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1. TINTRODUCTION

In the design of a large structure, whether it be intended for use
as aircraft, spacecraft, sea-going vehicle, land craft, .or a stationary
structure, an important step, if it is to be subjected to a dynamic
load environment, is the determination of the response, which may be a
displacement, acceleration, or strees, of the structure to the dynamic
loads. From a knowledge of the dynamic response at various locations in
the structure, the vibration or stress specifications to which the payloads
of the structure itself are subjected to may be determined., Uncertainty
in these specifications may well lead to overdesign and increased weight
and cost or to underdesign and increased probability of failure.

The ascertainment of this dynamic response often involves the experi-
mental determination of the characteristics of the structure subjected to a
concentrated or distributed load which varies sinusoidally in time. Suppose
the structure may be conveniently divided into two substructures, as in-
dicated in figure 1.1. 1If the excitation, which is taken to be a concentrated
force for the purpose of illustration, is being applied to substructure A
at point 1 and if the response is being measured at point 2, also on sub-
structure A, then it is reasonable to expect for excitation frequencies
sufficiently high and for points 1 and 2 sufficiently distant from the inter-
face between substructures A and B, the response at point 2 will be in-
dependent of substructure B, That is, the dynamic characteristics of sub-
structure A, for some frequencies and points of excitation and response,
will not be changed if substructure B is detached from A. The determination
of the conditions for which the dynamic response of a substructure is

independent of its end conditions could substantially reduce the complexity
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and hence the cost of the experimental evaluation of the dynamic character-
istics of the substructure, especially if the substructure is only a small
éart of the total structure.

The effects of changing end conditions of a structure on the dynamic
response quite obviously depends on what is meant by "dynamic response'.

The response-frequency plot shown in figure 1.1 illustrates the change in

the displacement measured at point 2 for an excitation at point 1 if the
substructure B is detached from A. The change in the response at a given
frequency may be attributed to a combination of three factors. First, a
change in end conditions will change the natural frequencies. Tf the

original response is at a natural frequency of the combined structure, then
even a slight change in natural frequency may result in a large decrease in
response because the response of A is not evaluated at a resonance, Secondly,
the normal mode shapes of the structure will change if the end conditions

are varied. 1If either points 1 or 2 are near a node of the original structure
or the modified one, the response may change substantially with only a small
change in the mode. Thirdly, there is another factor which is not as easily
identified as the first two but which is related to the generalized mass

and the generalized force of the modes of the structures. It is this third
factor with which this report is concerned.

If it is désirable to evaluate the dynamic response under the most
unfavorable circumstances, then the first two factors may be eliminated by
requiring that "dynamic response' refer to the resonant response at an anti-
node. Under this limited definition, the change in "dynamic response'" does
not refer to the change in response at point 2 due to an excitation of

frequency w at point 1 but rather the change in maximum response due to an



excitation whose frequency and whose position maximizes the response., It
is in this limited sense that the problem of determining the effect of end
conditions on the dynamic response shall be approached.

There is a substantial body of published literature on the forced
vibration of structures. References [1-20] are a representative but not
complete list of such studies. Most of this work has dealt with the
response of various types of structures subjected to different types of
loading but have only incorporated simple boundary conditions (such as
simply-supported, clamped; or free). However Gayman [17] studied the
effect of interface flexibility on the response of A for excitation applied
at the interface. White [18] presented frequency characteristics for beams
with elastic and inertial end restraints and studied the response of a
simply-supported beam with symmetric rotational constraints excited by a
harmonic travelling pressure wave. White also discusses the natural fre-
quencies of rectangular plates with elastic and inertial edge restraints.
Hwang et al. [19,20] studied the design of simulated boundary conditions
to achieve similarity in the dynamic response of shell structure-mounted
components.

The results of a previous investigation [21] of the effects of boundary
conditions on the forced vibration of a plate may be summarized as follows:

(1) The most important restraint in an elastic end structure is the

restraint of linear deflections. The influence of rotational
restraints on the displacements in the plate is confined to a
region near the boundary even for the lowest mode of vibration.

(2) The point of application of the load may have a substantial

effect on the response. This is primarily due to the second



factor (the change in the normal modes of the structure)
mentioned above.
(3) The linear restraint of the elastic end structure strongly
influences the response of the lowest mode of vibration but
its influence is confined nearer the boundary as the fre-
quency of the mode increases,
The present report is concerned with the effect of a linear restraint
on the displacement response of a structure excited Ey a loading with a
simple harmonic time variation. Two particular problems are considered:
(1) that of a uniform beam, one end free and the other elastically sup-
ported, excited by a spatially uniform loading; and (2) that of a uniform
plate, simply supported on three edges and elastically restrained on the
fourth, excited by a concentrated force. It is demonstrated, in both cases,
that it is possible to estimate the range of maximum resonant response as
defined above for a wide range of elastic edge restraints by a relatively

simple procedure.



2. DYNAMIC RESPONSE OF A UNIFORM FREE-ELASTICALLY SUPPORTED BEAM EXCITED

BY A UNIFORM SIMPLE HARMONIC LOAD

The object of this analysis is to study the effects of the elastic
properties of a boundary structure on the resonant response of a beam,
The problem goemetry is shown in Fig, 2.1.

The energy dissipation in the beam will be accounted for by using the
"complex" elastic modulus concept. Thus Young's modulus for the beam is
taken in the form

*
E

E (1 + 1if) (2.1)
where E - elastic modulus

g

i-J/-1

structural damping constant

The equation of a beam loaded by a uniformly distributed simple

harmonic load is

* aaw 82w _ iwt
ETI g;g + pA SE? = Pe (2.2)

where I, p, A are the moment of inertia of the cross-section, density, and
cross sectional area of the beam; P is the load per unit length and w the

frequency of the applied load, Assuming a solution in the form

t

wix,t) = W(x) e (2.3)
will transform eqn. 2.2 into
4
d
__% - (k)4 W=0 2.4)
dx

%
where k = (psz/E 1)

End Conditions

The end conditions are taken to be



UNIFORMLY DISTRIBUTED LOAD

T T T I T4 asmic

1—‘__, . ] SUPPORT

wix,t)

P dx ¢!
Q
M (1 l/) M+"—'\£dx
———dx
Q+ﬂdx
IX

Figure 2.1 Notation and Geometry of a Free-Elastically Supported Beam
Excited by a Spatially Uniform Load.



W, =W, =0 for x =0 (2.5a)
XX XXX
Z A
=11 . 12
Worx =~ T Yogx 12 w
for x = L (2.5b)
Z91 Z99
w’xxx== 2 W’x * 3 W
L L

11° 212, 221, 222 are nondimensional stiffnesses of

the support structure and may be defined as follows:

The quantities Z

L . .
211 = (Moment/unit angular deflectlon)x=b
L2
212 =~ BT (Moment/unit deflect10n)x=b
L2
221 = P (Vertical Force/unit angular deflectlon)x=b
L3
Z22 = T (Vertical Force/unit deflectlon)X=b
Thus le and 222 are rotational and linear stiffnesses, respectively, and
212, 221 are stiffnesses coupling linear and rotatory displacements. It

is assumed that these stiffnesses are independent of frequency.
If it is further assumed that the supporting structure is elastic and
obeys Betti's law, then it may be shown that 212 = 221. To demonstrate this

first invert eqmns. 2.5b.

