0:08:41+00:00Z

Joup3 ‘Aeqo L 'Y 1eqoy

uoneinduios jesnewayiely dljoquis uo
ajnjIsu JAWwng 8961 Ay} jo sbuipaasold

T

{CATEGORY

{NAS

Roproduca by:

TIONAL TECHNICAL

INFORMATION.SERVICE -

TN S iSprinafiald, Na s 22957 -

6961 =unp

FSCe9-0312

PROCEEDINGS OF THE 1968 SUMMER INSTITUTE ON

SYMBOLIC MATHEMATICAL COMPUTATION

Robert G . Tobey, Editor

June 1969

IBM Boston Programming Center
545 Technology Square
Cambridge, Massachusetts 02139

PREFACE

The 1968 Summer Institute on Symbolic Mathematical Computation was held
at IBM's Boston Programming Center from June 24 to August 16, 1968, This
research institute was sponsored by the IBM Federal Systems Division through
independent research and development funds and in conjunction with the Office of
Naval Research contract N00014-68-C-0479 and the University of North Carolina
through NASA universit . The purpose of the institute was to
provide an intensive research environment with access to the PL/T FORMAC
batch system and the Scope FORMAC interactive system. Its goals were to
stimulate investigators to apply these two systems to real problems and to
encourage research on the design and implementation of mathematical algorithms
for symbolic mathematics.

The main features of the institute were the close proximity and varied
disciplines of the participants, and the access to the PL/I FORMAC System. The
institute featured formal and informal lectures on various aspects of FORMAC
and other key developments in symbolic mathematics. Informal colloquiums and
frequent coffee hours stimulated the flow of ideas and helped in the definition and

-pursuit of individual research projects .

The varied concerns expressed in the papers published here reflect the
participants! wide range of interests and activities. The first section, '"Basic
Design Issues, " begins with a discussion of the REDUCE system and the multi-
faceted problem of substitution by Anthony Hearn. Peter Marks' presentation
of design and encoding tradeoffs in FORMAC follows.

The section "FORMAC and Applications" begins with a calculation of Hilbert
matrices by Elizabeth Cuthill, then a paper by Robert Tobey and John Lipson,
describing the Scope FORMAC language with elementary examples. Next, Stanley
Gershwin discusses an application of FORMAC which did not work. Henry Feldman
presents ideas concerning the use of FORMAC to perform finite field arithmetic
and makes a plea for a more powerful polynomial manipulation capability within
FORMAC. Kenneth Hartt presents his view of the symbolic numeric capabilities
required to attack the large scale problems of theoretical physics. The use of
FORMAC as an empirical aid in obtaining new results in optimal contrel theory
is presented by Stanley Gershwin in the last article of this section.

The "Design and Analysis of Mathematical Algorithms' section begins with
a paper in which Robert Risch presents a tutorial discussion of his algorithm for
elementary function integration. WNext, an analysis toward defining a formula
manipulation subsystem for computing and manipulating asymptotic expansions
is presented by John Halton and followed by George Collins' paper concerning
computing time analysis for arithmetic and algebraic algorithms. In the last
paper of the section, John Lipson develops an algorithm for the solution of linear
equations with symbolic coefficients, performs timing analysis on the algorithm,
and presents several applications.

The Proceedings concludes with a paper on significant problems in symbolic
mathematics by Robert Tobey.

These Proceedings should not be viewed as complete within themselves.
Rather they should be viewed as constituting a snapshot or instantaneous cross-
section of the issues and probings which comprised research into symbolic
mathematical computation in the year 1968. A complete picture emerges only
when the many articles referenced in these Proceedings are also studied,

ii

Participants in the Summer Institute

Resident Participants (in attendance eight weeks)

Dr. Elizabeth Cuthill, Naval Ship Research and Development Center
Professor John H. Halton, University of Wisconsin

Professor Kenneth Hartt, University of Rhode Island

Professor Don Mittleman, University of Notre Dame

Mr, Sami Al-Banna, graduate student, Columbia University

Mr. Henry A. Feldman, graduate student, Harvard University

Mr. Stanley B. Gershwin, graduate student, Harvard University
Mr. John D. Lipson, graduate student, Harvard University

Consulting Participants (present one week only)

Mr. Charles 1.. Baker, IBM Federal Systems Center
Professor George E. Collins, University of Wisconsin
Professor Anthony C. Hearn, Stanford University

Dr. Robert H. Risch, Systems Development Corporation

Casual Lecturers

Mr. Carl Engelman, MIT Lincoln Laboratory
Dr. James H. Griesmer, IBM Research Center
Dr. Fred G. Gustavson, IBM Research Center
Professor William Martin, MIT

Professor Joel Moses, MIT

Boston Programming Center Representatives

Mr. James-J. Baker
Mr. Peter Marks

Mr. Jack B. Nance, Jr.
Dr. Robert G. Tobey

CONTENTS

Page

BASIC DESIGN ISSUES

"The Problem of Substitution™
by Anthony C. Hearll .+ v« v ¢ ¢ « o o = « o s o« s o o » o« o« 3

'"Design and Data Structure: FORMAC Organization in Retrospect" 21
by Peter Marks L] . - L] L L] - L L - -] L] L] L] L] L J - -

FORMAC AND APPLICATIONS

"Calculation of Tables of Inverses and Determinants of Finite
Segments of the Hilbert Matrix'"
by Elizabeth Cuthill « ¢« ¢ ¢ « 4 ¢ ¢ ¢ ¢ o s+ o o » 39

"The Scope FORMAC Language"
by Robert G. Tobey andJohn D, Lipson . . o o « o » o « « 05

"An Attempt to Solve Differential Equations Symbolically"
by Stanley B. Gershwin L] -] - - - . L) » - L] L - [] o - - L] 69

"Some Symbolic Computations in Finite Fields:
by Henry A. Feldman e e e e e s e e e e e e e .. M7

"Symbolic-Numeric Eigenvalue Problems in Quantum Mechanics™

by Kenneth Hartt -

"The Use of Computer-Aided Symbolic Mathematics to Explore the
Higher Derivatives of Bellman's Equation”
by Stanley B, GershwiD + o « o o ¢ o ¢ o ¢ o o o ¢ o o o 111

DESIGN AND ANALYSIS OF MATHEMATICAL ALGORITHMS

"Symbolic Integration of Elementary Functions!
by Romﬂ Hn RiSCh L -] L] - * L] o - - L] . L] - - L L [] L - 133

"Asymptotics for Formula Manipulation"
by JOhn Hn Ha]-ton - @ @ - [-]) L) 9 L L) [- @ . * . L] 149

iv

NI VN

\\

Page

"Computing Time Analyses for Some Arithmetic and Algebraic
Algorithms"
Py George E. COLLINS o « « ¢ o o o « o = o o « « « « + « « 195 1/

"Symbolic Methods for the Computer Solution of Linear Equations

with Applications to Flowgraphs" /
by John D, Lipson DS K

SUMMARY
Significant Problems in Symbolic Mathematics
by RObert G. Tobey L - - L] L] o L - o - L d - L L] * - - - L 307

BASIC DESIGN ISSUES

PRECEDING PAGE BLANK NOT FILMED

THE PROBLEM OF SUBSTITUTION
by

Anthony C. Hearn
Department of Physics
Stanford University
Stanford, California

N71-191g¢
Abs;:ract B

Minimizing intermediate expression swell is a central
problem in symbolic mathematics system design. The
strategy chosen for implementing substitution is frequently
the key to keeping storage space requirements under confrol.
This paper discusses the REDUCE system and its approach
to substifution. The use of interactive substitution to reduce
the complexity of program output is also covered.

This paper reports research sponsored by the Air Force Office of Scientific
Research, Office of Aerospace Research, U.S. Air Force, under AFOSR Contract
Number F44620-68-C-0075. Computer time was supported by the Stanford Artificial
Intelligence Project under the sponsorship of the Advanced Research Project Agency
of the Office of the Secretary of Defense (SD-183). The author is an Alfred P. Sloan
Foundation Fellow.

PRECEDING PAGE BLANK NOT FILMED

THE PROBLEM OF SUBSTITUTION
by
- Anthony C. Hearn

1. INTRODUCTION

One of the most significant features of programs designed for nonnumeric
calculation is that the size of the expressions manipulated, and hence the amount
of storage necessary, changes continually during the execution of the program.
The user cannot always know ahead of time just how much output his program
will produce or whether the calculation will fail because of inadequate computer
memory. The key to controlling both the size of intermediate expressions and
the complexity of output often lies in the manner in which substitutions for vari-
ables and expressions declared by the programmer are implemented by the sys-
tem, In this paper, we discuss various methods developed to perform these sub-
stitutions in the author's own system, REDUCE. 1,2 The REDUCE system, like
FORMAC, 9 is designed for general algebraic computations of interest to math-
ematicians, physicists, and engineers. Although the two systems share many
capabilities, there are marked differences in the design of each. REDUCE was
originally designed to handle the special problems of non-commutative and ten-
sor algebra encountered in calculations in elementary particle physics scatter-

3 However, it was found that the techniques employed could be

ing theory.
extended to handle many problems involving manipulation of large algebraic

expressions by known algorithmic methods.

One major difference between FORMAC and REDUCE is that the former is
largely a machine~coded system, while the latter was programmed entirely in
TISP 1.5. 4 The big advantage of the LISP language is that it permits the

development of a system which may be easily modified and which is also
relatively machine-independent. Thus, the same program is operating at
Stanford on two entirely different machines, an IBM System /360 Model .67
and a Digital Equipment Corporation PDP-6.

Section 2 of this paper uses the simplest type of substitution problem to
introduce the REDUCE system and to discuss the general characteristics which
permit the efficient coding of many types of substitutions. Section 3 presents the
general problem of substitution in terms of the matching of expressions. Finally,
the use of substitution to reduce the complexity of program output is discussed

in section 4,

2. SIMPLE SUBSTITUTIONS
An assignment statement of the form
A = 2¥B*C - $*D**3 + COS(-X)*COS(Y) (2.1)

has an entirely different interpretation in a nonnumeric calculation than in a
PL/I or FORTRAN program. In the latter cases, the right-hand side evaluates
to a number which is then stored in a machine location reserved for A. Ina
non-numeric system, the evaluation of such an expression is more ambiguous.
Here evaluation is usually referred to as simplification in the sense that the
expression is reduced to a canonical form by rules built into the program or

provided by the user.

There are as many philosophies concerning the meaning of simplification
of expressions as there are systems. FORMAC, for instance, makes substitu-
tions for variables with assigned values and performs several unambiguous
reductions of the expression. In Equation (2.1), for example, COS(-X) would
be replaced by COS(X). However, the basic form of the expression would
remain the same, apart from conversion from an infix notation to an internal
Polish prefix representation. In REDUCE, on the other hand, reduction of an
expression fo canonical form is more complicated. For one thing, this reduc-
tion always involves expansion of expressions, an operation under user control
in FORMAC. The flexibility permitted by having expansion of expressions

http:Model.67

under user control is not present in REDUCE because many operations associ-
ated with high-energy physies calculations require the expression to be in a fully
expanded form, Also, there is often a considerable gain in speed of calculation
and decrease in storage requirements when such expansions are made in an
early stage.

For the sake of simplicity in discussing the canonical form used let us begin
by restricting ourselves to rational functions of polynomials in several variables.
The simplification operation reduces such expressions to a canonical form con-
gisting of a pair of stamiard forms which represent the numerator and denomina-
tor of the expression. In the standard form, which is similar to thaf described

by Collins in reference 5, an expression in n variables f(xl,x x) is written

geee
as a power series in a variable whose coefficients are functions of n-1 variables.
Thus my .
_ 1
f(x1 ,xz...xn) = z fi(xz...xn)x1 . {2.2)
i=0

The polynomial coefficients are expanded in a similar manner, and the represen-
tation is continued until only integers remain. In Backus normal form, using the
LISP dotted pair notation, the REDUCE standard form is

0 | [nonzero integer]
l([standard ferm] ¢ [standard form]) (2.3)

([standard power] + [standard form]) (2.4)

[standard form]

[standard term] : :

0

[standard power] ([variable] - [nonzero

positive integer]) (2.5)
Thus, a standard term represents one term in the power series Equation (2.2},
and a standard power represents a variable raised to a positive integer power.
Comparison of Equation (2.2) with the equations that follow also shows that the
dotted pair represents an implicit addition in Equation (2.3), multiplication in

Equation (2.4), and exponentiai:ioﬁ in Equation (2.5).

Since the same fixed power of a given variable appears many times in the
expanded form of large expressions, considerable storage is saved by storing
all standard powers uniquely on a single ordered list. Although no explicit -
attempt is made to store other subexpressions which occur several times, this
often occurs automatically.

An.ordering convention based on the machine location of the variables in
core is used to decide the position of a variable in a standard form. Thus, two

equal polynomials will have the same standard form.

If fractional powers of variables or expressions are encountered during
reduction, a new variable is created to represent that power, and the user is
informed to ensure that no fractional powers remain in the standard form.
Likewise, real numbers are usually converted to the ratio of two integers, unless

the user specifies floating point arithmetic.

An extension of the basic polynomial representation to include other operators
is made in a straightforward manner. Each operator in thé system has a simplifica-
tion function associated with it. This function may transform its arguments in
either of two ways. Fifst, it may convert the expression completely info other
operators in the system, leaving no functions of the particular operator for
further manipulation. This is, in a sense, true of the simplification functions
associated with the operators +, * and / , for example, because the standard
form does not include these operators explicitly., It is also true of an operator
such as the determinant operator DET , in which case the operator DET no
longer appears after the relevant simplification function caleulates the appropriate
determinant. On the other hand, the simplification process may leave some
residual functions of the relevant operator. For example, a residual expression
COS(Y) will remain after simplifying Equation (2.1) unless a rule for the reduc-
tion of cosines into exponentials is introduced. These residual functions of an
operator are termed kernels, and are stored uniquely like variables. Subsequently,
the kernel is carried through the calculation as a variable unless transformations
are introduced for the operator at a later stage. To include kernels in our

standard form representation, we simply replace Equation (2.5) with

[standard power] :: = ([kernel] . [noxizero
positive integer]) (2.6)
and add
" [kernel] :: = [variable] |

([operator] . [simplified list of arguments]) 2.7)

Often an assignment statement such as Equation (2.1) is intended in the
sense of a "side relation” in that a substitution for A should be made if it occurs
in expressions encountered later in the caiculation. As the initial reduction of
an expression to canonical form often involves considerable computation, it is
obviously desirable to simplify it only when necessary, and then only once during
a caleulation. In such circumstances, no replacement or other simplification
is necessary at the time the substitution is defined, and the expression may
therefore be stored in quoted form rather than evaluated form. To indicate this,
Equation (2.1) might best be written as

A = 2%¥B*C -~ 3*¥D**2 + COS(-X)*COS(Y)’ (2.8)
In REDUCE, a quoted assignment is introduced by the instruction LET , asin

LET A = 2*3*6 - 3*D¥%2 + COS(-X)*COS(Y) (2.9)
whereas an intended simplification is written

SIMPLIFY A = 2¥B¥C - 3%D*%2 + COS(-X)*COS(Y) {2.10)

When an expression to be simplified contains variables which were previously
assigned either quoted or evaluated values, the speed of the calculation and, more
important, the amotunt of storage used often depend crucially on just when the
substitution for the relevant variables is made. There are many ways to make
such substitutions. One is to substitute for variables as they are met during
reduction to canonical form recognizing, as. AUTSIM does in FORMAC, variables
for which substitutions were already reduced to canonical form to avoid repeti-
tious calculation. A second way is to make substitutions after reduction of the

whole expression to canonical form.

Two simple examples will illustrate that neither method is better
in all circumstances. With the substitution (2.1) already defined, consider the

following assignments:
Al = (A - 2¥B*C + 3*¥D*¥2 - COS(-X)*COS(Y))**1000 (2.11)

Bl = A*1000 - A*¥1000 (2.12)

Although both A1 and B1 evaluate to zero, in the case of A, it is obviously betfer
to substitute before raising the expression to the thousandth power and simplify-
ing; in the case of B, the opposite is true., These are extreme cases, of course,
but they illustrate what can happen if you are not careful. Both substitution
mechanisms are implemented in REDUCE, and the decision as to whether the
substitution of variables is made during or after reduction to standard forms is,
to a limited extent, under user control. However, it has been found in practice
that the system can often make a better decision than the average user in this

regard.
We note in passing that a simplification of

Cl = (A - 2*¥B*C + 3*D*¥2 - COS(-X)*COS(Y))**1000

+ AFX1000 - A*¥1000 (2.13)
would involve catastrophic term growth regardless of which of the above methods
of substitution is used. The user could avoid this by simplifying Al and Bl
as described above, then adding them to form Cl . However, a simplification
step such as Equation (2.13) may occur in the middle of an extensive calculation
without the user's knowledge, To ask the system to make such a simplification
in a single step would require sophisticated heuristics far beyond the scope of
present simplification systems to decide the optimal substitution method for

each variable encountered.

As an extension of the simple variable substitutions discussed so far, REDUCE
allows the user to define substitutions for powers of variables and expressions
which reduce to kernels or powers of kernels, Again, these substitutions may
be made either during reduction to canonical form or after and, because of the
organization of the system, they are as efficient to implement as substitutions
for variables. We illustrate this by discussing in detail the mechanism for
substituting for kernels or kernel powers after reduction of an expression to
canonical form. There are two ways this may be done. The first is to scan
the expression and check whether each kernél has a substitution defined for it.

I it does, at the first occurrence of this kernel check its substitution in canonical

form for replacements by the same routine, store it in this new form, then

1o

continue the search to the end of the expression. The reconversion of the
_expression to canonical form can be made concurrent with the search procedure.
This method is somewhat inefficient, however, as the same kernel often occurs
many times in an expression. The second method recognizes this inefficiency
and performs the substitutions in three passes, as we illustrate with a substitution
for the kernel (COS X) in Figure 1. The lists of kernels in the system are
searched, and changes in the apiaropriate list structure pointers are made if

a substitution is required as shown in Figure 1b. Since kernels and kernel
powers are stored uniquely, this change in list structure means that every
occurrence of the substitution expression was changed in all expressions. Thus,
the expression being simplified can be reconverted to standard forms by a
second pass. The last pass, which is quite trivial, restores the original list
structure of all substituted kernels without affecting the reconverted canonical

form, as shown in Figure lc.

In actual practice, REDUCE uses a combination of these methods, It is
assumed that the expression is large and the substitutions are relatively smail,
To check whether a substitution expression contains terms which have substitu-
tions themselves, the firgt method is used; the second method is used on the
expression being simplified.

In substituting for powers of variables or kernels, a distinction must
sometimes be made between substituting for that explicit power and generally
substituting for that power whenever it occurs. For example, LET I**2 =
-1 implies that 1*#%3 = -I, I¥%4 = 1 , and so on, However, in integrating

an expression by explicit substitution, a substitution
XAk = Y¥%3/3
is not intended to apply to higher powers of X.

This latter type of substitution is really a matching operation, and is

treated as such by the REDUCE system. Thus, a user would say

MATCH X*%2 = Y*¥3/3 (2.14)

11

all references to the kemel
(COS X) point to this cell

CO5 a— ——

;

substitution

(a.) Unique Representation of Kernel Before Substitution

COos

‘ !

substitution

{(b.) Changes Made in List Pointers fo Effect Substitution
for Every Occurrence of Kernel in System

COS -— RRE——

substitution

(c.) Restoration of Kernel Representation After Reconversion
of Expression to Canénical Form

Figure 1. A Substitution Mechanism for Kernels

12

to effect such a replacement. The general matching operation requires.an
altogether different programming technique than we have used so far. This opera-
tion is discussed in the next section.

3. MATCHING OF EXPRESSIONS

The substitutions considered so far have been rather limited in scope, as
they involve. only substitutions for variables and_kernels: As we have seen,
these are very efficient to implement because variables and kernels are stored
uniguely in REDUCE, However, a more general type of substitution which
requires extensive pattern matching within a given expression is.often needed.,
Such substitutions cannot be as efficiently implemented as our earlier examples

as much more searching is involved in their application,

The ideal system would allow for the replacement of any given expression
f(a,b..x,y..) by another expression g(a,b..x,y..) where a,b,... étanci for fixed
subexpressions and X,¥,.. for arbitrary expressions. For example, in
Equation (2.1) it might be convenient to replace COS(X)*COS(Y) by (CO3(X+Y)

+ COS(X-Y))/2 . Presumably this type of replacement should apply whenever’
an arbitrary product of cosines is encountered, so that X and Y in the replacement
rule should stand for any expression. Thus X and Y arefree variables as

far as the substitution rule is concerned. Similarly, if X is free, the rule
SINX)**2 + COS(X)**2 = 1 (3.1)
should imply that Sinz (cos(log2)+3) + cgsz(cos(log2)+3) is to be replaced by 1.

This general matching problem, which we mentioned in an earlier prﬂ:Jlirca’n:ion;2
has been solved efficiently enough for use in large scale calculations, and as a -
result, most systems, including REDUCE, compromise at some point in the
types of substitui;ions allowed. There is also a basic ambiguity associated with
any Sui)stitution rule involving addition, such as Equation (3.1), For example,
given this rule, should 2cosz(v) + sinz(v) be replacedby 1 + Zcosz(y) » by
2 - sinz(v) or left unchanged? As we shall see in section 4, the choice made '
can often influence the compaciness or symmetry and, hence, the intellig_ibility
of the result.

13

http:requires.an

Though REDUCE does not implement a general pattern matching algorithm,
it does provide for substitutions for products of kernel forms or expressions

which reduce to this form by means of the instruction MATCH,
The argument of MATCH is a list of equivalence expressions of the form

[kernel form] * [kernel form] ... * [kernel form]

= [expression] (3.2)
where a kernel form is an expression which reduces to a'kernel on simplification.
Examples of the use of MATCH are

MATCH A*¥2%B = 3%C,

COSX)*COS(Y) = (COS(X+Y)+COS(X-Y))/2 (3.3)
In the second example, the fact that X and Y may stand for any expression

is signified by the prior declaration
FREE X,Y.

The "maiching' function which implements these substitutions is applied
recursively to standard forms and has two arguments—the form and a list of
substitution rules as given in Equation (3.2). Unless the form is an empty list
or a number (in which case it is simply returned), the leading standard term is
inspected. By Equation (2.4) this is a dotted pair of a standard power and another
standard form. If the kernel in this power occurs in the left half of a substitution
rule, two things are possible. If it is the only kernel in the left half, a complete
"match" has been found, and the kernel is replaced by the right half of the rule.
On the other hand, if other kernels remain in the left half, a new substitution
rule is generated by moving the relevant kernel as a divisor to the right half
of the substitution.

If no complete match has been found after all rules have been scanned for
the kernel, the matching function is applied, with the additional substitution
rules just generated, to the standard form which was paired with the kernel power
in the leading term. This process continues until the whole expression has
been scanned. If any match was successful during this scan, a second pass
reconverts the expression to canonical form. In addition, the whole process

must be repeated in case another valid match developed during the reconversion.

14

The algorithm must be modified somewhat to allow for replacement of an
explicit kernel power, as required in Equation (2.14), or for the presence of
free variables in a rule. Iis efficiency can be increased, moreover, by
exploiting the order key built into every standard form.

In spite of the limited nature of the types of substitutions allowed in REDUCE,
it is surprising how useful a matching operation of the form defined in Equation
(3.2) can be, This is especially true of problems involving analytic integration
of multivariable expressions by table look-up which occur quite frequently in

elementary particle physics.

4., SUBSTITUTIONS IN OUTPUT

Almost as catastrophic as the growth of expressions during a calculation
can be the growth of output to the astonished user. This is not a trivial problem;
the author knows several physicists and engineers who gave up calculations when
confronted with 50 pages of output from a relatively simple problem in matrix
manipulation. I any real progress is to be made in handling algebraic problems
too tedious and complicated to-be done by hand, a lot of research must be devoted
to presenting output in a compact, intelligible form. One way to achieve compact
output is to pick out the leading terms in the expression by order-of-magnitude
arguments, but this method often conceals symmetries in the answer which can
only be seen in the complete expression. Another method, developed by Baker, 7
involves recognizing common subexpressions within an expression and replacing
them by a single variable, thus displaying the underlying fundamental or skeletal
structure of the expression. In many cases, however, when such underlying
structure exists, it is hidden by various relations between the variables occurring
or by functional identities such as Equation (3.1).

The example in Figure 2 illustrates the problem of hidden underlying
structures very well. Figure 2a shows a "raw" expression produced by the
computer. As in many problems in physics and engineering, not all the variables

appearing in the expressions are independent, and certain combinations have

15

(Mkk4 *

(2 * PROP1 % PR % RS - 2 % PROP! % PR * RT - 4 * PR*%2 * RS
- 4 % PR%x%2 * RT - 4 % PR *x RS*%2 + 14 * PR * RS *x RT +
2 % PR * RS * PROFZ - -4 %*x PR * RS * PS - 4 %* PR * RS % PT -
4 % PR % RS * QT - 4 x PR % RS * QS - 4 % PR * RS * QR -
18 * PR % RT=**x2 - 2 x PR ¥ RT * PROP2 + 4 % PR % RT % PS +
4 % PR % RT % PT + 4 % PR % RT * QT + 4 ¥ PR * RT % QS -
4 * PR % RT * QR - & % RS*x2 % RT - 4 % RS *x RT*x%2 - 6 *
RS * RT * QR - 6 % RT#*%3 + & * RTH%2 % QR)
+ M k2 *
(- PROP1 * PR * RS *x RT + PROP1 * PR * RT=*%2 + PROP! *x P

! * RT * PROFZ2 + PROP!1 % RS#*%*2 * RT + 2 *x PROP1 * RS * RT**2
- 2 % PROP! % RS * RT * PT + PROP1 * RT#*X3 + 2 % PROP1 * R%T
*%2 * PS + 6 * PR*%2 * RT * QT - 2 % PR*%2 * RT * QS + 4 *
PR¥#*%2 * RT * QR - 4 % PR % RS * RT * PROP2 + 4 ¥ PR ¥ RS x RT
* PS + & * PR * RS % RT =* PT + 4 % PR * RS * RT * QT + 2
* PR * RS * RT * Q5 - 4 % PR % RS * RT * QR + g * PR #« RS * PS
% QT + g % PR * RS * PS * QR - 4 % PR * RT**x3 + 2 % PR =
R T®%2 % PROPZ + 4 x PR % RT#*%2 * PT + 6 % PR * RT*%2 % QT -
4 % PR * RT*%2 *x QS + PR * RT * PROP2%x%2 - 2 % PR % RT * PROQ
P2 * PS - 2 %« PR * RT * PROPZ2 *x PT - 2 % PR % RT * PROP2 x QT
- 2 % PR * RT # PROPZ2 * @S - 8 * PR % RT * PS * QT - 2 % P
R * RT * PS * QR - 2 % PR * RT % PT % QR + 2 % RS*%%2 % RT % QT
+ 4 % RS%*2 % RT * QR - 4 % RS % RT*%3 - 2 % RS % RT*%2 *
PROPZ2 + 4 % RS * RT*%k2 % PS5 - 4 * RS * RT*x2 % PT + & * R
7 % RT*%x2 % QT - 2 ®* RS % RT*%x2 % QS - 2 % RS % RT * PROP2 % P
T + RS * RT * PROPZ2 x QR + 4 ¥ RS * RT % PS * PT + 2 % RS
* RT * PS5 % GR + 4 % RS % RT * PT#*%x2 + 4 ¥ RS * RT % PT x QT

+ 4 * RS * RT % PT % QS + 4 % RT=*%3 * PS - 2 % RT*x3 * Q8§

+ 4 * RT**3 * QR + 2 x RT*%2 * PROPZ2 * PS - RTx%%2 x PROPZ *

QR - 4 %k RT*®k2 * PS%%2 - 4 % RT#%2 % PS * PT - 4 * RT*%2
* PS % QT - 4 % RT*k2 % PS * QS + 4 ¥ RT*x¥2 * PS8 * QR + 2

* RT#*%2 % PT * QR)

- 2 % PROPl % RS * RT*%k2 % PS - 2 x PR*x%2 * RT * PROP2 * QT
+ 8 % PR % RS % RT*%2 * QT + 2 % PR % RS % RT % PROPZ2 % QT -
8 ¥ PR # RS % RT % PS * QT - 8 ¥ PR % RS % RT * PS * QR - 4

* PR * RS * RT % PT % QT - 4 % PR % RT*%2 % PS * QT + 4 % PR
* RT%x%2 % PS * QS + 4 % PR % RT * PROP2 % PS * QT + 2 % PR * R
T * PROP2 * PS * QR + 4 % RS*%2 * RT *x PT * QT - 4 % RS *k RTsk*k
2 % PS *x QT - & * RS * RT * PS5 * PT % QT - A4 % RS % RT * PS %
PT % @R + 8 % RT*k2 % PSx%2 *x QT) /

(- 4 % PRQOP! % PR #* RS % RT*%%2 *% PROP3)

(a.) Expression Initially Produced by Computer
Figure 2. Example of Reducing the Size of Output Expressions by Substitution

16

PQ = M¥*2 - PROPL/2,
PR = QR + RT ~ R3,

PS = QS + RT - PROPL/2,
PT = QS - PR + RT,

QS = M#*2 - PROP3/2,

QT = PS = QR = RT,

PROPZ = PROP1 - 2¥RT + 2%RS

(b.) Relations Between Variables

(C4xMex4 - (PROPI+PROP3)*%2)% (= 2%Mk*2%QR =~ 4%QR*RT
+ 2%RT*%2 - RT*(PROPl+PROP3)+(PR*xPROP1+RS*PROP3)
+ 2% Mkk2%PR¥RS/RT)
+ AXMKKZHQR% (PR + RS)* (2Mk%2 + RT + (PROPI+PROP3))
+ 2k Mkk2%kPR*RS* (2%QR =~ 6&%RT - 3% (PROP|+PROP3))
+ 2%(GR = RT)I*((PRxPROP!+RS*PROP3)* (M¥*2 - (PROPI+PROP3))

+ 2#%QR*RT*(PROP1+PROP3}.)
4+ 2% (QR*%2 + RT*x2)% (2%QR*RT ~ (PR*PROPI+RS*PROP3)
+ RT*(PROP1+PROP3)) + Gk MkkZ%kRT**%x2% (PROPI+PROP3))

/ (4%PROP 1%xPROP 3%*RT*PR*RS)
(c.) Final Result Produced by Man and Machine

Figure 2

17

a more relevant physical interpretation than others. The relations between the
variables are given in Figure 2b. It can be seen that only six of the 13 variables
are independent. About five man~hours in front of 2 CRT display modifying
expressions and checking within the computer that no errors were introduced
by the hand modifications resulted in the expression in Figure 2¢. Considerable
reduction in the size of the expression was made by appropriate substitutions
for the variables appearing in the answer. The explicit skeletal structure of
this result could also be displayed by replacing the common subexpressions
PROP1+PROP3 and PR*PROPI+RS*PROP3 by simple variables.

The goal of simplification in this context is surely reduction of the size and/or
symmetrization of the expression. There is something of an art involved in
guessing the right substitutions, but it is obvious that the computer could be
programmed to do a lot of this automatically, Although the author's progress
in this area during the past year has not been outstanding, some success has
been achieved by successive substitution for each relevant variable wherever
it occurs in an expression, then checking to determine whether the substitution
was successful in decreasing the number of terms in the expression. Because
this method is painfully slow, a2 human and computer interactive combination

remain economically more atiractive at the moment.

This type of problem is analogous, in many ways, to theorem-proving on
a computer, and it is probable that similar heuristics will have to be developed
here before a successful solution can be found. There nfay be other algorithmic
methods which could be used also. Engeli,s for example, suggested dividing
the expression by any substitution equivalent to zero, thus keeping only the
remainder for further ﬁamipulation. However, the author has found that
this provides little reduction in expressions involving low powers of many

variables, such as the example in Figure 1.

The problem of substitution, then, is one of the key problems to be considered
in designing and using a simplification system for large expressions. Expressions
must be kept as compact as possible during a calculation, and the output must
be palatable and intelligible to the user if any major new discoveries are to result

from nonnumerical mathematical calculations on a computer,

18

REFERENCES

A, C. Hearn, "REDUCE User's Manual," Institute of Theoretical Physics
Stanford ITP-292, Stanford Artificial Intelligence Memo No. 50 (revised),
Stanford University, Palo Alfo, California, April 1968.

A, C, Hearn, "REDUCE, A User-Oriented Interactive System for Algebraic
Simplification,' Proceedings of the ACM Symposium on Interactive Systems
for Experimental Applied Mathematics, held in Washington, D, C., August
1967 (to be published).

A, C. Hearn, "Computation of Algebraic Properiies of Elementary Particle
Reactions Using a Digital Computer, "Communications of the Association
for Computing Machinery, Vol. 9, 1966, p, 578.

J. MeCarthy, et al., "LISP 1.5 Programmer's Manual," Computation Center
and Research Lab of Electronics, MIT Press, Cambridge, Massachusetts,
1965.

G. E, Collins, "PM, A System for Polynomial Manipulation,”" Communications

of the Association for Computing Machinery, Vol. 9, No. 8, August 1966,
p. 578.

R. G. Tobey, R. J. Bobrow, and S. N, Zilles, ""Automatic Simplification in
FORMAC," AFIPS Conference Proceedings, Vol. 27, Part 1, Spartan Books,
Washington, D, C., December 1965, p. 37.

R. G. Tobey, "Experience with FORMAC Algorithm Design," Communica~
tions of the Association for Computing Machinery, Vol. 9, 1966, p. 589.

M. Engeli, private communication.

R, G. Tobey, et al., "PL/I FORMAC Interpreter, Users Reference Manual,"
IBM Contributed Program Library, 360 D 03.3004, Hawthorne, New York,
October 1967.

19

PRECEDING PAGE BLANK NOT FILMED

DESIGN AND DATA STRUCTURE:
~FORMAC ORGANIZATION IN RETROSPECT

by

Peter Marks
IBM Boston Programming Center
Cambridge, Massachusetts

N71-19187

Abstract
The interaction between FORMAC data organization and

algorithm design is considered. Several organizational im-
-provements are discussed.

The author is currently a lecturer in Computer Sciences at the University
of Notre Dame, Notre Dame, Indiana.

21

BRECEDING PAGE BLANK NOT FILMED

DESIGN AND DATA STRUCTURE:
FORMAC ORGANIZATION IN RETROSPECT

by
Peter Marks

1. FORMAC STRUCTURE AND FUNCTION

FORMAC 1+ 2 effects caleulations on explicitly defined analytic functions. The
user describes the functions by expressions, and lists representing these expres-

sions are manipulated by a library of subroutines, For example, the function

sin(a + b) + 3be? 08

is represented by the expression
SIN(A + B) +3 * B * #E ** (Z - COS(T)

and finally by the list

+
SIN ——— =
+ 3 B x
|
A ——B E +
|
7 —— -
|
COs-
l

23

The binary branching struciure of the tree is subordinated to a sequence of
levels. Nonterminals are operators or functions linked downward to their

operand/argument lists.

The FORMAC lists are built from 64-bit nodes:

oP ACROSS

STAT DOWN

OP is an 8-bit field indicating the type of node (e.g., +, SIN, VARIABLE,
CONSTANT). ACROSS is a 24-bit pointer to the next node on the same level.
STAT is an 8-bit flag field containing temporary indicators for subroutine use
and bits announcing the presence of various patterns at lower levels.in the tree
(e.g., of a product of sums), DOWN is another 24-bit pointer field. For opera-
tors, it points to the operand list; for variables, to the symbol table entry; for
constants, to the value.

Some of the FORMAC list transformations act in place. These are the

Mimplieit" simplification manipulations, For example,

SIN ¢ SIN ¢
// o~
- ¢ . /[— ¢ - pom—
i

available
space list

VAR ¢ VAR ¢

24

On the other hand, the routines directly callable by the user (e.g., EVAL,-DERIV)

all ereate a new list.

The major complication in the data structuring is the provision for multiple
references to common subexpressions. Since a sublist appearing in two different
trees would require two different ACROSS fields in the top node, a new node, called

a C8, is inserted above the common subtree. For example, if the second summand

in
=+
SIN— COS— SIN
A B C

is copied and assigned to Z, the effect is

+
SIN CS Z 4— S
A L J

Multiple reference introduces the possibility of side effects: a change fo
one list may affect another list if the modification is made in a subtree common
to both. Another difficulty comes from the attempt to preserve a maximum of

common structure. This entails the insertion of CSs at the highest possible

25

level. Thus, for example, an algorithm for replacement which creates

Z = EVAL (Y,B,3) from

Y #—— S|N
w® %
B
by successively building
sin sin sin sin
* % k0

is not satisfactory. because in the case

Y ~— sin

—_———

C—N

26

sin

*k

sin

* ¥

where no replacement is to be made, this algorithm produces

Y = sin Z w— sin
| |
l I
T* '|k‘k
C_N C_—N

rather than the desired

2. CHOICE OF A LIST STRUCTURE

To get a more complete picture of how to utilize successive "degrees of
freedom in the data organization, first consider the current structure. The
input expressions themselves, in character string form, have one advantage:

the expression
A*X**2+2*B*X*Y+C*Y**2

requires 21 bytes, the tree

o+

27

128 bytes. Actually, the string approach can be pushed quite far. For example,
if a Polish string is used with + and * as delimited variary operators, then the

character string
+H*AFX2)*2BXY)*C*xX 2))

still requires fewer than 25 hytes, and is quite equivalent to a tree structure

for operations producing new strings such as replacement and differentiation,

It is the simplification operations, like cancellation of ferms, which force
the change to a linked structure of uniform-sized elements; the storage allocation
problem for rapidly fluctuating variable-sized strings is unmanageable.

The transition from a singly- to a doubly-linked structure again halves the
packing density. But the second pointer allows multiple references to common
substructures, and this usually more than compensates for the extra link space,

Finally, and here is the begimming of later considerations, a choice must be
made between a binary tree organization and the list structure. On the surface,
the binary tree is a natural choice, since +, *, and ** are all binary operators,
But the list structure allows the distinetion between

+/+\c _ _x{/ \+
A/ \B B/ \C

to be lost as

A—B—C

28

The associativity of addition makes + into a variary operator. More noteworthy,
the associativity of addition can be explicitly encoded into the data structure.

3. EXPLOITING THE SORT

Like associativity, commutativity has an organization counterpart. Since
cénunutaﬁviﬁy is just the order-independence of summands or factors, it can be
accounted for by sorting the lists. In fact, if the associativity is reflected by the

transformation
available
H space list
+ D _ 8 D
A c A C
then a merging of the two summand lists according to some predetermined
order will provide for commutatively equivalent sums:
available

=

But since the commutativity is accounted for by any ordering principle,
there is still freedom. to try to determine the most useful one. An ordering
is a subroutine which receives two lists as arguments and returns a '¢," "=,
or "> The first thing to note is that more than one ordering is desirable (or,

space list
.
+ D E———— B ' o

29

equivalently, that the order should be context-dependent). Consider what is
appropriate if two summands compare "= If they are identical, then the
eventual transformation should be something like

4
+
.

>

The merge can handle this directly once it has decided on equality of the
A's. Then it could equally well handle

+
+ * C
A * C ;5> 7 A
4 A

30

by comparing only the "non-combinable' parts of lists. However, what is
combinable depends on the governing operator. Nothing can be done with

+
A %
A 2
while
* *
A *# A 3

A 2

This criterion determines equality for the various orderings, but inequality
has still to be pinned down. The easiest decision is fo arbitrarily order the
possible OP fields and stop on the first difference encountered in the sean, This
is the present FORMAC device. It makes FORMAC's sort the fastest, but it
provides the least data for the rest of the system to work with.

31

The first improvement over a first-difference sort is to-force polynomial

ordering on the lists, Thus, where an { - d sort might produce

+
POWERS
" PRODUCT
-)
A B ok s EE —
- ~— _J
VARIABLES |
A—2 A —3 B —2 3 T kR T %k
A—2 B —2
a polynomial ordering produces instead
1 Ay
+ erm
] A/Le‘rm
B — #x A — % * - Kk
| | | 1
B—2 A—2 3—_*’;_ *T A—3
o
A" terms . A—2 B—2 y
2V
A" terms

This ordering, done.once, eliminates much repetition of effort in later applications
of polynomial manipulation like addition, multiplication, division, factoring, and
searching, In effect, not using a first-difference algorithm for sorting allows
"firgt-difference! algorithms for later polynomial manipulations,

Even with the polynomial ordering, there is still freedom left. As far as
polynomial structure is concerned, no more can be said about SIN(X), SIN(Y), and
COS(X) than that they are different monomials. Figuratively, the "horizontal"

32

ordering is fixed but the "vertical" ordering is open. Again, f - d i8 a possibility;
but again, it is not the best choice. Consider, for example, the problem of replac-
ing SINZ(X) + COS‘?'(X) by 1 for all expressions X, An f ~ d ordering giving, say

+
i

SIN—2 SIN—2 COS5~2 CO5—2 COS— 2
| i | I |
C D A B D

|\ J J

ol el

S|N2 terms COS? tems

" requires the arguments of the two SIN2 occurences to be compared to all C()S2
occurenees; the "bottom~to-top™ ordering

+
!

*% ®® *k *& g

l I I | |
COs—2 COs—2 SIN—2 SIN—2 COS —2

| i | 1

A B C D D

e

D argument terms

will always require, at most, one argument comparison for each SINZ. (This is
related to a parsing strategy where a bottom-up scan precedes a top-down scan
so that the information the latter tentatively seeks is more readily available.)

4. ANOTHER PASS AT THE STRUCTURE

Once the preferred processing techniques are established, the data structure
can (at least in an essay) be "fine~tuned' to facilitate the processing. For example,
it was clear eaxrly (though not early enough) in the PL/I ~ FORMAC implementation
that " — " should not be a distinct operator, but rather a bit in each node. Then

33

the sort would not have to do any extra work to correctly place " - AM: it
need not notice the ' - "' unless a possibility for combination arises.

The CS node is another example of undesirable obtrusiveness, since extra
work must be done to make believe it is not there, Here the improvement is
to make the multiple references to the operand lists rather than to the operator,
This way, individual operators can be used instead of CSs to carry the contextual
ACROSS pointers. Thus

SIN cos SI'N CCIDS
CS CS + +
— J/
N, S \A_B
|
A — B

However, this again requires a bit position in each node, since common lists
must be recognizable to control side effects.

Gradually, of course, changes become less clear-cut. Bringing exponent
values into the corresponding nodes is desirable in the same way as bringing
the sign in. But here space considerations become more delicate because more
than one bit is involved in each node. In fact; since allowing for symbolic
exponents requires room for a pointer, node size will be increased by 50 percent,
The saving achieved when a " * " does appear can be canceled by the extra
space used in nodes not raised to a power; in fact, at least three times as
many nodes.must have exponents as not to save space. Though this ratio is not
unusual in practice, it is not achieved for, say, univariate polynomials.

The case for the triple pointer node is even more convincing because the
expohent of a product can be distributed over the factors at no additional cost
in space, and then the exponent field in a ' * ' can be used for a numeric coeffi-
cient. Because of these advantages, the newer form is always superior — for
polynomial calculations at least. However, ingenuity is beginning to replace
nafuralness.

34

5. A PLACE FOR SYSTEMS MICROPROGRAMMING

The single point which most aggravates the FORMAC space problem on
System/360 is the enormous pointer size. Although it provides great flexibility
to monitor designers, it is very wasteful to user-level systems rumning in a
partition or on a moderate-sized machine. Consider that 216 of the FORMAC
8-byte nodes requires 512K so, in almost all cases, eight bits of the 24~bit
pointer fields are really unused.

This is an ideal application for microprogramming since a 16-bit relative
pointer would have to be shifted and relocated against a base register for every

nodal reference,

More generally, microprogram accelerators for systems have usually
failed because the functions put in control storage do not use a significant
portion of total system time. There is, of course, good reason for this: any
bookkeeping operation which used up a lot of time would indicate poor system
design. In particular, serious packing is often avoided. The unpacking is just
not there to be speeded up. Thus, using microprogramming to pack an already
fast data processing organization may well be a more fruitful approach than
acceleration.

6. SUMMARY

In a programming system like FORMAC, with a heavy "computational use
of list structures, the question of data organization is a paramount one. The
accessibility of pertinent data at a given time is a critical parameter of efficiency;
but the commitment to lists introduces the possibility of great flexibility in the
design of data representations. In this paper the ways in which tailoring the
flexibility to the problem at hand may facilitate a more efficient solution were
discussed.

35

REFERENCES

R. G. Tobey, et al., "PL/I FORMAC Interpreter, User's Reference Manual,"
IBM Contribufed Program Library, 360D 03.3.004, Hawthorne, New York,
October 1967.

J. Baker, P. Marks, and R. Tobey, "PL/I FORMAC Course Notes," IBM
Federal Systems Division, February 1968,

36

FORMAC AND APPLICATIONS

37

‘PRECEDING PAGE BLANK NOT FILMED

CALCULATION OF TABLES OF INVERSES AND
DETERMINANTS OF FINITE SEGMENTS OF THE
HiL.LBERT MATRIX

by

Elizabeth Cuthill
Applied Mathematics Laboratory
Naval Ship Research and Development Center
Carderock, Maryland

N71-19188

Abstract

In this paper, tables of inverses and determinants of finite
segments of the Hilbert matrices from order 2 to order 37 ave
calculated using variable precision rational arithmetic. The
evaluation of the determinants is carried out to order 62.

39

PRECEDING PAGE BLANK NOT FILMED

CALCULATION OF TABLES OF INVERSES AND DETERMINANTS
OF FINITE SEGMENTS OF THE HILBERT MATRIX

by
E. Cuthill

1. INTRODUCTION

Tables of determinants and inverses of the matrix H, with (i, j)1th element
1
m i,j=1,2,. . .,n (1)
were calculated for n =2 to 37 inclusive.* These matrices, which augment
those given in references 1and2, arise in ieast squares fitting of polynomials., -
They are useful in estimating the mean value function of certain ‘stochastic
processes and they are frequently used in testing computer subroutines for in-

version of matrices.

2, INVERSION OF Hn

The method of computation we used to obtain the inverse of Hy, is based on
that given by A, R. Colla.x',3 who showed that the (i,j)th element of the inverse
of H, is given by

i F () F_ ()
Hl] - __:n.—n__ (2)
n i+j+1 .
where

-1¥ (nk-1)
D% @k)! ®

Fplk) =

*Tables to order 37 have been deposited in the Unpublished Mathematical Tables
Repository of Mathematics of Computation (formerly MTAC). Tables for n =2
to 20 inclusive are published in reference 7.

41

To calculate the functions Fn(k) we used the recurrence relations:

nk-1
Fn(k) =< Fn—l(k) fork = 1,2,...,n-1 -(4)

and

-@2n-1)F_(n-1)
F (n) = = ()
o (n-1)2

When these relations are used, Fy_1(k) for k=1,2,...,n-1 must be
available, This requirement applies if we start with n=1 and

Fl(l) = -1 (6)
and then calculate inverses for successive values of n., However, to start with

n =N, we used the recurrence relation

N2 - k2
FN(k+1)= -I:—-"I{T— FN(k) fork=1,2,...,N-1 (7)
with
F(@ = -N, (8)
A quick derivation of the inverse of H, is given in reference 1. There Cramer's

rule is used to write the (i, j)th element of the inverse in the form

. (”1)i+j A ij
HlJ = _____1'1__ (9)

i Ay

42

i.
where AnJ is the minor of the (i, j)th element of H, and’ A, is the determinant
of . Then the following theorem due to A. Cauchy (see references 4 and 5) is
applied directly to the evaluation of the determinants A}lj and An :

Given 2n numbers Bys Bpaeeesps bl’bZ’ .. "bn such that ai+bj# 0 for

i, j=1,2,...,n, the determinant of the matrix with (i, j)th element

1
a. +b, L,j=1,2,...,m
1]
is given by
1,2,...,n
isk
I> (10)
i,2,...,n
7 7 (a:.l +bk)
ik
3. THE DETERMINANT OF Hn
The determinant of Hn is given by (10) on substituting
a, =T)
forr=1,2,...,n (11)
b, =r-1
Y
which yields directly
2 n, (n+i)! (2n~1)!
- 1 1 - t - —_— . Sl S
det(Hn) aia2t ...l = (0.. 1T i sy
= (1'. 2!. . -- (1’1-1) l-)4 . (12)

1P 20 ... (2n-1)°

43

To calculate det (H) we use the form of (2), noting that in matrix notation

-1)

Hn = FanFn

where F11 is the diagonal matrix whose ith diagonal element is F (i).
In view of this

(@et(H)L = (det(Fp))? (det(Hp))

from which

n
det(H,) = |det(F)| = 'H1 |70 1. (13)
i= ’

4., CALCULATIONS
The determinants and inverses of Hy, to orée_r 20 are diSplayed in Appendix A
n >
were tabulated only for j=1,2,...,i foreach i, i=1,2,...,n. The calculations
were performed using PL/I-FORMACS on a System/360 Model 50. Major use was
made of the PL/I-FORMAC facility for variable precision rational arithmetic. The

computer program which was used is displayed in Appendix B of reference 7. The

of reference 7. Since Hy is symmetric, i.e., I-Illl:I =H elements of the inverse

program is set up to calculate determinants and inverses of H,, for n ranging
from a specifiedlowerlimit ML to a specified upper limit MU, Equations (7) and
(8) are used to calculate For and then equations (4) and (5) are used to calculate
Ty, for the successive values of n. In all cases, Equation (2) is then used to
calculate the elements of the inverse; Equation (13) to calculate the determinant.

The calculations were performed in the five following computer runs:

(Approximate)
RUN ML MU RUNNING TIME
1 2 21% 10 min.
2 21 28%* 9 min.
3 28 30 5 min,
4 30 37% 15 min.
5 37 38* 5 min,

44

Calculations for the starred values of n were incomplete. However, except

for n =38, calculations for those values of n were obtained in another run. Note
that check caleulations were made at n = 21, 28, 30, and 37 in that elements of
the inverses for these values of n weré calculated two ways: using equations (7),

(8), and (2); and using equations (5), (6), and (2).

