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ABSTRACT

The coupling coefficient for nonlinear three-wave interaction is
derived for the case of a cylindrical plasma column penetrated by an
electron beam, The parametric growth rate of two plasma waves is cal-
culated, assuming that a negative energy wave on the beam satisfies
appropriate synchronism conditions with them and acts as a pump wave.
A beam-plasma experiment is described in which three-wave coupling has
been observed between two beam waves and a low frequency plasma wave,
All three waves grow in space, with a growth rate of the order of one

tenth of the wave number of the beam waves,
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1, INTRODUCTION

Since about 1960, a considerable aﬁount of research has been carried
out on linear two-wave interaction, particularly on the unstable inter-
action between positive and negative energy waves which occurs in a beam-
plasma system [Briggs 1964, Hopman 1969]., As early as 1962, Sturrock
pointed out that the nonlinear case of three-wave interaction can be
unstable in such a way that all three interacting waves have growing
amplitudes, and that just as in the unstable case of two-wave coupling,
this is only possible when a negative energy wave is involved, The
phenomenon is easily demonstrated by means of the conservation relations
that hold for three-wave interaction, i.e, the so-called Manley-Rowe
relations, When the three interacting waves fulfill resonant conditions

for their frequencies and wavenumbers

G =G O, Ky =k ko, (1)

where all frequencies are positive, the Manley-Rowe relations say that

3 (o _ 2 (&) _2 (% 2)
dt\w_ /T T 8t\o /T T3 \w |-
@ B 4
Consequently, when the energy, Ua , of wave (Q 1is negative, all three

wave amplitudes can grow (or decay) in time,
When only positive energy waves are interacting, there is a periodic

exchange of energy [Sagdeev and Galeev, 1969]’ leading to a growth of one

or of two of the interacting waves for a limited time., When the highest
frequency wave is a negative energy wave, growth again occurs only within
a limited time, but in this case the amplitudes of all three waves tend
to infinity in this time. The grpwth must therefore be faster than the
exponential growth that occurs due to two-wave coupling., This character-
istic behavior of three-wave interaction is now generally referred to
as "explosive instability" [Hasegawa et al., 1969; Fukai et al.,19691].

In this report, the strength of the three-wave coupling that results

from a weak nonlinearity of the Vliasov equation is examined., The analysis

follows closely the treatment of Dysthe [1970], and is carried out for



a cylindrical plasma column in an infinite magnetic field, taking as a
boundary condition that the wave potentiai‘is zero outside the plasma.
This is equivalent to studying a plasma-filled waveguide, By comparing
the results for the infinite plasma [Dysthe, 1970] and the bounded plasma
column, it is found that the expressions for the time dependences of the
wave amplitudes are identical, a conclusion that can also be extended to
surface waves on a plasma column in vacuum when the dc magnetic field is
absent, The basic theory up to this point is given in Sections 2 and 3.
Due to the shape of their dispersion characteristic, three quasi-
static plasma waves can never satisfy the resonance conditions of Eq, (1)
in a one-~component plasma, so three-wave interaction is impossible,
When two components are present, interaction is possible, however,
Examples are an ion-electron plasma, or a beam-plasma system, In the
former case, the decay of a Langmuir wave into a lower frequency Langmuir
wave and an ion acoustic wave has attracted much attention, The latter
case has only appeared in discussions recently, with special focus on
the participation of a negative energy beam wave, Wilhelmsson [1969]
reported computer calculations on the time behavior of the wave amplitudes,

demonstrating the explosive growth, while Pham-Tu-Manh [1969] has described

experimental work,

The present report gives calculated growth rates for the nonlinear
instability which occurs when a negative energy wave interacts with two
plasma waves that are propagating in opposite directions. This topic is
treated in Section 4. So far, this interaction has not been studied in
detail in our experimental work, which has been concerned with instabilities
at low frequencies, in particular near the ion plasma frequency. Non-
linear interactions in this frequency range are treated in Section h,
and preliminary results are described in Section 5 which suggest that

We may have observed them experimentally,



2., BASIC EQUATIONS
To obtain the nonlinear growth rate due to wave-wave coupling, we
determine first the linear dispersion of the modes separately., After
that, the nonlinear term is evaluated by considering the interaction
between the modes,

We start with the Vlasov equation for each plasma component

2 ]
STtHY V+mj(§+y_x_1}_)-vv}fj=0, (3)
and the Poisson equation
@
1

VePBR=— ES n_.e, £ dv , 4
=g OJJf j - (1)

J -0

The different particle species, j , may be plasma ions (i), plasma
electrons (e), and beam electrons (b). The velocity distribution
functions, fj , are normalized to unity. Charge neutrality demands

that integration over unit volume should yield

f_/;lgifi dv dx = ff[no‘efe + nObfb] dy dx = n, . (5)

We shall restrict the analysis to slow waves, so that the quasi-
static approximation can be made. This implies that the electric field
is derivable from a potential (g = - ), Next, we divide the distri-
bution function into slowly and rapidly fluctuating parts with respect
to the propagating waves .

fj = ij<’Y"%§”t) + flj(yyﬁ.{_:t) . (6)

Linearization of Eq. (5), neglecting the space-time dependence of ij’

then gives to first order

3 %
ST TYC v +'§i‘¥,x
J

e,
L3 — s-i 9 4
t LA v £ -~ v vaOj 0 . (7)

