic in ¢ when 1 =z p > 0, i.e.,

G (,o+2m) = G(,®) (8)

The range of ¢ is therefore restricted from -7 to 1m and the two ends
are connected by the periodicity condition.

The replacement of the variable 6 by p and the use of the constant
of separation A (A\+l) are motivated by the intention of representing G(u,8)
by the spherical harmonics.

The boundary conditions om the surfaces of the trihedron, eq. (&),
become

0 along p=0 with = < |p| < m (92)

oG/op

3G/op = 0 along o=t (M-) with -1 < p < 0 (9b)

The condition that p is bounded in particular at the two poles, 8=0 and
=1, yields the condition,

le] <wat p=x1 (9¢)

The periodicity condition, eq. (8), supplies the condition along the
remaining boundaries,

G(,-m = G(u,m) and

Qp(”’-ﬂ) = qp(pnT) for 1 2z p> 0 (9d)

The differential equation, (7), and the boundary conditions, (9a-d),
define an eigenvalue problem, The determination of the eigenvalues,
3 's, and the associated eigenfunctions, G (b)), are described in the
next section, A



3. The Eigenvalue Problem

For the eigenvalue problem formulated in the preceding section, two
edges of the trihedron, OA and OB, are assumed to be normal to the third
edge. This restriction is imposed due to two consideration: 1) the surfaces
of the corner can be defined by surfaces of constant 8 or constant ¢'s and
2) the solutions outside the sonic sphere for the diffraction problem can
be constructed as solutions of two-dimensional problems [2]. For the
solution of the eigenvalue problem itself the second consideration is
irrelevant, The eigenvalue problem in this section will, therefore, be
formulated for a wider class of corners as shown in Fig. 2. The surface
OAB is a conical surface with ® = B and the two surfaces OAD and OBD are
planes with ® = - and ¢ = - M + & respectively. The boundary conditions
for the solution of eq. (7) are

06/du = 0 along p=p =cosp with m-a < lo] < m (10a)
dG/op = 0 along ® = +(r-a) with - 1 < u< M (10b)
[G] <w at p==%1 (10¢)
G, 1) = G(u,-m), q$(pﬂT) = q$(p,—ﬁ) for T < sl (104d)

For the special case of p = 11/2, or By = 0, the boundary conditions of
egs. (10a - d) and the domain in the p - ¢ plane (Fig. 2) reduce to those
of eqs. (9a - d).

The eigenvalue problem is now defined by the differential eq. (7)
and the boundary conditions of eqs. (10a - d). In order to reduce the
problem to that Ffor a set of algebraic equations, two representations
of the eigenfunction Gk(p”$) associated with the eigenvalue )} will be sought:

one for the region, R+, with p > Ko and the other for R with B< g (Fig. 2).

These two solutions and their normal derivatives will be matched across
the dividing line p = Mo for ]ml <1 - Q.

+ +
For the upper region R, the eigenfunction Gx(pﬁp) which is periodic

in ¢ on account of eq. (10d) or eq. (8) can be represented by the Fourier
series in ¢ with period of 2,

G (uo) = ) ART() cosmp+ ) B () sin mg an
m=0,1,... m=1,2,...
For each m, eq. (7) yields the Legendre equation for p;m(p)

d ey 9 -m _g? -m _
o L a-e) T @]+ o) - 1_;5] B, (W) = 0 (12)

Since eq. (l1) is defined for 1 =z u = Mg > -1, p;m should be finite at



p=1. P.™ is identified as the generalized Legendre function [5] and

A
defined by
m/2
-me oy o= (Lo - s (1-
PR = (5 Honae, bms a-p/2) 3)

where F denotes the Gaussian hypergeometric function. The factor 1/T°(1+4m)
is omitted on the right side of eq. (13) since it is automatically abosrbed
into coefficients A_m and Bm with a net saving of programming and computing
time,

For the lower region R, i.e., -1 < p< Mo the eigenfunction G;, which

fulfills the boundary conditions of eqs. (lOb and c), can be expressed as a
cosine series in (@ - 1 + @) with half period of 2¢r - ) i.e.,

6 () = >: B P (11/2) ) cos [éﬂ <cp + %)] (14)
n=0,1,2..

where 3 = 2(71 - ). Similarly for each n, eq. (7) yields the Legendre

-n71/%

equation for the generalized Legendre function PX (-w). It is finite

for -1 < p < Hy < 1.

Both expressions (12) and (14) fulfill the differential eq. (7) and
+ -
the boundary conditions (lOb-d) appropriate for regions R and R
respectively.
+ -
Across the dividing line of R and R, where p = Mo and lm' <71 - Q,

the matching conditions are the continuity of the eigenfunction G, and

A
its normal derivative BGK/Bp. The continuity of the second derivatives
are then assured since both q: and G; fulfill the same differential eq. (7).

The matching conditions and the remaining boundary condition, eq. (10a),
can be written as

G;(HZ,QO) = G;\ (p;,CD) for |p] <7 - « (15)
BGi (u_,p)/dp. for |o| < m-a
+ ,+ °
36" (u,0) /3 = { (16)
0 for m-a < |p| < m

Equations (15) and (16) can be reduced to a system of linear homogeneous
algebraic equations for the unknown constants Am, Bm and En by Fourier

analysis or by fulfilling eqs. (15,16) at a number of ¢'s in the appropriate
intervals. Before carrying out the reduction, it should be noted that the
differential eq. (7) and the boundary conditions (10a-d) are symmetric with
the plane ® = 0. The eigenfunction can, therefore, be expressed either as
even functions or odd functions of ®, TIndeed, in the expression (11) for

6



GK the cosine terms represent the even solution and the sine terms represent
the odd solution., 1In the expression (14) for G;, the terms with even and
odd values of n are the even and odd solutions of ¢ respectively. They

can be rewritten as

- 'Vj -gj . -
Gx(pqm) = 2: Cj PX (-p) cos vjm + EZ DjPX (-p)sin vjw (17)
j=0,1... j=1,2...

where

vy = 2in/s, Gj = @j-Um/s, c=E (-1)7 and D,~E 1)d .

23 2j-1('
It is now obvious that the cosine terms in eq. (17) are even and the sine
terms are odd in 9. Since the odd solution and the even solution are

orthogonal to each other, the conditions of eqs. (15) and (16) for G; and

G; should be fulfilled by their even terms and also by their odd terms

respectively, The eigenvalues and the associated even eigenfunction can
be determined separately from the eigenvalues and the associated odd
eigenfunction. By this uncoupling, the rank of the characteristic de-
terminant is reduced by a half, and a double root of the characteristic
equation of the mixed solutions may now be split to one single root for
the even and one for the odd solutions respectively, 1In actual numerical
computations, it is much easier to locate the eigenvalue and construct
the eigenfunction for a single root than for a double root of the charac-
teristic equation.

The solution of the eigenvalue problem defined by eqs. (15) and (16)
can be carried out by collocation method, i.e., to truncate the series of
eqs. (11) and (17) and to impose eqs. (15) and (16) at a finite number of
value of ®'s in the appropriate intervals, In this method, it is necessary
to uncouple the solutions first and then impose eqs. (15) and (16) to the
even and to the odd solutions separately,

When the solution of the eigenvalue problem is to be carried out by
Fourier analysis, the uncoupling of the even and odd solutions will come
about automatically as follows:

Equation (16) holds for the interval -t < ¢ < 1, it will be multiplied
by cos ng and will be integrated over the interval. Equation (16) then
becomes the algebraic equations for the coefficients of the even terms,

- -V,
s~N Y V]
. + - = =i
ADPX (IJ,O) \:14 601?1:\ ) CjPX ( |J.o) Ijn 0 for n=0,1... (18)
j=0,1,2

where



$/2
_1
Ijn =5 I cos vjm cos ngp dop
-3/2
a[1+6_ 1/ (2m) , V. =n

= { . (19)
-2(-1)n sin(n@/Z)/['rr(\% - )1, v, £n

and (") means the first derivative with respect to its argument,
Similarly eq. (15), which holds for the interval lwl sm - al2 =%8/2,
will be multiplied by cos[2km @+5/2)/8] or cos VP with Vi = 2k /& and

will be integrated over the interval -3/2 < ® < §/2. The result is

- TN ‘\)k _
E; AmPk (Ho) Ikm CkPk ( H'o) §[l+6ok]/(2”) =0
m=0,1,2...
for k=0,1,2.... (20)

Since cos neg and cos v are even functions of ¥, egs. (18) and (20)
contain only the coefficients Am and Cj associated with the even parts in
G: and G, respectively. Similarly the algebraic equations for the coefficients
Bm and Dj associated with the odd parts are obtained from eqgs. (15) and (16).

Equation (16) will be multiplied by sin neo and integrated over the interval
-m < @ < 17 and eq. (15) will be multiplied by sin 5g¢ and integrated over

the interval -3/2 < o < 3/2 with Qk = (2k-1)17/%. The results are,

-9,
N N . J _ =
B B () + E DB ey, =0
=L,2,...
forn =1,2,,.... (21)
and
N B P () L -DP_\-)J'(-)@/(Z)=0
zJ m A Mo lan k A Mo o
m=1,2...
for k =1,2,,.... (22)
where

=R

$/2
Ljn = j sin Qjm sin ne do
-3/2

o " 23)
., Fn
J

8/ (2m) ,
-2n (-1)leos I/ [n(F-)]

<t <



Equations (18) and (20) define the eigenvalue problem for the even
solution, while egs. (21) and (22) for the odd solution, The numerical
method for the solution of the problem will be described in detail in
the next section.



4, Numerical Solutions of the Eigenvalue Problem

To obtain the numerical solutions, the infinite cosine series in
eq. (11), the even part of G+, will be truncated with the maximum of m
equal to MC. Similarly the cosine series in eq. (17), the even part of
GX’ will be truncated with the maximum of j equal to JC. Likewise, MC
and Jc will be the maxima of n and k, respectively, so that egs. (18) and
(20) yield MC + JC + 2 linear homogeneous equations for the MC + Jc + 2

cons ta cene and C - . hese tions are nontrivial
nts Ab’ A1, AMC o’ C1 CJC T solu s ntriv
if A is a root of the characteristic equation,

b, =2, | =0 (24)
where a ., = P—i+1( Yy [146,.] 6 for h, i=1,2...M +1
hi A Mo 1i” “hi g i
.7Vj
ap; =B TCp) Iy for hel2 .M H,
i=M 42,..... M +J +2, and j=i-M -2
c c "¢ c
it _
g =B (w) Ly for heM 42, M 4T 42,
i=1,2,...,M 41, and k=h-M -2
c c
and a, = - PX (-HO) 3 [1+60k] Ghi/(Zn)
for h,i =M+2,...,M +J +2, with k=i-M -2,
c c ¢ c

*
For given values of Mc and Jc’ the roots of Ac(x ) =0 in a given
interval of ) can be located by numerical evaluation of Ac(x) as a function
of .. When the derivative of AC(A) at a root is non-zero, the coefficients

Am, Cj are proportional to the cofactors of the determinant, i,e.,

= -1 f—
Am N Al,M+l for M 0,1,2....,MC
-1 25)
Cj =N Al,M 1+ for J-—O,l,Z...,Jc
c

*
where Ahi is the cofactor of the element a of the determinant with } = A .

hi
The constant N is defined by the normalization condition,

10



Ho §/2

1
wf w[gen] o[ a] wlgeo] -
(o]

Mo

The equation for N is

m=0

M
1 c
¥ =T ey [Hhw ‘“‘1,m+1]2 0 om?
IJ'O

. (27)
% Id 2 [ S w A1M+1+_-|]2 a+5)
K

[¢]

A numerical program is described in the appendix so that for a given
pair of Mc and JC, the determinant Ac(x) can be evaluated as a function

of A. The search for the roots can be restricted to A > -% because of the
symmetry of the function P (H) about A = - i,e., P;V(H) = P:X-l(p)'

For the given range of ), say -% < A £ 3, the eigenvalues for the even
solutions are located and the first derivative of Ac(x) at each root p*

are computed, In the examples considered in this paper, the derivative
does not vanish at A%, therefore, the numerical program in the appendix
carries out the determinations of the coefficients A.m and Cj in the

eigenfunctions by means of eqs. (25) and (27).

Similarly for the odd solutions, the series in eqs. (11) and (17)
will be truncated with the maxima of m and j equal to MS and JS respectively.

There will be MS equations for eq. (21) and Mj equations for eq. (22). The

roots of the characteristic equation yield the eigenvalues for the odd
solutions. The ratios of the cofactors and the normalization condition of

eq. (26) define the coefficients Bl""BM and Dl""DJ in the eigenfunctions.
s

It should be pointed out here that the convergence of the eigenvalues
and eigenfunctions of the truncated problem has been assumed and the
equivalence between the matching conditions of eqs. (15) and (16) and
matching of the Fourier coefficients is also assumed. Some confidence in
these assumptions will be offered by the following numerical results.,

For the special case of a two-dimensional corner, namely o = 11/2,
B =m/2 in Fig. 2, the eigenvalue problem can be solved exactly by
choosing the _edge of the corner as the E axis (Fig. 3). 1In spherical
coordinates § and ©, the two sides are ¢ = 0 and ® = 3r7/2. The eigenfunction
can be written as

g @.5) = 5237 G cos [ 23/3%] (28)

11



where ﬁ = cos § and i=0,1,2,........ The eigenvalue ) is defined by the

condition that PiZJ/S should be finite at § = or ﬁ = ~1. Instead of eq. (13),
an equivalent expression for P;v (n) is [5].
-V o~y o=V -2 \V/2
o) =20 () F(v-1, vH+Ll, vil; X) (29)
where v=23j/3 and X=(1—;)/2
The power series representation for the hypergeometric function is
divergent at X=1 or ju = -1 unless the series has only finite number of
terms, say k + 1 terms. The condition for ) is
v-3t+k = 0 or xjk = k+2j/3 (30)
%
For j =0,1,2,3..... , the eigenvalues are Xo K" 0,1,2,3..... s
Mo " 2/3, 5/3, 8/3....y Ay = 4/3, 7/3,..... r A3 T 23 ;
k4’k = 8/3,...

The numerical program in the appendix developed for a three-dimensional

corner will now be tested by setting B = nw/2 and o = 77/2. The eigenvalues
between -0,5 and 3.0 for the even and the odd solutions respectively are

shown in Table I for various combinations of Mc’ Jc, Ms and JS. The numerical

results for each combination yield the same number of eigenvalues in the
same interval of )} as the exact solution. For the combination of MC=8,

Jc=4, Ms=9’ JS=5, the eigenvalues given by the numerical program are in

the agreement with the corresponding exact values within 0,2%. This is a
confirmation of the procedures developed in this paper and the numerical
program for the eigenvalue problem.