Values of the determinants of H, were also calculated independently
for n =2 to 62, using Equation (12) directly. In reference 7, Appendix C gives
the results of these calculations and Appendix D contains the program used for
the calculations, For n =2 to 37, these calculations were then checked against
the determinant values tabulated in Appendix A of reference 7, These determinant
values were calculated using Equation (13), and they were based on the ¥ values
used in calculating the elements of the inverses. No discrepancies between the
calculations were found.

5. BUMMARY

The calculation of inverses and determinants of finite segments of Hilbert
matrices using PL/I-FORMAC variable precision rational arithmetic proved to
be a straightforward operation.

45

PRECEDING PAGE BLANK NOT FILMED

Appendix

FORMAC PROGRAM AND SAMPLE QUTPUT

47

PRECEDING PAGE RLANK NOT FiLMEU

FORMAC PROGRAM AND SAMPLE OUTPUT

For reference, the deferminant and inverse of the matrix Hoq are displayed
in this appendix, along with the FORMAC Program which generated them.,

" In the FORMAC program, the ML and MU parameters are set to the
starting value and final value of n. The program uses

a. Equations (7), (8), and (2) to calculate the inverse of Hy for n = ML, then

b. Equations (4), (5), and (2} to calculate the inverses of Hj, recursively
forn=ML +1, ML +2,..., MU and, as a check,

c. Equations (7), (8), and (2) to recalculate H,, for n = MU.

49

0S8

INVERSE OF SEGMENT OF HiLBERT MATRIX OF ORDER

Si1ls+l} = 400

5{2+2) = 21226800

S{1+3) = 5266800

5(3+3) = 124826320080

S5(ls4) = - 171609900

502443 = 54777880080

SU3e4} = -~ 4519175106600

Sl4rd) = 1682854730L7200

511,5) ='3294610480

5{2+5) = = 1095557601600

5(3+5) = 92965ARTACT2NG

5(443) = = 35339949333612N0

S{5+5) = T53918919L1705600

Stly6) = = 41186376000

50256} = 14085740597000

50446) = 47119932464816000

5{5+61 = = 1F17790540808025690

20 l

NOT REPRODUCIBLE

- 70?0055?753425600

2792314957736304000

- 51430929070195683000

850582094815135680000

- 79860?0779125529440000

53392753209012688254000

10440T46316000

= 3749272002075%600

337434480186804000

= 134380157341 05943000

2977937331 0534748R000

= 41565ATT1223841) 44 M0N0

StHeLL} = - 4286727019L798021970000

SETy11) = 407939512413450457442000

5{8+11) = — 2759835680919567890640N90

St9,11) = 13726551149836798192920000

5010.11) = ~ 5i3869422957TA2924993260700

5{11,11) = 146731263702223692852360000

Stle12F = - 21332343C411700

562,12) = T8568660363835000

5(3.12} = - 7222706706855638000

S{4.12) = 292867300483909351200

S(5,12) = - 6889514260887960472000

5{6412) = 93023436562430061T7440700

391315C1817T1AS5€425600D

12984917462#1246075520000

- 370066452756?0

13423319513604000

- 1215166245859563ﬂﬂ0

5(6+6) = 138T8961920109440000

SIL+7) = 356948592010

S502«Th = - lP461967718H2000

543,71 = 10966531592016000

SU4+7) = — 42B8T791385247R25600

4&851539@62162988000

- 108B46972576299632394000

15?416960681q4852256000

- 1444?%5773130970??0100ﬁﬂ

9740596520892592555210C0

u

- 4829712441609?43818620030

S15,7) = 935544840540710400N

LBDIQ&ZBBTST!1581573360000

SI7,12) = - 9987316414680119169964000)

508+12) = 6C2R6623T0412383621920000

5(9412) = =~ 3006T9535T72431T63314326000

5110,17) = 11277692156334A59T6AMIRAR0OMN

Sill.12) = -~ 122952093@2611893930?020030

5t12,12) = 717281693323218846365720"00

S501413) = 350069?!9136000

512,131 = - 129700645689874000

SI3,123) = 11984733966174%5651200

S(4413) = — 498112167473182252000

S51{5413) = 11025592488805999104700

506513} = = 156195892%59141832%40000

SIETe13) = 1496192243875691281970000

50647) = =~ 1286374155743 76A0000

SUT+7) = 1200615878693911680000

10092721438800C

S(1+8) = - 2237302782000

512+8) = 793496720014000

- 36914128662411700

%3733834500?2636000

- 136086572037454039000

3048339213639970451200

S{As13) = -~ 1OLBLT408922520255T25TH700

5(9+13) = 50908704461260128362880000

SCU10yi3) = = 19137901862288529736416C0N0

5011413} = 549174575178714331566720000

5012,13) = - 121351695R995113590104560000

TS

'\ \oT REPRODUCIBLE

il

5015417}

S{13,k3) = 207106R9473516A052 7111782400 S{lslsl = = 314T725692204000 = 1478936939492394559739520000
;II:;;T_;—-:';;Z;;;;;Z;;EE;E-—__-—__-~— Si2slb} = 1;;;;;75406060;&56 S;lb;LT) = = 111433792399994T8146 7441080000
.;(2114, = 1654642q5684§;IE;ﬂ ET;TI;;-;--:_IIESB;ZEEEEEEEEQBQDO ${17+17) = 6078206945451698968276280000
(3,141 = - 15397151210750252000 S(4116) = 454821477928919744007 S(Le18] = - 60440401099000

Sl#.lﬁ; = 6?;936350322323352333—— ;;;::67-:--:_IE;;;;;;EEZ;;;3;;:63?00 562.18) = 228464716150;;555

;I5|l4} =z - LéZEjZ%;E;;GlOQGD’Z#OOC Stsela) = 1481;18365254L9573765555-- S5(3,18) = - 21487[0655394838200
;T;:I;;-:';022617644?015;33;9?0000 S[T,lﬁ; = = I;;;;;Bl797983677ﬂ43?0030 E?Z:I;: = BA9043244T1894731 6900
;T;:I;;H;-_- 19428166lGQU24ﬂ7830576000 ;I;:I;;-;-;;;668405R;£51;;8995?0000 ;(Sylﬂ) = = 20356717T251537942512000
SlB.l;;-:-l1254337256!%65;;;?2%80565-“ EI;TI;T-:-—:_;;;;;;;;;;I;ZI;;;;E;;;noon S(&e18) = 29222464?1;;;5;;9G20000
;;;:;;T-:--:—;;;;;;6;;;;;;;;;;;;5;55000 Slloy;hl = 1863516;555317754l622758490 Si7.18) = =~ 283!65;;;;;2981396460000
SUIS,Lal = 750215634844739665351 760000 S(1lel6) = - 517551171562050600834R80000 S(8:13) = 1047210076313213066758400
;:;I:IZ;-:--:-;;;369950LTRb?ﬁS%Q!EZSﬁOOOﬂ g?;;:I;T—;-II;:;;OQZOBTq82309?170560000 ;(9.18) = - 98?9Tﬂ663523499504854000ﬂ
;;;E.Iz;_; 159;;64“28560;%%;“6695782&00) ;::;:lﬁl = --;;;;I?1574649é1l‘?37?0960ﬂ00 5{18.,18) = ;;5;82747?°14451254348065;
Si13¢14) = - 272lQE;;;?ﬁll433669565440000 Slla,16) = 7“0329396185347990h972;;000 S{1ly18) = - 107B40T23323%596625572210000
S{1l4,14) = 35327aqq5317;021n042352q0900) 50L5+16) = -~ 27L6962025161584q143535;;000 5012418} =‘240083137§1816381QQ5ﬂ23q°00
Sty lSl = k316?18004v1?°0) - 5(1b6416) = ?0440&991139633;;;;;;;;;5000 5(13+18) = = 41253731332454819L7?5;;;DOG

5(2,19} - - lblkSQPQGIOOGEZOD“ S5{1s17) = 16656194084107000 S5114+18) = 545758754722107075515520000
;(3.15] = 1504373995122;104000 ;I;:I;;-;—_:-;;;;;;;;;;;;98000 ;?I5,L8} = = 55028354031610h136728340000
${%415) = = ;I;;5Tﬁq21ﬂq248?2ﬁ“09 S13917} = 58%3215:;;%?0044000 5{16418) = 41;5;;663403391672145?50000
;I;:I;I_Z_IZFB#4;;;;;;;;;%0;;;;;5- S{4417) ;--- ?44045?0“5;941643%200 S{17+18) = - 22658734013014605268R8140000
ST6.15) = - 1990914791093164745 76000 STar1T1 = 559531AREATAI294016070 S(18,18) = A4541831107987625155264000
;I;:;:T-;—IEEEEZZE;Z;;;Z;;ZEEQEEBR;'# S{ayl7) = -~ TQHZ?”656ﬂﬁ3872143?n000 ;;:'19) = 13431200?42656

503,151 = - 1316371)121145999444160000 S17,17) = 769700395477392573520000 S12,19) = - 5091096452485200

S{l5) = 66[2761;;;771093022I;;EUOQ Sth. lT) = = 57281025000%1163683%6460000 S(3,19) = 4R0017665520316000
;:;5:;;;-:—_:-;:;;;;;;;;;;;;;;;;;;a;BOD”G SIQ,[T; = ?66165665;;57864@655?58400 Sl4s19) = - 19902;371292?886?000
St1Lv15) = 7181927"?4079705l7;;;;32400 S(lO.l;! = - 1ﬂﬂ;;a;ﬂ:;;;;;;;;;;;;;40000 5(5,19) = 4569T6817575340832000

S{12+15) = - 15936[3921332714355013;40000 S(LLeL7) = ?91173551?6?777408785560000 506,19) = - 6569041752645524460000
S{13:15) = 272816?1063658813569612%0000 ;T;?.L?) =— - 6G74056557:;;;5?0672421000“ S5iTel9 = 637634;5;;5;;;5;;?;;;;5
5(k4e1%) = ~— 3595846797521509313876480000 ;;:;oITI = 11llZSi;;ﬁqﬁo14564?193280000 ;?;.19) = = 439[873628911579210;0000
5015415) = 36l3560329006048168&24;;0000 S114417) = = L46A3IN41091TSTAZ969832A94000 5{9,19) = 2226;;;l123941872674ﬂ0006-_

[45]

H

SU10,19) = - 8431990712544592122930000 SII.%O) = — 1378465288200 $(11,201 = - 2550618797257256121396000

) By

S{L1.19) = 24423697236336059942280000 $12.420) = 523816809516000 5112420) = 5691463431896356634520000
$(12,19) = - 54438R04501155664185395000 $13,20) = - 49500589453262000 $(13¢20) = = 7B0196479937705854 8340000
5713.191 = 93657814195536626555570000 504,201 = 2057028610969332000 5(14,20) = 129919533435530244580640000
S(14419) = --:;;Ol693;;43194856280340000 S15¢20) - - 4731165805229;;;6000 ;?15.201 = -_I;I2452429603525qazaazaooo
S(15+19) = 12516T3746T7213361440640000 - S[6+420) = 681287875953042758465“ S{16,70) = 99,1630724589557378;;;;000
;?IZ:;;;—:—_:-;;;ggaggg;oo5322383?640000 ;:;,zb: = - 6521632127321249040000 5{17420) = =~ 54229805255;;121914910000
S{L7+19) = 51631542054350511594264000 ;ta.znl = 45689544061930248480005_~ g{LB.ZDI = 2026580957476495946;;6000
S118419) = =~ 19279944336904247362910000 §(9,20) = - 2313033;;;:3521582930000 S{19,20} = -~ 462841087880434258020000
ETIa.lq: = 4400227536350517776520000 S[10,20) = 379523721192157253240008_- S(20420) = 48722?19250;;2027160000

DETERMINANT OF SEGMFNT OF HILAERY MATRIX OF QRDER 20
H = 172377454716 T6853450909164424342T6164401754 983T77534864930331853312344197593106445351RT5857668165T4TT34405A5759

3672655589T71765638419710793%03386582324149A1124 023554589l6615471780?6352577?78368000DD00000000000000DDHDOOOﬂQ”O?ﬂ“Pq

REFERENCES

R. Savage and E. Lukacs, "Tables of Inverses of Finite Segments of the
Hilbert Matrix,”™ NBS Applied Mathematics Series, No. 39, Contributions
to the Solution of Systems of Linear Equations and the Determination of
Eigenvalues, 1954, pp. 107-108.

R.B. Smith, "Table of Inverses of Two Ill-Conditioned Matrices,' Re~
viewed in Mathematical Tables and Other Aids to Computation, 11, 1957,
p. 216 (deposited in the UMT file of MTACQ).

A.R. Collar, "On the Reciprocation of Certain Matrices, Royal Society
Edinburgh, Proceedings, Vol. 59, 1939, pp. 195-206.

A, Cauchy, Oeuvres Completes, 2° series XIi, p. 177. -

G. Polya and G. Szego, Aufgaben and Lehrsatze aus der Analysis 2,
J. Springer, Berlin, 1954, p. 98.

R. Tobey, et. al., "PL/I-FORMAC Interpreter, Users Reference Manual, "
IBM Contributed Program Library, 360D 03.3.004, Hawthorne, N. Y.,
Qctober 1967,

E. Cuthill, "Tables of Inverses and Determinants of Finite Segments of the
Hilbert Matrix to Order 20," Naval Ship Research and Development
Center, Applied Mathematics Labhoratory Technical Note, AMT.~52-68,
Washington, D.C., December 1968.

53

PRECEDING PAGE BLANK NOT FILMED

THE SCOPE FORMAC LANGUAGE
by

Robert G. Tobey
IBM Boston Programming Center
Cambridge, Massachusetts

and

John D. Iipson
Graduate School of Arts and Sciences
Harvard University
Cambridge, Massachusetts

N71:19189

Abstract

The Scope FORMAC System is an experimental online
interactive symbolic prototype implemented on the IBM 2250
graphic display unit, The language for this system is des-
cribed in this paper. The language gives the user access to
the FORMAC capability in an interactive environment. Sample

programs and output are presented,

This paper reports research sponsored by NASA under contract number
NAS 12-87. The senior author, Robert G. Tobey, is currently with the Applied
Mathematics Division of Argonne National Laboratory, Argonne, Illinois.,

55

PRECEDING PAGE BLANK NOT FILMED

THE SCOPE FORMAC LANGUAGE
by
R. G. Tobey and J. D. Lipson

1, INTRODUCTION

The Scope FORMAC experimental system is an online interactive prototype
implemented on the IBM 2250 graphic display unit, With this prototype one can’
perform symbolic mathematical computations in an interactive, time-sliced
environment. One can use the system as a symbolic desk calculator, executing
only a few statements at a time, or one can compose, debug, and execute com-
plicated algorithms (which may or may not interact with the user). The scope
" FORMAC prototype lends itself to both short, one-shot calculations and the
user's definition of a personalized interactive calculafor with functions tailored
to the class of problems he wishes to solve.

Scope FORMA.C runs in a standard 0S/360 environment, either in a partition
under MFT or as a task under MVT., The system can only qualify as a pfototype;
this is indicated by the fact that the FORMAC object-fime routines which perform
the symbolic calculation have been carried over intact from the PL/I-FORMAC
batch system. 1 In a production system, the design of these routines would need
to be significantly modified to accommodate interrupt and control functions
necessary to an interactive environment, '

This paper presents a concise description of the Scope FORMAC Language.
A more detailed description of the Scope FORMAC system with applications is
being prepared for publication under NASA contract NAS 12-87.

2. LANGUAGE OVERVIEW

The Scope FORMAC language is a simple language, with strong similarities

57

to PL/I. It was designed to provide easy access to the FORMAC symbolic capa~
bility in an online, interactive environment. Prior fo presenting the language,

some general remarks are in order.

The 0S/360 batch FORMAC system contains two kinds of variables—PL/I
and FORMAC~-and facilities for conversion from one kind to the other. Scope
FORMAC contains only one kind of variable, namely, FORMAC; consequently
the rules for naming variables and forming expressions are those of FORMAC,
as described in the "PL/I-FORMAC Interpi'eter User's Reference Manual, 1 2

Like P1,/I, any Scope FORMAC statement may be prefixed by a label for
reference. The rules for naming labels are the same as those for naming
FORMAC variables, and the name of a variable or label may coincide with
neither the name of any other variable or label nor with the names of the Scope
FORMAC keywords (DO, END, FOR, GET, IF, PUT, SET, TO).

Scope programs may be written in a relatively free form, i,e., statements
are separated by at least one blank {the use of a semicolon as a statement delim-
iter is optional), and more than one statement may appear on a single line.
Comments consisting of arbitrary character strings enclosed by quotes (") may
be used freely in the program for documentation purposes; they are ignored at
execution time (except when they appear as an argument of the output statement

PUT, as described below). Character sirings may appear without enclosing

quotes, provided that they do not fall within the range of executable statements

of a program.,

3. LANGUAGE STATEMENTS

The statements of the language are:

.« Asgignment Statement

. GET and PUT statements
TO statement

DO statement

IF statement

FOR statement

SET statement

-JQCH;,&WN:—A

58

In describing the format of the above statements, we use "var" to stand for an
arbitrary FORMAC variable, Yexpr® to denote an arbitrary FORMAC expression,
and "stat" to stand for an arbitrary Scope FORMAC statement.

1. The Assignment Statement

Format: var = expr
Result: The value of expr is assigned to var,
Examples: 1. Y = DERIV(F,X, 2SIN(THETA)+7.6

R 3/7

Note that any FORMAC asgignment sfatement (i.e., any statement thaf could
appear within the scope of a "LET" in batch FORMAC) is permissible.

2. The GET and PUT Statements

(i) GET
Format: GET varl,var2,...

Result: For each variable in the list, a request
for inputf is made and accepted when given,

Upon encountering a statement of the form GET varl, var2, the system causes
the message

sk efeskeieosteokskoloksk defeokoikok

PLEASE SPECIFY
*varl *

sheafesfeshosfe sesfesfesedosfosl sk sfosofesesle ok

to appear on the scope face, The user may then type in any executable state-
ments, In this case, he would presumably want to assign a value to varl. To
do this, he must type in

varl = expr

where expr is the desired expression varl is to be. Typing in expr alone is
an error,

(i PUT
Formadt: PUT var.,,var,,e..,var
Stk 1 2 n

59

Result: The values of varj,...,vary, are displayed in order.
Also, comments which may appear in the output list
are displayed.

Example: PUT "SOLUTION FOR A AND B", A, B results in the
scope display.

SOLUTION FOR A AND B

A = (value of A)
B = (value of B)
3. The TO Stateme;:tt:
Format: TO label
Result: Control is transferred to the indicated labeled
statement.
Example: TO L

RN

LA = COS(X)

4, The DO Statement:

Format: DO statl stat2 vee stal:n END

Result: The statements staty,...), staty are executed.
Syntactically, *DO .,. END" is considered as
" TTa §ingle statement and may appear wherever
CLINK expects a statement (see 5 and 6 below).

Example:; DO A = B*C PUT A TO L END
Another important use of the DO is to invoke remote (out-of-line) code.
Format: DO name
Result; Control is transferred to the statement labeled "name, "
Execution proceeds until the-END corresponding to the
DO of "DO name" (see note below) is encountered,
causing transfer of control to the statement following

"DO name. ' Thus, "DO name" acts as though fhe
statement labeled "name! immediately follows the DO.

60

This use of the DO roughly corresponds’to the proce-
dure capability of P1/I, and the END serves as a
refurn statement.
Note: To match up DO-END pairs, think of DO and END as (statement)
parentheses with the DO acting as a left parenthesis and the END acting as a
right parenthesis. Then DO-END pairs are determined in the same manner as

matching parentheses in expressions, as illustrated below:

DO
DO
DO...END
e I
END .

L. END

1t is permissible to transfer out of a DO-END, but it is not permissible to

transfer into a DO-END without executing the DO itseli.

Example: _ DO SOLVE

SOLVE: A =B

DO...END

END
Note that the END corresponding to the DO of DO SOLVE is the last END.
It is also permissible to have more than one name following a DO
DO namej, nameog,...,namey
and this is equivalent to

DO name; DO namesg. ..DO namey .

61

5. The IF Statement:

Formaf: IF expr] relation expry stat where the relation is any of <,
< =, =, >, >=0or —1(not) followed by any one of <, =, >,
The right-hand expression, expro, must be a variable or,
if it is an algebraic expression, it must be enclosed in
parentheses, Otherwise the condition will not be evaluated
correctly.

Result: Ii'the condition "exprj relation exprs" holds, then stat is
executed; otherwise, stat is skipped. When expri1 or exprg
evaluates to nonnumeric expressions, then it is considered
equal if and only if it is identical (see the IDENT function on
page 33 of the "FORMAC Reference Manual), For com-
pleteness, the following table gives the result of "exprj
relative exprg™ when exprj or exprg evaluates to nonnumeric

expressions.
exprj and expry expri and expry
relation identical not identical
= <=, >= yes no
- = no yes
<, > no no
<, > yes yes

Note: Any number of conditions (i.e., exprj relation exprs triplets
separated by commas) may follow the IF, in which case the statement stat is
executed if and only if all the conditions hold.)

Examples: 1. IFX> 0A = SQRT(X)

2. IF 0<X, X<=10, R=SIN(A)
DOY = A+2/3
g ARG=X DO PROC

END

6. The FOR Statement:

Formats 1. FOR var = expr stat

2. TFOR var =exprj (exprg) exprg stat where
parentheses may not appear in exprj or expro.

Resulf: 1, The statement stat is executed with var = expr,

62

2. The statement stat is executed for each value of
var, with exprj the initial value, exprsy the
increment value, and exprg the final value. It
is equivalent to the following configuration:

var=expry
L:stat
var=var+expro
I¥ var <« = exprg TO L
Examples: 1., FOR ARG=DERIV(¥,X) DO PROC
2. FOR I=1 (1) 100
DO ADN=SQRT X)) PUT X{) END

Nofe: More than one variable may be set following the FOR by having
more than one list of the forms 1 and 2-above. For example,
FOR 1=1(1)3, J=1(2)N,X=ALPHA
is equivalent to the nested FORs below,

FOR I=1(1)3
FOR J=1(2)N
FOR X=ALPHA

7. The SET Statement:

Format: SET optiony, optiong,..., option,
where optioni,..., optiony may be any of the
FORMAC options described on pages 39 to 41 of
the "FORMAC Reference Manual. ! In addition,
the option STOP stops execution, The options
TRANS, INT, EXPAND, EDIT, PROPER, and
PRINT may be abbreviated T, I, E, D, R, and
P, and prefixed by anN for NOTRANS, NOINT, etc.

Results Equivalent to the OPSET statement of batch
FORMAC, as described on pages 39 to 41 of the
"FORMAC Reference Manual." In particular, the
default options are as described there.

63

4, SAMPLE PROGRAMS
Examples from the YFORMAC Reference Manual?

For comparative purposes, the two sample programs presented on pages
12 to 15 of the "FORMAC Reference Manual' are rewritten below, in the scope
FORMAC language.,

First Program.

" EGENDRE POLYNOMIAL PROGRAM!
SET E
"GENERATE -LEGENDRE POLYNOMIALS BY METHOD 1%
FOR N=0(1)10

POND=DERIVCCXak2-1)4N, X, ND/CZHNAFACCND)
"GENERATE LEGENDRE POLYNOMIALS BY METHOD 2V
Q(0)=1 Q(2>=X
FOR N=2(1)10

QUND = (2HN-L)/N#XHQUN-1D-(N-1)/N#Q(N-2)
"CHECK THAT P(N) =Q(N) AND PRINT OUT RESULTS"
PUT "LEGENDRE POLYNOMIALS" '
FOR N=0{1)10 DO

IF PCND=Q(N) DO PUT P(ND TO F END PUT “ERRORY

F:END

64-

Second Program.

"INDUCTION PROGRAM!

SET E

SUMSQ=N#(N+1D%(2¥N+1)/6
"BASISY

S=EVAL(SWMSQ, N, 1)

IF S7=1 DO PUT "NOT TRUE™ SET STOP END.
"INDUCTION STEPM

S=EVAL(SUMSQ, N, N+1)

IF S= (SUMSQ+(N+1)%%2)

DO PUT "PROOF BY INDUCTION SUCCESSFULY™ TO F END
PUT "NOT TRUE"

F:SET STOP °

The output produced by these programs is identical to that shown on pages 14 and
15 of the "FORMAC Reference Manual. "

Taylor Series Solution

The final example is indicative of the power and utility of an interactive
system for symbolic mathematics in solving problems of an interesting and
substantial nature. Specifically, this example illustrates the use of the FORMAC
Scope System in computing the Taylor series solufion to an arbitrary first

order ordinary differential equation.

Given the first order ordinary differential equation

y' = i(x,y) (1)

65

with specified initial conditions (x,¥o), we wish to compute the pth order
Taylor series approximation to the solution y(x) of Equation 1, Thus, we
have
¥(X)~T (X3%0, Y05 P)
=y, + yo'(x-x0)+36"(x—x6)2+. ety o(p)(x-xo)p
1 2t p!

=Y HX,Y,) &%) +E(=,7) (X—Xo)z +eoe f(p—l)(xo, Y,) (x—xo)p
1! 2! p! (2)
where the (total) derivatives of f with respect fo x in (2) are given
recursively by
£©) = ¢ . (32)
() = g D) + m-D¢ m=1,2,...,p-1). (3b)

Concerning the utility of the Taylor series method in solving the ODE,
the comments of M. V. Wilkes on page 55 of his book "Numerical Analysis”2
are appropriate. He states: "The (Taylor Series) method has the very great
advantage, compared with finite difference methods, that derivates are not
plagued by rounding errors in the way thaf differences are, ' and later he
statess "Application of the Taylor series method is at present limited by the
the derivatives. Advances in programming languages for symbol manip-
ulation should enable this load to be taken from the programmer and put

on the machine,"

TAYLOR (see following listing) requests as input F, the right-hand side
of (1), the initial conditions X0, and Y0 and P the order of approximation,
TAYLOR then computes analytically the derivatives of (3b) and finally computes
the Taylor series solution T according to (2).

The user may then use T in order fo advance the solution, For example,
In order to compute and print out values of T=T (X) for X=0(.1) 1, the user

may type
FOR XVAL = 0C.1) 1

DO TVAL = EVAL(T, X, XVAL) PRINT TVAL END

66

At any point, the user may decide because of convergence considerations to
determine the Taylor series solution about a new point, say XO'. He need only
invoke TAYLOR, specifying the new inifial conditions (Xo‘, T(XO')) in order to
obtain the new expansion, Thus, the analytic continuation of the solution
function may be carried out under online interactive control by the user, who

can change any or all of the parameters and the routine itself during the course
of a "seance'" with TAYLOR.

The Scope FORMAC routine TAYLOR follows (note its brevity).

TAYLOR: GET F, X0, YO, P PUT F, X0, YO, P
FC0)=F SET E
"COMPUTE REQUIRED DERIVATIVES OF F!
FOR I=1C1D(P-1)
DO FCID=DERIV(F(I-1), XD#DERIV(F(I-1), YD*F
PUT FCID) END
""COMPUTE TAYLOR SERIES SOLUTION TO GIVEN ODE"
T=YO
FOR 1=1(1DP
T=T+EVALCF(I-1), X, X0, Y, YO)*(X-X0)#%I/FAC(I)
PUT T

END

When one types DO TAYLOR, the response is a request for ¥, X0, Y0, P.
I one then types

T = Xk%9 3 YHxQ
X0 =0
Y0 =0
P =17

67

TAYLOR outputs the analytic expressions for f(m) m=1,2,...,86),
followed by

T = 1/3X°x1/63X' .
Compare this example with page 99 of the "PL/I-FORMAC User's Reference

Manual,

REFERENCES

1. R.G. Tobey, et.al., "PL/I-FORMAC Interpreter, User's Reference
Manual, " IBM Program Information Department, 360D 03.3.004,
Hawthorne, New York, October 1967.

2, M.V. Wilkes, A Short Introduction to Numerical Analysis, Cambridge
University Press, 1966.

This paper is dedicated to the late Clinton J. Carter, who played a key
role in both the design and implementation of the Scope FORMAC Language.

68

AN ATTEMPT TO SOLVE DIFFERENTIAL
EQUATIONS SYMBOLICALLY

by

Stanley B. Gershwin
Graduate School of Arts and Sciences
Harvard University

Cambridge, Massachusetts

N71-19190

Abstract

A set of experimental programs was written in the inter-
active FORMAC language fo implement Picard iteration in
solving systems of ordinary differential equations. The
reasons why this method is apparently impractical are
discussed, and possible remedies are suggested.

69

PRECEDING PAGE BLANK NOT FILMED

AN ATTEMPT TO SOLVE DIFFERENTIAL EQUATIONS SYMBOLICALLY

by
Stanley B. Gershwin

1. PICARD ITERATION

Consider the initial value problem

y' = ix.y))
o)
yixy) =¥ @)
The process of Picard iteration attempts to solve (1) and (2) by choosing
an initial guess yo(x) and solving

| B
ym+1 - f(X:Ym(X)) (3)
with initial condition (2), This is equivalent to integrating
X
A A dt, —— 4
Vi =7 S‘ ty,, &) dt. (4)

X
o}

Picard showed that (4) converges to the solution to {1) and (2) under

suitable conditions. 1,2

A set of programs was wriitten to implement (4) symbolically, using the
experimental Scope FORMAC system. Because symbolic integration is a diffi-
cult operation, the choice of f(x,y) and initial guess yo(x) must be restricted.
To perform the integration in (4) for m=0, f(t,yo(t)) must be symbolically
integrable, its integral must also be integrable, and so on. Further, because
the FORMAC system does not provide symbolic integration subroufines, an
integration routine had to be written. Thus, a simple class of functions was

considered.

71

It is easy to show that

|N

—

n_cx n'eCX - i-n i
S\x e dx = = Z (-c) = (5)
. c i
i=0

where n is a positive integer. Then the integral in (4) may be performed

using (5) if

fxy_ (X)) = N & A+ - A (6)

(nym { n n)

n=20 =0
Equation (6) can be guaranteed to hold for all m if the following restrictions
are made:
> n S hnkX
f(xy) = z e Z g e) (M)
., n=0. . k=0 .

where fn(x} and gnk(x) are polynomials in x , and yo(x) is of the same

form as (6).

An obvious candidate for an error indicator is

X

€, = f v, ~ £y 67 .dt ®)

X - - U

T T e SR

According to (3), this may be written

X

i 2)
e, = oy, 0 - 1y on? a ©)

o

X
0

Equation (9) was used to calculate error because all quantities in the inte-
grand had to be calculated for other reasons and because (6) implies that the
integrand of (9) is integrable using (5). In (9), Xe is the upper limit of the

interval [xo,xf] on which the solution to (1) and (2) is desired.

72

2, DIFFICULTIES- ENCOUNTERED

There are some important difficulties in applying the method of the
previous section to initial value problems. The first is that Picard's proof
that (4) converges does not hold for arbitrary x. , but only for sufficiently

gmall XfHXo .

Under some circumstances, however, the results of iterating (4) may be
applied on a wider interval than is specified in Picard's proof. For instance,
if neither #(x,y) nor the initial guess yo(x) have exponentials in x, then each
iteration y (x) is a polynomial in X. One can show that the coefficients
of the low powers of x agree with the corresponding coefficients where the
Taylor expansion is applied to the solution to (1) and (2). One can also
show that ym(x) approaches the Taylor series as m —»w, Therefore ym(x)
must be a good approximation to the solution (for sufficiently large m) in any

interval which contains X, but does not contain any singularities of the solution.

Picard's interval is much more restrictive than this. For example, if the

problem is
3
yv' =y (10)
y(0 =1 (11)

then Picard's interval is |x | < 4/27 , and the result of iterating with (4)

is a Taylor series starting

3 _2 5 _8 35 _4
1+x+§x o X ot Xt (12)
The-exact solution to (10) and (11) is
1
v® = T (%)

of whick (12) is the Taylor expansion. Since (13) has only one singularity

which occurs at x=1/2 , (12) is equalto (13) in the wider interval | X [<1/2.

The second important difficulty in using (4) to solve (1) and (2) is that
expressions grow very rapidly in size. In most cases attempted, expressions
grew so rapidly that all the core allocated to the FORMAC system was used
and execution ceased. Also, as expression size increases, the time necessary

to manipulate the expressions grows.

73

For example, consider (1) and (2) with (7) satisfied. Equation (7) may

be written
M

) =) TALE (14)

n=0

Assume an initial guess of yo(x) = yo . Then
M
o.n
=) 6. (s)
n=9>0
To simplify the problem and to get a lower bound on the growth of expression
sizes, assume that An(x) is 2 constant for each n ., In this case, yl' =C
and ¥y, = yo + Cx (if, for simplicity, X, = 0). Then
M
o n
v =) 60+ oM a6)
n=90

When (16) is expanded, it contains M + 1 terms, and so Yo confains M + 2
terms. In general, if Y contains k +1 terms, i.e., if Ym is a kth degree

. ' . .
polynomial, then Y+ 1 contains Mk +1 and ym 41 contains Ml;n+2 terms.
Therefore, the number of terms in Y is roughly proportional to M.

Of.course,-the situation. is much-worse.if- An is-a-function-of x in-—{%);

the time spent expanding expressions depends on the presence and form of each
An(x) . If, instead of a first order system, a higher order system is analyzed

for expression growth, the problem requires significantly more time and space.

3. PRACTICAL PROBLEMS REQUIRING FURTHER STUDY

The solution of systems of ordinary differential equations using (4) might

be practical if the questions listed below were answered.

a, Under what more general conditions does iteration of (4) converge
to the solution of (1) and (2)? Is it possible to find an a priori

bound on the error on a larger interval than Picard specifies ?

74

b. Does some class C of functions other than polynomials with exponential
coefficients (as herein) exist such that it is suitable for use with (4)?
C must have the following property: a class D of 2-variable functions
must exist such that if f(x,y)eD and Y eC , then Y +1€C . Also,
if y(X)eC , then there must exist an algorithm to integrate i(x,y(X))
symbolically., Finally, the rate of growth in the size of polynomial

expressions should be decreased.

c. Can a good first guess yO(X) be chosen just on the basis of (1)
and (2)? "Good' in this case refers not only to accuracy, but also
to formal appearance, size of expression, and sizes of later expressions

Yqs Vg» »or which are consequences of Yo

d. Can a relatively quick and systematic method be developed to delete
from expressions terms which contribute little (numerically) but
which take up space and time? Or, is it possible fo calculate the
numerical impact of a given term on later iferations, so that terms
whose future impact is negligible may be deleted before they require

processing time, rather than after ?

4, CONCLUSION

Picard's iteration method (4) was found to be impractical in the implemen-
tation described herein. If some difficulties can be overcome—the extension
of the interval of convergence and the reduction of the size of expressions—a

practical implementation may be possible.

REFERENCES

1. E. L. Ince, Ordinary Differential Equations, Dover, 1956,

2. E. A. Coddington, An Introduction to Ordinary Differential Equations,
Prentice-Hall, 1961,

75

. N
PRECEDING PAGE BLANK NOT FILMED

SOME SYMBOLIC COMPUTATIONS IN FINITE FIELDS
by

Henry A. Feldman
Graduate School of Arts and Sciences
Harvard University
Cambridge, Massachusetts

®F

N71-19191

-

Abstract

This paper contains bits of the elementary theory of finite
fields and a report on some symbolic computations suggested by
that theory. These computations, carried out in FORMAC,
chiefly involved modular polynomial arithmetic.

The issue of generality versus special-purpose efficiency in
a symbol manipulation language arises in the course of a discussion
on the suitability of FORMAC for this project.

77

PRECEDING PAGE BLANK NOT FILMED

SOME SYMBOLIC COMPUTATIONS IN FINITE FIELDS-
by
Henry A. Feldman

1. INTRODUCTION

Finite fields are iniricate algebraic structures. Each can bave millions of
elements, or only a handful, or as few as two; but in all cases these elements
can be combined and manipulated in most of the ways rational or real numbers
can, without leaving the field. One can add, subtract, multiply, divide, solve
simultaneous linear equations, invert matrices, extract certain rocts—all the

time having at one's disposal only a finite number of elements.

What do these elements look like, and how can one do arithmetic with them ?
The basic theory of finite fields shows that all elements can be represented in
terms of one element A; in fact, each element can be written as a polynomial in A,
with each coefficient of the polynomial reduced to its remainder on division by a
certain prime integer p. (¥From now on, "polynomial" will mean a polynomial with
its coefficients so reduced.) Arithmetic among these expressions is carried out
just like ordinary polynomial arithmetic, except that the polynomials too must be
reduced to their remainders on division by a certain modulus polynomial f(A}).
Finite field arithmetic is exactly like the arithmetic of residues of f(A); in more
precise mathematical terms, each finite field is isomorphic to the field of poly-

nomial residues modulo some f(A}).

If f(A) is chosen properly, the powers of A also represent the whole field.
Such an f(A) is called a primitive polynomial,

Since the elements of a finite field can be represented by powers and poly-
nomials, it should be clear that compufer symbol-manipulation language is a
convenient tool for performing computations in finite fields.

79

Below are described four FORMAC programs developed to work with finite
fields, The first program takes a specified size for the finite field and finds
what the modulus polynomial f{A) must be. It picks f(A) to be primitive and

monic, -,

The second program takes the primitive polynomial f(A) and generates
a table showing the correspondence between powers of A and polynomials in A,

This table can be used for addition and multiplication in the field.

A third program solves simultaneous linear equations with coefficients taken
from the finite field., A fourth finds all irreducible polynomials satisfied by
elements of the field, All of these programs make heavy use of polynomial
arithmetic: adding, multiplying, dividing, and taking greatest common divisors.

This paper presents small amounts of finite field theory, descriptions of
how each of the four programs works and how it was implemented, the problems

that arose, and how and where the programs might be improved.
2. PRIMITIVE POLYNOMIALS AND ARITHMETIC TABLES

What the Programs Do

The first two programs work hand in hand: the first finds the primitive

polynomial f(A}), and the other uses it to make a table of corresponding powers.

and polynomials in A.

A bit of theory will illuminate the way to find a primitive polynomial. Say
the field is to have pn elements. (All finite fields have prime-power cardinality.)
Elementary theory (see Chapter 5, Sections 36 and 37 of reference 1) tells us

77 k k0)

c(x) = (x - 1)
) jk=p -1

that the polynomial

80

called the cyclotomic polynomial, has irreducible factors of degree n, each of
which'is a satisfactory choice for the modulus polynomial. Here u is the Mobius
function, which is defined thus: u(j) = 0if j is divisif:le by a square greater
than 15 p(j) = (-1

product of all primitive polynomials for the field of pn elements is, in fact, c(x).

if j is the product of k distinet primes; and u{1) = 1, The

The preceding discussion shows that the procedure which follows finds f(A).

1. Given p and n, form c(x) using the above formula,

2. Find an irreducible factor f(x) of e(x).

n—

3. Reduce all powers A, AZ, A3, ve ey AP 1 to their remainders on
division by f(A). This gives a list, a one-to-one correspondence
between powers of A and polynomials in A, which can be used to
construct addition and multiplication tables for the finite field.

Apn Example

For instance, to find a primitive polynomial for the field of 16 elements

(p = 2, n = 4) one forms

JT k- y*®

jk=15

c(x)

& -)x -1

x° - D’ - 1)

x8+x7+x5+x4+x3+x+ 1.

Il

This polynomial factors into (x4 -X- 1)(x4 - x3 -~ 1). (Remember that all
coefficients are being reduced modulo 2.) The choice of x4 - X - 1 for f(x)

results in Table 1, a representation of the field.

81

Table 1

Two representations of the field of 16 elements, On the left are the pewers of
A; on the right are their remainders on division by A4 - A - 1,

0 = 0
A = A

A? = aA?

A3 = A8

At = A+t

A5 = A%

A - a%ia

AT = A% a4z

A% = AZ4 g

A% = Aia

A" = A"
AT - A3 A%
A - A%y A%ia+1
AT = A% A%
A% - A%

Al - 1

82

Finding the Cyelotomic Polynomial

Computing

77 Kk m()

e(x) = (x - 1)
jk=pn-1

requires a list of factors j of pn-l. Any j's which are divisible by a square can
be ignored, since they have pu(j) = 0 and make no contribution to ¢(x). So if the
prime factors of pn—l are Py P1s Pos - - then the j's and their p's are as
shown in Table 2,

The program for finding ¢(x) generates the lists in Table 2 by the recursive

formulas
j = P . _
2h+i h'i h=012...
. . . h
kA g) = 10y i=01,2...,2
27+

The program then finds the polynomials

7

e = o o - 1)
B(j) =1
and
c,(x) = 7? & - 1)
jk=p -1
uG)=-1

83

Table 2

Systematic listing of the squarefree factors of a number whose prime factors
are pg, P1, P9, - . . , along with their values for the Mobius function. Note: the

first .elements are repeated with an added factor as the second 2, what-
ever m 1s.

o = 1 Gy = 1

R By = -1

b = B wiy) = -1

I3 = PPy iy = 1

Ip = Py wip = -1

s = PP pig) = 1

g = PPy plig = 1

g = Pypp, pip) = -1

ig = DPg pigg = -t

Iy TE b, T T T Wiy =1

jl0 = PgPy B = 1

Jip = PoP4P, #i) = -1

lig = PgPy #(jlz) = 1

Jig = PgPoPy Big) = -1

Jig = PgPoPy Mig) = -1

J1s = PgPgPiPy i) = 1

84

Since c(x) = cl(x)/cz(x), the program can now perform ordinary polynomial
division fo obtain c(x).

The polynomial division algorithm is particularly easy to program for
D = 2, since all coefficients in this computation turn out to be +1 or -1, The
only inconvenience is that ¢(x) usually has a great many terms, and these must
be added to the quotient one by one as the algorithm proceeds. This labor would
not have been necessary had there been available a polynomial manipulation
language with polynomial division performed by an efficient, built-in function,
as opposed to a general formula manipulation language such as FORMAC, which
handles a broader set of algebraic expressions and has few special fools for
working with polynomials.

Factoring c{x) with Berlekamp's Algorithm

This section contains the theory of our solution for step 2 of the subsection
entitled "What the Programs Do,! while the next two sections deal with
implement ation.

Step 2 involves extracting a primitive factor from the cyclotomic polynomial.
Fortunately we know that each irreducible factor of ¢(x) is of degree n and is a

primitive polynomial, So all we need to do is find an nth degree factor of c(x).

We accomplish this task with Berlekamp's factorization algorithm. (See
reference 2, in particular the final example on page 5a.) In its most general
form, Berlekamp's algorithm can be applied fo any polynomial with coefficients
reduced modulo p, However, it can be vastly simplified for the limited purpose
of factoring the polynomial x> ~ 1 when m is relatively prime {0 p, as when one
factors xpn‘l..l. Since ¢(x) always divides xpn“l-l (this is easily proven with '
an argument about the order of roots of c¢(x)), applying Berlekamp's algorithm
to ¢(x) is just like finishing off the factorization of xpn‘l—l, and the simplified
algorithm works perfectly on ¢(x).

85

The following three steps constitute the algorithm in its simplified form.
a. Form the polynomials

s 2 . 3

K.(x) =+ xP+x? + P 4. .,i=1,2,3,...

with all exponents reduced modulo pn - 1 and the polynomial trun-
cated where it begins to repeat. For instance, if p= 2, n = 4, then

K3(x) = x3 + x6 + xl‘2 + xg.

It should be clear that there are only finitely many distinct Ki(x).

b. Compute the polynomials

1l

Gi(x) greatest common divisor [c(x), Km (x) + ﬁ,
1
i=01,2,...,p-1, and my arbitrary.
Berlekamp proves that

c(x) = Go(x) Gl(x) Gz(x} .o Gp_l(x)

is a factorization, not necessarily complete, of c(x).

c¢. To refine the factorization, split each G.(x) by computing the
polynomials 1

Gij(x) = g'c'd'[G-i(x)s sz(X) + ﬂ: i’ j = 0! 19 29 e e D- 1:
m,, # m..

Each polynomial Gi(x) is split into

Gi(®) = Gyl®) Gy (®) Gip(X) « + 0 Gy (%)

yielding the refined factorization

e(x) = G(®) Gy1{x) G14(x) Gy1(x) Ggo(® - .. Gp-l,p—l(x)‘

86

To continue refining, compute the polynomials

Gyl = gch} (), K 3(x)+] i,5,k=0,1,2...,p1
My ?é.mz_’ mg # 1M,

and so forth, Berlekamp proves that by the time the K, (x) are
exbausted, the factorization of c(x) is complete.

The author has no idea how many steps are generally needed to complete the
factorization; this and other questions about the algorithm are discussed below
in the subsection entitled "What It Would Help to Know About Berlekamp's
Algorithm "

In searching for a primitive polynomial there is no point in finding all the
factors of ¢(x); only one is needed. So in applying Berlekamp's algorithm fo the
search for a primitive polynomial, a lot of trouble is saved if the algorithm is
modified as shown below,

a, Split ¢(x) into

c(x) = Go(x) Gl(x) GZ(X) . e G p-l(X)'

Select only one Gi(x), nth degree or higher, and split it until
some G..(x) of degree n or higher appears.

b.]'.n turn, split Gy J(x), and continue until"some Gijk,, m of exactly
nt degree appears. This is the primitive polynomlal
Difficulties in Programming Berlekamp's Algorithm in FORMAC

This section discusses how each step of Berlekamp's algorithm is imple-

mented in a factorization program.

a, Generating

. . . 2 .3
Ki(x)=x1+x1p+xlp + xP + ...

is straightforward and simple in FORMAC. These polynomials can
be formed as they are needed in (b) and (c) below.

87

b.and ¢, To compute
G, (x) = g.c.dE:(x), K 8 + 1

the factorization program employs Euclid's algorithm in a
straightforward way. Collin's methods3 are better; but Euclid's
algorithm, in its simplicity, brought out clearly major difficul-
ties in FORMAC's handling of polynomials.

Euclid's algorithm involves repeated polynomial divisions, each of which
requires that a zero test be performed on many partial remainders as they are
generated. To test whether a new partial remainder is zero, one must first
reduce its {(newly computed) coefficients modulo p. To reduce a coefficient
modulo p, one must extract it with the COEFF routine, convert it to a PL/1
constant, apply the MOD function, and replace it in the polynomial as a FORMAC

constant,

The upshot is that this extraction, reduction, and replacement must be per-
formed for each coefficient of each partial remainder of each division in each
performance of Euclid's algorithm for each refinement of the factorization of

¢(x). The time consumed can be prohibitive, even for small values of o

What It Would Help to Know About Berlekamp's Algorithm

There are two apparent approaches to streamlining the factorization
process. First Berlekamp's algorithm should be investigated mathematically,
-with the specific aim of reducing the number of polynomial greatest common
divisors (g.c.d.'s) one must compute, Is there a way to pick m, and i so that an
nth degree Gi(x) is found on the first try? Failing such a spectacular finding,
are there at least optimal choices for i and m? Is there a quick way to estimate
the degree of a polynomial g.c.d. before computing it, so as to pick the smallest,
most worthwhile Gi(x) to compute ?° Is there a quick way to tell whether a poly-
nomial g.c.d. will be 1 before computing it, so as to avoid wasting a lot of time
computing Gi(x) =17 (Collins3 gave a method for quick defermination of a
g.c.d, of unity for polynomials with ordinary integer coefficients. This method
may be adaptable to the present case: the author did not have time to

88

investigate.) Answers to any of these or similar questions could make the
search for a primitive polynomial much speedier.

Some Suggestions Regarding FORMAC

The author made no attempt to answer the preceding mathematical questions,
but has concentrated instead on a second line of attack: programming efficiently
in FORMAC, However, no amount of cleverness has proved sufficient to avoid
the laborious, term-by-term reduction of coefficients. This problem is sympto~
matic of a general problem in handling polynomials in FORMAC, The author
suspects that the labor of extracting terms and putting them back in place affer
some trivial operation is one of the greatest and most common inefficiencies
forced on the programmer in the current version of FORMAC,

The finite field computations deseribed in this paper would be much easier
to program if FORMAC contained built-in functions like the ones listed in Table 3.
These functions are designed to eliminate common ferm-by-term operations on
polynomials, Besides generally enriching the FORMAC library, they would

particularly permit more rapid manipulation of simple, 1-variable polynomials.

Of course FORMAC is a general-purpose formula manipulation language,
and it can be argued that a language of such broad scope and simplicity should
not be overloaded with the special functions one expects in a special-purpose
polynomial manipulation system, Still, since high-level languages are writfen
principally to provide the programmer with convenient macros for very common
tasks, such as polynomial manipulation, it seems a shame to saddle the FORMAC
programmer, for whom the possibilities of invention are great, with needless

tedium in writing his code.

Making Tables

This section continues with a program for step 3 of the subsection entitled
tWhat the Programs Do." Once f(x} is found, FORMAC easily generates arith-
metic tables, To list the powers of A paired with their residues modulo f(A), the
program simply sets up a list A and puts in A(I) the remainder of AI when
divided by £(A).

89

Table 3

Some suggestions for polynomial manipulation functions in FORMAC. In each
case the function call implies that A and B are to be regarded as polynomials
in the FORMAC expression E, N is a FORMAC integer-valued expression. -

TRUNC (A, E, N) A with all terms above E dropped

TUMULT (A, B, E, N) Product of A and B, ignoring all
terms in product above EN

MOD (A, E, N) A with any numeriecal coefficients
reduced modulo N

ABS (A, E) A with any numerical coefficients
replaced by their absolute values

PRIM (4, E) A divided by g.c.d. of numerical
coefficients

20

The program avoids polynomial division by doing the whole process
recursively: given A(I), the program multiplies it by A, reduces it modulo f(A),
by replacing any occurrence of AP by AP f(A), reduces the coefficients
modulo p, and places the result in A(I+1),

Table 1 is essentially a conversion table from powers of A to polynomials
in A, To construct a conversion table in the opposite direction, one can use the
fact that each residue of f(A) gives a different number between 0 and pn when p
is substituted for A, A list, matching the number to which each polynomial
evaluates with the power to which it corresponds, acts as a key. Table 4 should

make the method clear; it is the inverse of Table 1.