~BO v 1j 7



We write V as a sum over the normal modes that propagate in the
plasma in the z-direction, which is aligned with the axis of the plasma

column,

=
v(z,t) = ZS Va(g,t) exp i(wqf—kog) . (8)

Q =

Just like ij , the normal mode amplitude Va(g,t) has a space-time
dependence that is slow with respect to (wat-kag). This is neglected

in calculating the linear dispersion,

In Eq. (8), we require V to be real quantity. Therefore
V_a = Vél,where * denotes a complex conjugate, The change of sign of
¢ symbolizes the reversal of signs of ® and k , Thus,
B = -0 k =~k
o -0’ o e
From Eq. (4) we obtain

°

W= -ie Z Vo, Ko €%P i(wat-kaz) s (9)
o

Ez being the unit vector in the z~direction. The dependence of Va on
the coordinates perpendicular to z is determined by the boundary con-
ditions that are used for a particular case. In the following section,
we discuss the particular case of a plasma column filling a waveguide.

A strong dc magnetic field, BO , directed along the column axis inhibits
particle motion perpendicular to z. Thus, y, =~ O , and we will be

il
treating effectively a one-dimensional system.

-~



5. PLASMA COLUMN IN A STRONG MAGNETIC FIELD

3,1, Linear Propagation

With y = 0 , Egs. (7) and (9) combine to give

2 d 5 ¥ty
{—B_t' Ve daf Tyt m £ Vi ov_ exp 1wt - kocz) = 0. (10)

Writing va for the phase velocity, &b/ka , and integrating Eq. (10),.

yields
of .
v —2J
S8y 2 ) (11)
£, = - z——-—:—-—-expi(wt-kz . 11
1; mj T va vz o 07

Substitution of Eq. (11) in Eq. (h) yields an equation of the form

(3f . /dv )dv
2 2 _ .2 _ 2 2 0j z! ~
(v =+p, v, =0, -0 =k  + Ej a)pjf v v, , (12)

which has as solution a sum of Bessel function terms Jm(par), exp im 6 |
and Nm(paf) exp im 6 , where r and 6 are cylindrical polar coor-

dinates., The requirements of a non-infinite solution on the column axis,
and a zero at the conducting wall surrounding the plasma at r = a

2
restricts the solution to

(13)

Vd(r,@,z,t) = Vamn(z’t) Jm(par) exp(lme), Po@ = s
where j is the nth zero of the mth Bessel function, J (p r) and
Jmn > p\PtI
men is the slowly varying amplitude of ‘mode (a,m,n) determined by

initial conditions,

Combining Eqgs. (12) and (13), we write



2 2
k .k
oA Qmn 2 2 oan
pa +ka
(14)

1 o afo./av
1+——-——-—-—Zw.f———l——£dvv 0.
2 2 PJj ervz ~{ omn

+ S &
Pa o

I

il
il

The solution of Eq. {10) is just Da(m,k) = 0 , and constitutes the dis-
persion equation for the normal modes ¢ . The quantity ea(w,k) is the
one-dimensional plasma permittivity., 4n equivalent expression for the

plasma dispersion equation is
2 o2
-p =k ¢, (15)

which is familiar in plasma literature [Trivelpiece, 1967]. The index
¢ attached to D and € indicates that they represent the appropriate

expressions for mode (¢ .

5.2, Nonlinear Coupling

The nonlinear equation that describes mode coupling is found by
substituting the linear expression for flj , given by Eq. (6)} in the
nonlinear term of the full Vlasov equation, and calculating flj again,

correct to second order, This iteration yields

3_ 3 o 0 e ife o

{at t oV, b f1j =t m, Z Vofq 3v . &P 1(0)0[C kocz)
“ (16)
Bfo./av

_,J_.. J__ = T (e Ve - .
+ i Zz kB 5 7 Bv V7'VZ exp 1[((05-@7)1: (kB+k7)z]
J

1

After averaging in space and time, the right-hand side of Eq. (16) still
contributes if its rapid space-time variation is equal to that of the

left-hand side. We therefore consider the resonant situation



O =0 + O k =k 4+ k m =m_ + m 1

and retain terms in the double sum that fulfill these conditions, dis~

carding all others, Subsequent integration gives

2
1J - m, Va"Vz - 2 B 7’ ka(va_vz-)avz v _Vz
7o i oa piy= 4
X exp i(wat-kog) . (18)

The next step is to substitute Eq,. (18) in Eq. (4), Because the V's are

proportional to exp imf the substitution and application of the con-

2

dition in Eq., (17) on the azimuthal mode numbers reduces the averaged

equations to the form

2
2 m
) 129 Q 2 2 2
—_— = - - 1
S tEE T2t '(pa+ka>Da v (x) (19)
r r
of e ¥, AV K X
= ZS 2m VB(r)Vy(r) —= 2|v—~v % Zv a
i 9 = kv v )T | e e e
m2) e. . . afo,/avz?dg
= 25 2 m, JmB(pﬁr) me(pyr) VBmﬁnB V7m7n7 II Vo Vs ’
J By =0t Q

The term ky/(v —vz) has been added to symmetrize the integrand,

p .
As a solution to Eq. (15), we try

Voled =V 9, G wa) =¥ g (e r) . (20)

aQ a oo aa o

Multiplying Eq. (19) by Jm(jm&r/a)J and nmaking use of the following

orthogonality relation for Bessel functions



a

.2 2
'}f dr r Jm(jmn r/a) Jm(ij r/a) u'%— 5n& [J'm(jmn)]
0]

