JOHNS HOPKINS UNIVERSITY

DEPARTMENT: OF
 PHYSICS

THE

多

$$
4
$$

SOME SPECTROMETRIC RESULTS FROM THE NASA 1968 AIRBORNE AURORAL EXPEDITION
and

TENTATIVE IDENTIFICATION OF SEVERAL $\mathrm{N}_{2} \mathrm{c}^{\prime}{ }^{1} \Sigma_{\mathrm{u}}^{+} \rightarrow \mathrm{a}{ }^{1} \prod_{\mathrm{g}}$ BANDS IN AURORAS
by

> K. A. Dick*

The Johns Hopkins University
Department of Physics
Baltimore, Maryland 21218

NASA Research Grant NGR 21-001-001

```
*
    *Present address: Kitt Peak National Observatory
        Tucson, Arizona }8571
```

To be published in the Journal of Geophysical Research

FOREWORD

This technical report is a preprint of two manuscripts which have been accepted by the Journal of Geophysical Research for publication. The first paper represents results from airborne measurements in the NASA 990 aircraft and the second paper combines measurements taken in the aircraft with rocket measurements to identify previously unidentified auroral features.

Wm. G. Fastie Principal Investigator

Some Spectrometric Results from the NASA 1968 Airborne Auroral Expedition

Abstract

Spectrophotometer measurements taken aboard NASA's 1968 Airborne Auroral Expedition included numerous weak auroral features. The permitted OI line at $4368 \AA$ was found to have an intensity ratio to the $\mathrm{N}_{2}{ }^{+} 1 \mathrm{NG}(0,1)$ band at $4278 \AA$ of 1:60 under a variety of auroral conditions. The forbidden NI line at $3466 \AA$ was seen to vary in intensity relative to 4278 . Its variation follows OI $6300 \AA$, and may be used as an indicator of precipitating electron energy changes. The continuum at $6700 \AA$ was found to have a value $<1 / 2 \mathrm{R} / \AA$ in an area through which an arc had recently passed. A technical report will shortly be available giving more details of results at the disposal of other experimenters.

INTRODUCTION

During the period January-March 1968, an Airborne Auroral Expedition was flown aboard NASA's Convair 990 aircraft 'Galileo.' The instruments used by the Johns Hopkins University group consisted of a one-meter scanning Ebert spectrophotometer and a five-position filter-wheel photometer. These instruments have previously been described in more detail [Dick et al., 1970]. The photometer monitored the features OI 5577,6300 А; $N_{2} \operatorname{lPG}(5,2) 6704 \AA$ A;
 on each position for two seconds. The spectrometer scanned the first order region $12,400-14,000$ A every fifteen seconds with the capability of selectively admitting only second, third, or fourth order wavelength intervals through color glass filters. Most of the results reported herein, however, were taken from times when no such filters were in use.

Of the 124 hours flown during this expedition, some 30 represented daylight, ferry, practice, or aborted flights, and take-off and landing times. In addition, approximately 28 hours were flown under conditions where only night-sky observations were possible. The results under these conditions have been presented elsewhere [Dick et al., 1970]. The remaining time was flown under auroral conditions varying from minimum detectable forms to patches with intensity near

IBC III. It is not planned at this time to digitize all the remaining data (currently stored on analogue magnetic tape), but rather to look at selected periods for specific purposes. The periods rejected for initial study include both those where the intensity is so low as to make accuracy of measurement difficult even on summed averages, and those where fluctuations in intensity were significant over a spectral scan time.

In addition to presenting the results below, one of the purposes of this brief report is to make known the availability of Technical Report No. 24, NASA Research Grant NGR 21-001-001, of the Johns Hopkins University, Department of Physics. This report summarizes the data for the entire expedition, and is available to anyone wishing to consider the data alone or in conjunction with those of other expedition experimenters.

RESULTS

The results for OI $4368 \AA$ and NI $3466 \AA$ are from fifteen periods of auroral activity chosen from the total time reduced. Each period represents summation over a period from 30 seconds to 15 minutes where the features discussed were measured simultaneously.
$O I 4368 \stackrel{\circ}{A}$
The permitted atomic oxygen transition (3s ${ }^{3} S^{0}-4 p{ }^{3} P$) at $4368 \AA$ was contained in the spectral region scanned. Its measurement was complicated by other spectral features in several overlapping orders, but a number of time-averaged values were obtained. The resolution was between one and three $\stackrel{\circ}{A}$, depending on slit width. Our results show a ratio $4278 / 4368$ of 60 with a standard deviation of 14.

