
Z 0.R.

IIt

I-aoct rI
eu

=

I VI;

I t 4

Xi*4

zrLlb

l-'

https://ntrs.nasa.gov/search.jsp?R=19710009710 2020-03-12T00:08:41+00:00Z

FSC69-0312

PROCEEDINGS OF THE 1968 SUMMER INSTITUTE ON

SYMBOLIC MATHEMATICAL COMPUTATION

Robert G. Tobey, Editor

June 1969

IBM Boston Programming Center
545 Technology Square

Cambridge, Massachusetts 02139

PREFACE

The 1968 Summer Institute on Symbolic Mathematical Computation was held
at IBM's Boston Programming Center from June 24 to August 16, 1968. This
research institute was sponsored by the IBM Federal Systems Division through
independent research and development funds and in conjunction with the Office of
Naval Research contract N00014-68-C-0479 and the University of North Carolina
through NASA universityvan U5_4A -5. The purpose of the institute was to
provide an intensive research environment with access to the PL/I FORMAC
batch system and the Scope FORMAC interactive system. Its goals were to
stimulate investigators to apply these two systems to real problems and to
encourage research on the design and implementation of mathematical algorithms
for symbolic mathematics.

The main features of the institute were the close proximity and varied
disciplines of the participants, and the access to the PL/I FORMAC System. The
institute featured formal and informal lectures on various aspects of FORMAC
and other key developments in symbolic mathematics. Informal colloquiums and
frequent coffee hours stimulated the flow of ideas and helped in the definition and
pursuit of individual research projects.

The varied concerns expressed in the papers published here reflect the
participants' wide range of interests and activities. The first section, "Basic
Design Issues," begins with a discussion of the REDUCE system and the multi
faceted problem of substitution by Anthony Hearn. Peter Marks' presentation
of design and encoding tradeoffs in FORMAC follows.

The section "FORMAC and Applications" begins with a calculation of Hilbert
matrices by Elizabeth Cuthill, then a paper by Robert Tobey and John Lipson,
describing the Scope FORMAC language with elementary examples. Next, Stanley
Gershwin discusses an application of FORMAC which did not work. Henry Feldman
presents ideas concerning the use of FORMAC to perform finite field arithmetic
and makes a plea for a more powerful polynomial manipulation capability within
FORMAC. Kenneth Hartt presents his view of the symbolic numeric capabilities
required to attack the large scale problems of theoretical physics. The use of
FORMA C as an empirical aid in obtaining new results in optimal control theory
is presented by Stanley Gershwin in the last article of this section.

The "Design and Analysis of Mathematical Algorithms" section begins with
a paper in which Robert Risch presents a tutorial discussion of his algorithm for
elementary function integration. Next, an analysis toward defining a formula
manipulation subsystem for computing and manipulating asymptotic expansions
is presented by John Halton and followed by George Collins' paper concerning
computing time analysis for arithmetic and algebraic algorithms. In the last
paper of the section, John Lipson develops an algorithm for the solution of linear
equations with symbolic coefficients, performs timing analysis on the algorithm,
and presents several applications.

The Proceedings concludes with a paper on significant problems in symbolic
mathematics by Robert Tobey.

These Proceedings should not be viewed as complete within themselves.
Rather they should be viewed as constituting a snapshot or instantaneous cross
section of the issues and probings which comprised research into symbolic
mathematical computation in the year 1968. A complete picture emerges only
when the many articles referenced in these Proceedings are also studied.

ii

Participants in the Summer Institute

Resident Participants (in attendance eight weeks)

Dr. Elizabeth Cuthill, Naval Ship Research and Development Center
Professor John H. Halton, University of Wisconsin

Professor Kenneth Hartt, University of Rhode Island

Professor Don Mittleman, University of Notre Dame

Mr. Sami Al-Banna, graduate student, Columbia University
Mr. Henry A. Feldman, graduate student, Harvard University
Mr. Stanley B. Gershwin, graduate student, Harvard University
Mr. John D. Lipson, graduate student, Harvard University

Consulting Participants (present one week only)

Mr. Charles L. Baker, IBM Federal Systems Center

Professor George E. Collins, University of Wisconsin

Professor Anthony C. Hearn, Stanford University

Dr. Robert H. Risch, Systems Development Corporation

Casual Lecturers

Mr. Carl Engelman, MIT Lincoln Laboratory
Dr. James H. Griesmer, IBM Research Center

Dr. Fred G. Gustavson, IBM Research Center

Professor William Martin, MIT

Professor Joel Moses, MIT

Boston Programming Center Representatives

Mr. James-J. Baker

Mr. Peter Marks

Mr. Jack B. Nance, Jr.

Dr. Robert G. Tobey

iii

CONTENTS

Page

BASIC DESIGN ISSUES
"The Problem of Substitution" 7

by Anthony C. Hearn 3 V

'Design and Data Structure: FORMAC Organization in Retrospect" 21
by Peter Marks

FORMAC AND APPLICATIONS

"Calculation of Tables of Inverses and Determinants of Finite
Segments of the Hilbert Matrix"

by Elizabeth Cuthill 39 V

"The Scope FORMAC Language"
by Robert G. Tobey and John D. Lipson 55

"An Attempt to Solve Differential Equations Symbolically"
by Stanley B. Gershwin. 69

"Some Symbolic Computations in Finite Fields:
by Henry A. Feldman 77

"Symbolic-Numeric Eigenvalue Problems in Quantum Mechanics"
by Kenneth Hartt 97 A

"The Use of Computer-Aided Symbolic Mathematics to Explore the
Higher Derivatives of Bellman's Equation"

by Stanley B. Gershwin111

DESIGN AND ANALYSIS OF MATHEMATICAL ALGORITHMS

"Symbolic Integration of Elementary Functions"
by Robert H. Risch 133

"Asymptotics for Formula Manipulation"
by John H. Halton 149

iv

Page

"Computing Time Analyses for Some Arithmetic and Algebraic
Algorithms"

by George E. Collins195 i,
"Symbolic Methods for the Computer Solution of Linear Equations
with Applications to Flowgraphs"

by John D. Lipson233

SUMMARY

Significant Problems in Symbolic Mathematics
by Robert G. Tobey307

V

BASIC DESIGN ISSUES

1

PRECEDING PAGE BLANK NOT FILMED

THE PROBLEM OF SUBSTITUTION

by

Anthony C. Hearn
Department of Physics

Stanford University
Stanford, California

N7I "19186
Abstract

Minimizing intermediate expression swell is a central
problem in symbolic mathematics system design. The
strategy chosen for implementing substitution is frequently
the key to keeping storage space requirements under control.
This paper discusses the REDUCE system and its approach
to substitution. The use of interactive substitution to reduce
the complexity of program output is also covered.

This paper reports research sponsored by the Air Force Office of Scientific
Research, Office of Aerospace Research, U.S. Air Force, under AFOSR Contract
Number F44620-68-C-0075. Computer time was supported by the Stanford Artificial
Intelligence Project under the sponsorship of the Advanced Research Project Agency
of the Office of the Secretary of Defense (SD-183). The author is an Alfred P. Sloan
Foundation Fellow.

3

PRECEDING PAGE BLANK NOT FILMD

THE PROBLEM OF SUBSTITUTION

by

Anthony C. Hearn

1. INTRODUCTION

One of the most significant features of programs designed for nonnumeric

calculation is that the size of the expressions manipulated, and hence the amount

of storage necessary, changes continually during the execution of the program.

The user cannot always know ahead of time just how much output his program

will produce or whether the calculation will fail because of inadequate computer

memory. The key to controlling both the size of intermediate expressions and

the complexity of output often lies in the manner in which substitutions for vari

ables and expressions declared by the programmer are implemented by the sys

tem. In this paper, we discuss various methods developed to perform these sub

stitutions in the author's own system, REDUCE. 1,2 The REDUCE system, like

FORMAC, 9 is designed for general algebraic computations of interest to math

ematicians, physicists, and engineers. Although the two systems share many

capabilities, there are marked differences in the design of each. REDUCE was

originally designed to handle the special problems of non-commutative and ten

sor algebra encountered in calculations in elementary particle physics scatter

ing theory. 3 However, it was found that the techniques employed could be

extended to handle many problems involving manipulation of large algebraic

expressions by known algorithmic methods.

One major difference between FORMAC and REDUCE is that the former is

largely a machine-coded system, while the latter was programmed entirely in

LISP 1.5. 4 The big advantage of the LISP language is that it permits the

5

development of a system which may be easily modified and which is also

relatively machine-independent. Thus, the same program is operating at

Stanford on two entirely different machines, an IBM System/360 Model.67

and a Digital Equipment Corporation PDP-6.

Section 2 of this paper uses the simplest type of substitution problem to

introduce the REDUCE system and to discuss the general characteristics which

permit the efficient coding of many types of substitutions. Section 3 presents the

general problem of substitution in terms of the matching of expressions. Finally,

the use of substitution to reduce the complexity of program output is discussed

in section 4.

2. SIMPLE SUBSTITUTIONS

An assignment statement of the form

A = 2*B*C - 3*D**2 + COS(-X)*COS(Y) (2.1)

has an entirely different interpretation in a nonnumeric calculation than in a

PL/I or FORTRAN program. In the latter cases, the right-hand side evaluates

to a number which is then stored in a machine location reserved for A. In a
non-numeric system, the evaluation of such an expression is more ambiguous.

Here evaluation is usually referred to as simplification in the sense that the

expression is reduced to a canonical form by rules built into the program or

provided by the user.

There are as many philosophies concerning the meaning of simplification

of expressions as there are systems. FORIVIAC, for instance, makes substitu

tions for variables with assigned values and performs several unambiguous

reductions of the expression. In Equation (2.1), for example, COS(-X) would

be replaced by COS(X). However, the basic form of the expression would

remain the same, apart from conversion from an infix notation to an internal

Polish prefix representation. In REDUCE, on the other hand, reduction of an

expression to canonical form is more complicated. For one thing, this reduc

tion always involves expansion of expressions, an operation under user control

in FORMAC. The flexibility permitted by having expansion of expressions

6

http:Model.67

under user control is not present in REDUCE because many operations associ

ated with high-energy physics calculations require the expression to be in a fully

expanded form. Also, there is often a considerable gain in speed of calculation

and decrease in storage requirements when such expansions are made in an

early stage.

For the sake of simplicity in discussing the canonical form used let us begin

by restricting ourselves to rational functions of polynomials in several variables.

The simplification operation reduces such expressions to a canonical form con

sisting of a pair of standard forms which represent the numerator and denomina

tor of the expression. In the standard form, which is similar to that described

by Collins in reference 5, an expression in n variables f(xl,x2... xn) is written

as a power series in a variable whose coefficients are functions of n-i variables.

Thus i(

f(x,x 2 .. .xn) = 2 ... x)x) .f2(x
i=0

The polynomial coefficients are expanded in a similar manner, and the represen

tation is continued until only integers remain. In Backus normal form, using the

LISP dotted pair notation, the REDUCE standard form is

[standard form] • (- I [nonzero integer]

([standard term] [standard form]) (2.3)

[standard term] = ([standard power] [standard form]) (2.4)

[standard power] = ([variable] [nonzero
positive integer],) (2.5)

Thus, a standard term represents one term in the power series Equation (2.2),

and a standard power represents a variable raised to a positive integer power.

Comparison of Equation (2.2) with the equations that follow also shows that the

dotted pair represents an implicit addition in Equation (2.3), multiplication in

Equation (2.4), and exponentiation in Equation (2.5).

Since the same fixed power of a given variable appears many times in the

expanded form of large expressions, considerable storage is saved by storing

all standard powers uniquely on a single ordered list. Although no explicit

attempt is made to store other subexpressions which occur several times, this

often occurs automatically.

'7

An~ordering convention based on the machine location of the variables in

core is used to decide the position of a variable in a standard form. Thus, two

equal polynomials will have the same standard form.

If fractional powers of variables or expressions are encountered during

reduction, a new variable is created to represent that power, and the user is

informed to ensure that no fractional powers remain in the standard form.

Likewise, real numbers are usually converted to the ratio of two integers, unless

the user specifies floating point arithmetic.

An extension of the basic polynomial representation to include other operators

is made in a straightforward manner. Each operator in the system has a simplifica

tion function associated with it. This function may transform its arguments in

either of two ways. First, it may convert the expression completely into other

operators in the system, leaving no functions of the particular operator for

further manipulation. This is, in a sense, true of the simplification functions

associated with the operators +, * and / , for example, because the standard

form does not include these operators explicitly. It is also true of an operator

such as the determinant operator DET , in which case the operator DET no

longer appears after the relevant simplification function calculates the appropriate

determinant. On the other hand, the simplification process may leave some

residual functions of the relevant operator. -For example, a residual expression

COS(Y) will remain after simplifying Equation (2.1) unless a rule for the reduc

tion of cosines into exponentials is introduced. These residual functions of an

operator are termed kernels, and are stored uniquely like variables. Subsequently,

the kernel is carried through the calculation as a variable unless transformations

are introduced for the operator at a later stage. To include kernels in our

standard form representation, we simply replace Equation (2.5) with

[standard power] = ([kernel] . [nonzero
positive integer]) (2.6)

and add

[kernel] = [variable]
([operator] . [simplified list of arguments]) (2.7)

8

Often an assignment statement such as Equation (2.1) is intended in the

sense of a "side relation" in that a substitution for A should be made if it occurs

in expressions encountered later in the calculation. As the initial reduction of

an expression to canonical form often involves considerable computation, it is

obviously desirable to simplify it only when necessary, and then only once during

a calculation. In such circumstances, no replacement or other simplification

is necessary at the time the substitution is defined, and the expression may

therefore be stored in quoted form rather than evaluated form. To indicate this,

Equation (2.1) might best be written as

A = '2*B*C - 3*D**2 + COS(-X)*COS(Y)l 	 (2.8)

In REDUCE, a quoted assignment is introduced by the instruction LET , as in

LET A = 2*B*C - 3*D**2 + COS(-X)*COS(Y) (2.9)

whereas 	an intended simplification is written

SIMPLIFY A = 2*B*C - 3*D**2 + COS(-X)*COS(Y) (2.10)

When an 	expression to be simplified contains variables which were previously

assigned either quoted or evaluated values, the speed of the calculation and, more

important, the amont of storage used often depend crucially on just when the

substitution for the relevant variables is made. There are many ways to make

such substitutions. One is to substitute for variables as they are met during

reduction to canonical form recognizing, as AUTSIM does in FORMAC, variables

for which substitutions were already reduced to canonical form to avoid repeti

tious calculation. A second way is to make substitutions after reduction of the

whole expression to canonical form.