2
w’x ZZZL leL W’xx
1
= (2.6)
2., z Z.. Z..)
21 12 11 722 2 3
w -ZZIL -leL w’xxx
L
Since the moment and shear force at the end of the beam are
M(L) = EIW,__ (L)
2.7)

V(L) = -EIW,XXX(L)



eqn, 2.6 may be written

. 2
W,x 1 222L -ZlZL M
= (2.8)
EI(Z.. 2., ~ 2., Z..)
12 721 11 22 2 3
W L 221L leL \'4 L
Betti's Law requires the defléction, Wl’ due to a moment, Ml, (but zero

shear force) applied to the boundary structure and the slope, (w’x)2’ due to
a shear force, V2, (but zero moment) applied to the boundary structure be
related by

M)W, ), = VW) (2.9)

thus

Eqns. 2.8 may be employed to calculate W, and (W,x)

1 2°

-Z21 L M

W, =
EL(Z, 251 = Zyq Z9y)

-212 LV

W, N, =
x’2
EL(Z), 251 = 297 Z9p)

Equation 2.9 is satisfied only if Z = 221, as long as Z £ 0,

12 12 221 7 211 %92

which if not true would imply that the transformation from forces to deflection
(i.e. eqns. 2.8) is singular and this is disregarded on physical grounds.

The range of the coeffieients Z may be further restricted

Z Z
117 712° T21
if it is assumed that the boundary structure is passive, i.e. if a force or
moment is applied to the boundary structure energy flows into the structure.

If this is the case, the work done by those forces must be positive. The

work done by the boundary forces acting on the boundary structure is
T
X
V== 3% (2.10)



and combining eqns. 2.5b and 2.7
2

M le/L Z12/L W,
= -EI (2.11)
vio 2‘12/L2 222/L3 L
Substituting eqn. 2,11 into 2,10 yields
W, T lel/L 212/L2 ] W,
vo=+ 5 (2.12)
W L.zlz/Lz 222/L3 1 W

A necessary condition for § to be positive is that the determinant of the

matrix in eqn 2.12 be positive, thus

2
z11 222 > 212 (2.13)

It should be noted that eqn, 2.13 pertains to elastic structures exhibiting

no dynamic effects, i.e. are independent of frequency.

2112 %120 %99

Beam Response

The general solution of eqn. 2.4 is

W(x) = C, sin kx + C, cos kx + C, sinh kx + C, cosh kx - Q k-4

1 9 3 4 (2.14)

The constants C1 - C4 may be evaluated by requiring eqn. 2.14 to satisfy
the boundary conditions, eqns. 2.5, Equations 2.5a require that

C2 = C4

€; =63

Thus eqn. 2.14 may be reduced to

W(x) = C, (sin kx + sinh kx) + C, (cos kx + cosh kx) - Qk-4 (2.15)

1 2

Substituting eqn. 2,15 in eqns. 2.5b results in

10



11 12 1 1
= (2.16)
Dy; Dy C, Fy
where
2.2
D11 = S-85 + (Z11/kL) (Ct+e) + (le/k L) (S+s)
D.. = C-c + (Z../KL) (S-8) + (Z../K*L2) (Ct+c) .
12~ °°€ 11 s 12
_ 2.2 3.3
D21 = C~-¢c - (221/k L°) (C+c) (222/k L7) (5+s)
2.2 3.3
D22 = S+s5 - (221/k L7) (S-s) - (222/k L7) (C+c)
2.2 -4
F, o=+ (212/k 17) Qk
2.2 -4
F2 = - (222/k L7) Qk
s = sin kL
c = cos kL
s = sinh kL
C = cosh kL
The solutions to eqn. 2.16 are
C; = (Fy Dyy = Fy Dyp)/D
(2.17)

Cy = (Fy Dyy = Fy Dyy)/D
where D = D11 D22 - D12 D21 (2.18)

If { = 0, D is the frequency determinant from which the natural
frequencies may be determined.
The resonant response of the beam may be calculated by first computing
the values of kL which satisfy
D=0
for L = 0. Then eqn. 2.17, 2.18 and 2.15 may be evaluated using a nonzero

value for the damping factor of the beam. Note that if the Zi 's are taken

3
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to be real quantities it is implicity assumed that the damping factor of
the boundary structure is equal to [. If the boundary damping factor is

not equal to { but instead «, the Zij's must be modified according to

2, = 24, (i—j—;%) (2.19)
where Zij is the boundary stiffness for zero damping.

Figure 2.2 shows the variation of kL (which is proportional to the
square root of the natural frequency) for the nth jowest resonance over a
wide range of values of 222. For this plot le, 212 and 221 are zero;
thus the end condition may be represented by a massless linear spring as
shown at the top of the figure.

Figures 2.3, 2.4 and 2.5 show the resonant response of the beam as a
function of position along the length of the beam. The damping factors
for the beam and the supports were both taken to be 0.01, The response
at the lowest and second lowest resonances (figures 2.3 and 2.4) for 299

4

larger than 104 is essentially the same as that for Zoy = 10", The

dimensionless response plotted in these three figures is

2
W =9-‘3§“15lwl (2.20)

Figure 2.6 shows the peak dimensionless displacements plotted as a
function of 222 for the lowest four resonances. Note that for the lowest

resonance and Z,, < 10, the maximum displacement occurs at x/L = 1 and

22
is not a relative maximum in the sense that the slope is zero. For the
second, third, and fourth resonances, the maximum at x/L = 1, if it
existed, was ignored and only the relative maxima were plotted. Also for

the higher resonances, there often is more than one relative maximum, but

as is shown in several cases in figure 2.6, the maxima are nearly equal.

12
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Note that the peak displacements for the three higher modes (m = 2,3,4)
shown in figure 2.6 approach a common value asymptotically as 222 approaches
zero. It may be shown by e#amining the nofmal mode solution discussed below
that this asymptotic value is equal to the structural damping factor (.

The mode shape for this case is a displacement which is practically uniform

along the beam and out of phase with the loading.

Single Term Normal Mode Solution

This same problem may be solved in an approximate manner by using a
normal mode approach. The results obtained lend some insight into inter-
preting the response plots shown previously.

If the response w(x,t) is expanded in a normal mode series, i.e.

w(x,t) =Z ©;(x) q;(t) (2.21)
j=1

where mj(x) is the jth mode of the free vibration problem and satisfies

4

2
EI-d—-%=pAw. P

dx J

where w, is the jth natural frequency, then it can be shown that the

solution to eqn. 2.2 is

© iwt
F, 0.
=Z P 5 cpJ (x) e

w(x,t) 5 7 5 (2.22)
. AM, (W, - w” + ifw,
j=1 P J( J i J)
where
L
F. = 1/L j ¢, dx (2.23)
h| o j

and

18



L

M, = 1/L J1 92 ax. (2.24)
j RS

If eqn. 2.22 is evaluated at the mth resonance W = wm) and if Fm is

not small compared to the rest of Fj's then the response may be approximated

by
it
PFm @m(x) e
W~ 7
paM W
or, in terms of the dimensionless displacement W' (see eqn. 2.20)
F ¢ (x)
‘. S m
W v (2.25)
m

The normal modes may be determined from eqns. 2.15-2.18 by setting

Q = 0. Thus
wm(x) = gin kmx + sinh kmx + R (Cos~kmx + cosh kmx) (2.26)
m ,.m m , m
where R = - D11/D12 = - D21/D22
and DTI, DTZ, Dgl, Dgz are equal to Dll’ D12’ DZl’ D22 (following eqn. 2.16)

th

evaluated at the m™" natural frequency.