Although little theoretical work has been done in general on permitted oxygen lines, Stozarski and Green [1967] predicted the intensity of the (3s $\left.{ }^{3} S^{0}-3 p{ }^{3} p\right)$ line at 8447 A for various incident electron energies and calculated it to be several times as intense as $\mathrm{N}_{2}{ }^{+}$ING $(0,1) 4278 \AA$ for the atmospheric composition chosen ($45 \% \mathrm{~N}_{2}, 45 \% \mathrm{O}, 10 \% \mathrm{O}_{2}$). Assuming both the $3 \mathrm{p}{ }^{3} \mathrm{P}$ and $4 \mathrm{p}{ }^{3} \mathrm{p}$ to be excited by secondary electrons colliding with ground state $O I\left({ }^{3} \mathrm{P}\right)$, and knowing the energies involved
(11.0 ev for $3 p{ }^{3} \mathrm{P}$ and 12.4 ev for $4 \mathrm{p}{ }^{3} \mathrm{P}$), the direct excitation rates for the two levels might be expected to be comparable. However, excitation into the $n s{ }^{3} \mathrm{~S}^{0}$ and nd ${ }^{3} D^{0}$ levels, followed by cascade emissions, may be the dominant means of populating the $n p{ }^{3} \mathrm{P}$ levels. Further, the 4 p level has a competing transition at 2.9μ to the $4 \mathrm{~s}{ }^{3} \mathrm{~S}^{0}$ level, which may subsequently radiate at 1.3μ to further populate $3 p{ }^{3} \mathrm{P}$. The relative transition probabilities of the $4368 \AA$ and 2.9μ lines are not known, but approximate values may be calculated using the method of Bates and Damgaard [1949]. These calculations give A(2.9人)/A(4368) ~5. (A further transition at 4.6μ to $3 \mathrm{~d}^{3} \mathrm{D}^{0}$ is small compared to both 2.9μ and 4368.) This would set a lower limit of $I(8447) /(4368)=5$ if comparable population rates are assumed. This is comparable with a ratio of 6 determined photographically by Petrie and Small [1953].

Data from a rocket flight (4.162) indicate an upper limit for $\mathrm{I}(8447) / \mathrm{I}(4278)$ of $0.1(T . D$. Parkinson, private communication). Combined with the above values, this would predict $I(4278) / I(4368) \geqslant 50$. These results therefore all appear compatible, and indicate that OI 8447 is at least an order of magnitude less intense than 4278. (It should be noted, however, that Vegard [1961] reported a ratio of 4278 to 4368 from photographic plates of only about 20, a factor of 3 lower than that reported here.)

NI $3466 \stackrel{\circ}{A}$
Eather [1969] reports the observation of enhanced auroral OI 6300 A emissions inside the normal auroral oval, and notes that this agrees with satellite measurements of low energy auroral electrons. Our observations of 6300 showed the same characteristics. Since the forbidden atomic nitrogen line (${ }^{4} S-{ }^{2} P$) at $3466 \AA$ was in our spectral scan range (in fourth order), we decided to see if the ratio $3466 / 4278$ also increased in the same region. However, the weak 3466 feature could not accurately be measured on a sufficient number of occasions in the weak auroras in the 'soft auroral zone' to produce meaningful results. What was possible, however, was to consider the ratio $3466 / 4278$ under all auroral conditions, and compare with 6300/4278. The results are shown in Figure l. (It should be noted that this is really equivalent to plotting 3466 vs. 6300 , but plotting the ratio with 4278 both allows presentation on a linear scale and retains the concept of its usefulness as an electron energy indicator.) In general, the high ratios were obtained from weaker auroral forms, and are less accurate than those with lower ratios. From the graph, a value of $I(3466) / I(6300) \simeq 1 / 18$ is obtained.

Fig. 1. Spectral intensity ratios of 3466 and 6300 with respect to 4278 .