A few words should now be said about how to pick the numbers MC and JC
(also MS and JS), i.e., how many terms in the series representations of G
and G should be employed.

Since the eigenvalues of the truncated problem are assumed to converge
as M and J increase simultaneously, their limits should be independent of
the differences between M and J where M and J stand for Mc’ JC, or Ms’ JS.
This fact is also confirmed by all of our numerical results, Nevertheless,

it is relevant to point out the implications of the difference between M
and J, i.e., the difference between the number of terms in the series

solution for G+ and that for G . The conditions of eqs. (L5) and (16) call

+ - -
for the matching of G and G and of their normal derivatives G: and G
o

* Note that G(B,u) = constant is an eigensolution, therefore, A=0 is an
eigenvalue for any combinations of B and .

12



+ .
across p = p with |m| < - and the vanishing of GH at p = with

m-a < l@l < 1. Intuitively, the two matching conditions would require
the same number of terms in both series while the latter condition on

G+ is handled by the extra M-J terms in G+.
u

The qualitative relationship between M and J can be established
clearly if egqs. (15) and (16) are fulfilled by the collocation method,
i.e., eq. (15) and (16) will be enforced at the grid points uniformly
distributed in the intervals for ¢. The grid sizes in these intervals
are 2@Gr-a)/J and (2a/ (M-J) respectively. The condition for these two
grid sizes to be equal or almost the same is

/M= @-a)/3 (31)

It means that for given J, the integer M should be so chosen that the
ratio M/J will be the nearest rational number to 1/ @G1-Q0).

For the special corner considered in the diffraction problem, it is
the corner of a cube with a = /4, B = /2. Some of the eigenvalues can
be found by inspection, namely, all the even integers. The first few
exact eigensolutions are grouped as even and odd solutions of ® and

. + -
listed in Table II. In the truncation of the series for G and G, it is,
desirable that these exact eigensolutions with A < M should be reproduced.

This implies that the factor of ¢ in the last term of the truncated series

+ -
of G should be equal to or be the nearest one to that of G . For the
even solutions, the condition is

MC’E (4/3) J. (32a)

and for the odd solution it is

M = (2/3) (23,-1) (32b)

Condition (32a) is identical to eq. (3l) from collocation method while
condition (32b) will be equivalent to (3l) if the grid points in the
collocation method are shifted by a half of the grid size.

Listed in Table I are the numerical results for the eigenvalues corre-
sponding to various combinations of M , J and M, J . It is clear that
C C 5 S

for the same total number of terms M + J, the combination of M and J which
fulfill eqs. (32a and b) are in better agreement with the exact solution
than those with M equal to J.

With the relationship between M and J established, the next step is
to choose the integer J for the truncation of the series. To give a

measure of the accuracy of the eigenvalue ) and the correspondin

+ -
eigenfunctions G(J) and G(J), the following norms are introduced

13




I = h(Jl) - X(Je)l (33a)
3/2 3 8 /2 2
L =] {GtJ1> tCu T [G+(J2> e, )]}w w /[ | {Ga) (e >}H=Hd°"
o] (o] (o] o]
(33b)
T/z . o ?‘/2 [ . r ) ey
=4 G - d G + G c
Is [0} [ ’ ]H=HO cp JO J}‘L:MO Cp
/2 TT 8/2
L. “{{ [ap S H=Hj°° * i /2 [ap ]}L:Hiq’} { [ap ok JWOCP

(33d)

I, and I, measure the convergence of the eigenvalues and the eigenfunctions
as the number of the term increases. I, and I, measure the degree of ac-
curacy of the approximations to the matching conditions and the boundary con-
dition at p = u _, i.e., eqs. (15) and (16).

It should be pointed out here that although the ei genfunctions are
continuous, its derivatives may not exist along the edges. The singularity

along the edge B =1 1s built in by the representation for G-(pﬁp). The
singularity along the edges, 8 =B and ¢ = - or ¢ = -r+¢, can be ascertained
by investigating the behavior of the solutions of the differential equations
for G(u,®), eq. (7). 1In the neighborhood of an edge, i.e., rﬁ! << 1 and

|| << 1 with & = o™ Mo ®=ri-0~¢ eq. (7) can be approximated by the Laplace
equation

(1-%2 ¥ Fe/3E + Fe/XF =0

in the first three quadrants of the'ﬁ - @ plane subjected to the boundary
condition that the normal derivative of G should vanish along the positive
T-axis and along the negative P-axis. The potential solution G near the

origin U =@ = 0 should behave as the real part of fﬁ(l-p%)_l + £§ﬂ2/3 [6].
The same result can be obtained by observing the three-dimensional corner
directly: the surfaces of ¢ = m~ and § = 3 intersect at right angle and in
the neighborhood of the edge away from the vertex, the solution behaves as
that of a two-dimensional convex right corner.

Along the interface of G+ and G , i.e., = po and ® > 0, the normal

derivative of G behaves as the real part of @Ei)_l/3 i.e.,

+ -1/3
GH(H = By @ =1-0m00) ~ (r-a-m) .

1k



G is singular near the edge but its product with cosine or sine functions

of @ is integrable and itself are square integrable. Therefore, eqs. (18)
and (21) are meaningful and the norm I; exists.

Table III shows the eigenvalues between -1/2 and 3 for the corner of
a cube, i.e., 20 =m/2 and B = 11/2. The series representations are
truncated with Mc = 8 and Jc 6 for the even solutions and with M_s = 10

and Jg = 8 for the odd solutions. The coefficients in the series repre-

sentations of the eigenfunctions are also listed. The norms, I, and I,
are computed for each eigenvalue., It is found that all the I,'s are-less
than 1% and all the I, 's are less than 10%. The matching of the normal

derivative of G+ and G as measured by I, is less satisfactory as ex-
pected due to the singularity at the edge and due to the fact that the
exact value of OG/du, i.e. zero, has been used in the denominator for Iy
in the interval /2 < © < 1.

Calculations have been performed for various values of Jc and JS. It
is found that when J =6 and J = 9 and also J = 8 and J =11, all
lc 2c ls 2s
the I, 's and I,'s corresponding to the eigenvalues between -1/2 and 3 are
less than .1%.

Table IV compares the eigenvalues for the corner of a cube with those
for a circular cone with the same solid angle, i.e., with half angle,
® = arcos (3/4).

For the circular cone, the eigenfunctions are Pin(p) exp (int). The
eigenvalues )} 's are defined by the condition of dP;n(p)/dp=0 at H;-cos@ﬂ

For each integer nm = 1, the eigenvalue % has a multiplicity of 2 and only
for n = 0 the eigenvalue ) has a multiplicity of unity.

Table IV shows that the eigenvalues for the three-dimensional corner
can be approximated by those of a circular cone with the same solid angle.
It also shows that when an eigenvalue for the circular cone has a multi-
plicity of two, i.e., for nzl, the corresponding values are found for the
corner with even and odd eigensolutions and when the multiplicity is unity,
i.e., n=0, the corresponding value for the corner has only an even eigen-
solution. Tt should be noted that when a corner degenerates to a plane,
it is then identical with the equivalent circular cone of solid angle 2.

The results in Table IV not only serves as a indirect confirmation
of the numerical program but also suggests the use of an equivalent
circular cone for a quick approximate determination of the eigenvalues
of a three-dimensional corner.
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5. Construction of the Conical Solution

In 2 the general formulation of the conical problem, the method of
separation of variables was introduced. The disturbance pressure p((,9,%)
can be written as

A

The eigenvalues A's and the eigenfunction GX are determined in 4.

The function ZX(Q) is a solution of the differential eq. (6), i.e.,

¢ -¢7) 2" +2 A-C7) ¢ 2' Q) - AAH) Z2() = 0 (35)
The boundary conditions are Z (0) < «» and Z (1) = 1. The condition on
the unit sphere (=1 permits the determination of the coefficients KX from

the boundary data on the unit sphere, eq. (5), and the eigenfunction G (,)
independent of ZX(C)' The equation for the coefficient KX is

T ﬂ
K =1/2] au [ aoree) ¢ e
[e} =TT
1T -
vz ap [ an ) € e (36)
[ -

The factor 1/2 is due to the normalization condition of eq. (12b) for
G, in which the integration with respect to @ is carried over only half

A

the interval. 1In the numerical determination of K) the double integral

can be reduced to a line integral by splitting the boundary data to even
and odd solutions and then to a cosine and a sine series in @ respectively.
For the even solution the results are:

1
M
+
k =] =° MW £ ) dp
m=0, 1
|J‘O
Mo g -y
C J -
+ [ % C, P d (- £, () du (37)
Joohgp I A h]
_1 J >

where
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™

£ =3 [ [FG®) + Flu-9)] cos mp dy ,
o]
3/2
- 1
£ W = 5[ (F@®) + PG -9)] cos v 4o,
(o]
and vj = 23m/5.

Corresponding to the even boundary data, eq. (37) holds for all the
eigenvalues of the even solutions and Am and C, are the coefficients
defined by eq. (25) for each }. ]

Similarly the coefficients KX for odd eigensolutions are obtained as
follows:

s m (w) f:l (u) dp

1
x -] =
M

m~l,2
[o]
Mo J j
+[ = DPk Cw) £ () du (38)
j=1,2
-1
where
T
+ 1 .
£ = [ 2 1P - Fu-9)] sin me do
(o]
3/2
£, = J L [F(®) ~ Flp,~p)] sin v.@ do
J 2 hj
o]
and Dj = (23-1)/8.

For the determination of the pressure distribution inside the unit
sphere, it is necessary to construct the solution Zx(g) of the differ-

ential eq. (35), subjected to the boundary conditions at (=0 and (=1. The
solution is obtained numerically by the "shooting method", For ZK to be

finite at (=0 the solution can be represented by the power series,

Z(g)=agl [1 +47Q‘+"62‘3 torn. ] (39)

By setting ao=1, the differential equation can be integrated numerically

17



from a small Co (say 0.001) with initial data EX(QO)=Q§ E1+1(X+1)gz/(4x+6)]
7 = A1 2 o

and % () = ACh [1+(x.+1)(x+f) G/ @46) |-

The numerical integration for ZA(Q) is continued until { is close to 1

(say 0,99). The value of'zk(l) is obtained by patching the numerical

solution with the series solution of (-1, i.e.,
~ A/ + 2 2 :
4 Q=% {1 - A0 1ogy + 2OHY (10 4 (-0 Log(-0) ...}

(40)

Since the problem is linear, the correct solution is

z, () = Z, (g)/Zk @

The appropriate value for a or lim Zg-k is 1/EX(1)' The numerical program
¢-0
in the appendix computes a automatically and generates the function zx(g).

Thus for a given boundary data F(u,) on the unit sphere, the conical
solution of eq. (3) is defined.

18



6. A Numerical Example

Figure 4 shows the incidence of a plane pulse normal to a face say
OAD of the cornmer of a cube. 1In order to demonstrate the use of both the
even and the odd eigensolutions, one of the two edges parallel to the plane
pulse is chosen as the negative z-axis as shown in the figure, After the
incidence, t > 0, part of the plane pulse is reflected by the face 0AD of
the cube with double the intensity. The remaining part advancing over
the corner is undisturbed. The diffraction by either one of the edges OA
and OD, is given by a two dimensional conical solution. 1Tt is confined in
a circular cylindrical surface with radius Ct and the edge as the axis
provided it is outside the domain of influence of the vertex.

Figure 5 shows the incident plane pulse, the reflected pulse and the
sonic circle in a cross-section normal to the edge OA at a distance greater
than Ct from the vertex. 1In terms of polar coordinates p and T, the
boundary condition on the sonic circle p = Ct for the pressure variation
from that behind the incident pulse is

p, =1 m<T< 3n/2

I
o

P O<T<mm

C

The strength of the incident pulse is chosen as unity. For the two-
dimensional conical solution, the Busemann conical transformation is
introduced [2],

o =5 /{115 1%, B = o/(ot) and 1T =1 (41)

In the new variables, the disturbance pressure becomes a potential solution
and the region inside the circle p* < 1 with 0 < T* < 31/2 is mapped to a

half circle with P exp (iT) = [ p¥exp (iT*)]2/3. The solution in terms of

5,T is [2]
(1-32) Jz/z

(L52) /2427 cos T

3 j

pc(p,T) = arctan (42)

where the arctangent lies in the first and the second quadrants. The
circular cylinder with axis OA and radius Ct intersects the sonic sphere
about the vertex along a greater circle and covers the spherical surface

on the right side of plane OBD. Similarly, the diffraction by the other
edge, OD, created another two-dimensional conical solution given by eq. (42)
with p the distance from the edge OD and T the angle measured from face OBD.
Again, the circular cylinder with axis OD and radius Ct intersects the

sonic sphere about the vertex along another great circle and covers the

part of the spherical surface below plane OAB, i.e., p < O.

The surface of the sonic sphere can be divided into four regions:
1) not covered by either one of these circular cylinders

2) covered only by the cylinder with axis QA
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3) covered only by the cylinder with axis 0D and
4) covered by both cylinders.

With the plane =0 defined as the plane bisecting the exterior angle
of the two vertical surface 0OAD and OBD, the four regions and the boundary
data are defined as

i) Region I 1> pn> 0; - 3n/b<® < n/4
F(u,p) = 0 (43a)

ii) Region IT 1 > > O; /b4 <@ <1 and -1 € © < -3u/4 (or 1w < @ < 5m/4)
F(wo) = p (o .T,) (43b)

iii) Region III 0 > p > -1; =-3n/d < o < m/&
FQueo) = PC(FDE,TE) (43c)

iv) Region IV 0 > p > -1; /4 < < 3n/4

F(u,®) = PC(BI,TI) + PC(BE,TB)*l (43d)
- . kS
where o, = [+~ ) sin® @-3m/4)]?
AT Ip,/fall for sin (@-3n/4) = 0, w= 0
T, = ﬂ'Siﬂ-l‘u/Bll for sin (@-3/4) < 0, u= 10
ﬂ+sin_1lp/51] for p< 0
- ok
and p, = (I-7)*
T, = H3n/4

With the boundary data F(u,p) defined by eq. (43) the coefficients
in eq. (34) for the pressure variations inside the sonic circle are com-
puted for all the eigenvalues between -% and 3. The pressure distribution
on the three faces of the corner are shown in Figs. 6 & 7. The pressure
distributions for r/(Ct) < 1 are obtained from the present analysis. They
match with the corresponding two-dimensional values across the sonic sphere
with a discontinuity in slope. They confirm, with less than 1% variation,
the symmetry of the solution with respect to the plane bisecting the faces
OAB and OAD and the value of 8/7 at the vertex as predicted by Theorem I
in 8. When the calculation is performed with only eigenvalues less or
equal to 2, the results differ from those in Figs, 6,7 within 67%.