11° %4120 %1

have little effect on the frequencies or resonant response of a plate.

It was shown in reference [ 21] that the stiffnesses Z

Assuming that this is also true for the beam under consideration, Z

2110 %39

221 will be set equal to zero for the remainder of this section. The

quantities R, Mm, and Fm may then be shown to equal

R = - (8-s)/(C-c) (2.27)
Mm = (1/kmL) { sC - ¢S + % (SC-sc) + R(S+S)2

+ B2 [k L+ (cS + 5C) + % (SC + sc)]} (2.28)
F o= (U/k L) {C-c + R(s-8)} (2.29)

19



where s sin (k L) c cos (k L)
m m

wn
1t

sinh (kmL) C

]

cosh (kmL)

The variations of Fm, Mm and the ratio Fm/Mm with boundary stiffness,
222, are shown in figures 2.7, 2.8, and 2.9 for the four lowest resonances
of the beam. Note that the variation in Fm accounts for the major part of
the change in W' (x*) shown in figure 2.6. The variatioms in Mm are much
smaller especially for the higher modes, m 2 2.

Since the peak resonant response is of interest, it is necessary to
determine the maxima of @#(x). Let xt be the location of the £th anti-
node of ¢m(x) counting from x = 0; then XE is the root of

cos(kmxz) + cosh(kmxi) =R (sin(kmxz) - sinh (kmxf)) (2.30)

Combining eqns. 2.26 and 2,30, the peak values of ¢, are seen to be
wm(xz) = sin (kmxi) + sinh (kmxz) (2.31)
2
- *) - si %
R (sinh(kme) sin (kme))
Note that from figure 2.2
m-%)T S kLS (@) m;m> 1 (2.32)
For large values of kL (say kL > 3m/2), it may be shown that
R~ -1 + K(-1)™ ¢ fnl (2.33)
where -2/2 sSsK=s0
Substituting eqn. 2.33 into 2.31, gives the following approximate peak
values of P
- (o1 D ~kpl . "
¢m(gz) 2(1-K(~1)" e ) s1n(kme)
+ 2% (-1)™ e ¥ sinh(k_xf) (2.34)

The roots of eqn. 2.30 may be written in the form

20
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kmxt = @-x T+ L =1,2, ... m-1 (2.35)
The limitation 4 < m is necessary because x;3> L for some values of 222.
The quantity A is small and may be shown, by combining eqs. 2.30, 2.33,

2.35 to be approximated by

A=~ +E)/(VT D 4wy (2.36)
where

H =%/2 R(-1)"H 7kmb | TG - )

, - LR (1P o (gl + Q-2

That A is small may be established from eqn. 2.36. The extreme values of A
occur when K is at one of its limits and may be shown to be, for 4=1, m=2
(the lowest mode to which eqn. 2.35 is applicable)

-0.013 < A = 0,063

The effect of A on ¢(xf) may be approximated by combining eqns. 2,34,
2.35 and 2.36 and neglecting terms of order exp (-2({-%)m). Thus

S@-BT ) (2.37)

PG ~ - /2 (DY (148)-2

The effect of the boundary stiffness, 222, on the peak resonant dis-
placements, W'(gf), may be estimated using eqns. 2.25, 2.37 and figure
2.9. For example, suppose the boundary condition at x = L changes from
a simple support to an elastic support with finite 222. What will be the
effect on the resonant response for m = 27

The response for the simply supported end may be evaluated by noting
that for z,, = 104, F,/M, = 0.20 from figure 2.9. Since -2/2s Ks 0,
the range of A (using 2.36) is.-0.013 < A< 0.065. Employing eqn. 2.37,
1.20 = w(xl*) £1.32, and from eqn. 2.25,0.24 = W'(xl*) < 0.264 for the

simply supported end. The actual value for W'(xl*) is 0.267 as shown in

figure 2.4.
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The maximum response of the beam for arbitrary 2 is proportional to

22
the ratio F2/M2 which reaches a maximum of 0.23 (see figure 2.9) for Z =

22
6 x 102. Since the maximum value of ¢(xl*) =.1.32, the maximum resonant
response-w'(xl*) = 0,304. The minimum resonant response is zero since
FZ/MZ - 0 as 222-4 0. In comparison, the exact values for the maximum
And minimum resonant responses are 0.29 and 0.0l as shown in figure 2.6.

A comparison of the approximate limits of the peak resonant response
calculated as shown above to the exact limits determined from the solution
presented in the previous section and plotted in figure 2.6 is shown in
table 2.1, The lower approximate limits are actually inaccurate because
they reflect the fact that Fm is zero. The assumption that Fm is not small
compared to the remainder of the Fj's (see paragraph following eqn. 2.24)

is invalidated. However, agreement between the actual and approximate

upper limits is satisfactory.

Exact Limits Approximate Limits
i 4 (Figure 2.6)
2 1 0.01 = W'(xz) < 0.29 0= W'(XZ) < 0.304
3 2 0.01 = W'(gf) < 0.22 0= W'(xz) < 0.234
4 3 0.01 = W'(XE) < 0.18 0s W'(xz) < 0,207

Table 2.1 Comparison of Exact Limits to Approximate Limits of the Resonant
Response of a Free-Elastically Supported Beam.
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3. DYNAMIC RESPONSE.OF A RECTANGULAR PLATE WITH AN ELASTICALLY SUPPORTED

EDGE.

. The equation 6f,motion for a rectangular thin.uniform isotropic and

homogeneous plate acted on by a simple harmonic point load is

* - ' i
D V4 w + phw = P0 d (x - xo) d (y - yo) e we (3.1)

where D* =D (1 + i ) is a complex elastic modulus, which accounts for
energy dissipation in the plate, { is the structural damping factor
assumed to be independent of frequency.

The boundary conditions to be imposed on eqn. 3.1 are

w (0,y,t) =w (x,0,t) =w (x,a,t) =0

(3.2)
W’XX(O’y,t) = w’yy(x’oit) = W,yy(x’a’t) = 0
and, on the fourth edge, x = Db
3 [ _ ] _ 2
-b -W,Xx + v w,yy b z11 w,X + z12 bw
(3.3)

b3 [w’kxx + (2-v) W’xyy] = 212b LA + Z22 w

Equations 3.3 are an analytical representation of an elastic edge
restraint along x = b. The edge restraint is not all inclusive in that
the moment per unit length and the force per unit length at position y
are assumed to depend only on the displacement and slope at that same
position; whereas, in general, the moments and forces at y would be a
function of the displacements and slopes along the entire edge,
0 < y< a. Physically, eqns. 3.3 represent a set of closely spaced and
equal, but independent, point elastic supports having a linear and a
rotary restraint and cross coupling between linear and rotary motiom.

The parameters, le, 212, Z,, are nondimensional stiffnesses per

22

unit length of the boundary structure and may be defined physically as
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follows :

Z = (b/D¥) (moment per un1t length per unit slope acting on the boundary

' ;;_. structure needed .to produce a unit slope and zero deflection at the
boundary) . .
212 = (b /D¥*) (moment per unit length per unit deflection actlng on the

boundary structure needed to produce a unit deflectlon and zero.
slope at the boundary) :

Zyp = (b_/D*)(force per unit length per.unit deflection acting on the
boundary structure needed to produce a unit deflection and zero
slope at the boundary) -

Thus le and Z22 are rotational and linear stiffnesses per unit length,

respectively, and Z is a stiffness coupling linear and rotary displacements.

