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On 25 March 1970 an Aerobee rocket r4.309 DA] w a s  launched 
+ 

i n to  a br ight  IBC I1 

The instrumentation on board included a quadrupole mass spectrometer 

t ha t  measured the l o c a l  ion & n e u t r a l  composition i n  the  auroral  

form, separate primary and seconda,ry electron energy analyzers covering 

the nominal energy ranges 1 t o  30 keV and 1 t o  1000 eV respect ively,  

auroral  a r c  above Fort  Churchill,  Manitoba. 

a cy l indr ica l  e lectron probe and a planar t o t a l  pos i t ive  ion probe. 

These p a r t i c l e  experiments were complemented by a l/h-rneter Bert 

monochromator t ha t  scanned t h e  VW auroral  spectrum from 1150A t o  

1500A and four  filtered photometers t h a t  measured t h e  overhead in t ens i ty  

of t h e  (0,O) first negative band of B2 , t he  (1,O) first negative band 

of O2 , the  (5,2) first pos i t ive  band of B 

l i n e  [IS + 'D; XSS77A1. 

Fas t ie ,  1969) was included t o  obtain information on t h e  temporal and 

s t r u c t u r a l  cha rac t e r i s t i c s  of the  aurora. 

+ 
+ and the auroral  oxygen green 2 

I n  addi t ion,  an up-down photometer (Dick and 

I n  t h i s  paper we discuss t h e  neut ra l  and ion data obtained by 

our programmable m a s s  spectrometer. The most important r e s u l t s  a r e  the  

following: 

of NO and NO within the auroral  form. The molecular ions O2 and B2 

w e r e  conspicuously absent and comparatively l a rge  dens i t i e s  of 0 

were detected. 

concentration exceeded t h e  ambient 0 concentration. 

The m a s s  spectrometer observed remarkably large concentrations 

9 + + 
+ 

ions 

I n  the  a l t i t u d e  range 110 km t o  130 km t h e  neut ra l  NO 

2 

In  previous years we have flown similar  comprehensively instrumented 

rockets i n t o  IBC I and I1 post breakup aurpra (Donahue e t  ale, 1968; 



Parkfnson et al,, 1970a; Donahue e t  a l e ,  1970; Parkinson e t  al. ,  1970b). 

In  these  displays t h e  primary ionizat ion and luminosity of ten was 

observed over a r e l a t i v e l y  wide a l t i t u d e  region (100 - 135 km), 

t h e  prfmary electron spectrum w a s  comparatively so f t  (. 1 0  keV e lec t rons) ,  

and t h e  maximum electron density observe4 i n  t h e  aurora w a s  modest 

( -  2 x l o 5  e/cm3). The aurora encountered on Aerobee f l i g h t  4.309 UA 

was  by coqtrast  a s t ab le  a rc  characterized by l a rge  f luxes of 20 - 30 

.keV primary electrons (Doering, 1970), by la rge  l o c a l  e lectron dens i t i e s  

( -  lo6 e/cm3) and by an energy deposit ion confined f o r  t h e  most pa r t  

t o  a r e l a t i v e l y  narrow a l t i t u d e  region (95 - 115 km). 

i n  Ffgure 1 where we show t h e  in t ens i ty  of the  (O,O) first negative band 

of N2 measured on the upleg of t h e  f l i g h t ;  similar r e s u l t s  were obtained 

f o r  t h e  c l , O )  f i r s t  nagative band of 0 

measurements of t h e  exc i ta t ion  cross  sect ions f o r  these  bands (Borst 

and Zipf 1970a, 1970b), t h e  t o t a l  ionizat ion cross  sec t ions  f o r  N2, O2 

and 0 (Kieffer and Dum, 1966), and our i n  s i t u  opticalmeasurements, 

we estimate t h a t  t h e  maximum ionizat ion rate i n  t h i s  a rc  w a s  approximately 

2 x 1 0 5  ion pairs/cm3sec at  102 kmo 

This i s  i l l u s t r a t e d  

f 

+ Using recent laboratory 
2 O  

I n  an e a r l i e r  aurora l  experiment (4,217 UA; Donahue et  a l e ,  1970) 
+ +  we observed an unusually l a rge  NO /O 

spectrometer. 