With these tables, it is simple to multiply and add, going from powers to
polynomials or vice versa. It is most convenient to convert to polynomials

before adding and to powers before multiplying,

3. SIMULTANEOUS LINEAR EQUATIONS

Finite field arithmetic at its messiest is exhibited by a program for the
solution of gimultaneous linear equations by Gausgian elimination, with coeffi-
cients and answers to be drawn from the field of 16 elements. This program
reads the equations from cards as PL/I character strings which are then con-
verted to FORMAC expressions. On the cards finite field elements may be

expressed as either powers of A or polynomials in A.

After input the program converts the coefficients to powers of A, using
Table 4, and represents the equations by a PL/I matrix containing the exponents
of the powers of A, (A special element represents zero coefficients, since zero

is no power of A.)

To perform arithmetic on the coefficients in the course of Gaussian elimina~
tion, the program extracts them from the PL/I array, refers to appropriate
entries in the powers-to-polynomials table (Table 1), performs the arithmetic
in FORMAC, converts back to powers of A, and replaces the answer in the array.

The programming of Gaussian elimination and back-substitution is straight-

forward., Sample input and output are reproduced in Table 5.

91

Table 4

Conversion table for polynomials to powers of A for the field of 16 elements.
Given any polynomial in the first column, one substitutes p for A and obtains the
number beside it in the second column. The corresponding power is directly
across in the third column (see Table 1), -

Number it Evaluates Power it
Polynomial Towith A =p Corresponds fo
1 . 1 , 15
A _ : 2 1
A+ 1 3 . 4
A2 4 2
A% 4+ 1 5 8
A%+ A 6 5
A2 1 A+ 1 7 10
A3 8 3
A% & 9 14
A% + A 10 9
A3 + A+ 1 11 7
A3 + A2 12 6
A%+ A%+ 13 13
A%+ A% 4 A _ 14 11
FU L 15 12

The programming of Gaussian elimination and back—substitutién is straight-
forward. Sample input and output are reproduced in Table 5.

- 92

Table 5
Sample input and output for sotution of simultaneous linear equations over the
field of 16 elements.

0= X+ A% X -~17a% v+ a1 543

R (ol et . ot ey ey e T T Y A S et o o o o s

ot . e e i e Y A R B L Y TR et e e . e g o A SR S TR ek S o b e ol el e

93

4, MINIMAL POLYNOMIALS
n

Bagsic theory shows that all pn elements of g finite field are roots of (Q ~X}.
They are also roots of smaller polynomials, factors of (xpn—x). It is of interest
to know, for each element of the field, the smallest polynomial it satisfies, This
polynomial is called the minimal polynomial of that particular element. This
section describes a technique for finding all minimal polynomials of elements of

a finite field,

It is simple to show that all minimal polynomials are irreducible, and that
their product is (xpn—x). So it is only necessary to factor (Xpn—x) to find the

various minimal polynomials.

n n n
The first step is easy: (xP -x) = (x)(xP ~1-1). The factorization of &P -x)
can be finished with Berlekamp's algorithm, This time, of course, the program
must keep frack of all G..

ijk...m
is easily accomplished by storing in one FORMAC location the undistributed

(x) at each step, except for those equal to 1. This

product of all Gijk...m(x) found so far.

A priori information, which can be used to guide the program in factoring
I1_
(=P l—1), is available on the size and number of minimal polynomials. Various

theorems show that, for each divisor m of n, there are

L kg
jk=m

mﬂ'l degree minimal polynomials, and that these are the only minimal polynomials.
So, for example, if the program comes to a Gij(x) with a degree not dividing n, this
factor is not a minimal polynomial and must be factored further; if this factor's

degree does divide m and fewer than

_1n_1_ z P (i)

jk=m

94

mth degree factors have been found so far, it may be a minimal polynomial and
may not have to be factored further.

One can also use the fact that there are a total of

z %1 z P ()

m ln jk=m

minimal polynomials to determine when to terminate the factorization.

Lack of time prevented the author from implementing this routine. As it is
simply a longer version of the primitive polynomial program of section 2, the
remarks of the three subsections of section 2 which discuss Berlekamp's

algorithm apply all the more strongly to this routine,

5. SUMMARY

The project described here shows that finite field computation lends itself
very well to computer symbol-manipulation language, to the extent that FORMAC
programs can make arithmetic tables and even solve simultaneous linear equa-
tions in a conceptually straightforward manner,

On the other hand, the author found FORMAC awkward in programming and
sluggish in performing extensive polynomial manipulations. Three roufes for
improvement are evident: one might

a. Study and streamline the factorization algorithms;
b. Use a special-purpose polynomial manipulation system; or

c¢. Introduce special-purpose capabilities into FORMAC.

g5

REFERENCES

1, B. L. Vander Waerden, Modern Algebra, Frederick Ungar Publishing
Company, 1949,

2. E.R. Berlekamp, "On the Factorization of Polynomials Over Finite Fields,™
Bell Telephone Laboratories, Murray Hill, New Jersey.

*3, C. E. Collins, "Computing Time Analyses for Some Arithmetic and Algebraic
Algorithms," these Proceedings, ;

*Thig article appears in these Proceedings.

26

SYMBOLIC-NUMERIC EIGENVALUE PROBLEMS
IN QUANTUM MECHANICS

by

Kenneth Harit
Department of Physics
University of Rhode Island
Kingston, Rhode Island

N71:19192

Abstract

The problem of symbolic numeric conversion (SINCON)
is discussed in the context of solving quantum mechanical
eigenvalue problems with FORMAC. The eventual use of
SINCON in a problem eliminates the need for containing the
entire structure of each FORMAC expression in a single
equality, Consequently, special coding techniques which
reduce core storage requirements (called "reductions'} are
possible. Using an example involving SINCON for illustra-
tion, the paper shows methods of performing reduction by
explicit FORMAC coding. It is argued that a new version of
FORMAC in which automatic reduction techniques are incor-
porated is needed. Two alternative reduction devices are
discussed.

97

PRECEDING PAGE BLANK NOT FILMED

SYMBOLIC-NUMERIC EIGENVALUE PROBLEMS IN QUANTUM MECHANICS
by
Kenneth Hartt

1. INTRODUCTION

Because a large class of physics and engincering problems involves lengthy
symbolic derivations of formulas followed by numerical evaluation, a totally
programmed solution requires a symbolic-numeric conversion (SINCON). This
paper discusses the application of the present SINCON capabilities of FORMAC
to quantum mechanical eigenvalue problems. Based on our recognition that ex-
pressions destined for numerical evaluation need not have their entire structure
shown explicitly in a single equality, this paper suggests, by illustration, some
extensions of FORMAC for improving SINCON,

Wherever the Rayleigh-Ritz method is applicable to an eigenvalue problem,
the task of determining eigenfunctions and eigenvalues is partly reducible to
optimizing a set of parameters. Using a simple example of parameter optimiza-
tion, we show how SINCON allows use of special coding techniques, which we

call "reduction, ™ that reduce core storage requirements,

All users of symbol manipulation systems must perform reduction. Many
do so by analysis prior to coding. A more efficient method for symbolic differ-
entiation was developed!by Eisenpress and Bomberault, who coded a procedure
which transforms lengthy FORMAC expressions into outputs consisting of
sequences of impressively short PL/I statements. 1 wWe propose incorporating
a reduction device which could be similar to theirs but which is automatically
invoked by FORMAC when needed. The concluding section of this paper dis-
cusses some suggestions concerning external specifications of optional reduction

devices, as well as some unresolved issues.

99

2. SOLVING A QUANTUM MECHANICS PROBLEM IN FORMAC

In guantum mechéanics one tries to sclve a Schroedinger equation for a sys-
tem of some number N of interacting particles H{ = EY. Let the particle
coordinate vectors be _Jgj. Assume the interaction is pairwise through a poten~

tial energy operator V @i,g:_j) = Vij . Then

2
N 1 _ 2
CH=-2li 70, Vi ¥ 25<5 Vi

and ¥ - P () is square-integrable over 3N-dimensional space (where the

collection EqsZgoe e Fy) is represented by x) . E is an eigenvalue, inter-

preted as a possible energy of the physical system. E must be negative for
square-integrable solutions. Hevre discussion is restricied {o finding the small-
est eigenvalue E, and the ground state z,bo , such that Hll)o = EO gbo .

The two-body problem (N =2) is easily solved numerically, assuming any

of a very general class of interactions for V 2 This is not so for N =23,

12°
Therefore, extensive effort in theoretical physics has been devoted to finding
analytic approximations. One approach to this problem has been the familiar
variational method, which is justified by the Rayleigh-Ritz principle .3 Given
a trial solution z,bt@, A} , where A= (Al’Az’ “ee ,AM) is a parameter vector,

this procedure involves optimizing A by minimizing the guotient
Et = (z,bt,H?,bt) / ("bt’ zbt) ¢ A disadvantage of this approach is that Et is only

the approximate eigenvalue; the minimum E, must still be obtained through a

t
numevic iteration procedure which uses the functional forms of E & and deriva-
tives of Et obtained symbolically, Another problem is that the inner products
(z,bt, H¢t) and (dg ;bt) are linear combinations of integrals whose derivation in

terms of standard integrals is offen a lengthy task. Frequently the forms of the

100

standard integrals are well known, and the computational problem consists of
lengthy algebraic and analytic procedures, Because of these problems an
efficient SINCON is needed.

Provided that suificient reduction is achieved, using FORMAC we should
frequently be able to avoid the use of elaborate minimization algorithms, such as
VARMINT .4
V'F in the parameter space where F is being minimized. The VARMINT

VARMINT requires as input a function F and its gradient vector

algorithm proceeds by making successive estimates of the inverse of the matrix

2

F
Gij = 3A.0a. (Hessian matrix) and advancing A by increments (A~ A, =A
1]

—M

+A A) uniil a convergence criterion is satisfied. An increment vector AA is
uniquely defined by postulating that F(A) is in the neighborhood of a minimum
and that a second-order Taylor series expansion at A’M of ¥ is exact.

In cases in which lbt contains several parameters nonlinearly (as in argu-

ments of exponentials), it is frequently impractical to compute the input ex-
pression ¥V B ¢ analytically by hand calculation. Rather, one should be able to

employ a system like FORMAC, I, in addition, C‘Ti:i is Imown analytically, the
estimation of G;; in VARMINT is not needed and a simple algorithm to minimize
Et might be coded directly in FORMAC, possibly with the inversion of Gij
performed in PL/I.

Tobey's description of some of the major scientific efforts involving
FORMACS reveals applications in optimization similar to those described above.
Here we present a simple example to illustrate SINCON and to show what might
be done to enable FORMAC to reduce expressions such as Gij sufficiently with-

out a great deal of coding by the user.

101

3. REDUCTION IN FORMAC

Our example is the following problem: determine the first increment AB
from B =3 towards the minimum of the expression E = (B2 - 1)2 +4) / (B-2)2,
using the method of steepest descent., Assume that E corresponds fo the trial

energy eigenvalue to be minimized, B to the parameter, (B2 - 1)2 / ®B- 2)2‘

to the potential-energy, and 4/(B - 2)2 to the kinetic energy. One must compute
the first and second derivatives of E from which AB = -E!V/E'" , A straight-
forward PL/I FORMAC procedure, MIN1, performs the calculation

MINL: LETY(
1.1 FNC(F) = $(1)**2;
1.2 N = F(B**2 - 1.) + 4.;
1.3 D=F(® - 2.);
1.4 E = N/D;
1.5 EP = DERIV(E, B);
1.6 EPP = DERIV(EP, B);
1.7 NEP = EVAL(EP, B, 3.);
1.8 NEPP = EVAL(EPP, B, 3.);

1.9 DELTA = - NEP/NEPP); .

The numeric calculation could have been done in PL/I after 1.8 instead of
FORMAC by the PL/I statements NEP = ARITH(NEP); NEPP = ARITH(NEPP);
DELTA = - NEP/NEPP; .

Straightforward coding of a nuclear physics problem whose solution closely
parallels MIN1 creates a size problem, traceable to the fact that the symbolic
part of MIN1 combines and manipulates expressions on two levels, E and F.
The user can reduce core reduirements somewhat by performing a sufficiently
extensive precoding analysis. Subexpressions for E, EP, EPP can be derived
separately and FORMAC can be used to compute the values of F, F', and F'!

102

and to make substitutions into the subexpressions, However, in MIN1 the struc-
tural form of F is needlessly repeated in the expressions for E, EP, and EPP,
creating large structures that must be manipulated as whole entities and increas-
ing the likelihood that freelist will be exceeded. The structure of second deriva-
tives can easily grow to a prohibitive size. The pi-ecoding analysis required to
save core grows as the complexity of the expressions manipulated increases

until a point is reached -at which such analysis becomes.a formidable problem,

An alternative method of coding our example is MIN2, which uses function
variables as shown below.

MIN2: LETY{

I.1 N=G.(B) +4.;

0.2 D = H. (B);

1.3 E =N/D;

II.4 EP =DERIV(E,B);

1.5 EPP =DERIV(EP,B);

II.6 FNC(F) = $(1)**2;

II.7 NEP = EVALEP, G, ($(1)), F(B(1y**2 - 1.),H. (§(1)),
F$(1) - 2.),B,3.);

II.8 NEPP = EVALEPP, G, ($(1)), F($(1)**2 - 1.), H. ($(1)),

F($Q) - 2.),B,3.);
II.9 DELTA = - NEP/NEPP);

Notationally it appears that MIN2 reduces the core requirements, since the
functions in IT, 8 and II. 9 have numeric arguments. However, the interpretation
of the numerieal arguments as numbers and the subsequent reduction by the
internal automatic simplification procedure does not occur until after the func-

tional substitutions are made. Hence the phenomenon of.intermediate swell, 6

103

i.e., the growth of storage requirements for expressions above the final sizes
in an executed FORMAC statement, becomes important.

If the user is willing to code a rather elaborate series of substitutions,
MIN2 can be modified so an eventual saving of core results for cases where F
becomes increasingly complex. One replaces the function variables and their
derivatives by subscripted atomic variables D(J,I) . The arguments of the
function variables are assigned to other subscripted variables X(I) . Then the
D({J,L) are assigned values of the numerically evaluated function F and its
derivatives. This procedure, which we give as MIN3, can be generalized to
several functions and variables, in which case PL/1 loops perform the substi-
tutions with additional indexes.

MIN3: LET(
mM.1 N=G(1).(B) +4.;
0.2 D=G®.(B);
oL 3 E = N/D;
mMi.4 X(1) = B**2 - 1,;
0.5 X@2) =3B-2.;
1.6 E(l) = DERIV(E, B);
II.7 E(@2)=DERIV(E(1), B);
II.8 FNC(F) = $(1)**2);
.9 SUB: DOI=1TO2;DOJ=1TO2;
.10 LET@="I"; J="Jm;
Ill.11 E@) =REPIACE(E(), G{J). (B),D{J, 1)));
IOI.12 DO L=1TO 2; LER(L ="L";
.18 E@) = REPLACE(E(),DRV(G({]). (B), $(1), 1), D, L+1)));

.14 ENP SUB:

104

The final expressions are compact and are suitable patterns for substitutions of

numerical values of F .
m. 15 NUM: DOI=1TO02;Db0dJd=1TOZ2Z;
ii.16 LET{E="I";J="1J"; E(I) = EVALE(®,D({J,1),
EVAL(F{X(J)),B,3.),B,3.));
.17 DO L=1TO2; LET(L="L"; E®) = EVALE@),D(J, L+l),
EVALMDERIV (F (X(J), B, 1), B, 3.))); END NUM;
nN1.18 LETOELTA = - E(L)/E(2));

The substitution method of MIN3 requires careful precoding analysis, but less
than the modifications already discussed in connection with MIN1.

Table 1 compares execution fimes and core sizes of the three different pro-
grams, Core sizes are roughly estimated as follows. All programs are run
with the prinfout option, which causes a printing of FORMAC expressions
obtained from the execution of all statements. The total length of the printout
from each procedure is an approximaie relative measure of the accumulated
amount of core required. Two important qualifications need to be made here.
First, if SAVE is employed the maximum amount possible, then the size of the
largest collection of expressions handled simulfaneously in any FORMAC state-
ment is a more appropriate measure of required core. As suggested by the last
column of Table 1, this tends to offset the large core size shown for MIN3,
Second, no measure of intermediate swell is provided. Although the comparisons
in Table 1 should not be accepted liferally, they reveal the overhead in time and
space resulting from performing the substitutions of MIN3,

We wish to emphasize that MIN3 has a high potential efficiency relative to
MIN2 that is not shown in Table 1; as the function F becomes lengthier, all
times for MIN2 grow faster than those for MIN3, and intermediate swell in
MIN2 grows excessively,

105

Table 1

COMPARISON OF EXECUTION TIMES AND PRINT-OUT LENGTHS

Summed
Summed* expression Maximum*
CPU time CPUtime expression length expression

Code | (seconds) (ratios) lengths ratios length
MIN1 13 1.6 8.4 2.5 4,3
MINZ 8 1.0 3.4 1.0 1.7
MIN3 16 2.0 25.0 7.4 2.1'

* lengths are in units of 12-inch lines;.

4. A SUGGESTED SINCON CAPABILITY

If numerical evaluations are to be made in lengthy symbolic mathematics
codes, an option to automatically split an expression into its subfunctional parts
is desirable. We refer to the class of such options as Automatic Splitting-
Subfunctional Parts (ASSP). The functional configuration of ASSP will not cause
an explicit definitional substitution at each occurrence of a function, but it will
generate a function list and an argument list for each FORMAC expression that
contains functions. Therefore a statement containing a sequence of nested func-
tions, e.g., F(GH(X))), which can quickly grow to a prohibitive size when the
explicit-forms of ¥, G, and H are given, remains compact. Since the ASSP
option is designed to save space,. an internal automatic SAVE is desirable. A
technical question requiring study is the extent to which the function and argu-
ment lists of different expressions should overlap; i.e., whether these lists
should have local or global scope.

Another question is whether ASSP should coexist with conventionally formed
expressions in core or be exclusive. Although an exclusive ASSP might be
simpler to implement, it might be difficult to use for studying the algebraic
structures of expressions that have been only partially evaluated numerically.

106

For example, a symbolic-numeric expression might equal zero to within the
numerical precision employed, but a demonstration of this property could re-
quire a recombination from the ASSP-generated structures. The external speci-
fications of a coexistent ASSP could be extremely simple. One could, for ex-
ample, reserve XX for prefixes of ASSP-structured names, with the possibility
of causing a recombination with such a statement as LET(A =XXA); . An
alternative solution to determine whether an expression equals zero would be to

have a unique form for each expression.

Principal advantages of ASSP include the saving of space resulting from de-
creased repetition of common subexpressions and functicnal forms, reduced
intermediate swell, and improved coding efficiency, A disadvantage might be
the necessity for analyzing the propagation of numerical error. As can be seen
in the example of section 3, the completion of a parameter optimization task in-
volves SINCON, The specific manner in which this is done can lead to different
types of numerical error. However, the seqguences of short expressions envisaged
as the output of an ASSP transformation should be an especially suitable form
for processing in PL/1, thereby alleviating the problem of numerical error
analysis in the design of a new FORMAC. (A user would manually check the
P1./1 code prior to evaluation.)

An alternative device to facilitate SINCON.is a procedure that would cause a
function variable association with an evaluated function (FAEF).

FAEF(G(1). (B)) = FEXQ);

would be a FORMAC statement, providing the code automatically for the sub-
stitutions given in MIN3. A possible way for FAEF to work would be for all
occurrences of G(1). (B) and its derivatives encountered after execution of the
above statement to be replaced by the evaluated F and its derivatives; the eval-
vation would be performed with the values of X(1) and B that were current
when FAEF was executed. FART would provide a limited form of automatic
back-substitution,

107

FAET does not go as far as ASSP because the internal formats need not be
changed from those presently employeci in FORMAC, and the problem of efficiently
generating the expressions used for F(X) still must be solved. For the same
reason, no new problem would arise in inspecting algebraic structures, such as

would arise in ASSP.

Although ASSP appears to have considerably greater potential as a reduction
device, either ASSP or FAEF could facilitate the solution of a large class of
problems, In a nuclear three-body problem, for instance, several nonlinear
parameters must be optimized in minimizing Et-7 Because a symbolic system
is inherently slower than a numerical system, ASSP appears to be superior in
cases in which a large number of numerical iterations is required. This is be-
cause ASSP should be easier to adapt for outputs to a PI/I numeric routine.

In contrast, FAEF brings the symbolic-numeric interface deeper into the logic
of FORMAC and it should therefore be more effective in making FORMAC itself

a more efficient system.

A by-product of ASSP would be improved comparisons of nested expressions.
Automatic duplication of the results of expression-matching codes such as
SHRINK, developed by J, B, Baker and reported in reference 6, should be facile.

It seems worthwhile to study implementation of ASSP and FAEF in FORMAC.
Because of the interpretive nature of FORMAC, such automatic but optional pro-
cedures might easily be incorporated into the existing FORMAC system.s’ 9
Hopeiully, such implementation will not be unreasonably complex and it will not
require too much overhead of space and time.

-Bringing the additional class of problems within reach of FORMAC through
implementing these ideas would make the FORMAC system of even greater im-~

portance in the physical sciences and engineering.

108

Sa

REFERENCES

Harry Eisenpress and Abel Bomberault, "Efficient symbolie differentiation
using PL/I-FORMAC, " IBM TR 320~2956, 1968.

L. Lovich and S, Rosati, "Direct numerical integration of the two-nucleon
Schroedinger equation with tensor forces, " Physics Review, 140, 4B, 22
November 1965, pp. B877-B882,

K. Gottiried, Quantum mechanics, W.A. Benjamin, Inc,, New York, 1966,

W. C, Davidon, "Variable metric method for minimization," ANL-5990
(Rev. 2), Argonne National Laboratory, Argonne, Hlinois, 1966
(unpublished).

R. G. Tobey, "Eliminating monotonous mathematics with FORMAC, "
Communications of the Association for Computing Machinery Vol., 9, No. 2,
October 1966, pp. 742-751.

R. G. Tobey, '"Experience with FORMAC algorithm design," Communications

of the Association for Computing Machinery Vol. 9, No., 8, August 1966, pp.
589-597.

L. M. Delves and J. M, Blatt, "Binding energy of the triton, ! Nuclear
Physics A98, October 1967, pp. 503-526.

R. G. Tobey, et al., "PL/I FORMAC Interpreter, User's Reference
Manual, " IBM Contributed Program Library, 360D 03,3,004, Hawthorne,
New York, October 1967,

R. G. Tobey, private communication.

109

PRECEDING PAGE BLANKNOT FILMED

THE USE OF COMPUTER-AIDED SYMBOLIC
MATHEMATICS TO EXPLORE THE HIGHER DERIVATIVES
OF BELLMAN'S EQUATION

by

Stanley B. Gershwin
Graduate School of Arts and Sciences
Harvard University
Cambridge, Massachusetts

N71-19193

Abstract

The FORMAC system is used to solve the following problem
in optimal control theory: how do the third and higher space
derivatives of the optimal value function behave along the optimal
trajectory?

Bellman's equation is analyzed by faking derivatives of
all orders. It is found that, unlike the second derivative which
satisfies a nonlinear equation, the third and higher derivatives
of the optimal value function satisfy linear differential equations
along the optimal trajectory. Analysis of those equations shows
that if certain conditions are satisfied, their solutions are unique
and bounded. Consequently, all partial derivatives of the optimal
feedback conirol function are unique and bounded.

A general algorithm is proposed for numerically solving
optimal control problems using the higher derivatives. The
differential equations for the third and fourth derivatives are
displayed.

111

PRECEDING PAGE BLANK NOT FILMED

THE USE OF COMPUTER-AIDED SYMBOLIC MATHEMATICS TO EXPLORE
THE HIGHER DERIVATIVES OF BELLMAN'S EQUATION

by
Stanley B. Gershwin

1. INTRODUCTION

An optimal control problem is a problem of the following form, Consider

the differential equation
x =f(x, u, t) (1)
with initial conditions

x(to) =Xg. (2)

Then if u(t) is a known function of time, x(t) depepds on w(7), t, = 7 = t.

Define
te :
I(xg, to) = /; L (x(t), u(t), t) dt + ¢ (x(tp). (3)
O

Hu(r), ty = T < tyis known, J(x,,t,) is known. Find the function
w(T), t, = T < i which minimizes J(x,,te). The minimum will be called
V(Xg,ts) -

In this paper, only the case where x(t) and u(t) are scalars is considered.

113

1

It has been shown™ that the minimizing u(r) may be obtained from the solution

of the following equations simultaneously with Equation (1).

A== Ly - afx (4)

0 =Ly +Afy (5)
where

A (tg) = Pc(x(ts)) (6)

and thus V(x,, to) may be found by integrating Equation (3). Equations (4) and (5)
are the Euler-Lagrange equations.,

Alternatively, it has been shown? that Vx,t) and u(x,i) satisfy the Hamilton-

Jacobi-Bellman Equation

_ %V _min L (x, u, t) + il f(x, u, t)} - (7)

at U dx
with boundary condition
V(x(ty) = @ (x(tg)- (8)

This approach is known as dynamic p'rogramming .

Differential dynamic programming (see réferences 2 and 3) seeks to use (7)
to improve a nominal, nonoptimal trajectory, if the nominal is known to be

sufficiently close to the optimal trajectory.

It is also of interest fo solve the related discrete problem: analogously to
equations (1) and (2), x(ti) is determined as.a function of u(tj), o0<j =i from

x(t;,q) = (), utty, t,) fori=o0, ... N-1 (9)

xt,) =%, (10)

114

N-1

Hegr to) = I Lixlty), ult), &) + @ (sl (11)

The minimum of J(x,, {y) with respect to u(ty), . . ., u(tN_l) is V(xo, to).

Equations analogous to (4) and (5) are found in reference 1, and equations
analogous to (7) and (8) are found in reference 4., The latter reference also
contains a differential dynamic programming treatment for the discrete problem,
similar to that for the continuous problem in (2) and (3).

It is of interest to find perturbation feedback laws. If an optimal trajectory
passing through a given point is known, how is the optimal {rajectory passing
through a neighboring point related to it? Stated more precisely, if x(t) =% +0x,
the optimal control at time t will be u(t) =u® + 6u, where u° is the optimal
control if x(t) =X. Find fu as a function of &x. In particular, if this function
can be expressed as a Taylor series, find the derivatives

au azu

oxX ? gg

optimal optimal,

Significant computational and theoretical results have been obtained by
performing Taylor expansions to first and second order on (4) and (b) in refer-
ence 1, on {7) in references 2 and 3, and on equations (9), (10), and (11) in
reference 4. The aim of this paper is to generdlize some of those results by

performing higher order expansions on (7).

The second order analysis of (7) shows that the derivatives Vx and Vix
satisfy certain differential equations along optimal trajectories. The equation
for Vi is nonlinear, and we must show that V is finite to guarantee that a
given trajectory is fruly optimal and unique. The succeeding sections show that

the higher derivatives VXXX, Vv , ete., all satisfy linear differential equations

along the optimal trajectory and thus if ‘VXX is finite, all higher derivatives are

115

also finite. Then all derivatives % optimal» &¥® finite (and known if the deriva-
tives of V are known),

The FORMAC system was used to generate the lower-order equations {third
and fourth), from which the general analysis of this paper was performed. Similar
experimentation was applied to the discrete problem (9), (10), (11). The resulting

expressions were considerably more complicated and the analysis was not completed.
In the rest of the paper, the following notation will be used:
A=AR, u*, t);A = AR, U, t)

where A is some function evaluated along a nominal trajectory

2
= — * -
Ay =5 Al D=

X, u, u* will be defined below.)
As in the literature, the following exception is made. The derivatives of H

v
H(x, u, t) = L{x, u, t) + % &, t) iz, u, t)

o)
are taken with -é—:cl held constant, Thus

g

H =3 B, vk, 1) =L (x, uk, 1) + V_(x, 1) L (x, u¥, 1).

Define H = H; but when differentiating H with respect to x,

allow for the variation of Vx' Thus
}{X = HX + VXXf-

HXX = HXX + ZVXX fX +Vxxxf‘

116

2, DIFFERENTIAL DYNAMIC PROGRAMMING

As described in references 2, 3, and (in a discrete form) 4, differential

dynamic programming has been implemented as described below,

Equation (1) is integrated using the nominal control history u{r) {which is
given and is nonoptimal) to produce the initial nominal trajectory x({t). Then
Equation (7) is integrated backwards along the nominal trajectory, using an
approximation to g—:;r . The value of u satisfying (7) (called u*) is used in calcula-
ting a new nominal trajectory, and the cycle repeats.

To get the approximation to ‘g% and to see how to use u* to obtain a new

nominal trajectory, the following analysis is performed. Assuming X and u*

are known, the optimal trajectory is defined by

x(t) = x(t) + 6x(t) (12)
u(t) = wk{t) + du(t).

I (7) is expanded in a Taylor series about x and u*, the result is

-5 WE 9+ &Y exr..) (13)

=min [L(x,u* 1) + ﬁx+ 6u+...
u

. 2y _
(B (x, t) + 52 6x+...) {f (x, u*, t)+£x5x+fu5u+...)].

The minimization is performed, and u is found as a function of x, Under

proper conditions, this may be expressed as a Taylor series

u(t) = u¥(t) + du (f) {14)

- Y 2
~u*(t)+uxﬁx+2 0%+

Clearly the coefficients in (14) will invalve ¥ , 22¥ , eto
early the coefficients in (14) will involve % 32’ .

117

If the expansion (Equation (14)) for §u is inserted into Equation (13), both sides
of (13) are Taylor series in §x, and thus they are termwise equal. Insolating
terms in Equation (13) from which §x is absent, one obtains a prediction of the

improved value of V:

SRVEDLE W, O+ o @ DI u Y . (15)
Or since

dA _3A 3A i _ oA 2Ag a9

& & Tw FTETa&S

along the current nominal trajectory,-where

F= @ T, 9
then
dum por Vo =
—d—t—V(X, t)-—L—F&'(f f). (17)

Similarly, the terms in Equation (13) containing 0x to the first power form

. oV
the equation for = °

dt ot x oxtae G0yt

d 3V _dL _ dV of 92V . —— [dL BV of 1
= w TEX - (19

In Equation (18), the last term may be dropped because u* was found to
minimize H=L @&, w*, 1) +ov (%, 1) 1§, v*, 1)
and thus

N Ve
Hy= 35 H=L, +5f =0. (19)

118

Likewise, equating coefficients of ﬁxz in Equation (13) yields

2 2
d 37V oV S
“dt 5%x2 ”Lxx-l_'a"ﬁfxx‘*-zfxExz

T Ty *V lux T4V xx) 4 v (-9, (20)

Clearly there is no conceptual difference between finding Equation (20) and
finding similar equations for higher order derivatives.” However, the com-
putational complexity is considerable. The third order equation was found by
McReynoldss. In addition, T.E. Bullock informed D.H. Jaccobson in a private
communication that he computed equations up to the seventeenth order for a
specific scalar problem. He noticed, in that case, that all equations of an

order exceeding two were linear.
To find the coefficients in {14) (u and uxx) it should be noticed that

Hu in Equation (12) is chosen to preserve

H'a(SE + 0x, 0 +6u,) =0 (@
or

Lu(§ + Ox, ual< + Ou, f) + -glxr (x +06x, t)

$E +ox,u + 6u, =0, 22)
Thus,

%Hu6x+gﬁ}(u fu+...=0 (23)
or

u, = lim T =" (24)

§ =o

X

.8 R
assuming s- J‘{u is nonzexo.

119

This may be written

-1
u o= - (Huu) T foux + f-uVXX) (25)
or
-1 .
n = - M) #H o+ fuvxx) .

3. HIGHER ORDER EQUATIONS
Form of the Equations
The Hamilton-Jacobi-Bellman Equation may be written
0=V, + X. (26)
Then the equations for YX 17, V,m,(zo), and all higher derivatives.may be

written
o o) n
0= &, + &) ™ (27)
where the derivatives with respect to x are taken preserving
0=H =X . (28)
But,
3 _ 9 0 .
(5_):) =55 + LSy (29)
Hu =0 u = constant x = constant

where u is given by Eaquation (25).

Thus the equation for V_ (15) may be written

0 =th+}(x (30}
because
: _ o (31)
== Ko=H +u K o= X
H =o0
u

120

or

0=V

X1;+HX+VXXf.

The equation for Vxx (20) is

- 3 2
O—VX'xt + (ax + IJ.X au)(HX + V}cxn (32)
or
0= Vo +H_ +2V _f +V_f+ru H_+V_£). (32

This is quadratic in vxx because of the form of w .

When the transformation (16) is applied to (31) and (32", the latter equations

become ordinary differential equations in Vx and vxx along the nominal tra-
jectory. Equation (31) is a linear differential equation, and (32) is a nonlinear
Ricatti equation (because w is given by (25)).

It will now be shown that the higher order equations which are generated
from (27) using transformation (16) and using expressions for u and L.

derived from Equation (25) are all linear ordinary differential equations. Thus,
Equation (27) is a linear equation for all values of n except n = 2, in which

case it is a Ricatti equation.
Equation (32) may be written

0=V

xxt+}{m{+}(u {(33)

xm ox

The equivalent of Equation (27) may be obtained by applying (29) to (33)
n - 2 times. ‘

‘ 3 n-2 3 n-2 -
0=V + (&) He + (&) (qu ux) (34)

Xt

where the derivative is taken along { = 0.
u

121

When Equation (34) is expanded, all derivatives of u with respect to x up to

u ., 4 are present. The latter is present only in the term
X

qu u n-1 .
X

From Equation (25) it is apparent that u k=1 contains all derivatives of
X

Vupto V K The latter appears only linearly, as
X .

~1
- Huu fuv k .
X

Thus, on expanding Equation (34), the only contribution of V n due fo
X

In general, the last term of Equation (34) will expand out as a sum of terms

of the form

e u_ . .
du &1 {35)
for i=1, ..., n-1.
The highest derivative of V that m K = =) o+ s
¢ highes erivative o at appears in xiu = (a—x-) (" 3% u)
is V i+ 1 Thus for i # 1 (i = 1was covered above) the only occurrence of

X

v n isdueto H -1 Uy and the term containing V n is
X X u X

122

uxfuvxn = = qu H

Therefore, the last term in (34), (%;) (H_u), contributes V in the

X
form

Zuxf11 Vxn
and contributes no higher derivatives of V.

Finally, X wx = L TV I+ 2V £+ vxfxx' The terms involving

. O n-2
Vxn 41 and V.o in (5;} Hxx are

v n+1f + (n-2) VXn (fEX + uxfu) + 2V nfx

X X
=V, gqf+nV nfx+(n-2) quuVXn
X X
and no higher derivatives of V appear. Therefore, the termsin V n
x 2
V 41 @nd V o 1 Equation (34) are
X Xt
Vo, +V . f+n @ +uf) v . (36)
Xt X X

All other terms in (34) involve derivatives of V of lower order. Thus (34) may

be written
dVXn _
T +n (fX + qull) Vxn = Gn(t) - VX s+l f-1) (37

by means of (16) where the expression Gn(t) is formed from derivatives of 1.,

f, and V, and contains no derivative of V of higher order than V e
X

1°

123

In Gn(t') , derivatives of L. and f are with respect to x and u, and deriva-
tives of V are only with respect fo x.

The only quantity that appears in a denominator of a fraction in Gn(t) is
Huu and its powers. This situation exists because the form of o implies
that - must be written as a quantity divided by (Huu)z and in general, Uk isa
quantity divided by (Huu)k' Since Gn(t) is a sum of products of powers of

L it will contain inverses of powers of Huu' Clearly from the form of
X
(34, Gn(t) will have no other expression as a denominator.

— *
In Equation (37), all quantities are evalualed at x=x and u=u , except
T, whichis evaluatéd at x=%X and u=1u. ‘
The boundary conditions for equations (17), (18), (20), and (37) are given

at t= tf by Equation (38).

Vxn (X(tf)) tf =9 xh (X(tf)) (38)

for n=0,1,2,

Higher Order Algorithms

Computationally Equation (37) may be used to generalize the first and
second order differential dynamic programming algorithms of references 2

and 3. Briefly, such an algorithm would be executed as follows.

Guess u (f).

2. Integrate Equation (1) with u =1 (t) forward from
t = to tot= tf to find x . Use the boundary condition in (2).

3. Integrate (15), (20), and (37) for n=3, ..., N along x=x and
u =u from t= tf to t= to’ using the boundary conditions (38).

(nthe N equation, the V _, , E=T) term is ignored.) To find
X

124

® — — —
u , minimize L (%, u, t} + VX(X,) £(x, u,) with respect to u.

4, Calculate Wo Uprs vens U N-1- (The formulas for these are

found by differentiating Equation (24). Exactly N-1 derivatives
are possible because N derivatives of V are known.)

5. Integrate Equation (1) with u=u*+ u 6x + %- uxxﬁ X2 + e
+ 1 u GXN-I where 6x=x-% and x is the solution
11 Y oN-1 :

to (1) with the boundary condition (2). Thus 5x(t0) = 0, so that
*
u(to) =1 (to) .
6. Goto step 3.

Important details have been left off this description of the algorithm, such

as the fact that 0x must be limited in size to keep the approximate expansion

Vix + 0x,) = V{x,) + VX(X,) 6x + ...

1 N 39
+ VXN (x, t) 6x (39

accurate, i.e., {39) must be valid within some tolerance, (This is described

more carefully in references 2, 3, and 4, along with all other relevant de-

tails of the algorithm, including the process by which & is limited.)

Thus it is advantageous to use large values of N because large vaiues of
0x will approximately satisfy Equation (39) and because, for a given value of

bx, the approximation in step 5

* 5 1-
u=1u ,+uXX+”'+"_)1.uXN*1

N-1 (40)
-1 ox

will be more exact than it would be for smaller values of N. Since larger values

of N allow the use of larger values of 0x, convergence to a given accuracy may

be possible with fewer iterations.

125

However, there are serious disadvantages to using large values of N. N
versions of Equation (37) must be infegrated, and N-1 derivatives

U yeea, U
x’ ? 7 N-1
x

must be calculated (at each time step). These difficulties are
compounded immensély when (as is usually the case) x is a vector. If x has

M components, (37) represents M equations for.each value-of n. (There

are symmetries, but the number of independent equations is on the order of

MY.

A Sufficieney Proof
The theoretical significance of Equation (37) appears on the optimal f{ra-
* — —
jectory, where u =u=u, andthus f=f . Then (37) becomes

dv_n _
dtx +n (fX + uxfu) Vxn = Gn) . (41)

Also, equations (18) and (20) become

dv

x4 £V = - L (42)
W + @2 +uf)V_=-L -1 V
""dT' X Xxu XX XX XX X

~u (L, +f V). (43)

These equations are coupled in one direction. If we knew the optimal tra-
jectory, (42) could be solved (with the boundary condition (38), n=1). Then
Equation (43) would be solved, using (38) for n= 2. Only then could (41) be

solved for n =3 and then for n =4, etc.

126

The solution to Equation (41} with boundary condition (38) is
Ven x®), Y = (44)

t
n f f ot dt
t
oGl e

t T .
SIARNGE 2 e ar,

for n=3,4, ...
where & (t) = fX(x(t) uty, vy + uX(t) fu(x(t), u(ty,t) and L is glven by (29).

Thus a solution fo Eduation (41) exists, and it is finite for n > 3 if

a. o) = fX + qul1 is defined and continuous on [to, tf], and if

T
b. G (T)=e 1 f ¢ O(t dt’ is defined and continuous on t_ = t<r<t,.

Conditions a and b are both satisfied in Vxx’ Hu d and sufficient derivatives

L_»f and L are defined and continuous on {t , t_].
XU xu xuu o f
Since w ks is a sum of expressions divided by powers of Hu a and since

each of these expressions is a polynomial in VX, Vxx’ e s ka-l’ if Vxx

and H;il are defined and continuous, u K? k=1, 2, ... exists. Therefore
X
perturbation feedback laws and neighboring extermals exist.

The values of us Uogr oo are known; they are given by Equation (25)

and its derivatives. If Vxx and Hl-u]; are assumed finite at every point along

the trajectory, then u, and U s ooe BTC all finite at every point.

A paper extending these theoretical results to the vector case has been

accepted for publication, ?

127

4. USE OF THE FORMAC SYSTEM

The FORMAC 6 patch and scope 7 systems were helpful in arriving at the
theoretical results of the previous section. The FORMAC system did not do the
proof of the previous section, nor was it able to find the general linear form of
Equation (37). Instead, the author used the system to obtain the form of 3rd, 4th,
and higher order equations. A pattern was recognized, and it was found that the
pattern could be generalized. This kind of mathematical experimentation is
discouraging to undertake without benefit of a mechanical device because,

", ..the manipulations seem quite formidable."5 FORMAC made an empirical

approach to this problem practical,

The following are the derivatives of the Hamiiton-Jacobi~-Bellman Equation
as produced by the FORMAC system.

d e

-5t VX = VXXf + VXfX + LX (45)
)

-V =V __f+2V_f +Vuf <+ Vi (46)
ot "xx XXX XX X X X xu X XX

3 2
-5V, = Vx4f +L_u +3V £ (47)
+ 4V uf +Vu f + Vux

XX X uUx X XX ux X X K

+ 3v {1 + 2V u f + V. f
XX XX X X X¥xu X XXX

2
+ zvmuxfu + Vxxuxxfu + Vxxuxfuu

+2L__u + L u + L
XXU X XU XX XEX

128

+

V.4 = (48)

6vx3fxx + QVXXqum

2
Squxxfz + 3qu £ 9 9 + 4Vxxf
X u X Xu X

3

3 VXqu 3 + fo 4
x u X X X

+ 3V 4uxfu + 3V 3uxxfu

V uof +8V . u’ +3V u uf
xxX3u X3xuu

XX XX X uu
V.oul,+3L + 3L +f Vul
2 3 2u7z;x'ux 3 U‘x xu3 XuX
X x u xu xu
3LxxquX+LxuV3+L4

X X

In addition to equations (45) through (48), the fifth, sixth, and seventh de-
rivatives of Equation (7) and the first seven derivatives of Equation (19) were

also produced. Space limitations preclude displaying those expressions here.

SUMMARY

The FORMAC system is used to obtain new results in a problem in optimal
control theory.

The differentiation of Equation {27) was first performed using the FORMAC
system to obtain the third and fourth order equations. It was perceived that

nonlinear terms did not arise, and this fact was generalized. Clearly this is

129

an important application of a symbol-manipulation system: supplying specific

examples of phenomena for the mathematician to generalize.

There are other problems in optimal control theory to which a symbol

manipulation system may be applied. One is the discrete time problem in (9),

(10), and (11), for which results like those in this paper may be obtainable.

Another is the symbolic solution of the Euler-Lagrange equations (4), (5), and

(6) .

An attack was made on this problem {see these Proceedings, reference

10), but the approach appears to be impractical.

*10,

REFERENCES

A. E. Bryson, Jr, and Y. C. Ho, Optimization, Estimafion, and Control,
Blaisdell, 1969, to be published.

D. H. Jacobson, "Differential Dynamic Programming Methods for Deter-
mining Optimal Control of Non-Linear Systems, ' Ph.D. Thesis, University
of London, October 1967,

D. H. Jacobson, "New Second-Order and First-Order Algorithms for
Determining Optimal Control: A Differential Dynamic Programming
Approach, ' Division of Engineering and Applied Physics, Harvard
University, Cambridge, Massachusetts, February 1968.

S. B. Gershwin and D. H. Jacobson, "A Discrefe Time Differential
Dynamic Programming Algorithm with Application to Optimal Orbit
Transfer, ' Division of Engineering and Applied Physics, Harvard
University, Cambridge, Massachusetts, August 1968,

S. R. McReynolds, "Higher Order Optimal Feedback Schemes," un-
published memorandum, September 1964.

R. Tobey, et al,, "PL/I - FORMAC Interpreter, User's Reference
Manual, " IBM Contributed Program Library 360D 03.3.004,
Hawthorne, N.Y., Ociober 1967,

R. G. Tobey and J. D. Lipson, "The Scope FORMAC Language, "
these Proceedings.

E. L. Ince, Ordinary Differential Equafions, Dover, 1956,

S. B. Gershwin, "On the Higher Derivatives of Bellman's Equation, "
Journal of Mathematical Analysis and Applications (to appear).

S. B. Gershwin, "An Attempt fo Solve Differential Equations
Symbolically," these Proceedings,

*These articles appear in these Proceedings.

130

DESIGN AND ANALYSIS OF MATHEMATICAL ALGORITHMS

131

PRECEDING PAGE BLANK NOT FILMED

SYMBOLIC INTEGRATION OF
ELEMENTARY FUNCTIONS

by

Robert H. Risch
IBM Research Center
Yorktown Heights, New York

N?1-19194

- wg _

-

Abstract

The problem implied by the phrase "symbolic integration
of elementary functions” is difficult to formulate, This paper
presents the issues that arise in attempting such a formulation,
the formulation proposed by the author, and the work be has done
toward its solution. Actual examples are worked, employing
an algorithm for the integration of functions built up using logarithms,
exponeniials, and rational operations.

The paper was prepared while the author was employed by the System Develop-
ment Corporation, Santa Monica, California.

133

JOT FILMED
PREGH)ING PAGE BLANK NOT ‘
SYMBOLIC INTEGRATION OF ELEMENTARY FUNCTIONS
by
Robert H. Risch

1, INTRODUCTION

In elementary calculus courses students are asked to find the indefinite
integrals of "elementary functions" like f gi or f sin2x dx. The teacher

usually states without proof that there is no elementary expression in closed

dx
_X2) (1_k2x2) :
defined as those functions that can be built upon from the rationals and an inde-

form for integrals like f S—i;—}-{—-dx or f a Elementary is usually

pendent variable using only exponential, logarithmic, trigonometric, and inverse

trigonometric operations.

Joseph Liouvﬂlez’ 3 did the first significant work on the problem of inte-
gration in finite terms dﬁring the years 1833-1841. (See also references 4, 5,
and 7 - 11 for work on integration.) Among other things, he showed that when
the integral of an elementary function is elementary it must be of a certain def- -

inite form, and that the two integrals above are not integrable in finite ferms.

During the remainder of the nineteenth century, French and Russian math-
ematicians did some work on the problem of determining when an algebraic

function has an elementary antiderivative.

In 1913 the Russian mathematician D, D, Mordoul«:hay—Boli:ovskoy4 discussed
integrals of functions built up using exponentials, logarithms, and the four ra-
tional operations. Although he claimed that a general method exists for deter-
mining whether such a function has an elementary indefinite integral and finding
the integral if it does, he made only a vague attempt to explicifly give such an
algorithm.

135

Since the 1931 work of Godel, mathematicians have realized that integration
in finite terms is a decision problem, and that it should be examined in order to see
whether it is decidable or undecidable. According to this modern point of view,
one must define elementary function precisely, and one must explain the phrase
"given an elementary function.” The way of function is usually given is a symbol
on a piece of paper, but the function that the symbol represents must be uniquely

specified.

This paper presents the issues that arise when one tries to precisely formu-
late this problem. The formulation and the work done by this author toward its
solution are discussed. Examples are worked to illustrate the algorithm de-
\-re10ped for integrating elementary functions that are built up using exponentials,
logarithms, and the rational operations, provided fhat exponentials and loga-
rithms cannot be replaced by adjoining constants and performing algebraic
operations. The techniques a computer will have to invoke for the algorithm to

be implemented are mentioned.

2. THE PROBLEM OF FORMULATION

In order to precisely state the decision problem, a countable set of symbols
t0o represent ou;:' functions must be éiveri, and the functions corresponding to the
individual symbols should be specified. Care must be exercised here. For
example, our elementairy functions might contain, as a subclass, a set of
mumbers S for which the'problem of telling whether one is identically zero is un~
decidable (the computable '"'reals' is such a class). Then the integration problem

for the set of functions {aex2 18€3 } is undecidable since f anzdx is elemen-
tary iff a = 0.)

In an unpublished thesis, 6 Daniel Richardson constructed a class of real
functions, which be calls elementary, in which each function is either identically
0 on the real line or ideﬁtic:;dly 1 on some interval. Given such a function,
whether the function is of the first or second type is undecidable. {fexz:fs

Richardson's class} gives a solution for the integration problem similar {o that

136

in the preceding paragraph. The result depends heavily on the fact that |A| (or
log |A|) is allowed as an elementary operation, With the absolute value function,
the minimum of two functions can be defined and, thus, distinet analytic functions
can be spliced together.

These artificial examples ‘do not give any real insight into the guestion of
why a function that is lmown not to be the zero function has or does nof have an
elementary indefinite integral, and they seem to have little connection with the

classical problem conegidered by Liouville,

The formulation given here is motivated by the three considerations that
follow.
a. One must be able to determine when 2 function of the class being con-
sidered is egual to zero (or equivalently when two are equal).

It is important to know how to do this so one does not try to integrate a

symbol that does not represent a function such as log (1—1) . One
e 08 ¥ x
sin 1/2-e©

must avoid considering expressions for constants like e
-log(3-e6) since there is no known method for determining when two of
these constants are equal. (See reference 1 for an account of problems
of this type.)

b. It is easier to deal with complex rather than real functions.

If i=,/-11is allowed as a constant, the only transcendental operations
needed are exp and log because sin, tan~1, etc., can be written in terms
1= Ziilég (;_-; . If one starts with a given
function which has an expression involving the trigonometric functions
and real constants, and then converts to complex form and finds an
elementary indefinite integral in complex form, one can convert back
to real expression involving the functions one started with. (See
reference 8 for details,)

of those two; e.g., tan

¢. Anunambiguous situation is necessary when dealing with the branches
of multiple-valued functions, .