12
It is assumed that these stiffnesses are independent of frequency.

If the boundary structure is further assumed to be passive (no energy
sources) and stable then its potential energy function must be positive
definite, Following a procedure similar to that in section 2 of this
report or in reference [ 21], it may be shown that for the potential energy
of the boundary structure to be positive definite, the following restrictions
on the Zij's are required
2

. - >
Zyg 0 3 290 255 - 2y 0

In the following discussion, the boundary structure will be taken to
be positive definite with the single exception of the case of a completely
free edge (le = 212 = 222 = 0).

Assume a solution to eqn. 3.1 in the form

w (x,y,t) =S1 Wn(x) sin (nmy/a) eiwt (3.4)
n=1
which, when substituted into eqn. 3.1 yields

2 d%w 2 dzw o b

Z a) [( - —] Wn} sin (amy/a)

n=1
=@ /D) & 5 5
= (B /D) O(x-x ) O(y-y_) (3.5)
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Equation 3.5 ﬁay be uncoupled into the following set of differential

equations by multiplying by sin (mty/a) dy and integrating from o tb a.

4
ey ,g)z a%_ +[(n_n4_pw2]w

4 \Ta 2 a) * n
dx dx D

(3.6)
- (2Po/aD*) sin (amy_/a) 6 (x - x )

Equation 3.4 satisfies the two boundary conditions requiring the edges

y = 0,a to be simply supported. The two remaining boundary conditions are

a%w

n ——
Wn 0) = 5 (0) =0 (3.7)
dx
3 d2Wn atr 2 2 dWﬁ
-b [ 2 v (—a—) Wn] =b le = + le b Wn (3.8)
dx
x=
2
3 d Wn o 2 de de
b I: - 2y ) —&] =b 2 T T ZY, (3.9)
dx x=b

The solution to eqn. 3.6 is straightforward and may be found by

several methods. The solution which satisfies eqn. 3.7 is

Wn(x) = An sinh (qx/b) + Bn sin (px/b)

+c [ /o sioh (qax-x)/b)

- @/p) sin (pGex /D) v (xox) (3.10)
where
2 L2
p =0t -y
.2 st 4y
\% = nTmb/a
W' - wb? En/E (3.11)

28



= (b3 F1Y g1
Cn = (b PO/aD w') sin (nnyo/a)
o , x < x
o .
u(x-xo) ={ (3.11) Cont'd
1, X > x

The constants An’Bn are chesen to satisfy the remaining end conditioms,

eqn. 3.8, 3.9. Substituting eqn. 3.10 into 3.8 and 3.9 results in

D..A + D B F
11 n n

1 12 1
(3.12)
Dyyfy + DB, = Fy
where
L, 2 2
D11 =-(q  -vvy + le) S - qul C
2 2
Dy, = (" +VvYy -2, 8 -p2 ¢
2 2
Dyy =a(@” + vy -2,,)C-2,,8
2 2
D22 =-p(q -vy + le) c - 222 s
F ={(l/q)(q2-\)y2+z ) S' + Z.. ¢
1 12 11

+ (1/p) (p2 + Vv Y2 - 212) s' - Zy4 c'} c

-4 _ 2 2 [ '
F —'{ (p”" +vvy - 212) c' + (1/9) 222 S

2 2 . ,}
- (@7 - vy T+ le) c' - (1/p) Zoyo S Cn

s = sin (p) c = cos (p)

S = sinh (q) C = cosh (q)

s' = sin p (1-x_/b) c¢' = cos p (1-x_/b)
S' = sinh q (1-x_/b) C' = cosh q (1-x_/b)

The solutions to eqns. 3.12 are
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A = (Cn/q

-
- P

+q

_det (D)) {'-2'«:'_' (Zy,s S' + pq Z;, € €Y

+q _(_“0')2 - [(1-v)-.v2'+ 212]. + znzzz] (s ¢’ ~s'c)

2 2 2
(@ -vy~ + 212) - 211222]_c s

2 2 2 ] . } ' .
(" +vy -2, -2,2,|sC (3.13)

Bn = (Cn/p det (D)) {2 w' (Zzzs' S + pq le c' Q)

+ p [

2
(UD')2 - [(l-v) Yz + zlj + 211222](5(3' - 8' Q)

2 2 2
+p [(q - vy + 212) - 211222] c'' S

2 2 2
- q[(P TVYT - Zy,) - zllzzz]s' C} (3.14)

det (D) =

1}
2w [222 s S + pq le c C]
2 2 2
+P[(q SVY +Z9) '211222]CS

2 2 2 ]
- q [(p +vy© - 212) - lezzz s C (3.15)

To calculate the (mth, nth) resonant response, the dimensionless

frequency, w',

or, equivalently, the dimensionless wavenumber, p, is

determined as the mth lowest root (for fixed n) of

det (D') =0

where det (D')

is given by eqn. 3.15 with { = 0. A plot of the resonant

values of p, calculated in this manner, is shown in figure 3.1 for le

=Z., =0, a wide range of Zyp and several values of m and n b/a. Note

12
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Figure 3.1 Dimensionless Wave Number for a Plate with One Edge Elastically
Supported.

31



that for m = 1, n b/a = 20, p is imaginary for Z22 < 104 and lp‘
is shown as the dashed line. Although not shown. because of difficulty.
in numerical .calculation, the values of p for large n b/a (y >> p) may

be determined analytically to approach the following limits, for m = 2,

p~ @-1) T for z,,<< %/ 2 vZ2y3

p~mT™ for222>> /2 \)2\(3

The natural frequency, w, of the plate corresponding to any value of p
may be calculated with the first and the fourth of eqmns. 3.11, with
£ =0.

Note that the boundary structure stiffnesses, Zij’ are nondimensional
quantities involving properties of both the boundary and the plate. For
example, if k22 represents the linear stiffness per unit length of the

boundary structure (force per unit length applied to the boundary/

deflection at the boundary), then

3 *
Zyy = b k22/D

Now if 222 is assumed to be a real quantity, k22 must be proportional to
1 + if, which is equivaleﬁt to assuming a damping factor for the boundary
structure equal to that of the plate. On the other hand, if the boundary
structure is not to dissipate energy then 222 must be proportional to
1/(1 + iC).

A typical example of the effect of energy dissipation in the boundary
structure is shown in figure 3.2. The magnitude of this effect is de-

pendent not only on the damping factor of the boundary structure and the

If Z

mode of vibration of the plate but also on the value of 222. 22

takes on either of its extreme values (0, ®), there is no effect from

energy dissipation in the boundary. The numerical results presented
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Figure 3.2 Effect of Boundary Damping on the Resonant Response of a Plate
with one Edge Elastically Supported.



below are all based on a boundary damping factor equal to the plate damping
factor.