Two simple examples will illustrate that neither method is better

in all circumstances. With the substitution (2.1) already defined, consider the

following assignments:

Al = (A - 2*B*C + 3*D**2 - COS(-X)*COS(Y))**1000 (2.11)

Bl = A**1000 - A**1000 	 (2.12)

9

Although both A1 and B1 evaluate to zero, in the case of A, it is obviously better
to substitute before raising the expression to the thousandth power and simplify
ing; in the case of B, the opposite is true. These are extreme cases, of course,
but they illustrate what can happen if you are not careful. Both substitution
mechanisms are implemented in REDUCE, and the decision as to whether the
substitution of variables is made during or after reduction to standard forms is,
to a limited extent, under user control. However, it has been found in practice
that the system can often make a better decision than the average user in this

regard.

We note in passing that a simplification of

Cl = (A - 2*B*C + 3*D**2 - COS(-X)*COS(Y))**I000
+ A**1000 - A**1000 (2.13)

would involve catastrophic term growth regardless of which of the above methods
of substitution is used. The user could avoid this by simplifying Al and Bi
as described above, then adding them to form Cl . However, a simplification
step such as Equation (2.13) may occur in the middle of an extensive calculation
without the user's knowledge. To ask the system to make such a simplification
in a single step would require sophisticated heuristics far beyond the scope of
present simplification systems to decide the optimal substitution method for
each variable encountered.

As an extension of the simple variable substitutions discussed so far, REDUCE
allows the user to define substitutions for powers of variables and expressions
which reduce to kernels or powers of kernels. Again, these substitutions may
be made either during reduction to canonical form or after and, because of the
organization of the system, they are as efficient to implement as substitutions
for variables. We illustrate this by discussing in detail the mechanism for
substituting for kernels or kernel powers after reduction of an expression to
canonical form. There are two ways this may be done. The first is to scan
the expression and check whether each kernel has a substitution defined for it.
If it does, at the first occurrence of this kernel check its substitution in canonical
form for replacements by the same routine, store it in this new form, then

10

continue the search to the end of the expression. The reconversion of the

expression to canonical form can be made concurrent with the search procedure.

This method is somewhat inefficient, however, as the same kernel often occurs

many times in an expression. The second method recognizes this inefficiency

and performs the substitutions in three passes, as we illustrate with a substitution

for the kernel (COS X) in Figure 1. The lists of kernels in the system are

searched, and changes in the appropriate list structure pointers are made if

a substitution is required as shown in Figure lb. Since kernels and kernel

powers are stored uniquely, this change in list structure means that every

occurrence of the substitution expression was changed in all expressions. Thus,

the expression being simplified can be reconverted to standard forms by a

second pass. The last pass, which is quite trivial, restores the original list

structure of all substituted kernels without affecting the reconverted canonical

form, as shown in Figure ic.

In actual practice, REDUCE uses a combination of these methods. It is

assumed that the expression is large and the substitutions are relatively small.

To check whether a substitution expression contains terms which have substitu

tions themselves, the first method is used; the second method is used on the

expression being simplified.

In substituting for powers of variables or kernels, a distinction must

sometimes be made between substituting for that explicit power and generally

substituting for that power whenever it occurs. For example, LET I**2 =

-1 implies that I**3 = -1, I**4 = 1 , and so on. However, in integrating

an expression by explicit substitution, a substitution

X**2 = Y**3/3

is not intended to apply to higher powers of X.

This latter type of substitution is really a matching operation, and is

treated as such by the REDUCE system. Thus, a user would say

MATCH X**2 = Y**3/3 (2.14)

11

all references to the kernel

(COS X) point to this cell

COS

Xsubstitution

(a.) Unique Representation of Kernel Before Substitution

Xsubstitution

(b.) 	 Changes Made in List Pointers to Effect Substitution
for Every Occurrence of Kernel in System

Xsubstitution

(c.) 	 Restoration of Kernel Representation After Reconversion
of Expression to Canonical Form

Figure 1. A Substitution Mechanism for Kernels

12

to effect such a replacement. The general matching operation requires.an

altogether different programming technique than we have used so far. This opera

tion is discussed in the next section.

3. MATCHING OF EXPRESSIONS

The substitutions considered so far have been rather limited in scope, as

they involve only substitutions for variables and-kernels. As we have seen,

these are very efficient to implement because variables and kernels are stored

uniquely in REDUCE. However, a more general type of substitution which

requires extensive pattern matching within a given expression is.often needed.

Such substitutions cannot be as efficiently implemented as our earlier examples

as much more searching is involved in their application.

The ideal system would allow for the replacement of any given expression

f(a,b..x,y..) by another expression g(ab..x,y..) where a,b,... stand for fixed

subexpressions and xy,... for arbitrary expressions. For example, in

Equation (2.1) it might be convenient to replace COS(X)*COS(Y) by (COS(X+Y)

+ COS(X-Y))/2 . Presumably this type of replacement should apply whenever'

an arbitrary product of cosines is encountered, so that X and Y in the replacement

rule should stand for any expression. Thus X and Y are free variables as

far as the substitution rule is concerned. Similarly, if X is free, the rule

SIN(X)**2 - COS(X)**2 = 1 (3.1)

2 2should imply that sin (cos(log2)+3) + cos (cos(log2)+3) is to be replaced by 1.

This general matching problem, which we mentioned in an earlier publication, 2

has been solved efficiently enough for use in large scale calculations, and as a

result, most systems, including REDUCE, compromise at some point in the

types of substitutions allowed. There is also a basic ambiguity associated with

any substitution rule involving addition, such as Equation (3.1). For example,
2 2 2

given this rule, should 2cos (v) + sin (v) be replaced by 1 + 2cos2(v) , by

2
2 - sin (v) or left unchanged? As we shall see in section 4, the choice made

can often influence the compactness or symmetry and, hence, the intelligibility

of the result.

13

http:requires.an

Though REDUCE does not implement a general pattern matching algorithm,

it does provide for substitutions for products of kernel forms or expressions

which reduce to this form by means of the instruction MATCH.

The argument of MATCH is a list of equivalence expressions of the form

[kernel form] * [kernel form] * [kernel form]

= [expression] (3.2)

where a kernel form is an expression which reduces to a-kernel on simplification.

Examples of the use of MATCH are

MATCH A**2*B 3*C,

COS(X)*COS(Y) = (COS(X+Y)+COS(X-Y))/2 (3.3)

In the second example, the fact that X and Y may stand for any expression

is signified by the prior declaration

FREE X,Y.

The "matching" function which implements these substitutions is applied

recursively to standard forms and has two arguments-the form and a list of
substitution rules as given in Equation (3.2). Unless the form is an empty list

or a number (in which case it is simply returned), the leading standard term is

inspected. By Equation (2.4) this is a dotted pair of a standard power and another
standard form. If the kernel in this power occurs in the left half of a substitution

rule, two things are possible. If it is the only kernel in the left half, a complete
"match" has been found, and the kernel is replaced by the right half of the rule.

On the other hand, if other kernels remain in the left half, a new substitution
rule is generated by moving the relevant kernel as a divisor to the right half

of the substitution.

If no complete match has been found after all rules have been scanned for

the kernel, the matching function is applied, with the additional substitution

rules just generated, to the standard form which was paired with the kernel power
in the leading term. This process continues until the whole expression has

been scanned. If any match was successful during this scan, a second pass

reconverts the expression to canonical form. In addition, the whole process

must be repeated in case another valid match developed during the reconversion.

14

The algorithm must be modified somewhat to allow for replacement of an

explicit kernel power, as required in Equation (2.14), or for the presence of

free variables in a rule. Its efficiency can be increased, moreover, by

exploiting the order key built into every standard form.

In spite of the limited nature of the types of substitutions allowed in REDUCE,

it is surprising how useful a matching operation of the form defined in Equation

(3.2) can be. This is especially true of problems involving analytic integration

of multivariable expressions by table look-up which occur quite frequently in

elementary particle physics.

4. SUBSTITUTIONS IN OUTPUT

Almost as catastrophic as the growth of expressions during a calculation

can be the growth of output to the astonished user. This is not a trivial problem;

the author knows several physicists and engineers who gave up calculations when

confronted with 50 pages of output from a relatively simple problem in matrix

manipulation. If any real progress is to be made in handling algebraic problems

too tedious and complicated to be done by hand, a lot of research must be devoted

to presenting output in a compact, intelligible form. One way to achieve compact

output is to pick out the leading terms in the expression by order-of-magnitude

arguments, but this method often conceals symmetries in the answer which can
7

only be seen in the complete expression. Another method, developed by Baker,

involves recognizing common subexpressions within an expression and replacing

them by a single variable, thus displaying the underlying fundamental or skeletal

structure of the expression. In many cases, however, when such underlying

structure exists, it is hidden by various relations between the variables occurring

or by functional identities such as Equation (3.1).

The example in Figure 2 illustrates the problem of hidden underlying

structures very well. Figure 2a shows a "rawtf expression produced by the

computer. As in many problems in physics and engineering, not all the variables

appearing in the expressions are independent, and certain combinations have

15

CV**4

(2 * PROP! * PR * RS - 2 * PROPI * PR * RT - 4 * PR**2 * RS
- 4 * PR**2 * RT A * PR * RS**2 + 14 * PR * RS * RT +

2 * PR * RS * PROP2 - 4 * PR * RS * PS - 4 * PR * RS * PT

4 	* PR * RS * QT - 4 * PR * RS * QS - A * ER * RS * QR
10 	* PR * RT**2 - 2 * PR * RT * PROP2 + 4 * PR * RT * PS +

4 * PR * RT* PT + 4* PR * RT * QT - 4 * PR *RT * QS

4 	 * PR * RT *OR RS**2 * RT - 4* RS * RT**2 - 6 *
RS 	* RT * OR - 6 * RT**3 + 6 * RT**2 * QR)

+ M*2 *

I - PROPI * PR * RS * RT + PROP! * PR * RT**2 ±t PROP! * P
* 	 RT * PROP2 + PROP! * RS**2 * RT + 2 * PROP! * RS * RT**2

2 * PROPI * RS * RT * PT + PROP! * RT**3 + 2 * PROPI * RT
2 	* PS + 6 * PR2 * RT * QT - 2 * PR**2 * RT * QS + 4 *
PR**2 * RT * OR - 4 * PR * RS * RT * PROP2 + 4 * PR * RS * RI
* PS + 8 * PR * RS * RT * PT + 4 * PR * RS * RT * QT + 2

* 	 PR * RS * RT * QS - 4 * PR * RS * RT * OR + 8 * PR * RS * PS
* QT + S * PR * RS * PS * OR - 4 * PR * RT**3 + 2 * PR *

RT**2 * PROP2- + 4 * PR * RT**2 * PT + 6 * PR * RT**2 * QT

4 * PR * RT**2 * QS + PR * RT * PROP2**2 - 2 * PR * RT * PRO
P2 *PS - 2 *PR *RT *PROP2* PT - 2 * PR * RT * PROP2 * QT

- 2 * PR * RT * PROP2 * QS - 8 * PR * RT * PS * 01 2 * P
R * RT * PS * OR - 2 * PR * RT * PT * OR + 2 * RS**2 * RT * QT

+ 4 * RS**2 * RT * OR - 4 * RS * RT**3 - 2 * RS * RT**2 *
PROP2 + 4 * RS * RT**2 * PS - 4 * RS * RT**2 * PT + 6 * R

* RT**2 * QT - 2 * RS * RT**2 * QS - 2 * RS * RT * PROP2 * P
T + RS * RT * PROP2 * OR + 4 * RS * RT * PS * PT + 2 * RS
* 	RT * PS *OR + 4 *RS * RT * PT**2 + 4 * RS * RT * PT *QT

+ 4 * RS * RT * PT * QS + 4 * RT**3 * PS 2 * RT**3 * QS
+ 4 * RT**3 * OR + 2 * RT**2 * PROP2 * PS - RT**2 * PROP2 *
OR - 4 * RT**2 * PS**2 - 4 * RT**2 * PS * PT - 4 * RT**2

* PS * QT 4 * RT**2 * PS * QS + 4* RT**2 * PS *QR + 2
" RT**2 * PT * QR)

- 2 * PROP! * RS * RT**2 * PS - 2 * PR**2 * RT * PROP2 * QT
+ 	 8 * PR * RS * RT**2 * QT + 2 * PR *RS * RT * PROP2 * QT
s * PR * RS * RT * PS * QT - 8 * PR * RS * RT * PS * OR - 4

*PR *RS* RT * PT * QT - 4 * PR * RT**2 * PS * QT + 4 * PR
" RT**2 * PS * QS + 4 * PR * RT * PROP2 * PS * QT + 2 *PR * R
T * PROP2 * PS *QR + 4 * RS**2 * RT *PT QT - 4* RS* RT**
2 * PS * QT - 8 * RS * RT * PS * PT * QT - 4 * RS * RT * PS *
PT 	* OR + 8 * ET**2 * PS**2 * QT) /

(- 4 * PROPI * PR * RS * RT**2 * PROP3)

(a.) Expression Initially Produced by Computer

Figure 2. Example of Reducing the Size of Output Expressions by Substitution

16

PQ = M**2 - PROP1/2,

PR = QR + RT - RS,

PS = QS + RT - PROP1/2,

PT = QS - PR + RT,

QS = M**2 - PROP3/2

QT = PS - QR -RT,

PROP2 = PROPI - 2*RT + 2*RS

(b.) Relations Between Variables

((4*VMc4 - CPROPI+PROP3)**2)*(- 2*M**2*QR - 4*QR*RT

+ 2*RT**2 - RT*(PROPI+PROP3)+(PR*PROPI+RS*PROP3)

+ 2*14*2*PR*RS'/RT')

+ 4*M**2*QR*(PR + RS)*(2*M*2 + RT + (PROP1+PROP3))

+ 2*M*2*PR*RS*(2*QR - 6*RT - 3*(PROPI+PROP3))

+ 2*(QR - RT)*((PR*PROPI+RS*PROPS)*(M**2 - (PROPI+PROP3))

+ 2*QR*RT*(PROPI+PROP3))

+ 2*(QR**2 + RT**2)*(2*QR*RT - (PR*PROPI+RS*PROP3)

+ RT*(PROPI+PROP3)) + 6*M*2*RT**2*(PROPI+PROP3))

/ (4*PROPI*PROP3*RT*PR*RS)

(c.) Final Result Produced by Man and Machine

Figure 2

17

a more relevant physical interpretation than others. The relations between the

variables are given in Figure 2b. It can be seen that only six of the 13 variables

are independent. About five man-hours in front of a CRT display modifying

expressions and checking within the computer that no errors were introduced

by the hand modifications resulted in the expression in Figure 2c. Considerable
reduction in the size of the expression was made by appropriate substitutions

for the variables appearing in the answer. The explicit skeletal structure of

this result could also be displayed by replacing the common subexpressions
PROP1+PROP3 and PR*PROP1+RS*PROP3 by simple variables.