22 6 2
=5 J m-1 (Jmn) 4 (21)
we obtain
r ¥ ¥ A
y By ﬁmﬁnﬁ 7m7n7 o
Doc Vocmn = z 2 k2 ’ (22)
ca g Bt K
where roﬁy and Aa are defined by,
2
(Dpy ej (BfOJ/BvZ) dv
I om- z
Ry p 2mj g (Va - vz) F

[

- 22 :
Aa = EJ/ndr r Jma (pOF) Jmﬁ(pﬁr) me (pyr)//; Jma—1 (paa) L {23)

As could be expected for waves propagating along a plasma column,
the radial dependence of the wave potential is determined by boundary
conditions only; there is no restriction on the radial mode numbers,
jmn , of the interacting waves. This has been pointed out by Etievant
et al, [1967], However, the amplitude of the nonlinear wave depends on
the amount of radial coherence between thé modes through Eq. (25). In
practical cases, the strongest interaction is to be expected between
lower order modes m, =0 and p, = 2.4/a . Then Jf(jOl) = 0,522 and
the integral over the triple product of Jo(pz) gives O,O98a2 [Fettis,
1957], resulting in Aa = 0.72, Except for the amplitude factor,

Eqg. (22) is precisely what one obtains just by replacing Vf , in
Poisson's equation, by —pé , as can be done in the linear case, This

replacement is, in fact, valid for an infinite plasma.



So far, the slow space-time dependence of the amplitudesJ Vi has

J
been neglected, However, due to the coupling of mode ( to the modes B
and 7y , there is exchange of energy, and the amplitude Va will not be
constant, The slow space-time variation can be accounted for by means

of a method devised by Berk and Book [1969], which replaces the dispersion

function, Doﬂw,k) , by an operatorD(w - i %E’k 4+ i %; ,z,t). Using a
WKB approach, they proved that this replacement is valid, and leads to
the correct dispersion properties for linear waves in an inhomogeneous
plasma, The next step is to apply the method to a nonlinear problem,
This has been taken by Dysthe [1970] and Dum and Ott [1970], although

without proof, Using only the lowest order derivatives, the definition

of D is
) )
D(w - iz, k+ix=, z,t) Va(z,t) (o)
2 2
=]D _iil.).g._a_.i-j_.a_'&‘é__.i_.a_])g_.j_‘ﬂ V(Zt)
1« 0w dt 8k Oz 2 dtow ~ 2 ozdk | o' '

Applying this operator to Eq. (22), for a homogeneous plasma in which

Da does not depend on z and t explicitly, the result is

For simplicity, we have dropped the indices m and n from the V's,

Next we define the group velocity, Xga , and the linear wave

damping, Yo 2
oD /3dk D
., =2 o2 7y = iS5 - (26)
=0 dk / D o/acn > Iy Da/acn



We can then reduce Eq, (25) to

r 9.V a
9 d N
Tt VeadZ T o= zi Oﬁg Bk27 az o (27)
0
By=c. (pa * a)( of )
By analogy, we obtain two further coupled mode equations
] T oa
9 5 agy ‘o 'y g
-ﬁ+vgﬁ§;+75 V5=1 Z 5 S 5 (28)
k~ ){oD /3w
‘ oy (% * a)( g/ )
r V. ¥*a
) ) 1 N . OBy & B ¥
s'*;c*-l-Vg)lfaf;'i")’,},J V7—1 Z . (29)

'(p2 + kg)(én /aw)
Q-p=y Y Y Y
Here, we have used the fact that the real part of Faﬁy is completely
symmetric in the indices. It is not affected by a change in the sign of
the indices because Re FOB is a function of the phase velocity

vy = wa/ka . This is not thl case for Im [’ y which we neglect. It
should be emphasized that Egs, (27)-(29) only describe the slow space-time
behavior of the mode amplitudes, Vi . The small-signal frequencies and

wave numbers are not altered in this treatment,

3,5, Coupling of Waves in Finite and Infinite Plasmas

For comparison with Eq. (27), we give the equivalent mode coupling
expression for the case of an infinite, one-dimensional plasma [Dysthe,

19707,

r‘ ”~ ~

gy "B 'y ’
2

K, (Beo/aw)

) 9 N .
ot * Vga inf SE'+ 7a Va = (50)

By =0

where the definitions of ea and Da are consistent with Eq. (1L),

This implies

(p° + ¥°) g% = k° %% . (31)

10



Except for the amplitude factor, Aa ; Which is of order unity, the
coupling terms are seen to be identical in the case of a finite plasma

column to those for an infinite plasma [ Spithas and Manheimer, 1970].

However, the occurrence of the group velocity on the left-hand side

causes a great difference between these two physical situations, In an

infinite plasma, vg is determined by the plasma permittivity, € , and
we have
d¢/8k
Vg int = " Be/m ° (52)

In a finite plasma, vg is given by Eq. (26), the difference being due

to the fact that € = O in an infinite plasma, but ¢ = - p2/k2 for a

plasma-filled waveguide. From the definitions of € and D , and from
their magnitudes, we obtain the relation
2
2¢ 2p
v =v . .- =v_ .+ . (33)
W
g g inf ~ k(0e/0w) g inf kB(Be/am)
Writing Eq. (27) in terms of € , we have
2 ~ oA
°p r V Vv A
Q 9 & .S o
e ———————— -gz—-l-ya Va=1 Z oy B v ,(54)

ST+ |V +
ot g inf 3 2
d¢ /dw k- (de Jow

ka( GQ/ ) Bry=C 67 ( 60/ )
for the coupled mode expression for a plasma column., The difference
with respect to Eq. (30) is now clear. An illustration of the importance
of this difference can be given by considering a cold electron plasma.
We then have vg . =0

inf ’
where vp is the phase velocity.