7. General Incident Wave

The preceding concial solutions for an incident plane pulse can be
employed to construct diffraction solutions for an incident wave of more
general type by superposition of plane pulses. 1In particular, when the
incident wave is a plane wave of the type

P, = @) 4)

with n = Ct - (ny xt+n,y+n, z) 45)

where the wave form ¢, is an arbitrary function of its phase 1 and n ,np
and n, are the direction cosines of the normal to the plane wave.

The incident wave due to the sonic boom can be locally represented
as a plane wave since the length of a structure is usually much smaller
than the radius of curvature of the wave front, The wave form §y is in
general a sequence of a weak shock wave and an expansive wave or a com-
pression wave as shown in Fig. 8.

If the wave form is a Heaviside function, the diffraction due to the
three-dimensional corner is given by the preceding conical solution and
will be designated as p*(r/(Ct),G,m). The solution of the diffracted
wave corresponding to a general wave form of a sonic boom is

n.
p(r,8,0,t) = ? {(Ap)ip* (Ct_rﬂi ,B,CP> + izﬂ o <thn ’e’q)) %w!'% dn} )

where ng is the phase of the i-th shock wave with strength (Ap)i=¢(ni+0)
- m(ni—O). Note that 7 increases in the direction opposite to the normal
of the plane wave.

Another method for the construction of nonconical diffraction so-
lutions should be pointed out here. When the boundary data on the sonic
sphere (=r/(Ct)=1 around the vertex of a three-dimensional corner, which

is now a function of t in addition to the spherical angles 6 and o, can
be written as a power series with respect to t, i.e.,

F(t,0,9) =% t’ R, ©,9) for t >0 47)

Y

where the summation is carried over a sequence of positive numbers, y = 0.
The solution inside the sonic sphere can likewise be written as

p(t,1,0,0) =2 ' p)(,8,0) “8)
Y

The wave equation yields the governing equation for p(Y)(g,e,m)
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_ (D) (v) '
¢ a-¢*) gfgé’—— +20[1+ (1) ] %g—— - yve-n) )

1 g_(. ap(Y)> 1 FoW)
*Sin g 08 \°® o J0 + 5100 dp~ 0 *9)
p(Y) is subjected to the boundary condition on the sphere (=1,

pM 0,00 = 7, 0.9

and the boundary conditions on the surfaces of the corner remain the same
as egs. (3,4).

Since the differential operators with respect to § and @ are independent
of y, the corresponding eigenvalue problem in O~p plane after the separation
of the variable (¢ is the same as that for v=0,i.e., the conical problem,

The solution p(Y) can therefore be written as,
(v) _ W) L&)
P 7(C.0,9) z)? K727 06 (we) (50)

where = cos 6. The eigenvalues )'s and the eigenfunctions Gk (u, ) are

identical with those obtained for y = 0 in 3,4. With the boundary con-

dition Z(Y)(l) = 0 imposed on Z;Y), the constants ) are also related

P\
to the boundary data FV(H,G) by the same set of equations, eqs. (37) and

(38), and can be determined by the same numerical program for y = 0. The

appearance of y occurs only in the differential equation for Z(Y)Q;L
which is A

¢ Qa-¢®) gf?z +2 [1+(-1) ¢*] g% -y 2 #A0+)]) 2 =0 (51)

The boundary conditions are the same, i.e., Z(l) =1 and 2(0) is finite,
Z;Y)(g) can be determined by the same procedure described in 5 for Z;O)(Q).
Now it is clear that the extension of the proceeding conical so-

lutions to the diffraction of a general incident wave by a three-
dimensional corner can be carried out provided that the boundary data
F(t,8,p) on the sonic sphere can be found. This suggests that the next
step is to solve the diffraction problem of a three-dimensional wave by
a two-dimensional corner.

For a two dimensional corner, the three dimensional diffracted waves
can be constructed by superposition of solutions for incident plane waves
with different wave forms and directions of incidence or by the method of
separation of variables in cylindrical coordinates and time., These schemes
in general are tedious for the actual construction of the solution. By
making use of the special geometry of the 90° convex corner, an integral
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equation can be set up and solved by an iteration scheme similar to
the procedure for a two dimensional incident wave {3]. This method of
approach is presently under investigation.

In the next section, two theorems are presented so that the value
along the edge or the vertex of a corner can be related directly to an
incident wave without the costruction of the diffraction solution.
The incident wave can be completely arbitrary and hence can also be a
diffracted wave from an adjacent corner.

23



8. '"Mean-Value' Theorems for Diffraction by a
Conical Surface and Applications

In a previous article [7],a mean value theorem for the diffraction
of an incident wave by a cone was derived. It states that the value at
the vertex of the cone is equal to 4m/ (4m-Q)) times the value of the
incident wave at the vertex as if the value is averaged locally over
the exterior solid angle of the cone, 4m-() instead of over the whole
space, 4. This relationship was obtained under the restriction that
the incident wave does not hit any portion of the conical surface prior
to its encounter with the vertex of the cone. 1In this section, the
derivation of the theorem is partially repeated with modifications so
that the theorem is valid under a weaker restriction, that is, the
incident wave may hit the conical surface within a finite time interval T
ahead of the epoch of its incidence on the vertex, A In case such a finite
time interval T cannot be found, a second theorem is introduced. Ex-
tension of the results to solutions of inhomogeneous wave equations is
also presented in this section.

Let t=0 be the instant when an acoustic incident wave w(l) hits
the vertex of the cone located at the origin. Let T be the finite time
interval such that for t < -T the incident wave does not hit the conical
surface. Let D(t) denote the domain outside of which the incident wave

vanishes at the instant t, e.g., m(l)(x,y,z;T)=O for (x,y,z) not in D(-T).
Domain D(t<-T) does not intersect the cone G with solid angle (), as shown

in Fig. 9. 1In the absence of the cone, the incident wave ¢(l) at the
origin can be related to the initial data at an instant t=t o< T by the
Poisson Formula [ 8],

w(i)(o,o,o,t) = Z%_ (%— f % ds +-jf f dS]
S S

where r is distance from the origin,

£Gy.2) = 00y, 2,-t ),

g(x,y,2) = tp(i)(x,y,z,-to)

and S is the sphere with radius R=C (t+t0) > C(t+T) and with its center

at the origin, The Poisson formula can be identified as a special form
of the Kirchhoff's formula [8],

w(i)(o,o,o,t) - tf {E$(l)] 3n < - 1 [éﬁL_-J ér 3n am j}ds (52)

where O/0n means differentiation along the outward normal to the surface S
and (o] is the retarded value of ®. On the sphere S with RFa(t+to), it

follows r@(l)(x,y,z,t)] = @(l)(x,y,z,-to). Similarly, the retarded values of
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méi) and ¢£i)

outside the domain D(-to). Let Sc denote the part of the sphere outside

are the corresponding values at t = -to. All of them wvanish

of the cone G, and S* denote the part inside the domain D(-to). Since
D(—to) with -to < -T does not intersect G, SC contains S¥*. The integrand

is non-zero only inside S*, therefore, the domain of the surface integration
can be reduced from S to S* or to Sc'

To obtain the resultant wave ® at the vertex of the cone, the passages
in the derivation of the Kirchhoff formula [7,9] from the Green's theorem
will be repeated. The Green's theorem is now applied to the volume bounded
by the two concentric spheres s* and §_ with radii r=R and r=o respectively
and the conical surface OG yields

H {(% rC\: ]) [ ] ds = (53)

s*+s_ 136"
ag
where 3G™ is the part of OG lying between s* and So.

On the surface of the cone 3G, dr/on=0. With the boundary condition
of d3p/dn=0, the integral over dG* vanishes.

As 0 - 0, the integral over S approaches =~ (41-Q) @ (o,0,0,t).
Equation (53) reduces to

o ooonn - [[{@ 5 Q- 1E-LEE e o
S*

On the spherical surface S*, [p] = m(x,y,z,—to) = w(i)(x,y,z,-to) = [m(i)]

and similar relationship holds for the t- and n~ derivatives. Eqs. (52)
and (54) yield:

b (1)

cp(o,o’()’t) = ATT_Q

(0,0,0,t) for t > - T (55)

This result can be stated as follows:
Theorem I

The resultant value at the vertex of a cone with solid angle () is equal
to 4m/ (4r-Q) times the incident wave at the vertex, if a finite T can be
found such that the incident wave hits the conical surface within the time
interval T prior to its encounter with the vertex of the cone.

In a practical problem, the conical surface which forms a part of the
surface of an obstacle, has a finite length, say L. 1In applying the theorem,
it is essential that the part of the obstacle inside the sphere $§ with radius
C(t + T) is conical, i.e.,

C(t+T)<L (56)
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It defines an upper bound for T. On the other hand, for a given T with
CT < L, the inequality (56) defines an upper bound for t for which eq. (55)
holds.

When an incident wave is diffracted first by a part of the surface
of the obstacle other than the conical surface of finite length L, con-
dition (56) cannot be fulfilled. Even for a cone of infinite length, the
incident pulse may be in contact with a part of the conical surface all
the time, consequently, the finite time interval T assumed in Theorem I
does not exist, For both examples, the value at the vertex of the cone
cannot be related directly to the incident wave by Theorem I. A theorem
relating the value at the vertex of one cone to that of another cone will
be presented.

Figure 10 shows the relative orientations of two cones G and G,
with solid angles () and (). Their vertices coincide at the origin and
their boundaries ach and 865 have a common region T, i.e.,

T =3¢ N g (57)

Let ¢, (X,vy,2,t) denote the resultant of an incident wave m(l) and
its reflected and diffracted waves by cone G alone with &p, /0n=0 on
the surface of the cone dG,. D (t) denotes the domain outside of which
o, =0 at the instant t. At t=0, the origin lies on the boundary of D (t)
and D, (t) does not contain the origin for t < 0.

It will be assumed that there exists a finite time interval T such
that the domain D(t < -T) is in partial contact with the cone G only
over the surface I, i.e.,

(an(t) N acl>c(acl r\ace>=1~ for t < -T (58)

The next step is to examine the solution ¢, which is the resultant

of the same incident wave m(l) and its reflected and diffracted waves by
cone G alone. The initial data for @, are prescribed by ¢H(x,y,z,—to)

and ml,t(x,y,z,-to) for -t < -T, 1If cone G, does not intersect the

domain D, (t) for t < -T, it is evident from conditions (58) that
@, %,y,2,t) =@ (%,5,2,t)

and D, () = D (t) for -T2 t = -ty (59)

The derivation of eq. (54) from the Green's theorem will be repeated
for the volume bounded by two concentric spheres S and SG and by the conic

surface 3G or 3G, respectively. The two spheres, S and %j are centered

at the origin and their radii are C(t+t ) and o. The following result
equivalent to eq. (54) is obtained: ©
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_ac,o

@y oy = <[ {0 & () - L[501] - L E [301]} e

s¥

J for j =1,2 t=~T 60)

On the sphere S with radius C(t+to), it is evident f$j] = mj(x,y,z,-to).

Equation (59) shows that [o,], [ij/an], [ijlat) and Dj(-to) are invariant
with respect to j. S* is defined as the part of the spherical surface S
lying in Dj(-to) and is also independent of j. With the right side of
Eq. (60) invariant with respect to j, it yields

-0 ) ® (0,0,0,t) = (4= ) ¢ (0,0,0,t) for t = -T (61)

So far the problem was formulated as propagation and diffraction of
waves., It can also be formulated as an initial and boundary wvalue problem
and restated as follows:

Theorem 11

For two conical surfaces oG, and 0G, with the same location for the
vertices and with the same initial data @=f(x,y,z) and mt=g(x,y,z) at
the instant t=—t0<0, the resultant disturbance at the vertex for each

cone alone is inversely proportional to the exterior solid angle of the
cone provided that the support D for f and g does not intersect either
one of the cones, and that the part of the boundary 3D in common with
one of the conical surface is also with the other, i.e.,

(30 N3e) (30 N36)c(36, N3c) 62)

It is obvious that when the wave equation has an inhomogeneous term
h(x,y,z,t) with support E(t) similar conclusions can be obtained:
Corollary Theorem I and II will also be valid for solutions of the

inhomogeneous wave equation Ap - C mttz h(x,y,z,t) provided that the

support E(t) of h does not intersect the cone or both cones respectively.
An interesting application for Theorem I and the Corollary will be

the initial and boundary value problem for an inhomogeneous wave equation
in the interior of a conical surface BG with solid angle QC (or the

exterior of a cone G with solid angle O‘#n - Q > 2mm). The mathematical
problem is: .

-2
D.E. Ap-C ®, = h(x,y,2z,t) inside the cone Gc for t > 0,
B. C. ® = 0 on BGC,

I.C. 9=f(x,y,2), ® = g(x,y,2) at t=0.

From the definition of the problem both the support E of h énd the support
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D of f and g lie in G_ and, therefore do not intersect G. Theorem I and
the corollary state that:

The value at the vertex, ®(o,0,0,t) is related to the solution,

w3D(o,o,o,t), of the initial value problem for the inhomogeneous wave

equation in three-dimensional space with the removal of the conical
surface by an amplification factor equal to the local enlargement in
solid angle, i.e., 4m/0 . This statement is expressed by the following
equation, ¢

2 bm
CP(0,0,0,t) - Qc {CPBD(OsO’O: t)}

oL B e ]] e
Sct

Sce
Ct
1 [h]
+sz‘“” r ds} . (63)
%
o) S

r

where Sgt is the part of the spherical surface inside the support D of f

and g and Si is the part of the spherical surface inside the support E

of h at the retarded instant t-r/C. The spheres are centered at the
origin and the subscript denotes the radius.

It is of interest to note that the value at the vertex of the cone
is independent of the geometry of the cone GC nor does it depend on the

distribution of f,g, and h and their supports D and E with respect to
the spherical angles 6 and ® so long as the integrals of £, g and h over
the spherical surface are invariant as functions of r and t,

Another example is the diffraction problem being analyzed in this
paper. As a matter of fact, the investigations in this section are
motivated by the desire to determine the values along an edge or a corner
of a rectangular block or structure due to the arrival of a conical so-
lution originated from an adjacent edge or corner without the construction
of the non-conical solution.