The goal of simplification in this context is surely reduction of the size and/or
symmetrization of the expression. There is something of an art involved in

guessing the right substitutions, but it is obvious that the computer could be
programmed to do a lot of this automatically. Although the author's progress

in this area during the past year has not been outstanding, some success has
been achieved by successive substitution for each relevant variable wherever
it occurs in an expression, then checking to determine whether the substitution
was successful in decreasing the number of terms in the expression. Because

this method is painfully slow, a human and computer interactive combination

remain economically more attractive at the moment.

This type of problem is analogous, in many-ways, to theorem-proving on
a computer, and it is probable that similar heuristics will have to be developed
here before a successful solution can be found. There may be other algorithmic

methods which could be used also. Engeli, 8 for example, suggested dividing
the expression by any substitution equivalent to zero, thus keeping only the

remainder for further manipulation. However, the author has found that
this provides little reduction in expressions involving low powers of many

variables, such as the example in Figure 1.

The problem of substitution, then, is one of the key problems to be considered

in designing and using a simplification system for large expressions. Expressions

must be kept as compact as possible during a calculation, and the output must

be palatable and intelligible to the user if any major new discoveries are to result

from nonnumerical mathematical calculations on a computer.

18

REFERENCES

1o 	 A. C. Hearn, "REDUCE User's Manual," Institute of Theoretical Physics
Stanford ITP-292, Stanford Artificial Intelligence Memo No. 50 (revised),
Stanford University, Palo Alto, California, April 1968.

2. 	 A. C. Hearn, "REDUCE, A User-Oriented Interactive System for Algebraic
Simplification," Proceedings of the ACM Symposium on Interactive Systems
for Experimental Applied Mathematics, held in Washington, D. C., August
1967 (to be published).

3. 	 A. C. Hearn, "Computation of Algebraic Properties of Elementary Particle
Reactions Using a Digital Computer, "Communications of the Association
for Computing Machinery, Vol. 9, 1966, p. 573.

4. 	 J. McCarthy, et al., "LISP 1.5 Programmer's Manual," Computation Center
and Research Lab of Electronics, MIT Press, Cambridge, Massachusetts,
1965.

5. 	 G. E. Collins, "PM, A System for Polynomial Manipulation," Communications
of the Association for Computing Machinery, Vol. 9, No. 8, August 1966,
p. 578.

6. 	 R. G. Tobey, R. J. Bobrow, and S. N. Zilles, "Automatic Simplification in
FORMAC," AFIPS Conference Proceedings, Vol. 27, Part 1, Spartan Books,
Washington, D. C., December 1965, p. 37.

7. 	 R. G. Tobey, "Experience with FORMAC Algorithm Design," Communica

tions of the Association for Computing Machinery, Vol. 9, 1966, p. 589.

8. 	 M. Engeli, private communication.

9. 	 R. G. Tobey, et al., "PLA FORMAC Interpreter, Users Reference Manual,"
IBM ContributedProgram Library, 360 D 03.3004, Hawthorne, New York,
October 1967.

19

PRECEDING PAGE BLANK NOT rIMED

DESIGN AND DATA STRUCTURE:

FORMAC ORGANIZATION IN RETROSPECT

by

Peter Marks
IBM Boston Programming Center

Cambridge, Massachusetts

N71 -1918Z,

Abstract

The interaction between FORMAC data organization and
algorithm design is considered. Several organizational im
-provements are discussed.

The author is currently a lecturer in Computer Sciences at the University
of Notre Dame, Notre Dame, Indiana.

21

PRECEDING PAGE BLANK NOT FLM

DESIGN AND DATA STRUCTURE:

FORMAC ORGANIZATION IN RETROSPECT

by

Peter Marks

1. FORMAC STRUCTURE AND FUNCTION

FORMAC 1 , 2 effects calculations on explicitly defined analytic functions. The

user describes the functions by expressions, and lists representing these expres

sions are manipulated by a library of subroutines. For example, the function

-sin(a + b) + 3bez cOs(t)

is represented by the expression

SIN(A + B) +3 * B * #E** (Z - COS(T))

and finally by the list

SINI _

+ 3 B **

I
E7

COS-

I

T

23

The binary branching structure of the tree is subordinated to a sequence of

levels. Nonterminals are operators or functions linked downward to their

operand/argument lists.

The FORHVIAC lists are built from 64-bit nodes:

OP ACROSS

STAT DOWN

OP is an 8-bit field indicating the type of node (e.g., +, SIN, VARIABLE,

CONSTANT). ACROSS is a 24-bit pointer to the next node on the same level.

STAT is an 8-bit flag field containing temporary indicators for subroutine use

and bits announcing the presence of various patterns at lower levels in the tree

(e.g., of a product of sums). DOWN is another 24-bit pointer field. For opera

tors, it points to the operand list; for variables, to the symbol table entry; for

constants, to the value.

Some of the FORVIAC list transformations act in place. These are the
"implicit" simplification manipulations. For example,

SIN I SIN @1

available
space list

VAR A__VAR

24

On the other hand, the routines directly callable by the user (e.g., EVAL,-DERIV)

all create a new list.

The major complication in the data structuring is the provisibn for multiple

references to common subexpressions. Since a sublist appearing in two different

trees would require two different ACROSS fields in the top node, a new node, called

a CS, is inserted above the common subtree. For example, if the second summand

in

SIN COS SIN

I 15
A B C

is copied and assigned to Z, the effect is

SIN CS SIN z - CS

AC

COSI
B

Multiple reference introduces the possibility of side effects: a change to

one list may affect another list if the modification is made in a subtree common

to both. Another difficulty comes from the attempt to preserve a maximum of

common structure. This entails the insertion of CSs at the highest possible

25

level. Thus, for example, an algorithm for replacement which creates

Z = EVAL (Y,B,3) from

Yc-- SIN

B N

by successively building

sin sjn sin sin sin sin

I* I1 II

3 3 - N

is not satisf;ictory. because in the case

Y -0- sin

C-N

26

where no replacement is to be made, this algorithm produces

Z si nY .0 sin
I I-

I I
C __ N 	 C-N

rather than the desired

Y. 4 --Cs 	 Z *- CS

si nSIf

C-N

2. 	 CHOICE OF A LIST STRUCTURE

To get a more complete picture of how to utilize successive "degrees of

freedom" in the data organization, first consider the current structure. The

input expressions themselves, in character string form, have one advantage:

the expression

A * X** 2 + 2 * B * X * Y + C Y **2

requires 21 bytes, the tree

+

-Bx-Y C *1*

X-2 	 Y2

27

128 bytes. Actually, the string approach can be pushed quite far. For example,

if a Polish string is used with + and * as delimited variary operators, then the

character string

+ * A ** X 2 2 B X Y) *C ** X 2))

still requires fewer than 25 bytes, and is quite equivalent to a tree structure

for operations producing new strings such as replacement and differentiation.

It is the simplification operations, like cancellation of terms, which force

the change to a linked structure of uniform-sized elements; the storage allocation

problem for rapidly fluctuating variable-sized strings is unmanageable.

The transition from a singly- to a doubly-linked structure again halves the

packing density. But the second pointer allows multiple references to common

substructures, and this usually more than compensates for the extra link space.

Finally, and here is the beginning of later considerations, a choice must be

made between a binary tree organization and the list structure. On the surface,

the binary tree is a natural choice, since +, *, and ** are all binary operators.

But the list structure allows the distinction between

/+\ /\

+ C and -

A B B C

to be lost as

B -

A-B-C

28

The associativity of addition makes + into a variary operator. More noteworthy,

the associativity of addition can be explicitly encoded into the data structure.

3. EXPLOITING THE SORT

Like associativity, commutativity has an organization counterparL Since

conmnutativity is just the order-independence of summands or factors, it can be
accounted for by sorting the lists. In fact, if the associativity is reflected by the

transformation

- - available

" space list

A -C A C

then a merging of the two summand lists according to some predetermined

order will provide for commutatively equivalent sums:

available
+ .space list

+ D

AC L A-

But since the commutativity is accounted for by any ordering principle,

there is still freedom to try to determine the most useful one. An ordering

is a subroutine which receives two lists as arguments and returns a 11<," 1=,"

or 1>. The first thing to note is that more than one ordering is desirable (or,

29

equivalently, that the order should be context-dependent). Consider what is

appropriate if two summands compare "." If they are identical, then the

eventual transformation should be something like

4 +

II I

A -+ A -A-C => * -C

A -C 2 A

The merge can handle this directly once it has decided on equality of the

A's. Then it could equally well handle

+ +

3 -A C = 7 A

4-A.

30

by comparing only the t'aon-combinable"? parts of lists. However, what is

combinable depends pn the governing operator. Nothing can be done with

+

A **

A 2

while

A * A - 3

A 2

This criterion determines equality for the various orderings, but inequality

has still to be pinned down. The easiest decision is to arbitrarily order the

possible OP fields and stop on the first difference encountered in the scan. This

is the present FORMAC device. It makes FORMAC's sort the fastest, but it

provides the least data for the rest of the system to work with.

31

The first improvement over a first-difference sort is to-force polynomial

ordering on the lists. Thus, where an f- d sort might produce

+I POW ERS1PRODUCT

A RABLES.B ** ****

A-2 A- 3 B-2 3 1*
A 2

A-2 B-2

a polynomial ordering produces instead

+ A t m A term
I A

B-2 A -2 3-** ** A- 3

terms A-2 B-2

A2 terms

This ordering, doneonce, eliminates much repetition of effort in later applications

of polynomial manipulation like addition, multiplication, division, factoring, and

searching. In effect, not using a first-difference algorithm for sorting allows
"first-difference" algorithms for later polynomial manipulations.

Even with the polynomial ordering, there is still freedom left. As far as

polynomial structure is concerned, no more can be said about SIN(X), SIN(Y), and

COS(X) than that they are different monomials. Figuratively, the "horizontal"

32

ordering is fixed but the 'vertical" ordering is open. Again, f - d is a possibility;

but again, it is not the best choice. Consider, for example, the problem of replac

ing SIN2 (X) + Cos2(X)by 1 for all expressions X. An f - d ordering giving, say

+

I I I I I
2SIN- SIN-2 COS-2 COS-2 COS-2

CI I I I
C D A B D

SIN 2 terms COS 2 terms

requires the arguments of the two SIN2 occurences to be compared to all COS2

occurences; the "bottom-to-top" ordering

SI I I I

COS - 2 COS-2 SIN-2 SIN-2 COS-2

I I I I I
A B C D D

D argument terms

will always require, at most, one argument comparison for each SIN. (This is

related to a parsing strategy where a bottom-up scan precedes a top-down scan

so that the information the latter tentatively seeks is more readily available.)

4. ANOTHER PASS AT THE STRUCTURE

Once the preferred processing techniques are established, the data structure

can (at least in an essay) be "fine-tuned" to facilitate the processing. For example,

it was clear early (though not early enough) in the PL/I - FORMAC implementation

that "- "should not be a distinct operator, but rather a bit in each node. Then

33

the sort would not have to do any extra work to correctly place " - A": it
" " need not notice the - unless a possibility for combination arises.

The CS node is another example of undesirable obtrusiveness, since extra

work must be done to make believe it is not there. Here the improvement is

to make the multiple references to the operand lists rather than to the operator.

This way, individual operators can be used instead of CSs to carry the contextual

ACROSS pointers. Thus

SIN COS SIN COS
II I I

+ +
CS CS
A / B

A -B

However, this again requires a bit position in each node, since common lists

must be recognizable to control side effects.

Gradually, of course, changes become less clear-cut. Bringing exponent

values into the corresponding nodes is desirable in the same way as bringing

the sign in. But here space considerations become more delicate because more

than one bit is involved in each node. In fact, since allowing for symbolic

exponents requires room for a pointer, node size will be increased by 50 percent.

The saving achieved when a " * " does appear can be canceled by the extra

space used in nodes not raised to a power; in fact, at least three times as

many nodes. must have exponents as not to save space. Though this ratio is not

unusual in practice, it is not achieved for, say, univariate polynomials.

The case for the triple pointer node is even more convincing because the

exponent of a product can be distributed over the factors at no additional cost
" in space, and then the exponent field in a * " can be used for a numeric coeffi

cient. Because of these advantages" the newer form is always superior - for

polynomial calculations at least. However, ingenuity is beginning to replace

naturalness.

34

5. 	 A PLACE FOR SYSTEMS MICROPROGRAMAING

The single point which most aggravates the FORMAC space problem on

System/360 is the enormous pointer size. Although it provides great flexibility

to monitor designers, it is very wasteful to user-level systems running in a

partition or on a moderate-sized machine. Consider that 216 of the FORMAC

8-byte nodes requires 512K so, in almost all cases, eight bits of the 24-bit

pointer fields are really unused.

This is an ideal application for microprogramming since a 16-bit relative

pointer would have to be shifted and relocated against a base register for every

nodal reference.

More generally, microprogram accelerators for systems have usually

failed because the functions put in control storage do not use a significant

portion of total system time. There is, of course, good reason for this: any

bookkeeping operation which used up a lot of time would indicate poor system

design. In particular, serious packing is often avoided. The unpacking is just

not there to be speeded up. Thus, using microprogramming to pack an already

fast data processing organization may well be a more fruitful approach than

acceleration.

6. 	 SUMMARY

In a programming system like FORNVAC, with a heavy "computational" use

of list structures, the question of data organization is a paramount one. The

accessibility of pertinent data at a given time is a critical parameter of efficiency;

but the comnmitment to lists introduces the possibility of great flexibility in the

design of data representations. In this paper the ways in which tailoring the

flexibility to the problem at hand may facilitate a more efficient solution were

discussed.

35

REFERENCES

1. 	 R. G. Tobey, et al., "PLA FORMAC Interpreter, User's Reference Manual,"
IBM Contribute-Program Library, 360D 03.3.004, Hawthorne, New York,
October 1967.

2. 	 J. Baker, P. Marks, and R. Tobey, PL/A FORMAC Course Notes," IBM
Federal Systems Division, February 1968.

36

FORMAC AND APPLICATIONS

37

pRECEDING PAGE BLANK 40T_.FILM]D

CALCULATION OF TABLES OF INVERSES AND

DETERMINANTS OF FINITE SEGMENTS OF THE

HILBERT MATRIX

by

Elizabeth Cuthill
Applied Mathematics Laboratory

Naval Ship Research and Development Center
Carderock, Maryland

N71 -19188

Abstract

In this paper, tables of inverses and determinants of finite
segments of the Hilbert matrices from order 2 to order 37 are
calculated using variable precision rational arithmetic. The
evaluation of the determinants is carried out to order 62.