2
whereas in a finite plasma Vg = pgvp/(p2 + k%),

It may be remarked that although the spétialybehavior of coupled
mode amplitudes is significantly different in a plasma guide and in an
infinite plasma, due to the different magnitudes of the group velocity,
identical time behavior is found for finite and infinite plasmas, This
is due to the fact that e(w,k) is equal to a frequency independent con-
stant, -p?/kg . Another physical situation where this is true is

that of surface waves propagating on a plasma column when a dc magnetic

11



field is absent. Derivation of the constant in this case is given by
Trivelpiece [1967], and the nonlinear coupled-mode equation for surface

waves can be written down in analogy to Eq., (34).

3.4, Parametric growth

In addition to the possibility that all three interacting waves
will grow in amplitude, when the waves have the correct sign for the wave
energy, we may consider the possible occurrence of parametric growth. In
parametric growth, it is assumed that one wave is so strong that its
space-time variation can be neglected in comparison with that of the
other two waves, We take Wave (¢ as being the strong (pump) wave,

With Va = constant, we use only Eqgs. (28) and (29), Eliminating s

BJ
we obtain

2o 2 9
T A AA V
3 3 3 o oy Loyl ol %% Ty

3., b, ¢ =l . (%)
3t * Vep 8z " Tp[|8E T Vey 3z T [y 2,2\ (2P &y
YA T

Assuming a solution for ¥ %7 of the form exp (Qt - Kz), where £

2
and k represent the slow space-time dependence of the wave amplitudes,

and considering identical radial modes so that we can drop the subscripts

we obtain the dispersion relation

from Py and Ai 5

2
|

2 2
4AS T v
kv +y b= agy |'o

2
+ oyt - oD_ oD = 7g, (36)
gp B gy 7 o2 D o D B By
(p +k5>(p +k7) 30 -g-lw

Q ~kv

Considering only time dependence,~we see from Eq. (56) that

. 5 1/2
Y Y Yo = 7 2
= -1-8 4 ) xri +

12



The necessary condition for growth (0 > 0) is given by

2
> . 8
Tay 7 78 7, (38)
With no linear damping present, 75 = 77 = 0, Condition (38) is then
satisfied if BDB/Bw and 3D7/Bm have the same sign,

Considering only spatial dependence, we find from Eq. (56) the

necessary condition for spatial growth in the absence of linear damping

2 25 2. 2
r v l
Veg v o 2\ (2 2)°P °D ’
© () (08 o 2

which can be satisfied when 9D _/3k and D /9k have similar signs.

It should be noted that condition (58) tells us when the system is
nonlinearly unstable, but condition (39) says in addition whether the
growth is convective or absolute., Absolute growth is obtained when the
group velocities of the two waves are opposite in sign, irrespective of
the character of the pump wave, However, when vg{3 vg7 <0 , there is
still an initial spatial growth, if the system is restricted to a length,

L , less than a quarter wavelength

Tt
L < == 0
2K J (h‘ )
because the slow spatial behavior is sinusoidal, This is analogous to
the situation in a backward wave oscillator, The classification of

. instabilities due to both two-wave and three-wave coupling has been

reviewed by Barnes [1964], )

13



4}, APPLICATION TO A COLD BEAM-PLASMA SYSTEM

4.1, Linear and Nonlinear Dispersion

Substitution into the expressions for FOBy and Da [Eqs, (14) and
(25)] of a 8-function velocity distribution,

fy = 8y, = vo,) 8(v,) 8(vg) (1)

for each of the plasma components results in

, o
p- + Kk 3 (va =~ Vo
2 9
e W,
r. = —iin(—2 Z--L-—> (43)
By ] "5 a\Ya ~ Yoj - Ya ~ Voj

The experiment to be discussed in Section 5 provides the possibility
of studying the interaction between modes on an electron beam and in a

beam~-produced plasma. Neglecting the positive ions, Foﬁ then becomes

¢

emg ® 2
NSt = § R NP -1 A (S, L
ogy 2m [a (Voz>z (ch +:D—? A\ " Yoo z Voo~ Vob » (W)

(64 pe (07

where Vob is the dc velocity of the electron beam, Moreover, in the
experiment it is possible to apply rf modulation to the electron beam,

and to observe wave growth with distance f?om the gun, The only term of
interest on the left-hand side of Eq. (27) is then vga?96/az , describing
the spatial growth, For the d-function distribution of Eg. (hl),

Eqs. (28) and (36) reduce to

A

37
‘E‘EQ =1 Al"agy‘ﬁ; Va/Aﬁ , (45)

1y



aByIIfrai <~AB Ay) ve (16)

where it has been assumed that Wave ( is the pump wave, and we have

75 = 77 = 0. The quantity AB is defined by

3D
1 2 2
Ag“"g(p +klg)$E

i D
ke (7 *k) ; (s“’w)E

Equation (45) is similar to a result obtained earlier by Etievant et al,
[1967] for an infinite plasma, the only modificafion being the factor A
which is of order unity. '