Although 3466 is a weaker feature than 6300 (and therefore more difficult to measure accurately), ${ }^{\dagger}$ it has the advantage of not being a feature of the night sky. It was often found difficult to assess the airglow 6300 contribution when there had been continuous auroral activity during the flight, although for the points used in Fig. 1 (representing 6300 intensities varying from 200 to 2200 R), the uncertainty introduced was less than 10%. Further, spectrometer studies

[^0]of spectral features in the ultraviolet have in 3466 an indicator of particle energies, and therefore need not be supplemented by measurements of 6300. Unfortunately, little is known quantitatively about quenching of NI (${ }^{2}$ P) by atmospheric species [cf. Hunten and McElroy, 1966, and Zipf, 1969]. Continuum at $6700{ }^{\circ}$

Donahue et al. [1970] suggest that the high measured NO^{+}density in an auroral form may be the result of large NO densities at auroral latitudes. This could lead to the exothermic reaction

$$
\mathrm{NO}+\mathrm{O} \rightarrow \mathrm{NO}_{2}^{*}
$$

with subsequent continuum radiation [cf. Stewart, 1957]. While the quantitative aspects of this process have not yet been fully determined (E. C. Zipf, private communication), it is useful to establish an upper limit to observed continuum emission in the auroral zone.

Since the spectrometer had no shutter to provide zero-light signal levels, direct continuum measurement was impossible. Also, when there was significant auroral activity, any continuum level would be overwhelmed by spectral features, notably N_{2} lPG bands. Our procedure was to choose a point of low activity which had earlier seen a more active aurora, with the requirement that the second order filter was in the spectrometer. We then subtracted the N_{2} lPG $(5,2)$ band intensity as measured by the
spectrometer from the total signal seen through the photometer band-pass. This was done for a point $\left(\sim 67^{\circ} \mathrm{N}, 57^{\circ} \mathrm{W}\right.$ geomagnetic) crossed twice during flight 20, approximately an hour elapsing between passes. On the first pass, auroral activity was $\sim 1 \mathrm{kr}$ (5577). On the second, near-airglow levels were reached. The measured N_{2} IPG accounted for only one-third the total intensity seen through the interference filter, the remaining giving a level slightly less than $1 \mathrm{R} / \AA$. The minimum signal seen through this filter under non-auroral conditions for the entire expedition, including low-latitude flights, was $2 / 3 \mathrm{R} / \AA$. Hence a conservative estimate for an upper limit to a continuum contribution from $\mathrm{NO}_{2}{ }^{*}$ would be $1 / 2 \mathrm{R} / \AA$ at $6700 \AA$. It remains to be seen whether this limit is low enough to make an estimate on the maximum NO density in the auroral regions. (Results from the 1969 Airborne Auroral Expedition, obtained directly with modified equipment, confirm this upper limit.)
$N_{2}{ }^{+}$4278, $4236 \stackrel{\circ}{\mathrm{~A}}$
Because of the experimental results of Moore and Doering [1969] on the vibrational excitation of N_{2} by collisions with low energy ions, the ratio of the $N_{2}{ }^{+}$lNG bands $(0,1)$ at $4278 \AA$ and $(1,2)$ at $4236 \AA$ was determined for those times in the expedition when there was enhanced H_{α} emission. The values of the ratio $\mathrm{N}_{2}{ }^{+} / \mathrm{H}_{\beta}$ of Eather [1968] and of H_{α} / H_{β} of Eather [1969] were adopted in
determining when there was a significant proton induced contribution to total auroral intensity. No evidence was found of the ratio $4236 / 4278$ rising above the level of 0.14 quoted by Moore and Doering [1969] for protons with energies $\geqslant 3 \mathrm{KeV}$.

FINAL REMARKS

The full implications of the intensity values, and variations in those values, of the features OI 4368 and NI 3466 herein reported are not assessable at this time. The necessary laboratory and/or theoretical data needed to relate them to other features in their respective systems, and to the incoming particle energetics, are not available. The results from this expedition, providing simultaneous coverage of nearly the entire accessible spectral range by the several experimental groups, may provide a source for data with which to compare future proposed auroral mechanisms.

The previously mentioned technical report lists all spectral features identified from the expedition records. Many, such as the N_{2} VK $(3,15)$ band at $4534 \AA$, are identifiable only on the most intense scans, where rapid fluctuations (less than the 15 sec . scan time) make quantitative investigation impossible. The intense features clearly evident are listed in Table I. The total number of identified features exceeds 40.