Figure 11 shows an incident plane pulse of strength ¢ impinging on
a block with normal parallel to an edge OB. After the instant t = 0,
the pulse is reflected by the face OAD and diffracted around the edges O0A,
OD and the corner O, Let 0A, OB and OD to be designated as the x-,y-,
z-, axis respectively. From Theorem I, the value at the corner 0 of
solid angle 11/2 is

py (0,0,0,t) = el4m/(4m-1/2)] = (8/7) ¢ for W/C> t > 0. 64)

This is in agreement with the numerical result in 6 and is valid until
the arrival at t = W/C of the diffracted wave from the adjacent corners,
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For the convenience of description, it is assumed that the height 0D is
equal to the width W(=0A) and is related to the length L(=0B) by the
inequality

2L > W> L ®%5)

For a point (xo,o,o) on the edge of 0A with solid angle 11, Theorem I
gives

p (x,0,0,t) = el &/ (brr-m1)] = (4/3) ¢ for XO/C >t>0 (66)

Due to symmetry, x  can be assumed to be less than W/2 and the upper
limit for t is the epoch for the arrival of the diffracted wave from the
vertex O.

For the disturbance pressure elsewhere such as on the surfaces of
the block it is necessary to construct the diffracted waves. Behind the
incident front the disturbance pressure is p, = ¢ outside the envelopes
of sonic spheres along the edges OA and OD. 1Inside the sonic sphere
around the vertex O the pressure is given by the_three-dimensional conical
solution constructed in 7, i.e., p;= ¢ + ep3c(x,y,z) with x,y,2z equal to

x/(Ct), y/(Ct), z/(Ct) respectively. Outside the sonic sphere but inside
one of the cylindricgl_envelopes,the solutign§ are conical in two dimensions
i.e., pp = ¢ + epzc(x,y) and p; = e + epzc(z,y) for edges OA and 0D

respectively. Of course there are also diffracted waves from vertices A,
D, E, and edges AD and DE.

When t > L/C, the wave front advances over the edges BA', BD' and
the vertex B. 1If the edges BA', BD' were absent and the planes OBA and
OBD were extended beyond BA' and BD', point B can be considered as the
vertex of a cone, G, with solid angle () =n and the solution p; at B is
valid for t > L/C (Fig. 12). 1In the presence of the edges BA' and BD',
point B can be considered as the vertex of a cone Gy, with solid angle
(=r/2. Cone G and cone G have faces OBAB' and ODAD' in common and
time interval T can be equated to zero. Theorem II yields the resultant
value at B for cone G,, i.e., including the diffraction of p, by corner B,

ps (o,L,0,t) = [ 4m-n)/ (&m-11/2)] p, (o,L,0,t)

©/7) e[1+p30(o,L/Ct,o)] for L/C> t-L/C> 0 ©7)

The upper limit of t = 2L/C is due to the finite length L of both cone
G, and cone G;.

In case of (wa -+ Lz)l/2 < 2L, the conical solutions originated at the
vertices A and D arrive at_corney B before t = 2L./C, additional terms
should be added for t > (ﬁa + I#)/C. They can again be defined by_
Theorem II. The incoming wave from corner A is ep3c(x',y,z) with x'=(Wx)/(Ct).

Point B can be considered as the vertex of cone G, defined as before and
as the vertex of cone G with the extension of face QABA' over the edges
OB and BA'. The solid angle for G 1is 2m and the ratio of solid angles
exterior to G, and G is (4m-2m)/ (4n-m/2) = &4/7. Theorem II yields the
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extra term (4/7) €P,, (w/ (ct),L/(Ct),0). Similarly a term
&/ €Ps. (0,L/(Ct), W/ (Ct)) should be added to Eq. (67) to take into

account the incoming wave from vertex D for t > (W° + [ )2/C

The disturbance pressure at a point P(x ,L,0) on the edge BA' can
also be related to the diffracted waves from edge OA and from vertices O
and A by means of Theorem II, Point p can be considered as the vertex
of cone G with solid angle () =1 (Fig. 11). When the face 0ABA' is
extended over the edge BA', point P becomes the vertex of cone G with
solid angle () = 2 (Fig. 12). The resultant pressure at point P due
to diffraction is equal to 2/3 of the value of the incoming wave alone.
The factor 2/3 is the ratio of exterior solid angles of G and G.
This result is valid until the arrival of the non-conical diffracted
wave from vertex B' or A'.

It has been demonstrated that the theorems are useful to extend the
knowledge of conical solutions to the adjacent edges and vertices for
limited time intervals. To obtain the pressure distribution on the
surfaces of the rectangular block or structure, it is still necessary
to construct three-dimensional non-conical solutions for diffractions
by edges and corners.
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Conclusion

In this paper the following results are obtained:

1)

2)

3)

4)

5)

6)

the conical solution for the diffraction of a plane acoustic
pulse by a three-dimensional corner of a cube is obtained by
separation of variables.

the solutions of the eigenvalue problem in spherical angles for
the conical problem remain the same for the generalized comical
solutions described in 7 and also for potential or unsteady heat
conduction problems, so long as the boundary conditions in 6,y
plane are the same.

the technique for the solution of the eigenvalue problem is
applicable to a more general shape of boundary on the unit sphere
formed by two great circles of given longitudes and a horizontal
circle of given latitude, The boundary conditions can be
generalized to the type ap+b op/on = O with both a and b as
non-negative constants.

the numerical results suggest that the eigenvalues for corners
can be approximated, one by one, by the eigenvalues for circular
cones of the same solid angle.

"mean-value'" theorems in 8 are derived for solutions of wave
equations so that the resultant wave at the vertex of a cone
can be related to the incident wave or the value at the vertex
of a different cone. These theorems are useful to extend the
knowledge of the conical solutions to the adjacent corners or
edges.

applications of the Theorems in 8 yield interesting and simple
results: for an initial value problem of an inhomogeneous wave
equation inside a conical surface with vanishing normal
derivative on the surface, the value at the vertex of the cone
can be related directly to the same initial value problem in
three-dimensional space., The value at the vertex depends only
on the value of the solid angle of the cone but not on the
geometry of the cone. It depends on the radial distribution
of the initial data and the inhomogeneous term but not on their
distribution with respect to the spherical angles.
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Ly (0B=L, OA=0D=W; also shown are the diffracted wave fronts
around edges OA,0D,BA',BD' and around vertices O and B).
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APPENDIX
NUMERICAL. PROGRAMS

Four complete sets of listing programs for CDC-6600 are given in
the appendix. They are called first program (A), first program (B),
second program and third program. Their input and output formats and
the operating instructions are presented as follows:

First Program (A): determination of eigenvalues and eigenfunctions for
odd functionm.

First Program (B): determination of eigenvalues and eigenfunctions for
even function.

Input Definition

IIPP . a control constant
To calculate determinant and search for eigenvalues;
let IIPP equal to any negative or zero integer.
To calculate determinant and coefficients of eigen-
function; let IIPP equal to any positive integer.

NMAX : for odd function NMAX=MS; for even function NMAX=Mc
LMAX : for odd function LMAX=JS; for even function LMAX=Jc
XLAM Y

If IIPP 1; XLAM is only a searching eigenvalue. More
accurate value for the roots of AQ )=0 can be obtained
by interpolation. Be careful not to overlook multiple
root across which A(\) may not change sign.

If ITPP > 1; XLAM is an eigenvalue as located by the
preceding method, and ready to calculate the coef-~
ficients of eigenfunctions.

Input
Card 1; IIPP, NMAX, LMAX (Format 315)
Card 2; XLAM (Format F15.0)

Output and Definition

EMAX} : input data previously described

IIMAX : number of linear homogeneous equations, for the odd
solutions; IIMAX=LMAX+NMAX; for the even solution:
I IMAX=LMAX+HNMAX+2

ALPHA ¢ 2¢x

)



Qutput and Definition

PPHI

XNUIL

XMU

XLAM

DET

BMIN
DMIN

(1),
(L)

for ev

for od

These

Second Program:

Input Definition

Input

1T

NMAX

L |

XLAM

BMIN(
DMIN(

I1=1,

J)
L)

NMAX,

Set

o

Set {

: =2 (m-Q)

PV =1/3

: pb=cos(6) where B is the latitude of upper surface
: previously described

: the value of determinant for a given i; Ac(x)=|aij[

: coefficients in the series representation of eigen-
functions,
en function First Mc+l output are Am's
Next Jc+l output are Cj's

d function First Mg are Bm's
Next J_ are Di's

Am's, Cj's, Bm's, Dj's are defined by eq. (25).

Determination of the coefficient Kl of the eigen-

function expansion from the initial data.

: control constant
II=1; to calculate KX for odd function

I1 equal to any integer other than one; to calculate
K)L for even function

: previously described

these are the coefficients calculated from program
one (A) for odd function or program one (B) for even
function

LMAX (315)
XLAM (F15.0)
BMIN(J) (5FL5.0)
DMIN (L) (5FL5.0)

}

END FILE
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[Input
IT=2, NMAX, LMAX
[}
L
END FILE
Note that the bracket indicates a set of data composed of a given
A and its corresponding coeffcients BMIN(J) and DMIN(L). Note also
that these sets are then listed into a group of odd functions and a
group of even functions separated by an end file card.

This use of the end file card facilitates the orderly calculations
of all odd functions first and then all even functions,

Qutput and Definition

XLAM These are

NMAX, LMAX, TIIMAX, ALPHA, input data which

PPHI, XNUI, XMU are listed

BMIN(J) for identification
DMIN(L) and verification

K(Lamda) KK the coefficient of the

eigenfunction expansion from
the initial data

Remark: the subroutine FSF and subroutine CON2D prepare the boundary
data on the sonic sphere for the problem described in 6.
For a different problem only these two subroutines should
be changed.

Third Program: determination of the pressure distribution on the surfaces.

Input same as the second program, except the first card of each set of
input data contains both A and its corresponding KX which was
calculated from the second program,

OQutput and Definition

XLAM A
AAO : defined in eq. (39)

K(Lamda) : KX
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PHI} s 0 where 6 and ¢ are spherical coordinates
U

XM p=cose for points on the surfaces
P, : pressure on surface 0AB on figure (4) where 6 = B,
2 -
p=cosB; o, =T - +""C—¥ (N-1) , N=1,2,...5
N 4
3
B : pressure on surface OAD where ® = 7
=0 o 0 e =
GN =3 + a (N-1) where N = 1,2,3,4,5
Py : pressure on surface OBD where ¢p = :%E 5
m,n
=5+ 5 -(N-1 = 2,...
eN 2 + 8 (N-1) , N 1,2, 5

Note: P, By, Py are defined in eq. (34)

Qutput Format

0dd function

NMAX, LMAX, IIMAX,
ALPHA, PPHI, XNUI, XMU

XLAM, AAO, K(Lamda)

Set 1 1 BMIN(J)
DMIN (J)

e 2 }

Even function

NMAX, LMAX, TIMAX,
ALPHA, PPHI, XNUI, XMU

Sect. 1 { }
sect. 2{ }

At the last page of the output, a table of PHI, P, XMU, P,, P, 1is
tabulated in five columns with Format (2El16.5, 15X, 3El6.5).

Remark: 1In this program, there are 10 Z({)'s where {'s are 0.111, 0.211,

to 0,9989, 1In case of a different increment of (, the subroutine
T102 must then use a different value of XTEST.
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C FIRST PROGRAM (A)

C ODD FUNCTION TO CALCULATE DETERMINANT AND COEFFICIENTS
DIMENSION AEL(50+501+B(50,50)
DIMENSION ADET(50+50)sEEEE(50+50)
DIMENSION SUMA(101)sSUMB(101)sBMIN(20) +DMIN(30)+SBMIN(30),

1SDMIN{30)
LLMAX=50
READ(545) TIPP,4NMAXsLMAX
5 FORMAT(315)
I IMAX=LMAX+NMAX
ITTEM=1IMAX
PI=3.1415926
ALPHA=PI/2,
PPHI=2.*(PI-ALPHA/2.)
XNU1=PI/PPHI
INTERV=30
LEP=L MAX
JEP=NMAX
U0=0.
XMU=0.
XMUF I X=XMU
WRITE(6+502) NMAXSsLMAXsIIMAXsALPHASPPHI »XNU1 » XMU
502 FORMAT( * O NMAX=®*5 1S 95X s ¥LMAX= #1545 s *T IMAX=%,15/5X,
1ALPHA=%3FE12e595X o ¥PPHI =¥ 3E124555X s ¥ XNUL=¥3F12¢5,5X s *¥XMU=%¥,E12,5)
400 READ(L+31) XLAM
31 FORMAT(F14,0}
IFLENDFILE 5) 5559,5556
5556 CONTINUE

C CALCULATION OF ELEMENTS OF DETERMINANT
DO 303 J=1,1IMAX
DO 300 K=1,11MAX
IF(J-NMAX ) 10,10,200

10 IF(K-NMAX ) 11+11.,30C

11 CONTINUE
FEL=1.

14 IF(J=-K) 16+15+16

15 DELTA=1,
GO TO 17

16 DELTA=0.

17 S$S5=K
CALL PPDD(SSsXLAMsXMUSLLMAX »PP,4DP)
AEL(JsK)=DP*EFL®DELTA
GO TO 300

30 SS=(2%(K-MNMAX}-1)%XNU1
CALL PPDDI{SSsXLAMsXMUSLLMAXsPP,sDP)
LH=K-NMAX
LI=J
CALL XLLLLI{LHsLIsALPHASXNUL»XII)
AEL (JsK)=DP#XI11
GO TO 3200

200 IF(K-NMAX ) 2122124230
212 LH=J-NMAX

LI=K
CALL XLLLLUILHsLIsALPHASXNUYL+XI1)
55=K
CALL PPDD(SSs+XLAMsXMUSLLMAX sPP4+DP)
AEL (J»K)=PF%XI1
GO TO 300
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230
232

233
234

237

300

303

306

307

32

1002

IF(J-K) 23242329233

DELTA=1,

GO TO 234

DELTA=0.

CONTINUF

EEL=1,

58=(2 *(K-NMAX)-1)%XNU1

CALL PPDD(SSs+XLAMsXMUSLLMAX»PP,sDP)
AEL (JsK)==(1+=ALPHA/ (2.%P1) ) *EEL*PP*DELTA
CONTINUE

CONTINUE

DO 307 I=1,ITTEM

DO 306 J=1,ITTEM

B{lsJ)=0.

