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Preface

The work described in this memorandum was performed by the Propulsion
Division of the Jet Propulsion Laboratory.
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Abstract

Experimental system studies on solar-electric primary propulsion for deep
space probes are presently under way at the Jet Propulsion Laboratory. These
studies are performed with a 20-cm-diameter electron-bombardment ion thruster.
The electron emitter used to create the thruster plasma has been changed from
an oxide to a hollow cathode type in order to improve thruster efficiency and
lifetime. The performance of this modified thruster is detailed over a wide range
of variations in thruster parameters. Thruster output power can be varied from
1000 to 2600 W.
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Performance of a 20-cm-Diameter Electron-Bombardment
Hollow-Cathode Ion Thruster

I. Introduction

The application of solar electric primary propulsion E
currently of interest for unmanned deep space probes
(Refs. 1 and 2). A test program is therefore under way
(Refs. 3, 4, and 5) to examine, in detail, the system aspects
of this type of propulsion. At the time of initial system
studies an oxide cathode was used to provide the source
of ionizing electrons within the thruster. Improvements
available in cathode lifetime and thruster efficiency have
led to the replacement of this cathode with a hollow
cathode type (Refs. 6, 7, and S). This change resulted in
several modifications of the original thruster as reported
in Ref. 9. The design and performance of the modified
thruster is described in this report. This hollow cathode
thruster will be incorporated within the ongoing Solar
Electric Propulsion System Tests (SEPST) program
at JPL.

II. Thruster Design

The basic elements of the present 20-cm-diameter
hollow cathode thruster are shown in Figs. 1 and 2.
Critical thruster dimensions and materials are indicated
on Fig. 2. A weight breakdown for the thruster is pre-
sented in Table 1. The front and rear ferromagnetic
support rings of the thruster, as indicated on Fig. 2,
mount eight bar electromagnets, provide a magnetic flux
path, and shape the field within the thruster. The elec-
tromagnets consist of two layers of 22-gauge copper wire
with a polymide resin insulation (HML) wound on a
0.835-cm diameter cylinder of magnet iron. The insula-
tion meets the thermal service requirements for the
NENIA MXV-16 specifications.

Two porous tungsten vaporizers were used within the
thruster to supply mercury propellant to the hollow

JRt TECHNICAL MEMORANDUM 33-468



Table 1. Hollow-cathode ion thruster weight summary

Component Weight, g

Housing 378

Screen grid pole piece 135

Support ring, forward 114

Support ring, aft 128

Anode 200

Rear plate 240

Cathode pole piece and baffle 94

Hollow cathode assembly 1153

Cathode vaporizer 28

Screen grid 71

Accelerator grid 525

Magnets (8 each) 60n

Accelerator mount assembly l8 each) 220

Ground screen, forward assembly 128

G ound screen, aft assembly 246

Ground screen, back cover 190

Anode and ground screen insulators 40

Mounting ring 300

Connector halves 255

Feed system (vaporizer, insulator 6 manifold) 100

Total 4072
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cathode and also directly to the are chamber. The dual
vaporizers were desirable because they are more com-
patible with present thruster control and output power
throttling schemes.

Modifications from the thruster design used in the
initial system te•st.s (Rcf. 9) included: grid geometry
changes, screen-grid support rods, replacement of the
oxide cathode with a hollow cathode assembly, and a
revised thruster mounting arningement.

A conventional two-grid ion accelerating system was
used because of the long experience and proven depend-
ability of this grid type. Tapered accelerator grids were
used. The grid thickness decreased with the radial dis-
tance from the center of the grid in order to place accel-
erator material in the region where the greatest wear is
generally observed. The center was a constant 0.30 cm
thickness to a radius of 5.0 cm, where it decreased uni-
formly to a thickness of 0.12 cm at the periphery.