39

pRECEDING PAGE BLANK NOT FILMED

CALCULATION OF TABLES OF INVERSES AND DETERMINANTS

OF FINITE SEGMENTS OF THE HILBERT MATRIX

by

E. Cuthill

1. INTRODUCTION

Tables of determinants and inverses of the matrix Hn with (i, j)th element

1

i+j- i,j=1,2,,.. .,n (1)

were calculated for n = 2 to 37 inclusive.* These matrices, which augment

those given in references I and.2, arise in least squares fitting of polynomials.

They are useful in estimating the mean value function of certain stochastic

processes and they are frequently used in testing computer subroutines for in

version of matrices.

2. INVERSION OF Hn

The method of computation we used to obtain the inverse of Hn is based on

that given by A. R. Collar, 3 who showed that the (i, j)th element of the inverse

of Hn is given by

Fn(i) Fn(j)
H = n- (2)HIn i+j+1

where

(-i)k (n+k-l):

Fn(k)- [(k-1)1]2 (n-k) (3)

*Tables to order 37 have been deposited in the Unpublished Mathematical Tables
Repository of Mathematics of Computation (formerly MTAC). Tables for n = 2
to 20 inclusive are published in reference 7.

41

To calculate the functions Fn(k) we used the recurrence relations:

Fn(k) =n+k- F -(k) for k = 1,2, .. ,n - i -(4)
n n-k ni

and

-(2n-1)F n(n-I)

Fn) - (n-1)2 (5)

When these relations are used, Fn.(k) for k = 1,2, ... ,n-1 must be

available. This requirement applies if we start with n1-and

F1 (1) = -1 (6)

and then calculate inverses for successive values of'n. However, to start with

n = N, we used the recurrence relation

2
FN(k+) [N- k FN(k) for k = ,2,...,N-1 (7)

with

FN(1) = -N. (8)

A quick derivation of the inverse of Hn is given in reference 1. There Cramer's

rule is used to write the (i, j)th element of the inverse in the form

Hi1 (-I)1+) An i j
- (9)

nAn

42

where A1 is the minor of the (i, j)th element of Hn and' An is the determinant

of Hn . Then the following theorem due to A. Cauchy (see references 4 and 5) is

applied directly to the evaluation of the determinants A'J and An

Given 2n numbers a,, a2 ,...,an, b1 ,b2 , ... ,b n such that ai-bjj 0 for

i, j =1,2, ... ,n, the determinant of the matrix with (i, j)th element

1

i,j =1,2,...,n
a. +b.

1 3

is given by

1.2, ...FT ,n (aj - a,) (b -bk)

j > k (10)

1,2, ...TT ,n
(a.j +bk)

j, k

3. THE DETERMINANT OF H

The determinant of Hu is given by (10) on substituting

ar forr=l,2, ... ,n (11)

b = r-1

which yields directly

- (2n-1)det(H) = (1t 2' . . . (n-l)1)) 2

n f it (1-)

(i:2 ..(n-1).)4 (12)
1'.2: .. (2n-l)'

43

To calculate det (Hn) we use, the form of (2), noting that in matrix notation

H-1 = FHF

it h where F is the diagonal matrix whose diagonal element is Fn(i).
In view of this

(det(Hn))-I = (det(Fn))2 (det(Hn))

from which
n

det(Hn) = jdet(Fn)I = I jFn(i) I. (13)
i=1

4. CALCULATIONS

The determinants and inverses of Hn to order 20 are displayed in Appendix A
= HJ1of reference 7. Since Hn is symmetric, i.e., 11! , elements of the inversen n

were tabulated only for j = 1,2, ... ,i for each i, i = 1,2, ... ,n. The calculations

were performed using PL/I-FORMAC 6 on a System/360 Model 50. Major use was

made of the PL/I-FORMAC facility for variable precision rational arithmetic. The

computer program which was used is displayed in Appendix B of reference 7. The

program is set up to calculate determinants and inverses of Hn for n ranging

from a specifiedlowerlimit ML to a specified upper limit MU. Equations (7) and

(8) are used to calculate FML' and then equations (4) and (5) are used to calculate

Fn for the successive values of n. In all cases, Equation (2) is then used to

calculate the elements of the inverse; Equation (13) to calculate the determinant.

The calculations were performed in the five following computer runs:

(Approximate)

RUN ML MU RUNNING TIME

1 2 21* 10 min.

2 21 28* 9 min.

3 28 30 5 min.

4 30 37* 15 min.

5 37 38* 5 min.

44

Calculations for the starred values of n were incomplete. However, except
for n = 38, calculations for those values of n were obtained in another run. Note

that check calculations were made at n = 21, 28, 30, and 37 in that elements of

the inverses for these values of n were calculated two ways: using equations (7),
(8), and (2); and using equations (5), (6), and (2).

Values of the determinants of Hn were also calculated independently

for n =2 to 62, using Equation (12) directly. In reference 7, Appendix C gives

the results of these calculations and Appendix D contains the program used for

the calculations. For n = 2 to 37, these calculations were then checked against

the determinant values tabulated in Appendix A of reference 7. These determinant

values were calculated using Equation (13), and they were based on the Fn values
used in calculating the elements of the inverses. No discrepancies between the
calculations were found.

5. SUMMARY

The calculation of inverses and determinants of finite segments of Hilbert
matrices using PL/I-FORWAC variable precision rational arithmetic proved to

be a straightforward operation.

45

PRECEDING PAGE BLANK NOT FILMjED

Appendix

FORMAC PROGRAM AND SAMPLE OUTPUT

47

pRECEDING PAGE BLANK NOT FIL1MU

FORMAC PROGRAM AND SAMPLE OUTPUT

For reference, the determinant and inverse of the matrix H20 are displayed

in this appendix, along with the FORMAC Program which generated them.

In the FORMAC.program, the ML and MU parameters are set to the

starting value and final value of n. The program uses

a. 	 Equations (7), (8), and (2) to calculate the inverse of Hn for n = ML, then

b. 	 Equations (4), (5), and (2) to calculate the inverses of Hn recursively
for n = ML + 1, ML +2, ... , MU and, as a check,

c. 	 Equations (7), (8), and (2) to recalculate Hn for n = MU.

49

--

- --------------- -------------------------------- -------------------------------------

--------------------------- - ------------ -------------------------------------

INVERSE OF SEGMENT OF HILBERT MATRIX OF ORDER 20 NOT REPRODUCIBLE
S(1,1) = 400

S(,) = - 79800 S(3,8) = - 70700557753425600 S(6,11) = - 4?867270191798021970000

S(2,2) = 21226800 S(4,8 = 2792314957736304000 S(7,11) = 407939512413450457443000

S(1,3) = 5266800 S(5,B) = - 61430929070198689000 S(8,11) = - 275983568091956781064n000

S(2,3) = - 1576089900 S(6,81 = B50582094818135680000 S(9,11) = 13726551149836798192920000

S(3,3) = 124826320080 S(7,8) = - 798602077o125829440000 S(10,11) = - 5139594229577829?499326000

S(1,4) = - 171609900 S18,R) = 53392?53209017688256000 Sfi1.11) = 146731263702223692852360000

S12,4) = 54777880080
 S(1,9) = 10440746316000 S(,12) = - 21332343C411900

%13,4) = - 4519175106600 5(2,91 = - 3749272002075600 S(2,12) = 78568660369836000

S(4,4) = 168285473017200 S(3,9) = 337434480186804000 S13,12) = - 7222704706855638000

S)1,5) =3294910080 S(499) = - 1343801573410596300n S(4,12) = 292867300483909351200

S(2,5) = - 109555760160 S(5,9) = 297703733196347488000 S(5,12) = - 6589514260887960412000

S(3,51 = 97965gA79C7200 S(6,9) = - 414658771221841144W0OC S(6,12) = 93029436624300617440100

S(4,5) = - 3533994933361200 S(7,9) = 39131501817716564296000 S(7,12) = - q88364144801191699640003

en S(5,5) = 75391891911705600 S(9,9) = - 262789996263109325010000 5(8,12 = 6028662370412383621920000
CD------------------------------- ----------------------------------

S(1,6) = - 41186376000 S(9,P) = 1298491746241246076520000 S19,12) = - 3006795357)431763314326000

S(2,6) = 14085740592000 S(1,10) = - 37006645275600 S(10,12) = 11277692168848q97880A3880090

S11,6) = - 12?0177278782000 S(2,101 = 13423319513604000 S111,12) = - 322952093926118939302020000

S(4,6) = 47119932444816000 5(3,10) = 1218166245859563000 5(12,12) = 712281693323218846365720000

S(5,6) = - 1017790540808025600 S(4,10) = 4885158962162988000 S(1,13) = 350069219136100

5(6,6) = 138789619?0109440000 S5,10) = - t08869?576299632304000 S2,13) = - 129700649689888000

S(1,7) = 356948592000 S(6,10) = 15P41696068194852256000 S(3,13k,
=

11984339661745651200

S(2,7) = - 1?46196771820n0 S(7,11) = - 144478577313097037010000 5(4,13) - 498112167473182252000

S(3,7) = 10966531992016000 S(8,10) = 97405q652089259255570000 S(5,13) = 11025592488805999104000

5(4,7) = - 428791385247825600 S(,10) = - 4829712441609243818620030 5(6,13) = - 156195893591418320640000

S(5,7) = 935544840540710400n S(10,10) = 18019628875711681571360000 5(7,13) = 14961922418756912819?0000

5(6,7) = - 128637415574347680000 S(1,11) = 10092721418800C S(A,13) = - 10181740892252025172976100
.....................-----------
S(7.7) = 1200615879693911680001
 S(2,11) = - 36914128662411000 5(9,13) = 50908704461260128362880000

S(1,8) = - 2237302782000
 S(3,11) = 3373383450072636000 S(10,13) = - 191379018622885297364160000

S(2,8) = 793496720016000 S(4,11) - 136086572037454039000 5(11,13) = 549174575178714331566720000

S(5,11) = 3048339213638970451200 S(12,13) = - 1213516958995113590104560000

5(13,13) = 20710680433516609?71I'782400 S(1,16) = - 114725692204000 S(15,17) = 147893698949239495973-520000

S11,14) = - 444318624288000 S(2,16) = 118188754060608000 S(16,17) = - 1114337939999478146748180000

S(2,14) = 165444255684851200 S(3,16) = - 11050648504666848000 S(17,17) = 607820694545169898226280000

S(3,14) = - 15397151230750252000 S(4,16) = 45482L427928qL9744000 S(1,181 = - 60440401098000

S(4,14) = 627936850324010304000 S(5,16) - - 103699?8556770370163200 S(2,18) = 22846471615044000

5(5,14) = - 1423323527401090022400C S(6,16) = 1481418365294Lg573760000 5(3,18) = - 21487106553948882n0

S(6,141 = 2022617644201548979?000n S(7,16) = - 1429793179798367704320020 S(4,18) = 83904324471894316000

S(7,14) = - 194Z83661490248780576000 S(8,16) = 97q668405020L37895?0000 S(5,18) = - 2036717251537942512000

S(8,14) = 1 254337256196068922980000 5(9,16) = - 492A95666714419438O6q6000n S(6,18) = 29222464913170479920000

S(9,14) = - 664'2303749750640q52160900 S(10,161 = 186351072808177541622758400 S17,18) = - 28316OZ73442Q83396460000

S(10,14) = 250Z15634844739665861760000 S(11,L61 = - 517551171562050600834880000 S(8,18) = 1947218076313218066758400

S(11,14) = - 71936995017862653932560000 S(12,161 = 1194570920879821097170560000 S(9,18) = - 9829706635234995048540000

S(12,1.) = 15923W4 2,35606R86 9578 4 0O 5(t3,161 = - 2046121578649411'237?0960000 5(13,18) = 37278 27472C144512543480000
6

S(13,14) = - 27219l979?4114"366q565440000 S(14,16} = 2700329396]R5347990497280000 S(11,18) = - 1078407233235966?557?210000

5(14,14) = 3582789q931740230418520000 S(15,16) = - 2716962025141584314928896000 5(12,18) ='240083137818163818458281000

S(.15) = 431673606431200 S(16,16) = ?044P49911396891796183n4000O S(13,18) = - 4125873183245481917?0896000

S(2.151 . - 161454280100 5200' Sf1,17) = 166619404108000 SI14,18) - 5457587547?2107075515520000

5(.15) = 15043719981143104000 S(2,17) = - 627q7775594698000 S(15,181 = - 550283540316104136728340000

S14,15) = - 617?57692189248?240O0 S(3,17) = 589RI32426129044000 S(16,18) = 415028663403391672145290000

5(5.13) = 403499776092310672-110 S(4,17) = - 24304520n549516438200 S(17,19) - 2265973401301605268P$140000

5(6,15) = - 1999q147q3093164'4976,00 S(5,17) = 555531886q7PIZ34n16030 S(18,18) = 8454183110738762515926400

n
Sf7,1,) = 1V?584387AR80454458iq000 5(6,7) = - 7q94?065614387143000 S(1.19) = 13431200244000

S(3.15) = - 1316827131145qgq944160003 S(7,17) = 769?')0995452382623920000 S(2,19) = - 50Q1096452488200

Sf1,151 = 661276173q7710930821760000 S(8.17) = - 5281025000511636836460000 S(3,19) = 480017665520316000

(10,15) = - 24Q577329653AO9297530480OnO S(q,17) = ?661636600?578649655758400 S(4,191 = - 1M906187129228862000

S(11,5 = 719792709402970517697782400 5(10,171 = - 1,0700844667884417656540000 S(5,19) = 456976817575340832000

Sl12,19) = - 1593613921832714355013440000 5(11,17) = 291173551262777408785560000 S(6,19) = - 6569041752645524460000

S113,15) = 2728162104865881364961290000 5(12,17} = - 647405655744540206724210000 S17.19) = 63763498612345890758400

5114,15) = - 3595e46797981509313876480000 S(13,17) = 111125568495614964?193280000 5(8,19) = - 439187362891157921040000

5(15,15) = 3613560329006048768624640000 5(14,171 = - 1468304101q75782969832896000 S(9,19) = 2220336112394187267410000

-- ----------------------------------- -----------------------------

-- -- ----- ---- --- -- ---- -- ----- ---- --- - --

- -----------------------------------

---------------------------- ---- - -- --------------------------------------

-- ----- --------------------------- ------------------------------------

---------------------------------- - - -- --- --

S10,191 = - 84319907L2544592122930)00 S(1,2) = - 1378465288200 S(11,201 = - 2550618797257256121396000

S(1l9) = ?4423697236336059942280000 5(2.20) = 5238L6809516000 S(12,20) =569463431896356634520000

5(12,lq) - 54438604501155664185396000 S(3,20) = - 49500688499262000 S(13,20) = - 9801964799377058648340000

S(13,19) = 91657814195536626555520000 S14,20) = 205702861096q332000 5(14,20) = 12991953343553024480640000
---- --- --- ---- --- ---- -.. . . .