For example, f ezz (log e%-z)dz is elementary iff the branch of the
logarithm chosen is log eZ=z., Generally, for an arbitrary symbol re- .
" presenting an elementary function, it is an undecidable problem to tell
whether there is a choice of the logarithms involved that makes the in-
tegral elementary, (See Prop. 2.2 of the revised version of reference .
7.) Here this situation will be avoided by choosing the symbols so that

137

no matter what branch of the logarithms or glgebraic functions involved
is chosen, the guestion of whether ox not the integral is elementary de-

pends only on the symbol, as in f log/k dx,

Let K be a field of constants over which one can perform algebraic opera-
tions including the factoring of polynomials. Let us consider fields of elementary
functions of the form K(z,81,...,8;) where z is the identity function and each
gi is either algebraic over XK(z,87,...,0i~1) or an exponential or logarithm of
an element of K(z,6y,...,0;.1). If §; is an exponential or logarithm, it is
transcendental over any field that can be obtained by adding constants to
K(z,075 .., 61_1) . Then §; is called a monomial over K(z, 81s+..,6i-1), and

K(z,81, ..., Bn) is regular elementary over K(z). For example, in
Q(z, €%, log e?) where Q = rational numbers, eZ is a monomial over Q(z).
However log e? is not a monomial over Q(z, e%) since it is in Q(z,27i).

z41
Similarly, e 27 is not 2 monomial over Q(z, %) since it is the square root

of an element of Q(z, &%, e).

The sequence of symbols € = <1, z¢, eXPcZe> Tepresents the generators
of the field Q(z, €%). The subscript € emphasizes that we are dealing with
symbols rather than the fu.nctipns they represent. The terms built up from these
symbols using the four binary operation symbols tes vg» —¢» ¢ Serve fo des-
ignate each element of the field. ¢ is called an elementary field description
(efd). Q(z, e?) is called a model of €. If an efd has a model which is regular
elementary over K(z), it is called regular, The efd given above is regular, but
<1€=Ze= eXp 7, log€ exp€z€> is not regular.

Regular efd's have some properties which make them particularly valuable
in finding solutions to the types of problems discussed in this paper, Since the
models-of a regular efd € -are isomorphic, problems with branches of the loga-
rithm like those described -previoﬁsly do not occur. Since bases for the field
determined by the efd can be constructed, one can determine when two elements
of the field are equal.

138

Any elementai'y function lies in a model of some regular efd, (The treat-
ment of a nonregular efd is discussed in reference 12.) The problem of inte-

gration in finite terms involves:

a. Deciding for a given efd whether it is regular.

b. Deciding whether a given symbol, built up from a regular efd, repre-
sents a function with an elementary antiderivative, and finding the anti-
derivative if it does.

3. THE ALGORITHM

In reference 7 the author gave an algorithm for completing the two steps
above for efd's corresponding to fields K(z,81,...,0p) Where each 6; isan
exponential or logarithm of an element of K(z,081,...,08;_1). In reference 9 the
" author reduced the case in which 8; may be algebraic over K{(z,87,...,0;-1)
to a problem in algebraic function theory.

The algorithm in reference 7 extends the well known partial fraction algo-
rithm of a rational function (i.e., K(z)) integration to functions in pure mono-
mial extensions of K(z). The starting point of this extension is the classical
theorem of Liouville which tells us (in our version) that for a differential field
F (i.e., a field closed under differentiation, like those discussed above) with
an algebraically closed constant field L, if an f ¢ ¥ has an elementary indefinite
integral, then f f= Vo +§3 cjlog v]. where Vo Vj are in %, and the cj are in L,

To apply the theorem to functions f in pure monomial extensions
% =K(z,681,...,6p), one sets ¥ =9(8) where 8=6,. The monomial 6 is
treated as an indeterminate over §, and a partial fraction decomposition of £

is made (which is a rational function of 8 with coefficients in 8) over 8.

139

Using Liouville's theorem to find the schemata for the functions involved in the

integral, one gets something like

ik e+l
Ake +...+A0 Bk+19 +...+BO+2jdjlong
A B
1,k A4 1,k -1 B, 1 (B
+ & +o.. F +"—k"_*_1—+...+p + D
1 51 1 1 1
Py Py
f= -\ .
A B
s, kg As,l s,k -1 Bs,l BS,O
-+ k + P + p +_1—{T+ e + p + p
s s S 8 s
Pg . Pg

where the p;'s are monic irreducible polynomials in 8, the Aj and. Bj are in
#, and the Ay y and Bi j are in. § [g]. The above schema corresponds to the
case §=1logf. (See pages 33, 38, and 39 of reference 7 for further details.)

The right-hand side of the schema shown above is differentiated. By equat-
ing corresponding parts we obtain the conditions on the B's required for the
existence of an elementary antiderivative for f. These conditions immediately

lead to the problems of:

a, Telling whether an element of 9 has an elementary indefinite integral

b. Telling whether a first~order linear differential equation with coeffi-
cients in 8 has a solution in 9 (9=K (z, 815 00058p1).

These problems are reduced to similar problems over K(z, B1s ++s6p.0), then
they finally reduced to the problem of determining whether a set.of linear

equations with coefficients in XK has a solution in K,

4., COMPUTATIONAL ASPECTS

In this section we illustrate the algorithm, but first we shall mention a use-
ful theorem that will appear in a forthcoming paper 12 which enables one to

140

easily solve the problem of determining whether a given efd is regular, This

theorem provides a monomial test, Let 9 =K(z,67,..., 8,) be a pure mono-
mial extension of K(z). Let logi;, i=1,...,r, and exp g, 1=l,...,8,

(where r+s=n) be respectively the logarithmic and exponential monomials

among @1,...,8,. For f, g in 9, log f, and exp g are not monomials over
8 iff;
r k 8 m
a, f£= cil;fl £, i1;11 {exp g;) * where c is aconstant and k; and m; are
rationals,
T s
b. g=d+ i§1 p; log f; + 121 q;8; where d is a constant and p; and g;

are rationals,

It is apparent from this theorem that log z is a monomial over K{z).
Since there are no fj or g; here, if logz were not a monomial z would equal
a constant, which is a confradiction. Likewise, eZ2 is clearly a monomial over

K(z, log z). Thus the efd <1E’ Zis 1og€ Zes OXP ZoeZ> is regular. (The

same is true for <1€, Zey XD I . T 10g€z>.)

One can consider integrating functions represented by symbols that are
builf up from it. In order to integrate elements of ¥ = K(z,01,...,6,), one
must be able to perform the four rational operations on elements of 8. One
must also be able to find the partial fraction decomposition of elements of &

over K(z,el, +ees6p.7) where K is the algebraic closure of K. This implies

that one must be able to factor the polynomials in 8 over K(z,01,...,68,-1)-
For example, in & =Q{z, log z),

47> 2z N 2z
log z - 2z2 log z - 22 log = +/22

(See page 31 of reference 7 for a discussion of how to do this.) If is generally
extremely difficult to carry out this factoring in practice, even on a computer.

i41

Let us look af some functions in Q(z, ezz, log z) (the field corresponding
to the efd <1€’Z€’ eXp Ze. Fs logeze>). Let'us examine

2 2 1

2 Z _ —logz+=+1
fZZeZ logz+> + logéz 5 + Z z
[(log)" + z] (log z?+z

One must be able to set up a schema which indicates the form of the infegral.
Here one knows that if the integral is elementary it is of the form

dz

2 Bi,1
Bz(log z)” + By log z + B0 + Edi logD, + —

(5 — *+¢ log[(logz)z-i-z]
(logz)” +z

where BO’ Bl’ 32

are in Q(z,ezz), Bl 1 is in Q(z,ezz) [log z], and ¢y and
d; are constants,

Differentiate and get

D!
2 (2 .) 1 i
B}, (log z) +(Z Bz—i-Bllogz+ZBl+Bb+Edi D;
B (31 1 B
L BalE 0g Z +

2
. 1,11 ‘e Elogz+1
[(og z)z + z}z (log z)2 + Z

L (log z)z + Z

Now equating the corresponding parts of the two expressions for the inte-
grand one gets

. 2 1 2
T = —_— = Z
Bz 0 so BZ is a constant and z B2 + B1 2ze

Thus, B, = fz zeZz dz - 2B, log z.

Here one has to integrate an element of ¥ = Q(z, ezz). We assume that this
can be done using induction. Thus B, = %% 4 b; - 2By log z where by isa

constant. B, =0 since B, mustbe in Q(z, ezz).

142

Thus,

2 b : 2
2 ez 1 7 _eZ
= gZ% 4 = — +B! =&
B1 e bl‘ z 3 B0 + (Eci log Di) p

B0 + Edi log Di +b1 logz = fO = constant,

S0 b1 can be taken to be 0.
2 - 9
By j\Flogz+1)=logz -2 mod ({log z)° + z)

By the Euclidean algorithm the equation A[% log z + 1] + B [(log z)2 + z]

=log z - 2 can be solved for A and B in Q[z, log zl, degree A<2Z,

and degree
B =0.

Thus, one must be able to find ged's of polynomials in several variables
(the monomials are the variables here).

In this case, A=logz, B=- % Thus B1 1= ~log =.

+ =
[{log z)2 + z]2 (log z)2 +z

2 1
=logz+= +1 B, ..
Substituting this into log z - 2 z Z - 1,2 T
(log z)° + =z

+¢q log [(log z)2 + z]:|' , after canceling one obtains 1 (—i— logz+1)= —i— logz+1.,

2
Therefore, ¢y = 1. These calculations show that the integral is e*” log =z

_ logz log [(log z)2 + z].
(logz) +z

i >
If, instead of <1, Zes €XP Zgo o Zigs Iog€ Ze>s <1€’Ze’ logeze, €XP %+ Ze™>

was chosen as the efd, the integrand would be written as

2

2 1
_ ~logz+=-+1
e” (2z log z +l) + logz -2 Z z

+
[(log z)2 + z]2 (log z)2 + 7

Here the schema for the solution runs Bl ez2 + BO + Edi log Di

143

where B Bl’ Di are in Q(z, log z) and the di are constants, For B, one

0’ 1
obtains B1 + 2z B1 = 2z log z + -;— . One is to determine if this differential equa-

tion has a solution Q(z, log z). By a discussion similar to that in the next ex-
ample (or by inspection) we see that B, = log z. The rest of this problem is

worked in a manner similar to the preceding,

It is not cleaxr whether a permutation of the monomials in an efd can lead to

a simpler computation. In certain cases the choice of an efd is important. For
example, it would be better to obtain o72/2 as an element of the field
2
Q(z, ez%/ 2) than the field Q(z, €%, JeZ%).
We next examine, in the field Q(z, log z, ezz),
f 2/ -1 2 11 3 2
e ,:(—"2‘ =2 +2)10gz—m+z—2z + 3z +2:|dz
{(z+1)

. . 2
This integral must be for the form AeZ” where A
Br © €Q(z, log 2)

‘ -1 2 ! 1 1 3 2
* = | —_— - - “ -2
() A + 2zA ()2 1+2 logz]+ Z +3z +2

A must be in Q(z) [log z] since any denominator would remain after differen-

tiation. Thus,
A=Aklogkz+Ak”110gk“1 Z+...

A
k k k-1
A’=Ai{10g\ Z+(Ai:—1+k—z) 1o ZoA aes

In equation (*) the temms of highest degree in log z must cancel, so one

gets k=1 or k >1 and Ai{ + 2z Ak = 0, From the latter one gefs A=c e‘Z2

which is impossible since eZ~ is a monomial over Q(z).

144

Thus, k=1

AT . X 2
A1+22A1 (2_1)2] +2

1 2
Al + [2(z+1)-2] A = - - +2
1 1 (@ +1)2 Z+1

one obtains A, = 'ﬁ% (see page 36 of reference 8).

- a —(z+l) 2a + (z+1)2 2a=+~1 - 2(z+1) +2(z+1)2.

_ - 1
Thus, a=1 and Al— 71l
A
y L1 __ 1 1 ,3 2
A0+z +22A0 P 22" + 3z +2

A‘0+2zA0=-2z3+322+2

_ k
Let AO—bkz +...

k+1=3,

k=2,

3 2 .8 .2
2b22+b1+2z b2+2z b1+2zb0——22 +3z +2,

145

It is necessary to be able to solve systems of linear equations with constant

coefficients.
2b2 = -2
.‘2.101 =3
This system cannot be solved, so the
2b2 + Zbo =0 integral is not elementary.
bl =2
5, SUMMARY

The formulation of the classical problem of integration in finite terms was
discussed. The concept of a monomial was introduced, and it was indicated how
one goes about integrating elements of pure monomial extensions
K (z, 91,..., 6y) of K(z), where K is a field of constants and z an indeter-
minate. The algorithm requires one to have a facility for performing operations
on the elements of a field of rational functions of several variables

8 =K(x1,..., Xm), viz.,

a. Performing the four rational operations on §

b. Factoring elements of K [5eees Xm] over K where K is the
algebraic closure of K

¢. Finding the partial fraction decomposition of elements of 8 over
f(xl, cees X)

d. Computing ged's of pairs of elements of K[xl, sees Xm]

e. Solving simultaneous sets of linear equations with coefficients in K.

146

10,

11.

12,

REFERENCES

S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, 1966.

J. Liouville, "Sur la determination des integrales dont la valeur est algebri-
que, " Paris Ecole Polytechnique Journal, 14, 1833, pp. 124-193.

J. Liouville, "Memoire sir les transcendantes elliptiques de premiere et de
seconde espece, considerees comme fonctiones de leur amplitude, "Paris
Ecole Polytechnique Journal, 14, 1833, pp. 57-83.

D.D. Mordoukhay-Boltovskoy, ''On the Integration of transcendental
functions, ' Warsaw Universitet, Izvietiia, nos. 6-9, 1913 (Russian),

A. Ostrowski, "Sur l'integrabilite elementare de quelques classes
d'expressions, " Commentarii Mathematique Helvetici, 28, 1946, pp.
283-308.

D. Richardson, "Some Unsolvabie Problems Involving Functions of a Real
Variable, " Doctoral dissertation, University of Bristol, England, 1966.

R. H. Risch, "The problem of integration in finite terms," SDC document
SP-2801/000/00, 23 March 1967 (To appear in revised form in the
Transactions of the American Mathematical Society in May 1969),

R.H. Risch, '"On real elementary functions, ' SDC document SP/2801/001/
00, 22 May 1967.

R. H. Risch, "On the integration of elementary functions which are built up
using algebraic operations, " SDC document SP-2801/002/00, 22 June 1968.

J.F. Ritt, Integration in finite terms, Liouville's theory of elementary
methods, Columbia University Press, 1948,

M. Rosenlicht, '"Liouville's theorem on functions with elementary integrals, "
Pacific Journal of Mathematics, 24, 1968, pp. 1563-161. ’

R.H. Risch, "Further Results on Elementary Functions' (o appear).

147

PRECEDING PAGE BLANK NOT FILMED

ASYMPTOTICS FOR FORMULA MANIPULATION

by

John H. Halton
Computer Sciences Department
The University of Wisconsin

Madison, Wisconsin

N71-19195

Abstract

This paper presents some proposals for the implementa-
tion, in a computer formula-manipulation system, of a sub~
program for computing and manipulating asymptotic expansions,
The first paxt (sections 1 to 4) reviews the velevant mathe—
matical theory. The second part (sections 5 to 6) discusses
implementation of the computations involved in an asympotic
package given a limit-subprogram. Notions of commensurate
functions (section 3) and of natural asymptotic expansions
(section 5) are proposed. Algorithms are given for forming
linear combinations, products, and arbitrary real powers of
given asymptotic expansions (the explicit expression for &
real power of an asymptotic series had to be derived: this
apparently new result is given in Lemma 15). Possible ex-
tensions and difficulties are considered throughout the discussion.

149

PRECEDING PAGH BLANK NOT FILMED

ASYMPTOTICS FOR FORMULA MANIPULATION
by
John H. Halton

1., INTRODUCTION

This paper presents some proposals for implementing, in a computer for-
mula manipulation system, a subprogram for computing and manipulating asymp-
totic expansions. These proposals are viewed as merely a beginning; sufficient
(it would seem) to immediately construct only the most primitive and limited
kind of asymptotic package in an existing formula-manipulation system (such as
PL/I-FORMAC); but containing, despite many unresolved questions and difficul-
ties, the seeds of a much more powerful and broad-ranging facility, It is in the

) hope of stimulating further research and development of the ideas adumbrated

here that this paper is published.

Sections 2 to 4 review the relevant (more elementary) parts of the theory of
asymptotic series. Section 5 deals with the detailed implementation of theoret-
ical results in a series of programmed algorithms (expressed in a suitable, ad

hoc, simple programming language).

Though the concepis described below can be extended to more general situa-
tions, we limited ourselves to real-valued functions defined on either finite ox
infinite intervals, or countable unions of intervals, on the real line. Such func-

tions indlude most of those upon which computations are performed.

Frequently a function is defined in an implicit manner, and it cannot be
given in closed form in terms of simple functions. For example, the function
may be defined by an integral or a differential equation. It may be, too, that
the behavior of the function is not readily perceived from an examination of a
table of values, and that a convergent power series is not available (or would
require the evaluation of an excessive number of terms) in the region under

consideration, as is the case when this region contains a gingularity of the

151

function. Even when these difficulties are absent, it still may be more labor-
ious or complicated than we find acceptable fo examine the behavior of the func~
tion in these explicit terms. Such situations ocecur very frequently in pure
mathematics (analysis and theory of differential and integral equations), numer-
ical analysis, all branches of theoretical physics, statistics, and engineering—

indeed whenever what is broadly termed "advanced calculus" is used.

In such cases, we are often interested in finding a relatively simple and
well-understood "easy' function ¢, whose behavior, in the neighborhood of a
certain point &, is very similar to the behavior of the given "difficult" func-
tion f. (The point & must be a limit-point of the domains of definition of ¢
and of f, and we include o« =1 @ if the domains of ¢ and f are unbounded.)
When the relation between f(x) and ¢(x}, for x in some neighborhood of ¢,
is one of approximate equality, we say that ¢ is an approximation to f near
¢, When the relation is defined in the manner which we are about to discuss,

we say that ¢ is an asymptotic approxi:métion or an asymptoiic form, for f

near o, or justthat ¢ is asymptoticto {f as x-¢.

The study of asymptotic relations is a major branch of mathematical analy~
sis (see references 1, 2, 3 and 4); but here we consider only the elementary as-
pects of the subject which are relevant to the construction of an asymptotic
package to be included in a formula-manipulation system. Both theorems and
algorithms will be given for the most straightforward operations.

2. THE ORDER-SYMBOLS

Let ® denote the real line, with ifs usual (order) topology and (Lebesgue)
measure, induced by the ordering x < y and the distance |X -y l between the

points corresponding tq real numbers x and y. Letthe equation
9 = 8,0 (2)

indicate that the set § € R is the intersection of the domains of definition of
the functions f and ¢, which take their valuesin R, (We shall later consider
larger collections of functions, and we shall always let § denote the

152

intersection of all their domains, this being indicated by an equation such.as
8 = 8(f, 07, ©,, ***, @) only when necessary for clarity.) Let R denote

the extended real line (R compactified by adjoining to it the two points * =),
let § bethe closureof & in R, andlet ¢ ¢ §. If we can find a neighbor-
hood T, of & in 8 and a constant A > 0, such that

lfx) | = A |ox) | forall x¢ g - {2)
then we shall write
t=0@),; 3)

the subscript « being omitted when it is well understood. An equivalent nota-
tion, also often seen, is '

i(x) = Ofp®)] as x-¢ . _ (4)

In reference 2 de Bruijn points out that this notation is easily liable to
abuse. The = sign is used very unconventionally, rather as if one wrote
x = L(y) instead of x< y . In both cases, one must either treat = O
(for =1) as a single symbol or interpret Q((‘D)oz as denoting a class of func~
tions—all f satisfying (2) for some J[a and A {and similarly L(y) as a

class of real numbers (all x <y, for the given Y)). In the latter interpreta~

tion, it would be more correct towrite fe _Q(qo)a or x€ L{y) . The clas\si-
cal notation can be made fairly clear, if one interprets O{) as denoting a
o

generic member of the class of functions which satisfy (2) for somej and
o

A, with the understanding that O(¢) does not necessarily denofe the same
o

member of the class on different cccurrences of the symbol, even in the same

equation,

153

If we define the function o on ® to R by

[tz o) | if o) # 0 2
pey =)0 i £ = @) = 0 ! ®)
® if f(x) # 0 and (P(X)=OS

then we see that (3) or (4) holds when p(x) is bounded (away from + @) on
some neighborhood 31& of @ . Inparticular, this will be the case if f(x)/¢ (x)

tends to a finite limit as x— o .
An equivalent notation to (3} is
© = Qi) . (6)

Here however, we are saying that ¢ is a member of a class of functions which
satisfy (2) for some 31& and A, for the given function f and point o« . If

we define ¢ on & to R (essentially as 1 ,o) by

lowy/t | it fx) # 0
oy = ® H o) =1£(x)=0 _ (7)
@ i o) #0 and f(x) =0
then we have (é) whenever o (x) is bounded away from 0 on some neighbor-

hood f)'(a of &. Inparticular, this will be the case if ¢(x)/f(x) tendsto a
nonzero (possibly infinite) limit as x-o

Similarly, if for the given f, ¢, and & € §,
P(x)~ 0 as x-»g in 9, (8)
we write
f =
.= o), 9
omitting the o whenever safe. Equivalently, we have

ox)+* as x>« in 8, (10)

154

and write
© = W), . (12)

A number of simple lemmas can now be obtained without much difficulty.
Since they often apply similarly to all four symbols O, &, o, and w, we
can abbreviate them by using Y to denote any of these symbols.

Lemma 1
If p > 0, then

t = Yo),=> | £17= Yo ?), . (12)

Lemma 2

If 1,Cy, °°° C 2TE real constants and we have
fi = Y((pi)a for i=1,2,"*",k (13)

with Y denoting the same symbol for all i, then

K K
Zim Loyl = Y@y legey g, - ' (1)

The modulus bars can be removed from the left of (14) (but not the right) if Y
is O or g, and from the right (but not the left) if Y is Q or w.
The relation
I(x,y) = Ylox,y)] as x»a in &8 (15)

in which the functions are defined for y in some set K, is said to hold uni-

formly in K if we can find a single neighborhood J o of @ in § and a‘single

constant A > 0, such that (2) will hold for every y in X . For example,
{(13) can be put in the form (15), with X ={1,2,-++,k}. For any finite X,
the relation is always uniform, of course.

155

Lemma 3

-1f K is 2 set on which we define a measure i and c(y) is a real-valued
measurable function on. X, and if (15) holds uniformly in X for measurable
functions f and ¢, then

f | e()i(x,y) |dp) = Y¢ f le) @ &,y) | de @) (16)
X X
as x-¢ in § . In particular, if relations (13) extend fo all positive integers
i uniformly, then

Dia lofi | = Y@y 1o 1)y, - (17)

{(The rules for removing modulus bars apply to (16} and (17) as they did to
(14) in Lemma 2.)

Lemma 4

If (13) holds, then

k - k
Miafy = WM 0)g - (18)

Lemma 5

Let f and ¢ be Lebesgue-measurable in some interval [), o] C 8.
Then

(8.4 o
f= Y(w);» | £(t) | dt =Y‘f |o(t) | dt) as x-a . (19)
p. 4

X

(Removal of modulus bars applies as in lemmas.2 and 3.)

We mentioned earlier that, for given ¢ and ¢, a preferable notation to
" (8) mightbe fe¢ Q(go)a, with Q’(qo)a denoting the class of functions satisfying

(2) for some Nz and A, In this paper a statement of the form Y (gol)a = Yz(‘P 2)0z

means that a member of the first class is also a member of the second class, so a

better notation might be Yl{‘pl)a c Yz(q)z)a . This should be borne in mind when

156

the following three lemmas are considered. Again, since the proofs a1 » completely
straightforward, they are omitted.

Lemma 6

YY)l = Ylp) . (20)
This is to be interpreted-as meaning that, if f=Y() and ¥ =Y(p),
then f= Y(p) . Similar interpretations apply to the results below.

Qlolp)] = o(p), 0[O} = olp),

Qlo@] = wip), wide)] = we) -

(21)

Lemma 7

Yip) YW) = Yleop) - (22)
This is to be interpreted as meaning that, if £ = Y(p) and g = Y(¥), then
fg = Y@ -

O(p)o(y) = olpdh), SAp)wl) = wleP) . (s-3)

D) + olp) = O(p), o) + wlp) = wlp) . (24)
Lemma 8

o(p) = Olp), wlp) = Ap) . (25)

¢= Ofp), © = Qo) . (26)

fO(p) = Olfp), Ap) = Qlfp) . (27)

1/0(p) = Y1/p), 1/o@@) = u{1/9),. 28)
/) = O/}, 1/w(p) = o(i/@) .

If C is a finite nonzero constant, then

C Yp) = L) . (29)

-t
N
1

3. ASYMPTOTIC EQUIVALENCE
If f and g satisfy both
f=0(@), and g =0, .
or equivalently, (30)
£ = 0(g), and f = Qg),
i.e., if we can find a neighborhood Dla of o in & aﬁd two constants A > B

> 0, such that

Blgx) | = f(x) < A|gx) | forall xe¢ Ny, (31)

then we write
frx g at o (32)

and say that f and g are commensurafe at & . I is clear that =< has the

three properties of an equivalence relation [(Vf) f=£, (Vf,g) g => g={,
and (Vi,g,h) f=g and g.=h = f»=h .} I thus splits the class of all func-
tions (or any subclass) into equivalence classes, such that two functions are
commensurate if and only if they belong to the same equivalence class. In par-
ticular, we note that frg at o if f(x)/ g(x) tends to a finite nonzero limit

as x-o .
More strongly, if
f(x)/g(x)~1 as x~a in 8, (33)
then we write
f~g a « {34)

and say that f and g are asymptotic (or asymptotically equivalent). This is

an equivalence relation and yields equivalence classes of functions. Note that
the asymptotic equivalence classes are distributed as subsets of the commen-

surate equivalence classes.

158

We see that (34) is equivalent to
= = 5
£f=gll+o(l),] or £=g+o(g), - (35)
We note also that if k is a constant, f~k at o is equivalentto f(x)—k as
x—~ & , Similarly, we see that O(k) o is the class of all functions finitely

bounded in some neighborhood of &, and that o(k) is the class of all functions
which (The choice of the value of k in these last two
cases is arbitrary and irrelevant, by (29), solong as k #0; and k =1 is usually

used.)
Given a sequence of functions Pp1P1sPys """ with 8 = Q(“DO’Q‘Dl"IOZ’ ety
and some « € 8, if
on = 9(‘!91{_1)& for k = 132:33 s (36)

we say that they form an asymptotic sequence for x- ¢ in § . If the relations

(36) are wniform in k, we have a uniformly asymptotic sequence.

A very important example of an asymptotic sequence for x -~ o in 9,

with & {inite, is

o) = o) (k= 0,1,2,+4) . (37)

It is clear that this sequence is uniformly asymptotic, since every

qgk(x)/ (pk_l(x) = x-¢ . For x- =, the appropriate sequence corresponding to
(37) is

PplE) = x5 (= 0,1,2,--) . (38)

L.emma 9

Let [(pk]f;:() be an asymptotic sequence. Then: (i} any subsequence

{ Pr];=0 (ko <ky < kz < «++} is asymptotic; (ii) for any p > 0,
T

[]gok|p]f{°=0 is any asympfotic sequence; (iii) if Py = z,bk for k=0,1,2,---,

159

@ © -
then [¢k]k=0 is an asymptotic sequence; and (iv) if [<Pk]k=0 and {z,bk]k= o are
asymptotic sequences, so are [Itpk| + Izpk] Ji—o? [cpkwk]i;o, and
[fcpk]k=0, where f is any function.

The proof of (i) follows from (20); that of (ii) from Lemma 1, that of
(iii) from (21), and that of (iv) from Lemma 2, Lemma 4, and the definition

(8) with (5). Two asymptotic sequences related as in (iii) are called equiva-

lent,

Lemma 10

(i) o [qok(x,y)]{;o is asymptotic, as x—¢ in O, uniformly in y €KX,
if all cpk are measurable relative fo a measure ¢ on X, andif ¢ 0 is
integrable on X, then | ./J.{ lcpk(x, ¥) Idp(y)];: -0 is an.asymptotic sequence.
(ii) o [@k(x)]lcr;o is asymptotic, if all the Py are measurable? and Py is in-
tegrable in some neighborhood of «, relative to the Lebesgue measure on R,

a [=e]
then [_[|90k(t) ldt]k=0 is an asymplotic sequence for x—-¢o in 8 .
X

The proof of (i) is a consequence of Lemma 3; that of (ii) follows from

Lemma 5,

4, ASYMPTOTIC SERIES

We now turn to a concept due, in its present form, to Poincare 5 and

Sf:ieltjes.6 Let [(pk(x)};::o be an asymptotic sequence for x—-¢ in

D(P:901:95, *"*) C R . Consider the formal series

=Dy APy o (39)
at present :simply a composite symbol without necessary mathematical meaning;

though its partial sums

160

_ <In-1
Sm = Zk=0 %%k (40)

are well defined functions, If, for a function f defined on a set FC & such
that o« ¢ ¥, we know that

£-8,,1 =0@), for m=0,1,2,3,...; (41)

then we write

f~8
or (42)

fx) = S(x) as x—¢ in #,

and we say that S is an asymptotic series (or asymptotic expansion) for f at

¢ . I follows immediately from (41) that

f-8, =a o +0o), (43)

for m =0,1,2,+++ (where we put S0 = (0) . This yields Lemma 11,

Lemma 11

If S is an asymptotic series for f at o, thenfor m = 0,1,2,+**,

fx) - 8
a = lim [_u]’

m . a Py, &
(in F)
and so S is the unique asymptotic series for f at o, in terms of the given
asymptotic sequence [‘pk]k=0 .

44}

Note that if S is an asymptotic series for f and if Py = 0(1), then (41)
implies the weaker property

few Sm 1—'0 as x—o (45)

+

quuations of particular significance to the algorithms presenfed in section 5
will be marked in this manner.

161

for each value of m in the set f'0,1,2, 3, f . By contrast, if 8 were a con-

vergent series for f, then we would have

f-8

-0 as m-®
m+L as m

for each value of x in the region of convergence.

We observe that the converse of the uniqueness assertion of Lemma 11 is
false: a formal series (39) does not uniquely determine a function to which it
is asymptotic, If f~ S and g~ S, then we only require that

f-g =Q(§Dm)a for m = 0,1,2,+°" . (46)

For example, if we use the sequence (38) as x-«, f - g could be like e .
Further, given an asymptotic sequence [(pk];:zo for x» in 9, we can

find a function f, defined on §, for which no asymptotic series exists. For
example, if the sequence is (38) for x—«, the function sin x has no asymp-

totic series since, formally, by (44), we would have ag = 1in1X—;ooSin x, but
no such limit exists.
The simple examples (37) and (38) can be slightly generalized by putting
0 /0, 1) = A(x) (& =1,2,8,--);
where (4'7}‘t
A0 as x> in 9 .
In that case,
R (48)
and
S =0 5. a (49)
o~ k=0

will be ecalled an asympiotic power series,

162

Lemma 12

(i I fi(x)m (p (x) for i=1,2,+-+, k as x~¢ in %, where

301

[qu];zo is asymptotic as x~@ in F, then for any real numbers C12Cgs """ Cps

sk

PRER o) - (50)F

f)~ —O(El—l iij

(iiy If fi(x)ss 2|=0 11(,0 (x) uniformly in i (i = 1,2,3,-++) as x~»¢ iIn &,

and if Ei=lci is absolutely convergent, while Ei=lciaij converges for
j=0,1,2,---, then E;lcifi(x) converges for all x in some neighborhood

of ¢, and

B ofi) ~ B (B e) - 61"

1—1 ii

(i) ¥ f(x,y) ~ z‘]f’zoaj(y)qaj(x) uniformly in y € K, ifthe i(x,y) (for each x
in some neighborhood of «) and aj(y) (for each j) are measurable relative to

a measure u on K, if c(y) is integrable on X, and if the integrals
,’;{ c(y)aj(y)du (y) exist (for each j), then the integral j;{ ey, y)du(y) exists

for each x in some neighborhood of ¢, and
J ottt 71du) ~ B y(f et - (52)

Parts (i) and (ii) of this lemma are special cases of part (iii), with

K= {1,2, ek E and X = { 1,2,8,¢+» }} respectively. The three parts corre-
spond respectively to (14), (17), and (16), with Y = o and modulus bars

removed from the left, To prove (iii), we note that, since f~ Z ;o =Oaj(pj

uniformly in y as x-¢, by the relations (36) and (41) we know that, for
all m =0,1,2,++-,

163

i(x,y) - 30](.V)QOJ(X)_O[QD x)] (53)

uniformly in y. Thus by Lemma 3, we go from (15) (in the form of (53)) to
(i6), with Y= o, to get

J;{ ! £65,7) - Biga 000,69} duty) = g[wm(x)j}'{ | o) |dr()]
= ol ()1 , (54)

by (29) and (21), since c(y) is g~integrable. As we noted in the proof of
Lemma 3, the integral on the left of (54) exists for some neighborhood Jla

of o in ¥, and in that neighborhood

j;< o) {1(x,5) - Zia: 000,00} di(y) =
fK (), y)dRy) = T2 j;{ ofy)a,(5)dr(3))o i(x) (55)

since the integrals j;{ c(y)aj(y)du(y) are supposed to exist for each j. This
shows that ‘/J.{ c(y)i(x,y)du(y) also exists for x ¢ Ny » Finally, when we com-

bine (54) and (55) to obtain the relation (41) corresponding to (52), we
complete the proof of part (iii) of our lemma,

Lemma 13

it f.mE

s §=0 13@] for i=1,2,***k as x»¢ in %, where [(pj]j=0 is

asymptotic as x—~¢ in F, and if the set of functions l'Ik 1t.o » Wwith each 3
ranging through 0,1,2,---, can be rearranged into an asymptotic sequence

o
[t]t=0 (i.e., for each [ji’ j2’ ce jk] we have a corresponding

t= g(jlsjzs "'!jk))s then
K f~

t
Mg~ B ooy)

164

where < is the sum of all products aljlaij .. .akjk for which t = g(jl,jz, see, jk).

In particular, if we are dealing with a set of asymptotic power series which satisfy
(48) and (49), then

B01sdgr o3 = Dogd 7'
and . -
by = 000" = 0g o, . 8"
To prove the lemma, we first note that, if Hl.:=1<pji = gbt, then any product
with only one index j; changed to j,” will be a g, with t' >t if 37>,
and t <t if ji' <j;, by (36). Further; if the products HI.:=1qoji can be
ordered in an asymptotic sequence, then products H?:ﬁ"j.’ for any h < k,

1

can also be ordered in an asymptotic sequence [;b,gh)];;o (since the ordering
will be the same as that of 1'111.§=1<pj with ji =0 for h< is k). Suppose that
i

the relation (56) holds with k replacedby h -1 (h< k) (this is trivially

true for h =2), and consider Hlil=1fi. We know by (41) that

h-1 m (b1 -1
e Z71i:=01’1:‘1’1§) +2("b§n) 2
and S (59)
n
Hence
h _m _n (h-1) (h-1) {h-1)
Timafy = Dio0B jmoPifply - @5 + 20g¥Pyy) + 0y o).

* g(%bg“l)@n)

165

by (23). Now we know that qoozbgl-l) = qbi,h) and 1[)(()]1-1)(,0]1 = w‘(sh) for some
r and s; dependingon m and n., The double sum contains a finite number

w < (m+1)(n+l) of distinct z,bgh). Thus, for any v < min {r,s,w}, we have

R = Blgadl) + ol (60)

where the coefficients q, are obtained by summing ptahj for all values of t

and j for which !bi(;h_l)tpj = l,bgl) . Equation (60) is of the form (41) for

h

m._.£f Finally, we note that the double sum contains the (m+1) terms

i=1% °
;bi(:h—l)qo 0 for which the corresponding wl(lh) are distinet and have u< r,

Thus r>m and w>m; and, similarly, s>n and w> n, It follows that we
can take any v < min {m,n} in (60), so that (60) holds for all values of v
(as is shown by taking m and n large enough), This proves, by induction,
that (56) holds for k factors.

In the case of asymptotic power series, the relations (57) and (58) fol-

low immediately.
The sequence R

-k

@ (%) = x sin2¥x (k=0,1,2,) (61)

has rpk(x)/ P 1) = 2x Loos 25 1x0 as x~%, so that it is uniformly asymp-

totic. However, we see that

[‘Pk(x)]z/ Pr_ 10y 4(x) = cos Zk_lx/ cos 25 ; (62)

and so this ratio oscillates infinitely, and infinitely often as x-—« (since

k+1
)

cos 2k°1x vanishes when x = (4n+2)(n/2 , and cos zkx vanishes when

x = (dn+1)/25H

, for all values of the integer n). This shows that the products
2

Py and gok_lqok+1 cannot be ordered by relation (36). Thus the condition of

Lemma 13 is not necessarily satisfied,

166

Lemma 15
If fo J/ 490];:0 is a totally multiplicative asymptotic sequence for }\J\

9, and if (64) holds as x~»a in ¥C 8, then for any real r,

r _® I
£~ 8y ey B _gpphys : 63)

where 2 is the sum of all terms)

P(r=1) o {riy~imeeomi 41) /& T2 G
12k (1) (2) B "‘k), 66
OO N .
RS PRERE W a, EN g

with each ij:zO for 1< j<k, but i

1k>0, and any k=0,1,2,++« (When

k=0,t=0,p0 1, and zp—l) for which 8; 1, 1 times;

1+12+ +lk

2, i,times; ---, Kk, iktimes) = t. Each i is the sum of a finite number

2

of terms, -

To prove this lemma, we firét note that, by (41), to have (65) we must
show that, for n=0,1,2,+--,

= a0y Bl pd, + 0w - , (6D

By the general binomial theorem, since (64) implies (41),

__.T T &% r(r-lj-°-(r—h+1)
£ =a," 0y Iy BT ¢

where (68)

s -xpm (2% +o(’ﬁ£).
m Fl\agey) ~\%o

By the conditions of this lemma, @ qol/ P and, for any n, apower s

will exist, such that @mh = g(ibn) whenever h > s, sothat for any € > 0,

there is a neighborhood &,(€) of @ in ¥, such that |®m(x)]s se Y n(x)[

168

The last lemma corresponded to Lemma 4. The next one corresponds to

Lemma 5.
Lemma 14

Let f= X ;;Oaj(‘oj as x~¢ in F, where [@j]]zo is asymptotic as x~ ¢
in %, andlet f and all the qoj be Lebesgue-integrable in some interval

,o1€ ¥, withthe @,20(j =0,1,2,+-+) in [A,] . Then

o . o ;
f fitydt ~ 2, a.f P (t)dt . (63)
< FOIJS,
The proof is a straightforward conseqguence of Lemma 5, Lemma 10 (ii),
and (41). It is omitted here.
By Lemma 9 (i), a subsequence of an asymptotic sequence is also asymp-
totic, Thus we may, without loss of generality, suppose that
fa 2 0P, with a; #0, a1 0. (64)

We call the sequence of <pj totally multiplicative under the following con-
ditions: the asymptotic sequence [goj];o is such that all the products

Hliizlcpj (with each ji ranging through the values 0,1,2,++-, and
i

k=1,2,8,+++) canbe ordered in an asymptotic sequence [z,bt];__o (i.e., for

each [j;,jp,"**>3], wehavea t =g (j;,J;,+<+,J;)); and for every j, and

jo» with j, < j,, there is apower k, such that (pl.c =o(p.), while for
2 1 2 iy ip

every j1 and k there is a jz’ such that cpjz = _0_((,0].1;).

The next lemma presents a result which does not appear to be in the
literature. .

167

whenever x € &y(€). Also, Qa(€) can be so chosen that ItIJm(x)| <1/2,

since @m(x)—m as x~a . Thus, for x € & (¢),

IS o r(r~-1)---(r-h+l)
' hEs+l hl

@01 | < €900 By | FELE OB | 172)

S+l ht

and, since the sum on the right converges, this shows that the sum on the left is !
g(zl)n) . Thus (68) yields that

&= a03: ﬁoor{zizo r(r—l)-l-li:(r-h+l) @mh +9_wn)} ' (69)

We note, too, that any product of P52 arising from ferms in Cbmh with

h > s, will certainly have a pg-function with a value strictly greater than n.

By applying the multinomial theorem to each @mh in (69), we get

r{r-1) -+ (r-h+l)
r T 5 —_— - T R T
£ =a5q {zh=0 2 iy, e R L R

i i i | B SR
(aﬁol . aziz)z-... *mPm) ™ o Kﬁl) te m] + o)}; (70)
20%0 270 %% ®0 v

and if we choose m, as we always can under the conditions of this lemma, so
that som/qoo = _Q(d)n}, we can simplify (70) to

‘ i A1
o By gty R (2)1(%)2

, R | LTS - =
L 12T2r m, “1°72 m a,9¢ 8q®

Iy Hg+e el m=h

a_ o m)
...(anqlom) +g<<bn)}. , (71)

169

We now see that the finite sum. of terms in (71) can be rearranged, in the

mamner described in the assertion of the lemma, to form terms pt¢’t . (Any

terms with t > n are Iumped into the g{z])n) of (67).)

In the particular case of asymptotic power series, when (48) holds, the sequence

[(pj/go 0]}‘;0 = '[Aj];o is evidently totally multiplicative “;ith P £ = At , Also, it

u © uk-1 t
fa a0, + alqpok + I o8 0 o™ (72)
with 8 7 0 and ay # 0, then Equation (71) simplifies to
_ ~1)--~(r~h+1)
f£=aF r{zs L <€l Rl
0 o =0,211’12’“"1m. PR PRERE
iy Hode - -+1m=h
i, i i BUFH, 4214 +Hm-1)i
8 13’2 2_”am ma0 h)\ 273 m +g(>&n)} (73)1'

and we choose s = [n/u] (where [x] denotes the greatest integer not greater
than x) and m=n-u+1.

We see from Lemmas 12 through 15 that, under fairly likely and lax re-
strictions, we can formally combine the asymptotic series of given functions by
addition, subtraction, multiplication, division, and taking arbitrary powers, as
well as by forming infinite sums and integrals, and obtain the asymptotic series
of the corresponding combinations of functions. By a reversal of Lemma 14, we

can also differentiate an asymptotic series when the resulting series satisfies
the conditions of Lemma 14, as follows.

Lemma 16

I f= E;;()ajq:j as X-g in ¥, where ®y =Q(1)oe and [cpj};o is asymp-~

toticas x»o in %, if f and the ¢y are differentiable almost everywhere in

170

some interval [\,0]C %, with @20 in [x,a], & [¢'j];°=0 is asymptotic as
x~0 in &, andif £ ~ &. b.p., then a, =h, (j=1,2,3,) .
n ¥ EJ=0 %3 i 4)
By Lemma 14 we note that, since f° and the tp; are Lebesgue-integrable

in [A,al, by (63), and since f~a0c90=_Q(1) as x»o; if A<x<y<gq,

then

v, «
i(y) - ix) = L I {t)dt ~ 2j=0bj f <P (tydt = 23_0 J[fP)~ ey .

From this, since qoj(y)-—»o as y-~o if §=1,2,3,--+, weget
fx) ~ Lim. 1) = e)] + q_gby@s(x) - (74)
o
Formula (44) now shows that aj =bj for j=21 . (For j=0, we have no such
result; but this corresponds to the Varbifrary constant" of integration.)

When we deal with asymptotic power series, this result can be somewhat

strengthened by Lemma 17.

Lemma 17

¥ fa quZ:J Oa XJ as x-»q in ¥, where) -0 as x~o in %, andif

f, ?g and A are differentiable in %, and if

- ' m . -"1 Af
a)+ A2, X 75
§=197; - (79)

F T ot

(i.e., (&/ ch) ° has an asymptotic power series in [cpo}f?\]];ozo); tilen
a.j = b. = 1,2,3, ee) s

The proof of this is snnple and it is given in all the references 1, 2, 3,
and 4,

171

7 discusses the operations described in Lemmas 12 through 15, as

Henrici
applied to convergent power-series. Although he does not give the detailed re-
sults of Lemma 15, he does mention an excellent alternative approach (unfor-
tunately not applicable to general asymptotic series) which he attributes to
J.C.P. Miller. Its application fo asympiotic power series in which ¢ 0= 1

runs as follows,

o«

faoZo an) and £'a x‘z;zljajxj‘l LI aEI::Opk)\k, then

=077
LIRS o 3 ‘e O
ffy =zxff ~7TA Ek=0pkk Ej=1]aj)\ and

£ = Nz kp AT

]
0%t -

Thus, if we equate coefficients of powers of) (using lemmas 11 and 13 to jus-
tifjrlour action), we get

1 _h "
Phal = melyay Zk=o FOKH)Kly e qm (50,12, 009) 76)!

From this the coefficients P1:Pg,Pg, " "° aTE recursively obtained in terms of
Py and the a.j (j=0,1,2,+++) . Since By = aor, the problem of finding all the

Py is solved, straig.htforwardly and recursively. ‘

5, IMPLEMENTATION OF AN ASYMPTOTIC SUBPROGRAM
Problems and Assumptions

" We now turn to the main purpose of this paper; namely, implementing an
asymptotic package, a subprogram to be included in a formula-manipulation
system. What is described here is to be seen as just a basic starting package,
which hopefully will be expanded in scope and power as larger computers be-

come available,

As was explained in section 3, for any given & and any « € ﬁ, all func~
tions will fall into commensurate equivalence classes. The general theoretical

172

treatment of these classes will lead to difficulties involving the axiom of un-
countable choice; but in any actual computational application, we deal with only

a finite number of asymptotic series, each truncated to a finite number of terms.
Thus, no difficulty should be encountered.

For each ¥ and o, we collect and list function subroutines for each suc-
cessive "easy" function which we encounter and which is not commensurate with
any of the functions already listed. Further, whenever two functions in our list
can be ordered by an o (or equivalently w) réla.tion, this should be indicated.
{Certain parts of functions cannot be so ordered, as was exemplified in (61)
and (62).} Thus the collection of functions are a partially-ordered set. Any
ordered subset of this collection will be an asymptotic sequence for the given
d and ¢ . Such a sequence will not necessarily be fotally multiplicative, An
example is the sequence [‘pk]1°{°=0’ defined by

/e,&) =x, /o, (x)=exp [I/o,_,(x)] (k=1,2,3,-) (77)

which is asymptotic as x> in R =i X: x>0 ‘ , but which is certainly not
totally multiplicative, since x" =g(exp x) for all powers n, as x-e,

To carry out the process described above, we must be able to find the
limits of ratios of arbitrary functions as their common argument tends to an
arbitrary 1imit. Thus we must presuppose the existence in our main system
(or in the asymptotic package) of a limit subprogram such as is described by
R, Tturriaga. 8 Any shortcomings of this limit subprogram will emexrge in the
asymptotic subprogram as consedquent shortcomings in the form of an inability
to obtain certain 1imits, and hence an inability to make certain decisions esgen-
tial to the computation of certain asymptotic expansions, This is, of course,
inevitable; and we shall suppose that such cases (which would lead to some kind of

interrupt or negative response) are not being considered-by the subprogram.

Often only one limit « is considered in any given computation, and this
limit is almost always 0 or += , It seems, therefore, that if is more ef-

ficient to set up the asymptotic subprogram to compute expansions asymptotic

173

as x-« only, or, at most, expansions for x-0 and for x-« , Clearly, any
formula manipulation system should be capable of transforming any but the most
unusual functions from £(x) to f(y +o) or f(& +y 1) . '

To specify the required asymptotic expansion, one clearly needs the follow-
ing information:
a, an expression (say f) denoting the function whose asymptotic expansion

is required (this could be a formula, the name of a function, or the
label of a suitable subroutine);

b. a variable (say x) in terms of which the expansion is to be made (this
may appear in the expression f; in any case, it will be an argument
of this expression);

¢, the limit (say &) to which x tends in the asymptotic process (and this
is understood to include mention of the set § or ¥ , if it is relevant to the
the limit process);

d. a label (say L) identifying the particular asymptotic sequence
[gok];;o relative to which the asymptotic expansion is to be made; and

e. a positive integer (say n) denoting the number of terms in the expan-
sion.

It is suggested that, for practical purposes, it is preferable tolet n de-
note the number of nonzero terms in the asymptotic expansion.
The appropriate instruction could take the form
z — ASYMP (f; x, o; L; n) (78)

and if, in fact, f~ . .a.p. as x—o, with

3=0737j

aj # 0 for h=1,2,°°°n(]1<j2< '“<jn) s

. (79)
a; =0, if j<j and j £a (=122, 1) ;
then the asymptotic package should return the expression
z = zﬁzl a, 0, (x) (80)

L

174

in the form appropriate to the particular formula manipulation system to which
it is adjoined,
To be specific, we assume that the limit subprogram is geared to comput-
ing limits as x-« by means of an instruction of the form
z« LIM (f; %) .) (81}
In the expression (78), if o is omitted, it is assumed tobe +«; if L

is omitted, the asymptotic sequence is assumed to be the power series (38).

Jzoajx-:', with (79), the instruction

oW

Thus, if £ %

z « ASYMP (£; x; n) (82)

yields the expression

z = E§=lajhxfjh . (83)
Thus we note that, by (44),

ASYMP (f; x; 1) = LIM (f; x) (84)
whenever the limit on the right exists and is neither zero nor infinite.