The resonant responses of a plate for several values of Z,, and two

22
different modes of vibration are shown in figures 3.3 and 3.4. The

dimensionless displacement, W', plotted is defined as
2
W' o= Ehﬁhﬁﬂ——g lw | (3.16)
(o]

where

w(x,y,t) = Wx,y) et (3.17)

and w(x,y,t) is calculated with eqns. 3.4, 3,10, 3.13-3.15. The frequency
w in eqn. 3.16 is the resonant frequency for the given values of m, n b/a,

v, and Z hence, each of the responses shown in figures 3.3 and 3.4 occur

22°
at different frequencies but each one represents the peak response for a

particular boundary condition (Z,,), resonance (m,n) and plate configura-

22
tion (v, b/a). The displacement shown on the figures are those along the
line v = a/2n and, shence, are a maximum with respect to the y coordinate.
In each case, the point load is applied at an antinode of the motion, the
v coordinate of which is a/2n and x coordinate is indicated by the arrow
on each plot.

Several sets of numerical calculations were done to check the con-
vergence of the series, eqn. 3.4. 1In the calculations, the plate damping
factor, [, was set equal to 0.01 and m ranged from 1-5. The convergence
of the series was found to improve with increasing b/a. For b/a =0,
the series does not comnverge; for b/a = 0.1, ten terms in the series
gives convergence results to within 1%; and, for b/a > 1, ome term in

the series is sufficient. The responses shown in figures 3.3 and 3.4

required only a single term in the series for convergence.
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The response of the plate for 222 = ®, although not shown in figure
3.3 and 3.4 is
W' = sin (m ™ x/b)
The natural frequencies of these two cases are w' = 78.9, 128.6, respectively.

It should also be remarked that the responses for 222 = 10-2 in these two

figures are essentially the same as those for Z_, = O,

22
Table 3.1 shows a comparison of the peak resonant response, which is
W' evaluated at an antinode, xﬁ, for the cases plotted in figures 3.3 and
3.4, Note that the change in the peak resonant response as the end
condition changes from pinmned to free is relatively slight compared to

the change in resonant frequency or Z The largest change in peak

22°
resonant response occurs as the boundary condition varies from pinned to
a partially supported end. Perhaps the most interesting point to be made
from table 3.1 is that the dimensionless displacement, W'(xﬁ), at an
antinode is relatively insensitive to the vibration mode, m, the

frequency, or the boundary stiffness Z It will be shown in the

22°
following section that this is true in general if the natural frequency

for the resonant mode under consideration is sufficiently different from

the remainder of the plate's frequencies,
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' ' o
222 w W (xl)
-2
10 59.1 0.953
2
2%10 64.4 0.832
3
10 73.5 0.953
o 78.9 1.000
=3
222 w' W'(XT) W'(xg)
1072 94,5 0.945 0.940
10° 112.4 0.824 0.830
4
10 126.6 0.978 0.978
« 128.6 1.000 1,000

Table 3.1 Peak resonant response and frequencies of a plate with

an elastically supported edge.
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4, NORMAL MODE APPROXIMATION TO THE DYNAMIC RESPONSE OF A PLATE WITH AN

ELASTICALLY SUPPORTED EDGE.

A normal mode solution for this problem was developed previousl§ and
presented in reference [21]. An estimate of the plate response at
resonance may be had by employing only a single term of the normal mode
series expansion. The term retained is, of course, the largest term in the

series. Employing the results of reference [ 21] for w = w

P o9(x,y) @ (xo,yo)

W ~ = (4.1)
sz K2

mn

where ¢ (x,y) { (x) sin (nmy/a)

¥ (x) = sin (px/b) - C sinh (gx/b) (4.2)
2 a rb 2
= [ eem)? e oy “.3)
(o} (o]
1 = resonant response at mth, ath natural frequency

The quantity C may be determined using eqn. 16 in reference [ 21].
This expression is cumbersome but may be simplified considerably if we

further assume le = le = 0. As the calculations presented in reference

[ 21] demonstrated, Z11s Zy, have a minor effect on the resonant response.

Using eqn. 16 in reference [ 21] and taking Zyq = 212 =0

p2 + v yz sin p
C=-73 7 sinh g ® b.b)
q - VY

It was shown in reference [ 21] that the normalizing factor KZ, which
is proportional to the generalized mass of the (mth, nth) mode, may be

expressed as
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2
2 _ab 2 c 1 .
K = % {1 -CT+ 3 [ q sinh (2q) - . sin (2p)]

- —5—39—5— [q sin p cosh q - p cos p sinh q] } (4.5)
p +4q

If the change in the end condition is known, the change in the re-
sponse of the plate may be evaluated by first determining the two values
of p (one for each of the boundary conditions) and then computing the
two values of W using equations (4.1 - 4.5). Such a procedure is not
especially laborious but there are circumstances in which it is desirable
to be able to estimate the largest possible change in response for any
change in a boundary condition. To do this, the '"response'" is taken to
be the response at an antinode of the motion, say (x*, y*), and the
point load is assumed to be applied at an antinode also. Under these

conditions the dimensionless displacement W',defined in eqn. 3.16, is

e e

5 (4.6)
(4K /ab)

WI

Note that K,C, and q are dependent on p which in turn is dependent on
the boundary condition, 222. It is possible, however, to establish
limits on the range of p, as follows.

The determination of the natural frequencies of the plate with

arbitrary, but positive Z,, may be formulated as a variational problem.

22
That is

1 )
§ V@ /T@, =0

where V(p) is the potential energy stored in the plate and the elastic

boundary structure for the configuration ¢ (x,y) and
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a b 2
T@) =p j j ¢ dx dy
o

o
The function @(x,y) is any admissable function (one which satisfies the
geometric constraints: w(b,y) = ¢ (x,0) = @(x,a) = 0) that renders
[v@)/T@)] stationary. There are an infinite set of functions which
accomplish this, call them mj, i=1, 2, .. .. The eigenvalues are given

u‘)-l “(:F-)/I(CP-)

If the one comnstraint, ®(b,y) = 0, is added to this problem and if
the new eigenvalues are labeled Q?, then, according to Rayleigh's theorem
(see reference [ 22], pp. 70-71.

2

w?SO?S W,
j j j+1

or, alternatively,

2 2
QT =w =0
j j+1 j+1

Thus the (j+1)th frequency for arbitrary Z lies between the jth and the

22
(j+1)th frequencies of a plate simply-supported on four edges. Taking

the wave number in the y direction to be fixed (n is comnstant), then

2

2 2 2
an’ s @’ oo @)y ey’ Gmt

or

mT < Pl S (mFl)m 4.7)

Knowing the range of p for the (m+1)th resonance, the largest and
smallest values of K may be determined as follows. 1If eqn. 4.4 is sub-

stituted into 4.5 and terms of order exp ( -2q) are ignored, Kz may be
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put in the form

2 _ab ¢, o %2 \ 4.8)
— — —_— 1 - - S1ln CcoSs .
K" =7 {1 + . sin’p D P P
where
2 2
C _piavy 2() +2’Y)+ pr 4 vy
= 2
! p2+(2-V)Y2 P +Y2 2 +(2-V)Y
(4.9)
2,2 2
c.o =1+ 2p (p +vv)

(p + )(p +(2-V)Y)

: 2
The maximum and minimum values of K~ in the range (m-1)m< P, S mT

are shown in figure 4.1 for a wide range of v (or nb/a as in the figure).

i * = =
To evaluate the change in w(xk) as 222 ranges from 222 0 to 222 @,
note that the position of the antinodes are the roots xﬁ of the equation
* IL_____QL_ gsinp % =
cos (pxk/b) + 7 p sinh g cosh (qu/b) 0 (4.10)

q - VY
The second term in eqn. 4.10 is small because of the sinh q in the
denominator.. Thus the roots of eqn. 4.10 will be nearly equal to the

roots of the first term. Let A denote the difference, that is,

P xﬁ/b =(kk-3T+A; k=1, 2, ... m-1 (4.11)

The restriction k < m-1 for the mtB resonance is necessary because for

small values of 222, x;?> b, which is not physically permissable,.