(1968) 

breakup aurora,  we supposed t h a t  NO 

r a t i o  w i t h  a s ingle  mode ion mass 2 

Similar r e s u l t s  have been obtained by Swider et a l . ,  

In order t o  explain t h i s  observation, which w a s  made i n  a post- 
+ ions were produced by rapid charge t r a n s f e r  

2 



+ between ambient O2 ions and neut ra l  NO molecules within the auroral  

form, 

.L 

+ NO -+ NO+ + O2 O2+ 

I n  s p i t e  of t h e  la rge  reac t ion  rate coef f ic ien t  f o r  t h i s  process 

(kl = 8 x 

at 110 km) was s t i l l  required t o  account f o r  t h e  anomalous NO /02 

r a t i o .  

auroral  a l t i t u d e s  cons t i tu tes  an in t r igu ing  geophysical problem. 

ion mass spectrometer a l s o  detected comparatively l a rge  0 dens i t i e s  (more 

than 50 times t h e  concentration expected on the  bas i s  of conventional ion 

chemistry). 

g rea te r  than 1000eK and electron temperatures even l a rge r  unless  t he  

m3/ sec )  a very la rge  NO abundance (- l o 9  molecules/cm3 
+ +  

Jus t  how such a l a rge  NO concentration could be produced at 

The 
4. 

This r e s u l t  appears t o  demand e f f ec t ive  ion temperatures 

atomic oxygen dens i t i e s  are subs tan t ia l ly  larger than those assumed even 

i n  oxygen-rich model atmospheres. The present experiments were undertaken 

t o  confirm these ion observations and t o  search f o r  t h e  l a rge  NO dens i t ies  

l and  possibly atomic oxygen densi t ies]  suggested by the  analysis  of our 

e a r l i e r  observations. 

INSTRUMENTATION 

Table I l is t  the  design parameters f o r  t he  f l i g h t  quadrupole 

mass spectrometer. The instrument was designed t o  scan i n  the  ion 

mode f o r  t h ree  successive sweeps each l a s t i n g  1.5 seconds and covering 

a nominal ion mass range of 0 + 40 mu. On the  four th  scan the  poten t ia l s  

on t h e  ionizer  s t ruc tu re  were changed so t h a t  the instrument became a 

neut ra l  mass spectrometer. During the  neut ra l  mode ambient ions w e r e  

3 



excluded from the  ioa lzer  by a +50 v o l t  po ten t i a l  ba r r i e r .  

The m a s s  spectrometer w a s  tuned t o  have a t rapezoidal  trans- 

mission function. By operating t h e  mass spectrameter wel l  i n t o  t h e  

flat-topped domain [even at  some expense t o  the  resolution] t h e  

instrument was-made insens i t ive  t o  any small electfontc d r i f t s  t h a t  

m i g h t  have been expected because of a prolonged delay between the 

f i n a l  ca l ib ra t ion  of t h e  device and the launch date.  

t he  mass spectrometer had an e f f ec t ive  reso lu t ion  of 1.5 amu FWRM which 

was ample t o  d is t inquish  between the th ree  major neut ra l  molecules species 

(N2, NO and 02) that were observed,when t h e  rocket passed through t h e  arc .  

En t h e  neut ra l  mode the  ionizer  was emission a i r r e n t  regulated. During t h e  ion 

mode the  filament w a s  maintained at  approximately the  same temperature 

by a separate cont ro l  c i r c u i t  so t ha t  i n  switching from t h e  ion mode t o  

t h e  neut ra l  mode the  emission current  achieved i t s  programmed value very 

rap id ly  (< 50 msec). 

As ac tua l ly  flown, 

A Johnston h b o r a t o r i e s  MM-lmesh mul t ip l ie r  w a s  used t o  de tec t  t h e  

pos i t ive  ions transmitted by the  quadrupole lens.  Pulse counting 

techniques, which minimized any problems c@used by a change i n  t he  gain 

of t h e  mul t ip l ie r ,  were used. 

of seven orders of magnitude. 

The mass spectrometer had a dynamic range 

An open ionizer  design w a s  used i n  t h i s  experiment i n  order t o  

enhance t h e  probabi l i ty  of- making r e l i a b l e  atomic oxygen measurements. 

The ionizer  consisted of several  carefu l ly  aligned, high transparency 

g r ids  and a tungsten w i r e  filament; t p i s  i s  shown schematically i n  Figure 2. 

The co l lec t ion  mode of t h e  mass spectrometer (ion o r  neu t r a l )  was determined 

by t h e  po ten t i a l s  applied t o  these gr ids ;  values a r e  given i n  Table 11. 

4 



The ionizer  had a volume of about 2 cm3 and w a s  liberally vented so 

that  i t s  e f f ec t ive  pumping conductance w a s  approximately 4 x l o 4  cm3/sec. 

The mean residence t i m e  f o r  a gas p a r t i c l e  within the  ionizer  s t ruc tu re  

was about 5 x sec so tha t  the  average molecule made only one w a l l  

co l l i s ion  before exit ing.  