Equation (L46) shqws that '(mlroﬁyl . The sign of ej in FOBy
consequently has no influence on the type of growth. It is, of course,
natural that there should be no difference when considering waves pro-
pagating on positive or on negative particle beams, We observe, however,

that the nonlinear growth rate < 1/m and is thus much smaller for

2

waves propagated on ion streams,

4,2, Linear Stability Characteristics

In order to observe nonlinear instability in a beam-plasma experi-
ment, it is highly desirable to have the system linearly stable. The

condition for linear stability is obtained from Eq, (42) as

. (48)

w

pe e

pv w 2/313/2
ob 1+<a)—p—t—’
P

We note that this condition can only be fulfilled in a bounded plasma,
where p is fixed by the boundary conditions. The origin of Eq. (48)
can be appreciated by taking a simplified model in which the beam and
plasma modes are considered, to be independént. This means that Eq. (42)

holds for plasma and beam separately, giving the dispersion equations
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k2 o k2 w2

pe - pb
l] - ——— 0 1 - =0 (Ll')
2, 2 2 ’ : 2
o= (p° + k7) (w- kv, )2(p2+k2)
b
From here on, for gonvenience, we will simply write v_. for v

0 Ob °
In Fig. 1 we illustrate the dispersion of the beam and plasma waves. The

system is stable when the beam and plasma branches do not intersect, i.e.
for k70 we require 1lim (d@/dk)b > 1lim (dquk)e . Now in this region
the waves are nondispersive, and Eq. (49) reduces to

PO E KO, PO~ PRy - kO (50)
where the second expression holds for the slow beam wave., The first

expression is very useful for determining the plasma density [Trivelpiece,

1967]. Using Eq. (50), an approximate condition on the group velocities is

PV “pb
>1 4=, (51)
pe pe

which is somewhat less restrictive than the more correct form of Eq. (h8).
Having illustrated that parameters can be chosen for which small-
signal growth is precluded, we now consider the question of synchronism.

Suitable conditions for nonlinear interaction, such that

@D =W +(D k=k +k
0/

are indicated in Fig. 1 by a parallelogram, It is clear from the figure i
that the possibility of three-wave interaction is restricted to frequencies

below 2 wpe . When Wave - is the beam wave, we have

®, < gcnpe , mB’mY < wpe . (53)

In Fig. 1, we have chosen the negative energy beam wave, @ , to inter-
act with the plasma waves, Waves B and 7y then grow parametrically.
Because the negative energy wave gives up energy, it also grows in ampli-

tude, If the fast beam wave, Q' , is excited, it decays in amplitude

while Waves B and ¥y grow,
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; Figure 2 shows ka and kB as a function of o

I

'of the parameter ‘pvo/<D
p

for a few values
e ° An increase of the transverse wave number,
b , decreases the slope of the plasma wave branch, and thus enhances the

stability of the system [ see Eq. (51)], The slow beam space-charge wave

is only shown when pvo/wpe = 1,1 or 4.0, The other dispersion curves lie

petween those two, Waves  and B in Fig. 2 interact nonlinearly,

fince they satisfy Eq. (52). The third wave number, k  is just k - kB
! y a

',3, Parametric Growth Rate

Figure 3 shows the relation between the spatial growth rate [KI,

calculated from Eq. (h6) with Aeva/mvg taken as unity, i.e, for a peak

‘pump amplitude of the order of the beam voltage, and the frequency of the

B

beam wave, ®
Q

, for the same values of pvo/ﬂ}pe as for Fig, 2. Due to

the fact that the group velocities of both plasma waves approach zero

when wa'* Eﬁp and ®©_©®O — W we see that IKI'* © , violating the

b4 b4
assumption of : slow spiceztimepgependence of the wave amplitude., We
should neglect that part of the diagram anyway, since the assumption of
a cold plasma will no longer be valid for large values of k and k ,
The type of instability described by Fig. % is actually absblutg.
This is so because the plasma waves (B, 7) have opposite group velocities,
and it follows from Eq. (59) that K2 < 0 . The spatial variation of
this three-wave interaction is consequently sinusoidal., As pointed out
in connection with Eq. (40), only when the interaction length is short

enough does the system exhibit convective instability.

A useful approximation to Eq, (h6) for K is obtained by noting that

2 N
= k N L
AB p/B (54)

or alternatively

1
) /2

Thus we find that &< (kﬁk7 ,

e [(mpe ) w5)<wpe ) w’/)] e )

For the higher frequencies, Fig. % demonstrates this behavior. From

Eq. (55), we note further that the behavior of k would change little
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if, instead of a beam wave, a plasma wave acted as pump. We would then

have
K & (.‘D - >-1/2

be (56)

Figure 3 indicates that for some combination of parameters « =0 .,

This point is determined by [ which can change sign,

opy ’

Near the origin of the dispersion diagram, the corresponding value

of «k can be approximated by use of Eq., (50), We obtain

. 2 "
iAd W w eV
Q pe pb [0
K A~ n 1--3—-—2 —. 7)
Llp v W
0 pe

for values of p that are not too near to the limiting value expressed
by Eq. (51). In agreement with Fig. 3, we find that « is inversely pro-
portional to the parameter vaﬂDpe . Its dependence on wpb is shown
in Fig. 4. As Eq. (57) shows, this dependence is rather weak because
the beam wave is the pump wave.