EEEE(IsJ)=AEL(TsJ)

CONT INUE

CONTINUE

CALL LEQ(AELsBsIIMAX90950+504DET)
WRITE(6+32) XLAM »DET

FORMAT (% XLAM=%#3E15,895Xs*DET=%3E15,8)
IF (1IPP) 40040041002
CONTINUE

C CALCULATION OF COFACTORS

902
%03

511

512

601

611

DO 903 I=1,ITTEM

DO 902 J=1sITTEM

ADET(T+J)=EEEE(TI+J)})

CONTINUE

CONTINUE

ICORD=1

DO 511 J=1,JEP

JCORD=J

CALL COFACT(ADETsITTEMyICORD» JCORDSDETCOE)
BMIN(J)Y=—(-1,) %% JCORD*DETCOF

CONTINUE

DO 512 L=1,LEP

JCORD=L+JEP

CALL COFACT(ADETITTEMsICORD>JCORDsDETCOE)
DMIN(L)=—~(~14)#** JJCORD*DETCCE

CONTINUE

DELU=(1e-UC)/INTERV

ISTEP=INTERV+1

DO 611 I=1,ISTEP

XMM=(T1-1)%DELU

SUM10=0.
DO 601 J=1sJEP
§5=J

CALL PPDD(SSsXLAMsXMMs LLMAXSPPsDP)
SUM10=5SUM10+(BMIN{(J)*PP ) *%2

CONT INUE

SUMA(1)=5UM10

CONTINUE

DELV=(1«+UO)/INTERYV

DO 711 I=1,1S8TEP

XMM=(1-1)%DELV

SUM11=0.

DO 603 L=14LEP

SS=(2¥L~1)%XNU]

CALL PPDD(SSsXLAMs XMM,LILMAXsPPsDP)
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SUM11=SUM11+(DMIN(L)*PP)*%2

603 CONTINUE
SUMBI(T)=5UMl11

604 FORMAT(15X915+43E20.8)

711 CONTINUE
TOSUM1=SUMA (1)

TOSUM2=SUMB (1)

DO 622 1=2+INTERV
COEF=3e+(—-14)#x]
TOSUM.=TOSUM1+COEF*SUMA{ 1)
TOSUM2=TOSUM2+COEF*SUMB (1)

622 CONTINUE
TOSUM1I=(TOSUM1+SUMA(ISTEP})*¥DELU/ 3,
TOSUM2=(TOSUM2+SUMRI{ISTEP) ) ¥DELV/3.
ODDN=TOSUM1#PI /2.,+PPHI*TOSUM2/4,

641 FORMAT(9Xs3E20.8)

DO 633 I=1.JEP
SBMIN(T)=BMIN(T)/SQRT (ODDN)
BMIM(I)=SBMIN(I)
633 CONTINUE
CALCULATION OF NORMALIZED COFACTORS ~-~COEFFICIENT OF EIGEN FUNCTION
WRITE(646)
6 FORMAT(//* COEFFICIENTS OF ODD FUNCTION*)

304 FORMAT(S5E20.8/(5Xs5E20.8))
WRITE(65304) ( BMIN(I)sI=14JEP)

DO 634 L=1,.LEP
SDMIN(LY=DMIN(L)/SQRT (ODDN)
DMIN(L)=SDMINI(L)

634 CONTINUE
WRITE(6+304) ( DMIN(L)sL=1sLEP)

GO TO 400
5559 STOP
END
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10

11

14

20
21

23
24
30

SUBROUTINE XLLLLILHsLIsALPHA»XNU1sXIT)

XH=LH

XI=LI

EPSIL=1.E-0%
PI=3.1415926
PPHI=PI/XNU1
VC=(2«¥XH-14 } ¥XNU1
TEST=ABS{VC=XI)=-{1,E~-08)
IF(TEST)20s20910
VAL=XT/(2+%XNU1)
VAA=VAL+0.5
J2VO=VAA+EPSIL

IF(ABSUJ2VO-VAA) -2 *EPSIL)Y1451111

JZ=LH+1

XIT=2e%(~14 ) X¥JZH¥COSIVAL*PII#XT/(PIX (VCRX2-XT]%#%2))

GO TO 30

X1I1=0

GO TO 30
IF(LIN21+21423
EEL=2.

GO TO 24

EEL=1.
XIT=PPHI/(2.%PT)*EFL
RETURN

END
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31

40

35

41

SUBROUTINE PPDDI(SS+sXLAMsXMUSLLMAX PP sDP)
XNU=SS

DD=1le

TEM1=0.

TEM2=0.

ZX=(1e=-XMU)/2e

IF(ABS(ZX)1-0.000001) 354354131
CONTINUE

DO 40 L=1,LLMAX

2L=L

TEM1=TEM1+DD*ZX¥*% (1 -1)
TEM2=TEM2+(ZL~1e ) ¥DDXZX¥% (| -2)
DD=DD*(ZL-XLAM~1, )% (ZL+XLAM) /7 (ZL%%2+ZL ¥#XNU)
CONTINUE
ARTFL=({14=-XMU)/(1,+XMU) ) *%{XNU/2,)
PP=ARTFL*TEMI1
DP==XNU¥PP/ (1 4a~-XMU¥%2 ) =0, S*¥ARTFL*TEM2
GO TO 41

PP=0e

DP=0e«

CONTINUE

RETURN

END



NN NANOND

LEQ

51

SUBROUTINE LEQ(A+BsNEASsNSOLNS»IA»IBSDET)

LINEAR EQUATIONS SOLUTIONS FORTRAN Il VERSION

SOLVE A SYSTEM OF LINEAR EQUATIONS OF THE FORM AX=B BY A MODIFIED
GAUSS ELIMINATION SCHEME

NEQS = NUMBER OF EQUATIONS AND UNKNOWNS

NSOLNS = NUMBER OF VECTOR SOLUTIONS DESIRED

IA = NUMBER OF ROWS OF A AS DEFINED BY DIMENSION STATEMENT ENTRY
IB = NUMBER OF ROWS OF B AS DEFINED BY DIMENSION STATEMENT ENTRY
ADET = DETEFRMINANT OF As AFTER EXIT FROM LEQ

DIMENSION A(IA,IA)+B(IB»IB)

NSIZ = NEQS

NBSIZ = NSOLNS

NORMALIZE EACH ROW BY ITS LARGEST ELEMENT. FORM PARTIAL DETERNT
DET=1l.0

DO 1 I=1sNSIZ

BIG=A({Is1)

IF{NSIZ-1)504+50551

DO 2 J=24sNSIZ

IF(ABSF(BIG)-ABSF(A(I+J))) 39252
BIG=A(1+J)

CONT INUE

BG=1.0/BIG

DO &4 J=1sNSIZ

AlT+J)I=A(T+J)%BG

DO 41 J=1,NBSIZ

B(I+J)=B(I,J)%BG

DET=DET*BIG

CONTINUE

START SYSTEM REDUCTION

NUMSYS=NSIZ-1

DO 14 1=1,NUMSYS

SCAN FIRST COLUMN OF CURRENT SYSTEM FOR LARGEST ELEMENT
CALL THE ROW CONTAINING THIS ELEMENTs ROW NBGRW
NN=T1+1

BIG=A(1,1)

NBGRW=1

DO 5 J=NN»NS1Z
IF(ABSF(BIG)~ABSF(A(JsI))) 63545
BIG=A(J,1)

NBGRW=J

CONT INUE

BG=1.0/BIG

SWAP ROW I WITH ROW NBGRW UNLESS I=NBGRW
IF(NBGRW=-I) 71057

SWAP A-MATRIX ROWS

DO 8 J=14NSIZ

TEMP=A(NBGPWJ)

A(NBGRWsJ)=A(T,J)

A{T+J)=TEMP

DET = -DET

SWAP B-MATRIX ROWS

DO 9 J=1sNBSIZ

TEMP=B(NBGRW,y J)

BINBGRWsJ)=B(I,4J)

B(IsJ)=TEMP

ELIMINATE UNKNOWNS FROM FIRST COLUMN OF CURRENT SYSTEM

LEQF 0020
LEQF0030
LEQF0040
LEQF 0050
LEQF00&0
LEQF0070
LEQF0080
LEQF0090
LEQFO0100
LEQFO110
LEQF0120
LEQFO0130
LEQF0140
LEQFO0150
LEQFO0160
LEQFO0170
LEQFO180
LEQFO019%90
LEQFO0200
LEQFO0210
LEQF0220
LEQF0230
LEQF0240
LEQF0250
LEQF0260
LEQF0270
LEQF0280
LEQF 0290
LEQFO0300
LEQF0310
LEQF0320
LEQFO0330
LEQFQ0340
LEQF0350
LEQFO360
LEQF0370
LEQF0380
LEQF0390
LEQF0400
LEQFO0410
LEQF 0420
LEQF0430
LEQF0440
LEQFO0&450
LEQF 0460
LEQF0470
LEQF0480
LEQF0490
LEQFO0500
LEQFO0510
LEQF0520
LEQF0530
LEQF 0540
LEQFO0550
LEQF0560
LEQFO0570
LEQF0580
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11
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14
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DO 13 K=NNsNSIZ
COMPUTE PIVOTAL MULTIPLIER

PMULT=-A(KsI)*BG

APPLY PMULT TO ALL COLUMNS OF THE CURRENT A-MATRIX ROW
DO 11 J=NNeNS12

A(Ks J)=PMULT®A(I yJ)+A(KsJ)

APPLY PMULT TO ALL COLUMNS OF MATRIX B

DO 12 L=14NBSIZ2

BIKsL)=PMULT*B(I»L)+B(KsL)

CONTINUE

CONTINUE

DO BACK SUBSTITUTION

WITH B-MATRIX COLUMN = NCOLB

DO 15 NCOLB=1sNBSIZ

DO FOR ROW = NROW

DO 19 I1=1,NS12

NROW=NSIZ+1-1

TEMP=0,0

NUMBER OF PREVIOUSLY COMPUTED UNKNOWNS = NXS
NXS=NSTZ-NROW

ARE WE DOING THE BOTTOM ROW

IF(NXS) 16+17s16

NO

DO 18 K=1sNXS

KK=NSIZ+1-K

TEMP=TEMP+B (KK s NCOLB)*A (NROWsKK)
BINROWsNCOLB) a2 (B (NROWINCOLB)~-TEMP) /A(NROWsNROW)
HAVE WE FINISHED ALL ROWS FOR B-MATRIX COLUMN = NCOLB
CONT INUE

YES

HAVE WE JUST FINISHED WITH B-MATRIX COLUMN NCOLB=NSIZ
CONTINUE

YES

NOW FINISH COMPUTING THE DETERMINANT

DO 20 1=1sNSIZ

DET=DET*A(I,1)

WE ARE ALL DONF NOW

WHEWe o o

RETURN

END
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LEQF0590
LEQF0600
LEQF0610
LEQF0620
LEQF0630.
LEQF0640
LEQF0650
LEQF0660
LEQF0670
LEQF0680
LEQF0690
LEQF0700
LEQFO710
LEQFO720
LEQFO730
LEQFO0740
LEQFO0750
LEQF0O760
LEQFO770
LEQFOQO780
LEQFO790
LEQF0800
LEQFO810
LEQF0820
LEQFQ830
LEQF0840
LEQF0850
LEQF0860
LEQFO870
LEQF0880
LEQF 0890
LEQF0900
LEQF0910
LEQF0920
LEQF0930
LEQF0940
LEQF0950
LEQF0960
LEQF0970
LEQF0980
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35

36
37

SUBROUTINE COFACT(ADET»1IMAXsICORDsJCORDSDETCOE)
DIMENSION ADET(50s50)sBDET(50550)+sCDET(50+50)
M=1

MM=1

N=1

MN=1

IF(M-ICORD) 20412520

MM=M+1 .

IF(N-JCORD) 23,22,23

MN=N+1

BDET(MsN)=ADET (MM sMN)

N=N+1

MN=MN+1

IFI(N-ITMAX+1) 20s20s31

M=M+]1

MM=MM+1

IF(M-TIMAX+1) 10510435

ITERM=1IMAX~-1

DO 37 I=1sI1TERM

DO 36 J=1,ITERM

CDET(I+J)=0,

CONTINUE

CONT INUE

CALL LEQ(BCETsCDET,ITERM,05504+504DETCOE)
RETURN

END
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C FIRST PROGRAM(B)

C EVEN FUNCTION TO CALCULATE DETERMINANT AND COEFICIENTS
DIMENSION AEL(50950)9B(50+50)
DIMENSION ADET {50450} sEEEE(50450)
DIMENSION SUMA(101)sSUMB(101)sBMIN(30) sDMIN(30)+sSBMIN(30)

1SDMIN(30)
LLMAX=50
READ(545) TIPPsNMAX s MAX
5 FORMAT(315)
TIMAX=LMAX+NMAX+2
ITTEM=TIMAX
PI=3,1415926
ALPHA=PI /2.
PPHI=2e*{PI—-ALPHA/24)
XNU1=PI/PPHI
INTERV=30
LEP=LMAX+1
JEP=NMAX+1]
UO0=0o
XMU::OQ
XMUF I X=XMU
WRITE(65502) NMAXsLMAXsIIMAXSALPHASPPHI sXNU1 s XMU
502 FORMAT( # NMAX=¥*31595X s ¥LLMAX=#* 955X s ¥ IMAX=%,415/5X,
TALPHA=#*3E12e595X 9 ¥PPHI=#*3E124595X s ¥XNUI=%9E12:595X s ¥XMU=%,E12,5)
400 READ(5431) XLAM
31 FORMAT(F14.0)
IF(ENDFILE 5) 5559,5556
5556 CONTINUE

C CALCULATION OF ELEMENTS OF DETERMINANT
DO 303 U=1-1TTFM
DD 300 K=1+ITTFM
IF(J-NMAX-1) 10+10,200

10 IF{K-NMAX-1) 11+11,30

11 IF(J-1) 12512413

12 FEL=2.
GO TO 14

13 FEL=1.

14 TF(J~-K) 1692154¢16

15 DELTA=1,
GO TO 17

16 DFELTA=0.

17 55=K-1
CALL PPDD(SS+sXLAMyXMU L LMAX sPP,4DP)
AEL(JsK)=DP*EFL*DELTA
GO TO 1300

30 SS=2% (K-NMAX-2) #*XNU1
CALL PPDD{(SSsXLAMXMUSLLMAX PP sDP)
LH=K~-NMAX-2
LI=J-4
CALL XULLLL(LHoLIsALPHASXNULWXIT)
AEL(JsK)=DP%XI1
GO T0O 300

200 TF(K-NMAX-1) 21242179230
212 [H=J-NMAX-2

LI=K-1
CALL XLLLLC(LHsLIsALPHASXNULSXII)
SS5=K-1
CALL PPDD(SSeXLAMIXMUSLLMAX sPP43DP )
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230
232

233
234
235
236
237

300
303

306

307

32

no2

AEL (JeK)=PP*¥XIT

GO TO 300

IF{J-K) 23342324233

DELTA=1,

GO TO 234

DELTA=0,

IF{J-NMAX=2) 236+2354+236

EEL=2.

GO T0 237

EEL=1.,

55=2 #(K-NMAX-2)*XNU1

CALL PPDD(SSsXLAMsXMUSLLMAX sPP+DP)
AEL(JsK)==(1¢e~ALPHA/ (2 .,%P 1) )*FEL*PP*DELTA
CONTINUE

CONTINUE

DO 307 I=1+ITTEM

DO 306 J=1+ITTEM

B(IsJ)=0.