The mass spectrometer was ca l ibra ted  i n  a 200 liter multi- 

purpose ultra-high vacuum chamber which could reach an ul t imate  

vacuum of about 5 x Torr when mildly baked. The e n t i r e  vacuum 

chamber w a s  f i l l e d - w i t h  the  test gas during a ca l ib ra t ion  measurement. 

The absolute pressure i n  the  co l l i s ion  chamber w a s  known t o  within rf: 5% 

and t h e  pressure was  held constant t o  within 1% du5ng.a-measurement 

by means of a servo-controlled leak  valve. The absolute ca l ib ra t ion  

techniques used i n  t h i s  work a r e  described i n  d e t a i l  elsewhere (Borst and 

Zfpf, 1970a) and w i l l  not be reviewed here. 

During our ca l ib ra t ion  s tudies  the  m a s s  spectrometer w a s  allowed 

t o  sample undried air i n  order t o  determine whether a s igni f icant  

amount of NO could be created within the  s t ruc tu re  of t he  ionizer .  No 

n i t r i c  oxide w a s  detected,  8 r e s u l t  which implied tha t  the r a t i o  of 

Sonizer-produced NO t o  0, was less than 10’70 

centrat ions of N and 0 atoms, which could possibly r e s u l t  i n  t h e  production 

of NO within the  ionizer ,  w e r e  not conducted. 

amount of NO produced i n  t he  ionizer  by using the  measured react ion rate 

coef f ic ien ts  f o r  t h e  following source processes 

Tests w i t h  large con- 

However we estimated the  

N + O2 -* NO + 0 

5 



and 

the  known residence time 

+ I ? O + N  

f o r  molecules i n  the ionizer  and model 

atmosphere estimates of the N a&. 0 dens i t i e s  at aurora l  a l t i t udes .  

Because these react ions have subs tan t ia l  ac t iva t ion  energies,  they 

are negl igible  at t h e  ambient temperatures found between 100 t o  

130 lop f o r  o w  instrument [aO/O, = 5 x 

an e f f ec t ive  [but r e a l i s t i c ]  ionizer  temperature of 10 ,OOO°K,  t he  

Even if  we assume 

r a t i o  of NO t o  O2 produced i n  t h e  ionizer  is  s t i l l  less than 3 x lom6;  

t h i s  is not important f o r  the purposes of t h i s  paper. 

Pesults it i s  very unl ikely tha t  a s igni f icant  amount of NO could be 

created by the  instrument i tself .  

I n  view of these 

The p o s s i b i l i t y  always remains tha t  t h e  BO r e s u l t s  from gases 

venting from t h e  rockets '  motor. 

number of reasons: 

t o  mlnfmfze t h i s  po ten t i a l  problem; no carbon or  hydrocarbon compounds 

that would normally accompany-NO produced as a combustion product were 

detected by t h e  neut ra l  m a s s  spectrometer nor w a s  an enhanced helium abundance 

observed; helium is  used to -p res su r i ze  the  Aerobee's f'uel tanks. F ina l ly  

the  magnitude and a l t i t u d e  d i s t r ibu t ion  of t h e  N2, O2 and 0 infer red  from 

a preliminary review of the f l i g h t  data are qu i t e  consis tent  w i t h  previous 

measurements-of t h e  neut ra l  atmosphere and do not ind ica te  t h a t  t he  rocket 

w a s  env&Gped by a unusual cloud of gas. 

by the  ion-mode data which i s  a l s o  conspicuously free of CO , hydrocarbon 

and other debris ions. 

This appears t o  be unl ikely f o r  a 

t h e  motor w a s  valved of f  following the  powered f J igh t  

T h i s  view i s  a l s o  supported 
+ 

Both t h e  laboretory and t h e  f l i g h t  data ind ica te  

6 



t h a t  t he re  i s  no obvious way f o r  t he  mass spectrometer t o  have produced 

such l a rge  NO signals a r t i f i c a l l y  and w e  conclude that t h e  NO molecules 

and t h e  NO 
+ ions observed by t h i s  instrument were important const i tuents  

ex is t ing  i n  the  aurora l  a rc .  