Clearly, there will be many pitfalls, of both a theoretical and a practical
nature, which can arrest the computation of an agymptotic expansion, Next
we consider the procedures to be followed by the asymptotic subprogram to
" unravel the expansion. The difficulties and pitfalls emerge in the course of the

discussion,

Step I

If o # 4=, we must use the main formula manipulation system to replace
the variable x in the expression f by (& + y-'l), obtaining a new expression
. This operation will be denoted by

fe REPL{f;x, ¢ +7) . (85)

175

If L, denotes the sequence [cpj(x)]; -0 (asymptotic as x— a) and if T. denotes

the corresponding sequence [ﬁj(y) Lo = los(@ +y"1)];°=0 (asymptotic as y- ®},

then instruction (78) is equivalent to

A -1
I «REPL (f;x, ¢ +y),

z «ASYMP & yv5 1; n), ' (86)
z “REPL (z; 7, (x- o)) .

The principal difficulty here is the passage from L to T.. In an initial
asymptotic package, this transformation will probably have to be done by the
user, and only asymptotic expansions with ¢« =+« will be handled automati-
cally, Of course, in the simplest case, when 1L identifies the power sequence
(37), then T, should refer us to (38). More generally, if L denotes a sub-

routine which successively presents us with qoo(x) s 0163, tpz(x), and so
on, then we may replace the calling instructions

INITIALIZE L (@, x),

and (87)
CALL L,
by —
INITIALIZE L (¢, %),
CALL 1, (88)
and
REPL (¢;x, & +y"'1);
these last being equivalent to the purelj‘r conceptual
INITIALIZE T (g, ¥),
and : (89)

CALL T,

respectively. (The asymptotic subprogram may initially address itself to the
subroutine L, giving it an initialize signal (which sets the index j at zero),

the expression name ¢, and the variables x; subsequent calling of subroutine

176

L (without the initialize signal) will put the function cpj(x) at ¢ and increase
j by one; thus successive calls to L will put (,OO(X), <p1(x), qoz(x),

at ¢ .) However, in this case it wo/t\xld be preferable to modify the subroutine
L ad hoe or to have an appropriate L already, in order fo increase the efficiency

of the process.

Step IT

Assuming that the procedure in step I has already been carried out, if

necessary, we may sometimes receive an instruction
z <« ASYMP (f; y; L; n) . (90)

{where the circumflex accents are omitted for simplicity). The expression i
is either expressible in the form of an operation T applied to one, two, or
more expressions fl,fz, «ee, or f is elementary. In the latter case, f
either does not contain y or it is y itself. I f is elementary, no further
unraveling is possible, and the same applies when we encounter an
operation T which is not one of the algebraic or calculus—or_iented operations
discussed in section 4. We must now use the knowledge we have, relative to
special functions and their asymptotic expansions and to the powers of the limit
subprogram, using (44). Crudely, and in the absence of special knowledge,
the procedure at this stage is as follows.

INITIALIZE L{p,y), [Note: this includes j« 0]
h«1, z<0,
(L1) CALL 1L, [Note: this includes ¢ '-qﬂj(y), je j+1]

a « LIM((f - z)/¢; y),

IFa#O{z«—z+ano, ‘ (31)
IF h=niend of procedure&,
heh+1f,

GO TO L1

177

[In (91), instructions end with a comma; 'a < b'" means that the variable a
is given the value of the expression b; the notation "GO TO label" denotes an
unconditional jump; a label in parentheses in the left~hand margin refers to the
instruction immediately to its right; the notation "IF stai:ement{instructions} "
means that the instructions in curly brackets are obeyed only if the statement
is true, otherwise they are omitted; "end of procedure" is a jump to whatever

is to be done after the procedure is completed.]

T all the limits in {91) are obtainable and finite, and if we do not get simply
an infinite succession of zero coefficients a beyond some stage (for example,

1 p

the asymptotic expansion of 1 +e interms of (38) is 1+0.x = +0.x

3

+0.x 4+ ---, as x—«), then the procedure (91) will give the required expan-

sion in a finite number of operations.

Now we must discuss the algorithms corresponding to the operations of
algebra and the differential and integral calculus, as they may appear in the ex-
pression f. Let us suppose that the expression z in (80) is stored in our
system in the form of a heading [x; L; n], followed by a pair of parallel lists

{JisJ0s°°51 1 and [a, ,a., ,++-,a.]. (This is not a hard-and-fast specifica-
1272 n 3173y iy

tion, but jﬁst a proposal, to establish a notation.)

We shall adopt the notations —

a - ASCOF (f; x, &; L; h), (92)

t « ASTER (f; x, @; L; h), ‘ (93)
and '

i < ASIND {f; x, «; L; h); (94)

for the instructions which respectively, put, as 2z, the hth nonzero coefficient
of the asymptotic expansion of f (as x - ¢) in terms of the sequence at L;
as t, the corresponding term of the expansion; and as j, the index i of

this term in the sequence L. (The omission conventions will be the same as
that for ASYMP.) It follows that

ASTER (f; x, a; L; h) = ASYMP (f; x, a; L; h) - ASYMP (f; x, a; L; h-1) ,
(95)

178

{(We adopt the convention that
ASYMP (f;x, @; L; 0) =0, (96)

which makes (95} meaningful when h=1.) In general, ASTER will be a part
of ASYMP, e.g., (91) can be written formally as

hel, z<0,
(L1) z « z + ASTER (f; y; L; h),
IF h=n { end of procedure} . ‘ (97)
h<h+1,
GO TO L1 ,
We also know that
ASTER (f; x, @; L; h) =A_SCOF (f; x, a; L; h) x © ASTND (f5%, ¢; Ly h) *
(98)

The two lists which follow the heading [x; L; n] in the assumed represen-
tation of the asymptotic expansion (80) will thus be [ASIND (f; x, a; L; h)]E=1

and [ASCOF (f; x, ¢; L; h)]ﬁ=1 respectively.

Step IO ,
If we wish to perform the operation (90) and if f(y) = Z}li{zlcifi(y), where

all the c; # 0, then Lemma 12(i) yields the algorithm

179

7«0, i1,
(L1) b, =1, j;« ASIND (f;y; Ls 1),

IF i=k {Go'To 12} , i-i+1, GOTOLIL,
(L2) h<l, j-o,
(L3) a«0, i-1,

(L4) IF j, =] {a =a + ¢; x ASCOF (fi; y; Ls hy), > (99)

hi = hi +1, 3 < ASIND (fi; y; L hi) s

IF i=k {GOTOL5}, i-1+1, GO TO L4,

(Ls) IF a#0 {Z*’Z'FaX(PJ-(Y)a

IF h=n {end of procedure },

h*—h+1}, j~j+1, GO TOLS.

If we wish to appeal to parts il or iii of Lemma 12 to handle infinite series
or integrals, we must verify that the conditions are satisfied, and we must have
the capacity, in the main formula manipulation system, to sum infinite series

or compute integrals. Another case arises, however, which is simpler,

If f= Z};]_ cifi’ but, for each index (h + 1), there is an index kh’ such

that fi a»'Ej:h 1 aijch for all i> k’h (i.e., the first h+l1 functions 900,90 ,@2, asn

E

%, appear only in the asymptotic expansions of the first kh functions

f,,f,,+,f) [ifthek, are exactbounds, thenk, will be a nondecreasing
172 kh h h

function of ih we can still compute (90) finitely using a modified form of (99),
in which the first line and the line Igbeled L3 are respectively replaced by

180

z<0, i=1, k-maxky1),

and
L3 ac0, i- 1, IF k2kg jeoTo 1e},
m<k+1, kn—kj, (100}
(L6) h_ 1,3« ASIND(_;y;L;1),
IF m=k { GOTOL4}, mem+1, GOTOLS .
Step IV

k
i=1

Lemma 13 is satisfied; then we can construct an appropriate algorithm as fol-

If we wish fo compute (90), if £(y) =11 fi(y), and if the condition of

lows. First, let us suppose that all the ordered sets of k indices

R 4 . s 1® s 1K ®
i= ['_1i}i=1 can be ordered in the sequence le]m=0 = mim]i=1]m=0’ so that
every k~tuple i has a unique place (a value of m) in the sequence and, if

m =< m', gg m) = g{im,) . In fact, let the increasing sequence of indices

m,,-+- be defined by

m, =0,m 9

~

13

mt=min§m: gg,m)zt}; — (101)
so that g(jm) =t for m=mt,mt+1,mt+2,---, mt+1—1,and for no other

values of m. In particular, when- [‘pj];;O is the sequence (47), we can easily
. . k . R . t+k~1
verify that we can make g(j) = Liqdi=tm precisely k-1] Ways. Thus,

m, = 0, my = 1 and, for t= 2, it can be seen that

b1 (s+k-1Yy _ ft+k-1
mt_2s=0(k-l)—(k) (102)

181

i <
So if mt m<mt+1

t+k-j -2 t+k-1) (t+k-j -1
k-1 =m- k)< k-1 , (103)

then j2 as the unique index such that
t+k-31-_]2—3 <. t+k-1) t+k—j1—2 . t+k-j1-jz-2

k-2 k k-1 k-2 !

and so on. Thus there is a unique representation of m in the form

ek -1 t+k-1-3L 5 -i)
_ k h=1h
m = (Kk)+ Ei=1 (k-i . (105)

This representation determines t and then jl, jz, ceny jk . Generally such

, we can define jl as the unique index such that

values will be denoted by t = £(m), i = qi(m), where i=1,2,---k ., Cleai‘ly,
t(0) = q_l(O) =0, since ;bO = (,ook in every case.
Now we proceed to the algorithm below.

z«0,h<1,1<0, "n'l<—m1, meqQ,

(L1) p<0,
(L2) i1,
(L3) g« qi(m), 8; < 1,
_ (1.06)
(IA:) j < ASIND (fiQYQL;Si) H
IF j<q isi«si+1, GO TO Lfég,

IF j=q{IFi=k {GOTOL6}, i-i+1, GOTO L3},

182

http:is4-s.GO

(L5) mem+1, IFm=ﬁ.{IFp;£0§z+-z+px¢t(Y),
IFh=n iend ofprocedure},

h+<h+ 1{, t<t+1, Tm"«—mtﬂ,

GO TO L1}, GO TO 12, (106)

(L6) ac1l,i«1, cont'd

L7 a - aX ASCOF (£;;y ;f;si) ,

IF i=k {GOTOLS}, i-i+1, GO TO L7,
(L8) P<p+a, GO TOLS,

Here L refersto {z,bt]tc;o and T to [qoj];;O, as specified in Lemma 13,

Step V

I our formula manipulation system has capabilities for integration or dif-
ferentiation, we can easily use lemmas 14 and 16 to construct simple algo-
rithms to periorm (when appropriate) these operations-on asymptotic expansions.
These will be omitted here, since the algorithms are easy; but the theoretical
pitfalls are considerable and are beyond the scope of this paper, More sophis-
ticated asymptotic packages should eventually be able to handle this question.

Step VI
The final question, and the most complicated to be considered here, is that

of computing (90) for £= gr by applying Lemma 15, when the sequence de-
noted by the label I, is totally multiplicative. Again, we assume thai the set
of all possible products of the form (66) (for all values of k) can be ordered
by an index m which identifies the integer k and the powers il, iz, e, ik R
and hence the index t and the function z,bt, by

= (1,1, times; 2,12 times;***; k, i, times) = t(m)

T8 H 4+t
172 k 20m)

183

in such a way that, if m <m~’ , then i(m) <t(m”) . -We then write -k‘ =w{m)
and Iy = vy, (m) (h=1,2,--+,k), with vh'(m) =0 for h> km . We note, as in
(71), that, for any choice of t, the terms of the asymptotic expansion of

f= gr which conta:in zbO,ZDI,z,bz, oo ,i,bt arise only from the products in which k
and i;+g++--+, are bounded above (i.e., we have F:t and Et, such that

k= f{t and i1+i2+ cre +ik = 'st) . Thus such an ordering is possible.

As in step IV, we could now define

m, = min {m: t(m) zt}

and (108)

kt = max {w(m): tm) <t 2

and proceed as in (106). Although a systematic ordering of the products can be
achieved, sometimes this can only be done recursively, the indexing of cases
cannot be set up in advance. We now assume that this state of affairs prevails
(the procedure followed below could.also have been adopied in step IV by suitably
modifying (106).)

The only nonzero ferms in (66) arise from factors (ahtph/aoqoo)lh for

which ay #0 (by (64)), ao # 0) . Thus we limit ourselves to these factors,

i.e., we assume that iy #0 only if a, #0 . Instead of the ordering given

above, we adopt a "diagonal" ordering of texrms. I ASTER (g;y;L;m) =
ay ¢, @=1,2,3,--+), (66) is specified by k and the k-tuple
m m

iy]h sere,h 1, and now these terms are taken in the order (partly antici-
1 72 Tk

pated in (71))

{ol, 11, [21, fo,11, 31, Ii,1], 0,21, [0,0,1l],
[41, (2,1}, [1,2], [0,3], [1,0,1], [0,1,1], [0,0,2], [0,0,0,1],
[51: [3;1],"{252]: [1:315 [094]: [‘?‘:Oalj: [1:13113 ot

184

The principle is fo take, first, all ih = 0 (this yields the leading term of
the expansion aorqoor , corresponding to Pp=1 and z,bo = 1); then all terms
with k + s constant (s = lh + ih +oee + ih) together, in the order of in-

1 2 k
creasing k+s . For each constant k+s (k=1, s =1), the order is that of
increasing k . For each fixed pair [k,s], the order is the reverse lexico-
graphic one for [j.h ,ih yees ’ih]; that is, the ordering is, first, by decreas-
1 2 k

ing i, ; then, for each fixed i, , by decreasing i, ; then, for each fixed
1 1 . 2

pair [i ,ih I, by decreasing i, ; and so on; always satisiying the condition
hl 2 h3
that s is a fixed sum, and that, while every 1h = 0, we must have]}’k z1.
J
It is clear that this ordering of terms is well defined (every term will occur in

the seduence, and no term will occur twice). Within each set of terms with
fixed k and s, if the k-tuple [ih , ih ye e, 111 1 immediately precedes the
1 72 k

if i

k-tuple [i ’h 111-1—ih

a - __’\
+eeeth 4 =8,

,i' :"'yi' ']:
1y by 2 By hy

and if j=k-2 and

W, TR o, Tihcodn =ihj-1’ ihjiéihﬁ

1 1 2 2 -1 J
then
(109)
i’h —]'h_]" =1h =o.-:]_h =0’1_h -_'—S"é\,
j 1 42 k-1 k
and
i’ =g~ 8§, Seae=1i =0,1i, =1;
B j+2 By i

but if j=k-1, then 1'11.:]'11." 1 and 1'h =1, +1.
j i k k

For a given pair (k,s), the least value of t is that corresponding to the
k-tuple [s-1,0,-++,0,1], which is the first one in order. If this value is
tk.s) = gs(hl,(s—l) times; h once), (110)

185

then t(k’,s) > t(k,s) whenever K" >k, and t(k, s') > t(k,s) whenever s’>s .,
Further, for a given k + s, the least value of t is dependent on the choice of
the sequence at L. If this is

El =min%t(k,s):k+s=u,k2 1,321}-, (111)

then ;c:l < ﬁl, if u=u’, and we know that terms with k + s > u camnot contri-
bute to P; for t< E; . (Since the sedquence is supposed to be totally multiplica-
tive, it follows that we can make _fu as large as we like, by making u suffi-
ciently large.)
On this basis, we may proceed ‘With the algorithm as shown below,
IF n= 1{ z . [ASTER (g:v;T:1)1°, end of procedure'f,
« ASCOF (g;y;Ls1),

Zel,he1, 81, k1, 4«0,1t <0, 2

0 0
(L1) f«1, wer,
(L2) fefXw, IFw>r-s+1{wew-1, GOTO L2}, j«1,

(L3) me0, IF j<k- 1{j«j+1, GO TO L3}, m_el, m, cm, +5 -,
(L4) qef, j- 1,
(L5) by ASIND (giysLsj+l) , IF my =0 {Go To L15}, b—ASCOF
(2;y;L;j+1), i+ 0,
(L6) q e qxb/((mj—l)x ag), IFi< mj—l{i«— i+1, GO TO 16}, (112)
(L15) 1Fj<k§j+—j+1, G0T0L5},
te gs(hl,mltimes; hz,mztimes; ees hk,mktimes), i« 0,
(L) IF t =t {p, « b, +4, -GO-TO Ls},

]:Ft<ti { jedi, L4 +1,

«t,, IF jv>i'{j‘—j—1, GO TO Li14 },

(L14) I

P;-a t ¢t GOTO L8 {,

186

IFi<g{i-i+1, GOTO L7}, -2 +1, P, ~ O tL._t,

(L8 IFk=1{GO TO L0}, IFm_, #0{m;_,-m_; -1, m-my +1,
GO TO 14}, IFk=2 {GO TO L10}, j<k ~ 2,

(L9) IF mj=o{1Fj>1 {j~j-1, coTO L8}, GO TO L1lo},

mj - mj -1, mj+1 cmy, my- i, GO TO L4,

(110) IFs>1{ses-1,kek+1, GOTOLl},ic1, j<0,
(L11) IF i>4{GO TO Lis}, 112
_ cont'd)
IF t, <t o {IFp; / 0{z~z +P; x,,bti(y), h«h+1,
IF h=n{z«-z x ASTER (gy;L;DV,
end of procedure }},
iei+1, GOTO L11},

(L12) IFisd je j+1, p; Py t].«—ti,{i~i+1, GO To 112},

(L13) 4+j,s«k+1,k~1, GOTOLL,

Some e\xplanation is indicated. The variables Z, 2y k, and s have the
same meanihg as in the discussion. What is calculated in z is initially
2§=0ptz\bt’ such that exactly n of.the coefficients Py with 0 £t =<c are nonzero

(including pc). The last ingtruction before "end of procedure’ (between LI11
and L12) then mulfipiies the sum by aorqo 0(y)_r, as required. Initially,
z=1=pg,. . (113)

The number of nonzero terms of the sum already accumulated in z is
denoted by h, which is increased whenever a nonzero term is added to

z (between 111 and Li2), The number of terms of the sum Z}f:optzpt which

. have not yet been added to z, but to which some product (66) has made a con-
tribution is denoted by £ . The arrays [tl,tz, cee ’t«E,] and [pl,pz, oD L] are

the corresponding indices and coefficients of ;bt (as accumulated so far), In L1

and L2, we have the computatioh of the factor r(r-1)..-(r-s+l) occurring in (66),

187

for each new value of s . At L3, we compute the initial k-tuple for each new
value of the pair [k,s], namely, [s] if k=1 or [s-1,0,-.-,0,1] if k>1,

This is stored as the array [ml, My, ,mk] (i.e., mj = ihj). Between 14 and
L7, the complete product (66) is computed; then the index t is calculated. I

this index occurs as a ti (1 £i<4), the product is added to the corresponding
P, ; while if this t is new, 4 is increased by 1, the value of t is assigned to

the new t 2 and the product is taken as the new p 2 (between L7 and L8), Ka

further k-tuple exists (for the same [k,s]), we advance according to the rule
(109) (at L8, L9); if no more exist but s> 1, we change [k,s] to [k+1,8-1]
and start calculations on the products belonging {o these new parameters; and if
s =1, so that all ferms with a given k + s =u have been dealf with, then we
compute ?u 41 .(which is —fk " at this point), and search through the list of 4

terms for those which have been completed (ti'&;l +1), while adding the nonzero

terms to z, discarding all terms with 1:i<?u . from the list, and moving ail

1
remaining terms up in the list ("garbage-disposal), so that the list will not be-
come too large (between L11 and L13). The new value of k4 s=u + 1 is then
initiated with k=1 and s =u, and the computation continues. When z contains
the required number, n, of nonzero terms, the procedure terminates.

In particular, when L refers to a sedquence (47), then

. . R s X _ <=k
gs(hl,mltlmes, h2’ mztlmes, : hk,mknmes) = 2j=1 hjmj (114)
and so
t(k,s) = (s - Db, +hy, (115)

188

whence

f,=@-Dh; +minfh, -kh :k=1,2,--,u- ‘1}5 - Dh,. (116)

We could still proceed as in (112). Bul now if is also possible to set up the
ordering of terms by value of ¢, so that a computation similar in style to (106)

can be set up. Even better, if ©y = 1, we can use the algorithm of Miller,

whose essential principle is contained in the recurrence relation (76). These
algorithms are straightforward and will not be explicitly displayed here.
Step VII

Let us now suppose that the algorithms described in steps Il through VI are
available to us. That is, suppose that, if

£=T,5, 1), (117)
then

ASYMP (fx, a;L;n) = T (ASYMP (£, 3%, a;“f,;nl),

ASYMP (f,:%, o ;i;nz), "r+, ASYMP (X, c ;f;nm)), (118)
where the sequence 1., the numbers D Mg, ees M, and the function \I'T are

directly computable by the algorithms contained in the asymptotic package,
given that the ASYMP (fh;X,a ;T_,'-,rih) (h=1,2,---,m) can themselves be

189

computed. In that case, it is necessary, first, to unravel f into a tree structure,

which can he illustrated by the example below,

i=T T T —f

01 11 o1 | s1

—i5,

—

—Ti3 Ts3 £33
(119)

Tsz fo4

135

Ts3 f41
—Ty3 Ts5 for
tag

This diagram is to be interpreted as meaning that = TOl(fll’flz’fls);

£11 7 Ty109:500)s £15 = Tyalingeiag)s I15 = Tigllag)i fny = Toy(fgysT50):

fog = Togligg)s 5y = Toulfsstggsisg)s Tog = Tosllsn.fag)s f36 = Toplly,)s

and fzz, f31, f32, f33, f34, f35, f37, f38’ and f41 are elementary (as defined

in step II). Since the "iree" is listed in the computer system, the asymptotic
expansions of the elementary "{wigs' are computed, and then the algorithms
described earlier are used to work down the tree to its "root,' the function f.

190

Step VIII

One major problem remains, If multiplicafions, powers, differentiations,
or integrations occur in the tree exemplified by (118), the asymptotic sequence
L occuring in the component functions (arguments of T) changes (in a pre-
dictable way) into a sequence L for the composite function. The reverse
process of obtaining L from L is not so easily performed. What is more,
the question of choosing an asymptotic sequence 1L is not adequately touched
on in the theoretical liferature; but is assumed to have been done a priori,
From a practical viewpoint, it ig clear that a process somewhat as follows
is required.

We begin with a collection of "easy" functions: a suitable initial collection

T
might contain x

r

b, T P
0, [{exp) 1x] 1, [(log) 2x] 2; for all positive integers p;

and all real r.. We know that, as X- e,

. .0 r’
1fr0<r0,x =o(x Oy

p,
Lo oexp) =1 1y

,

) by

1fI'1<I"1, [(eXp) x]
Py Ty Py T3 ,

ifp, <p’;, lexp) “x] “=o(lexp) “x] 7), forall r; >0, ¥, >0;

r ‘., r°

p
1=2([exp) IXI 1

i . P4
1fr1<0, r1>0, [(exp) “x]

y, for all Py.P"ys
o P15

ifr1>0, X =o(lexp) "x] 7), forall r
Py Iy r

ifr1< 0, [(exp) ®] " =of 0), for all r

Py (120)

0P’

p, T p, r’
ifr,< r'z, [(og) Ze] 2 = o ([log) Zx] 2);

’, I"

r Y
2=9 (flog) 2X] 2), for all r

p
if p,, >p"2, [log) 2x] >0, r,>0;

2 2

191

d Ld

r

. Py T Pa Fa .
ifr,<0, r°%>0, [(log) “x] " =ofllog) "xI ™), forall p,,p’y;

r L
=o(x), forall p,,r,; (120
cont'd)

b
ifr0> 0, [(log) Zx] 2

r T

0 Py Ty .
ifr0<’0,x = g ([(log) “x] %), for all PosTy o

Thus all these functions have a single ordering. Now, given any function
f, we.use the limit subprogram to investigate whether any of these functions
(call it <p0) is commensurate with f, If any is commensurate with £, we put

fas 239 + fl, determining a_, as usual (by (44)), andlookat fl similarly; and so on.

0
A refinement would be to look, not only at the functions listed, but also at
products of these functions. If f is not commensurate with any of the functions

r pl

T
listed, then we add f to the list (fogether with its powers £ 0, [(exp) !

f]l -,
Po.'2
and possibly [(log) “f]) . Then f~£, for our purposes.
This procedure allows the system to '"learn" an ever-increasing collection

of functions for constructing asymptotic sequences. In addition, it computes

-natural asymptotic expansions, in the sense that, for instance, =1+ e 32%:)

would expand to

frlreXex teFex e p... (121)

to as many terms as required, rather than the relatively artificial and un-

inferesting result

2 3

frls0.x +0.Xx240.x7240enr, (122)

which adherence to a given sequence (heté, (38)) yields. Although this pro-
posal is tenfative and needs further investigation, it seems to be an approxima-

tion fo the proper approach.

192

6. CONCLUSION

We have now reviewed the theory of asymptotic series, and considered
fairly completely the problems and procedures to be met in the implementation
of an asymptotic package for a formula manipulation system. Many questions
still remain unanswered or only partly answered: these are indicated, as they
arise, in Section 5, However, we hope that we have established encugh to en-
able a programmer to begin writing a basic asymptotic package for an existing
system, such as FORMAC, as soon as a limit-subprogram (however rudimen-
tary) has been written. (Initially, if may be necessary to limit consideration to
asymptotic power series, based on the sequence (38), and to-handle only
polynomials, power series, and the results of applying addition, subtraction,
multiplication, division, and the formation of arbitrary powers. In that case,
the limit-subprogram would be very easy to write and could be part of the as-

ymptotic package.)

It is the author's belief that indeed a working program, however elementary
and limited, will prove to be of great help in engendering and encouraging sub-
sequent development of more ambitious systems having greater scope and power.
It is in this spirit that the present paper is offered.

Note; Dr. Ralph L. London and the author have examined the algorithms
(91), (97), (99), (100), (106), and (112), and have rigorously proved their
validity. In the course of discussing the process of proof, quite a number of
corrections were found to be necessary (this illustrates the great value of such

proving procedures.) The proofs are to be published at a future time.

193

1.

REFERENCES

E. T. Copson, "Asympiotic Expansions, " Cambridge Tracts in Mathe-
matics and Mathematical Physics, No. 55, Cambridge University Press,
Cambridge, England, 1965.

N. G. DeBruijn, "Asymptotic Methods in Analysis, ' Bibliotheca
Mathematica, Vol. IV, North-Holland Publishing Co,, Amsterdam and P.
Noordhoff Ltd., Groningen, 1961, 2nd. Edition.

A. Erdélyi, Asymptotic Expansions, Dover Publications Inc., New York,
1956; also Technical Report No. 3, Office of Naval Research No. NR 043-
121, Contract No. Nonr-220(11), Washington, D,C.

W. R, Wasow, "Asymptotic Expansions for Ordinary Differential Equations, "
Pure and Applied Mathematics, Vol. XIV, Interscience Publishers, John
Wiley & Sons Inec., 1965,

H. Poincaré, Acta Mathematica, Vol. 9, 1886, pp. 295~344.

T. J. Stieltjes, Annales Scientifiques de 1'Ecole Normale Superieure (3),
Vol. 3, 1886, pp. 201-258 and Qeuvres Completes de T.J. Stieltjes. Vol.
2, P. Noordhoif Ltd., Groningen, 1918, pp. 2-58.

P. Henrici, "Automatic computation with power series,! Journal of the
Association for Computing Machinery, Vol. 3, 1956, pp. 10-15.

J. R. Iturriaga, "Contributions to Mechanical Mathematics, ! Ph.D. Thesis,
Carnegie Institute of Technology, Pittsburgh, Pennsylvania, April 1967,

194

COMPUTING TIME ANALYSES FOR SOME ARITHMETIC AND
ALGEBRAIC ALGORITHMS

by

George E, Collins
Computer Sciences Department
The University of Wisconsin
Madison, Wisconsin

N71i19196

Abstract

Computing time bounds are derived for the author's polynomial
reduced sequence (p.r.s) algorithm6 for computing the g.c.d. of
two polynomials with integer coefficients. A new g.c.d. algorithm
which uses congruence arithmetic is presented. The computing
time of the new algorithm is analyzed, and it is shown to be more
efficient than the old one. Using easily obtained bounds for opera-
tions on large integers, computing time bounds are derived for
the integer Euclidean algorithm, éxtended Euclidean algorithm,
and the Chinese remainder theorem algorithm,.

This research was supported by the Wisconsin Alumni Research Founda-
tion, by the University of Wisconsin Graduate School through the University
of Wisconsin Computing Center, and by the National Science Foundation,
Office of Computing Activities, through Grant GJ239.

195

PRECEDING PAGE BLANK NOT_FILMLW

COMPUTING TIME ANALYSES FOR SOME ARITHMETIC
AND ALGEBRAIC ALGORITHMS

by

George E. Collins

1. INTRODUCTION

In a recent paper (reference 6), the author presented a new algorithm, the
reduced polynomial remainder sequences (p.r.s) algorithm, for computing the
the greatest common divisor (g.c.d.) of two multivariate polynomials with integer
coefficients. It was asserted that the computing time for this algorithm, when
applied to two univariate polynomials of degree n whose coefficients are d digits
long, is approximately proportional to n4 d2, Section 3 contains a thorough and
rigorous analysis of the computing time for this algorithm in the univariate case,
and proof is given that, if the two polynomials are weakly normal and d bounds
their norms, the computing time is bounded by the function O(n4(1n d2), the
norm of a polynomial being the sum of the absolute values of its coefficients.

This result is obtained as a corollary of a more general theorem which bounds

the computing time as a function of four variables.

Section 4 presents a new and faster algorithm for computing the g.c.d. of
two univariate polynomials with integer coefficients, and proves several theorems
to show that the algorithm always terminates and produces the greatest common
divisor. The new algorithm, which uses congruence arithmetic (arithmetic per=-
formed in finite fields GF(p) containing a prime number of elements), is based
on the theory of reduced polynomial remainder sequences and subresultants that

the author developed in reference 6.

In section 5, the computing time of the new algorithm is analyzed. The
bound that is obtained for the computing time of the new algorithm is
O(n4 (in d) +n3 (In %). We also show that the average computing time for the

197

new algorithm is 0(n3(1n d)z) » & substantial improvement over previous al-
gorithms. Furthermore, we show that the average computing time for the new
algorithm, when applied to polynomials with a g.e.d. of degree zero (which
frequently occurs in practice), is O(n.2 +n{ln cT)z) . Finally, we propose a
method for extending the algorithm to multivariate polynomials.

To analyze the computing times of polynomial algorithms, we must have
bounds for the computing times required to perform operations on large integers.
Such bounds, easily obtained for the operations of addition, subtraction, multi-
plication, and division (with or without a remainder), are stated in section 2.

We also obtain bounds, in section 2, for the time required to compute the g.ec.d.
of two integers using the Euclidean algorithm, and show that these bounds also

apply to the extended Euclidean algorithm.

In the congruence arithmetic g.c.d. algorithm, as in other congruence
arithmetic algorithms (see, for examples, references 1 and 14), one must
apply the Chinese remainder theorem algorithm. A bound for the computing
time of this algorithm is also derived in section 2.

2. OPERATIONS ON LARGE INTEGERS

Throughout this paper we assume:that integers are represented in radix
form usmg an arbitrary base B 2 2, Computing times for arithmetic algorithms
are then naturally expressed as functions of the number of B-digits in certain

numbers N which occur in the algorithms, i.e., [logB N] +1. However, since
"log,gN = (In N)/(1nB) where 1n is the natural logarithm function and since we

will uniformly ignore constant multipliers because they are dependent (1) on the
computer that is used, (2) on numerous details of the version of the algorithm
used, and (3) on the precise manner in which data is represented in the com-
puter, we shall express computing times in terms of 1n N,

The following theorem on addition and subtraction illustrates the general

form in which our theorems will be stated.

198

Theorem 2.1

Let t(a, b} be the time required to compute a +b (or a -h). Let T(d =
max {t(2, b): 2], |b| < d}. Then T(d) =O(1nd).

The statement that T(d) = O(1n d) means that a constant C (independent of
d) exists such that T(d} < C 1n d for all sbfficiently large d. The theorem still
appears to be quite ambiguous since it does not specify what algorithm or what
computer is to be used. However, if we choose any standard classical algorithm,
any familiar data representation which uses radix canonical form, and any well-
known computer, then such a C will exist for that combination of choices.
The theorem can be readily verified for several choices by consulting references
5, 8, and 13.

The next theorem states a similarly well-known fact about various classical
multiplication algorithms.

Theorem 2.2

Let t(a, b) be the time to compute a - b, Let T(d, €) = max {t(a, b):
|2] < dand | b} s e} . Then T{(d, €) = O{(In d)(In e)).

Here we have applied the O-notation to a function T(d, €) of more than
one variable. This means that, for some C, T(d,) < C(1n d (1n &) whenever
dad0 and e 2 ey

Theorem 2.2 applies to the classical muliiplication algorithms., Ag a
special case we have T{(d, d =0O((ln d)z), although the stronger form of the
theorem, which contains two variables, will be important in many applications
in which one argument is much smaller than the other. In recent years several
multiplication algorithms, which are much faster for very large integers, have
been devised. One such fast algorithm, based on earlier work by A. L. Toom,

is given by Cook in reference 11. It has the property that T(d,) =O{(In d) -

25 vin(ln d))

€
. Tt follows that, for every € >0, T(d, d =O((n g ¥).

199

It is easy to construct a simple version of this algorithm for which

T(d, d) = O((1n @ "2 3) = o((1n @1 +°%

we assume that the classical multiplication algorithm is employed, and Theorem

. Throughout the present paper, however,

2.2 is applied.

So far, we have bounded computing times as functions of bounds on the in-
puts to the algorithms. A tight bound on the time for division must be expressed
in terms of bounds on one input (the divisor) and one output (the quotient), as
in Theorem 2.3.

Theorem 2.3

Let t(a, b) be the time to compute g and r, given a and b such that
a=be+g+r, 0= [r| <« |b], ar> 0, and abq=0. Let T(d, €} = max
{t(a, B): bl < dand | q| <e}. Then T, e) = O((in d)(in ¢)).

The truth of Theorem 2,3 follows from the observation that most of the com~
putation required to produce q and r from a and b is essentially the same as

" that required to produce a from b, q, and r.

The bound for the computing fime for the Euclidean algorithm is derived
from Lemma 2.4, which bounds the product of the quotients computed by the
algorithm. -

Lemma 2.4

Let Ays Ogs o o s Oy be the sequence of quotients obtained when the
Euclidean algorithm is applied to a and b where az=b~ 0. Let c=ged (a, b).
Then q 1 f:f (g; +1) < ab/c? .

Proof. Iet a, =a, a,=h, a, =2, G+t with 0sa, <a,, B for

1 2 1+2 i+l

= — — >
0 sothat e an+1. Then a ai+1qi+ai+2 .

=2, (qi +1) for 1i=<i=n, Taking the product of these

< ;
1< ign, and an+2

a,

A2 Y T,

200

s cps R n- 1 n-1
inequalities for 1 < i < n-1, we have II =1 % > II =1 Y4904 T 1. When we
cancel the 2, 's on both sides, we obtain ab = a1a2 a czrln i (q1 +1). But

since a n = 92 = 9.0 ab > q,C I'I q1+1)

Ag an interesting sidelight, notice that each % 2 1 and 9, 2 2 except when

nn - 1 @+ < ab/c® s ab< aZ so that n<?2 log, 2.

a="b. Hence, o™ < 9,
This bound for the number of divisions compares with a bound of about 1,44 logz a

obtained from Lamd's theorem.

Theorem 2.5

Let t(a, b) be fhe computing time for the Euclidean algorithm. ILet
T(d, €) = max{t(a,p): a>b> 0 and b=<d and a/ged(z, b) s e}. Then
T(d, €} = O((1n d)(In €)).

Proof. Let ¢ = ged(a, b). By Theorem 2.3, there exist constants C1 and
C2 such that the time for the ith division in Eueclid's algorithm is = C1 {(In qi)

(In a +1) + C2 Hence, the time for all divisions is « C 2 1(11:1 q)(ln a, +

+1
Consg G1 (111b)2i=1 lnq_i + Czn=Cl (1nb)(1n1'[i=1qi) +Czn<01 (1n b)

(1n(ab/cz)) + 2 02 10g2~ a< C1 (In b)‘(ln (az/cz)) +3 C2 Inax< 2 Cl (1n d){1n e)

+3C, Ince<2C, (Ind)(lne) +3C, Ind+3C, (In'e) = O((1n 4) (1n e)).

In analyzing the computing time for the Chinese remainder theorem algo-
rithm below, we shall also need a bound for the time required fo compute the ex-
tended Euclidean algorithm which, given a and b where a =b = 0, computes
not only ¢ = ged{a, b) but also, simultaneously, integers x and y such that
ax + by = ¢. The extended Euclidean algorithm may be defined in the manner

that follows (see references 12 and 10.) Let the a, and ¢, be defined as above,

201

Set x1=1, y1=0, x2=0, and y2=1. For 1<i<n-1, let x,

42 X

qixi+1 and Vi =Y " Y yi+1 . Then x= X1 and y= Vi1

Theorem .2 .0

Let t(a,b) be the computing time for the extended Euclidean algorithm, Let
T(d)=max {t(a,b): a>b>0 and bsd and a/ged(2,b)sd}. Then T(d)=0((1n d)?).

Proof. The additional computing time for the extended Euclidean algorithm

is that required to compute Xiio

reference 10 that | X; | <b/2¢ and RA | < a/2¢c for all i. Hence, the time

and Yii0 for 1cign- 1, It was shown in

for all the multiplications q; X, is, by Theorem 2.2, < C E 1 (ln q_l) (In X, +1) +

n-1
Cns Cy in(b/o) % =1 10 +Cyn< Cy in(b/o) ln(ab/CQ) +Cyn = of(1n d)z),
ag in the proof of Theorem 2.5, It is also shown in reference 10 that the X

{also the y) alternate in sign. Hence, | q % < | x < b/c and

i+1 I i+2 [

EREE | Y91 = a/c for all i. Each subtraction X, =4 %, can

therefore be performed in Cl(ln] x, +2|-) + CES Cl Ind+ C2 time units. Since

of . dz, the time for all such subtractions is O((In d)z) . Likewise, the time to
compute all ¥; is O((In d)z) .

In the application of the extended Euclidean algorithm in the Chinese re-
mainder theorem, as in many other applications, a is a prime number p, so
that ¢ = ged{a, b) = 1. We then have px +by=1, i.e., by = 1 (mod p).
Since | y | <P/2, the inverse of b in GF(p) is y or y +p according to
whether y >~ 0 or y< 0.

- Our next theorem bounds the computing time for the Chinese remainder

:-f,' - theorem algorithm. The computations performed in this algorithm to make

202

the theorem more precise are summarized below. These steps are also referred
to in the proof of the theorem. Input to the algorithm includes a sequence

(pl’ Dos « «) pn) of pairwise relatively prime numbers. We shall agsume
each p; 2 2. In our application below, the P, will be prime numbers, but this

need not he assumed in the theorem. Additional input to the algorithm is a

corresponding sequence (al, Qgs + o oy an), such that 0 <« a, <Py for all i.
The output of the algorithm is the unique integer A such that I A [2P- Py

... pn/2 and A= a, (mod p,) for all i,

Chinese Remaindexr Theorem Algorithm
1.7 Set Ql = Py and compute Qi = Qi—l " P for 2 «i<n. Set P =Qn .
2. Compute Pi=13/pi for i=1,2, ..., n.
3. Compute o and T such that Pi = Py + r, and 0 = T, <Py forl=<ign.
4. Corapute ti such that riti =1 (mod p) and 0 <t; <p; for 1 <i=n,

_«n

5. Compute S=¢ =1 Pitiai .

6. Compute Q and R suchthat S=PQ+R, 0<R<DP,
7. Compute H = [P/2].

8. Set A=R~-P if R> H; otherwise, set A=R.

Theorem 2.7
Let t(pl, Pos + o) Pps 85 Bgs « 0 oy an) be the computing timme for the

Chinese remainder theorem algorithm. Let T(d) = max {t(pl, vees By

Qs+ v es BN n?=lpisd}. Then T(d) = O((In d)z).

203

Proof. If suffices to show that the time for each of the eight steps is

O((1n @), The time for step 115 <3 ., (C;(In Q,_)(Inp) +Cy) < ¢,
(P 5T, (Iap) +Cous Cy(In Q(InII], p) +Con = Cy(in A2 + C,n=
O((1n d)z), since 2" < P<d sothat n= O(ln d).
The time for step 2 is 53?=1 (C; (InP)(inp) +C) < C; (In) 5 |,
(In p) +Cyn = O((1n &)3). The time for step 3is <% 11 Cy((np)(in gy +C,)

<C, (lnd) 7 (Inp) +C,n=0((1nd?. By Theorem 2.6, the time for step

s n 2 n 2 n 2
4is SE.H (Ci(Inp)~ +Cg) <C Ty, (Inp) " +ConsC (T, (Inp))” +

Cyn s G, (In)%+ C,n = O((1n B3.

The time to compute all products in step 5 is clearly O(ln d) 2) , Since
s
ti <pi, ai< pi, Pi< P, Piti<P and P «d. Let Sj =3 §=1 Pi’ciai . Then

j j j 2 _ .2 . .
Sj <P X% =1 & <P 2 =1 pisP M p; P = d”. Hence, the time for all addi

tions 1s <1 (C, (In d) +C,) =n(2 C (In d) +C,) =0((1n 8.

In step 6, S = S11 <P2, S0 Q <P and, hence, the time is O((In d)2). The

time for steps 7 and 8 are clearly O(ln).

3. OPERATIONS ON UNIVARIATE POLYNOMIALS

The primary purpose of this section is to give a relatively complgte analysis
of the time required to compute the g.c.d. of two univariate polynomials
using the reduced p.r.s, algorithm of reference 6. And we also bound the
‘computing time for other operations on univariate polynomials with integer

coefficients.

204

It is very useful, for the purpose of such analyses, to define the norm of
such a polynomial in the manner that follows.
n i

Definition 3.,1. K PE) = Do % is a polynomial with integer coefficients,

n

the norm of P is definedtobe % | a, |.

Norm (P) is, in fact, a norm for the ring of polynomials bver the integers,

as shown by the following theorem.

Theorem 3,2

Norm (P +Q) <norm (P) +norm (Q) + norm (P + Q) < norm (P) - norm (Q).

m.

Proof. The first part is trivial, Let P(x)= = =0 & xl, QX = zr;obixl,

and R(;;):zl?:él cix1 where R =P * Q. Then norm (R)=Em1;:§]ck | =

« min m-n _am _n _<m
Zoco | Zip®iBy s Dl Do 3P = Tisg Dyoo 1P T 50 134

=]jl=0 | bj{ =norm (P) - norm (A).

The norm has two other important properties which are frequently used in
the material that follows: la;| < norm (P) for all i and norm (P) >(3 n;=0 aiz) 1/ 2,

The following notation is frequently useful for simultaneously bounding norm (P)
and deg (P).

Definition3.3. U(d,m) = {P: norm (P) =d and deg (P) = m} .

The following three theorems bound the computing times for the sum, differ-
ence, product, or quotient of two polynomials, using the classical algorithms. It
is assumed here that the polynomials are represented by a canonical form as in

reference 2, 5, 9, or 13,

205

Theorem 3.4
The time to compute P +Q or P -@ for P, Q €U(d, m) is O((1n d)m).

Here we have, for the first time, stated a theorem using a more elliptic
phraseology. If stated in full, the theorem would have the same form as our
previous theorems, i.e., let {(P, Q) be the time to compute P +Q (or P - Q).
Let T(d, m) = max { (P, Q: P, Q €U, m) } . Then T(d, m) = O{(In dym).

Proof, At most, m +1 coefficient additions or subtractions are required,

and each takes < C1 Ind+ C2 computing time, But (m + l)(G1 Ind + Cz) =

O((1n dym).

Theorem 3.5

The time to compute P - Q for P ¢U(d, m) and Q € (e, n) is O((In d)(1n €)mn).

Proof. At most, (m + 1){(n + 1) coefficient multiplications are required, the
time for each being sCl (In (In e) + Cz. Also, at most, (m +1) (n + 1) addi~
tions are required and, by the proof of Theorem 3,2, the time for each addition

is sC3 In de +G'4=C3 (Ind +1Ine) +C4. But (m +1) (n +1) (C1 (In d(Ine) +

C3 (Ind+1ne) + 04) = O((1n d)(1n €)mn),

Theorem 3.6

The time to compute P/Q for Q € U(d, m) and P/Q ¢ U{e, n) is O((1n d)(1n e)mn).

Proof. At most, n+1 coefficient divisions are required. By Theorem 2.3,
the time for each division is < C1 (Ind)(1n e) + Cz’ and (n+1) (Cl(ln d)(1n e) +

02) = O{(1n d)(In e)mn). The other required arithmetic is essentially the same
as in multiplying P/Q by Q.

We now begin an analysis of univariate polynomial g.c.d. algorithms by
considering the content and primitive part algorithms.

206

Theorem 3.7

The time to compuie cont (P) for P ¢ U(d, m) and norm (pp(P)) = e is
O((In dj(In e)m).

_ K ej
Proof. Let P(x)=x, ;2 X * Wwhere e »e, . .. >e, and each a; £ 0.

Let d, = |all and d, . = ged (4, |) for 1<i<k-1. Then cont (P)=d

ai+1|
0 <di < | ai[=norm (P) <d for all i. Also, cont (P) gdi for all i. Hemnce,

max {di, | 2, | { /di-l-l <norm (P) /cont (P) = norm (pp(P)) <e for 1si <k - 1.
By Thedrem 2.5, the time for the k-1 g.c.d.,'sis=(k - 1)(01(111 d)(In e) + Cg) =

O{(In d(1n &)m), since k- 1l=m.

Theorem 3.8

The time to compute pp(P) for P ¢U(d, m) and norm (pp(P)) <e is
O(in &(In e)m).

Proof. To compute pp(P}, we first compute cont (P), then divide P by
cont (P). By Theorem 3.7, we need show only that the time for the division is
O((1n d)(In e)m). The division requires, at most, m +1 integer divisions and,
in each of these, the divisor is cont(P) <d while the quotient is a coefficient of

pp(P} and, hence, bounded by e. Now apply Theorem 2.2.

Corollary 3.9

The time to compute either cont(P) or pp(P) for P € U(d, m) is O{(1a d)zm) .

Proof. Apply theorems 3.7 and 3.8, noting that norm (pp(P)) «norm (P).
Next, we study the time required to compute a reduced polynomial remainder
sequence over the integers. For this purpose the following theorem on the

standardized Euclidean remainder, g (P, Q), is helpful.

207

Theorem 3.10

Let t(P, Q) be the time t6 compute R (P, Q. Let T(m, n, €) = max
{t(P, Q): deg (Py=m and deg Q) =n and m >=n~0 and norm (P) c e and
norm (@) < e} . There is a constant C such that T(m, n, ¢) sC(m +n)(m - n

+ 2)2 (In e)2 for all sufficiently large e,

Proof. Let Pys Pgs v eenp m-n+2 be the sequence of polynomials such

that P =P, P, . =p (P;, Q if deg(P) >n, and P, = L(Q) - P, if deg ()

<n. Then g (P, @) = Pm—n+2 .

Let Mi bethe i+1 by m +1 matrix

b, b . b _, . . by © 0 . .. 0O

0 b I T T R

_ 0 0 bn . - bZ bl bO 0
1

%n *m-1 m-2 et 20

It is easy to see that P is the associated polynomial of Mi' Since the

i+l
Euclidean norm of each row of Mi is, at most, e, Hadamard's theorem impliés

+1

that the coefficients of Pi 4 are bounded by e, At most, m +n multipli-

1

cations are required to compute Pi 41

cation is sCl (in e)(In ei)-i- 02 = Cl {)(In e)2 +C2 s Cl(m -n+1)(In e)z + CZ'

from Pi’ and the time for each multipli-

The time for all multiplications is therefore bounded by (m -1 + 1) (m +n)
(Cl(m -n+1)(In 6)2 + Cz) . At most, m additions are required to compute

p,,, from P,, and the time for eachis S Cy(1n e™) + C

. sCy (m - +2)

4

208

(Ine) +C,. So the time for all additions is <(m -n+3)m (Co(m ~n + 2)
' {lne) +C 4) . The validity of the theorem is now evident.

In reference 6 we defined a p.r.s. PI’PZ’ .« 0 oay Pk to be normal in case

n,-n,,=1 for 2<i<k-1 where n, = deg(Pi) . It was shown that, among

i i+l
other nice properties, a normal reduced p.r.s. agrees, to within signs, with
the associated subresultant p.r.s. There it was stated that, empirically, almost
all p.r.s.'s are normal, As Knuth observes in reference 13, this is also true

in 2 definite mathematical sense. Notice that if P, and P2 have a g.c.d. of

1

degree greater than one and if P., P . +y P, is.the compleie p.r.s., then

12 k
Pk-—l is an associate of the g.c.d, and Pk=0. Hence, no1 -nk>1, and

Pl’ Pz, . e oey Pk is not normal.
Since, in practice, g.c.d.'s of degree greater than one will oceur frequently,

our computing time analysis, to be useful, must not be restricted to a normal

P

p.r.s. So we now define a p.r.s. P, P to be weakly normal in

1’2" " "k
=1 for 2=si<k -2, We can now make the stronger

case deg(P) - deg (P, ,)

assertion that, for any r, almost all complete p.r.s.'s Pl’ Pz' ‘oeoey Pk

for which deg(gcd(Pl, Pz)) = r are weakly normal.

In the following, we bound the time to compute 2 complete weakly normal
reduced p.r.s. For convenience, we also say that (P,Q) is weakly normal

when any complete p.r.s. P,, P - Pk for which P1 = P and P2 =Q

AR A
is weakly normal.

By Theorem 1, part b of reference 6, we have the theorem that follows. .