TABLE I. Strongest Features in the Spectrometer Scan Ranges

$\frac{\lambda(\AA)}{3136}$	Identification
3159	$\mathrm{~N}_{2} 2 \mathrm{PG}(2,1)$
3371	$\mathrm{~N}_{2} 2 \mathrm{PG}(1,0)$
3466	$\mathrm{~N}_{2} 2 \mathrm{PG}(0,0)$
4236	$\mathrm{NI}{ }^{4} \mathrm{~S}^{0}-{ }^{2} \mathrm{P}^{0}$
4278	$\mathrm{~N}_{2}{ }^{+} 1 \mathrm{NG}(1,2)$
6300,6364	$\mathrm{~N}_{2}{ }^{+} 1 \mathrm{NG}(0,1)$
	$0 \mathrm{I}{ }^{3} \mathrm{P}-{ }^{1} \mathrm{D}$

- Acknowledgments. The author benefited from working with W. G. Fastie on the expedition. The support of the personnel of the Airborne Science Office, NASA Ames Research Center, is gratefully acknowledged. Participation was made possible by NASA under Research Grant NGR 21-001-001.

REFERENCES

Bates, D. R., and A. Damgaard, The Calculation of the Absolute Strengths of Spectral Lines, Phiz. Trans. Roy. Soc., A242, lol, 1949.

Dick, K. A., G. G. Sivjee and H. M. Crosswhite, Aircraft Airglow Intensity Measurements: Variations in OH and OI (5577), Planet. Space Sci., 18, 887, 1970. Donahue, T. M., E. C. Zipf, Jr. and T. D. Parkinson, Ion Composition and Ion Chemistry in an Aurora, Planet. Space Sci., 18, 171, 1970.

Eather, R. H., Spectral Intensity Ratios in Proton-Induced Auroras, J. Geophys. Res., 73, 119, 1968.

Eather, R. H., Latitudinal Distribution of Auroral and - Airglow Emissions: The 'Soft' Electron Zone, J. Geophys. Res., 74, 153, 1969.

Hunten, D. M., and M. B. McElroy, Quenching of Metastable States of Atomic and Molecular Oxygen and Nitrogen, Rev. Geophys., 4, 303, 1966.

Moore, John H., Jr., and John P. Doering, Vibrational Excitation in Ion-Molecule Collisions: $\mathrm{H}^{+}, \mathrm{H}_{2}{ }^{+}, \mathrm{He}^{+}$, $\mathrm{N}^{+}, \mathrm{Ne}^{+}$and Electrons on N_{2}, Phys. Rev., 177, 218, 1969.

Petrie, W., and R. Small, The Intensities of Atomic and Molecular Features in the Auroral Spectrum, Canad. J. Phys., 31, 911, 1953.

Stewart, D. T., A Spectrophotometric Investigation of the Air Afterglow., J.Atmos. Terr. Phys., 10, 318, 1957.

Stolarski, R. S., and A. E. S. Green, Calculations of Auroral Intensities from Electron Impact, J. Geophys. Res., 72, 3967, 1967.

Vegard, L., Auroral Investigations during the Winter Seasons 1957/58 - 1959/60 and their Bearing on Solar Terrestrial Relationships, Geofys. Publ., 22, 1, 1961.

Zipf, E. C., The Collisional Deactivation of Metastable Atoms and Molecules in the Upper Atmosphere, Can. J. Chem., 47, 1863, 1969.

Tentative Identification of Several

$$
\mathrm{N}_{2} \mathrm{c}^{\prime}{ }^{1} \Sigma_{\mathrm{u}}^{+} \rightarrow \mathrm{a}{ }^{1} \mathrm{M}_{\mathrm{g}} \text { Bands in Auroras }
$$

Abstract

Tentative identification of two bands of the $N_{2} c^{\prime}{ }^{1} \Sigma_{u}^{+} \rightarrow a{ }^{1} \Pi_{g}$ system has been made from auroral spectrometer results. The (0,0) band at $2827 \AA$ was identified on a spectrum taken aboard an Aerobee sounding rocket (4.163) flown from Fort Churchill in February, 1967. The (0,2) band at $3119 \AA$ was found on some averaged spectra taken during the NASA 1968 Airborne Auroral Expedition. Estimates of the intensities of these very weak bands show each to be $\sim(.2-.5) \%$ as intense as the N_{2} second positive system.