The thickness of the screen grid was 0.050 cm. The
screen and accelerator hole diameters were 0.482 and
0.373 cm re.,pec•tively. A 0.075 cm grid separation was
maintained. Thin, nonmagnetic, stainless Fteel rods were

CATHODE MOUNTING PLATE _\
	

r CATHODE POLE PIECE

/	 r—PU+SMA RET4INING
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SCREEN
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J"

	

_	
I

SWAGELOCK

CONNECTOR

r,

CATHODE SUPPORT
CLAMP

BAFFLE

KEEPER

SHIELD

Fig. 3. Hollow-cathode pole piece design details

attached between the screen grid and the thruster hous-
ing. This approach has been fourul to he desirable
(Ref. 4) in limiting the movement of the screen grid as
a result of thermal stresses.

The thruster mounting was designed to mate with the
gimbal elements of the thrust vector alignment system.
The actuators for this system are described in Ref. 10.
A "C" channel aluminum ring was attached to the
thruster cover which was insulat f•d from the thruster and
could be electrically grounded. Accurately machined flat
surfaces were incorporated at two locations on the ring
to define attaching surfaces for bearing mounts.

The debils of the hollow cathode asst mbly as mounts 1
within the cathode pole piece are show a in Fig. 3. A n.

enclosed keeper structure as suggested in Ref. 6 was
employed. A pin ma retaining screen was inc•urporatecl in
order h, reel,tce t ;•: volume within this structure as su ;
gested by fuel. 1 ;. R i : rcnry flo-.t from the cathode gl: f

^•niece wa y direr-`; ti radially outward by the electro;, t :: fCc.
A similar approach . g as suggested :o Ref. 12 a,td w:As
found beneficial in r^ducing accelerator curmn' levels.

III. Thruster Controls

The control !oops used to , im the thruster while oper-
ating on !ahoratory power supplies are shown in Figs. 4
and 5. The controls presented In Fig. 4 maintain co r,
stant mercun • flow rates by controlling vaporizer tem-
peratures. This; type of control is adequate for most
laboratory thruster testing. The control loops presented
in Fit;. 5 control the mercury flow indirectly by the
thruster performance and are presently more suitable for
flight operation due to long term drifts that might be
expected in the vaporizer ten perature-flo ww calibration.

In the control loops, shown in Fig. 5, the ion beam is
compared with a desired operating level generating an
error signal to the controller which in turn heats the
main propellant vaporizer. The are voltage is compared
against a reference value with the error used to control
the heat to the cathode vaporizer. Thruster operation uti-
lizing these loops has been presented in Ref. 13. Thruster
output power throttling is accomplished by changing the
ion beam current while maintaining the net acceleration
voltage constant. Proper thruster operation at each power
level is specified by an are current reference which can
be the output of a function generator. The function gen-
erator could be programmed for any of several modes of
thruster operation such as constant propellant utilization
or constant discharge chamber losses.

;
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IV. Thruster Performance

Thruster testing was performed in a vacuum chamber
with a diameter of 0.914 m and a length of 2.13 m,
maintained at a pressure between 2 to 8 x 10- 8 torn. The
thruster was operated over a range of mercury flow rates
that varied between 4.25 to 10.65 g/h (0.57 to 1.42 equiva-
lent amps). Extensive performance data for the thruster
was obtained in this flow region. All thruster operation
data were obtained with a plasma bridge neutralizer
operating. It was located about one meter downstream
from the accelerator surface. This was found to be neces-
sary to provide low, steady-state levels of accelerator
current. Large and erratic accelerator currents were
present when the neutralizer was turned off. The large
distance between thruster and neutralizer was chosen so
as to minimize the neutralizer ions that inight be at-
tracted to the accelerator grid.

The nominal operating levels of the electrical parame-
ters ai a listed in Table 2. Thruster operation was main-
tained at an electrical specific impulse of 4450 s. Because
of 0- increased cerYeance of the ion extract ion system,
the accelerator voltage was reduced from the 2000 V,
used in prior system tests, to 1000 V.