208

Theorem 3,11

P, be a complete weakly normal reduced p.r.s. Let

Let Pl’ Pz’ - » L]
P, PZ’Ss’ e ey Sr be the associated complete subresultant p.r.s. Then,
for 3<i=r, P, =8, if 1 isevenor if n, ~n, is odd; otherwise P, = -Si.

The next theorem bounds the coefficients of a weakly normal complete re~

duced p.r.s.

Theorem 3.12

Let Pl’ P Pr be a complete weakly normal reduced p.r.s. such

2, . 8 oy
that deg (Pl) =m, deg (PZ) =1, norm (Pl) < g, and norm (PZ) <e. Then the co-

m-n+2i-4

efficients of Pi are bounded by e for 3=i=r,

Proof. By weak normality, deg(Pi) =n-i+2 for 2=si3r-1 and, by
Theorem 3.11, Pi =k Si for 3 =isr. The coefficients of Si are, by defini-
tion, determinants of order (m +n) - 2(deg(Pi_1) ~)=m-n+2ji -4 of

submatrices of the Sylvester matrix of P. and P,. By Hadamard®s theorem

1
m-n+2i-4

they are therefore bounded by e
Theorem 3.13

The time to compute the complete reduced p.r.s. for P and @, such
that deg(P) = m, deg (Q) =n, m »n0, deg (ged(P, Q)) =k, norm (P) <e,
norm (@) <e, and (P, Q) is weakly normal, is O{((m +n){m -n + 1)2 +

(@41 -2 +2° @ - k- n).

Proof. Let Pl, P Pr be the complete reduced p.r.s. By Theorem

2, * s ey
3.10, the time to compute P3 =R (-Pl, Pz) is O((m +n)(m -n + 1)2 {In e)2).

This completes the proof if » =3,

210

1 1
Suppose T » 4. For is2, let Pi_p(Pi’ Pi+1)'

]
either P (Pi' . Pi+1) or L(Pi +1) . Pi deg (Pi +1) <deg (Pi) =n -i+2, Therefore, at

Then g (Pi’ Pi +1) is

1
most, 2(n-1+2) multiplications are required to compute Pi . By

m-n+2i-4

n42i-
Theorem 3.12, the computing time for each is = Cl {Ilne }An e™ 1:+21-2) + 02

= C1 (m-n+2i- 2)2 (In e)2 + C,. The coefficients of Pi' are bounded by

5"
ge2M-2n+4i-6 < o2(M-MH21=2) b £ llows that the time for all multiplications

in computing § (Pi’ Pi+1) has a bound of the form (n - i + 2) (Cl(m -n+2i- 2)2

(In e)2 +C,). Such a bound continues to hold when additions are also considered,

m-n-+1

Now P 4= E(Pz, P3)/ (L(Pz)) The successive powers {L(Pz))'} , where

2%jsm ~n, canbe computedin (m -n +1) (03(111 -n+){In e)2 + 04) . The

m-n+4 m~n+1 | < em---n-!-l

coefficients of P, are bounded by e and | (L(P,))

m~-n+1

Hence, R (Py» Pg) can be divided by (L(P.)) in (n-2(C (m-n+1)

(m -n +4)(In e)2 +C 6) . The total time to compute P 4 from E(Pz, P3) is

therefore 507 m-2y(m-n+1)m~-n+4)(In e)z + C_m. Adding to this the

8
time above to compute R (P2, PS) gives a bound of the form {(m -+ n) (05(m -

n+1) (m-n+4(ne”+Cy, which is O((m +m)(m - n + H2(n e)3. This
proves the theorem for r = 4.

. - 2 .. _
Suppose r>4. For 123, P, ,=R (P, Pi+1)/(L(Pi)) . Since deg (P,) =

. - . w2 2
n -i, Pi+2 can be computed from g (Pi’ Pi+1) in (n- i)(C3 (m-n+2i)° (Ine)” + 04).

Altogether, the time to ct)‘mpute Pi 49

form (n-i+2)(Cy(m-n+2)°(Ine)” +C,p. Since r=n-k+3 if k>0

from P, and P, has a bound of the
i i+l

211

and r=n+2 if k=0, then ren -k +3. The total time to compute P5, P6’

.y Pr is therefore bounded by (03(m -n+2n-k+ 1))2(111 e)2 + 04)

Z}?;k;l(n ~1) S(Cym+n - 2% +2)%(1n g)” + c,) z‘;‘__lfgl m-1=0 ((m +n - 2% +
2% - k- DI (n)3, since TTH m-hs3(-@-9-&k-D)=

ow? - k - 13.

Theorem 3,14

The time to compute ged (P, Q) by the reduced p.r.s. algorithm, such
that deg(P) = m, deg{@) =1n, m »n >0, deg (ged(P, Q)) =k, norm (P)< e, norm
Q) =e,and (P, Q) is weakly normal, is O(((m+n) (m-n +1)2 +(m+n-2k+

2% 0% - (c -nH)(n 3.

Proof. The required computations are as follows:

1. a=cont (P), b= cont Q, Pl = pp(P), Pz = pp(Q) » C= ged (a,b).
2. Compute the complete reduced p.r.s. Pl’ P2’ .. "Pr'
3. ¥ Pr = 0, compute R=c¢ - pp(]?r_—l).—

By Theorem 2.6 and Covollary 8.9, the computations in step 1 can be per-

formed in O((m +n)(In e)z) . The time for step 2 is O{((m +n){m - n + 1)2 +

(m+n -2k +2)2 @ ~ k- 1)3)(1n e)) by Theorem 3.13. If P_=0, k>0 and
r-1=n-k+2, By Theorem 3.12, the coefficients of Pr-l are bounded by

em-i—n—Zk . Next we notice that Corollary 3.9 would still hold under the weaker

agsumptions that deg(P) = m and that the coefficients of P are bounded by d.
Since deg (Pr-l) =k, pp(Pr_l) can be computed in O(k(m +n - 2k)2(111 e)z).

212

The multiplication of pp(Pr_l) by ¢ can be done in O(k{m +n - 2k){in e)z) .

. . 2 2 2 .
So the time for step 3 is O(k(m +n -~ 2k) (In e)z) . Butk<n” - (k~-1)", since
k=n,

By eliminating the variables n and k, singly or together, we obtain the
three corollaries of Theorem 3.14 that foliow.

Corollary 3.15

The time to compute ged (P, Q) by the reduced p.r.s algorithm, such
that deg(P) = m, deg(@) =17, m >n-0, norm (P)< e, norm (@} <e, and (P,Q)

is weakly normal, is O{((m +n)(m - n + 1)2+ n2 (m +n) 2)(1n e) 2).

Proof. Use Theorem 3.14, noting that (m +n - 2k + 2)2 S (m+n +L2)2 =

O((m +1)% and nZ - (k- H2=nZ.

Corollary 3.16

The time to-compute ged (P, Q) by the reduced p.r.s. algorithm, such that
P, Q €U(e, m), deg (ged(P, @) =k, and (P, Q) is weakly normal, is

o + (m -k + 1°m + K (In).

Proof. Use Theorem 3.14, nofing that (m +n)(m - n + 1)2 £2m (m + 1)2 =
OmY) and (m +n-2k+22@% - k-1 S4m - & - D) (> - & ~) =

4m -k +1)m+k-1) = O(m -k + 1) (m +X).

Corollary 3,17
The time to compute ged (P, Q) by the reduced p.r.s. algorithm such

that P, Q ¢ U(e, m) and (P, Q) is weakly normal is O(m’(in €)5).

213

3

Proof, Use Corollary 3.16, notingthat m™ + (m -k + 1)3(1:11 +k) £m 3 +

om(m + 1)° = O(m?.

Having now analyzed the computing time for the reduced p.r.s . algorithm,
let us observe that theorems 3.12, 3.13, and 3.14, and corollaries 3.15, 3.16,
and 3,17 still hold if we replace "reduced p.r.s.'" everywhere by "primitive

p.r.s." Let Ql’ Qz’ .o Qr be the complete primitive p.r.s. Then Oi
is a divisor and associate of Pi for all i. Hence Theorem 3.12 still holds.

In Theorem 3.13 we now have to compute pp{R (Qi’ Qi +1)) in place of dividing

61_1+1

R(P; Py) by (L(P)) The computing time bounds are of the same

order for the two operations. In Theorem 3.14, the computation pp(Q 1‘_1) is
omitted, but this does not affect the bound of the theorem.

it would be interesting to know whether theorems 3.13 and 3.14, stated for
a primitive p.r.s. withouf the assumption of weak normality, would still
hold. It seems likely that they would, but we have not attempted 2 proof. It
also seems guite unlikely tlr}at they hold for a reduced p.r.s. without the weak

normality assumption.

4, A CONGRUENCE ARITHMETIC G.C.D. ALGORITHM FOR UNIVARIATE
POLYNOMIALS
In this section we describe a congruence arithmetic algorithm for comput-
ing the g.c.d. of two polynomials with integer coefficients., We also prove
several theorems to show that the algorithm does what it is supposed to do. In
section 5, we will analyze the computing time for the algorithm, showing that,

on the average, it is much faster than previous algorithms.

For any prime number p, let GF(p) hé the finite field with p elements
0,1, ..., p~-1, andlet @ be the unique homomorphism of the integers 1

onto GF(p) so that ® p(J'.) =i for 0=i.p. Let QD: be the homomorphism from

214

.) . * n i n i
I[x] onto GF(p) [x] induced by Db That is, cpp (Ej.:o a xl) =Ziz0 q@p (ai) X .
We shall usually just write (pp in place of C,Dﬂ; .

Given two polynomials with integer coefficients Pl and P2’ where deg(P

>deg (Pz) ~ 0, the algorithm decides whether deg(gcd(Pl, Pz)) =0 and, if it

1)

does not, computes the last nonzero term S of the complete subresuitant p.r.s.
for P1 and P2 (this being an associate of ged (Pl’ 13_’2)). A complete g.c.d.
algorithm is constructed from ﬂ:xis algorithm in an obvious way.

Let Pl’ Pz, SS’ .
S be the last nonzero subresultant. The general idea is to compute gop(S) for

. vy Sr be the complete subresultant p.r.s., and let

a sufficiently large number of primes p that S can then be computed by the
Chinese remainder theorem 2lgorithm. The required number of primes is de-
termined by Hadamaxrd's theorem as a function of deg(Pi) and norm (Pi) for
i=1 and 2.

In addition to P1 and Pz,

sequence of distinct prime npumhbers P1sPgsPgs + « and an infeger h such

the algorithm requires as input an infinite

that P 22h for all i. In practice the Py would probably be the first few

hundred primes greater than 2h, where 2}1 is about half the largest infeger

which can bhe stored in one computer word.

A complete description of the algorithm follows,

Congruence Arithmetic Subresultant Algorithm

1. Compute d=norm (Pl) , & =Tnorm (-Pz)’ m = deg (Pl), and n = deg (P2) .

Compute the least integer r such that 2f =d, and the least infeger s
such that 2° se. Compute t=ms +nr and u=[t/h] +1.

215

10.
11.

iz,

Set I=0 and M=§=o=().

Select the next prime p.

Compute P?=@p(Pi) for i=1, 2. If deg (P?) <m or if deg (PZ) <n,
go to sfep 3.

% * *
P, of P, and P

% %k
Compute the complete reduced p.r.s. P,, P K 1 5

1? T g vt 0
over GF(p).

It P; # 0, terminate with indication that deg (gcd(Pl, Pz)) =0,

%k % * %
Set N= (nl, Doy« ooy nk) where n, = deg (Pi) .

*
Compute the subresultant associate S of Pk-l’ using Theorem 1 of re-

ference 6.

If N <M, go to step 3.

EN-M, set § =(S), # =(p), I=1, and M = N, then go to step 3.
AdjoinSto § andpto @ . Set I=1+1. IfI<u, go fo step 3.

Tet @ = (P1>Pgs + + +sP) and § =(SI’SZ’ .. .,Su). Each Si isa
polynomial of degree k 0. By k+ 1 applications of the Chinese

remainder theorem, compute the unique polynomial § of degree k
such that <Ppi(S) = Si for 1<i<u and such that the coefficients of S

are bounded by%-pl, 1y« + Dy

The remarks that follow explain the above algorithm. In step 1 we are

applying Hadamard's theorem to obtain an upper bound u for the number of

primes p Tfor which (8) will be needed to determine S. By Hadamard's
0, y

theorem, the coefficients are bounded by de™

h_u <p1,p2 .« o pu for any u primes greater than 2 ,

< oIISANT _ zt <

h

216

& is alist of primes (pl,pz, RN pk) which were used but not discarded.
§ is a corresponding li'st of polynomials (81’82’ ey Sk) for which hopefully,
Si = qopi(S). If it later turns out that Si # (ppi(S), both p; and Si are discarded,
The value of I is always k; the number of primes in i:he list &.
*

* *
For each prime p, the sequence of degrees (nl, Ngs ooy nk) is com~

puted. All such sequences are ordered lexicographically. The value of the
variable M is always the maximum of all degree sequences which were com~
puted. Since (), the null sequence, is least among all sequences, M is ini-
tialized to (). Any prime whose degree sequence proves to be nonmaximal is
discarded. It will be proved below that if any u distinet primes all have the
same degree sequence, their common degree sequence is that of the complete

reduced p.r.s. for P1 and P2 over the integers and, hence, their degree

sequence is maximal., It will also be shown that if p has a maximal degree
sequence, the complete reduced p.r.s. over GF(p) is the homomorphic im-

age under Op of the complete reduced p.r.s. over the integers.

Theorem 4.1 and its corollary justify step 6.

Theorem 4.1

Let P and Q be nonzero polynomials over I, andlet p be a prime
such that ¢ p(_[:(P)) #0 and (pp(.ﬁ @) # 0. Then deg (gedipp(P),

(gp(Q))) =deg (ged(P, Q).

Proof. Let R = ged(P, Q). Then P=R - P1 and Q=R Ql . Since
@p is 2 homomorphism, ¢p(P) = gp®) * pp(P;) and @) =P®) * P(Q))-
Hence, o,(R) is 2 common divisor in GF() [x] of @,(P) and of p,(@). Also,
$@) =L@ - L£(P)), s0 04 (e®P) =0 L@®) gl (P) and opE®) #0.

Therefore, deg (ged (p,(P), p(Q)) = deg (P ,(R)) = deg ().

217

Corollary 4.2

Let P and @ be polynomials over I, deg(P) =deg (Q) >0. Let p bea
prime such that gop(.E(P)) £0 and qop(.E(Q)) #0. Let PPy - - o Py be a
complete p.r.s. over GF(p) such that P1=<pp(P) and P2=<pp(Q). i

P, #0, deg (ged(P, @) = 0.

Proof. I Pk £0, deg (gcd(Pl,Pz)) = 0. Use Theorem 4.1.

Lemma 4.3

Let P and Q be polynomials over I, deg(P) > deg(@) > 0. Let p bea
prime such that gop(j:(P)) #0 and ¢ p(.E(Q)) £ 0. Then qop(_s?, (P,Q)) =

R pp(P)s Pp@Q)-

Proof. Let m = deg(P), n=deg (), and R=R(P,Q). R is uniquely de-

m~-n+1.

termined by the condition that (g£(Q)) P=Q +*S+R for some S with

m~n+l, ‘Pp (P) _

deg(R) < n. Since @p is a homomorphism, @ (¢ @M
op(@) * PpS) +Pp®). But, ¢ (@) =L @), degp (P))=m, anddeg

@(Q) = n. Also, deg@® (R))< deg ®) < n. So @p(®) = R (pp(P), Op(@)-

Theorem 4.4

Let Pl’ PZ, .. "Pk be a reduced p.r.s. over I, andletp be a
prime such that deg(:pp(Pi)) = deg (P;) for IT<i<k-1. Let PsPy v P

k %
be a reduced p.r.s.. over GF({p) such that P 1= (pp(Pl) and P 9= qop(Pz) .

* s
Then Pi = (pp{Pi) for 1<iczk.

218

- % —_ kK -
Proof. P3=R(P1, Pz) and P3 =R (P, Pz) = sa(cpp(Pl), qop(Pz)),

% .
Therefore P g = qop(Ps) by Lemmaz 4.3, since deg (qop(Pi)) = deg (Pi) implies

cg,p(,{:(Pi)) £0. Let n, = deg (P,) and 61 =n, -n, . forall i. Assume

% * . *
Pi=<,0p(Pi) and P.og =¢pPiy) where 2 < i < k-2, Then L

5i-111 +1

— % - 03~ —
R, P MEP_) = op By PN o s@y) -0 & @y Py)/

1+1

6i- . . . * .
(,g(Pi_l)))= ‘Pp(Pi+2) by Lemma 4.3. By induction, Pi = ‘Pp(Pi) for all i.

Theorem 4,5

Let Pl’ PZ, .+ +, P, be areduced p.r.s. over 1. Let p be a prime.

k

%

* *
Let Pl’ P2, .o "Pk be a reduced p.r.s. over GF(p) such that

P1 = cpp(Pl), Pz =<pp(P2) and -deg (Pi) = deg(Pi) for 1 <igsk~-1. Then

%*
Pi= cpp(Pi) for 1<ic<k.

Proof. Proceed by induction on k. For_k =3 the theorem is an immediate

congsequence of Theorem 4.4 applied with k= 3. Assume Theorem 4.5 holds
* *
for k=7j, and assume its hypotheses for k=j + 1. Then Pi = (,op(Pi) for

1 <i<j by induction hypothesis. Hence, deg (Pi) = deg (p P(Pi» for 1 <isj.
*
Hence, Pi = p(Pi) for 1<i<j+1, by Theorem 4.4 applied with k=j 4+ 1.

The next theorem shows that if. u primes produce the same degree se-
quence, that common degree sequence is the degree sequence over the integers.
By the previous theorem, therefore, each prime produces a homomorphic ‘

image of the reduced p.r.s. over the integers.

219

Theorem 4.6
Let Pl’ PZ’ .« . ey Pk be a complete reduced p.r.s. over the integers.
Let deg (Pl) =m, deg (Pz) =1, norm (Pl) =d, and norm (Pz) <e. Let

n, = deg (Pi) . Let PsPgs « ¢ o P, be distinct primes such that

1‘1‘;=1 p; > dnem. Let Vs Byr ¢ v s U be such that: for every i, 1<i <u,

the complete reduced p.r.s. over GF(pi) for qopi(Pl) andqopi(pz) is a

i i i)
sequence P(l), P(z) s o s oy P(r) such that uj= deg (P(j)) for 1<j=vr, vy =1y,

and y, =1n,. Then r=k and v =1y for 1 <i<k.

Proof. Assume r >t and y § = nj for 1xj<t. This holds by assumption
for £ =2. We show that if it holds for t and if t <k, it holds for t+1.

L_et Sl,Sz, . e ’Sk be the complete subresultant p.r.s. over the integers
such that S1 = P1 and S2 = Pz‘ By Hadamard's theorem we know that the co~

efficients of all Si are bounded by a’e™. Now V=D >0 = 0, so

u . - — . .
r=t+1, 13 P pi is not a divisor of ¢ (St+1) so, for some j, pj isnot a

. . _t-1 6, . (5.-1)
divisor of 55(5t+1)' By Theorem 1 of reference 6; Pt+1_ni=2 c; i-1 Vi Sj:+1

=n. -n.
where 5i i nl 41

and c, =g (Pi) for 2 cigt -~ 1. By induction hypothesis,

vy = for 1 «ict. Hence, n, = deg (Pg)) for 1 <i=t. By Theorem4.5,

PO = o Py for 1<ict+1. So deg(P,) = deg (o, (P)) for 1<i=t. Hence,
i P 1 i Py 1

(,opj(£ () = ﬁpj(‘ci) # 0 for 1gi<t. So p; is not a divisor of

t-1 8 i-10;71)

=2 G , and it is not a divisor of _g(Ptﬂ , L.e.,u =1, ..

t+1 t+1

220

By induction we now have r zk and v; = for 1 <i<k. This implies

v =y = 0, and therefore, r=k%k,

Let P Pz, eeny Pk be the complete reduced p.r.s. over I for the

two polynomials P, and 13‘2 which are inputs to the algorithm. Let S be

i k-1

the subresultant associate of Pk-l' The next theorem shows that if step 12 of

the algorithm is ever reached, Si = (pp (Sk-l) for each p; ing
1

Theorem 4.7

Let Pl’Pz’ ey Pk be a complete reduced p.r.s. over I.. Let

Bos « ¢ «,58

% * .
P, = <pp(Pi), and assume deg(Pi) = deg (Pi) for< 1 <igk. Let Sl’ K
be the subresultant p.r.s. over I suchthat S =P1 and S2 = Pz. Let
* Tk-1 _* k-3 0i-1(91 *
Sy_q =1 Py 1/T L(P) ¢ 1) where n, = deg(P;),6;=1n, -1, .,
=T Ny Ty +k=-Hmy _, +1). Then Sk 1=0 (Sk e

Proof. Since deg (P) = deg (B, £(P}) = £ (P)) =9 (£ (®)). Apply

Theorem 1 of reference 6, and use the homomorphism property of (pp.

We still have to show that if step 12 is reached, S is an associate of

k-1

ged (PI,PZ), i.e., that 8, =0, But this follows easily from the proof of

k
Theorem 4.6,

Finally, we must show that the algorithm will eventually terminate, This
is equivalent to showing that only a finite number of primes can ever be dis-
carded by the algorithm in steps 4, 9, and 10. Buf a prime is discarded only

221

when its degree sequence is nonmaximal, i.e., when it divides Hli;i ¢ where

Pl’ Pz, . « ., P, _ is the complete reduced p.r.s. and ¢; = _s:(Pi). In the next

k
section, we take a closer look at the number of primes which can be discarded.

5. ANALYSIS OF THE CONGRUENCE ARITHMETIC ALGORITHM

In analyzing computing times for the congruence arithmetic g.c.d. algorithm
we consider h to be 2 constant. h will ordinarily be in a range between 30 and
60, depending on the computer word length. Since there will then be a minimum

of about Zh-l /h 2107 primes in the interval from Zh to 2h+1

ignore the size of the primes in our analysis and assume they are all single-

, we can safely

precision. There will then be a fixed bound for the time required to perform any

arithmetic operation in GF(pi) for all primes P; encountered. Likewise, we

may safely assume m, n, v, s, t, and u are all single-precision integers.

Theorem 5.1

The time to compute norm (P) such that P eiJ(d, m) is O(m(1n d)).
Proof. Obvious.

Theorem 5.2

The time to compute the least r such that oF >d is O((1n d)2) .

Proof. Let d0 =d-1 and di T [di/ 2]. Pick the smallest k such that
dk = 0. Then r=k. r divisions are required, and the time for each is

O(lnd). But r=0(Ind).

Theorem 5.3

The time to compute (pp(d) is O(in d).

222

Theorem 5.4

The time to compute (PP(P) for P € U@, m) is O(m(In d)).

Theorem 5.5

% *

%
The time to compute the complete reduced p.r.s.]?1 s Poa s Pk over GF(p)

% * * *
from Pl and Pz, such that deg (Pl)_-—- m and deg (Pz) =n, m>=n>90, is O (mz).

*
Proof. Let deg (Pi) =1

5 g(P)—c s § =0~ for 1<isk, and

+1.

* - % % *
6= -1 Then P, =T (P, P;,)ec, 1™ for 1<i<k~2. Clearly,

Sni(ﬁ g F 1) is the maximum number of operations in GF(p) required to compufe
6i--lﬂ) "1 canbe computed in §,_,+1 operations, and

. .
P i can then be compuied in, at most, n, . ot 1<n, i1 operations. But

k=2 k- 2 2 k-2
%1 3n1(61+1) < 3m Z (6 +1) =bm 3 8 {367, mo g (ﬁi_1+1)

k-2 2
4 i 5 14+2(m - nk_z) <2m, and-¥ =1 Dygp <M So the total

k-3

sl+2‘2 _1

number of operations is, at most, 7m? + 2m <8m> .

Theorem 5.6
*

Given a complete reduced p.r.s. Pl’ PZ’ ..o Pk over GF(p) such
that deg (P) = m, the time to compute Pk 1/1] 2 £ (P y &_16-1)
O(mz).

k-3 k-3 k-3 2 _ 2

Proof. 3 §=2 1(6 .~1) S 5 i z(5 =9] P = (m- nk_z) . So

~ k-3 * 51_1(61—1) . . 2
dk- 1= ¥ 10 £ (Pi) can be computed in 2 maximum of (m - nk_z)

223

. -1 -1 _* . rs
operations. dk-l and dk—l Pk—l can then be computed in n_,*+ 2 additional

operations. But (m - nk_.z)2 + ny._q +2< (m2 - mnk_zj + (nk_2 +1) mz - an_z +

1<m2.

In steps 9 and 10 of the algorithm, we have to compare two degree sequences
M and N. Since the maximum length for such a degree sequence is m + 2,
the time for this operation is O(m). This observation, together with theorems
5.4, 5.5, and 5.6 gives us the theorem that follows.

Theorem 5.7
For each prime P, selected by the congruence arithmetic subresultant
algorithm, the computing time is O(m2 + ni(ln d + In e)).

Next, we show that the number of primes selected by the algorithm is
On(n Ind + m Ine)).

Theorem 5.8

Let P P2, . e ey Pk be a reduced p.r.s. over I. Let Sl’ Sz, .. "Sk

1!
be a subresultant p.r.s. over I such that S]_=P1 and 82=P2. Let p bea

prime and 1gigk. If p divides g (Pi)’ then p divides p (Sj) for some j=<i.

Proof. The theorem clearly holds for 1<i=3. Assume it holds for t
where 3 <t <k, Let ¢ =g (Pi) and di = _g(Si) . By Theorem 1 of reference

+ t-lc

= = 6. 4 (6.-1) -
6,Cuq = ~Mj_p & i-171 "4 e Suppose p divides ¢ but not dt T

T+’
Then it-divides cj for some j <t -1 andhence, by induction hypothesis, dj .

So the theorem holds for t + 1.

224

Theorem 5.9

Let Sl’ SZ’ SS’ .

.y Sk be a complete reduced p.r.s. over I with
deg(sl) =m, deg (Sz) =1, norm (Sl) =d, and norm (82) <e. Let di =
£(S)- Then |nli;i dil cgn? oM

Proof. By Hadamard's theorem, |di]<dnem for all i, so |Hl§;§ dil

s(dnem)k—s. But |d1| < d and |d,|<e, so lnli;i di|s(dnem)k"2 <
(dnem)n.

Theorem 5,10

The number of primes selected by the congruence arithmetic subresultant
algorithm is O(n(n Ind +m In €)).

Proof. Since every prime discarded by the algorithm is a divisor of some
£(Pi} » by Theorem 5.8 some _g(Si) = di’ igsi<k - 1. By Theorem 5.9, the

mn

2
product of all discarded primes is, at most,_dri e . Since each prime is

greater than Zh, if N is the number of discarded primes, we have ZNh <

dnz emn; hence, N <(r12 log, d + mn log, €)/h. SoN=0Mmn Ind +m 1ne)).
2 2

The number of primes selected but not discarded is, at most, ust/h +

ls(ms+nr)/h+1s(m(s-1) +n(r-1) +m+n)/h+1<(m(1ogze+1) +

nlog, d +1))/h+1=0mInd +m Ine).

After we put all the pieces together, we have the computing time bound for

the entire process in Theorem 5.11.

225

Theorem 5.11

The computing time for the -congruence arithmetic subresultant g.c.d.
algorithm, such that deg(Pl) =, deg(Pz) =1n, norm (Pl) <d, and norm

(Pz) e, iIs O(mn{m +Ind + 1ne)(n In d + m 1n €)).

Proof. By theorems 5.7 and 6.10, the time to process all primes is
O(mn(m +Ind +Ine€){(n Ind + m In e)). Therefore we need to show that the
same is true of the other parts of the algorithm. By theorems 5.1 and 5.2,

the computing time for step 1 is O(m Ind+nline + (In d)2 +(In e)2) . In
accordance with the remarks at the beginning of this section, we assume that
each prime is 52h+1. Hence, ln(p1 Py .. pu) <h+NHu=0(nind+m In e},

as in the proof of Theorem 5.10. By Theorem 2.7, the time for each of the

k +1 applications of the Chinese remainder theorem algorithm is

O((nInd +m In e)z) . Since k + 1 = O(n), the computing time for step 12 is
Onnlnd+m In e)?). Incorporating this algorithm into a complete g.c.d.
algorithm, we must consider the times to compute pp(Pl), pp(Pz), pp(S), and

¢ * pp(S) where c¢ = ged (cont (P 1) , cont (Pz)) . The times to compuie pp(Pl)

and pp(P,) are O(m(ln d)z) and O(n{in e)z) by Corollary 3.9. Since the
coefficients of S are bounded by Py Py ces Pys Corollary 3.9 shows that the
" time to compute pp(S) is O@mn Ind +m In e)z) , the same as step 12, and the
time to multiply pp(S) by c is then O(n{(Ind +Ine)(n Ind + m In ¢€).

The next two corollaries follow easily.

Corollary 5.12
The computing time for the congruence arithmetic subresultant g.c.d. al-
gorithm, such that deg(P 1) =m, deg(Pz) =1, norm (Pl) < e, and norm (Pz)

<e, is O(mn(m +n)(m + in e}(1in €)).

226

Corollary 5.13

The computing time for the congruence arithmetic subresultant g.c.d.
algorithm such that P.s Pye Ule, m) is O(m3(m 4+ 1n €)(1n €)).

Comparing corollaries 3.17 and 5.13, we see that the computing time bound
for the reduced p.r.s. algorithm is larger than that for the congruence arithme-
tic algorithm by a ratio of m(ln e}/(m + In €), a ratio which grows indefinitely
with m and e. Actually, the superiority of the congruence algorithm is much
greater than this ratio indicates. We found that the number of primes discarded
is O(n(n Ind + m 1n e)), while the numbet of primes retained is only
O(n Ind+ m 1n e)). This suggests that most primes are discarded whereas,
it is intuitively clear that, on the average, a prime will be disearded only on
very rare occasions. If one chooses an integer N at random, the probability
that (pp(N) = 0 is only 1/p. Hence, if the leading coefficients of the sub-

resultant p.r.s. are random in an appropriate sense, fhe probability that p

will be discarded is, at most, 1 - (L - 1/p)na n/p, since n is much smaller
than p in all cases of interest. This reasoning suggests that the average
number of primes selected is O(n ind +m Ine). Going back over the proof
of Theorem 5.11, one can easily show that, under this hypothesis, the average

computing time is O(k(m + n)2(1n e)2 + m2 (m +n)(1n e)), where k is the

degree of the g.c.d. Hence, O(kmz(ln e)2 +m° {(1n €)); hence, 0(m3(1n e)z) .

If Pl and P, are relatively prime, there is a very high probability that this

2
will be proved by the value of p, via Corollary 4.2, provided that n is much
smaller than p. H we assume that the average number of primes selected in
the relatively prime case is less than two (or any other fixed number), then

we easily conclude that the average computing time for relatively prime poly-
nomials is O(m” + (m +n)(ln €)%); hence, O(mZ +m (In &)3).

The above algorithm can be made faster in two ways. The first way re-

quires only a simple modification of step 12. In step 12, if M= (nl,nz, cen ,na},

227

then na=0 and n _ is the degree k of the g.c.d, If a=3, P, is the

1
primitive associate of the g.c.d. and the Chinese remainder theorem is not

needed, ¥ a- 8, then 8, the subresultant associate of the g.c.d., has
coefficients bounded by g(t-na-2+l) o (m-ng_o+) , by Theorem 1 of reference
6 and Hadamard's theorem., Hence, only v= [{((m -n a_2+1) s+ (n -na_2+1) /h} +1

primes are needed to determine S by the Chinese remainder theorem. The

last u - v elements of & and § may be ignored. If, for example, m =n= 2k,
then n,_ o~ 1 >k and v = u/2 approximately. By Theorem 2.7, the computing
time for step 12 will therefore be reduced by a factor of about 4.

The algorithm as thus revised computes an a priori bo;md u for the number
of primes needed. After processing u undiscarded primes, it determines k
and adjusts downwards its original estimate for the number of primes needed.
The second modification avoids this waste by determining the degrees

Dy Ngs Doy «oey By sequentially. n,=m and n,=n are initially given.

Let Sl’ SZ’ ey Sa be the complete subresultant p.r.s. over the integers.

The coefficients of S, are bounded by gla-ngl} o (m-np+l) Hence, at most,

3
Uy = [((m -n, +Hs + (@ -n, + 1)1)/h] +1 primes are needed to determine Sy-
Having accumnulated ug undiscarded primes, n, is determined as m, where
M = (ml,mz,mg, eed) I n, = 0, then S3 =0 and step 12 is undertaken.

Otherwise, u, = [((m-n, +1)s +(n - ng ¥ 1)r)/h] +1 primes are needed to

3
determine S 40 Continuing in this way one eventually goes to step 12 with u,

primes in . The Chinese remainder theorem is then applied using u a1 of

these primes. I, for-example, m = n= 2k, this modification will reduce by
a factor of about 2 the time required to compute reduced p.r.s.'s and sub-

resultant associates over fields GF(pi) .

228

The univariate congruence arithmetic g.c.d. algorithm can be advantageously
used as part of any multivariate g.c.d. zalgorithm since the calculation of a
multivariate g.c.d. requires the ealeulation of numerous univariate g.c.d.'s.
Also, the methods employed in the univariate algorithm can be extended to
multivariate algorithms. Viewed abstractly, we wish to compute the g.c.d. of

two polynomials P1 and P, over an integral domain ¢ (where ¢ itself may be

2
a polynomial domain}. We have at our disposal a sequence bys s oo of

homomorphisms from ¢ to some integral domains Ji' Instead of computing a

complete p.r.s. P_.,P_,P

1Po P, over ¢ , we compute & complete p.r.s.

oo By
p0, 20, 20 oror 5, sucnthar D= ¥ @) and 20= ¥ @)y for

*
i=1, 2,38, ..., d)i being the homomorphism from ({x] to Ji[X] induced by
* i _ *
by If $; bpreserves the degrees of Pl’ Pz, P3 +s+y We have Pj = ¥ (Pj)‘

%
One must then have a mechanism for discarding those by which do not preserve

degrees. One must also be able to compute a bound u such that Pk—l can be

* * *
determined from ¥y (Pk__l) - Uy (Pk_l), cees By (Pk-l) . If, for example,

¢ =1I{yl, one can let b3 be the evaluation homomorphism b; (P) = P(i) from

I[y] to I. In this case, a bound u can be computed as a function of the degrees

of the coefficients of P1 and P,, and the interpolation replaces the Chinese

* %
remainder theorem for computing P from the by (P Those bj which

k-1 k-1
produce nonmaximal degree sequences are discarded as in the univariate

algorithm above. One advantage of so choosing the zbi is that it leads to an

algorithm which is recursive in the number of variables. To compute the com-
* *

plete reduced p.r.s. of by (Pl) and b; @ 2) over I, the univariate con-

gruence algorithm above can be used (since only the degree sequence and the

229

subresultant asgociate of the last nonzero term are needed). From an algorithm
for polynomials in n variables, an algorithm for polynomials in n+1 vari-

ables is thus obtained using the evaluation-homomorphisms from I[Xl’ cees X +1]

to I[x x 1.

1, + sy n
REFERENCES

1, I, Borosh and A. S. Fraenkel, "Exact Solutions of Linear Equations with
Rational Coefficients by Congruence Techniques, " Mathematics of Computa-
tion, Vol. 20, No. 93, January 1966, 'pp. 107-112,

2. W. 8. Brown, '"The ALPAK System for Non-Numerical Algebra on a
Digital Computer—I: Polynomials in Several Variables and Truncated
Power Series with Polynomial Coefficients, " Bell System Technical Journal
Vol. 42, No. 3, September 1963, pp. 2081-2119.

3. W. S. Brown, J. P. Hyde, and B. A, Tague, 'The ALPAK System for
Non-Numerical Algebra on a Digital Computer—II: Rational Functions of
Several Variables and Truncated Power Series with Rational Function
Coefficients, ' Bell System Technical Journal, Vol. 43, No. 1 March 1964,
pp. 785-804,

4, J. P. Hyde, "The ALPAK System for Non~Numerical Algebra on a Digital
Computer—IIi: Systems of Linear Equations and a Class of Side Relations,"
Bell System Technical Journal, Vol. 43, No. 4, July 1964, pp. 1547-1562,

5. G. E. Collins, "PM, A System for Polynomial Manipulation," Communica-
tions of the Association for Computing Machinery, Vol. 9, No, 8, August
1966, pp. 575-589. .

6. G. E. Collins, "Subresultants and Reduced Polynomial Remainder
Sequences, "' Journal of the Association for Computing Machinery, Vol, 14,
No. 1, January 1967, pp. 128-142.

7. G. E. Collins, "The SAC-1 List ProcessingSystem, "University of
Wisconsin Computing Center Report (34 pages), Madison, Wisconsin,
July 1967. :

8. G. E. Collins, "The SAC-1 Integer Arithmetic System, ! University of
Wisconsin Computing Center Report (31 pages), Madison, Wisconsin,
September 1967. .-

9. G. E. Collins; "The SAC-1 Polynomial System,' University of Wiséonsin
Computing Center Technical Reference 2:1968 (68 pages), Madison,
Wisconsin, January 1968,

10, G. E, Collins, "Computing Multiplicative Inverses in GF(p), ' University
of Wisconsin Computer Sciences Technical Report No. 22 (8 pages),
Madison, Wisconsin, May 1968.

230

i1,

12,

13.

14,

15,

S. A, Cook, "On the Minimum Computation Time of Functions, '" Harvard
University Computation Lab. Report BL-41, Cambridge, Massachusetts,
May 1966.

D. E. Knuth, The Axt of Computer Programming, Vol, I: Fundamental

Algorithms, Addison-Wesley, 1968.

D. E. Knuth, The Art of Computer Programming, Vol, II: Seminumerical

Algorithms, Chapter IV, Arithmetics, Addison-Wesley, 1969.

H. Takahasi and Y. Ishibashi, ""A New Method for 'Exact Calculation' hy a
Digital Computer," Information Processing in Japan, Vol. 1, 1961, pp. 28-42.

J. V, Uspensky, and M. A, Heaslett, Elementary Number Theory,
McGraw-Hill, 1939.

231

PRECEDING PAGE BLANK NOT_FILMED

SYMBOLIC METHODS FOR THE COMPUTER SOLUTION
OF LINEAR EQUATIONS WITH APPLICATIONS TO FLOWGRAPHS

John Dby]‘_,ips()n N %i ,,,, i é‘ 1 @lz

Graduate School of Arts and Sciences
Harvard University
Cambridge, Massachusetts

Abstract

The paper considers the computer solution of linear equations
with symbolie coefficients. A method of solution based on a mul-
tivariate polynomial extension of the two-step integer-preserving
elimination algorithm due to E. Bareiss! which avoids the necessity
for time-consuming rational function arithmetic is proposed. This
two-step method is compared with the classical one-step method in
the context of multivariate polynomial domains and found to be
considerably superior.

The proposed fraction-free algorithm is used as the basis for
a new method of computing the generating function of a flowgraph,
superior to the traditional node elimination technique of S. J.
Mason, The application of flowgraphs to enumeration problems of
combinatorial analysis and automata theory is presented.

Proposed algorithms are implemented using the IBM 2250 Scope
FORMAC System, 43 The 2250 listings, along with sample output
are presented,.

The help and encouragement received from Professor Garrett Birkhoff, Dr.
Elizabeth Cuthill, Dr, Robert Tobey, and Professor Donald Tufts are greatly
appreciated. The support for this research received by IBM and the Office of
Naval Research is gratefully acknowledged.

233

PRECEDING PAGE BLANK NOT FILMED

SYMBOLIC METHODS FOR THE COMPUTER SOLUTION OF LINEAR
EQUATIONS WITH APPLICATIONS TO FLOWGRAPHS

by
John D. Lipson

1. INTRODUCTION AND OVERVIEW
Linear Equations With Symbolic Coefficients

The use of computers in conjunction with computer languages, such as FOR-
TRAN, ALGOL, and PL/I, in computing the solution to linear equations with
numeric (real) coefficients is well known. (An account of this area along with
sample programs is provided by reference 12.) This paper is concerned with the
analogous problem in the area of nonnumerical analysis and symbolic mathemat-
ics by computer, namely the computer solution of linear equations with symbolic

coefficients.

An example of a system of linear equations with symbolic coefficients is
provided by

1 -x =x -1 0
0 1 -X ~1 0
= (1.1)
0 -X Ixy -1 0
0 0 0 1 1

Here the coefficients are in Ijx,y], the domain of bivariate polynomials over the
integers I. The solution, which then lies in the field I(x,y) of rational functions, is

-1-2x+xy—x2+xzv

4 = 1 -xy-x2
u2=1+x—xy
l-xymx2

235

-1 -x

i, = —5
37 1 ayox? (1.2)

=1
Uy

A simple but important observation for the sequel is that any system of
linear equations with symbolic coefficients, regardless of the nature or com-
plexity of the coefficients, can be transformed via substitution to a system of linear
equations with coefficients in some multivariate polynomial domain. For example,

suppose the given system of linear equations is

1 - sin(ar) ~ gin{ar) 0
0 1 - sin(ar) 0 (1.3)
. sin(ar) = .
0 - SM(ar) 1- 5 g 0
a +r
0 0 0 1

Substituting x for sin(ar) and y for -2—1——2 yields (1). The solution o (1.3)
a +r

is eventually obtained by making the inverse substitutions into (1.2).

Computation With Multivariate Polynomials

The time-honored method of Gaussian elimination is valid over any field. Thus
it is applicable to computing the solution to a system of linear equations with
polynomial coefficients, provided that a rational function arithmetic capability
is available. Indeed, systems have been implemented with this capability, notably
ALPAK 2, 6, 20
tion to solve linear equations with multivariate polynomial or rational function

and MATHLAR, 26 and they employ standard Gaussian elimina-

coefficients.

236

Gausgin elimination is considerably less efficient over the field of quotients
of a polynomial domain* than over the real field due o the nature of computation
with quotients of polynomials. First, the arithmetic @ and (© of quotients

a @§= ad + be

2 and 2 @ & - B¢

bd b d -~ bd
involves multiple polynomial operations—three multiplications and one addition
in the case of quotient addition @, and two multiplications in the case of quotient
multiplication . Second and more important is the problem of reducing quo-
tients fo lowest terms. For example, over the field of quotients of I[x,y] one

' 6.2 5

15Xy +56xy

6X5 + 3x3y2 + 2x4 + xzy ;

does not want to accommodate rational functions such as

5x4y

ZXS + Xy

instead one wants the equivalent reduced from The reduction of

rational functions to lowest terms generally involves computing the greatest
common divisor (g.c.d.) of the numerator and denominator polynomials by some
variant of the Euclidean algorithm. In spite of the significant results recently

achieved by G.E, Collins in this area, 7, 89

the amount of computation required
to determine greatest common divisors, especially in the multivariate polynomial
case, is formidable.** As remarked in reference 26 on page 88, most computation
time in any application involving rational functions is taken up with g.c.d. calcu~
lations. Thus we are sorely tempted to employ a method for solving linear
equations with polynomial coefficients that does not involve computation with
rational functions. Of course one such method is provided by Cramer's rule,

but the excessively large number of operations required to directly evaluate higher
order determinants more than negates any advantages gained by avoiding g.c.d.

calculations.

*Unless specified otherwise, polynomials are understood to have integer co-
efficients. Although there is no harm algebraically in admitting polynomials
with real coefficients, serious computational difficulties arise due to roundoff
error.

*#*In reference 32 it is reported-that to compute the g.c.d. of a polynomial of
degree 5 in two or three variables can take on the order of a minute on the 7094.

237

Fraction-Free Gaussian Elimination

Given a system of linear equations Ax = b with integer coefficients and
right-hand side, the problem arises of computing the exact solution, i.e., not
tolerating any roundoff error. A modification of Gaussian elimination, attributed
to Jordan in reference 1, transforms an integer system to triangular form such
that:

a. No rational numbers are produced, only integers; i.e., all transforma-

tions are integer-preserving or fraction-free, and hence not subject
to roundoff errox.

b. The magnitude of the coefficients in the successive transformed matrices
of the triangularization process are minimized by dividing out a factor
which occurs systematically.

c. A by-product of the method is the evaluation of the determinant of the
coefficient matrix and, by an appropriate back-substitution scheme,
the same solution is obtained as would result from applying Cramer's
rule.

The algorithm referred to above is described by Bodewig (reference 3,
Chapter 1) and Fox (reference 13, pp. 82-86). The importance of the exact
divisibility property of step b can be appreciated by observing the size of the
integers in an example of Rosser 38 in which elimination is carried out by a
simple cross-multiplication scheme. TLuther and Guseman 24 essentially re-
discover the fraction-free technique described by Bodewig (reference 3, p. 109)

for computing the adjoint of an integer matrix.

Recently Bareiss (reference 1, Equation (2.12)) devised a two-step variant
of this fraction—free elimination aléorithm. In this scheme, variables are suc-
cessively eliminated two at-a-time in transforming a given system of linear
equations fo {riangular form. The interesting computational aspect of this two-
step algorithm is considerably increased efficiency (reference 1, Section IV})

over the classical one-step method.

The applications of fraction-free Guassian elimination reported in the above

references are primarily numerical in nature. Bodewig and Fox are concerned

238

with computing the exact solution of linear equations with integer coefficients,
and Luther and Guseman* report writing a program for the IBM 709 which finds
the adjoint of 50 x 50 square matrices using integer arithmetic. Except for
brief remarks (reference 1, Sections IV and VI) that multistep fraction-free
methods can also be applied to the mechanized algebraic (i.e., nonnumeric)
expansion of determinants, the applications that Bareiss discusses are numeric,
In addition to the usual application of fraction-free (integer-preserving) methods
in computing the exact solution of linear equations with integer coefficients, **
Bareiss discusses an interesting new application (reference 1, page 576) of such
methods in devising a completely stable (roundoff-free) general elimination

routine.

In this report we shall apply a two~step fraction-free elimination method
in computing the solution of linear equations with multivariate polynomial co-
efficients. In section 2 of this paper, a new and elementary proof of the crucial
fraction-free property of the elimination methods is presented. The proof holds
for an arbitrary integral domain. The algorithms are analyzed from the viewpoint
of computational efficiency when applied to multivariate polynomial domains.

Computation of Generating Functions of Flowgraphs

The multivariate polynomial extension of Bareiss' two-step elimination
algorithm can be used tfo compute the generating function or gain of a flowgraph.
(It is this problem which served as the starting point and motivation of the
research reported here.)

*

Note: In the Luther and Guseman paper, 24 Equation (20) on page 448 contains
the essence of a two-step elimination algorithm (but it was not recognized ox
applied as such).

. With respect to the problem of computing the exact solution of linear equations
with integer coefficients, the reader is also referred to methods 4, 33, 40 haged
on congruence (finite field) arithmetic. These metheds derive their power by
largely avoiding higher precision arithmetic.

239

Flowgraphs as presented in section 3 of this paper constitute an amalgamation
of two powerful mathematical notions: that of a generating function and that of
.a directed graph. Flowgraphs are frequently applied in such areas as circuit
27, 28, 29 19, 23, 36, 39 graph theory, 36_;, and coding

theory, Markov chains,

theory 37

Two methods for computing the generating function of a flowgraph currently

28, 29 provides a topologiczal method which requires

exist. Mason's gain formula
the detection of certain seis of paths and loops in the flowgraph. This defection
generally turns out to be a difficult pattern recognition problem, and Mason's
gain formula does not seem suifable as the basis for a computer algorithm. A
systematic (i.e., programmable) method, also due to Mason, 27, 29 is based
on a node elimination scheme. However, this method involves computation with
rational functions, and the proposed fraction-free method for computing the gen-
erating functions of flowgraphs promises a great increase in efficiency., In
addition, the application of flowgraphs in solving some enumeration problems

from combinatorial analysis is presented.

Implementation

A set of routines called FFP (fraction-free package for the solution of linear
equations with multivariate polynomial coefficients) was implemented using the
IBM 2250 Scope FORMAC System 43. These routines are used by two applica-
tions programs, FGRAPH and STAT. FGRAPH compuies the generating func-
tion of a flowgraph according to the algorithm presented in section 3; STAT
computes the stationary probability vector of a Markov chain specified by a
transition matrix with symbolic elements. The above programs, along with

sample oufput, are presented in section 4.

240

2. FRACTION-FREE GAUSSIAN ELIMINATION OVER INTEGRAL DOMAINS

In this section integer-preserving elimination methods are extended to
arbitrary integral domains and the computational aspects of such methods are
investigated in the context of multivariate polynomial domains. This extension
makes possible their application to the computer solution of linear equations
with symbolic coefficients. A new and elementary proof of the important

fraction-free property of these methods is also presented.
Let A= (aij) and B = (bij) be an nxn matrix and nxm matrix respectively

over an integral domain D, and congider the m systems of linear equations
AX =B with common coefficient matrix A . Note that any number m of
inhomogeneous terms are allowed; e.g., B is the identity matrix when the

inverse of A is desired.

The n x (n+m) augmented matrix of the given systems is defined by

Ag-)) = (a(i?) = [A| Bl (2.1

Division-Free Gaussian Elimination

with A(® given by (2.1), a sequence of matrices a® - (3(11?) k=1,2,...,n~1)
is computed according to

k) _ (k-1) (k-T) (k-1) (k-1)
aij = akk aij - akj Ch {(2.2)

i=kt,...,n; j=k+l,...,n+m)

where it is implicit that

ij ij

2® - { a® D ao1,.kj=1,...,nm)
0 (G=ktl, ..o §=1,2,...,K).

Provided that A is nonsingular (2.2) generates matrices A(k) which represent
systems of linear equations equivalent* to those represented be A(O) , and the
left-hand n xn submatrix of A®-D {the transformed coefficient matrix) is in

upper triangular form.

*The usual account must be taken of zero pivots.