So far, we have been discussing calculations of the spatial growth
rate, In Figs. 5 and 6, the temporal growth rate is given for the same
parameter values as Figs. 3 and 4., From Eq. (36) it is clear that the

relation between £} and « is

-

Qe = K2 (58)

“ or alternatively

o~/ [1/2
K= 1i Q//Ivgﬁ ngl , (59)

Since v is negative. It will be noted from Figs. 5 and 6 that £
remains %inite for all wa .

The increase in « and , {1 shown by Figs. % and 5 when p decreases,
- and approaches the small-signal stability limit, is an interesting feature.

See also Akhiezer et al. [1964), for instance, on this point.
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L.y, Effect of Positive Ions

Taking into account a third, heavy particle,species does not make
any appreciable change in the linear dispersion, obtained by setting

D(w,k) = 0 in Eq. (hg), For an ion-electron plasma we obtain

wi+w? 2
1 --Be P2 _ P (60)
o° k2

where wpf is completely negligible with respect to wpi » As the same
is true for FOBy , our calculations for « and  are still valid in
the three-component system.

There is an implicit assumption in the above remarks, however, that
for the ions a one~dimensional approximation is valid, For the experiment
to be discussed in Section 5, this is not true. The assumptions of one-

dimensionality for the electrons can bevexpressed by

w <K W 1
pe ce ’ (6 )
. : -1/2
where wce is the electron cyclotron frequency. As wpe < m and
wée = p~l , Eq. (61) is quite compatible with
o >>o (62)

pi ci ?’

and in facfithe jons do not fulfill the condition for one-dimensional
behavior, in our experiment., The dispersion equation [Eq° (hz)] con-
sequently has to be modified, and becomes for a cold ion-electron plasma

[Bers 1964]

® 2
w = '
- =—P§ (63)
o € k
1 - —ePi
o° - o °
Ccl
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The result of this is that in addition to the resonance when ® — ®
. pe
the dispersion diagram now shows a cut-off for

1/2
2 2) (61)

D=0 = (4N w
Lh <pi+ci

it now

When the plasma dispersion branch runs from k=0 to k =® 5

has to cut the beam dispersion branch., The conclusion is that such a

beam-plasma system is always unstable. Under the conditions (61) and

(62) it is a low frequency instability, with a small growth rate [Vermeer

et al, 1967]. An approximation to Eq. (63) in the neighborhood of ®

in
is
3
20
2 2 Lh
K= =p~ (0 -0, ) —=="2 65)
Lhwewg’ (
pe pi

and Fig. 7 gives the dispersion of both beam and plasma near th , for
the same parameters as Fig, 1., The scale factor of 250 by which the
variables kvo/w ‘ and &pre have been multiplied, is approximately
(Mi/me)l/2 where M, is the mass of an argon atom.

When the beam is modulated, interaction is possible between the beam
space~charge waves and the low frequency instability. This is the same
type of three-wave interaction as we have been discussing. If the beam
wave is again taken to be the pump, and the low frequency instability is
the signal wave, then the idler must be & wave that propagates on the
beam, In general, there cannot be a complete match of the wavenumbers,
however, A small mismatch Ak[= k,, - (k}) + ky)'] will be introduced
because the slope of the beam dispersion branch near the origin is
smaller than the slope for high frequencies, This mismatch introduces
a factor of exp iAkz in the second term of Eq. {18). Equation (27) has’
to be modified slightly and becomes

A

vV A
Y

r 4
- ) & oAs _QBY B
{at+vga§Z+7a}Va‘21 2

5 exp iAkz . (66)
(p+k)) ¥ /3w
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Considering only spatial dependence, the analogous result to Eq. (35) is

(3 ) Hr IEI“IQ“ 2
"a:é""l kE VB=A—BQ/§7L— Va VBAa (67)
From this, we obtain
. 1/2
2 1 2
K = -'% Ak + <%O - % Ax > , (68)

where KO is the value for the nonlinear growth in the case of a perfect
match, given by Eq. (46). Parametric growth is clearly only possible
when KO > Ak/2 . Thus, mismatch introduces a threshold, and also an
oscillatory spatial dependence of the amplitudes VB and V7 .

An estimate of the mismatch in the wave numbers can be obtained from
the dispersion equation for the beam waves in Eq, (M9). The low frequency

instability is approximated with k << p , resulting in
w, = -
o k&hb(VO pb/p) . (69)

The high frequency waves that propagate on the beam are approximated

withk >> p , which gives

W =kvy. -0 w:ka + o, (70)

Combining these equations we find

be =20 /v . (11)

The mismatch may actually be smaller than 2 Cbpb/vO , because the
instability does not occur exactly at (Qbh 5 k&h) , but in a region
about this point.

Finally, we calculate the coupling coefficient and the growth rate

using the above approximations. From Egs. (45) and Eq, (h6) we obtain
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5. EXPERIMENTAL WORK
In Section 4, two types of nonlinear wave-wave interactions were
discussed: first, interaction between a beam space-charge wave and two
plasma waves, and second, interaction between two beam space-charge waves
and an ion plasma wave, In our experiments, interactions of the first
type may have been observed, but the data were very inconclusive, We
will therefore only discuss those experiments involving measurements of

the second type of interaction,

5.1. Experimental Set-up

Figure 8 shows the set-up used, Detailed descriptions of it have
already been given elsewhere (see reference to Forrest et al, 1969). The
electron gun gave typically a beam of 20-50 V, 0.5-5.0 mA, which created
a low density plasma in the neutral background of argon at 10 ° - 10'” Torr,
The plasma and beam were immersed in an axial magnetic field of about
500 G, spatially homogeneous to within £ 1.5 per cent.