The quantity A is directly to the change in ¢(X§)- Combining eqns.

4,2 and 4.4

2
¥ () ~ sin (px¥/b) + 1.’2
q° - vy

+-v4y2 sin p
2 sinh g

sinh (qxi/b)
and, combining this with eqn. 4.10
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Figure 4,1 Maximum and Minimum Values of the Generalized Mass Parameter of
a Plate with One Edge Elastically Supported.
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¢(x§)'~ sin (pxﬁ/b) - % tanh (qxﬁ/b) cos (pxﬁ/b) (4.12)
Assuming that (qxﬁ/b) is large and substituting eqn. 4.11 into 4.12 results
in

k .

¢(x§)'~ - (-1)" (cos A + (p/q) sin A)

or, for small A

Y ~ - -DF A+ @/ b) (4.13)

The range of (pA/q) may be estimated as follows. Substitute eqn.

4,11 in 4.10

k ( 2 + 2y sin 1
(-1)° sin A + 2 P2 A2 Yz) sinhpq cosh [—g { (-%)m + A}J = 0(4.14)
p (4 -vvyD)

Assuming both A and (qA/p) are small, expanding both functions of A in
series and retaining only the first order terms in A, and employing the
assumption made previously that (qxi/b)'v (q/p) (k-%)T is large, eqn. 4.14

‘may be solved for A. Thus

AT ~ - Z
D+ (W/p? 2 (4.15)
where
A' = (pA/q) and
% v 2 B
Z = RE———JL—Z sin p exp [ﬂ (k-%)1 - q]
q“ - vy P

Recall that for the mth resonance p =mm if 222 = o and that as Zy9 decreases
to zero, (m-1)T S p < m7. Thus, for the mth resonance, A' either increases
from zero to a small positive value (if sin p < 0) or decreases from zero

to a small negative value (if sin p > 0). The maximum range of A' as Z

22
spans the range (0, ) is (O, Z) where
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0" |z|
A = ™ — max 5 (4.16)
-1)" - D" @p° |z|

max

An upper bound on |Z| may be shown to be

2 2
Py tVY q
lz] = 5——= exp [— (k-)m - q ] (4.17)
P 1
q2 —\)‘Y 1
where Py = (m-1)m q = [(m-l)2 ﬂz + 2Y2]%
p, = mm 9, = [n’ n’ + 2\(?'];5

Equations 4.13, 4,16 and 4,17 may be used to estimate the change in

w(xﬁ) as Z,, ranges from 0 to ® given values of m, k, Vv and yv. The maximum

22
and minimum values of the generalized mass parameter, (4k2/ab), may be
determined from figure 4.1, The range of W' may then be calculated using

eqn. 4.6.

For example, letvy = 21T, v = 0.3, m = 2, k = 1, then

Py =T

P, = 2m

ql = 37
, = 2/3m

Using eqns. 4.17 and 4.16, |Z| < 0.004 and A = -0,004.

Thus
0.996 = | ¥ (x’i‘)l < 1.0 (4.18)
From figure 4.1
0.895 = 4k2/ab < 1.22 (4.19)
Combining eqns. 4.6, 4.18 and 4.19, the range of W' may be determined

0.8 = W' (xf) s 1.12
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/

A comparigén of the exact values of w'(gt) as first presented in table
3.1 to the approximate limits calculated with eqns. 4.13, 4.16, 4,17 is
shown in table 4.1. The lower limits show good agreement with the exact
values but the upper limits are conservative. The reason for this is that
the minimum values of 4K2/ab which determine the upper limit on W' occur
for (m-1) 7 < p < (m-%) ™ or the lower half of the possible range of p, but
the actual values of p are concentrated in the upper half of the range, at
least for the configurations shown in figure 3.1. This is not generally
true for, as was noted in the discussion of figure 3.1, p approaches the

lower limit, (m-1)T, for large nb/a and small Z Thus it is expected

22°
for those configurations in which nb/a is large and 2y, 18 small that the

upper limit will be nearer to the exact value.
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222 W'(xf) Limits
10~2 0.953
2x102 0.832 0.81 S W' (x¥) < 1.12
103 0.953
m =
(ke imi
222 W g#l) Limits
1072 0.945
10° 0.824 0.82 < W' (x}) < 1.06
10% 0.978
m =
) - P
222 W (XZ) Limits
10'2 0.940
103 0.830 0.79 = W' (x}) < 1.06
10% 0.978

Table 4.1 Comparison of Exact Values of Peak Resonant

Response (nb/a = 2, v = 0.3) to Approximate Limits.
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5. CONCLUSION

The following conclusions are drawn from the analyses presented above:

(1) A fairly accurate estimation of the range of the maximum resonant
response for a change in an elastic edge restraint of a structure may be
had by using the predominant term of the principal mode expansion of the
response. This leads to an expression for the displacements in terms of the
generalized force, generalized mass and principal modes of free vibration
of the structure (e.g. eqns. 2.25 or 4.6). If the variations of these
three factors for a change in end condition can be calculated or bracketed,
then the change in the response due to the change in end condition may be
determined,

(2) Application of the procedure just described to estimate the max-
imum resonant response of a free-elastically supported uniform beam ex-
cited by a spatially uniform load showed that the major change in response
is due to the variation in the generalized force which vanishes as the
elastic restraint vanishes. Estimates of the peak resonant response as
the end condition varied from a pinned end to a free end showed good
agreement with an exact solution.

(3) Application of (1) to estimate the maximum resonant response of
a plate, pinned on three edges and elastically supported on the fourth,
excited by a concentrated force lead to the introduction of a dimensionless
displacement, eqn. 4.6, whose magnitude is relatively independent of the
vibration mode (for modes higher than the fundamental) and the end
restraint, Estimates of the range in maximum resonant response as the
edge restraint varied from free to pinned showed good agreement with the

values obtained by an exact solution.
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APPENDIX
Computer Programs

In this appendix. the Fortran IV digital computer programs used to

implement the analyses presented above are listed.

1) Resonant response of a free-elastically supported beam excited by a
uniform simple harmonic load
After the input data is read, the resonant wave number (kL) is de-
termined by finding the appropriate root of the frequency determinant,
eqn. 2.18. Using this value of (kL) and eqms. 2.17, 2.18 and 2.15, the
dimensionless displacements (eqn. 2.20) are calculated at twenty one
equally-spaced positions along the beam.