EEEE(I s JY=AEL(T»J)

CONTINUE

CONT INUE

CALL LEQUAEL sBsITTFMs09504504DET)
WRITE(6932) XLAM LDET

FORMAT ( ¥ XLAM=%3E15,83s5Xs#DET=%sE15.8)
IF(1IIPP) 400540041002
CONTINUE

CALCULATION OF COFACTORS

902
903

526
511

536
512

601

DO 903 I=141TTEM

DO 902 JU=141TTEM
ADET(TI,JY=EEEE(T4+J)

CONTINUE

CONTINUE

ICORD=1

DO 511 JU=14JEP

JCORD=J

CALL COFACT(ADETSITTEMsICORDs JCORDDETCOF)
BMIN(J)Y=~(~14)%*JCORD#*DETCOFE

CONT INUE

CONT INUE

DO 512 L=1.LFP

JCORD=L+JFP

CALL COFACT(ADETSITTEMsICORD s JCORDIDETCOE)
DMIN(L)==(-1,)#*¥JCORD*DETCOFE
CONTINUE

CONT INUE

DELU={14-U0)/INTERYV

ISTEP=INTERV+1

DO 611 T1=1s1STEP

XMM=(1-1)*DELU

SS5=0.

CALL PPDD(SSsXLAMsXMMLLMAX PP sDP)
SUM10=2 % (BMIN(1)*PP)*x?

DO 601 J=24JEP

S55=J-1

CALL PPDD(SSsXLAMsXMMsLLMAX sPPsDP)
SUM10=SUMIO0+ (BMIN(J)®PP)#%D
CONTINUE

SUMA(T)=SUM10
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611 CONTINUE
DELV=(14+UQ)/INTERV
DO 711 I=1,1STFP
XMM=(T1-1)*DELV
S$5=0e
CALL PPDD(SSsXLAMsXMMoLILMAX sPP+DP)
SUMI1=2.%(DMIN(1)*¥PP)Y#%2
DO 603 L=24LEP
S8=2«%(L-1)%XNU1
CALL POPDD(SSsXLAMs XMMsLLMAXsPPsDP)
SUMI1=SUMI1+(DMIN(L)*PP)%*?

603 CONTINUE
SUMB(Ty=5uUmM11

711 CONTINUE
TOSUM1I=SUMA(1)

TOSUM2=SUMB (1)

DO 622 I=2+INTERV
COFF=3.+("‘1 . )**I
TOSUMI=TOSUMI+COFF#SUMA(T)
TOSUM2=TOSUM2+COEF*SUMB (T}

622 CONTINUE
TOSUM1=(TCSUMI+SUMACISTEP) ) *DELU/ 3.
TOSUM2=(TOSUMZ2+SUMR(ISTEF))*DFLV/3.
ODDN=TOSUMI#F1/2+PPHI*TOSUM2 /4.

CALCULATION OF NORMALIZED COFACTORS —--~COEFFICIENT OF EIGEN FUNCTION
DO 633 I=1,JEP
SBMIN(T)Y=BVIN{T)}/SNRT (ODDN)
BMIN(I)=SBMIN(T)

633 CONTINUE
WRITE(6+6)

6 FORMAT( /* COEFFICIENTS OF EVEN FUNCTION¥*)

304 FORMAT(5E20e8/{(5Xs5E2C8))
WRITE(64+304) (BMIN(I)sI=14JEP)

DO 63« L=1,LFP
SOMIN(L)=DMIN(L)/SOQRT (ODNDN)
DMINIL)Y=SDVIN(L)

634 CONTINUE
WRITE(64304) (DMIN(L)sL=1sLEP)
WRITE(6+401)

401 FORMATI(///7)

GO TO 400
5659 STOP
END
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SUBROUTINE XLLLL(LHsLIsALPHAsXNULsXIT)

THIS SUBROUTINE IS FOR '"'*'BMETA-t 11

10

11

14

20
21

23
24
30

XH=LH

XI=LI .

EPSIL=1.F~0%
PI=3e41415926
PPHI=PI/XNU1
VC=2 e ¥XH*XNU1
TEST=ABS(VC-XI)~(1,E-08)
IF(TEST)20520510
VAL=XT/(2%XNU1)
J2VO=VAL+EPSIL
IF(ABS({J2VO-VAL) =2, #FPSIL) 14511011
JZ=LH+1

XIT=2e%(=1a)#XJZXHSTIN(VALX¥PI)*XI/ (PI#(VCH#R2-_XT*¥2))

GO TO 30

XI11=0

GO TO 20
IF(LTI)21+214+23
EF_L=2-

GO TO 24

EEL=1.
XIT=PPHI/(2%PT)*EFL
RETURN

END
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31

40

35

41

62

SUBROUTINE PPDD(SS+XLAMsXMUSLILMAXsPPsDP)
XNU=5S

DD=1.

TEM1=0.

TEM2=0,

ZX=(1le=XMU) /2.

IF(ABSIZX)Y~0,000001) 35935431
CONTINUE

DO 40 L=1,LLMAX

ZL=L

TEMI=TEM1+DD*ZX¥%¥ (L -1)
TEM2=TEM2+ (2L~ ) ¥DD*ZX X% (| -2)

DD=DD* (ZL-XLAM —le ) ®(Z2L+XLAM Y/ UZLA%2+Z 1L ®¥XNU)
CONTINUE
ARTFL={(1e=XMU)/(1a+XMU) I ¥X(XNU/2,)
PP=ARTFL*TEM1
DP==XNU¥PP/ (1 e—XMU*¥2 )} ~04,5*ARTFL*TEM2

GO TO 41

PP=0e

DP=0e

CONTINUE

RETURN

END



NNNANOONNNAND

LEQ

51

SUBROUTINE LEQ(AsBsNEQSsNSOLNS»TA» IBsDET)
LINEAR EQUATIONS SOLUTIONS FORTRAN II VERSION

SOLVE A SYSTEM OF LINEAR EQUATIONS OF THE FORM AX=B BY A MODIFIED

GAUSS ELIMINATION SCHEME

NEQS = NUMBER OF EQUATIONS AND UNKNOWNS

NSOLNS = NUMBER OF VECTOR SOLUTIONS DESIRED

IA = NUMBER OF ROWS OF A AS DEFINED BY DIMENSION STATEMENT ENTRY
IB = NUMBER OF ROWS OF B AS DEFINED BY DIMENSION STATEMENT ENTRY
ADET = DETERMINANT OF As AFTER EXIT FROM LEQ

DIMENSION A(IAsIA)+B(IB»IB}

NST1Z = NEQS

NBSIZ = NSOLNS

NORMALIZE EACH ROW BY ITS LARGEST ELEMENT.
DET’-’-]. «0

DO 1 I=1sNS1Z

BIG=A(1.1)
IF(NSIZ~1)50+50+51

DO 2 J=2sNS1IZ
IF(ABSF(BIG)I=-ABSF(A(TIsJ) )}
BIG=A(1,J)

CONTINUE

BG=1.0/BIG

DO 4 J=14sNS12Z
A(T+J)=A(1+J)%¥BG

DO 41 J=14.NBSI7Z
B(I+J)=B(1+J)%¥BG
DET=DFT*BIG

CONTINUE

START SYSTEM REDUCTION
NUMSYS=NSIZ-1

DO 14 I=14NUMSYS

SCAN FIRST COLUMN OF CURRENT SYSTEM FOR LARGEST ELEMENT
CALL THE ROW CONTAINING THIS ELEMENTs ROW NBGRW

NN=T1+1

BIG=A(I,1)

NBGRW=1

DO 5 J=NNoNSIZ
IF(ABSF(BIG)~ARSF(AlLJU,1)))
BIG=A(Js1)

NBGRW=J

CONTINUE

BG=1.0/BIG

SWAP ROW T WITH ROW NBGRW UNLESS I=NBGRW

IF(NBGFW-1) 7+10+7

SWAP A-MATRIX ROWS

DO 8 J=IsNSIZ

TEMP=A(NBGPRWsJ)

AINBGRWsJ)=A(T,4)

A(T+J)=TEMP

DET = -~DET

SWAP B-MATRIX ROWS

DO 9 J=1sNBS1Z

TEMP=B{NBGRW»s»J)

BINBGRWsJ)I=B(T1,4J)

B(T1+J)=TEMP

ELIMINATE UNKNOWNS FROM FIRST COLUMN OF CURRENT SYSTEM

FORM PARTIAL DETERNT

33292

659595

63

LEQF0020
LEQF0030
LEQF 0040
LEQF0050
LEQFO0C60
LEQF0070
LEQF0080
LEQF0090
LEQF0100
LEQFO110
LEQF0120
LEQF0130
LEQF0140
LEQFO0150
LEQF0160
LEQFO0170
LEQF0180
LEQF0190
LEQF0200
LEQF0210
LEQF0220
LEQFC230
LEQF 0240
LEQF0250
LEQF 0260
LEQF0270
LEQF0280
LEQF0290
LEQF0300
LEQF0310
LEQF0320
LEQF0330
LEQF0340
LEQF0350
LEQF0360
LEQF0370
LEQF0380
LEQF0390
LEQF0400
LEQFG410
LEQF0420
LEQF0430
LEQF 0440
LEQF 0450
LEQF 0460
LEQF0470
LEQF0480
LEQF 0490
LEQF 0500
LEQF0510
LEQF0520
LEQF0530
LEQF0540
LEQFO0550
LEQF 0560
LEQF0570
LEQF 0580



10

11

12
13
la

50

DO 13 K=NNsNSIZ "

COMPUTE PIVOTAL MULTIPLIER

APPLY PMULT TO ALL COLUMNS OF THE CURRENT A-MATRIX ROW
PMULT=—~A(Ks1)%BG

DO 11 J=NNsNSIZ

APPLY PMULT TO ALL COLUMNS OF MATRIX B

A(K o JI=PMUL TXA(I+J)+A(KsJ)

DO 12 L=1sNBSIZ

BIKsL)=PMULTH*B(IL)+B{KsL)

CONT INUE

CONTINUE

DO BACK SUBSTITUTION

WITH B-MATRIX COLUMN = NCOLB

DO 15 NCOLB=1sNBSIZ

DO FOR ROW = NROW

DO 19 I=1,NSIZ

NROW=NSTZ+1-1

TEMP=0,0

NUMBER OF PREVIOUSLY COMPUTED UNKNOWNS = NXS
NXS=NSIZ-NROW

ARE WE DOING THE BOTTOM ROW

IF(NXS) 16417516

NO

DO 18 K=1,NXS

KK=NSIZ+1-K

TEMP=TEMP+B (KKsNCOLB) *A (NROW s KK}

BINROWsNCOLB) =(B{NRCWsNCOLRB)~TEMP) /A {NROWsNROW)
HAVE WE FINISHED ALL ROWS FOR B-MATRIX COLUMN = NCOLB
CONTINUE

YES

HAVE WE JUST FINISHED WITH B-MATRIX COLUMN NCOLB=NSIZ
CONTINUE

YES

NOW FINISH COMPUTING THE DETERMINANT

DO 20 I=1sNS1Z

WE ARE ALL DONE NOW

WHEWe o o

DET=DET#A(I,1)

RETURN

END

6k

LEQFO0590
LEQF 0600
LEQF0620
LEQFC610
LEQF0630
LEQF0650
LEQFO0&40
LEQF 0660
LEQF 0670
LEQF0680
LEQFO690
LEQF0700
LEQFO710
LEQFO720
LEQFO730
LEQFO0740
LEQF0750
LEQFO760
LEQFO0770
LEQF0780
LEQF0790
LEQF 08GO
LEQFO810
LEQF0820
LEQF0830
LEQF0840
LEQF0850
LEQF0860
LEQF0870
LEQF0880
LEQF0890
LEQF0900
LEQFO91C
LEQFQ920
LEQF093¢
LEQF0950
LEQF 0960
LEQF0940
LEQFO0970
'EQF0980
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12

20

22

31

35

36
37

SUBROUTINE COFACT(ADETsIIMAXsICORDs JCORDSDETCOE)
DIMENSION ADET{50550) sBDET(50+50)sCDET(50+50)

M=1

MM=1

N=1

MN=1

IF(M—TICORD) 20+12,20
MM=M+1

IF(N~JCORD) 23422523
MN=N+1

BDET (MyN)=ADET (MM sMN)
N=N+1

MN=MN+1

IFIN-TIMAX+1) 20420931
M=M+1

MM=MM+1

IF(M—TTMAX+1) 1091035
ITERM=TIMAX-1

DO 37 I1=1sTTERM

DO 36 J=1s1TERM
CDET(I+J)=0s

CONTINUE

CONTINUE

CALL LFQ(BDETsCDETSITERM+0+50,50,DETCOE)

RETURN
END
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C SECOND PROGRAM
C DETERMINATION OF THE COEFFICIENTS OF THE EIGENFUNCTION EXPANSION FROM
C THE INITIAL DATA ‘
DIMENSION F(70)sFUP({T70970)sFBT(70+s70)sSFL(70,70)
DIMENSION SUMJ(70)sSUML(T70) sBMIN(701 sDMIN(70)
LLMAX=50
IDIM=70
MAXU1=60
MAXTOP=60
MAXU2=60
MAXBOT=60
1000 READ(541001) 1T1sNMAXsLMAX
1001 FORMAT(315)
IFIENDFILE 5) 9999,1002
1002 CONTINUE
IF(I] +EQe 1) 101,103
C
C
C ODD FUNCTION
101 IIMAX=LMAX+NMAX
WRITE(64+1003)
1003 FORMAT(1H1#* ODD FUNCTION#*}
NCALL=NMAX
LCALL=LMAX
GO TO 104
C
C EVEN FUNCTION
103 ITIMAX=LMAX+NMAX+2
WRITE(641004)
10C4 FORMAT(1H1s#* EVEN FUNCTION¥*)
NCALL=NMAX+1
LCALL=LMAX+1
104 CONTINUE
P1=3.1415926
ALPHA=PI /2,
XMU-‘-O.
PPHI=2.%(PI1—-ALPHA/2,)
XNU1=PI/PPHI
HALPHI=PPHI/2a
EPS =0,000001
WRITE(69502) NMAXsLMAXsTIMAXsALPHASPPHIsXNUT »XMU
502 FORMAT( * O NMAX=¥9T1545X s #LMAX=%5T1595X s ¥ IMAX=%#,15/5X *
1ALPHA=% 3 E124595X s %¥PPHI=*3E1245»5X s ¥XNUL=%9E12,555X s *¥XMU=%¥4E12,5)
400 READ(5,100)XLAM
IF(ENDFILE 5) 1000,1111
1111 CONTINUE
100 FORMAT(5F1540)

READ(55100) (BMIN{I)sI=1sNCALL}
READ(55100) (DMIN(L)sL=1sLCALL)
UG=0e .
MAXPUS=MAXTOP+1
INDEX=1
WRITE(6932) XLAM

32 FORMAT{ #  XLAM=#+E15.8)

WRITE(6+503)

503 FORMAT(//# COEFICIENTS CF EIGENFUNCTION*)
WRITE(6+304) (BMIN(I)sI=1sNCALL)
WRITE(69304) (DMIN(L)sL=1sLCALL)
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C
C

304

FORMAT(5E208/(5X95E2048))
DELUl=(1.-U0-2.%¥EPS )/MAXU1
MAXUST=MAXU1l+1

UK=UO+EPS

DO 5 I=1sMAXUST

TOTARG=0.