$n = - 124016939248194856280340000 F5(,201 = - 47311658052294636000 S(15,20) = - 13124524296038259424320000S(14,19)

....--------------------------------

S(15,19) = 125167374677213361440640000 56,20) = 681287875953042758400 S(16,701 = 99,16307245895573787264000

S(16,19) 94489096570053223832640000 S(7,20) - 6623632127321249040000 5(17.20) = - 5422980525099141914910000
I(7q S(7,0 542294805250991415944910000

1314254501592600
5(7,9)= (8,20) * 45689544061930248480000 S(18,20) = 2026580957476495940520000

S(18, 19) =- 1927994433690424362910000 S(9,20) = - 231303316813521882930000 S(19,20) = - 46286108?880434298020000

5(19,19) = 4400f27536150517776q2COOO S(10,20) = 879523723192157283240000 5(20,20) = 48722219250572027160000

DETERMINANT OF SEGMFNT OF HILRERT MATRIX OF ORDER 20

H = 1/23774471676853450909164424342761644o175419837753464913318

5 33 12344197593106445851R7585766816973773440565759

I---

L--

REFERENCES

1. 	 R. Savage and E. Lukacs, "Tables of Inverses of Finite Segments of the
Hilbert Matrix," NBS Applied Mathematics Series, No. 39, Contributions
to the Solution of Systems of Linear Equations and the Determination of
Eigenvalues, 1954, pp. 107-108.

2. 	 R.B. Smith, "Table of Inverses of Two Ill-Conditioned Matrices," Re
viewed in Mathematical Tables and Other Aids to Computation, 11, 1957,
p. 216 	(deposited in the UMT file of MTAC).

3. 	 A.R. Collar, "On the Reciprocation of Certain Matrices, Royal Society
Edinburgh, Proceedings, Vol. 59, 1939, pp. 195-206.

4. 	 A. Cauchy, Oeuvres Completes, 2 e series XII, p. 177.

5. 	 G. Polya and G. Szego, Aufgaben and Lehrsatze aus der Analysis 2,
J. Springer, Berlin, 1954, p. 98.

6. 	 R. Tobey, et. al., ,'PL/I-FORMAC Interpreter, Users Reference Manual,"
IBM Contributed Program Library, 360D 03.3.004, Hawthorne, N. Y.,
October 1967.

7. 	 E. Cuthill, "Tables of Inverses and Determinants of Finite Segments of the
Hilbert Matrix to Order 20," Naval Ship Research and Development
Center, Applied Mathematics Laboratory Technical Note, AML-52-68,
Washington, D.C., December 1968.

53

PRECEDING PAGE BLANK NOT FILMED

THE SCOPE FORMAC LANGUAGE

by

Robert G. Tobey

IBM Boston Programming Center
Cambridge, Massachusetts

and

John D. Lipson
Graduate School of Arts and Sciences

Harvard University
Cambridge, Massachusetts

N71 -19189

Abstract

The Scope FORIVIAC System is an experimental online
interactive symbolic prototype implemented on the IBM 2250
graphic display unit. The language for this system is des
cribed in this paper. The language gives the user access to
the FORMAC capability in an interactive environment. Sample
programs and output are presented.

This paper reports research sponsored by NASA under contract number
NAS 12-87. The senior author, Robert G. Tobey, is currently with the Applied
Mathematics Division of Argonne National Laboratory, Argonne, Illinois.

55

PRECEDING PAGE BLANK NOT FILMED

THE SCOPE FORMAC LANGUAGE

by

R. G. Tobey and J. D. Lipson

1. INTRODUCTION

The Scope FORMAC experimental system is an online interactive prototype

implemented on the IBM 2250 graphic display unit. With this prototype one can

perform symbolic mathematical computations in an interactive, time-sliced

environment. One can use the system as b symbolic desk calculator, executing

only a few statements at a time, or one can compose, debug, and execute com

plicated algorithms (which may or may not interact with the user). The scope

FORMAC prototype lends itself to both short, one-shot calculations and the

user's definition of a personalized interactive calculator with functions tailored

to the class of problems he wishes to solve.

Scope FORMAC runs in a standard OS/360 environment, either in a partition

under MFT or as a task under MVT. The system can only qualify as a prototype;

this is indicated by the fact that the FORMAC object-time routines which perform

the symbolic calculation have been carried over intact from the PL/I-FORMAC

batch system. 1 In a production system, the design of these routines would need

to be significantly modified to accommodate interrupt and control functions

necessary to an interactive environment.

This paper presents a concise description of the Scope FORMAC Language.

A more detailed description of the Scope FORMAC system with applications is

being prepared for publication under NASA contract NAS 12-87.

2. LANGUAGE OVERVIEW

The Scope FORMAC language is a simple language, with strong similarities

57

to PL/I. It was designed to provide easy access to the FORMAC symbolic capa

bility in an online, interactive environment. Prior to presenting the language,

some general remarks are in order.

The OS/360 batch FORMAC system contains two kinds of variables-PL/I

and FORMAC-and facilities for conversion from one kind to the other. Scope

FORMAC contains only one kind of variable, namely, FORMAC; consequently

the rules for naming variables and forming expressions are those of FORMAC,

as described in the "PL/I-FORMAC Interpreter User's Reference Manual. ", 2

Like PL/I, any Scope FORMAC statement may be prefixed by a label for

reference. The rules for naming labels are the same as those for naming

FORMAC variables, and the name of a variable or label may coincide with

neither the name of any other variable or label nor with the names of the Scope

FORMAC keywords (DO, END, FOR, GET, IF, PUT, SET, TO).

Scope programs may be written in a relatively free form, i. e., statements

are separated by at least one blank (the use of a semicolon as a statement delim

iter is optional), and more than one statement may appear on a single line.

Comments consisting of arbitrary character strings enclosed by quotes (") may

be used freely in the program for documentation purposes; they are ignored at

execution-time (except when they appear as an argument of the output statement

PUT, as described below). Character strings may appear without enclosing

quotes, provided that they do not fall within the range of executable statements

of a program.

3. LANGUAGE STATEMENTS

The statements of the language are:

1. Assignment Statement
2. GET and PUT statements
3. TO statement
4. DO statement
5. IF statement
6. FOR statement
7. SET statement

58

In describing the format of the above statements, we use "var" to stand for an
arbitrary FORMAC variable, "expr" to denote an arbitrary FORMAC expression,
and "stat" to stand for an arbitrary Scope FORMAC statement.

1. 	 The Assignment Statement

Format: var = expr

Result: The value of expr is assigned to var.

Examples: 1. Y = DERIV(F,X, 2)-SIN(THETA)+7.6
R = 3/7

Note that any FORMAC assignment statement (i. e., any statement that could
appear within the scope of a "LET" in batch FORMAC) is permissible.

2. The 	GET and PUT Statements

(i) GET

Format: GET varl,var2,...

Result: For each variable in the list, a request

for input is made and accepted when given.

Upon encountering a statement of the form GET varl, var2, the system causes
the message

**** ***** ** *****

PLEASE SPECIFY

*varl *

to appear on the scope face. The user may then type in any executable state
ments. 	 In this case, he would presumably want to assign a value to varl. To
do this, 	he must type in

var! = 	expr

where expr is the desired expression varl is to be. Typing in expr alone is
an error.

(ii) PUT

Format: PUT varl, var 2 ,o.. ,varn

59

Result:

Example:

3. 	 The TO Statement:

Format:

Result:

Example:

4. The 	DO Statement:

Format:

Result:

Example:

The values of varl,..., varn are displayed in order.
Also, comments which may appear in the output list
are displayed.

PUT "SOLUTION FOR A AND B",A, B results in the
scope display.

SOLUTION FOR A AND B

A = (value of A)

B = (value of B)

TO label

Control is transferred to the indicated labeled
statement.

TO L

L = 	 cos(X)

DO stat1 	 stat2 ... statn END

The statements statl,..., statn are executed.
Syntactically, "DO ... END" is considered as
a single statement and may appear wherever
CLINK expects a statement (see 5 and 6 below).

DO A = 	 B*C PUT A TO L END

Another important use of the DO is to invoke remote (out-of-line) code.

Format:

Result:

DO name

Control 	is transferred to the statement labeled "name."
Execution proceeds until -the-END corresponding to the
DO of "DO name" (see note below) is encountered,
causing transfer of control to the statement following
"DO name." Thus, "DO name" acts as though the
statement labeled "name" immediately follows the DO.

60

This use of the DO roughly corresponds to the proce
dure capability of PL/I, and the END serves as a
return statement.,

Note: To match up-DO-END pairs, think of DO and END as (statement)

parentheses with the DO acting as a left parenthesis and the END acting as a

right parenthesis. Then DO-END pairs are determined in the same manner as

matching parentheses in expressions, as illustrated below:

DO

DO.. .END

END

END -

It is permissible to transfer out of a DO-END, but it is not permissible to

transfer into a DO-END without executing the DO itself.

Example: DO SOLVE

SOLVE: A= B

DO:..END

END

Note that the END corresponding to the DO of DO SOLVE is the last END.

It is also permissible to have more than one name following a DO

DO namej, name 2 ,...,namen

and this is equivalent to

DO name1 DO naame 2 ... DO namen.

61

5. The IF 	Statement:

Format: 	 IF exprl relation expr 2 stat where the relation is any of <,
< =, =, >, >= or-i (not) followed by any one of<, =, >.
The right-hand expression, expr 2 , must be a variable or,
if it is an algebraic expression, it must be enclosed in
parentheses. Otherwise the condition will not be evaluated
correctly.

Result: 	 If'the condition "expr 1 relation expr 2 " holds, then stat is
executed; otherwise, stat is skipped. When expri or expr 2
evaluates to nonnumeric expressions, then it is considered
equal if and only if it is identical (see the IDENT function on
page 33 of the "FORMAC Reference Manual"). For com
pleteness, the following table gives the result of "expri
relative expr2" when expri or expr 2 evaluates to nonnumeric
expressions.

expri and,expr 2 exprl and expr 2
relation identical not identical

>= 	 yes no

no 	 yes

> no 	 no

<, i1> yes 	 yes

Note: Any 	number of conditions (i. e., expr 1 relation expr 2 triplets

separated by commas) may follow the IF, in which case the statement stat is

executed if 	and only if all the conditions hold.

Examples: 1. IF X> 0 A = SQRT(X)

2. 	 IF 0<X, X<=10, R=SIN(A)
DO 	Y = A+2/3

ARG=X DO PROC

END

6. 	 The FOR Statement:

Format: 	 1. FOR var = expr stat

2. 	 FOR var = expr 1 (expr 2) expr 3 stat where
parentheses may not appear in exprl or expr 2.

Result: 1. The statement stat is executed with var = expr.

62

2. 	 The statement stat is executed for each value of
var, with exprl the initial value, expr 2 the
increment value, and expr 3 the final value. It
is equivalent to the following configuration:

var=expr1

L : stat

var--var+expr2

IF var < = expr 3 TO L

Examples: 1. FOR ARG=DERIV(F, X) DO PROC

2. 	 FOR 1=1 (1) 100

DO A(I)=SQRT(X<I)) PUT X(I) END

Note: More than one variable may be set following the FOR by having

more than one list of the forms 1 and 2 above. For example,

FOR 1=1(1)3, J=1(2)N,X=ALPHA

is equivalent to the nested FORs below.

FOR 1=1(1)3

FOR J=1(2)N

FOR X=ALPHA

7. 	 The SET Statement:

Format: 	 SET optionl, option2,..., optionn
where option,..., optionn may be any of the
FORMAC options described on pages 39 to 41 of
the "FORMAC Reference Manual." In addition,
the option STOP stops execution. The options
TRANS, INT, EXPAND, EDIT, PROPER, and
PRINT may be abbreviated T, I, E, D, R, and
P, and prefixed by anN for NOTRANS, NOINT, etc.

Result: 	 Equivalent to the OPSET statement of batch
FORMAC, as described on pages 39 to 41 of the
"FORMAC Reference Manual. " In particular, the
default options are as described there.

63

4. SAMPLE PROGRAMS

Examples from the '"FORMAC Reference Manual"

For comparative purposes, the two sample programs presented on pages
12 to 15 of the "FORMAC Reference Manual" are rewritten below, in the scope

FORMAC language.

First Program.

"LEGENDRE POLYNOMIAL PROGRAM"

SET E

"GENERATE LEGENDRE POLYNOMIALS BY METHOD 1"

FOR N=0(1)10

P(N)=DERIV((X**2-1)**N, X, N)/(2**N*FAC(N))

"GENERATE LEGENDRE POLYNOMIALS BY METHOD 2"

q(o)=l Q(2)=X

FOR N=2(1)10

Q(N) = (2*N-1)/N*X p(N-1)-(N-I)/N*Q(N-2)

"CHECK THAT P(N) =Q(N) AND PRINT OUT RESULTS"

PUT "LEGENDRE POLYNOMIALS"

FOR N=0(1)10 DO

IF P(N)=Q(N) DO PUT P(N) TO F END PUT "ERROR"

F:END

64

Second Program.

"INDUCTION PROGRAM"

SET E

SUMSQ=N*(N+I)*(2*N+I)/6

"BASIS"

S=EVAL(SUMSQ, N, 1)

IF S7=1 DO PUT "NOT TRUE" SET STOP END.

"INDUCTION STEP"

S=EVAL(SUMSQ, N, N+1)

IF S= (SUMSQ+(N+l)**2)

DO PUT "PROOF BY INDUCTION SUCCESSFUL" TO F END

PUT "NOT TRUE"

F:SET STOP

The output produced by these programs is identical to that shown on pages 14 and
15 of the "FORMAC Reference Manual."

Taylor Series Solution

The final example is indicative of the power and utility of an interactive
system for symbolic mathematics in solving problems of an interesting and

substantial nature. Specifically, this example illustrates the use of the FORMAC
Scope System in computing the Taylor series solution to an arbitrary first

order ordinary differential equation.

Given the first order ordinary differential equation

y' = f(x,y) (1)

65

with specified initial conditions (xo,yo), we wish to compute the pth order

Taylor series approximation to the solution y(x) of Equation 1. Thus, we

have
y(x) PT(x;X,,Yo, P)

yo +y (x-x)+y"(x-x)+"... +yo(x-Xo) p

Y+ (-o 0 0 0)1! 2! p.