241

The lower right (n-k) x (n-k+m) submatrix of A(k) (computed according
to (2.2)) is denoted by Ag{) , 1.e.,
Al - (ag‘)) @=kH,...,n; j=k+,...,nm). (2.3)

Recall that, in an integral domain D, a divides b or b is divisible by

a when a=Dbc for some c¢ in D.

Theorem 2.1. The minors of order two of Ag{) are divisible by

k
n aﬁ"” k=t por k=1,2,....n-2
1=1

The proof is given in Appendix A.

Corollary. The ag.c) of Al(lf) are all divisible by

k-1
n aﬁ Dkt g k=2,8,...,0-1
£=1
Proof. Each a(li{j) of A(Il‘{) (k=2,3,...,n-1) is a minor of order two of
Agf -1 , for (2.2) may be written as
(k-1) (k-1) —
L0 _ | ke Ak
R) =)
ik ij

The desired result now follows from Theorem 2.1.

The division-free algorithm is now analyzed when the integral domain D
is specialized to a (multivariate) polynomial domain I[Xl, - ’Xr]'

The (total) degree of a polynomial

°1 €9 °r
a(xl,...,xr) =§e agxl Xo" au X, (ag €1)

242

in I[xl, . ’Xr] is defined by the maximum of the degrees e teyt. . te, of the

1 %2 °r
monomials A, X Xy .ee X, of a(x

1 %o oo ’Xr) . The degree function deg a

1’
obeys the same rules as the familiar univariate degree function
degab = dega + deghb
deg atb = max(deg a, deg b)

and indeed specializes to the univariate degree function for the case of I[Xl]'

Assume now that a system of n linear equations Ax = b has polynomial
entries a_, and bi all of degree d. Then the division-free algorithm (2.2)

ij
(k) k
generates polynomials a ij of degree dx 2" at stage k (k=1,2,...,n-1).

For example, applying the division-free algorithm to a 10 x 10 system having
first degree polynomial entries results in polynomials of degree 29 = 512,

The storage and time reguired to accommodate such large degree polynomials

is intolerable. Moreover, Cramer's rule (and the definition of a determinant)
indicates that the solution to such a system consists of numerator and denomina-
tor polynomials having maximum degree 10 (generally, degree nd). An elimina-
tion algorithm is now considered that yields the results promised by Cramer's

rule.

Fraction-Free Gaussian Elimination

With A(O) again given by (2.1), the division-free algorithm (2.2) is modified
to: for X=1,2,...,n-1

(-1),_ (k-1) (k-1} (k-1)
o0 ek iy T g %
ij &-2)
k-1,k~1

J - (2.4)

i=k+,...,n; j=k+l,...,n+m)
with a1 = 1, where again it is implicit that

00

243

(k-1)
ij
0 (i=k+l,...,n; }=1,...,K).

a (i=1,...,k; j=1,...,n+m)

(k) _
2 =

Clearly the algorithm (2.4) triangularizes A(O). Although the a(il? of (2.4) appear
to lie in the field of quotients of the integral domain D, the following theorem
shows that the transformations of (2.4) are all fraction-free.

K) obtained by (2.4) are in D.

ij

Proof. Consider the a(li? generated by the division-free algorithm (2.2},

Theorem 2.2. The a'

and change the notation there to b(i!? to distinguish these elemenis from the

a(k) generated by algorithm (2.4). The corollary to Theorem 2,1 proves that

ij
) k=1 [-y | wkt
the bij of (2.2) are all divisible by 7 b o0 . Consequently, if
+=1
it iz shown that
y p{k)
a,(ij) - = (2.5)
I b(% -1) k-
=1 | ¥

then Theorem 2.2 immediately follows. Equation (2.5) is established by a simple
proof by induction, which is given in Appendix A.

The explicit relationship given by (2.5) between the elements generated by
the division-free algorithm (2.2) and those generated by the fraction-free algorithm
(2.4) seems to be new; but it seems interesting only inasmuch as it provides a
new and elementary proof of the fraction-free property of algorithm (2.4). Again,

knowledge of (2.4) has been attributed to Jordan.

The proof of Equation (2.5) also establishes the following corollary.

Corollary. TFor the fraction-free algorithm (2.4), any minor of order two of

(1c-2)

k-1) o gpoes
A} is divisible by a k-1,k-1

244

,(0=1)

Theorem 2.3. [A] = a' _

The proof is given in Appendix A.

Next we analyze the fraction-free algorithm (2.4) again for a system of n
linear equations Ax = b, with the aij and bi polynomials of degree d,
Then (2.4) generates polynomials a(il? of degree d(k+1), a vast improvement
over the division-free algorithm (2.2) in which the degree was dx Zk, resuli-
ing in a great reduction in storage and computation time.

The algorithm of key computational importance for this report is a two-step
variant due to E, Bareiss L of the fraction-free algorithm (2.4). This algorithm,
valid over any integral domain, is readily derived from (2.4) as follows. Apply-

ing (2.4) to the numerator of the right-hand side of (2.4) gives

(k-2) (k-2 (k~2)_(5-2) Aem2) s-2) (%) (k-2)
B _ A 1,k-1%kk T Bk k-1 -+ k-1, k=13 T 81,50, k-1
G &=
A9 k-2 -2, k-2
- a2 k-2 (k-2) (k-2) &2 k-2 _ (k-2) (k-2) o &2)
Ae-1, k1%Kj 1, Pk, k-1 0 k-1, k-1%k 1, 1, k-1 | [Pr-1,k-1
(K3} o (k=3) /
k 2,k-2 k—2 k-2
(k-2) k2) () (k-2 (k=2))
a1, k-1 e-1,k-1%kk -1,k k1) (k-2)
= TR M=) i
-2, k-2 e-2,k-2)
k-2 (k-2 (-2) k-2 -
e-1,1-1%k 1,54, k-1 (k—2)
- o (k=3) %kj -
B, ke ®
(k—2) (k-2) (k 2) (k—2)
%k, k-1%ik T ke k-1 o (k-2) (k~2)
* _&=3) Ak-1,] -1,k-1
A2, lc-2

245

http:a(k2)].k2

1

] |

Now the term within curly braces [{ } :lvanishes and thus need not be com-
puted—this is what reduces computations when the two-step method is used in-

k=-2) (k-2) (k-2) (k-2) k-2y , k-2) (k-2) (k-2) {
-1,k %k, k-1%%~1,i°0, k-1~ %-1,ik,k-17k~1,k°, k-1

stead of the one-step method. Now the expression in parentheses on the line

marked " @ " ahove is equal to al({l-{:f)k-—l and the expression in parantheses on the line

marked " @ " gbove is equal fo agi-z) ; hence both are in the integral domain D by

Theorem 2.2. Also the numerator of the expression in parentheses on the line
marked " @ " above is a minor of order two of AI(Jk_z) and hence, by the

corollary to Theorem 2.2 is divisible by a(ll:_-z?’)k—?. . Thus expression " @ "

(k-2)

in parentheses is in D. Next we can cancel a1 k-1° Finally we note thaf the

entire bracketed term is divisible by a(ll::ZS)k-z because a(il;f) isin D, again
]

by Theorem 2.2. This establishes the fraction-free property in any integral

domain of the following algorithm.

Two-Step Fraction-Free Gaussian Elimination Algorithm (Bareiss)

af)—(')l) =5 3‘(1(;) = a(i(:)nﬂn = Pim

§P = @Dl - i Pal /A

G = e " ekt) /) ok @O
o = G T mag o /A ke

(k
i ij % T B * 81,i%2 B2 k-2

for i=k+1,...n; j=k+1,...n+m

a0 QDL) e -2) o (k-2 | / (-3)

246

with the pivot row computed by the one-step formula

(1) _ (k-2)

ke T %

k1) _ k2, (=2 _ (k-2 (k2 (k-3)
"t T Bk T %1, k1) / 2, k-2

fori=k+1,...,n+m.
The proper sequencing of computation is presented in the flowchart of Figure
1.1 which implements some meodifications in the logical flow of control shown on
page 569 of reference 1 (see also the following remarks),

A pivoting algorithm for two-step Gaussian elimination is necessarily more

complicated than one for a one-step method because of the necessity of checking

(k-2)

two pivot elements, a(lg;" 1 and a for zeroc. The reader is referred

k-1,k-1°
to the pivoting algorithm of reference 1, Figure 3 which replaces
c(()k—?.) F-—

of Figure 1.1 of this paper.

. Comparing Figure 1 of reference 1 with Figure 1.1 of thig paper, it is ob-
served that the flow of control is different. Qur alteration corrects an error

in reference 1, due to the last pivot element a(n_z)

of an even order matrix
n-1,n-1

not being tested for zero; e.g., failure would occur for a coefficient matrix of the

form
EE T
0 % % %
00 *
00 *

Efficiency also increases slightly by assigning the previoﬁsly computed value

(k-1) (n-1)
Kk . Also ann

before exiting as a final test that the coefficient matrix is nonsingular.

should be checked to be sure it is nonzero

(k-2)
¢ 0 to a

247

~ c@; b, - q§0)

q,.
i i i i,ntl

EXIT

rg 2 -k
(i,ij=1,...,m2=1,2,..., m
c(k"z) yes k = n no
Q
yes
k+2 = k
no c
k =i
\;
k-2 (k-2) oy
c”- ; SN i+l = |
- (A=k=1, ... ntm)
no
i
! yes c(k—2)-_, G(k—])
(j=k+1, . . . ,ntm) Q kk

Figure 1.1. Two-Step Fraction-Free
Gaussian Elimination

248

Relative Efficiency of One and Two-Step Fraction-Free Elimination Algorithms
Over Multivariate Polynomial Domains

The analysis of the fraction~-free elimination algorithms (2.4) and (2.6) is
given in terms of the number of integer multiplications and divisions required

to carry them out over the multivariate polynomial domain I[xl. ‘e ’Xr]‘

Let a(xl, cee ,X_r) be a polynomial with integer coefficients of degree d in

each of r variables of the form

d d el er
afx) = & e I 8% ..o X, {2, €0
e1=0 er=0 - -

Note that the total degree of such a polynomial is rd. Clearly a(x) has (d+1)r
terms, assuming there are no missing terms. TFor simplicity of analysis, this
assumption is made throughout.

If a(x) and b(x) are two polynomials in r variables of degree d and e in
each variable respectively, then the number of integer multiplications required
to compute a(x)b(x) is '

[{d+1) (e+1)1" 2.7

and the number of integer multiplications and divisions required to compute
a(1_<)/b(§) agssuming, of course, that b(x) divides a(x) , is

[(@-e+1)(e+1)]" . _ 2.8)
Furthermore, the degree of a(x)b(x) is d+e and the degree of a(x)/b(x) is d-e.

Now consider m systems of n linear equations in n upknowns AX =38

with a common coefficient matrix A, and assume that the B4 and bij of

A and B arve all polynomiéls of degree d in each of r variables. Then,

referring to (2.4) and {2.6), the ag}) are of degree d, the agjl) are of

degree 2d, and in general the a(il? are of degree (k+1)d in each variable.

249

Let NS(m,n,d,r) and NT(m,n,d,r) be the number of integer multiplications

and divisions required to carry out the single-step algorithm (2.4) and the two-
step algorithm (2.6) respectively. From (2.4) follows

-1 ' 2r r r
(m,n,d,r) = Z (n-k)(a-k+m) [2(kd+])" + (kd+d+1)" (kd-d+1) 1.

=1 (2.9)

Ng

For the two-step algorithm (2.6) care must be taken to distinguish between n
even and n odd. If we define g by n-1 if n is odd and by n-2 if n is even,
from (2.6) follows

Np(m,n,d,7) = k§=2 B q(tl +iy g+t +Eg (2.10)

where
t, = 2(kd-d+)”" + (kd+1) " (kd-2d+1) "
ty = 2(0-k)[2(kd-0+1)"" + (kd+) (kd-2d+1) 7]
g X g T
t3 = (a-k)(n-k+m){3(kd-d+1)" (kd+1)" + (kd+d+1) (kd=-2d+1)]
t, = (-kim) (20d-+D)7 & (kdt1)" (kd-2d4)7]
and
0 if n is odd
b =

l(m+1)[2(nd—d+1)2r + (nd+l)” (nd-2d+1)"] if n is even.

g{-z) , t, 1o cgk_z) and

The term tl corresponds to the computation of ¢ 9 i1

&2

. k) . .
12 (i=k+l,...,n), t3 to aij) (i=k+l,...,n; j=k+l,...,nt+m), and t4

to algi"l) (t=k+l,...,n+m). For n even, t. corresponds to the computa-

5

tion of a(n" 1)

e 4=n,...,ntm).

250

N,
1im ‘N—'T = cld;_
mar ©) a bt
11
From (2.9)

a; = 2(m+l), b, = (nd-d+1) 2

In determining cl and d1 from (2.10) there are two cases to consider:

a. n odd in which case ¢y and d1 are determined from t3 of (2.10) as

¢, = 3(m+1), d1 = (nd-2d+1)(nd-d+1)
b. n even in which case ¢y and dl are determined from ts of (2.10) as

¢, = 2(m+), d1=(nd-d+1)2 :

“Noting that b1 = dl for n odd and that a, = ¢ and]o1 = d1 for n even, it

follows that

N
lim == { 2 ior n.odd (2.13)
o Ng or n even

Thus we have the rather surprising result-that for higher variate polynomial
systems the two-step method offers a potentially unbounded increase in efficiency
over the one-step method, provided that the coefficient matrix is of odd order.
Confé“f‘s’ély, when the coefficient matrix is of even order, then in the limit as

1 -9 the two-step method offers no advantage whatsoever over the one-step
method. Moreover, the limiting behavior of (2.13) is strongly exhibited for

very moderate values of r as indicated by Table 2-1, where the ratio NT/ NS is

computed with m and d arbitrarily set equal to unity.

252

To ascertain the computational savings afforded by the two-step algorithm
(2.6) over the one-step algorithm (2.4) it is useful to examine the ratio

NT(m,n,d,r)/NS(m,n,d,r) in two limiting cases:
a. large mn (large systems of linear equations)
b, larger (systems with high-variate polynomials).

As for case a, first observe that the number of integer multiplications and di-
visions in carrying out the transformation A(k_z) - A(k) by the one-step

algorithm is given from (2.9) by
(n=k+1) (n-k+m+1) [2(kd-d+1) 2 + (kd+1) " (kd-2d+1)7]
+ (n-k)y(n-km) [2(kd-1)° + (kd+d+1)" (kd-d+1)7] .

Comparing the above with the term t, of (2.10), which dominates for large

3
mn, it follows that, for fixed r and d,
T _ 2
N, 3

mn>® S

(2.11)

Thus for large mn, the two-step method requires only two-thirds the number

of operations required by the one-step method.

Turning now to case b (large 1), it is observed from (2.9) and (2.10) that
N, and N_, have the form

S T

by T

Ns(m,n,d,r) = X a,b,
. ii
i=1

(2.12)

M r

NT(m,n,d,r) = ;2,:1 Cidi

=t

where the a;, bi’ C;» di’ u and v are functions of m, n, and d but are in-
i i > > 3 >
dependent of r. Assuming in (2.12) that b1 bz b3 .e. and d1 dz d3 ceey

it follows for fixed m, n, and d that

2561

Table 2-1
SAMPLE VALUES OF NT/NS

(m=d=1)

£\£; 2 8 4 5

0 1. .96 .90 .87
1 1. .83 .82 .81
2 1. .64 .76 .75
3 1. .45 .77 .69
4 1. .29 .82 .60
5 1. .18 .88 .50
6 1. .12 .93 .41

For example, Table 1 indicates that, for a system of thxtee linear equations in
three unknowns, Ax =b with the a,

i
of three variables. Then the two-step algorithm (2.6} requires less than half,

and bi polynomials of degree 1 in each

specifically .45, the number of integer multiplications and divisions taken by
the one-step algorithm (2.4). However, also note that the advantage of the
two-step over the one-step algorithm rapidly disappears with increasing r when
n=4, as indicated by (2.13).

The above analysis should be interpreted only in a relative sense, i.e., in
indicating the relative superiority of the two-step method over the one-step
method. Thus there is nothing, in an absolute sense, to be gained by augmenting
a system of linear equations with an even order coefficient matrix in order to

obtain an odd order coefficient matrix.
Finally, two distinct limiting behaviors were established for NT/NS, one

for large mn (2.11), and one for large r (2.13). If both mn and r become large,

then (2.13) determines the limiting behavior of N'I'/ NS because of the strong

exponential dependence of NT and NS on r.

253

Fraction~-Free Back-Substitution

Both the one-step (2.4) and two-step (2. 6) fraction-free algorithms produce
an n x {n+m) matrix A(n-l) with the left-hand n x n submatrix (the transformed
coefficient matrix of the systems AX=B) in upper friangular form. The solution
vectors (51, ey Xy oeeey Em) are then given by the familiar back-substitution

formula
E:'_(J:m-l-)%
_ n,n
Xn’ L= ;(E,'T {(2.14)
nn
s n .
1 (i-1) (i-1)
X, , = “pmay ay - a; X,
i,4 a{l 1) i,ntl jei+l ij j4

ii
(i=n-1, "oy]1) -
The division operation in (2.14) is not generally exact; the % &'s are in the field

of quotients of the integral domain over which the given systems of linear equa-

tions are specified. However by Cramer's rule, the % {,'s have a common

denominator | A |. Writing X0 = ym/ | A | and invoking Theorem 2.3 that

a(;;:l) = | A [, the following fraction-free back~substifution formula for the

t -4 1 .
Vi, '8 1s obtained:
_ ,(n=1) 2
g™ n n+t (2.13)
1 (i-1) _(n-1) o (i-1)
Ve, = a, a as, 'y
it a5 i,n+{ 1nn =i ij A

(i=n~-1, ...,1).

By Cramer's rule, the division operation in (2.15) is exact. Reduction fo lower
terms may be possible for the quotients %, &:ﬁ_
(A |

in the case of Gaussian

254

domains. To determine quotients in lowest terms (i.e., with numerator and

denominator relatively prime) the application of a GCD algorithm is necessary.

3. TFLOWGRAPHS AND THEIR GENERATING FUNCTIONS
In this section, we define flowgraphs and their generating functions.

As devised by Mason (see references 27 and 28, and reference 27, Chapter
4), a flowgraph is a graphical representation of a system of linear equations.
This point of view is pursued by showing both the equivalence of the concepts of
the flowgraph generating function as defined in this paper to flowgraph gain or
transmission as defined by Mason, and by showing the applicability of Mason's
node elimination scheme (see reference 29, Sections 4-1 to 4-6) {o computing

the generating function of a flowgraph.

A flowgraph technique for solving certain kinds of enumeration problems
from combinatorial analysis and automata theory is presented and examples are

given to illustrate its value.

This section also gives a new method for computing the generating functions
of flowgraphs, based on the two-step fraction—-free elimination algorithm (2.6),
and compares this method with Mason's node elimination algorithm for compu-

tational efficiency.

Basic Definitions

Flowgraph. A flowgraph F = (@, s, {f, $) over an integral domain D con-

sists of:

{1,2,...,n}

a. A directed graph § = [n, A, ¢] specifiedbya set n=
n which associ-

of nodes, a set A of arcs, and a function ¢: A-n
ates with each arc a its endpoints ¢ (a) = (i,J);

2
X

b. A startingnode s €n and a final node fen; and

¢. A function ¥: A~D which associates a label ¥(a) € D with each arc
a € A,

255

Transmission Matrix., The transmission matrix T = (tij) of the flowgraph

F is the n x n matrix defined by: fori, j€n

L2 e 6.1

t..
T e ¢ @=a,0}

where ti. is called the branch transmission from node i fo node j.

Generating Function. The generating function G of the flowgraph ¥ is de-

fined by
~ -1
- G= [(I T)]Sf (3'2)
i.e., G isthe (s,f)'" element of (I~T) %, where I is the identity matrix.
Clearly G exists when |I-T|# 0.

Consider now a special case of the above which arises when the transmission

matrix T has the form T =zA, where A isan nxn matrix (aij) over an
integral domain D. Each branch transmission tij is a monomial aijz in the

polynomial domain D[z]. From (3.2) the generating function in this case is

given by
G = [@-z8)] (3.3)

= = zkAk]
k=0 sf

- MLy zk
—l§:0 st

where ag? is the (s,f) element of Ak. Thus the flowgraph generating
function G is the generating function (in the usual mathematical sense) of the

[=<]

sequence ,a(sl?f k=0 *

256

Furthermore, a closed form may be obtained for the power series

[ee)

E__ Oa(s?zk by observing from (3.3} that
C
G=—8 (3.4)
| 1-zAl

where (}f"3 is the cofactor of the (f, s)th element of I-zA. Thus the generating

function of the sequence {a(ls{)f% is a rational function of the indeterminate z.

Also note that the existence and uniqueness of the power series expansion for

the rational function (3.4) follows from purely algebraic considerations.

n .
For the denominator polynomial |I-zA| = 1 +Z Sizl considered as an
i=1

element of D[[z]], the domain of formal power series over D has an invertible
constant term, namely unity; hence it is invertible in D[[z]] for any integral
domain D (for example see reference 2, Chapter 13).

Two choices for the matrix A give rise o classes of flowgraphs which
have received much attention in the literature.

a. A is the transition matrix of a Markov chain. Then the higher transition
probabilities are given by successive powers of the matrix A (for ex-

ample see reference 11, Chapter 7) so that a(:f) in (3.3) is the prob-

ability of a transition from the initial state s to the final state £ in
k steps. The flowgraph analysis of Markov chains originated with the

work of Sittler 39 and Huggins. 19 See also Howard 18, Lorens 23, and

Ramamoorthy and Tu‘fi:s.36

b. A is the adjacency matrix of a multi-graph, with aij equal to the

number of arcs (paths of length one) from node i to node j. Then the
element a(il? of Ak is the number of paths from node i to node j

of length k {for example see reference 17, Chapter 2). Thus (3.3)
and (3.4) in this case yield a path enumeration generating function with
respect to a fixed starting node s and final node f of the given

257

multigraph. The generating function approach fo path enumeration was
considered by Ramamoorthy and Tufts36 using flowgraph theory, and by
Kasteleyn, who does not explicitly use flowgraphs, in reference 17,
Chapter 2.
Since our definition of a flowgraph does not restrict the branch transmissions
to monomials, a branch transmission may be a polynomial or power series. For

example, in a path enumeration problem the branch transmission tij =2z

+4z3 + 5z7 might indicate that there are two paths of length 1, four of length

3, and five of length 7 associated with arc(s) for node i to node j. Similarly,

tij = (1—az)"1 might convey the information that there are oK paths of length

kfork=20,1,2,... associated with the arc(s) from node i to node j. The co-

efficient 8 of the power series expansion.of the generating function

8

G = Z gkzk is then the total number of paths of length k from the starting

node s to the final node f. An example involving the above concepts follows.
The computations were carried out using the Scope FORMAC program presented

in the next section.

Example 3.1.

3z

223
Z _ 0 Z 0
- ee b 0 3z 1+2z3
3Z+Zz 0 0

3z + %
Flowgraph F Associated Transmission Matrix

(s=1, £=3)

(-1,

o]
l

z+2z4

1~Sz~332-23—6z5—2z6

258

[as]

The first few gk 's in the power series expansion G =X gkzk are:

k=0
gy = 0 8y = 48
g = 1 85 = 183
By = 3 8g = 711
gy = 12 g7 = 2750

Thus from node 1 fo node 3 there are no paths of length 0, one of length 1, three
of length 2, twelve of length 3, etc. Also, complex variable techniques may he
used to obtain information about the 8. 's. For example, the asymptotic rate

of growth of the 8 's is given by

g
1im i X
R

e f

where R is a root. of the denominator polynomial of G which is smaller in absolute
value than all other roots. For the above generating function, R=.286.

Flowgraphs and Linear Equations; Flowgraph Reduction.

Let ¥ be aflowgraph with n nodes n = {1,2, veasll } , starting node s,
final node f, and transmission matrix T = (tij) . An augmented flowgraph T

is constructed from F by introducing two new nodes, a source node 0 and a

sink node f, with branch transmissions as shown in Figure 3.1.

! Flowgraph F
f (unaltered)
!
]
i
I

_Figure 3.1. Flowgraph F

259

A system of linear equations is associated with rf‘ as follows: the source node

node 0 represents an independent variable x and the nodes 1,2,...,n+l

0 H
represent dependent variables Xys Koy eors Xn+1' These variables are related

according fo the equations

X, = & Xt i=1,2,...,0n; j#s

iR d 79 (3.5)
n

Xy = Xy T 2 Xitis
i=1

ntl © f

By eliminating the dependent variables XiaXps e, X from (3.5), a relationship
*ner = G % (3.6)

is obtained. Mason refers to G as the gain or transmission of the flowgraph F.

Theorem 3.1, G = (@1
The proof is given in Appendix A. Theorem 3.1 states that the gain G of
(3.6) is precisely the generating function of the given flowgraph F.

Mason's node elimination algorithm is essentially a graphical variant of

Gauss-Jordan elimination. Consider the elimination of a variable Xj in (3.95).

Now
n tij
X, = 4 X,
i %=1 i l_tjj
i#j
and substituting for Xj in an equation
n
X =D Xty
i=1

gives

260

(3.7)

Equation (3.7) states that when node j (variable xj) is eliminated, the relation-

ship between node i (variable Xi) and node k (variable xk) implied by {3.5)

is retained if the branch transmission ti

K is replaced by

t..t
i ij kj
B =ty * = (3.8)

15

Thus a new flowgraph is obtained with one fewer node and with branch transmis-
sions given by (3.8). The dependent nodes 1,2,...,n are eliminated in turn;

finally the flowgraph corresponding to (3.6) is obtained

with G the generating function of the original flowgraph.

Note from (3.8) that in eliminating a node, say j, the transmission function
from node i tonode k is altered only if node i and node k are adjacent fo
node j. Herein lies the power of the node elimination scheme: in eliminating
a gingle node from a large flowgraph one need only be concerned with a (usually)
small part of the total graph, namely those nodes adjacent to the one being
eliminated. This principle is illustrated below in Figure 3.2. (Note in partic—
ular how the relationship between node i and itself is preserved when node j
is eliminated.)

261

BE g+ bt
1-t, -t
33 (%

Figure 3.2. Node Elimination

The two flowgraphs of Figure 3.2 are equivalent (=£) in the sense that they

represent equivalent systems of linear equations.

Application of Flowgraphs to Enumeratioiq Problems in Aufomata Theory and
Combinatorics

The applications of flowgraphs to the analysis of Markov chains 19, 39 and

to the enumeration of comma-free code words 37 have suggested to this author
the possibility of applying flowgraphs fo problems of a more general combina-

torial nature.
Many combinatorial problems can be cast in the following form: '"over an

alphabet A determine the number of sequences 218500 an(aie A) of length

262

n having some prescribed property P', The reader is referred to Sections

3-4 and 3-5 of Liu22 for several examples of problems of the above form.

A method to solve such problems, based on elementary automata theory
and flowgraph theory, is now proposed. An outline of the method follows.

Step 1. Construct a machine M (automation, recognition device,

Rabin-Scott automation-see, for example, reference 16, Chapter 3 and

reference 34) with input alphabet A that accepts or recognizes precisely
those sequences specified by the property P.

Step 2. Transform the state diagram of the machine M to an appropriate
flowgraph F to enumerate all paths from the starting state to any final
state of the machine M. ’

Step 3. Compute the generating function (3.2) of the flowgraph F.
The flowgraph generating function G=1% gnzn obtained in step 3 then
n=0

yields the solution to the given combinatorial problem, i.e., g, is the number

of sequences of length n having the prescribed property P. Thus the flowgraph
generating function G is precisely what one would get using classical generating
function techniques, as deseribed in Riordan (reference 44, Chapter 2) and

Liu (reference 22, Chapters 2 and 3). However, the author has found that many
problems requiring at least 2 modicum of ingenuity to solve using traditional
combinatorial techniques can be handled routinely using the proposed method.

Some examples follow.
Example 3.2. (See reference 22, page 77). Find the number of n-digit

binary sequences that have the pattern 010 occurring for the first time in the
nth digit.

263

Step 1.

Figure 3.3%2 Machine M

Step 2.
Figure 3.3h. Flowgraph F
Step 3.
Z Z 0 0
0 Z Z 0
T = z 0 0 Z
0 0 0 0

264

G = (-1,

3
Z

1—-2z+32—z3

= z3+2z4+3z5+526+...

Thus there is one sequence of length 3, two of length 4, three of length 5, efc.
Note that the machine M of Figure 3.3a is incompletely specified in that no
transition is indicated when the machine is in state 4 and an input of 1 is received.
It is assumed in this case that a transition is made to some absorbing dead state.
The generating function is clearly unaltered by ignoring a dead state or any

other state from which there is no path to some final state.

Example 3.3. The machine of Figure 3.4a appears in reference 30, p. 165.
The generating function G of flowgraph 3.4b enumerates the number of binary

sequences of length n recognized by the given machine.

Figure 3.4a Figure 3.4b
0 pA z

T = Z Z
Z Z]

265

_ _z-zZ
T 1-z-2%
2. 1,
= 83 + 3
14z . 1-2z%

I
I~

n=1 3

on=1 49 (_1)n—1
3

Thus the machine recognizes sequences of length n.

The flowgraph approach-to the above enumeration problem also admits the
potentially useful generalization of analyzing a machine which processes different
gymbols in different lengths of time. If the automation requires ti units time

to process an input symbol 25 then the branches of the flowgraph correspond-

ing to.an a, transition are labeled ztl. The generating function G = % gtzt

t=0

266

then enumerates the numbér of sequences g, recognized by the automation at’
time t.*

The next example considers an infinite machine.and flowgraph .

Example 3.4. In reference 31, Section 4.2.2 Minsky discusses the problem
of recognizing "grammatical' or "well-formed" sequences of parentheses; e.g.,
(0), () (Y, and () ()} are well-formed, while (,) ()}(, and {(})) are not.
(See reference 31, Section 4.2.3 for further details.) Consider now determin-

ing the enumerator G = > gnzn for the numbexrs gy of well-formed sequences
n=0)

of parentheses of length n. The infinite state automation of Figure 3.5a recognizes
precisely those sequences of parentheses that are well-formed, and the corre-
sponding infinite flowgraph of Figure 3.5b serves as a parenthesis counter.

))

Figure 3.5a. Parenthesis-Checkiﬁg Machine

Figure 3.5b. Parenthesis-Counting Flowgraph

Since the transmission matrix T of Figure 3.5b is an infinite matrix,

formula (3.2) for the generating function G is not useful for computational

*In vreference 21 this problem is treated (using flowgraphs) from a regular ex-
pression viewpoint.

267

purposes. Instead, G will be computed using the node elimination scheme
discussed earlier. Eliminating nodes 2, 3, 4,... in Figure 3.5b gives the
equivalent flowgraph of Figure 3.5c¢, while eliminating nodes 3,4,5,... gives
the equivalent flowgraph of Figure 3, 5d.

z

Figure 3.5¢C Figure 3.5d
Equivalent Flowgraphs

When we eliminate node 2 in Figure 3.5d and equate the resultant transmission

from node 1 to itself to H in Figure 3.5¢, we get

ZZ
H =
1-H
whence
- 2
" = 1- ,/1-4=
2

the negative sign for the square root being chosen so that the series expansion
for H has positive terms. The degired generating function G is then given
by

1
G=1m
1 - 1-472

972

[==]

- [_ﬂlL] 20

1 1
=0 ni(n+1)!

The last equality follows from application of the binomial theorem and subse-
(2n)l
n! (n+1)!

parentheses of length 2n, e.g., there are 14 sequences of length 8 which agree

quent simplification. Thus there are well-formed sequences of

with the enumeration given by Minsky in reference 31, page 75.

268

It is well known in automaton theory that the properties and capabilities of
infinite machines are quite different from those of finite machines. Therefore
it is interesting to note that their sequence-enumerating generating functions
have different analytic properties: for finife machines the generating function
is always a rational function, whereas for infinite machines a generating func-

tion with a branch point has been encountered.*

The previous example in conjunction with Theorem 3.1 suggests using
flowgraphs to compute gpecific elements in the inverse of an infinite order
matrix with a finite periodic structure. Thus element (1,1) of the inverse of the
infinite tridiagonal matrix

1 -7
-Z 1 -7 O
-7 1 -7

i
is determined as the generating function of ﬂéw,graph 3.5b, which has trans-

mission matrix T and node 1 as both the starting -and final node. From Ex-

ample 3.4 the two values for this inverse element are

1 + « 1-422
2z

The final example illustrates application of the machine flowgraph fechnique
in deriving a bivariate generating function.

*In reference 39, page 265, the flowgraph analysis of a 2-way infinite random
walk results in a generating function which also has a branch point singularity
due fo a square root.

269

Example 3.5. (See reference 22, page 83). Find the number of n-digit

binary sequences with exactly r pairs of adjacent 1's and no adjacent 0's.
(Note: The sequence 111 has two pairs of adjacent 1's.)

A machine M which recognizes sequences having no adjacent 0's is given

in Figure 3.6a.

SO =)

1

Figure 3.6a, Sequence Recognizing Machine

State 4 which is accessible from states 1, 2, and 3 via the empty tape A is in-
troduced in order to have a single final state—any sequence accepted by state
1, 2, or 3 is also accepted by state 4, and conversely any sequence accepied

by state 4" is accepted by state 1, 2, or 3.

What is desired is the generating function G(x,y) = ¥ a rxnyr, where
n,r ?

2 p is the number of sequences of length n having exactly r pairs of adjacent

1's. In the flowgraph corresponding to machine M, the branches are labeled

€, €
with bivariate monomials x * v 2 ,» in which §=1 indicates the occurrence
ofa 0 ora 1, € = 0 indicates no occurrence of a 0 or 1 (i.e., the empty

1

270

tape), €, = 1 indicates the occurrence of the sequence 11 (i.e., a 1 when the

immediate preceding input syrhbol was also a 1), € = 0 indicates no occurrence

2
of 11. The resulting flowgraph is given in Figure 3.6b.

(3 >

X

Figure 3.6b. Resulting Flowgraph

the transmission matrix T of the above flowgraph is

H
Il
Lol
o B KB B

[= T = N - T

]
I

(-1,

2
- 1-(y-2)x - (y-1)x
1-yx-x2

This computation was carried out using the FORMAC program which appears
in the next section as sample output, zlong with the first several terms in the

expansion of G as a power series in x.

271

It is instructive to compare the machine-flowgraph method used above with
the more traditional method used by Liu (reference 22, page 79) in treating this
same problem. The flowgraph approach generalizes effortlessly to bivariate
and higher variate problems; traditional generating function methods do not

seem to have this property.

Computation of the Generating Function of a Flowgraph

Let F be a flowgraph with starting node s, finalnode £, and nxn

transmission matrix T = (tij)' The branch transmissions tij are in an integral
domain (typically a polynomial domain in one or several variables with integer
or rational coefficients)., Algorithm 3.1 below is proposed for computing the
generating function G = ,[(I'T)]sf‘
. tr tr

1. Define A= (I-T), where T~ =transpose of T.

2. Interchange columns f and n of A.

3. Define the n-vector b as the sth unit vector.

4, Solve Ax=Db for X by transforming A @ b tfo triangular form

according to the 2-step fraction~-free algorithm (2.6).

_ v = a@1) , (n-1)
Then G = X = an,n+1/ann .

The interchange of columns f and n in step 2 means that no back-substitu-

tion is required. The above algorithm computes G as [(I—Ttr)-'l]fs instead

of as [(I-T)“l]Sf in order to take advantage of the fact that step 2 may be
omitted, when f=n, as is the case for most flowgraphs.

The proposed method is more efficient than the traditional method of flow-
graph reduction-by node elimination. The reasons for this are twofold. First,
Mason's node elimination scheme is essentially a diagonalization procedure,

equivalent to Gauss-Jordan elimination, whereas the proposed algorithm is a

272

triangularization procedure. Moreover a simple interchange of columns (step 2)
avoids the necessity for back-substitution. The second and by far the most im~
portant advaniage of Algorithm 3.1 is that, in the polynomial case, we avoid
computations with rational functions and therefore time-consuming GCD eal-

culations.

Mason's celebrated gain formula (see reference 28, page 922) does yeoman
service in enabling one skilled in its use fo write down by inspection the gain of
a flowgraph which has a discernible loop and path structure. However, Mason's
gain formula is not suitable for computer implementation because it is generally
difficult to detect algorithmically the special loop and path sets required for this
formula, This turns out to be a difficult pattern recognition problem.

4, SCOPE FORMAC IMPLEMENTATION OF A SYMBOLIC LINEAR EQUATION
SOLVER WITH APPLICATIONS
The TBM 2250 Scope FORMAC System 43 was used fo implement a sef of
routines, called Fraction~Free Package, (FFP) for computing the solution of a
given system of linear equations with multivariate polynomial coefficients over
the infegers or rationals. The routines are:

a. SETDIV and DIVIDE which together constitute an exact division routine
for multivariate polynomials;

b. BAREISS, atwo-step fraction-free triangularization routine (2.6) for
multivariate polynomial domains; and

¢. BACKSUB, a fraction-free back-substitution routine for multivariate
polynomial domains.
The set of routines FFP is used by two applications programs. The first,
program FGRAPH, computes the generating function of a flowgraph according
to Algorithm 3.1. (Thus FGRAPH does not invoke BACKSUB). The input.to
FGRAPH is an N X N transmission matrix T, a starting node SS, and a final
node FF. The elements T(I,J) of T may be arbitrary multivariate polynomials.

273

http:input.to

The output of FGRAPH is the generating function GG and the first L coefficient
G(I) of the power series expansion GG = ZG(T) VI, where the variable V and
the positive integer L. are specified by the user. The expansion of the gen-
erating function is carried out using a linear recurring sequence technique (see
reference 2, Chapter 13 and reference 36). The coefficients of the expansion

of a rational function

9 +a.zZ+...4+a 70

0 1 m 22 k
Z

by +b,% + ... +b 2P e ok

over an integral domain (b 0 invertible) satisfy the linear recurrence

n
I -1 >
g = b0 (i‘/_='}1 bigkmi) (k >max {m,n})

with initial conditions determined by the numerafor polynomial.
The second application program which uses the set of routines FFP is
STAT which computes the stationary state probability N-vector T of an ergodic

(veference 11, Section 7.4) Markov chain specified by an N x N transition
matrix P with symbolic elements. Thus T satisfies TP =T with ZT{I) = 1.

The IBM 2250 Scope FORMAC listings of FFP, FGRAPH, and STAT are in
Appendix B.

Sample Applications of FGRAPH
Consider the labeled directed graph given in Figure 4.1

For FGRAPH, the graph in Figure 4.1 is considered a flowgraph, with starting

node s=1 and final node f= 6 and with transmission matrix T = (tij) given

The generating function G is consequently obtained as a rational function of
two variables A and B.

by tij = label on edge from node i tonode j (e.g., t

274

Figure 4.1

For STAT, the above graph is interpreted as a Markov graph, with which
the labels A and B = 1-A represent the transition probabilities of pij of a

stochastic matrix P. The stationary probabilities ti are computed as rational
functions of the variable A,

Computational results are now presented, first for FGRAPH then for STAT,
in the form in which scope FORMAC displays them.

The generating function GG of the flowgraph of Figure 4,1 is

GG = { A B + A 8 + A B + A B + B Y/ U -2 A8 - A 8

275

For path enumeration from node 1 to node 6 the substitutions A =Z and
‘B =7 are made in GG (using the FORMAC EVAL routine 42} to obtain the gen-

erating function

6lo) = 0 Gi12y = 544
G(1) = 0 Si14) = 1840
E:;;‘:‘; Gil5) =-3768
o

Gt5) = 4 —————————

66 = 6 glinrz e

;I‘;;—;—Ib EiZO) = 118848
g‘(’;‘:";';; E(le-j 238784
'(;'(‘;')";';'6 Gi22) _=__475904
Gelc) = 112 clzz) - oa3es
ULy = 240 Si241 = 1704768
E;I'z";':;;; 6(25) = 3815685

Thus, for example, there are 112 paths of length 10 from node 1 to node 6 in
Figure 4.1. Note the rapid-convergence of G(K+1)/G(K) to its asymptotic
value of 2 (R = 1/2 is the smallest root in absolute value of the denominator

polynomial of GG).

276

When Figure 3.1 is interpreted as a Markov graph, in GG A is replaced
by 3/4 Z and B is replaced by 1/4 Z, indicating 1-step transition probabilities
of 3/4 and 1/4 respectively. This results in the generating function which
foliows.

A=3/4 Z, B=1/4 1

-

3 4 5 2 3
GG = { 3/64 L + L/764 2 + 97256 1)/t -~ 3/81¢ —- 15/32 1 -

A
5732 2 + 1)

Expanding GG yields

Gi0) = 0 G{13) = ,03498888
61y = o G14) = .03527426
GtE;-Z—E gllSI = .03506;5;
;;gja;—:046875 Gtle) = 03507772
5(4) = 015625 61171 = .03515123
Gi5) = .05273;37 E;;E;—;—:BEEIB;;I
E£6l =-:02783203 511;; = ,03510331
G{7} = .03442382 clzo) = .0351214;
;?g; =_:0§759;;; EIEI} = ,03511042
G(9) = 03419494 622) = .03511

E(IO) = 03458404 51231 = 03511449
;:Izl = ,g;g;;;;; ;:Zﬁl = .0351119;

Gll2) = .03487253 G{25) = .03511175

2717

Thus,. for example, the probability of being in state (node) 6 after a 10-step
transifion is .03458404.

As a final application of FGRAPH, the generating function of flowgraph
3.6b of Example 3.5 is computed and expanded below as a power series in x
(with coefficients that are polynomials in y).

278

£ c
66 = ({ - Y+ 2) X+ —-¥Y+ 1) X + 1Y/ (- XY ~—-X + 1)

;IRST L TERMS OF THE PCWER SERIES EXPANSION OF GG

2
G(3) = 2 Y+ Y +2

2 3
Gla) =3 Y +2Y +Y +2

2 3 4
GI5) = 4 Y +4Y +2Y¥Y +Y +2
T 5 3 4 5

Gl6) =5 Y + 6 Y + 5%Y +2Y + Y + 2

Gi1) = 6 Y + 9Y + 8 Y + 60Y +2Y + Y + 2

2 3 4 5 b
G{lS} = 18 Y + 81 ¥ + 24G Y + 540 ¥ + 924 Y + 1386 Y + 1584 ¥

1 8 9 10 11 12 13
+ 1782 ¥ + 1430 Y + 1287 Y + 728 ¥ + 546 Y + 210 ¥

14 15 16 17 18
+ I35 Y + 32 ¥ + 18 Y + 2 Y + Y +

Wl N

2 3 4 6
GI2G) = 19 Y + 90 ¥ + Z85 Y + 660 Y + 1254 Y + 1848 Y + 2508

7 8 9 10 11 12 .13
Y + 2574 Y + 2711 Y + 2002 Y + 1729 Y + 910 Y + 665 Y

14 15 16 17 i8 19

+ 240 Y + 152 ¥ + 34 Y + 19 Y +2Y + Y + 2

Thus, for example, there are 2717 sequences of length 20 having exactly 9 pairs
of adjacent 1's.

279

Sample Applications of STAT

Program STAT produces the output

STATICNARY STATE PRCBABILITY VECTOR

T{I)=XNUM{I)}/CET

2 3
DET =5 A — 6 A + 2 A - 4
XNurM(L) = 0
2 3 4
XNUM(2) = 2 A - 5 & + 4 A - A -1
z 3 &
XhUM(3) = 2 A - 2 A - A + A -1
2 3
AhUMI4) = A - A + A -1
2 3 4
ANUMISY = = 2 A + 4 A - 4 A + A
2 3 4
XhUM{S)Y = 2 A - 2 A + Z2 A - A -1

Evaluating T = (T(I)) for A= .25, .5, and .75 gives the stationary state prob-

ability vectors below.

AVAL = .25 AVAL = .5 AVAL = ,75

TvaL{i) = 0 ;wuu = C : “}VAL(U = 0

;;;:12) = «243686886 ;;;I?;;_:t;29545454 ;;;I:;;_;~j33848314
TVAL(3) = .20580808 TVAL(3) = .20454545 1VAL(3) = .26264044
TVALI4) = .25757575 TVALI4) = .22727272 TVAL(4) = .14044943
TVAL(S) = 09974747 TVALLS) = .15909CS TVAL(S) = .2233146
TVAL(6) = .19318181 TVAL(6) = .11363636 TVAL(6) = .03511235

280

Thus when A= .75 the probability of being in state 6 after a large number of
stepé is .08511235. The fransient probabilities of being in state ‘6 when

A = .75 were previously determined using FGRAPH, in which the k-step
probabilities are seen to converge quite rapidly toward the above asymptotic
value, e.g. G(25) = .03511175. Thus FGRAPH and STAT constitute two routines
for analyzing Markov chaing; FGRAPH yields a transient analysis, whereas
STAT yields a stationary analysis.

5. SUMMARY AND CONCLUSIONS

A method is proposed for the computer solution of linear equations with
symbolic coefficients, based on a two-step elimination method for compuling the
exact solution of linear equations with integer coefficients. 1 Section 2 presents
a new and elementary derivation of the fraction-free property of the elimination
algorithm (2.4) and establishes the algorithm's applicability to solving linear
equations over arbitrary integral domains. The primary integral domains that
arise in solving linear equations with symbolic coefficients are multivariate
polynomial domains with integer (or rational or real) coefficients. For such
polynomial domains the fraction-free elimination scheme is valuable because it
avoids multivariate rational function manipulations with attendant time~con-
suming GCD calculations, resulting in considerably increased efficiency over
ordinary (fraction-producing) Gaussian elimination. The fraction-free algorithms
(2.2), (2.4), and (2.86) are analyzed in the context of polynomial domains, and
the superiorify of the two-step method (2.6} due to E. Bareissl is established.

A new method for computing the generating functions of flowgraphs was
presented (Algorithm 3.1). This algorithm is superior to Mason's node elimina-
tion algorithm because it avoids rational function arithmetic and because it
triangnlarize.s rather than diagonalizes a coefficient matrix. Furthermore, it

does not require use of a back~-substitution step.

281

The usefulness of the definition (3.2) of the generating function of a flow-

graph lies in the (formal) identity
=1 *®
(@I-T) 1o = 2 k
=5 e = o [Tlge -

The higher powers of an appropriate matrix T yield important information in
various problems, such as the higher transition probabilities in a Markov chain

and the number of distinct k-step paths in a multi-graph.

The use of flowgraphs in conjunction with both finite-and infinite-state
machines in solving problems arising in combinatorial mathematics is presented;

the examples of section 3 indicate the power of the flowgraph concept.

The IBM 2250 Scope FORMAC system was ﬁsed to implement a package of
routines, called FFP, for solving linear equations with coefficients that are
polynomials in one or several variables with integer or rational coefficients.
Two applications programs, FGRAPH for computing the generating function of
a flowgraph and STAT for computing the stationary probabilities of a Markov
chain, invoked this linear equation solver. Experience with the Scope FORMAC
System hag indicated the usefulness and convenience of an interactive system,

both at the program development state and program running stage.

Linear equations with nonnumeric coefficients also arise naturally in
numerical contexts, and the linear equation solver FFP should be useful in such
situations. Suppose, for example, that the coefficient matrix and right-hand
side of the system of linear equations Ax =) involve two parameters rand s,
i.e., A=A(r,s) andb=Db(r,s). Either of two courses could be followed in
computing the solution x= x(r,s)for r and s with each taking on say ten
numerical values, First, the systeni could bé solved numerically, using
standard numerical methods in conjunction with a language such as FORTRAN,
ALGOL, or PL/I one hundred times, one time for each pair of (r,s) values.
Alternatively, one could solve the system Ax=b symbolically, obtaining the
solution vector x = x(r,s) with the parameters r and s explicitly displayed.
Clearly there are situations in which the latter course of action may be preferable

from the viewpoint of efficiency alone.

282

Moreover, other considerations that make symbolic solution highly preferable

may exist. An example is the problem of computing

max f(x)
(r,s)

subject to
Ax =D

where f is some specified scalar-valued function. Solving Ax = b symbolically,
one obtains the solution vector x = x (r,s) with each component of X in the
form of an analytic expression involving r and s. The maximization problem

then reduces to the form

max i(r,s)
(r,s)
. . . of of
which can be solved analytically using the calculus 3¢ = 38 - 0

A numeriecal approach to this same problem would be most cumbersome.
Even if one had an iterative scheme for moving from one (r,s) value to an
improved value, the multiple numerical solutions of a system of linear equations

could be prohibitively time~-consuming.

283

PRECEDIN

« PAGE BLANK NOT FILME

Appendix A

PROOFS

285

PRECEDING PAGE BLANK NOT FILMIE..

Proofs are given for Theorem 2.1, Equation (2.5) of Theorem 2.2, Theorem -
2.3 and Theorem 3.1. These proofs are established mainly with the use of the

following basic property of determinants: replacing a row Ri of a2 determinant
| (a’ij)l by a linear combination.- OiRi + BRj of rows i and j (ix]) resultsina

determinant with value o x | (aij) | .

THEQOREM 2.1
The minors of order two of AIEk) k=1,2,...,n-2) are divisible by
K k-&+1
Ii a({’ —1):1
1=1 H

Proof. The notation of Gantmacher (reference 14, page 2) for specifying

minors of order p from a given nx m matrix A= (aij) which follows is used.