Input Format

Z z

One card - 2 L, @, m (6FL0.0, I2)

11° %120 %210 Zo20
where le, le, 221, 222, are the support stiffnesses defined in eqn.
2.5b and following
{ is the beam structural damping factor

d is the support structural damping factor

m is an integer defining the order of the mode
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[4¢

C . RESONANT RESPONSE OF A FREE~-ELASTICALLY SUPPORTED BEAM
C EXCITED BY A UNIFORM SIMPLE HARMONIC LOAD--0U131
. COMPLEX Z11+Z12+7Z21 6722 +SHesCHsS»CaD11,D12,D21,D22,0D,
1C14C2sF1laF23F, W KX3KCy?Z
REAL K+NEW,KI
COMMDN Z11P,Z12P,221P,Z22P
1 WRITEF(6,800)
800 FNRMAT('1 RESONANT RESPONSE OF A FREE-ELASTICALLY SUPPORTED?'/
1 BEAM EXCITED BY A UNIFORM SIMPLE HARMONIC LOAD*'/
20 EXACT SDOLUTION--DU1 31 7))
READ(5,801) Z11PZ12P+2Z221P ,722P +GAMMA,ALPHANRES
B0l FORMATI{(6F10.0,12)

C
C DETERMINE NATURAL FREQUENCY
Cc

N=0
oLD =DETMT{0.001)
bi. 1
3 NEW=DETMT(K)
IF{OLD®NEW)S5 8,4
4 K=K+0.1
OLD=NEW
GO TO 3
S5 N=N+1
IF({N-NRES)4+6,1
6 DELK=0.05
23 K=K+DELK*OLDXNEW/ AQS (DL DENEW)
NEW=DETMT(X)
IF{OLOXNEW) 21,8, 24
21 IF(DELK—-0,00001)8,8,22
22 DELK=DELK/2.0
GO TO 23
24 OLD=NEW
GO TO 21
8 WRITE(65103)INRFS,,K
103 FORMAT(//7'KL FOR RESONANCE? , 12, =, E14.67/)



8¢

802

EVALUATE RESONANT RESPONSE

Z=CMPLX{ 1.0, GAMMA) /CMPL X(1+04ALPHA)
7Z11=711P/2

Z12=712PR/7

Z21=221P/2

222=2220/7

Z2=CMPLX (1,0, GAMMA)

Z=CSQRT({2)

KC=K/CSQRT{2Z)

SH=0.5%( CEXP({KC)—-CEXP(-KC)})

CH=0.5%{ CEXP{KCIY+CEXP{~KC))

S=CSIN(KC)

C=CCOS(KQO)

D11=SH-S+Z11 ¥(C+CH)/KC +Z12%(S+SH)/KC**%2
D12=CH-C+Z11*(SH-S) /KC +Z12%(CH+C)/KC%x%*2
D21=CH=C=221 % (C+CHI/KC*%2 -722%(S+SH)/KC*%3
D22=S+SH-Z21*% (SH-S)/KCx*x2 =722 (C+CH)/KC*%*3
F1=Z12/(KC) %%*2

F2==222/ (KC)%%3

F=1e 0/KCk%4

D=D11%D22-D12%D21

Cl=(F1*¥D22~F2%D12}/D

C2=(F2%¥D11~-F1%D21)/D

WRITE{6,802)

FORMAT( * MAG{ W) ARG(W) /)

DO 30 I=1,.21

X=0e 0SFLOAT(I-1)

KX=KC*X

w =Cl®CSIN(KX )+C2RCCOS (KX ) #0.5%(C2+C1)Y%*CEXP{KX)
1+0.5%{C2-C1)*%CEXP(-KX)~1.0

WR=REAL(W)

WI=AIMAG{W)

WMAG=SQRT(WR*WR+WI *W])
WARG=57,2957795¥ATAN2(WI,WR)



€g

N"On

802

EVALUATE RESONANT RESPONSE

Z=CMPLX {104 GAMMA)/CMPLX{1e00sALPHA)
Z11=Z11P/Z

Z12=712P/2

221=7Z21P/2Z

222=Z222P/Z

Z2CMPLX (1 <0+ GAMMA)

Z=CSQRT(2)

KC=K/CSQRT(Z)

SH=0 +5*( CEXP(KC)—-CEXP(~KC))

CH=045%{ CEXP(KC)+CEXP{—-KC))

S=CSIN(KC)

C=CCOS{KQC)

D11=SH-S+Z11 ¥ (C+CH)I/KC +Z12%(S+SHI/KC*%2
D12=CH-C+Z11*(SH-S) /KC +Z12%(CH+C)/KC*x%2
D21=CH=-C~Z21 % (C+CHI/KC**¥2 ~Z22%{(S+SH)/KC*%*3
D22=S+SH=-Z21% (SH-S)/KC%x*2 —Z22%(C+CH)/KC**%3
F1=Z12/(KC) %2

F2==-Z22/(KC)*%3

F=1¢ 0/KCk¥% 4

D=D11%D22-D12%D21

Ci=(F1%D22-F2%D12)/D

C2=(F2%D11-F1%¥D21) /D

WRITE(6+8302)

FORMAT( * MAG( W) ARG(W)* /)

DO 30 I=1,21

X=0e 0S¥FLOAT(I-1)

KX=KC*X

W =CL1*CSIN(KX )+C2%*CCOS (KX ) +0 5% (C24C1 ) *CEXP(KX)

1+0.5%{C2-C1)*CEXP(—KX)—1,0
WR=REAL(W)

WI=AIMAG(W)

WMAG=SQRT{ WR¥XWR+VWI %¥WI1)
WARG=57 2957795 %ATAN2(WIsWR)



810
30

WRITE(65810) XsWMAG,WARG
FORMAT(FSe2sFE124,48+F942)
CONT INUE

GO TO 1

END

FUNCTION DETMT(K)

REAL K

COMMON Z11,Z12,721,222
C=C0S (K)

S=SIN(K)
SHZ0+S*(EXP{K)}—EXP (~K})
CH=0e5% (EXP{K)+EXP (~K))

DETMT=2, OXSHCHXk( Z1 14 Z22/K%%k2)/K +2,0kCHSHX(Z11~Z22/K*%x2
1)/K4+260%(10+CRCH)X(Z12%Z21-Z11%Z222) /K%k%4 42, 0kSkSH*%
1(Z1247221)/K%%2 +2, 0%{CkCH=-1,0)

4"

RETURN
END



2) Resonant response of a rectangular plate with one edge elastically
supported
After reading and reproducing the input data, the natural frequency
and dimensionless wave number for the mode being considered is determined
by finding the appropriate root of the frequency determinant, eqn. 3.15,
by a simple iterative technique. The dimensionless displacement as de-
fined by eqns. 3.13, 3.14, 3.10, 3.4, and 3.16 is calculated at a number

’

of equally spaced positions parallel to the x-axis

Input Format

One card - Zygs Zgygs Cs Vs b/a, Xs Yg» ¥> 0, m, NMAX, JMAX (3F10.0,

%12
6F5.0, 412
where le, le, 222 are support stiffunesses defined in eqn. 3.3 and fol-
lowing
¢ is the plate structural damping factor
v is the plate Poissoﬂ's ratio
b/a is the plate aspect ratio
X, ¥y are the coordinate of the applied load
y is the y coordinate of the displacements being calculated
n, m are integers defining the vibration mode
NMAX is the number of terms in the series, eqn. 3.4

JMAX is the number of equally spaced points at which the displace-

ment is to be calculated.
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9¢