CALL FFFUUKsINDEXsMAXTOPsFsIIsPPHISIDIM)
DO 4 J=1,MAXPUS
FUP{IsJ)=F(J)

CONTINUE

IROW=1

DO 13 J=1,.NCALL

IF(II «EQe 1) 1115113

ODD FUNCTION

111

CONTINUE

XVAL=J

CALL SININT(FUPsXVAL » IROWSMAXTOPsPIs0sIDIM sTRIINT)
GO TO 114

EVEN FUNCTION

113

114

13

19

CONTINUE

XVAL=J-1

CALL COSINT(FUPsXVAL IROWIMAXTOPsP1s0sIDIM »TRIINT)
CONT INUE

SS=XVAL

CALL PPDD(SSeXLAMsUKSLLMAXsPPsDP)
TOTARG=TOTARG+BMIN(J) *PP*TRIINT
CONTINUE

SUMJ(TI)=TOTARG

UK=UK+DELU1

CONT INUE

TOTEM1=5UMJ(1)

DO 19 I1=2,MAXU1

COEF=3 44+ (~1a)¥x]
TOTEM1i=TOTEM1+COEF*SUMJ (1)
CONTINUE
TOTEM1=(TOTEMI+SUMJ(MAXUST) ) *DELU1/3.
MAXPUS=MAXPOT+1

INDEX=2

DELUZ2=(1e+U0=2.%EPS ) /MAXU?2
MAXUSM=MAXUZ2+1

UK=—1,,+EPS

DO 9 I=1sMAXUSM

TOTARG=0,

CALL FFF(UK s INDEXSMAXBOT osFs Il sPPHISIDIM)
DO 8 J=1sMAXPUS

FBT(IsJ)=F(J)

CONTINUE

IROW=1I

DO 23 L=1,LCALL

IF(I] «EQe 1) 1215123

ODD FUNCTION

121

CONTINUE

XVAL=(2%L-1)%*XNU1

CALL SININT(FBTsXVALsIROWsSMAXBOTsHALPHIsQsIDIM »TRIINT)
GO TO 124

67



C

C EVEN FUNCTION

123

124

23

29

11

401

9999

68

CONTINUE

XVAL=2%(L—-1)#XNU1

CALL COSINT(FBTsXVAL s IROWIMAXBOT sHALPHISO0»IDIM
CONTINUE

SS=XVAL

UF=-l)K

CALL FPDD(SSsXLAMsUF sLLMAXsPPsDP)
TOTARG=TOTARG+DMIN{L) *PP*TRIINT
CONT INUE

SUML(1)=TOTARG

UK=UK+DELUZ2

CONTINUE

TOTEM2=SUML (1)

DO 29 1=2,MAXU2

COEF=3a-+(-1e)#xI
TOTEM2=TOTEM2+COEF*SUML (1)
CONTINUE
TOTEM2=(TOTEM2+SUML (MAXUSM) ) *DELU2/3,
EEEM=TOTEM1+TOTEMZ
WRITE(6911)EEEM

FORMAT( /20X s*K(LAMDA)=%*,E15.8)
WRITE(6,401)

FORMAT(//77)
GO TO 400
STOP

END

+TRIINT)



C F

SUBROUTINE SININT(FPsXVAL s IROWsMAXSTsUPLIMsBOTLIMSIDIMsTRIINT)
ILON'S METHOD FOR THE NUMERICAL EVALUATICN OF TRIGONAMETRICAL

C INTEGRALS-~(INTEGRAND=FP(P)#SIN(X*P))

14

16

21

25

31

DIMENSION FP(IDIMSIDIM)

HH=(JPLIM-BOTLIMI} /MAXST
S2S5=0e5*FP{IROWs» 1) #SINIXVAL®BOTLIM)

DO 14 J=39sMAXSTs2

P=BOTLIM+{J-1)*HH

$25=5S2S+FP(IROWs J)%XSIN(XVAL*P)

CONT INUE

J=MAXST+1

$525=52540,5#FP{IROWsMAXST+1)%#SIN(XVAL*UPLIM)

525M=0¢

DO 16 J=24MAXSTs2

P=BOTLIM+(J~1) *HH

S25M=S25M+FP(TROWs JI #STIN(XVAL#P)

CONTINUE

THE=XVAL#HH

IFITHE=042) 25421421

ALPHA=(THE*# 2+ THE*SIN(THE ) #*COS(THE) =2« ¥SIN(THE) ¥%2 ) /THE* %3
BETA=L o (THEX (14 +COSITHE)##2 ) -2 ¢#SIN(THE)*COS(THE) ) /THE* %3
CARM=4 ¢ # (SIN(THE)~THE#CQS(THE) ) /THE*#3

GO TO 31

ALPHAS2 ¢ ¥ THEH## 3 /45 ,—2 ¥ THE##5 /315 (+2 ¥ THEX**7/4725,
BETA=2e/3e+2 a ¥ THE##2 /18 a~4 o ¥ THE%#4/ 105 a+2 ¢ * THE*#6 /567 4
GARM=4a/3e~2 e ¥ THE##2 /15 ¢+ THE®*%#4 /2104 -THE*%¥6/11340.,
FA=FP({IROW.1)

FB=FP({IROWsMAXST+1)

TRIINT=HH* (-ALPHA*{FR#COS(XVAL®UPLIM)-FA*¥COS(XVAL#BOTLIM) )+BETA*
152S5+GARM#S25M)

RETURN

END
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SUBROUTINE COSINT(FPsXVAL s TROWsMAXSTsUPLIMyBOTLIMsIDIMsTRIINT)
C FILON®*S METHOD FOR THE NUMERICAL EVALUATION OF TRIGONAMETRICAL
C INTEGRALS——(INTEGRAND=FP(P)*COS({X*P})

DIMENSION FP(IDIMs1DIM)

HR=(UPLIM-BOTLIM) /MAXST

S525=0+5%FP( IROW» 1 ) *¥COS(XVAL®BOTLIM)

DO 14 JU=3sMAXSTs2

P=BOTLIM+(J-1)*HH

S52S5=5S2S+FP(IROWs J)*¥COS(XVAL*P)

14 CONTINUE
J=MAXST+1
S25=52S+40,5%FP(IROWeMAXST+1) *COS(XVAL¥UPLIM)
525M=0, .

DO 16 J=2sMAXST»2
P=BOTLIM+(J=-1)*HH
S525M=S2SM+FP (IROW s J)#COS(XVAL*P)

16 CONTINUE
THE=XVAL#*HH
IF(THE~O42) 25921521

21 ALPHA=(THE*#2+THE#*SIN(THE)*COS(THE) =2« *SIN(THE ) %¥%2) /THE* %13
BETAz2 ¢ # ({THE*# {1 e+COSITHE ) %¥%#2) =2 (#SIN(THE)*COS(THE) ) /THE*%3
GARM=4 ¢ # {SIN(THE) ~THE*COS(THE ) ) /THE**3
GO TO 31 .

25 ALPHA=2 o #THE®%#3/45 .2 ¢ #THE##5/315,+2 ¥ THEX*7 /4725,
BETA=24e/3a+2 e XTHEX#2 /15 a—b ¢ ¥ THE % %4 /105 o424 ¥ THE**6 /567,
GARM=4¢/3a~2 ¢ ¥ THE##2 /15 ¢+ THE®*#4 /2104 ~THE#*%*6/11340,

31 FA=FP(IROWs1)

FB=FP{IROWsMAXST+1)

TRIINT=HH*( ALPHA*(FB*SIN(XVAL®UPLIM)}-FA*SIN(XVAL*BOTLIM))+BETA*
182S5+GARM*525M)

RETURN

END

TO



14

16
17

19

SUBROUTINE FFF{(UU> INDEXsMAXsF»1T1sPPHI»IDIM)
DIMENSION F(IDIM)
PI=3.1415926

IFCINDEX «EQe 1) 436
DELPSI=PI/FLOAT (MAX)

GO TO 7
DELPSI=PPHI/FLCAT ( 2¥MAX )
CONT INUE

PSI=0a

MAXPUS=MAX+1

DO 19 N=1sMAXPUS
BPSI=PSI-PPHI/Z.

CALL FSF(BPSIsUUsFS sPPHT)
FA=FS
BPSI=2,%PI-PSI-PPHI/2.
CALL FSF(BPSIsUUsFS »PPHI)
FB=FS

IF(I1 «EQe 1) 14516
FIN)=(FA-FB}/2,

GO TO 17

FIN)=(FA+FB) /2.

CONTINUE

PST=PSI+DELPSI

CONT INUE

RETURN

END



1
11
12
14
15
16
17

18
19

20
21

31
32
33
34
35
36

37
38

39
40

42
43
45
51
53

54
55

56

T2

SUBROUTINF FSF(BPSTsUUSFS sPPHI)

PI=341415926

PI23=24%#PI/3.

PI43=4,%P1/3,

CONS23=2e4/3.

HALPI=PI/2,

HALPHI=PPHI/2.

TEST1=2e%PI~HALPHI

TEST2=2+%PI-PPHI

IF(UU) 11, 191

FO=1.

GO TO 31

IF(BPSI olLEe TEST1 +ANDe BPSI «GEe HALPI <ORe BPST LT, -HALPI
eANDe BPSI +GEe(~HALPHI-0,0000001)) 1914

FO=0o

GO TO 31

IF(BPSI «LEe O «ANDse BPSI oGTe —-HALPI) 12515
IFIBPST oLTe HALPI oANDe BPSI «GTe 0) 16518

WRITE(6s17) UUSBPSI

FORMAT (# PRORAM STOP IN CASE 1 U=¥3E12.595Xs%¥BPSI=%9£1245)

STOP

IF(ABS(BPSI+HALPI) -0,00001) 1951952C

FO=0e5

GO TO 31

WRITE(6921) UUSBPST

FORMAT(#* PRORAM STOP IN CASE 2 U=¥+sE125¢5Xs¥BPSI=%#4351245)

sTop

ABSPST=ABS(BPST)

IF(ABSPS] «GTe HALPI) 32,433

F1=0e

GO TO 51

RHO=SQRT (UU*#2+ (1 4-UU*%#2 ) *¥SIN(BPST)*%*2)

TAUO=ASIN(ABS(UU) /RHO)

IF(BPSI «GEe 0) 35,36

TAU=TAUO

GO TO 42

TAU=PI-TAUOQ

GO TO 42

IF(BPSI oLEe 0) 38,39

TAU=PI+TAUO

GO TO 42

WRITE(6940) UUSBPSI

FORMAT(* PRORAM STOP IN CASE 3 U=%3F12.,595Xs*¥BPSI=%,£12,5)

STOP

CALL CON2D(RHOsTAUSPI23sPI439CONS23sFIF)
IF(ABSPSI~HALPI) 45443,43

Fl=FIF/2a

GO 70O 51

Fl=F1F

IF(UU ) 56954453

F2=0e

GO TO 71

IF(BPSI «LTe HALPI +AND. BPSI «GTe O0) 55456

F2=0

GO TO 71

RHO=SGLRT (1e-UU**2)

IF(BPSI oLEs TFST1 +ANDe BPSI «GEs HALPI}) 57458



57

58
59

&0
61

62
64

66
71

TAU=BPSI-HALPI

GO TO 62

1IF(BPST oLEe O oANDe BPS] «GEe —HALPHI) 59460
TAU=BPSI+3.,%P1/2.

GO TO 62

WRITE{(6961) UULBPST

FORMAT(%* PRORAM STOP IN CASE & U=%9E12e595Xs%¥BPSI=%9F1245)
STOP

CALL CON2D(RHOsTAUsPI23sPT143+sCONS23sFIF)}
IF(UU ) 66964455

F2=0e5*%FIF

GO TO 71

F2=FIF

FS =FO+F14F2

RETURN

END

13



h

10
11

la
15

SUBROUTINE CON2D{RHO>TAUsW1aW2+S55PC)

PI1=3.1415926

EPSIL=0.000001

CON1=1e-RHO**2

IF(CON1+EPSIL) 10+10514
WRITE(6¢11)

FORMAT({%* 1-RHO*%#24+4EPSIL «LE.
STOP

IF(CON]1 115415417

GG=1.

GO TO 21
GG=(RHO/(1++SQRT(CON1)))*%SS
BTAU=SS*TAU
DD=(1,-GGEH*2)#SIN(OS*(W2-W1})
CC={l1a+GGHX2)¥COS(Ne5H(W2~W1))
SGCD=SORT(CCH#*x24+DD*%2)
IF(SQCD-EPSIL) 23428925
PC=O-5

GO TO 30

IF(CC) 28526426
PC=ASIN(DD/SQCD) /PT

GO TO 20

PC=ASIN(DD/SQCD) /PI¥{~1e)+1.
CONTINUE

RETURN

END

2ZEROs CHECK THE PROGRAM %)

—2 4 *#GG*COS(BTAU-(W2+W1)*0e5)



31

40

35

41

SURROUTINE PPDD(SSsXLAMsXMUSLLMAX sPPsDP)
XNU=35S

DD=1.

TEM1=00

TEM2=00

ZX=(1e~XMU) /24

IF(ABS{ZX)-0.,000001) 35535431
CONTINUE

DO 40 L=1,LLMAX

ZL=L

TEMI=TEM1+DD#ZX¥*# (|_-1)
TEM2=TEM2+(ZL—-1. ) ¥DD#ZX*¥*{L~2)
DD=DD*(ZL~XLAM ~1e ) ¥{ZL+XLAM )/ {ZL%%2+ZL%#XNU)
CONTINUE
ARTFL={({1e~XMU)/(1e+XMU) )} Ex(XNU/2,)
PP=ARTFL*TEM1
DP=—XNU*PP /(1 +—=XMU%#2)~05#ARTFL#*#TEM2
GO TO 41

Pp=0.