For launching and detecting waves in the plasma or on the beam, two
probes were available together with the inner grid in the gun, One probe
was fixed in axial location, and could be moved radially. The other
could be moved along the plasma column, Its stem passed to the outside
through a Wilson seal, and had the defect of causing pressure variations
when it was moved, especially when it was moved inward, The outer grid
of the gun was at ground potential, as was the plasma chamber, The inner
grid was connected to a variable voltage supply and served to regulate
the extracted geam current, It was also connected capacitively to the
outside, and proved to be a much more efficient detector of plasma waves
than a probe., The beam voltage was determined by the setting of the gun
cathode voltage. )

Connection of the inner grid to a spectrum analyzer demonstrated
that the gun region was very noisy. The strength of the noise depended
sensitively on the dc voltage on the inner grid. Under some conditions,
parts of the gun noise spectrum were found to propagate into the plasma.

Generally, it was found that a quiet gun region was associated with a

beam-generated plasma with only a small axial density gradient,
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To avoid strong reflection of waves from the end of the plasma tube,

a graphite cone was mounted on the energy analyzer,

5.2, The Plasma Parameters

A powerful method of determining beam and plasma parameters is to
measure the wave dispersion characteristics of the system, The conventional
set~up used to measure the relevant phases and amplitudes is illustrated
in Fig. 9. Cables A and B could be connected to either of the probes,
or to the inner grid of the gun. The detector set-up as a whole was
accurately square-~law.

It should be emphasized that some care is needed to use the parti-
cular situation depicted in Fig, 9, Since the grid is 10 - 20 dB more
effective in launching waves than is a probe, the oscillator signal must
not be allowed to leak through the hybrid junction and the variable
attenuator to the gun. By connecting a probe to a spectrum analyzer, it
was checked that any beam modulation due to this effect was below the
detection level used in the measurements.

Another source of concern was secondary emission from the probes,
caused by beam bombardment. It was found that signals carried by the
resdlting streams of secondary eléctrons could be more pronounced than
those propagating through the plasma. For this reason, the exciter
probe was not allowed to penetrate into the beam,

Referring to Fig, 1, we see that a high frequency signal excites the
two beam waves:. the slow beam space-charge wave with wave number ks 5
and the fast wave, kf . These waves will interfere and produce a spatial
amplitude pattern in the plasma tube, with a wave number ki [:(ks - kf)/2].
For large Kk, ki &:mpb/vo , S0 that measu?ement of this quantity gives
wpb directly,

To measure the plasma dispersion characteristics, it is preferable
to excite with a probe Wave y in Fig, 1, propagating towards the gun
with a negative phase velocity. In the other direction, three waves are
excited, one plasma wave and two beam waves, These give a doubly periodic
interference pattern in the plasma, and correspondingly complicated
measurements to interpret, Typical phase and amplitude measurements on

Wave y are illustrated by the inset in Fig. 10. In this case, the wave
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is launched by the axial probe, and detqcted by the gun grid. Some
dispersion diagrams resulting froﬁ such measurements are shown in Fig. 10,
The beam plasma frequency is about 2 MHz in the 0,5 mA case, and the beam
dispersion curves fall closely around the dashed line, The slope of the
plasma dispersion curve is &be/an = 29 X 106 cm—1 [ see Eq. (M?)], and
the full theoreticsl dispersion curve [Eq, (hh)} fits through the measured
points for e/gﬁ A~ 200 MHz and p ~ 7.

Figure l% demonstrates that it is feasible to achieve experimental
dispersion characteristics that should be linearly stable in the high
frequency region. It was checked independently with a spectrum analyzer,
that the plasma was indeed stable. As can be anticipated from the
discussion in Section h,#, the system is still unstable in the low fre-
quency range (below 1 MHz) at frequencies that are approximately equal

to O (m /M,>1/2 = ®
pe e i

~ O

i o << o » .
with Oy pi > Lh ™ Tpi

pi ’

To make the system more stable, and to increase the range over which
the experimental parameters could be varied, the plasma was surrounded
by a slotted stainless steel tube 38 cm in diameter and LO cm long, as
indicated in Fig, 9. The dispersion characteristics shown in Fig, 10
were measured in this tube, Due to the gap between the tube and the gun,
the plasma is inhomogeneous over the first 2 cm, and is useless for
measurements, This is illustrated by the data inset in Fig. 10 which
show an anomalous amplitude increase over these 2 cm, compatible with a
strong density decrease. The plasma homogeneity was checked further by
using the axial probe as a negatively-biased Langmuir probe, measuring
the ion saturation current, i+° Within the narrow tube, i+ changed
by £ 2 per cent, with a probe voltage of -20 V. Similar results were
obtained with a floating probe. )

Some observations were made of the floating potential. This was
found to be agbout 1.9 V, and varied by less than 1 perrcent, except over
the first 3 cm, where its value might jump irregularly by a factor of ten,