= yo4(Xo,Yo) (x-x o) +f'(x Ye) (X-Xo)2 +. + f(P-1)(X, Yo)(XXo) P

1! 2! p! (2)

where the (total) derivatives of f with respect to x in (2) are given

recursively by

f(0) = f (3a)

f(m) = fx (m-i) +fy (m-l)f (m = 1,2,... ,p-l). (3b)

Concerning the utility of the Taylor series method in solving the ODE,
2

the comments of M. V. Wilkes on page 55 of his book "Numerical Analysis ,

are appropriate. He states: "The (Taylor Series) method has the very great

advantage, compared with finite difference methods, that derivates are not

plagued by rounding errors in the way that differences are, and later he

states: "Application of the Taylor series method is at present limited by the

necessity for the programmer himself to derive the formulae ((3) above) for

the derivatives. Advances in programming languages for symbol manip

ulation should enable this load to be taken from the programmer and put

on the machine."

TAYLOR (see following listing) requests as input F, the right-hand side

of (1), the initial conditions XQ, and YO and P the order of approximation.

TAYLOR then computes analytically the derivatives of (3b) and finally computes

the Taylor series solution T according to (2)-.

The user may then use T in order to advance the solution. For example,

in order to compute and print out values of T = T (X) for X =0(. 1) 1, the user

may type
FOR XVAL = 0(.1) 1

DO TVAL = EVAL(T, X, XVAL) PRINT TVAL END

66

At any point, the user may decide because of convergence considerations to

determine the Taylor series solution about a new point, say x . He need only

invoke TAYLOR, specifying the new initial conditions (x0 , T(x0 '))in order to

obtain the new expansion. Thus, the analytic continuation of the solution

function may be carried out under online interactive control by the user, who

can change any or all of the parameters and the routine itself during the course

of a "seance" with TAYLOR.

The 	Scope FORMAC routine TAYLOR follows (note its brevity).

TAYLOR: GET F, XO, YO, P PUT F, XO, YO, P

F(O)=F SET E

"COMPUTE REQUIRED DERIVATIVES OF F11

FOR 	I=1(1)(P-1)

DO F(I)DERIV(F(I-l), X)+DERIV(F(I-I), Y)*F

PUT F(I) END

"COMPUTE TAYLOR SERIES SOLUTION TO GIVEN ODE"

T=YO

FOR I=1(1)P

T=T+EVAL(F(I-l), X, XO, Y, YO)*(X-XO)**I/FAC(T)

PUT T

END

When one types DO TAYLOR, the response is a request for F, XO, YO, P.

If one then types

F = X**2 +Y**2

XO = 0

YO = 0

P 	 = 7

67

TAYLOR outputs the analytic expressions for f(m) (m =1,2,..., 6),

followed by
3 '7T = 1/3X x1/63X

Compare this example with page 99 of the "PL/I-FORMAC User's Reference

Manual.

REFERENCES

I. 	 R.G. Tobey, et.al., "PL/I-FORMAC Interpreter, User's Reference
Manual," IBM Program Information Department, 360D 03.3.004,
Hawthorne, New York, October 1967.

2. 	 M.V. Wilkes, A Short Introduction to Numerical Analysis, Cambridge
University Press, 1966.

This paper is dedicated to the late Clinton J. Carter, who played a key
role in both the design and implementation of the Scope FORMAC Language.

68

AN ATTEMPT TO SOLVE DIFFERENTIAL
EQUATIONS SYMBOLICALLY

by

Stanley B. Gershwin
Graduate School of Arts and Sciences

Harvard University
Cambridge, Massachusetts

N71 -19190

Abstract

A set of experimental programs was written in the inter
active FORMAC language to implement Picard iteration in
solving systems of ordinary differential equations. The
reasons why this method is apparently impractical are
discussed, and possible remedies are suggested.

69

pRECEDING PAGE BLANK NOT FILMED

AN ATTEMPT TO SOLVE DIFFERENTIAL EQUATIONS SYMBOLICALLY

by

Stanley B. Gershwin

1. PICARD ITERATION

Consider the initial value problem

y' = f(x,y) (1)

y(xo) = yO (2)

The process of Picard iteration attempts to solve (1) and (2) by choosing

an initial guess y (x) and solving

Ym+l' = f(x'ym(x)) (3)

with initial condition (2). This is equivalent to integrating

x

0 (4)Ym+l = y + S f(t,ym(t)) dt.
X

0

Picard showed that (4) converges to the solution to (1) and (2) under

suitable conditions.,2

A set of programs was written to implement (4) symbolically, using the

experimental Scope FORMAC system. Because symbolic integration is a diffi

cult operation, the choice of f(x,y) and initial guess y0 (x) must be restricted.

To perform the integration in (4) for m = 0, f(t,y (t)) must be symbolically

integrable, its integral must also be integrable, and so on. Further, because

the FORMAC system does not provide symbolic integration subroutines, an

integration routine had to be written. Thus, a simple class of functions was

considered.

71

It is easy to show that
n . i

cx
xne dx = n!ex (-C) -n x- (5)

i=0

where n is a positive integer. Then the integral in (4) may be performed

using (5) if
N kCk(6

enkx)
f('Y())= n C

f(XY(x)) = (An + bn e (6)

n=0 0

Equation (6) can be guaranteed to hold for all m if the following restrictions

are made:

M L h

f(x,y) = yn (fn(X) + gnk(x)e nk (7)

where fn(x) and gnk(x) are polynomials in x , and yo(x) is of the same

form as (6).

An obvious candidate for an error indicator is

2C = (Ym'(t) - f(t'Ym(t))) dt (8)

According to (3), this may be written

x2
Em = (f(t,ym l(t)) - f(t,ym (t))) dt (9)

x

0

Equation (9) was used to calculate error because all quantities in the inte

grand had to be calculated for other reasons and because (6) implies that the

integrand of (9) is integrable using (5). In (9), xf is the upper limit of the

interval [Xo,Xf] on which the solution to (1) and (2) is desired.

72

2. DIFFICULTIES- ENCOUNTERED

There are some important difficulties in applying the method of the

previous section to initial value problems. The first is that Picard's proof

that (4) converges does not hold for arbitrary xf , but only for sufficiently

small Xf-x .0

Under some circumstances, however, the results of iterating (4) may be

applied on a wider interval than is specified in Picard's proof. For instance,

if neither f(x,y) nor the initial guess yo(x) have exponentials in x, then each

iteration y (x) is a polynomial in x. One can show that the coefficients

of the low powers of x agree with the corresponding coefficients where the

Taylor expansion is applied to the solution to (1) and (2). One can also

show that yI(x) approaches the Taylor series as m-o. Therefore yI(X)

must be a good approximation to the solution (for sufficiently large m) in any

interval which contains x but does not contain any singularities of the solution.

Picard's interval is much more restrictive than this. For example, if the

problem is

y' = y3 (10)

y(0) = 1 (11)

then Picard's interval is Ix << 4/27 , and the result of iterating with (4)

is a Taylor series starting

1+ x + x2 + 53 + -- x +... (12)2 2 8

The-exact solution to (10) and (11) is

y(x) 1
 (13)

of which (12) is the Taylor expansion. Since (13) has only one singularity

which occurs at x = 1/2 , (12) is equal to (13) in the wider interval I x I< 1/2.

The second important difficulty in using (4) to solve (1) and (2) is that

expressions grow very rapidly in size. In most cases attempted, expressions

grew so rapidly that all the core allocated to the FORl4AC system was used

and execution ceased. Also, as expression size increases, the time necessary

to manipulate the expressions grows.

73

For example, consider (1) and (2) with (7) satisfied. Equation (7) may

be written
M

3f(x,y) = yA n(x) . (14)
n=O

n = 0

Assume an initial guess of y0 (x) = yo. Then

M

y = (y°)nAn(x) . (15)

n=0

To simplify the problem and to get a lower bound on the growth of expression

sizes, assume that An (x) is a constant for each n . In this case, yI' = C

and y1 = yo + Cx (if, for simplicity, x = 0). Then

M

Y2 (y 0 + Cx)nAn (16)

n=0

When (16) is expanded, it contains M + 1 terms, and so Y2 contains M + 2

a kt h terms. In general, if ym contains k + 1 terms, i.e., if Ym is degree

polynomial, then yI + 11 contains Mk + 1 and ym + 1 contains Mk + 2 terms.

Therefore, the number of terms in y is roughly proportional to Mm.

fOLcourse,-the situation-is -much--worse-if-An is-a-function-of- x in--(-7-);

the time spent expanding expressions depends on the presence and form of each

An(x) . If, instead of a first order system, a higher order system is analyzed

for expression growth, the problem requires significantly more time and space.

3. 	 PRACTICAL PROBLEMS REQUIRING FURTHER STUDY

The solution of systems of ordinary differential equations using (4) might

be practical if the questions listed below were answered.

a. 	 Under what more general conditions does iteration of (4) converge

to the solution of (1) and (2)? Is it possible to find an a priori

bound on the error on a larger interval than Picard specifies ?

74

b. 	 Does some class C of functions other than polynomials with exponential

coefficients (as herein) exist such that it is suitable for use with (4) ?

C must have the following property: a class D of 2-variable functions

must exist such that if f(x,y)ED and ymcC , then Ym+iEC . Also,

if y(X)EC , then there must exist an algorithm to integrate f(x,y(X))

symbolically. Finally, the rate of growth in the size of polynomial

expressions should be decreased.

-c. 	 Can a good first guess yo(X) be chosen just on the basis of (1)

and (2)? "Good" in this case refers not only to accuracy, but also

to formal appearance, size of expression, and sizes of later expressions

yl' 	Y2' ... which are consequences of y0 .

d. 	 Can a relatively quick and systematic method be developed to delete

from expressions terms which contribute little (numerically) but

which take up space and time? Or, is it possible to calculate the

numerical impact of a given term on later iterations, so that terms

whose future impact is negligible may be deleted before they require

processing time, rather than after ?

4. 	 CONCLUSION

Picard's iteration method (4) was found to be impractical in the implemen

tation described herein. If some difficulties can be overcome-the extension

of the interval of convergence and the reduction of the size of expressions-a

practical implementation may be possible.

REFERENCES

1. 	 E. L. Ince, Ordinary Differential Equations, Dover, 1956.

2. 	 E. A. Coddington, An Introduction to Ordinary Differential Equations,
Prentice-Hall, 1961.

75

pRECEDinG pAkGEi BLANK NOT FLME

SOME SYMBOLIC COMPUTATIONS IN FINITE FIELDS

by

Henry A. Feldman
Graduate School of Arts and Sciences

Harvard University
Cambridge, Massachusetts

Nfl t191 9 1
0- - ' I

Abstract

This paper contains bits of the elementary theory of finite
fields and a report on some symbolic computations suggested by
that theory. These computations, carried out in FORMAC,
chiefly involved modular polynomial arithmetic.

The issue of generality versus special-purpose efficiency in
a symbol manipulation language arises in the course of a discussion
on the suitability of FORMAC for this project.

77

PRECEDING PAGE BLANK NOT FILMED

SOME SYMBOLIC COMPUTATIONS IN FINITE FIELDS,

by

Henry A. Feldman

1. INTRODUCTION

Finite fields are intricate algebraic structures. Each can have millions of

elements, or only a handful, or as few as two; but in all cases these elements

can be combined and manipulated in most of the ways rational or real numbers

can, without leaving the field. One can add, subtract, multiply, divide, solve

simultaneous linear equations, invert matrices, extract certain roots-all the

time having at one's disposal only a finite number of elements.

What do these elements look like, and how can one do arithmetic with them?

The basic theory of finite fields shows that all elements can be represented in

terms of one element A; in fact, each element can be written as a polynomial in A,

with each coefficient of the polynomial reduced to its remainder on division by a

certain prime integer p. (From now on, "polynomial" will mean a polynomial with

its coefficients so reduced.) Arithmetic among these expressions is carried out

just like ordinary polynomial arithmetic, except that the polynomials too must be

reduced to their remainders on division by a certain modulus polynomial f(A).

Finite field arithmetic is exactly like the arithmetic of residues of f(A); in more

precise mathematical terms, each finite field is isomorphic to the field of poly

nomial residues modulo some f(A).

If f(A) is chosen properly, the powers of A also represent the whole field.

Such an f(A) is called a primitive polynomial.

Since the elements of a finite field can be represented by powers and poly

nomials, it should be clear that computer symbol-manipulation language is a

convenient tool for performing computations in finite fields.

79

Below are described four FORMAC programs developed to work with finite

fields. The first program takes a specified size for the finite field and finds

what the modulus polynomial f(A) must be. It picks f(A) to be primitivd and

monic. -,

The second program takes the primitive polynomial f(A) and generates

a table showing the correspondence between powers of A and polynomials in A.

This table can be used for addition and multiplication in the field.

A third program solves simultaneous linear equations with coefficients, taken

from the finite field. A fourth finds all irreducible polynomials satisfied by

elements of the field. All of these programs make heavy use of polynomial

arithmetic: adding, multiplying, dividing, and taking greatest common divisors.

This paper presents small amounts of finite field theory, descriptions of

how each of the four programs works and how it was implemented, the problems

that arose, and how and where the programs might be improved.

2. PRIMITIVE POLYNOMIALS AND ARITHMETIC 'TABLES

What the Programs Do

The first two programs work hand in hand: the first finds the primitive

polynomial f(A), and the other uses it to make a table of qorresponding powers-

and polynomials in A.

A bit of theory will illuminate the way to find a primitive polynomial. Say

the field is to have p n elements. (All finite fields have prime-power cardinality.)

Elementary theory (see Chapter 5, Sections 36 and 37 of reference 1) tells us

that the polynomial

c(x) = 7T (x -1)
jk=pn

80

called the cyclotomic polynomial, has irreducible factors of degree n, each of

which is a satisfactory choice for the modulus polynomial. Here js is the M6bius

function, which is defined thus: 14(j) = 0 if j is divisible by a square greater

than 1; g(j) = (-I)k if j is the product of k distinct primes; and A(1) = 1. The

product of all primitive polynomials for the field of pn elements is, in fact, c(x).

The preceding discussion shows that the procedure which follows finds f(A).

1. 	 Given p and n, form c(x) using the above formula.

2. 	 Find an irreducible factor f(x) of c(x).

Apn -13. 	 Reduce all powers A, A2 , A3 to their remainders on
division by f(A). This gives a list, a one-to-one correspondence
between powers of A and polynomials in A, which can be used to
construct addition and multiplication tables for the finite field.