) denotes the determinant | (2. ;)|
PR e

<i <i_<,..<i <n; S5 <. <...j Sm).
{1 i i, 1p n; 1 jl j2 J-p m)

Consgider any minor of order two of Ag{)
ey 115
<£j <i <=n: s3] <j_ =
AL " (k+1 i, <i,=mn k41 i j2 n+im)
12

(k) are computed according to (2.2). From (2.2) it is seen

where the agl.{) of A
ij i

that the transformation A(4™1) - A() =1,2,...,k) resulis in each of the
12...k i i,

last k - 4+ 2 rows of A(&' 1) being muitiplied by the
12...k j1j2

287

factor a('E’-l) . By the fundamental property of determinants it follows that

L
12...ki i i i -
A(L) 11 12 _ A(‘{"l) 12...k 11 iz (L-1) k={+2
] = X |ay,
12...kj,], 12...kj; g,
and consequently that
12...ki i 12...ki i k-£+2
AK) 172 A(0) 172 Ilj,l_) a(f:b—l)
12...k) 12...kj],

But columns 1, 2, ..., kof A(k) have zeros below the main diagonal, so that

12...ki i i i
172 172 k
A® = Al x n el
12...kj1_12 jlj2 4=1
Combining the last two equations gives
i, i 2...ki 1 k k~i4+1
k) (1112 1 12 4-1
A£) _ A0 X I a(m)
jl_]z 12...k]132 {=1

which completes the proof of Theorem 2.1,

PROOF OF EQUATION (2.5)

(k)
) Py
1 k-1 k~L
I [bqfl)]

i=1
The proof is by induction on k starting with the basis k = 2. First note

that a(.(.)) = bg)) and ag)z b(i]j‘) / 1=b§) . From (2.4) follows

288

(1), (1) (1), (1)
e I s Ve T

ij
(0) .
331
(1) (1) _ (1) (1)
_ PPy Piey Patc
(0)
b 11
b{2)
= U
(0)
b11
which establishes the basis. Assume now that the ag'jﬂ) G=4+41,...,n;
j=4+1, .. ,1+1) are given by (2.5) for all £=2,3,...,k-1. Then
(k-1), (k-1) (k-1)_(k-1)
ot - . a,
ail.i) - %k if ak] ik by (2.4)
! (k-2)
A1, k-1
(k)
bij
i=1 blf,
= : by the induction hypothesis
b(k-Z)
k-1,k-1
K3 1 1y] E42
O |by
=1

which yields the right-hand side of (2.5) by routine cancellation, completing
the proof.

The corollary to Theorem 2.2 is readily obtained by replacing a(il;) and
b(il;) in (2.5) by arbitrary minors of order two of A%{ 1) and Bg{ 1) (the

proof goes through exactly as before). Applying Theorem 2.1 then gives the
desired result.

289

THEOREM 2.3

|4l = a5

Proof. Observe from (2.4) that for k=1,2,...,n~1, the n-k-1 rows

k+l through n of AR are muitiplied by the factor aa{klgl) / a(ll:_—lz)k—l .

Ignoring columns n+l1,...,n+m of the A(k) due to the inhomogeneous terms,
it follows by the fundamental property of determinants stated at the beginning

of the appendix that

_ k-2) n-k-1
la] =t [Peenk] - x |a@1)y
k=1 | (&-1)
Uk
-2 = .
= 2= < 0 al({lf;) Recall: af)o)El)
et [(k—I)] pk-1 k=1
oy Pk
- 1 8 (k-1)
- n-1 % H_ ek
o L@1) k=1
k=1 kg
=20 . qE.D,

290

THEOREM 3.1

G=1@-D) M, -

Proof. Writing out {3.5) in matrix form gives

- tr /
Y [T o Y bn
x2 t21 . tzs ces t2n
. tfl . tfs . tfn
X t ... £ ees 1-L
n nl ns nn
En+1] 0 eee O cee 0
. - S~

0\
0

tr
& I
0
1
-

where e, is the sth unit (n+l) vector. Denoting the above coefficient matrix

by A and applying Cramer's rule gives

where A is obtained by replacing row n+l of |A| by x

| A] along row ntl gives

|al = 1|
= |1-T| .
Expanding |K l along row n+l gives

& 1T = e M

221

O(_e_gr Expanding

where M is the minor obtained by deleting row n+1 and column s from [A].
Expanding M along its last column gives

sk — n+f+1
(o) M o= (1) M

where Mfs is the minor of |I—T| obtained by deleting row f and column s.
From (*) and (**) follows

~ -+
|| = 1)7x, M

and consequently

n+f
(-1) Mfs

X = X
n-+1 |I-T| 0

= [0-T) Mg %,

completing the proof of Theorem 3,1,

292

Appendix B

LISTINGS OF FFP, FGRAPH, AND STAT

293

PRECEDING PAGE BLANK NOT FILMED

LISTING OF FFP

" THE FOLLOWING THREE RGUTINES CONSTITUTE A FRACTION-FREE PACKAGE "
#FQR THE SOLUTION OF LINEAR EQUATIONS WITH SYMBOLIC COEFFICIENTS. .
"THEY ARE: "
" {1} SETDIV AND CIVIDE: TOGETHER THEY CONSTITUTE AN EXACT "
" DIVISION ROUTINE FOR MULTIVARIATE POLYNOMIALS. "
" {2) BAREISS: A TwG-STEP FRACTION-FREE TRIANGULARIZATION ROUTINE ™
" OF E. BAREISS (SEE MATH, COMP., P.565, JULY 1968}, EXTENDED "
" TO MULTIVARIATE POLYNOMIAL DOMAINS. "
" {3) BACKSUB: A FRACTION-FREE BACK SUBSTITUTION ROUTINE. u

SETDIV: IF AA=0
DO -PUT “#% ZERD DIVISOR *=" 3ET STOP END
NVAR=0 EE=Aj
Ql: IF LOPLEE)=24
D0 TA=EE
FOR ID=1(1)4
DC TA=ARC(1,TA}
I.F LOP{TA)=46 TGO Q2
END
PUT wx% PAL DATA IN SETDIV #%" SET STOP
Q23 NVAR=NVAR+1
VINVAR)=TA
HPVINVAR)=HIGHPOWIEE,TA)
EE=COEFF(EE, TA®FHPV(NVAR))
T0 Q1
END
CF=EE
END "“SETDIV"

CIVIDE: Q=0 RR=BB SC=1
Q32 PRDD=1 (C=RR
IF NVAR=0 TO BB8G
FOR [I=1{1)}NVAR
DO HP=HIGHPOWI(CC,VIII}}
PRDOD=PRCC®VI{II)**{HP-HPV{Ii})
CC=COEFF{CC,v{I1})*HpP)
END
8BG: O0D=CF/CF
IF DD=1 DO FF=CC/CF*2/2 TO BG END
ODD=—CF FF=-CC/CF*2/2
BGs YTT=FF*PRDD
If DENOM{TT)=1 TO DV
DO PUT "AA DOES NOT DIVIDE BB" SET STOP END
Dv: QQ=QQ+TT
RR=RR—TT#*AA
IF RR=C TO EC
SC=SC+]1 IF SC<15 70 Q3
PUT ™SAFETY CHECK EXCEEDED IN DIVIDE" SET STOP
EG: END "DIVIDE"®

295

BAREISS: A(3,0)=1
. K=2
AG: IF K>N TO FB
PUT Mokt), Mopkdekgok ¥
AA=A{K—2.K-2)
DO SETDIV
"PIVOT ALGORITHN®
If A{K-1,K-1)=C
DO FOR I=K(1)N
T DD IF A(I.K-1)=0 TO L1
FOR J=K—1{1) (N+1) .
0O DD=AlI,4) A(I+J)=A(K~1,J) Al(K—1,J}=DD END

TO L2
L1z END .
TO SING
L2z END
FOR I=K{1)N

DO BB=A(K—1,K—1)*A{I K)—ALK—1,K)*A{T 4K-1}
IF BB=C TQ LL TO L3

LL: END
To SING
L3: DG DIVIGE C€O0=CQ

IF K=N TG EV
IF I-=K FOR J=K—-1{1){N+#1)
DO DD=A{T.Jd) A(I,J)=A{KsJ) A(K,J)=DD END
#pIyOT ALGORITHM CGMPLETED; CO COMPUTED®
FOR I=K+1({1)N
DO BB=A{K—1+KIFA(I ,K-1)-A(K—L,K=1}%A{I,K)
D0 DIVICE CIl=Qg
BB=A{K K1) #%A{TI+K)-A{K,K)®A[I,K-1)
DO DIVIDE (ClIz=gQ
FOR J=K+1{1)}(N+1)
DO BB=A{l,J}%C0 + A{K,JI*CIL + A(K-1,J)*CI2
D0- DIVIDE A(1,4)=0Q

END
END
Ev: ALK, K)=CO
FOR J=K+1(1}{N+1)
DO BB=A{K—1,K—13%A{K,J)=ALKsK—1)¥A{K=1,J}
D0 DIVIDE A(K,J}=QQ
END
K=K+2 TO AG
FB: IF A(NyN)=0 TO SING TO EB
SING: PUT "#% COEFFICIENT MATRIX IS SINGULAR *%" SET STOP
EB3 PUT "TRIANGULARI ZATICN COMPLETED®,H n,u w

END “BAREISS™

206

BACKSUB: DET=A(NsMN)

XNUMIN)=A(NsN+1)

FOR IJ=1{1}{N-1)

Do I=N-1J
BB=DET*A{L,N+1)
FOR J=I+1{1IN BB=BB-AlI,J)*XNUM(J)
AA=A(T,1)
D SETDIV LD ODIVIDE
XNUM LI)=QQ

END "1J LOOP®

END %BACKsUB™

"END OF FRACTION-FREE PACKAGE"

297

LISTING OF FGRAPH

FGRAPH:

PUT
PUT

SORT=CHAIN{I+HsGyFsE+DsCsBsAsSsRsQsPs0sNsMsL 2Ky JsZ oYy XeHsVsUsT)
" FGRAPH (FLGOWGRAPH) IS A FUGRMAC SCOPE PROGRAM FOR COMPUTING "
T"THE GENERATING FUNCTION GG=GG{SS.FF) OF A FLOWGRAPH SPECIFIED BY "

PUT "AN NXN TRANSMISSION MATRIX T=i{T(1,J}) s A STARTING NODE SS » "
PUT “AND A FINAL NODE FF . EACH T(I.J) IS AN ARBITRARY "
PUT "{MULTIVARIATE) POLYNCMIAL. n
PUT an
INIT: SET NE

V=2 L=¢

FOR I=1(1372J=1{1)7 T{I,4)=0

GET DATA

PUT “STARTING NODE SS"»SS»Y"FINAL NODE FFW,FF,m n

FGR I=1{1}N

DO FOR J=L(L1IN PUT T(I,J}

PUT H 1

END .
pUT H n'll n
PUT "™ SETUP FOR TRIANGULARIZATION ROUTIENE: DEFINE A=(I-T)-TRANSPOSE, *©
PUT ®COLUMN N+1 OF A =DELTA(I.,5S) . THUS THE NX{N+l) MATRIX A IS THE"
PUT "AUGMENTED MATREIX OF THE SYSTEM OF LINEAR EQUATIONS AX=B , WHERE
PUT "B(I)=DELTAl1,5S)., COLUMNS FF AND NN ARE INTERCHANGED TO AvVOID*"
PUT "THE NECESSITY FOR BACK SUBSTITUTION. "
PUT m u

Suz SET E

FOR I=1(1I}NyJ=101IN ALI,d)==-T(J,I)

FOR I=1{1)N DO A{I,I)=1+A{1,1) A{I,sN+1)=0 END

A{SSeN+1}=1

IF FFa=N

FOR I=1(1)N DO DD=A{I,N} Al{I.N)=A(I,FF) A(I.FF)=DD END

PUT o INVOKE TWG-STEP FRACTION-FREE TRIANGULARIZATION ROUTINE BAREISS ©

DO BAREISS

CC=AIN,N+1) DC=2INsN)

SET NE GG=CC/0D HH=GG
PUT # GENERATING FUNCTION GGHyGGeM ¢
PUT 9 2% 3 e % o o ade i deade o e i o e e el 5 Ak ok 2k o Aee sk Aol e v e e Ak ek ke ok o ol sk e doode ek o A ek ok Aok R A W
PUT MAKE ANY DESIRED REPLACEMENTS FOR VARIABLES IN GG. THEN "
Pyl o THE FOLLOWING RCUTINES MAY BE INVOKED: n
PUT ® 1. GF: OUTPUTS GG AS A RATIONAL FUNCTION OF A SPECIFIED n
pPyUT ™ VARIABLE Vv . "
PUT n 2. PS: COMPUTES THE FIRST L TERMS OF THE POWER SERIES "
PUT = EXPANSION OF GG W.R.T. V FOR SPECIFIED L . »
PUT 24 3 ode ol Ko 2 3 e o ol ook ok ol o Ak kR ol e e o el o e ek e vl s ok ik ofe ol e e e e e e e e okl o e gk o ko e ek B

pPUT v & SET STOF

298

GF:

PS:

TFRU:

LETS

D13
Tlls2)=X
Ti2+3)=X
Ti3y2)=X

END

D2:
Tll,1)=L
T{2,2)=12
T{3,1)=2
Tlay1)=2

END

CC=NUM(GG) DD=DENOM(GG) SET E

CC=CC 0DC=DD

MM=HIGHPGWI(CCs V) NN=HIGHPOWIDD,V)

CCL{OI=COEFF{V¥CCyV]) DD(C}I=COEFF({V*DD,V)

CCC=CC(Q) ODD=DC{O)

SET NE)

FOR I=1(1)MM DO CC(I)=COEFFI{CC,V¥*]) CCC=CCC+CC{I}%v%xl END
FOR I=1{1i)}NN DG CD{I)}=COEFF({DD,v¥*I) DOD=0D0+DDII)*VE%*I END
GG=CCLL/0DD PUT GG % M,u 1

SET €

PUT "FIRST L TERMS OF THE POWER SERIES EXPANSION OF GG »
PUT ®#%* FOR P.S. EXPANSION SPECIFY L AND DO PS #x&w SET S5TOP
IF DD(0}=0 D0 PUT “NQ POWER SERIES EXPANSION FOR GGW",™ f,n @
SET STOP END
RODO=1/EC(Q)*2/2
Gl O)=RDDO*LC{0) PUT G{O)
FOR I=1{1)L
DO S¥=0
MINN=NN IF I<NM MINN=I
FOR K=L{1l)MINN SM=SM-DD{K)%G{I-K)
[F I<=FF SH=SM+CCLID)
G{I}=RODO*S¥

PUT GLI)
END
PUT " #,m#%%x EXECUTION OF FGRAPH COMPLETED *#%#
PUT " Il,ll II'“ I!'ll II"Il II',II' 1

END "“FGRAPH"

DATA x4

N=4 §55=1 F¥F=4 V=X

T{1,3)=X T{le4i=1
T{2:4)=1

TU3,3)=X¥Y T{3,41=1
N=4 3$5=1 FF=4
T{1,2)=2

T(Z,3)=2

T{3:2)=2 T(3,4)=1
Ti4+3)=2 T(44%)=1

299

STAT:
PUT v STAT IS
PUT YWPROBABILITY S-VECTOR
PUT
PUT “THE MATRIX P
PUT n 0 M
INIT: SET NE
FOR I=11(1)}
pytT n "
END
pPUT u n
SETUP: SET E
N=5-1
PUT

PUT
PUT
PUT

PUT
PuT

THRU 2

v [NYyOKE ROUTINES OF FRACTION-FREE GAUSSTAN ELIMINATION PACKAGE
®TO) COMPUTE THE SOLUTION TO THE RESULTING SYSTEM OF LINEAR

1t

LISTING OF STAT

T

CFOR ISLUD)7,Jd=111)7 PUI,3)=C
GET DATA (S ANE P)

)

DO FGR J=1(1}S PLT Pil.+J0)

FOR I=1(1)NsJ=1(1IN A(I,J)=P(JsI)-P(S5,1)
FOR I=1(1)N CO A(I,I)=AlIsI}-1 A(I+S}="P{S,I}

EQUATIONS.

"
U0 BAREISS
GO BACKSUB

» STATIONARY STATE PRCBABILITY VECTOR M
T{I)=XNUM(II/DETH,n u

"

SET NE

$S=DET PUT DET

FOGR I=1(1}

N

DO SS=SS-XNUMI(I)

PUT XKNUMII}

TOI)=XNUMLI)I/BET

END
XNUM{S)=S55

PUT @ w,m
END WSTAT®

nek DATA ¥x0

PUT XNUMIS)
PUT ¥ ®,wxiok EXECUTION OF STAT COMPLETED *#%%#

ll’lt

H

i u

1

T(S)=8S/0ET

" II, LLE

300

SDRT=CHAIN(InyGrF ’E,Dl‘C!B ’Ays ,R.Q,P,O,N.M,L,K,J,Z,Y;X.H,V,U,T}
A FORMAC SCOPE PROGRAM FOR COMPUTING THE STATIONARY
ASSOCIATED WITH AN SXS MATRIX
WTRANSITION PROBABILITIES 3 I.Ee.y T SATISFIES TP=T.
MAY HAVE SYMBOLIC AND/OR NUMERIC ENTRIES.

END

L]
n
"
i1

"

"

*9,

10.

11.

12,

13.

14,
15.

REFERENCES

E. H. Bareiss, "Sylvester's Identity and Multistep Integer-Preserving’
Gaussian Elimination, " Mathematics of Computation, Vol. 22, No. 103,
July 1968, pp. 565-578.

G. Birkhoff and T. Ba.rtee, Modern Applied Algebra, McGraw-Hill
(to appear).

E. Bodewlg, Matrix Calculus, North-Holland, 1959,

I. Borosh, and A, S. Fraenkel, "Exact Solution of Linear Equations
with Rational Coefficients by Congruence Techniques, "' Mathematics of
Computation, Vol. 20, No.93, January 1966, pp. 107-112,

W. S. Brown,"The ATLPAK System Nonnumerical Algebra on a Digital
Computer -- I; Polynomials in Several Variables and Truncated Power
Series with Polynomial Coefficients, ' Bell System Technical Journal,
Vol. 42, No. 3, September 1963, pp. 2081-2120.

W. S. Brown, J. P, Hyde, and B. A. Tague, "The ALPAK System for
Nonnumerical Algebra on a Digital Compufer -~ II; Rational Functions
of Several Variables and Truncated Power Series with Rational Function ,
Coefficients, " Bell System Technical Journal, Vol. 43, No. 1, March
1964, pp.785-504,

G. E. Collins, "PM, A System for Polynomial Manipulation, ' Communi-
cations of the Association for Computing Machinery, Vol, 9, No. 8,
August 1966, pp. 578-589.

G. E. Colling, "Subresultants and Reduced Polynomial Remainder
Sequences, " Journal of the Association for Computmg Machinery, Vol.
14, No. 1, January 1967, pp.128-142,

G. E. Collins "Computing Time Analyses for Some Arithmetic and
Algebraic Algorithms, ' these Proceedings.

W. Feller, An Infroduction to Probability Theory and Ifs Applications,
Vol. I, Third Edition, wWiley, 1968,

M. Fisz, Probability Theory and Mathematical Statistics, Third Edition,
Wiley, 1963.

G. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic
Equations, Prentice-Hall, 1967,

L. Fox, An Introduction to Numerical Linedr Algebra, Clarendon Press,
1964,

F. R. Gantmacher, The Theory of Matrices, Vol. I, Chelsea, 1959,

1. Gerst, "The Bivariate Generating Function and Two Problems in
Discrete Stochastic Processes, " SIAM Review, Vol., 4, No. 2, April
1962, pp. 105-114,

*This article appears in these Proceedings.

301

16, A. Ginzburg, Algebraic Theory of Automata, Academic Press, 1968,

17, F. Harary, ed., Graph Theory and Theoretical Physics, Academic
Press, 1967.

18, R. A. Howard, Dynamic Programming and Markov Processes, MIT
Press, Cambridge, Massachusetts, 1960.

19, W. H. Huggins, "Signal Flow Graphs and Random Signals, " Proceedings
IRE, Vol. 45, January 1957, pp. 74-86.

20. J. P. Hyde, "The ALPAK System for Nonnumerical Algebra on a Digital
Computer —— III: Systems of Linear Equatfions and a Class of Side
Relations, " Bell System Technieal Journal, Vol. 43, No. 2, July 1964,
pp, 1547-1562,

21, J. D. Lipson, "The Analysis of Finite Automata," Term Paper for
Applied Mathematics 297, Harvard University, Cambridge, Massachusetts,
January 1967,

22, C. L. Liu, Infroduction to Combinatorial Mathematics, McGraw-Hill,
1968.

23. C. S. Lorens, Flowgraphs for the Modeling and Analysis of Linear
Systems, McGraw-Hill, 1964,

24, H. A. ILuther and L., ¥, Guseman, Jr., "A Finite Sequentially Compact
Process for the Adjoints of Matrices over Arbitrary Integral Domains, "
Communications of the Association for Computing Machinery, Vol. 5,
No. 8, August 1962, pp. 447-448,

25, 8. Mac Lane and G. Birkhoif, Algebra, Macmillan, 1967,

26, M. Manove, 8. Bloem, and C, Engelman, "Rafional Functions in
MATHLIB, " IF1P Working Conference on Symhbol Manipulation Languages,
Pisa, September 19686,

21, S. J. Mason, "Feedback Theory; Some Properties of Signal-Flow-
Graphs, " Proceedings IRE, Vol, 41, September 1954, pp, 1144-1156,

28. 8. J. Mason, "Feedback Theory; Further Properties of Signal-Flow-
graphs, ' Proceedings IRE, Vol. 44, July 1956, pp. 920-926,

29, S. J. Mason, and H, J. Zimmerman, Electronic Circuits, Signals, and
Systems, Wiley, 1960.

30. R. McNaughton and H. Yamada, "Regular Expressions and State Graphs
for Yamada," E. F. Moore, ed., Sequential Machines: Selected Papers,
Addison~-Wesley, 1964, pp. 157-174,

31, M. L. Minsky, Computation: ¥Finite and Infinite Machines, Prentice-
Hall, 1967.

32, d. Moses, "A Quick Fail-Safe Procedure for Determining Whether the
GCD of Two Polynomials is 1," MIT Artificial Intelligence Memo 126,
Cambridge, Massachusetts, March 1967,

302

33.

34,

35.

36,

317.

38.

39,

40,

41,

42,

*43,

44,

M. Newman, "Solving Equations Exactly, " Journal of Research of the
National Bureau of Standards, Vol. 71B, No. 4, October-December
1967, pp. 171-179,

M, O, Rabin and D, Scott, "Finite Automata and their Decision Problems,"
E. F. Moore, ed., Sequential Machines: Selected Papers, Addison-
Wesley, 1964, pp. 63-91, ’

C. V. Ramamoorthy, "Generating Functions of Abstract Graphs with
Systems Applications, ' Ph.D. Thesis in Applied Mathematics, Harvard
University, Cambridge, Massachusetts, 1964,

C. V. Ramamoorthy and D. W. Tufts, "Generating Functions of Abstract
Graphs with Applications, " Cruft Laboratory Technical Report No. 439,
Harvard University, Cambridge, Massachuseits, March 1964,

C. V. Ramamoorthy and D, W. Tufts, "Reinforced Prefixed Comma-Free
Codes," IEEE Trans. Information Theory, Vol.IT-13, No. 3, July 1967, pp. 366-371.

Jd. B. Rosser, "A Method for Computing Exact Inverses of Matrices
with Integer Coeflicients, ' Journal of Research of the Natioral Bureau
of Standards, Vol, 498, 1952, pp. 349-358.

R. W, Sittler, "Systems Analysis of Discrete Markov Processes," IRE
Trans. in Circuit Theory, Vol. CT-3, December 1956, pp. 257-266.

H. Takahasi and Y, Ishibashi, "A New Method for Exact Calucation by
a Digital Computer, " Information Processing in Japan, Vol. 1, 1961,
pp. 28-42,

R. G. Tobey, "Algorithms for Antidifferentiation of Rational Functions,"
Ph.D. Thesis, Harvard University, Cambridge, Massachusetts, May
1967,

R. G. Tobey et al., "PL/I-FORMAC Interpreter, User's Reference
Manual, ! TBM Contributed Program Library, 360D 03.3.004, Hawthorne,

~ New York, October 1967.

R. G. Tobey and J. D. Lipson, "The Scope FORMAC Language,'" these
Proceedings.

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958.

#This article appears in these Proceedings.

303

PRECEDING PAGE BLANK NOT FILMED

SUMMARY

305

g O PIAED
SIGNIFICANT PROBLEMS IN SYMBOLIC MATHEMATICS
by

Robert G. Tobey
IBM Boston Programming Center
Cambridge, Massachusetts

"N?1:1919§

Abstract

Problems of major practical significance in extending the
scope and power of present-day systems for performing literal
mathematics are adumbrated.

The author is currently with the Applied Mathematics Division of Argonne
National Laboratory, Argonne, Illinois.

307

PRECEDING PAGE BLANK NOT FILMED

SIGNIFICANT PROBLEMS IN SYMBOLIC MATHEMATICS

by
Robert G. Tobey

1. INTRODUCTION

It has been 17 years since the first work in symbolic mathematics by com-
puter was begun independently by Kahrimanianm (at Temple University} and
Nolan18 (at MIT). Eleven years ago interest in symbolic mathematical compu-
tation was sufficient among astronomers to stimulate discussion at a celestial
mechanics conference held in March 1958.4 Three problems were recognized

as significant:
a. the generally slow speed of computers,
b. their small storage capacity,
c. the nonexistence of algebraic compilers for literal ealculations.

The first two problems are familiar. They raise the fundamental question of
the availability of sufficient resources. Naturally, this problem persists today,
but on a different scale. The third statement is no longer true, although its
natural descendents are live problems today. To confirm this one need only
read the Proceedings of the ACM Symposium on Symbolic and Algebraic Manip-

ulation. 25

The significant problems of ten years ago were nebulous and ill-defined.
This paper attempts to be more precise and gpecific; this task is simplified by
the context provided by these Proceedings. (Page numbers cited refer to these
PI:oceedings.) The discussion is limited to problems which are significant in
the development of practical tools for solving practical problems in a batch

processing environment.

The restriction to a batch processing environment is artifical, since methods

for coping with several of the problems may involve human decision-making in

309

an interactive environment. However, the size and complexity of expressions
and the clerical defail involved is often sufficient to preclude effective human
decision-making in 21l but the simplest cases. Clearly, the development of

algorithms for batch operation will enhance interactive possibilities.

The restriction to practical problems discloses the author's prejudice.
The problems cited as significant reflect the author's experience carrying out

literal computations and working with FORMAC users over the past five years,

The problems cited are quite varied. Their solutions will require expertise
from many disciplines, including applied mathematics, combinatorial analysis,
numerical analysis, computational linguistics, abstract algebra, complex func-
tion theory, and graph theory, in addition to basic system design and programm-
ing skills.

The problems discussed here are divided into six categories: Simplification,
Partitioning of the Elementary Transcendental Functions, Design of Polynomial
Systems, Encoding and Representation, Development of Mathematical Algorithms,
and Analysis and Evaluation. Simplification is, by far, the most ambiguous and
most complex’of these categories. This is testified to by the fact that five of the
ten problems cited here fall within that category. Analysis and Evaluation is
the least developed area. This is not surprising for it mirrors computing prac-
tice and the weakness of analytic tool development in computer science. The
remainder of this paper is divided into seven sections; one for each of the above
categories and a summary. For each problem, the context of the problem is
defined, the problem stated succinctly, and an attempt made {o identify the pre-

requisite knowledge and skills.

2. SIMPLIFICATION

The term "simplification' encompasses all the data reduction and report
generating functions which arise in performing symbolie mathematics by com-
puter. In some contexts, simplification can be thought of as a function which is

isolated from other mathematical operations and which is performed after a

310

computation to clean up the results. This is the mode of operation of the auto-
matic simplification capability in FORMAC. On the other hand, cerfain simpli-
fications can only be effectively performed as an integral part of basic algorithms.
He:a,x'n13 indicates the nature of the problem in his discussion of substitution.

A further example is the work of Bomberault and EisenpressG’ 21. In designing
systems for performing large-scale symbolic mathematical computations, it is
important that simplification be an integral part of other algorithms, i.e., it is
essential fo mipimize intermediate expression swell continnously., Put another
way, frequent (as opposed to continuous) data reduction is not adequate to opti-
mize the utilization of space. Similarly, report generation can either be per-
formed by an output editor after the comimtation is complete or become an in-

tegral part of the computation.

The ambiguity of the term "simplification' introduces further compliGations.
Simplification is not only ambiguous in the large—it can mean simplification (1)
to prepare for optimal numerical evaluation, (2) to automatically minimize
intermediate expression swell, or (3) to make expressions "intelligible"—but it
is also complex in the small. Imvestigators frequently agree on the generic use
of the word "simplified, " but canmot agree on the status of a specified expression.
Consider the example

C 24 _ 3 a
dn(2dr 1 0) = (T 1972)

where 6= C/d. One side of this equation is the simpler form for antenna design
engineers while the other side is the simpler form for engineers designing the
production process.

In addition undecidability is a problem. Regardless of the sense in which
the word "simplifieai:ion“ is used, the tacit assumption is usually made that one
can recognize like terms or like factors, i.e., that one can decide whether two
subexpresgions are equivalent. This is trivially true, for manipulating polynomials,
rational functions, or trigometric series, and it is true for a large class of func-
tions represented by the symbolic forms which can be constructed using the

exponential and trigonometric functions. However, it is not true for suitably

311

complex function classes. The example due to RJ‘.clfla.rdson19 which Risch dis~
cusses (page 136) indicates that if the absolute value function (or the logarithm
of the absolute value function) is admitted as an elementary operation, then we
will encounter expressions for which the question of equivalence is undecidable,
i.e., we cannot determine whether it is possible to further reduce symbolic
data.

The discussion of simplification is divided into five paragraphs: Intuitive
Simplification, Application of Identities, Minimization of Intermediate Expression
Swell, Preparation for Numerical Evaluation, and Production of Intelligible
Expressions. Although these problem areas are nof mutually disjoint and results
in one may contribute greatly to another, each area deals with significant in-

dependent igsues.

Intuitive Simplification

Despite the ambiguity inherent in the term "simplification,™ a large majority
of users can agree on a basic subset of simplification operations. That subset
is guite close to the operations implemented in the 7090 FORMAC System and
described in reference 24. This approach does not attempt to reduce expressions
to a canonical form, but is satisfied with a "pseuado-canonical' form. This is
analogous, at least philosophically, to obtaining a deep structure from the sur-
face structure of a sentence using transformational linguistic technigques. In
this sense the simplication problem is as cémplex as developing adequate trans-

formations to reduce natural language sentences.

This fact is highlighted by Fenichel's ez:’qaerience8 when he tried to replicate
the FORMAC simplification capability in FAMOUS. He was unsuccessiul,
mainly because FAMOUS did not provide for interaction between individual
. transformations. Such interaction is a topic of continuing study in computational
linguistics. But the interaction between basic simplification transformations
and the implications for the design of simplification algorithms has never been
thoroughly or systematically studied.

312

PROBLEM 1: Systematically study the appropriateness and interactions of
transformations in the design of simplification algorithms.

PREREQUISITES: Familiarity with the theory of functions of a real and
a complex variable, knowledge and experience in the design of
transformational grammars (recognition grammars), and ex-
perience in complex algorithm design and implementation.

While studying this problem it is important to consider distinct function
subsets (see section 8). For example, one should always assume that addition,
multiplication, subtraction, and divigion are permified. The complexifies in-
troduced by the inclusion of additional functions should he precisely understood.
This study is important to understand what costs are incurred in the design of a
simplification algorithm if additional functions are included and hence how one can
extend the capability of a system at minimal cost.

Application of Identities
It is natural to assume that identities such as
. 2 2
sinx+cos x=1

will be applied automatically by an automatic simplification routine. But gen-

eral application of this identity requires recognition of the pattern

A sin2A2+A

2
1 cos A2+A

1 3

Where Al, AZ and AS are arbitrary expressions. Once the pattern is found, it

must he replaced by the form

A1+A3 .

The final replacement is easy; finding such patterns is difficult. In the worst
case it can require & combinatorial search. In simpler cases exploitation of
the sort as suggested by Ma.rks16 (see Page 32) will help, It even helps when
the sine and cosines are imbedded in products as in the above example; the two
terms affected by the identity can still he made to sort adjacently. However, is

313

it possible to make the sort accommodate a large group of system identities?
1t is clear that this approach is not sufficient to handle arbitrary identities (side
conditions) introduced by system users. This is further illustrated by Hearn's
discussion of Figure 2 on Page 15.

PROBLEM 2: Develop techniques for sorting, pattern recognition,

and replacement in symbolic expressions which minimize the
growth of combinatorial search factors.

PREREQUISITES: Familiarity with artifical intelligence techniques,
the theory of functions of real and complex variables, and persever-
ance in immersing oneself in the application of identities to large
expressions.

Minimization of Intermediate Expression Swell

In his discussion of substitution Hearnl3

emphasizes the importance of per-
forming substitutions at the right point in the calculation in order to minimize
intermediate swell in expressions (recall discussion of (2.11) and (2.12), Page
'; 9). The application (or misapplication) of the distributive law can have similar
consequences. In many calculations expansion or factoring can make a crucial
difference in the size and comblexity of the expressions manipulated. Consider
the following examples:

A= (xmy)t000

B = 51000 _ /1000

P 2 z
C=Txy +3x(z-2y") -xzL +3) .

It is undesirable to either expand A or factor B. On the other hand, expansion
of C is necessary for simplification to oceur. Expansion produces enormous
intermediate expression swell in A and greafly reduces C., (It is due fo the
frequency of expressions like C in physics that REDUCE always expands.) The
issue is more complicated: when is if desirable to reduce the ratio of two ex-

pressions by their greatest common factor (G.C.F.)? It is frequently taken for

314

granted (see Page 237) that the ratio of two expressions should be automatically
reduced by their G.C.F. But consider

1000
D= &%)

1000 1000
X -¥

I8 it not clear that D should be left alone? .-

In his fraction-free algorithm for the efficient solution of linear equations
with symbolic coefficients, Lipson15 shows that it is frequently possible to
systematically remove common factors without a G.C.F. algorithm thus saving
execution time and greatly reducing intermediate expression swell. Prior to
Lipson's algorithm, it was tacitly assumed that any algorithm for solving linear
equations with symbolic coefficients would require frequent application of G.C.F.

exfraction.

Harti:l2 proposes two additional strategies for reduc;ing infermediafe ex-
pression swell: the aufomatic splitting out of subfunctional parts and FAEF,
the function variable associated with evaluated functions. Precise definition
of these suggestions and detailed design of data structures and algorithms are
yet to be accomplished.

PROBLEM 3: Develop algorithms to minimize intermediate ex~
pression swell automatically.

PREREQUISITES: Well-rounded mathematical background with a
knowledge of factoring in polynomial rings, experience in com-~
plex algorithm design, and familiarity with artificial intelligence
techniques.

Preparation for Numerical Evaluation

A major use of symbolic mathematical systems is to obtain symbolic ex~
pressions which are to be evaluated numerically. Harttlz presents the case
for a powerful SINCON (Symbolic Numeric Conversion) capability from a physi-
cist's viewpoint. All major production applications of the 7090 FORMAC System21

were instances of generating symbolic expressions in preparation for eventual

315

numerical calculation. This has also been 2 major use of PL/I-FORMAC. The
symbolic mathematical computation which occurs most frequently is that of
taking derivatives; not only obtaining the Jacobian but also mixed second and
third order partials. Brute force derivative calculation followed by either in-
terpretation or code generation is generally inadequate (see discussion of non-
linear maximum likelihood estimation in reference 21). An improvement of at
least two orders of magnifude over either of these approaches was made by

Bomberaull and Eisenpressﬁ’ 21

;they simplified the structure of derivatives
while differentiation was performed to obtain a fairly optimal sequence of arith-
metic statements for evaluation of the derivatives. However, no one has looked
at the problem of optimally structuring these arithmetic statements so as to

minimize the propagation of roundoff error in the numeriecal evaluation.

Three aspects of this problem must be distinguished: (a) an algorithm
which automatically splits the function into subfunctional parts while other manip-
ulations are being performed; (b) development of an algorithm to handle the
clerical detail required to relate various subexpressions to the complete ex~
pressions of which they are a part; and (c) development of aigorithms for
structuring subexpressions so as to minimize roundoff error propagation. These
are significant aspects of the capabilities which Hartt proposes as extensions fo
Eisenpress' and Bomberault's work.

PROBLEM 4: Develop techniques and algorithms for the optimal
implementation of symbolic to numeric data conversion.

PREREQUISITES: General knowledge of classical applied mathe~
matics and numerical analysis, with an emphasis on techniques
for analyzing roundoff error propagation; and familiarity
with the encoding of complex data structures.

Production of Intelligible Expressions

Frequently, the desired result of a symboliec computation is an intelligible
expression. Intelligibility requires that: (a) the expression is not so large as
to be incomprehengible. (Frequently 28 FORMAC program will output expressions

requiring three to six pages each of densely printed listing.) (b) the variables and

316

subexpressions within the expression are so ordered and arranged that basic
physieal relationships (relationships inherent in the problem definition or fo be
discovered from the problem solution) are readily perceived. {c) Basic sym-
metries are retained and emphasgized.

The expression editing displayed by Hearn13 illustrates intelligibility. Ex-
tension of such techniques as skeletal structure extraction which was imple-
mented by Baker22 will be of value in addressing this problem.

PROBLEM 5: Define intelligibility in the context of specific

problems, and develop techniques and algorithms for ex-
tracting intelligible expressions.

PREREQUISITES: Familiarity with the techniques of artifical
intelligence and with data structures and encoding, in addi-
tion to expertise in the discipline of the specific problem
under study.
Since intelligibility is such an amorphous concept, it is imperative to con-
sider substantive problems from specific disciplines. A significant part of the
problem is fo define precisely what constitutes an intelligible expression within

the context of the specific problem at hand.

3. PARTITIONING OF THE ELEMENTARY TRANSCENDENTAL FUNCTIONS

Much of the current work in symbolic mathematics is based on mathematical
intuition rather than a rigorous knowledge of the properties of the e¢lass of func-
tions being manipulated. This is due mainly to our lack of knowledge concern~
ing basic subclasses of functions and their special properties. For example,
which classes of the elementary transcendental functions have canonical forms?
Which classes of functions are closed with respect to integration? Which classes
of functions are closed with respect to the iterative substitution and integration en-

countered by Gershwin10 in applying Picard interation?

Answers to such questions will greatly increase our knowledge of the basic
funetions which arise in most current symbolic mathematical computations, and

give us increased insight into which techniques are applicable fo which function

317

classes. For example, when does it make sense to avoid decidability problems
in simplification by limiting one's calculation to a subset of the transcendental
functions for which there is a canonical form? This approach was suggested by
Brown informalily at the ACM Symposium on Symbolic and Algebraic Manipula-
tion in March 1966, His mathematical results in this direction were recently
published. 1 Cawines&s2 pursued this concept further in his Ph.D. thesis. An
important question still to be answered, however, is what are the properties of
particular function classes which make them useful in solving practical problems?
Furthermore, which other functions can be neatly represented (or approximated,
if approximation is adequate to the problem under consideration) by functions
from this class?

PROBLEM 6: Define and study the properties of "useful” subclasses
of the elementary transcendental functions.

PREREQUISITES: Familiarity with the properties of the elementary
functions, with techniques and resuits of decideability theory,
and with the types and properties of functions which frequently
arise in the solution of practical problems.

It is clear that results and techniques from 19th cenfury mathematics will

be quite relevant in this problem area. This is already indicated by the work of

Brown and Caviness.

4, DEVELOPMENT OF MATHEMATICAL ALGORITHMS

The development of numerical analysis has been accelerated by the develop-
ment of computers. This is natural since the compuier has made possible the
utilization of numerical techniques which were impractical in the past. As com-
puter systems for performing symbolic mathematics develop, practical algorithm
development for many frequently applied mathematical operations must accelerate in
a similar manner. Among the more important of these operations are: symbolic
integration, matrix manipulation (determinant calculation, matrix inversion,
caleculation of the characteristic polynomial and the eigenvalues), asymptotics,

greatest common factor extraction, and factoring., The papers by Collins,3

318

Feldman, 7 Hali:on,11 Lipson, 15 Moses, 17 and }E{isc‘n20 indicate the varied and

complex mathematical issues which must be dealt with. Studying integration
alone requires exfensive mathematics. Feldman traces the difficulties he en-
counfered with finite field arithmetic., All these difficulties apply to integra-
tion, since algebraic extension field arithmetic is central to obtaining the trans-
cendental part of the integral of a rational function (see section I1I.2 of reference
) 23). Moreover, the integration of rational functions is. central to the design of
more general infegration algorithms. The specific problems in this sequence

of dependent algorithms are traced in Feldman, 7 Riéch, 20 and Tobey.23

PROBLEM 7: Develop precise, efficient algorithms for applying
standard mathematical operations to symbolic quantities.

PREREQUISITES: An in<depth wide-ranging knowledge of theoretical
and applied mathematics coupled with the perseverance to ex~
plicitly define practical processes for implementing mathemati-
cal operations which are often conceptually simple.

~

In developing mathematical algorithms, it is important to know the theoreti~
cal limitations. Knowledge of undecidability results is valuable. It is more
important, however, not to let such results cloud your approach to practical
problems. Risch is right when he says of Richardson's results, "These arti-
ficial examples do not give us any real insigh ."20 Moreover, they have yei: to
arise in the solution of specific practical problems. It is important to identify
undecidability results which are significant for practical problems.,

5. ENCODING AND REPRESENTATIONS

Hearn13 and Meu.rks16 touched on several specific encoding and representa-

tion issues including expanded versus nonexpanded forms, handling of kernels
{Hearn) or common subexpressions (Marks), and encoding polynomial forms

{see aiso reference 23, chapter V).

Many specific as well as nebulous problems can be posed with respect to
the issues indicated above. We choose, however, to limit this discussion to

one quite specific and promising issue.

319

Markslﬁ (section 2) poses the question of utilizing successive degrees of
freedom in data organization. He observes that a character string representa-
tion is compact and more efficient than a tree structure representation for
operations which use the expressiononly as a temple, i,e., for algorithms
which treat the expression as "read only" data. Such operations as substitution,
differentiation, and numerical evaluation scan the input expression interpretively
while constructing a new expression. Because they require insertion and dele-
tion of subexpressions as well as rearrangement, automatic simplification and
-expansion require a list structure for efficient dynamic storage allocation. The
overhead due to copying and compactification required to dynamically allocate
variable~size contiguous blocks of storage can be prohibitively large (recall the
discussion of ALPAK and PM in chapter V of reference 23).

All systems which have been implemented for symbolic mathematiecs have
chosen one expression encoding and maintained that encoding throughout all
calculations. This is true not only with respect to contiguous string versus
list structure encoding, but also with respect to expanded or recursive repre-
sentations for polynomials in polynomial manipulé,tion systems,

PROBLEM 8: Determine the conditions under which it is desirable

to have more than one representation and/or encoding for ex-
pressions.

PREREQUISITES: Familiarity with list processing, tree processing,
and dynamic storage technigues, with considerable experience
in algorithm implementation and design at the assembly coding
level,

It is clear that such issues as whether to have several representations for
one expression co-resident in the system or convert between representations
will have to be considered. It will be instructive and intriguing fo learn for
which algorithms it is desirable to convert from one encoding or representation
to another. In this study one cannot avoid using the analytic techniques proposed
in problem 10. They will be essential in determining tradeoffs between various

encodings and representations under the action of various algorithms.

320

6. DESIGN OF POLYNOMIAL SYSTEMS

“In August 1967 at the meeting of the International Astronomical Union5 in

Pragué, Herget was asked, "May we expect to find a general language to treat
analytic developments on electronic computers or must we always be prepared to
use a special apparatus?'. He replied, "I expect that we will need special pro~
grams to save time on the compuler." General purpose expression manipula-
tion systems waste both time and space when the desired manipulation is strictly
polynomial. Moreover, the polynomial systems implemented to date waste

time and gpace when one has a specific series structure fo manipulate, such as
those commonly encountered in astronomy. If is easy to defend Herget's reply.

Too little is known concerning the tradeoffs among encoding, representations,
and algorithm designs for polynomial manipulation systems. The problem is
further aggravated by the fact that it is frequently desirable to have a polynomial
capability which is consistent with and embedded in a general expression manipu-
lation system. (Feldman's recommendations7 regarding FORMAC move in this
direction.) Recent analysis of ALPAK and PM performed by the author®> and
Marks' suggestions concerning the sort (Page 32) encourage one to believe that
polynomial and general expression manipulation systems can be merged success~
fully.

The basic tradeoffs in polynomial systems are between contiguous arrays
and list structures for encoding and between completely expanded and recursive
representations for multivariant polynomials, Any thorough study of polynomial
systems will pose the questions raised in Problem 8.

PROBLEM 9: Develop the necessary techniques and perform a

definitive study of polynomial encodings and representations

with an eye to both a stand~alone capability and a capability
embedded in a general expression manipulation system.

PREREQUISITES: Familiarify with the algebraic theory of poly-
nomial rings and the theory and use of analytic series expansions,
and an in-depth knowledge of implementation technigues
previously utilized for polynomial systems.

321

7. ANALYSIS AND EVALUATION

Many of the problems posed require precise combinatorial and analytic
tools for assessing design tradeoffs. Collins3 and Lipson15 present fime
analyses for their algorithms. However, more precise and general techniques
are required. Systems for symbolic mathematical computations will themselves
be of great value here since they can be used fo develop and manipuiate quite
complicated generating functions. (Recall Lipson'’s discussion in section 3 of
reference 15.)

PROBLEM 10: Define the relevant quantities to be measured and

develop practical analytic techniques for counting and

measuvring data structure and algorithm resource require-~
ments and {radeoffs.

PREREQUISITES: Knowledge of combinatorial analysis, signal
flowgraph theory, graph theory, and asymptotic analysis, in
addition to familiarity with assembly-level encoding and
algorithm design.

It is clear that this is one of the basic problems in computing science. Any

results obtained will be of general value,

8. SUMMARY

Ten basic problems in degign and implementation of practical batch proc-
essing systems for performing symbolic mathematical computation have been
discussed. An attempt was made to specify the prerequisite skills and knowl-

edge required to aftack each problem.

322

REFERENCES

i. W.S. Brown, "Rational Exponential Expressions and a Conjecture Con-
cerning # and e,' American Mathematical Monthly, Vol. 76, No. 1,
January 1969.

2. B.F. Caviness, "On Canonical TForms and Simplification,! Ph.D. Thesis,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, May 1968,

* 3, G.E. Collins, "Computing Time Analyses for Some Arithmetic and
Algebraic Algorithms," these Proceedings.

4, M.S. Davis, "Programming Systems for Analytical Developments on
Computers,” The Astronomical jJournal, Vol. 73, No. 3, April 1968,

5. W.d. Eckert, "The Use of Elecironic Computers for Analytic Develop-
ments in Celestial Mechanices: A colloguium held by Commission 7 of
TIAU in Prague, 28-29 August 1967," The Astronomical Journal, Vol.
73, No. 3, April 1968.

6. H. Eisenpress and A. Bomberault, "Efficient Symbolic Differentiation
Using PL/I~-FORMAC, " IBM New York Scientific Center Technical Re-
port No. 320-2856, New York, September 1968.

* 7, H.E, Feldman, "Some Symbolic Computations in Finite Fields", these
Proceedings.

8. R.R. Fenichel, ""An On-Line System for Algebraic Manipulation,"
Ph.D. Thesis, MIT, Cambridge, Massachusetts, December 1966,

* 9, S.B. Gershwin, "The Use of Computer-Aided Symbolic Mathematics
to Explore the Higher Derivatives of Bellman's Equation, ' these
Proceedings.

*10. S.B. Gershwin, "An Attempt to Solve Differential Equations Symbolically,"
these Proceedings.

*11. J.H. Halton, "Asymptotics for Formula-Manipulation,' these Proceed-
ings. :

*12. K. Hartt, "Symbelic~-Numeric Eigenvalue Problems in Quantum Mechanics,"
these Proceedings.

*13, A.C., Hearn, "The Problem of Substitution," these Proceedings.

14, H.G. Kahrimanian, "Analytic Differentiation by a Digital Computer,"
Master's Thesis, Temple University, Philadelphia, Pennsylvania,
May 1953.

*15, J.D. Lipson, "Symbolic Methods for the Computer Solution of Linear
Equations with Applications to Flowgraphs," these Proceedings.

*These articles appear in these Proceedings.

323

*16. P. Marks, "Design and Data Structure: FORMAC Organization in Ret-
‘ rospect, ! these Proceedings.

i7. J. Moses, "Symbolic Integration," Ph.D. Thesis, MIT, Cambridge,
Massachusetts, December 1967,

18. J.Nolan, "Analytical Differentiation on a Digital Computer,! Master's
. Thesis, MIT, Cambridge, Massachusetts, May 1953.
15. _ D. Richardson, "Some Unsolveable Problems Involving Functions of a
Real Variable," Ph.D. Thesis, University of Bristol, Bristol, England,
1966.
*20. R.H. Risch, "Symbolic Integration of Elementary Functions," these
Proceedings.

21. R.G. Tobey, "Eliminating Monotonous Mathematics with FORMAC,"
Communications of the Association for Computing Machinery, Vol. 9,
No. 10, October 19686,

22. R.G. Tobey, "Experience with FORMAC Algorithm Design,™ Com-~
munications of the Association for Computing Machinery, Vol. 9,
No. 8, August 1966.

23. R.G. Tobey, "Algorithms for Antidifferentiation of Rational Functions,"
Ph.D. Thesis, Harvaxd University, Cambridge, Massachusetts, May
1967,

24, R.G. Tobey, R.J. Bobrow, and S.N. Zilles, "Automatic Simplification
in FORMAC, " AFIPS Conference Proceedings, Vol. 27, part 1, Spartan
Books, Washington, D.C., December 1965.

25. ""Proceedings of the ACM Symposium on Symbolic and Algebraic Manipu-
lation, " Communications of the Association for Computing Machinery,
Vol. 9, No. 8, August 1966. -

*These articles appear in these Proceedings.

324

FEREED
Division

CRARE EVERIER) BIROENIED) €K SRR CoNED