RESULTS 

Figure 2 shows a portion of the  mass spectxometer telemetry 

record when the  instrument w a s  operating i n  the ion mode. 

ions t h a t  were detected within t h e  aurora l  form included H , 0 and 

NO+; t h e  molecular ions O2 and N2 were conspicuously absent ( C  2 x 

ions/cm3). 

mass spectrometer was NO which a t ta ined  a maximum density of about 

The pos i t ive  
+ +  

* + 

The dominant pos i t ive  ion at  a l l  a l t i t u d e s  sampled by t h e  
+ 

9 x lo5 fons/cm3-at 98 km. The mass spectrometer also detected com- 

parat ively l a rge  dens i t i e s  of 0 Hence + ions (- 1.8 x lo3 at 120 km). 

t h e  general  features of t h e  auroral  ionosphere observed by us  on f l i g h t  

4.217 UA (Donahue e t  a l e ,  1970) are confirmed: 

of NO', the  sharply reduced 0 

of 0 ions at low a l t i t udes .  

namely, t h e  predominance 
+ 

concentration and the  unusual abundance 2 
+ 

The m a s s  spectrometer once again detected t h e  presence of very 

low mass ions within t h e  aurora l  form. The densi ty  of these ions 

f luctuated from scan t o  scan i n  a way reminiscent of' t he  curious behavior 

shown by the  low mass ions encountered on f l i g h t  4.217 UA. 

ions were thought t o  be He 

The l a t t e r  
+ 

possibly due t o  helium venting from the  rocket. 

The present f l i g h t  data were obtained w i t h  an ion mass spectrometer whose 

performance a t  low masses w a s  considerably b e t t e r  than t h a t  of t h e  

instrument flown on 4.217 UA; t b i s  w a s  t he  r e s u l t  of improvemepts i n  t h e  

DC/RF tracking. The new data show qui te  c l ea r ly  tha t  t h i s  m q s s  peak is  

7 



ac tua l ly  due t o  r e l a t i v e l y  . s h w  protons CC 50 eV) and not helium ions as 

previously supposed. 

protons. 

note. 

Presumably these ions axe nearly thermalized primary 

These r e s u l t s  w i l l  be dfscussed i n  more d e t a i l  i n  a separate 

Figure 3 shows two portions of t h e  mass spectrometer telemetry 

record when the  instrument scanned i n  i t s  neutral  mode. Both N2, O2 

and 0 were present w i t h  concentration l eve l s  c lose t o  those reported 

by numerous other workers (see f o r  example Krankowsky et a l . ,  1968). 

I n  addi t ion t o  these species t h e  mass spectrometer revealed t h e  presence 

of a remarkable amount of neutral  NO within t h e  auroral  form, 

f a c t ,  was more abundant than 0 2' 
the  f l i g h t  data  at 120 km are given i n  Table 111. The t o t a l  p a r t i c l e  

at t h i s  a l t i t u d e  w a s  3.5 x 10l1 

T h i s  i s  i n  good agreement w i t h  similar measurements by Krankowsky e t  al. (1968). 

The amount of atomic oxygen observed i n  somewhat l a rge r  than 

previously reported by most mass spectrometer workers, but it i s  not nearly 

enough t o  explain t h e  enhanced 0 

The NO, i n  

The r e s u l t s  of a preliminary reduction of 

with a mean molecular weight of 26.4. 

+ densit ies observed i n  t h e  aurora on t h i s  

bas i s  alone. 

120 km indicates  t h a t  the NO i s  probably not i n  d i f fus ive  or  mixing equilibrium 

and t h a t  it is  formed la rge ly  a t  t h e  expense of ambient 0 and II molecules. 

The r a t i o  O/(O + NO) [which i s  presumably a measure of the  0/02 r a t i o  i n  

t he  undisturbed auroral  atmosphere] has t h e  value 0.98 at 120 km; t h i s  i s  

a l so  i n  good agreement with previous measurements at  high l a t i t u d e  locat ions 

cue von Zahn et al. 

A preliminary review of t h e  neut ra l  data  obtained between 110 t o  

2 2 

2 

1970). 
+ + and O2 W e  a l so  note tha t  t h e  absence of N2 ions as consis tent  

with t h e  l a rge  NO abundance observed by t h e  mass Spectrometer. A t  120 km, 

8 



+ f o r  example, t he  t o t a l  O2 production rate w a s  approximately l o 3  

ions/cm3 sec. 

O2 
with t h e  upper l i m i t  es tabl ished by t h e  ion mass spectrometer. 

With t h e  NO density given i n  Table I1 an equilibrium 
+ concen$ration of only 30 ions/cm3 would r e s u l t ;  t h i s  is  consis tent  

Mass spectrometer measurements by Hartman and Nier (1970) 

and by von Zahn et a l .  (1970) show tha t  l a rge  concentrations of NO a r e  

not normally found above 120 km i n  t he  undisturbed atmosphere above 

Churchill.  

a c t ive ly  within t h e  form as pa r t  of a time dependent and s p a t i a l l y  

localfzed event. T h i s  view i s  supported by our mass spectrometer 

observations below t h e  lower edge of t he  aurora (95 km). In t h i s  

region t h e  measured O,/NO r a t i o  w a s  g rea te r  than 15 t o  1; it w a s  only 

after t h e  rocket had penetrated i n t o  t h e  arc tha t  t he  0 /NO r a t i o  

changed dramatically. 