Observational Evidence

A half-meter Ebert spectrometer was flown aboard an Aerobee 150 sounding rocket into an active aurora at Fort Churchill on February 16, 1967. Although the photomultiplier signal became noisy during flight, a good scan of the region $\lambda \lambda 2200-3400 \AA$ was obtained when the rocket was at $\sim 90 \mathrm{~km}$ during ascent. Features clearly present included members of the $\Delta v=1$ and 2 sequences of the N_{2} second positive group and the $(0,7),(0,6),(0,5)$ and $(0,4)$ bands of the N_{2} Vegard-Kaplan system. With spectral resolution of $\sim 4 \AA$, the 2 PG bands exhibited red peaks, degraded to the violet, while the VK bands appeared broad. The most obvious feature not associated with either of the above systems was a peak at $2827 \AA$. While this wavelength coincided with the $(0,0)$ band of the system previously referred to as the $35371 \mathrm{~cm}^{-1}$ progression ($\mathrm{c}^{1} \Sigma \rightarrow \mathrm{a}^{1} \mathrm{II}$) of the Gaydon-Herman singlet systems, there seemed little justification in assigning this identification on the basis of the one band, especially since other bands of the Gaydon-Herman systems were not observed. Figure 1 shows a portion of the spectrum traced from a strip-chart record. Large noise spikes have been removed. Where it was not possible to judge the signal level below these noise spikes, gaps have been left in the tracing.

Fig. 1. Segment of the rocket spectrum from $\sim 2740-2990 \AA$. Large noise spikes have been removed (see text). Peak intensity at $2972 \AA$ in $\sim 1.2 \mathrm{kR}$.

A recent investigation of the electron energy-loss spectrum of N_{2} [WiZLiams and Doering, 1969] shows a peak at 12.93 eV . A similar study under higher energy resolution [Geiger and Schröder, 1969] shows this peak to consist of components at 12.910 and 12.934 eV , with the latter accounting for $\sim 75 \%$ of the energy-loss. In fact, the 12.935 eV component is several times as large as any other feature in the energy-loss spectrum in the region $12.50-14.86 \mathrm{eV}$. This level has recently been remesignated $c{ }^{1} \Sigma_{u}^{+}(v=0)$ by Dressler [1969]. On the basis of these results, it becomes reasonable to expect that bands originating from this level would be stronger than those originating from other progressions of the Gaydon-Herman systems.

In order to make the observation of the $(0,0)$ band convincing, however, it is also necessary to account for the lack of observation of the $(0,1)$ and $(0,2)$ bands in the spectrum. These bands have laboratory intensities of at least one-half that of the $(0,0)$ band [Pearse and Gaydon, 1963]. The (0,1) band at $2967 \AA$ lies close to the OI $2972 \AA$ line and on the $\Delta v=2$ sequence of $N_{2} 2 P G$. Since the observed intensity of the $(0,0)$ band is at least an order of magnitude less than the OI - 2PG (2,0) combination, the $2967 \AA$ band would not be evident on this spectral scan. The $(0,2)$ band at $3119 \AA$ lies within $2 \AA$ of the peak of the 2 PG $(3,2)$ band, and would not be resolved. Further members of the $v^{\prime}=0$ sequence lie further to the red, where the rapidly decreasing quantum efficiency of the Cs-Te photomultiplier tube would preclude observation.

Thus it becomes reasonable to expect that, of the various bands collectively attributed to the Gaydon-Herman systems, only the (0,0) band of the $c^{\prime}{ }^{1} \Sigma_{u}^{+} \rightarrow a^{1} \Pi_{g}$ system would be observable on this spectral scan.

During NASA's 1968 Airborne Auroral Expedition, a one-meter Ebert spectrometer was flown which normally scanned the spectral region $n \lambda=12,400$ to $14,000 \AA$ [cf. Dick et al., 1970]. Under active auroral conditions, this spectrometer was usually operated without its optional order-sorting glass color filters. The usual data-reduction
procedure has been to sum a series of spectral scans over times of fairly constant auroral conditions during which instrument parameters such as slit width and signal gain were kept constant. During the longest such time (early in flight 22) a very clean spectrum was obtained under slit conditions corresponding to a fourth order resolution of slightly less than $2 \AA$ at $3118 \AA$. This spectrum exhibits a clear shoulder to the red of the peak of the $2 P G(3,2)$ band at $3116.7 \AA$, at a wavelength of $\sim 3119 \AA$. Of course, this feature could arise from $4157 \AA$ or $6238 \AA$, the overlapping third and second order wavelengths respectively. While the author is not aware of any reported auroral features at either of these wavelengths, it is acknowledged that the same argument used herein to assign the feature to a previously undetected emission at $3119 \AA$ could equally be used to support some new line or band in either of the other orders. The detection of this feature alone could not be used to justify an identification of emissions from the Gaydon-Herman system, but in this instance provides corroborative evidence to the band assignment suggested by the rocket data. Figure 2 shows a portion of the summed spectra.