Fluctuation levels in the beam current could be meésured with the
energy analyzer shown in Fig. 8. The 60 Hz levei varied between
0.5 and 3 per cent, decreasing with increasing gas pressure, Fluctuations

in the kHz range were weaker by a factor of about ten.
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It is appropriate to emphasize at thisﬂpoint that the experimental
studies described here should be regarded as exploratory rather than
complete, and that the measurements presented here pose problems which
have not yet been resolved. Two of them are suggested by Fig., 10, The
first is the very large experimental value of p=a T , which is to be
compared with the value of pa 1.3 to be expected from Eq, (15) for
excitation of the lowest radial mode in a tube with 1,9 cm radius, The
second unexplained phenomenon is the very rapid linear damping of the
wave amplitude, Since i << mpe , this cannot be attributed to Landau
damping, Since p~ 10 Torr, it cannot be attributed to collisional
damping either., Phase mixing due to density fluctuations is a possible
contributing factor (see below), but does not seem adequate to explain
the observed strength of the damping. Whatever its origin, this damping
has the undesirable effect of inhibiting messurements on plasma dispersion
above 100 MHz in the 0.5 mA case, when the phase measurement is limited

to two fringes or less,

5.3. Three-wave Interaction

Under certain conditions, which depend very sensitively on the
beam voltage and gas pressure, the lower hybrid instability described in
Section 4.l is excited and shows a clearly defined spectrum, The peak
b & 20-50 V, With beam
2,108 cn/s and wpi/Eﬁ:z 100 kHz, the expected wavelength

amplitude is largest for p = 10'-5 Torr and V

velocity Vg

is about 1O5 cm,-which is large compared to the length of the apparatus,
Experimentally, the oscillations were found to be effectively in phase, i.e,
phase differences along the plasma column of less than Bd)were measured,

The amplitude of the oscillagtions were observed to be constant in space

and in time, implying that the instability was saturated. The amplitude

of the fluctuations in the ion saturation current to a probe could be as
high as 10 per cent of the total current. The instability frequency was
near the ion plasma frequency. Below p = 10"5 Torr, the frequency was

>

found to be proportional to the beam plasma frequency, and above 10 Torr,

when an electron plasma is formed, the frequency was proportional to gas
pressure, Furthermore, the instability was noted to be independent of

magnetic field, These facts together provide strong evidence that the

lower hybrid instability was indeed being excited.
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The instability was sensitive to changes in v This was manifested

0 *
by the narrow peak in the low frequency spectrum becoming a broad noise

band for small changes in v Under conditions when the low frequency

spectrum was relatively cleag, the three-wave interaction with two beam
space-charge waves could be observed readily: Modulating the beam at

some high frequency caused sidebands to appear on both sides that are
exactly displaced by the frequency of the low frequency instability,

Fig, 11 shows an example, It was checked by means of a low frequency
spectrum analyser that beam modulation did not have any'controlling
influence on the low frequency instability, nor did it influence the homo-
geneity of the plasma, discussed in the previous section., The sidebands
at double the low frequency in Fig., 11 demonstrate a coupling between

two beam waves, and a low frequency component that is excited independently
at about 2 Qﬂh . Figure 12 shows the growth in épace of all waves
involved in the coupling,.

Summarizing, the following properties were verified by our experiments,
First, the frequency and amplitude of the sidebands relative to the center
frequency were independent of the modulation amplitude for source powers
between -15 dBm and + 7 dBm. Second, the amplitudes and frequencies of
the sidebands were independent of modulation frequency. Third, the
relative amplitudes of the sidebands increased with gas pressure and

decreased with beam velocity.

5.4, Discussion

Althoagh’ in view of the incomplete nature and understanding of
our measurements commented on above, the results presented here should
be regarded only as preliminary, Fig. 12 does provide suggestive evidence

}]

that the three-wave coupling indeed leads to an "explosive' type of
instability in which all three waves grow in amplitude to saturation.

The growth does not seem to be due to the linear instability of the beam
waves for the following three reasons, First, the growth occurs when the
beam is modulated at a frequency above the plasma frequency., Second, the
system is stable in the high frequency region, as shown in Fig, 10. Third,
the lower hybrid instability only shows spatial growth when the beam is

modulated. Under conditions for which the coupling shows up clearly,
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there is no indication of a threshold for the instability to occur,
Such a threshold might be caused by wave damping or by a mismatch in the
wave numbers. The wavelength of amplitude oscillations due to the
mismatch is calculated from Eqs. (68) and (69) as Envo/wpb ~ 100 cm.
We see that this is of the order of the length over which the growth is
measured, so the mismatch may be neglected.

With the aid of Eq. (YO), the nonlinear growth for parametric

excitation of the sidebands is found to be
-1 -
K ~ 10 lVal — (Vd in volts) , (7h)

where lVal is the amplitude of the pump wave. Replacing the wave

numbers by frequencies we find that

« « ol/2/, 5/2

e /Y0 . (75)

This relation is found to hold gqualitatively for the interaction of beam
waves with a low frequency wave, With a modulation frequency of 80 MHz

' -1
in Fig. 12, the wavenumber of the beam wave ka;e 1.3 em whereas the

2
experimental growth rate «k = 0,07 cm—l . A direct comparison with the
calculated growth rate is not yet possible, however, as it is difficult

to work in a range where the parametric formulas are valid,

The coupling must be different in the two cases of the lower and the
higher frequency sidebands. The Manley~Rowe relations expressed by Eq. (2)
demand that the wave with the highest frequency be a negative energy wave
for explosive growth to occur, As modulation at the gun excites both
beam waves, the low frequency instability épparently interacts with both
of them, Coupling with the fast beam wave would result in the upper
frequency sideband being a slow beam wave, while coupling with the slow

beam wave would result in the lower frequency sideband being a fast beam

wave,
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