DP=0e

CONT INUE

RETURN

END

™




C THIRD PROGRAM
C DETERMINATION OF THE PRESURE DISTRIBUTION ON SURFACES
DIMENSION EDIM{20)sP1(20520)sP2(20520)sP3(20420)sG1(2G»20)>
1G2(20520)3G3(20s20) sBMIN(20)sDMIN(20)
LLMAX=50
P1=3,1415926
ALPHA=PI /2.
PPHI=2+%(PI-ALPHA/2,)
XNU1=PI/PPHI
HALPHI=PPHI/2a
DO 106 M=1510
DO 105 N=155
P1{MsN)I=0o,
P2(MsN)=0.
P3(MsN)=0.
105 CONTINUE
106 CONTINUE
1000 READ(551G01) ITsNMAXsLMAX
1001 FORMAT(315)
IF(ENDFILE 5) 9999,1002
1002 CONTINUE
IF{II .EQo 1) 101+103
C
C ODD FUNCTION
101 TIMAX=LMAX+NMAX
WRITE(652)
2 FORMAT(1H1ls//%* ODD FUNCTION*)
NCALL=NMAX
LCALL=LMAX
GO TO 104

C EVEN FUNCTION

103 TIMAX=_MAX+NMAX+2
WRITE(6s3)
3 FORMAT(1Hl s/ /# EVEN FUNCTION %)
NCALL=NMAX+1
LCALL=LMAX+1
104 CONTINUE

XMU=0o
WRITE(69502) NMAXsLMAXsIIMAXsALPHASPPHI sXNU1 s XMU
502 FORMAT( * NMAX=%9]595X s HLMAX=%9159s5X s ¥ T IMAX=%,15/5X>

1ALPHA=#3F1245e5X s #PPHI =% 4FE1245 35X 9 ¥XNUL=%*3FE124595Xs%XMU=%,E12,5)
110 READ(S5+100) XLAMLEEFM
100 FORMAT(5F15.0)

IF(ENDFTLE 5) 1000,1111
1111 CONTINUF

READ{54100) (BMIN(I)sI=1,NCALL)

READ(55100) (DMIN(LYsL=1sLCALL)

XMU=0

CALL T102(XLAMs1.sEDIM+BBBBBB)

AAAAAA=BRBRBB

WRITE(6932) XLAM»AAAAAASEEEM

32 FORMAT( #* XLAM=%9F14,255Xs#AA0=%sF144995X s #K{LAMDA)=2%,F14,9)

WRITE{(6+503)
503 FORMAT{(// % COEFFICIENTS OF EIGEN-FUNCTIONS#*)

WRITE{63s304) (BMIN(I)sI=1sNCALL)

WRITE(65304) (DMIN(L)sL=1sLCALL)
304 FORMAT(5E20.8/(5X25E2048))
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WRITE(6+401)

401 FORMAT(///7)
DELPHI={(PI-HALPHI) /20
IF(II «EQes 1} 2005203

ObD FUNCTION

200 DO 202 1=1,5
PHI=PI+(I-3)#DELPHI
PPUS=0,
DO 201 JU=1,NCALL
S5=J
CALL PPDD(SSsXLAMsXMUSLLMAX +PPsDP)
SINFU=SIN(J*PHI)
PPUS=PPUS+BMIN(J) *#PP#SINFU

201 CONTINUE
Gl(1I})=PPUS

202 CONTINUE
GO TO 209

EVEN FUNCTION
203 CONTINUE
204 DO 207 I=1,45
PHI=PI+(I-3)#DELPHI
F’DUS=0.
DO 206 J=14NCALL
§5=J-1
CALL PPDD({SS+XLAMsXMUSLLMAX sPP-DP)
COSFU=COS({SS*PHI)
PPUS=PPUS+BMINI{J)#PP#COSFU
206 CONTINUE
Gl(I)=PPUS
207 CONTINUE
209 CALL T102(XLAMsAAAAAAEDIM,BBBBBB)
DO 228 M=1,10
DO 227 N=1,5
P1{MsN)=PI1(MsNI+EDIM{MI*GL (N) #*EEEM
227 CONTINUE
228 CONTIMUE
MMP=1
PHI=HALPHI
DELTH=PI/8, —0,0005
300 IF(II +,EQe 1) 3014400

ODD FUNCTION

301 DO 309 I=1+5
THE=PI/2¢+{I-1)}#DELTH
XMU=COS(THE}
PMIN=0,
DO 302 L=1sLCALL
§S=(2#L-1)#XNU1
CALL PPDD(SSsXLAMs—-XMUsLLMAXsPPsDP)
SINFU=SIN(SS#PHI}
PMIN=PMIN+DMIN(L)*PP*#SINFU

302 CONTINUE

303 G2(1)=PMIN

305 G3(I)=PMIN*(~1,)

309 CONTINUE
GO TO 500




C EVEN FUNCTION

400 DO 409 1=1+5
THE=P1/24+(1-1)*DELTH
XmMuU=COSI{THE)
PMIN=0,
DO 402 L=1,LCALL
SS=2#(L-1)*¥XNU1
CALL PPDD(SSsXLAM»—XMUsLLMAXsPPsDP)
COSFU=COS(SS*PHI)
PMIN=PMIN+DMIN(L)*OP*#COSFU

402 CONTINUE

403 G2(TI)=PMIN-

404 G3(I)=PMIN

409 CONTINUE

500 CONTINUE

501 DO 505 M=1+10
DO 504 N=1,5
P2(MsN)=P2(MsN)+EDIMIMI*G2 (N)#EEEM
P3(MsN)=P3(MsNI+EDIM(M}*¥G3(N)*EEEM

504 CONTINUE

505 CONTINUE
GO TO 110

9999 CONTINUE
WRITE(6+9998)

9998 FORMAT(//8X s ¥PHI* 914X s¥P1% 428X o XXMUK 914X 9 ¥P 2% 514X, #P3¥)

601 DO 605 N=1s5
PHI=PI+(N~3)*DELPHI
THE=PI/2+{N-1)#DELTH
XMU=COS({THE)
DO 604 M=1+10
WRITE(64607) PHIsP1IMsN) s XMU)y P2(MsN)sP3(MoN}

607 FORMAT(2E16¢5915X93E1645)

604 CONTINUE

605 CONTINUE
SToOP
END
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SUBROUTINE T102(XLAMsAAAAAASEDIM,BBBBBB)
DIMENSION EDIM(20)

COMMON XXXXL

XXXXL=XLAM

XMAX=0.9989

X0=00001

XOXL=F3(XLAMsX0)

XOXLP=F3(XLAM+1esXN)

XOXLM=F3 (XLAM—149XN}

XOXLM2=F3 (XLAM+245X0)

10 FO=(XOXL+XLAM* (XLAM+1 ¢ ) ¥XOXIM2/ (4 4 #XLAM+6,.) ) ¥AAAAAA
GO= (XLAMEXOXLM+(XLAM+T o ) ¥ {XLAM+2 ¢ ) ¥XLAMEXOXLP /(4 oe%¥XLAM+6o) ) ¥AAAAAA
DELX=0,001
X=X0
F=FQ
6=G0
=1
XTEST=0,101

20 XK1=F1{XsFsG)*DELX
XL1=F2(XsFsG)*DELX
XK2=FT1(X+DELX/2es F+XK1/2e9 G+XL1/2¢)%¥DELX
XL2=F2(X+DELX/2es F+XK1/249 G+XL1/2+)%*DELX
XK3=F1(X+DELX/2e9 F+XK2/2e9 G+XL2/24)%DELX
XL3=F L (X+DELX/2es F+XKP?/26¢s G+XL2/24)*DELX
XK&4=F1(X+DELXs F+XK3s G+XLB)®DELX
XLa=F2(X+DELXs F+XK3s G+XL3B)*DELX
DELF=1a/6e# (XK1+2 ¢ HXK2+2 ¢ ¥XK3-FXK4G)
DELG=1e/6e®(XL1+2e#XL2+24%#XL3+XL4G)
X=X+DELX
F=F+DFLF
G=G+DELG
IF(X «GEe XTEST) 2n1+2073

201 EDIMI(Iy=F
XTFST=XTFST+041
I=1+1

203 CONTINUE
IF{X-0.01) 20,20,431

31 IF(X—-0e99) 32+32,32

32 DELX=0,01
GO TO 20

33 IF(X-0.9989) 34940,40

34 DELX=0,001
GO TO 20

40 ZETA=le-X
Cl=—XLAM* (XLAM+1.) /4.

C2=C1l%x?
C3=((XLAM¥(XLAM+) o) =24 )%C1#%#24+24%C1l) /6
GEND=F/(1e+C1%¥ZETA+CO*ZETAX#2+C3%ZETAX %2 XALOG(ZETA))

41 BBRBBB=1./GEND
EDIM(1)=GEND
RETURN
END

19



FUNCTION F1(AsBsC)
COMMON  XLAM

Fl=C

RETURN

END



FUNCTION F2(AsBsC)

COMMON  XLAM

F2=(—2 HAR{AX¥D2—1 4 ) HC~XLAM® (XLAM+14)%B) /(
RETURN .

END

AXKQH (ARRD—]4,))



82

FUNCTION F3(DsE)
F3=EXP(D*ALOG(E))
RETURN

END



31

40

35

41

SURROUTINFE PPDDISSsXLAMsXMUsLLMAXsPPsDP)
XNU=SS

DD=1e.

TEM1=0.

TEM2=0.

IX=(le~XMU) /24

IF(ABS{ZX)-0,000001) 35935431
CONTINUE

DO 40 L=1,LLMAX

Zt=t

TEM1=TEM1+DD#*ZX** (| ~1)
TEM2=TEM2+(ZL—1e ) ¥DN*¥ZX*¥%{| —2)
DD=DD*{ZL~-XLAM —le ) ¥ (ZL+XLAM YZLZL#%2+Z 1L *XNU)
CONTINUE
ARTFL=({1e=XMU)/ (1 e+XMU)I%%*(XNU/24)
PP=ARTFL*TEMI1
DP==XNU¥PP/(1+=XMUXX2)~0S5*¥ARTFL*¥TEM2
GO TO &1

PP=0Ds

DP=0e

CONTINUE

RETURN

END
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TABLE I

Comparison of numerical results with the exact eigenvalues for a

two dimensional corner.

Exact Solution Numerical Solution
M#J | M=J
even odd even odd
Me=8 Je=b |Mg=9 Jg=5 IMc=6 Jo=6 | Mg=7 Jg=7
0.0 0.0 0.0
2/3 .66739% .669715
1.0 1.0 1.0
1+1/3 1.333342 1.333518
1+2/3 1.668060 1.672477
2.0% 2.0% 2.0%
2+1/3 2.333356 2.333793
2.666667 2,666669
2+2/3% 2.669734 2.679591
3.0% 3.0% 3.0%
* Double root
TABLE 11

Some exact eigensolutions for the

B =n/2, a =7/4

three dimensional

corner with

Eigenvalue Eigensolutions
A Even solutions 0dd solutions
0 Po () 2
2 B, (1) B (W)sin Zp
4 Py (0), By* (p)cos 4y B,® (Wsin Zp

8L




TABLE III

Tabulations of the eigenvalues and the coefficients in the series

representations of the eigenfunctions Qo = n/2 B,= n/2).

even

Coef. Am Coef. Cj
.426487 | . 426487
0.0 0.0
A =0.0 0.0 0.0
0.0 0.0
0.0 0.0
0.0
0.0 0.0
0.0 0.0
0.0
.496980 | -.662630
-.85376 | -.394590
31 =. 8403411 .19722 .070879
-.086956 | -.032794
. 024596 . 020205
.009953 | -.014725
-.022866 . 012976
. 020424
-.009732

odd
quf. Bm Coef. Dj
-1.135600 | -1. 444600
.073230 | -.097647
A=. 839948 . 004226 | .031486
-.021135 | -.016324
.017872 | .010371
-.007779 | -. 007452
-.001831 | .005917
.007199 |-.005446
.007525
. 004085
2.676300 | -2.692700
A= -.141180 | .188240
1.807053 .224060 | .027981
-.131070 |-.019274
.059485 | .013975
-.010481 |[-.011068
-.016294 | .009643
. 024045 |-.010008
-. 018772
.007506
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even odd

Coef. Am Coef. Cj Coef. Bm Coef. Dj

.379050 -. 505400 0.0 0.0
1.656200 1.188100 3.303556 3. 303556

A=1,206357 . 143140 -.038965 2=2.0 0.0 0.0

-.010898 .011436 0.0 0.0
-. 008577 -.005016 0.0 0.0

. 008833 . 002579 0.0 0.0
-.004721 -.001293 0.0 0.0

. 000934 0.0 0.0

. 000970 0.0

0.0
-.172240 . 229650 -4,072100 |-2.750300
-1.263800 | 2.980100 A= 3.765900 5.021200
A=1. 805246 2.193400 . 529750 2,.814159 1. 818200 .698380

-.359600 -.135050 -.358120 -.103210

.101280 . 065806 .135310 . 043530

. 009582 -.041720 -.032647 -.025606
-.050099 . 032932 -. 016271 . 018233

. 048334 .031678 -.015960
-. 024699 -.026615

.011970
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even odd
.Eoef; Am Coef., Cj Coef, Bm Coef. Dj
. 953654 . 953654 2. 584400 3.142500
0.0 0.0 N = -4.047200 5.396300
A=2.0 0.0 0.0 2.868927 3.291700 1.576600
0.0 0.0 ~-.657200 -.249830
0.0 0.0 .283730 .108690
0.0 0.0 -.081520 -.064265
0.0 0.0 -.027367 .045417
0.0 .067622 -038976
0.0 -.060812
.029232
-.208840 .278460
2.725500 -3.976900
A=2.446688 4, 206800 1.747500
. 358770 -.103810
.077859 .032182
-.065595 -.014013
. 030583 . 006305
-.005977
-.004729
| .
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even

Coef. Anm Coef. Cj
. 530570 -.707430
-2,247100 } -.855920
A=2.813928 1.003000 | 5.289000
4,.135700 . 342700
-.257020 | -.116920
-.039995 . 064339
.097445 | -.047471
-.079136
. 035604
-.507640 .676780
2,214800 | 4.076500
A=2.958670 -3.983000 | 5.162800
3.733900 .323730
-.242800 |-.065636
.101760 . 024029
-.035758 {-.010174
. 003411

. 007631




TABLE IV

Comparison of the eigenvalues for a three dimensional corner with

-1
those for a circular cone of the same solid angle GD== cos (3/4).

Three Dimensional Corner Circular Cone
even odd ' C>= cos_1(3/4) n
. 840341 . 839948 . 863382 1
1.206357 1. 210120 0
1.805246 1.807053 1.893798 2
2.0 2.0 1.961940 1
2446688 2.477387 0
2.813928 2.814159 2.865298 2
2.958670 ' 2.868927 2.936459 3
3.205219 3.205133 3.190234 1
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