An Example

For instance, to find a primitive polynomial for the field of 16 elements

(p = 2, n = 4) one forms

1)D(J)c(x) = (Tk _

jk=15

S(x 1 5 - 1)(x- 1)

(x - 1)(x 3 - _1)

8 7 5x4 3

X+x +x +X +x+X+ 1.

This polynomial factors into (x4 - x - 1)(x - x - 1). (Remember that all
4coefficients are being reduced modulo 2.) The choice of x - x - 1 for f(x)

results in Table 1, a representation of the field.

81

Table I

0 =0

2 AA2

A3 -A 3

A = A+ 1

A8 2
=A + 1

Two representations of the field of 16 elements. On the left are the powers of
A; on the right are their remainders on division by A4 - A - 1.

A =A

A

A 5 AA2
 + A

A6 A3= + A

7 A3= +A+1

A9 A3

- + A

A2
A = + A + 1

A 1 A 3 + A2 + A

1
A 3 +
A12 A + A +

A 3 + A2
A13 = + 1

A14 A3

- + 1

A 15 =1

82

Finding the Cyclotomic Polynomial

Computing

WDc(x) TT (xk
jk=p - 1

requires a list of factors j of p1-1. Any j's which are divisible by a square can

be ignored, since they have g(j) = 0 and make no contribution to c(x). So if the
prime factors of pn_ 1 are p0, Pl' P2, .. . , then the j's and their M's are as

shown in Table 2.

The program for finding c(x) generates the lists in Table 2 .by the recursive

formulas

I h2+i h = 0, ,2,...
2 +i

J(j h -u(ji). i = 0, 1, 2, 2

The program then finds the polynomials

c1 (x) = jk pn (xk - 1)

i(j) =1

and

77k-1

c2(x) = jk=p (x -

A(j)=-8

83

Table 2

Systematic listing of the squarefree factors of a number whose prime factors are P0, P1 , p2 , . . , along with their values for the M5bius function. Note: the

first 2m elements are repeated with an added factor as the second 21, what
ever m is.

0 = 1 A(j0) = 1

l = P0 (i) = -1

J2 = PIj)= -1

J3 = PlP0 3) =

J4 P2 90 4) -1

5 = P2Po) = 1

J = 2Pl j.(6) = 1

7 = plPo= -1

J8i P3 8) = -1N(j

J9 = P(9) =

Jlo = A0o) = 1

ill P3PlPo = -1

12 2 (i 2) 1

i13 = P3P2Po 1013-1

44 = P3P2Pl ,(=

j15 = P3P2PlPo pj15) = 1

84

Since c(x) = c1 (x)/c 2 (x), the program can now perform ordinary polynomial

division to obtain c(x).

The polynomial division algorithm is particularly easy to program for

p = 2, since all coefficients in this computation turn out to be +1 or -1. The

only inconvenience is that c(x) usually has a great many terms, and these must

be added to the quotient one by one as the algorithm proceeds. This labor would

not have been necessary had there been available a polynomial manipulation

language with polynomial division performed by an efficient, built-in function,

as opposed to a general formula manipulation language such as FORMAC, which

handles a broader set of algebraic expressions and has few special tools for

working with polynomials.

Factoring c(x) with Berlekamp's Algorithm

This section contains the theory of our solution for step 2 of the subsection

entitled 'What the Programs Do," while the next two sections deal with

implement ation.

Step 2 involves extracting a primitive factor from the cyclotomic polynomial.

Fortunately we know that each irreducible factor of c(x) is of degree n and is a

primitive polynomial. So all we need to do is find an nth degree factor of c(x).

We accomplish this task with Berlekamp's factorization algorithm. (See

reference 2, in particular the final example on page 5a.) In its most general

form, Berlekamp's algorithm can be applied to any polynomial with coefficients

reduced modulo p. However, it can be vastly simplified for the limited purpose

of factoring the polynomial xI - 1 when m is relatively prime to p,as when one

factors xPn- -1. Since c(x) always divides xPn-1-1 (this is easily proven with

an argument about the order of roots of c(x)), applying Berlekamp's algorithm

to c(x) is just like finishing off the factorization of xPn-1-1, and the simplified

algorithm works perfectly on c(x).

85

The 	following three steps constitute the algorithm in its simplified form.

a. 	 Form the polynomials

i p i p 2 +(x) 	 = x + x + x x.p 3
K.() j+ 1 'x + 1

i	 + ... ,i =1, 2, 3,...

with all exponents reduced modulo pn 1 and the polynomial trun
cated where it begins to repeat. For instance, if p = 2, n = 4, then

K 3 (x)=xx3 ±xx6 +x 12 +x 9.

It should be clear that there are only finitely many distinct Ki(x).

b. 	 Compute the polynomials

Gi(x) = greatest common divisor I(x), Ki (x) +

i = 	 0, 1, 2, . . . , p - 1, and m 1 arbitrary.

Berlekamp proves that

c(x) = G0(x) G1 (x) G2(x) ... Gp_(x)

is a factorization, not necessarily complete, of c(x).

c. 	 To refine the factorization, split each Gp(x) by computing the
polynomials

Gi((x) = gjc.d.,i(x),K2 , i, j = 0, 1, 2, .. - 1,

im 2 m1 .

Each 	polynomial Gi(x) is split into

Gi(x) = Gi 0(x) Gil(x) Gi 2 (x) . . .Gi,p_(X)

yielding the refined factorization

c(x) = G0 0 (x) G0 1 (x) G1 0(x) Gll(x) G02(x) ... Gp-lpl(X).

86

To continue refining, compute the polynomials

Gijk(x) = g.c.dij(x), KM3(x) ± i,j, k= 0,1, 2, p-1
m3 .m2 , m 3 1m

and so forth. Berlekamp proves that by the time the Ki(x) are
exhausted, the factorization of c(x) is complete.

The author has no idea how many steps are generally needed to complete the

factorization; this and other questions about the algorithm are discussed below

in the subsection entitled "What It Would Help to Know About Berlekamp's

Algorithm."

In searching for a primitive polynomial there is no point in finding all the

factors of c(x); only one is needed. So in applying Berlekamp's algorithm to the

search for a primitive polynomial, a lot of trouble is saved if the algorithm is

modified as shown below.

a!. Split c(x) into

c(x) = G0 (x) G1 (x) G2 (x) .. G_ 1 (x).

Select only one Gi(x), nth degree or higher, and split it until
some Gi (x) of degree n or higher appears.

b?. 	 In turn, split Gij(x), and continue until-some Gijk m of exactly
nth degree appears. This is the primitive polynomial.

Difficulties in Programming Berlekamp's Algorithm in FORMAC

This section discusses how each step of Berlekamp's algorithm is imple

mented in a factorization program.

a. 	 Generating

.2 .3

Ki(x) = x + +xiP + xiP +...

is straightforward and simple in FORMAC. These polynomials can
be formed as they are needed in (b) and (c) below.

87

b. and c. To-compute

Gi(x) .c4jx) Kml(X)+

the factorization program employs Euclid's algorithm in a
straightforward way. Collin's methods 3 are better; but Euclid's
algorithm, in its simplicity, brought out clearly major difficul
ties in FORMAC 's handling of polynomials.

Euclid's algorithm involves repeated polynomial divisions, each of which

requires that a zero test be performed on many partial remainders as they are

generated. To test whether a new partial remainder is zero, one must first

reduce its (newly computed) coefficients modulo p. To reduce a coefficient

modulo p, one must extract it with the COEFF routine, convert it to a PL/

constant, apply the MOD function, and replace it in the polynomial as a FORIMAC

constant.

The upshot is that this extraction, reduction, and replacement must be per

formed for each coefficient of each partial remainder of each division in each

performance of Euclid's algorithm for each refinement of +he factorization of

c(x). The time consumed can be prohibitive, even for small values of pn

What It Would Help to Know About Berlekamp's Algorithm

There are two apparent approaches to streamlining the factorization

process. First Berlekamp's algorithm should be investigated mathematically,

-with the specific aim of reducing the number of polynomial greatest common

divisors (g.c.d.'s) one must compute. Is there a way to pick m1 and i so that an

nt h degree Gi(x) is found on the first try? Failing such a spectacular finding,
are there at least optimal choices for i and m? Is there a quick way to estimate

the degree of a polynomial g.c.d. before computing it, so as to pick the smallest,

most worthwhile Gi(x) to compute? Is there a quick way to tell whether a poly

nomial g.c.d. willibe I before computing it, so as to avoid wasting a lot of time

computing G.(x) = 1? (Collins 3 gave a method for quick determination of a

g.c.d. of unity for polynomials with ordinary integer coefficients. This method

may be adaptable to the present case: the author did not have time to

88

investigate.) Answers to any of these or similar questions could make the

search for a primitive polynomial much speedier.

Some Suggestions Regarding FORMAC

The author made no attempt to answer the preceding mathematical questions,

but has concentrated instead on a second line of attack: programming efficiently

in FORMAC. However, no amount of cleverness has proved sufficient to avoid

the laborious, term-by-term reduction of coefficients. This problem is sympto

matic of a general problem in handling polynomials in FORMAC. The author

suspects that the labor of extracting terms and putting them back in place after

some trivial operation is one of the greatest and most common inefficiencies

forced on the programmer in the current version of FORMAC.

The finite field computations described in this paper would be much easier

to program if FORMAC contained built-in functions like the ones listed in Table 3.

These functions are designed to eliminate common term-by-term operations on

polynomials. Besides generally enriching the FORMAC library, they would

particularly permit more rapid manipulation of simple, 1-variable polynomials.

Of course FORMAC is a general-purpose formula manipulation language,

and it can be argued that a language of such broad scope and simplicity should

not be overloaded with the special functions one expects in a special-purpose

polynomial manipulation system. Still, since high-level languages are written

principally to provide the programmer with convenient macros for very common

tasks, such as polynomial manipulation, it seems a shame to saddle the FORMAC

programmer, for whom the possibilities of invention are great, with needless

tedium in writing his code.

Making Tables

This section continues with a program for step 3 of the subsection entitled

'What the Programs Do." Once f(x) is found, FORMAC easily generates arith

metic tables. To list the powers of A paired with their residues modulo f(A), the

program simply sets up a list A and puts in A(I) the remainder of A,when

divided by f(A).

89

Table 3

Some suggestions for polynomial manipulation functions in FORMAC. In each
case the function call implies that A and B are to be regarded as polynomials
in the FORMAC expression E. N is a FORMAC integer-valued expression. "

TRUNC (A, E, N) 	 A with all terms above EN dropped

TUMULT (A, B, E, N) 	 Product of A and B, ignoring all
terms in product above EN

MOD (A, E, N) 	 A with any numerical coefficients
reduced modulo N

ABS (A, E) 	 A with any numerical coefficients
replaced by their absolute values

PRIM (A, E) 	 A divided by g.c.d. of numerical
coefficients

90

The program avoids polynomial division by doing the whole process

recursively: given A(I), the program- multiplies it by A, reduces it modulo f(A).

by replacing any occurrence of An by An - f(A), reduces the coefficients

modulo p, and places the result in A(I+1).

Table 1 is essentially a conversion table from powers of A to polynomials

in A. To construct a conversion table in the opposite direction, one can use the

fact that each residue of f(A) gives a different number between 0 and pn when p

is substituted for A. A list, matching the number to which each polynomial

evaluates with the power to which it corresponds, acts as a key. Table 4 should

make the method clear; it is the inverse of Table 1.

With these tables, it is simple to multiply and add, going from powers to

polynomials or vice versa. It is most convenient to convert to polynomials

before adding and to powers before multiplying.

3. SIMULTANEOUS LINEAR EQUATIONS

Finite field arithmetic at its messiest is exhibited by a program for the

solution of simultaneous linear equations by Gaussian elimination, with coeffi

cients and answers to be drawn from the field of 16 elements. This program

reads the equations from cards as PL/I character strings which are then con

verted to FORMAC expressions. On the cards finite field elements may be

expressed as either powers of A or polynomials in A.

After input the program converts the coefficients to powers of A, using

Table 4, and represents the equations by a PL/I matrix containing the exponents

of the powers of A. (A special element represents zero coefficients, since zero

is no power of A.)

To perform arithmetic on the coefficients in the course of Gaussian elimina

tion, the program extracts them from the PL/I array, refers to appropriate

entries in the powers-to-polynomials table (Table 1), performs the arithmetic

in FORMAC, converts back to powers of A, and replaces the answer in the array.

The programming of Gaussian elimination and back-substitution is straight

forward. Sample input and output are reproduced in Table 5.

91

Table 4

Conversion table for polynomials to powers of A for the field of 16 elements.
Given any polynomial in the first column, one substitutes p for A and obtains the
number beside it in the second column. The corresponding power is directly
across in the third column (see Table 1).

Number it Evaluates Power it

Polynomial To with A p Corresponds to

1 1 15

A 2 1

A+ 1 3 4

A2 4 2

A2+ 1 5 8

A2+ A 6 5

A 2 + A + 1 7 10

A3 8 3

A 3 + 1 9 14

A3 + A 10 9

A3 + A + 1 11 7

A3 + 2 12 6

A 3 + A + 1 13 13

A 3 A2+ + A 14 11

A3 + A2 + A + 1 15 12

The programming of Gaussian elimination and back-substitution is straight

forward. Sample input and output are reproduced in Table 5.

- 92

Table 5

Sample input and output for solution of simultaneous linear equations over the
field of 16 elements.

A3 A 19 0 = X+ X - 17A 4 Y+ S+ 3

A5 A30 = Q + A8 X+ Z

0 = Q+ X+ Y+ Z + S

0 = R+AQ+AX+AY+AZ+AS

A1 3 0 = Q + A6 Y

0 = A Q + A1 0 Y + A7 S

A1 2X=

S =A

Z =A

A3
Q

R =0

93

4. MINIMAL POLYNOMIALS

n

Basic theory shows that all pn' elements of a finite field are roots of (p -x).

They are also roots of smaller polynomials, factors of (xp -x). It is of interest

to know, for each element of the field, the smallest polynomial it satisfies. This

polynomial is called the minimal polynomial of that particular element. This

section describes a technique for finding all minimal polynomials of elements of

a finite field.

It is simple to show that all minimal polynomials are irreducible, and thatpnn

their product is (xP _x). So it is only necessary to factor (xpn-x) to find the

various minimal polynomials.