Table 2. Hollow-cathode ion thruster control

system electric parameters

Parameter Current, A Voltage, V

Accelerator 0.0038-0.0067 1000

Beam 0.500-1.31 2000

Magnet-manifold 0.62 14.0

Cathode heat 1.0 2.4

Cathode keeper 0.4 6.0

Arc 4-10 35.0

The are chamber losses (arc chamber power per beam
ion) are plotted against thruster propellant utilization
(ion beam/input mercury flow in amps of Hg' equiva-
lent) in Fig. 6. Each initial flowrate was arrived at by
adjusting the cathode flow to provide an are voltage
near 35 at a propellant utilization of 907c. The utiliza-
tion was varied by adjusting the arc current by the cur-
rent regulation of the are power supply. The are voltage
usually varied between 30 and 40 V during the mapping.
The noise level within the are current was monitored
during this thruster mapping by a high speed strip chart
recorder. The noise level, at ail flows, increased as the
propellant utilization decreased. The noise level usually

JPL TECHNICAL MEMORANDUM 33-468

CATHODE	 MAIN	 TOTAL
FLOW RATE,	 FLOW RATE,	 FLOW RATE,
equivalent A	 equivalent A	 equivalent A

-	 O	 0.174	 0.393	 0.567
O	 0.139	 0.528	 0.667
V	 0.126	 0.674	 0.800
A	 0.112	 0.807	 0.919
q 	 0.117	 0.948	 1.065
•	 0.084	 1_36	 1.420

INCREASING	 I
ARC CURRENT
NOISE LEVELS

MAGNET CURRENT 0.62 A
NET ACCELERATING VOLTAGE 2000V
ACCELERATOR VOLTAGE -1000 V
 I
50	 60	 70	 80	 90	 100

PROPELLANT UTILIZATION, %

Fig. 6. Effect of propellant flowrate on the discharge loss
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Fig. 7. Effect of propellant flowrate on the discharge loss

at constant propellant utilization

became significant (about Tye of the do level) near a
propellant utilization of 75 17c.

!'he discharge losses are presented as a function of
propellant floes• in Fig. 7 for a constant propellant utiliza-
tion of 90 %, The discharge losses for this thruster in-
creased at low propellant flows instead of decreasing as
has been observed with oxide cathode thrusters (Ref. 4)
or with some hollow cathode thrusters (Ref. 3). This in-
crease reFults in greater penalties in thruster efficiency
when the output power is throttled. Thruster power losses
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Table 3. Hollow-cathode ion thruster performance data

Mercury

propellant

flow role,

Arc

vo!fuge,

Beam

current,

Beam

power,

Power losses, W Efficiency, %

Arc Ma net-g Main Propellant

equivalent, A V A W chamber Accelerator Catl•ade
manifold vaporizer

Power
utilization

Total

0.567 37.73 0.506 1012 152.5 11.1 4.6 8.0 9.9 84.5 90.8 76.7

0.667 36.91 0.610 1220 182.0 9.4 7.1 8.6 10.0 84.8 91.5 77.6

0.800 36.91 0.732 1464 203.0 7.5 9.9 8.5 11.4 85.9 91.6 78.6

0.919 35.17 0.836 1672 208.0 8.9 7.7 8.2 12.5 89.2 91.0 79.4

1.065 34.02 0.980 1960 226.2 12.1 5.7 8.8 i 1.8 88.1 92.1 81.1

1.420 36.61 1.310 2620 361.1 20.0 4.8 9.3 12.8 86.6 92.3 79.9

and efficiency are presented in Table 3 for a 2.6:1 range
in output power near a propellant utilization of 907c.

A map of the thruster performance over a range of
output power and propellant utilization is presented in
Fig. 8. The data presented in this map was a cross plot
of that presented in Fig. 6 with the are current corrected
to an are voltage of 35 V. This correction assumed con-
stant are chamber power. The beam and arc voltage are
used by the thruster control loops (Fig. 5) to indirectly
specify a value of mercury propellant flow rate. It can
be seen that specifying the constant values of beam and
arc currents to be maintained by these loops uniquely
specifies the mercury flow rate only if the propellant
utilization remains above 807c.