The only other bands of the sequence in the spectral range of the aircraft spectrometer are the $(0,3)$ band at $3283 \AA$ and the $(0,4)$ band at $3463 \AA$. As well as probably being less intense than the $(0,2)$ band, the $(0,3)$ lies on emissions of the $\Delta v=3$ sequence of N_{2} IPG in second order,
while the $(0,4)$ lies on the $N_{2}{ }^{+}$Meinel (3,0) band. So here again the lack of identification of these other bands does not jeopardize the identification of the $(0,2)$ band.

The intensity of the (0,0) band from the rocket spectrum is estimated to be between $1 / 4$ and $1 / 2$ that of the $2 P G$ $(3,1)$ band. The $(0,2)$ band is estimated to be between $1 / 5$ and $1 / 3$ as intense as the 2PG $(3,2)$ band. Since each of these 2 PG bands contains $\sim 1 \%$ of the intensity of the total 2PG [Benesch et al., 1966] the bands reported here appear to be $\sim(.2-.5) \%$ as intense as the 2PG.

Fig. 2. Segment of the summation of 256 spectral scans early in flight 22. Integrated intensity of $4278 \AA$ is $\sim 1,3 \mathrm{kR}$. Structure to longer wavelength of $4278 \AA$ is attributable to N_{2} lPG emission.

Comments

While the evidence presented above cannot be considered conclusive in establishing transitions in the $c^{\prime}{ }^{1} \Sigma_{u}^{+} \rightarrow a^{1} \Pi_{g}$ system as auroral features, the details are consistent, and sufficient to support tentative identification of the bands. The only previous report of emissions arising from these singlet states of N_{2} is that of MiZZer et aZ. [1968] which tentatively identifies a band of the Birge-Hopfield system and one of the Watson-Koontz system. All these identifications of emissions arising from the singlet states indicate that their part played in balancing an auroral energy budget is small. However, in light of the above identification and the electron energy-loss spectrum, it would be interesting to know the intensity of the $c^{\prime}{ }^{1} \Sigma_{u}^{+} \rightarrow X^{1} \Sigma_{g}^{+}(0,0)$ band at 958.2 ${ }^{\circ}$.

Acknowledgements. The experimental work herein reported was done while the author was with the Johns Hopkins University under NASA Grant NGR 21-001-001, directed by William G. Fastie. The aircraft flights were managed by M. Bader and L. C. Haughney of the Airborne Science Office, NASA Ames Research Center.

References

Benesch, W., J. T. Vanderslice, and S. G. Tilford, Excitation rates in the auroral nitrogen second positive group, J. Atmosph. Texr. Phys., 28, 431, 1966.

Dick, K. A., G. G. Sivjee, and H. M. Crosswhite, Aircraft airglow intensity measurements: variations in OH and OI (5577), Planet. Space Sci., 18, 887, 1970.

Dressler, K., The lowest valence and Rydberg states in the dipole-allowed absorption spectrum of nitrogen. A survey of their interactions, Canad. J. Phys., 47, 547, 1969.

Geiger, J., and B. Schröder, Intensity perturbations due to configuration interaction observed in the electron energy-loss spectrum of N_{2}, J. Chem. Phys., 50, 7, 1969.

Miller, R. E., W. G. Fastie, and R. C. Isler, Rocket studies of far-ultraviolet radiation in an aurora, J. Geophys. Res., 73, 3353, 1968.

Pearse, R. W. B., and A. G. Gaydon, The Identification of MoZecular Spectra, 3rd Ed., Wiley ε Sons, New York, 1963.

Williams, A. J. III, and J. P. Doering, Low-energy electron-impact study of the 12-14-eV transitions in nitrogen, J. Chem. Phys., 51, 2859, 1969.

[^0]: \dagger Note that the increased atmospheric attenuation at 3466 is approximately offset by increased photomultiplier quantum efficiency.