Nnnon

00

RESONANT RESPONSE OF A RECTANGULAR PLATE WITH ONE EDGE
ELASTICALLY SUPPORTED EXCITED 8Y A CONCENTRATED HARMONIC LOAD
oui1sa
COMPLEX GAMMA+WP 4P sQsPSsQS+SHeCHsSHPWCHPy S, CoSPL.CP,
I1WsPP 4 QA A 4B sDETN» T s WW2Z11,Z212,222
REAL NUNEW, 1IW
DIMENSTON A(S0),B(50)sW(S0)+PP{50),QQ(50)
COMMON Z11P,Z12P,Z22P+BNDA+NUSN
I=(0.0,1+0)
PI=3,1415927
10 READ{(S+701) Z11PZ212PZ222P s ZETAWNUsBOAXD+sYO sV 4 NeNRES s NMAX,y JMAX
701 FORMAT{(3F10.0+6F5,0,412)
WRITE(H6+700)
700 FORMAT("'1 RESONANT RESPONSE OF A RECTANGULAR PLATE WITH ONEY/
1 EDGE ELASTICALLY SUPPDRTED-—-DU154%'//)
WRITE(H6+4803)X0+Y0sYs2ZETA
GAMMA=CMPLX(1+0,ZETA)
zZi1=Z11p
Z12=212P
222=722P
803 FORMAT(* LOAD PDINTY OF APPLICATIONs X/B =?4F5.34" Y/A =%,
1F543/* LINE OF CALCULATION,Y/A =?,FS5.,3/" DAMPING FACTOR =°%,
1F8e¢4) .
11 WRITE(6s104)Z11PsZ12P4 Z22P4sNU+sBDAJNSNRES,NMAX
104 FORMAT(' Z11 =% ,E12.4," Z12 =% 4F12+4,° Z22 ='4El2.4,
1/7* POISSONS RATIO =t 4F65e3¢? B/ZA =*3FH543, " N =%,12,
| B =94120¢ NMAX=',12)

CALCULATE NATURAL FREQUENCY

NN=0
OLD=DETMT(0,01)
WPP=5.0
3 NEW=DETMT(WPP)
IF(OLDXNEW) S8+ 4
4 WPP=WPP+S5.0



LS

ano

21
22

24

8
103

105

OL O=NEW

GO 70 3

NN=NN+1

IF{NN-NRES)4,6,10

DELWPP=2,5
WPP=WPP+DELWPPXOLD XNEW/ ABS {OL DXNEW )
NEW=DETMT{( WPP)

IF(OLD%XNEW) 21,8, 24
IF(DELWPP-0.00001%WPP)8B+8,22
DELWPP=DELWPP/2.0

GO TO 23

OLD=NEW

GO TO 21

WRITE( 6, 103)N.NRES, WPP

FORMAT (¢ RESDNANT OMEGA PRIME FOR N =%,13,°*
1* IS*',E14.67/)

PPP=SQART (WPP-{(N*PI *B0A) ¥%x2)
WRITE(6,105)PPP

FORMAT({?®* RESDNANT P =1 ,F14.67/)

EVALUATE RESONANT RESPONSE

WP=WPP/CSQRT(GAMMA)

DO 20 N=1,NMAX

PS=(NXPI *B0OA) XX 2+WP

QS =~{NXPI{XxBOA)X%24+WP

P=CSQRT{PS)

Q=CSQRT(QS)

PPI{N)=P

QQ(N)=Q

SH=0e5%{1 O—CEXP (-2 ,0%P))
CHZ0e5%{ 1« O+CEXP{—2,0%P))

SHP=0 S*{CEXP{-P *X0 )=CEXP{P*{ X0-2,0)))
CHP=0.5% (CEXP(—DXX0 )+CEXP{P%(X0~2.,0)))
S=—I1%0 ,S¥{CEXP(I%Q-P)—=CEXP(~I%0-P))

Cc= 0+S*{CEXP(I1%Q~P)+CEXP(—-T1%Q~P))

M

t,13,



8¢

SP==I%0s 5% {CEXP(I£Q%{1+0=-X0)~P)=CEXP{~T1%Q%{1.0-X0)=P))
cP= 0sSA{CEXP(I*Q*(140-X0)-P)+CEXP{—T%Q%{1+0—-X0)=P))
R=(1 ¢0—-NUYXR({NXPI®*BOA) *%2
DETN=QX((R+WP+Z12) $%X2~Z 1 1 XZ22 ) kSHXC—-Pk( (R-WP+Z12)%%2-7Z11%
1Z22) %S kCH+2, 0%XWP*( Z22%kSkSH+PRQXZ1 1% CkCH)

AINY={ =2, 0%WP*{ Z22 4SHPXS+P*xQ%*Z1 1 kXCHP *C ) +P *{ WPXWP—~{ R+Z12) *%2
142115722V % ( SKCP-SP*C)~Q% ((R+WP+Z12)%%k2-711%222)%SHP*C
14P*{ (R—WP+Z12)1%%2-211%Z22)%CHP*S) /{DETN*P)

BIN)={(2. 0k WPX(Z22XSHXSP+PxQ%21 1 XCHRCP)+Qx{WP WP -{R+Z212) %2
1#711%722)Y%( SHACHP~-SHP*CHI4+ Qk{ (R+WP+Z12 )% %2711 %222 )Y%SHXLCP
1-P*( (—R+WP—-Z12)%%2-711%722 ) %CH%SP ) /{(DETN*Q)

20 CONTINUE

WRITE(6,802)

802 FORMAT (°* X/8 MAG(W) ARG(W)*/)

DO A0 J=2,JMAX

ww=(0.0. 0e0)

X=(FLOAT(J)=1.0)/{FLOAT{JMAX)=140)

DO 30 N=1,NMAX

W{NI=A(N)*0 .5k {CEXP (PP (N)*X )—CEXP(-PP(N)%X) ) +B(N)I¥CSIN
1(QA{N) *X)

IF{X=X0)26,26,25

25 WIN)=W{N)+{0.5/PP{N) )X (CEXP(PP(N) *{X=-X0 ) )~CEXP(PPI{N)*
LEX0-X)))=(1.0/QQ(N))I*CSIN(QQIN) *{ X=X0))

26 WIN)=W{N)XSIN({NEPI*Y)XSIN{N*PI&YO )XWP*ZET A/ {4 .0%¥GAMMA)

30 WH=WW+W{N)

RW=REAL { WW)

IWN=AIMAG{ WW)

WMAG=SQRT{RWARW+IWN & IW)

WARG=574 29577954 ATAN2 (I W, RW)

WRITE(6+810) Xy WMAG s WARG

810 FORMAT(F65e34FE1244,F9,2)

40 CONTINUE
439 CONT INUE

GO TO 10

END

FUNCTION DETMT( wWP)
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69

REAL NU

COMMON Z11,712,222,80AsNUsN
PI=3,1415927
PS=NAN:P I %P1 *BOAXBOA+ WP
P=SQRT{PS)
QS=—NEN¥PI %P [ BODAXBOA+WP
IF(QS)1,2,2

QA=SQRT(—-QS)

S=0.5*(EXP(Q )-EXP(-Q M)
C=0.5%{EXP(Q J+EXP(-Q ))
GO TO 3

Q=SQRT{(QS)

S=SIN{Q)

Cc=cos(q)

SH=0.5%(1. 0-EXP(—-2.0%P) )
CH=05%( 1. 0¢EXP(-2,0%P)})
R=(1¢0-NUI*(NXPT*BOA) *%2

DETMT=Q% ((R+WNP+Z12 ) *%2— le*ZZZ)*SH*C—P*((R—HP+712!*#2-Z!1*222)
1RSECH+ 2, 0k WPk ([ Z22* Sk SH+ Q% Z1 1 ¥CkCH)

RETURN
END