The variations in accelerator impingement current with
thruster parameters are presented in Figs. 9 and 10. The
ratio of impingement to beam current as a function of
propellant utilization and flowrate is shown in Fig. 9.
The ratio was always less than 0.008 at a propellant
utilization of 90/ . This ratio was highest for low pro-
pellant flow rates suggesting a change in the plasma dis-
tribution within the are chamber at these flows. The
impingement is presented in Fig. 10 as a function of
accelerator voltage and beam current at a propellant
utilization in the neighborhood of 90%. The perveance
of this grid system was about 8 X 10- 1 A/V172 per-
mitting beam currents of up to 1.3 A without drawing
excessive accelerator impingement currents. Thruster op-
erating data were also obtained at closer grid spacing
(0.050 cm instead of 0.075 cm) but electron back-
streaming of the type observed in Ref. 7 was found to
occur frequently.

The effects of variations in the magnetic field on
thruster performance and arc chamber voltage are pre-

+1m, % / 100
ARC VOLTAGE 35 V
MAGNET CURRENT 0.62 A 	 90
NET ACCELERATING VOLTAGE 2000 V 	 /

ACCELERATOR VOLTAGE - 1 000 V
/ 80

70

/7A60

X50

40
5A

4A	 30

3A

AR CURRENT

4	 6	 8	 10	 12	 14
MERCURY FLOWRATE, g.A,

Fig. B. Cross plot showing effect of propellant flowrate

on beam current for constant discharge current

rented in Fig. 11. Data were obtained for constant values
of are current and propellant flow at a nominal one-half
and full power thruster operation. The arc voltage and
propellant utilization monotonically increased with the
magnetic field current. Are chamber losses were minimal
near a magnet current of about 0.5 A. Optimum thruster
operation was obtained at the highest magnetic field
investigated. However, it appeared to reach a plateau at
magnet currents of 0.6 A and above.
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propellant flow (567 mA)

The level of the are current noise was also monitored
during variations in the magnet current. Intense noise
levels were found to exist in the region of magnet cur-
rent between 0.3 and 0.45 A. The arc discharge extin-
guished quite often at values of magnet current below
0.3 A, especially at the lower flow rates.

Figures 12 and 13 present the effects of propellant flow
through the cathode on thruster operation. Data are
again presented for nominal one-half (Fig. 12) and
full (Fig. 13) thruster power. The are voltage and beam
currents are plotted in these figures since the cathode
flow is used to control the arc voltage directly and can
indirectly affect the beam current which is controlled by
a second loop. For both main flows the are could not be
maintained below cathode flow rates of 0.3 g/h. As the
flow was increased the arc voltage decreased to a mini-
mum value and then increased slightly. Operation at
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performance, low main propellant flow
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cathode flow rates above that consistent with the mini-
mum arc voltage resulted in increasingly noisy are cur-
rent signals.

Most of the above performance data were obtained
with the vaporizers being controlled as shown in Fig. 4.
The control loops were also connected as shown in Fig. 5
and operated for approximately 8 h intervals at various
output power levels between 1000 to 2000 N1 1 . The func-
tion generator was programmed for constant propellant
utilization during these tests. Stable operation was ob-
tained over the 2:1 range of output power.

V. Concluding Remarks
Performance data for a 20-cm-diameter ion thruster

employing a hnllow cathode have been presented for a
wide range of variations in the operating parameters. A
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2.6:1 range of output power at a constant propellant
utilization of 90;4 was demonstrated with less than 5`%
decrease in maximum total efficiency. Thruster operation
was well behaved in this region of propellant utilization.
Wide excursions in thruster parameters, however, were
observed to cause excessive noise levels in the are current.

A high perveance ion extraction grid system was used.
It permitted operation up to 1.3 A of ion beam current
at a total acceleration voltage of 3000 V. The current to
the accelerator grid was measured at less than 0.8% of
the beam current if the thruster was operated at a pro-
pellant utilization of 907c or higher.
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