T h i s  ind ica tes  t h a t  t he  NO we observed w a s  being produced 

2 

The mechanism producing NO i n  t h i s  aurora l  arc  did so at t h e  

expense of t he  molecular const i tuents :  0 and N2- Ambient 0 atoms 

did not seem t o  be involved i n  any important way. Metastable lv(2D) 

atoms probably play a s igni f icant  role through t h e  process 

2 

NPD) + o2 + N O + O  ( 4 )  

These metastable atoms a r e  produced e f f i c i e n t l y  by t h e  d issoc ia t ive  

exc i ta t ion  of 07 (Mumma and Zipf, 1970) Dissociative recombination of 

NO i s  a l so  a l i k e l y  souTce. However, t h i s  process contr ibutes  t o  t h e  

NO build-up only i n  the  ear ly  phases of t h e  auroral, event when 

2 
+ 
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+ + NO -* NO+ + N2 N2 

and 

+ NO + NO+ + O2 O2+ 

a r e  not t he  dominant loss processes f o r  these  ions. 

NO 

Ultimately 

+ recombination serves only t o  recycle  t he  ex is t ing  NO. 

An independent NO source outside of the  [NO' + e] loop is  

needed t o  account f o r  t h e  very l a rge  NO concentrations observed i n  

t h i s  aurora. 

processes may be important. 

I n  addi t ion t o  reac t ion  (4) the  following co l l i s ion  

n(4s)P + o2 + m o + o  

and 

O C ~ P I *  + N~ + NO + N 

where t h e  a s t e r i s k  indicates  an atom w i t h  a k ine t ic  eqergy considerably 

i n  excess of t h e  ac t iva t ion  energy f o r  these react ions.  

laboratory experiment Borst and Zipf (1970~  ) have shown that  d i ssoc ia t ive  

exc i ta t ion  does i n  f a c t  produce very energetic atoms; a subs tan t ia l  

f r ac t ion  of' these atoms even have enough energy t 9  d issoc ia te  ambient O2 

I n  a recent 

10 



and N2 molecules. 

serve as an effective MO source. 

Hence, the thermalization process itself may also 
I I 
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Table I 

Mass Spectrameter Design Parameters 

r 

R 
0 

0,. 3 cm 

10.0 cm 

3.5 mHz 

5 x 10-2 cm 

Entrance aperture diameter a 



Table I1 

Ionizer Potentials 

* * 
Electrode Ion Mode Neutral Mode 

5 

6 

-5 volts 

-10 

0 

0 

0 

-15 

-5 volts 

+50 

0 

-25 

-15 

-v 

# 
The quadrupole lens was biased -15 volts w i t h  

respect t o  the vehicle. 



Table I11 

Particle Densities at 120 km [4*309 Ud 

Spec i e s Density ) 

*2 

O2 

NO 

0 

2.3 x 10l1 

2.3 x Ido 

3 ? 8  x 1 O l o  

6.0 x 1010 

Total 3a$ x 1011 

Mean molecules weight 26 4 



Figure Captlons 

+ 
F l p e  1 The tn tensf ty  of t h e  (0,O) first negative band of N2 

measured on t h e  upleg of f l i g h t  4.309 UA. 

Figure 2 Schematrc cross  sectfbn of ionizer  through a plane 

contalning t h e  ax is  of t h e  quadrupole lens .  The f i l anen t s  

w e r e  about 5 mm long and consisted of 0.003" dia. tungsten 

Prire. Filament 2 i s  a spare. The switching poten t ia l s  

V through V used f o r  t h e  ion and neut ra l  modes a r e  l i s t e d  1 6 
i n  Table 11. Four l a rge  s e n t  holes i n  t h e  s ide  of t h e  p l a t e  

contafning t h e  fi laments are not shown. 

Figure 3 Sample record of t h e  ion m a s s  spectrometer data  obtained 

durfng f l i g h t  4.309 UA, March, 1970 a t  120 km. 

sfgnal  i s  off-scale on t h e  s e n s i t i v i t y  range shown i n  t h e  

f igure.  

The NO+ 

Ffgure 4 Sample records of t h e  neu t r a l  m a s s  spectrometer da ta  obtained 

during f l i g h t  h.309 UA showing the  N2, NO and 0 mass peaks. 

Ma-ss scans A and B were obtained at an a l t i t u d e  of 113 km and 

119 km respect ively.  

2 
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