The first step is easy: (xPn-x) = (x)(xPn-l-l). The factorization of QCp-x)

can be finished with Berlekamp's algorithm. This time, of course, the program

must keep track of all G.. (x) at each step, except for those equal to 1. This
i3k... m

is easily accomplished by storing in one FORMAC location the undistributed

product of all G jk. . . r (x) found so far.e

A priori information, which can be used to guide the program in factoring

(Xpn- 1l-), is available on the size and number of minimal polynomials. Various

theorems show that, for each divisor m of n, there are

jk-m

th
m degree minimal polynomials, and that these are the only minimal polynomials.
So, for example, if the program comes to a Gij(x) with a degree not dividing n, this

factor is not a minimal polynomial and must be factored further; if this factor's

degree does divide m and fewer than

jk--m

94

mthdegree factors have been found so far, it may be a minimal polynomial and

may not have to be factored further.

One can also use the fact that there are a total of

mIn jk=-m

minimal polynomials to determine when to terminate the factorization.

Lack of time prevented the author from implementing this routine. As it is

simply a longer version of the primitive polynomial program of section 2, the

remarks of the three subsections of section 2 which discuss Berlekamp's

algorithm apply all the more strongly to this routine.

5. SUMMARY

The project described here shows that finite field computation lends itself

very well to computer symbol-manipulation language, to the extent that FORMAC

programs can make arithmetic tables and even solve simultaneous linear equa

tions in a conceptually straightforward manner.

On the other hand, the author found FORMAC awkward in programming and

sluggish in performing extensive polynomial manipulations. Three routes for

improvement are evident: one might

a. Study and streamline the factorization algorithms;

b. Use a special-purpose polynomial manipulation system; or

c. Introduce special-purpose capabilities into FORMAC.

95

iEFERENCES

1. 	 B. L. Van der Waerden, Modern Algebra, Frederick Ungar Publishing

Company, 1949,

2. 	 E. R. Berlekamp, "On the Factorization of Polynomials Over Finite Fields,"
Bell Telephone Laboratories, Murray Hill, New Jersey.

*3. 	 C. E. Collins, "Computing Time Analyses for Some Arithmetic and Algebraic
Algorithms," these Proceedings.

*This article appears in these Proceedings.

96

SYMBOLIC-NUMERIC EIGENVALUE PROBLEMS

IN QUANTUM MECHANICS

by

Kenneth Hartt

Department of Physics

University of Rhode Island

Kingston, Rhode Island

N71 -19192

Abstract

The problem of symbolic numeric conversion (SINCON)
is discussed in the context of solving quantum mechanical
eigenvalue problems with FORMAC. The eventual use of
SINCON in a problem eliminates the need fot containing the
entire structure of each FORMAc expression in a single
equality. Consequently, special coding techniques which
reduce core storage requirements (called "reductions") are
possible. Using an example involving SINCON for illustra
tion, the paper shows methods of performing reduction by
explicit FORMAC coding. It is argued that a new version of
FORMAC in which automatic reduction techniques are incor
porated is needed. Two alternative reduction devices are
discussed.

97

PRECEDING PAGE BLANK NOT FILMED

SYMBOLIC-NUMERIC EIGENVALUE PROBLEMS IN QUANTUM MECHANICS

by

Kenneth Hartt

1. INTRODUCTION

Because a large class of physics and engineering problems involves lengthy

symbolic derivations of formulas followed by numerical evaluation, a totally

programmed solution requires a symbolic-numeric conversion (SINCON). This

paper discusses the application of the present SINCON capabilities of FORMAC

to quantum mechanical eigenvalue problems. Based on our recognition that ex

pressions destined for numerical evaluation need not have their entire structure

shown explicitly in a single equality, this paper suggests, by illustration, some

extensions of FORMAC for improving SINCON.

Wherever the Rayleigh-Ritz method is applicable to an eigenvalue problem,

the task of determining eigenfunctions and eigenvalues is partly reducible to

optimizing a set of parameters. Using a simple example of parameter optimiza

tion, we show how SINCON allows use of special coding techniques, which we

call "reduction," that reduce core storage requirements.

All users of symbol manipulation systems must perform reduction. Many

do so by analysis prior to coding. A more efficient method for symbolic differ

entiation was developedlby Eisenpress and Bomberault, who coded a procedure

which transforms lengthy FORMAC expressions into outputs consisting of

sequences of impressively short PL/I statements. 1 We propose incorporating

a reduction device which could be similar to theirs but which is automatically

invoked by FORMAC when needed. The concluding section of this paper dis

cusses some suggestions concerning external specifications of optional reduction

devices, as well as some unresolved issues.

99

2. SOLVING A QUANTUM MECHANICS PROBLEM IN FORMAC

In quantum mechanics one tries to solve a Schroedinger equation for a sys
tem of some number N of interacting particles Ho = E0. Let the particle

coordinate vectors be xij. Assume the interaction is pairwise through a poten

tial energy operator V (X,x) = V1i . Then

H-EN1 _- i i + Ei<j Vi

i7 1 M 137i

and 0 = 4 x is square-integrable over 3N-dimensional space (where the
collection x,x 2 , .. ,xN) is represented by x) . E is an eigenvalue, inter

preted as a possible energy of the physical system. E must be negative for
square-integrable solutions. Here discussion is restricted to finding the small

est eigenvalue E and the ground state 4o , such that H4 ° = Eo0 ° .

The two-body problem (N = 2) is easily solved numerically, assuminig any

of a very general class of interactions for V12 .2 This is not so for N 3.

Therefore, extensive effort in theoretical physics has been devoted to finding

analytic approximations. One approach to this problem has been the familiar

variational method, which is justified by the Rayleigh-Ritz principle.3 Given
a trial solution t(x,A) , where A = (A,A 2 ,...,AM) is a parameter vector,

this procedure involves optimizing A by minimizing the quotient

Et = Ht) / (0tt) A disadvantage of this approach is that Et is only(0t!, ;

the approximate eigenvalue; the minimum Et must still be obtained through a

numeric iteration procedure which uses the functional forms of Et and deriva

tives of Et obtained symbolically. Another problem is that the inner products

(0t,Ht) and (0t' Ot) are linear combinations of integrals whose derivation in

terms of standard integrals is often a lengthy task. Frequently the forms of the

100

standard integrals are well known, and the computational problem consists of
lengthy algebraic and analytic procedures. Because of these problems an
efficient SINCON is needed.

Provided that sufficient reduction is achieved, using FORMAC we should
frequently be able to avoid the use of elaborate minimization algorithms, such as

VARMINT. 4 VARMINT requires as input a function F and its gradient vector
VF in the parameter space where F is being minimized. The VARMINT

algorithm proceeds by making successive estimates of the inverse of the matrix
2

Gij =a (Hessian matrix) and advancing A by increments (A-. A A

+ A A) until a convergence criterion is satisfied. An increment vector AA is
uniquely defined by postulating that F(A) is in the neighborhood of a minimum

and that a second-order Taylor series expansion at AM of F is exact.

In cases in which Ot contains several parameters nonlinearly (as in argu

ments of exponentials), it is frequently impractical to compute the input ex
pression V Et analytically by hand calculation. Rather, one should be able to

emplby a system like FORMAC. If, in addition, G.. is known analytically, the
-1j

estimation of G. in VARMINT is not needed and a simple algorithm to minimize

Et might be coded directly in FORMAC, possibly with the inversion of Gii

performed in PL/I.

Tobey's description of some of the major scientific efforts involving
FORMAC 5 reveals applications in optimization similar to those described above.

Here we present a simple example to illustrate SINC ON and to show what might
be done to enable FORMAC to reduce expressions such as G,, sufficiently with

out a great deal of coding by the user.

101

3. 	 REDUCTION IN FORMAC

Our example is the following problem: determine the first increment AB

from B = 3 towards the minimum of the expression E = ((B 2 - 1)2 + 4) / (B - 2)2,

using the method of steepest descent. Assume that E corresponds to the trial

energy eigenvalue to be minimized, B to the parameter, (B2 - 1)2 / (B - 2)2

to the potential-energy, and 4/(B - 2)2 to the kinetic energy. One must compute

the first and second derivatives of E from which AB = -E'/El I . A straight

forward PL/I FORIIAC procedure, MINI, performs the calculation

MINI: LET(

1. 1 FNC(F) = $(1)**2;

1.2 N = F(B**2 - 1.) + 4.;

1.3 D = F(B - 2.);

1.4 E = N/D;

1.5- EP = DERIV(E, B);

1.6 EPP = DERIV(EP, B);

1.7 NEP = EVAL(EP,B, 3.);

1.8 NEPP = EVAL(EPP, B, 3.);

1.9 DELTA = - NEP/NEPP); .

The numeric calculation could have been done in PL/I after I. 8 instead of
FORMAC by the PL/I statements NEP = ARITH(NEP); NEPP = ARITH(NEPP);

DELTA = - NEP/NEPP; .

Straightforward coding of a nuclear physics problem whose solution closely

parallels MIN1 creates a size problem, traceable to the fact that the symbolic

part of MINI combines and manipulates expressions on two levels, E and F.

The user can reduce core requirements somewhat by performing a sufficiently

extensive precoding analysis. Subexpressions for E, EP, EPP can be derived

separately and FORMAC can be used to compute the values of F, F', and F' 1

102

and to make substitutions into the subexpressions. However, in MNi the struc

tural form of F is needlessly repeated in the expressions for t, EP, and EPP,

creating large structures that must be manipulated as whole entities and increas

ing the likelihood that freelist will be exceeded. The structure of second deriva

tives can easily grow to a prohibitive size. The precoding analysis required to

save core grows as the complexity of the expressions manipulated increases

until a point is reached -at which such analysis becomes. a formidable problem.

An alternative method of coding our example is MIN2, which uses function

variables as shown below.

MIN2: LET(

11.1 N= G.(B) +4.;

11.2 D =H. (B);

H.3 E =N/D;

H.4 EP=DERIV(E,B);

11.5 EPP = DERIV(EP, B);

H. 6 FNC(F) 	= $(1)**2;

11.7 	 NE1 = EVAL(EP, G. ($(i)), F($(1)**2 - 1.), H. ($(l)),

F($(1) - 2.),B,3.);

1.8 	NEPP = EVAL(EPP, G. ($(l)), F($(1)**2 - 1.), H. ($(l)),

F($(1) - 2.),B,3.);

11. 9 DELTA 	= - NEP/NEPP);

Notationally it appears that MIN2 reduces the core requirements, since the

functions in 11. 8 and 11. 9 have numeric arguments. However, the interpretation

of the numerical arguments as numbers and the subsequent reduction by the

internal automatic simplification procedure does not occur until after the func

tional substitutions are made. Hence the phenomenon of intermediate swell, 6

103

i.e., the growth, of storage requirements for expressions above the final sizes
in an executed FORMAC statement, becomes important.

If the user is willing to code a rather elaborate series of substitutions,

MIN2 can be modified so an eventual saving of core results for cases where F
becomes increasingly complex. One replaces the function variables and their

derivatives by subscrilted atomic variables D(J, L) . The arguments of the

function variables are assigned to other subscripted variables X() . Then the

D(J, L) are assigned values of the numerically evaluated function F and its
derivatives. This procedure,. which we give as MIN3, can be generalized to
several functions and variables, in which case PL/I loops perform the substi

tutions with additional indexes.

MIN3: LET(

I.I N G(1). (B) + 4.;

111. 2 D G(2). (B);

111. 3 E =N/D;

111.4 X(1) = B**2 - 1.;

111.5 X(2) =B-2.;

I.6 E(1) = DERIV(E, B);

111.7 E(2) = DERIV(E(1),B);

ILL 8 FNC(F) = $(1)**2);

111.9 SUB: DOI=1T02;DOJ=1T02;

131.10 LET(I = "IlT; J = "J";

H. 11 E(1) = REPIACE(Ega), G(J). (B),D(J,1)));

11. 12- DO L = 1 TO 2; LET(L = "L";

ma. -13 E(1) = REPLACE (E(J),DRV(G(J). (B), $(1), L),D(J, L+I)));

111.14 END SUB;

104

The final expressions are compact and are suitable patterns for substitutions of

numerical values of F .

11. 15 NUVI: DOI=1TO2;DOJ= 1TO2;

111.16 LET@ = "I"; J = "Jtt; E(1) = EVAL(E(1),D(J, 1),

EVAL(F(X(J)), B, 3.), B, 3.));

I1.17 DO L = 1 TO 2; LET(L = "L"; E(l) = EVAL(E(I),D(J, L+I),

EVAL(DERIV(F(X(J), B, L), B, 3.))); END NUM;

i. 18 LET(DEILTA = - E(1)/E(2));

The substitution method of MIN3 requires careful precoding analysis, but less

than the modifications already discussed in connection with MINI.

Table 1 compares execution times and core sizes of the three different pro

grams. Core sizes are roughly estimated as follows. All programs are run

with the printout option, which causes a printing of FORMAC expressions

obtained from the execution of all statements. The total length of the printout

from each procedure is an approximate relative measure of the accumulated

amount of core required. Two important qualifications need to be made here.

First, if SAVE is employed the maximum amount possible, then the size of the

largest collection of expressions handled simultaneously in any FORMAC state

ment is a more appropriate measure of required core. As suggested by the last

column of Table 1, this tends to offset the large core size shown for MIN3.

Second, no measure of intermediate swell is provided. Although the comparisons

in Table 1 should not be accepted literally, they reveal the overhead in time and

space resulting from performing the substitutions of MIN3.

We wish to emphasize that MIN3 has a high potential efficiency relative to

MIN2 that is not shown in Table 1; as the function F becomes lengthier, all

times for MIN2 grow faster than those for MIN3, and intermediate swell in

MIN2 grows excessively.

105

Table 1

COMPARISON OF EXECUTION TIMES AND PRINT-OUT LENGTHS

Summed
Summed* expression Maximum*

CPU time CPU time expression length expression
Code (seconds) (ratios) lengths ratios length

MIN1 13 1.6 8.4 2.5 4.3

MIN2 8 1.0 3.4 1.0 1.7

MIN3 16 2.0 25.0 7.4 2.1

• lengths are in units of 12-inch lines.

4. A SUGGESTED SINCON CAPABILITY

If numerical evaluations are to be made in lengthy symbolic mathematics
codes, an option to automatically split an expression into its subfunctional parts
is desirable. We refer to the class of such options as Automatic Splitting-
Subfunctional Parts (ASSP). The functional configuration of ASSP will not cause
an explicit definitional substitution at each occurrence of a function, but it will
generate a function list and an argument list for each FORMAC expression that
contains functions. Therefore a statement containing a sequence of nested func

tions, e.g., F(G(H(X))), which can quickly grow to a prohibitive size when the
explicit forms of F, G, and H are given, remains compact. Since the ASSP
option is designed to save space,, an internal automatic SAVE is desirable. A
technical question requiring study is the extent to which the function and argu
ment lists of different expressions should overlap; i.e., whether these lists

should have local or global scope.

Another question is whether ASSP should coexist with conventionally formed

expressions in core or be exclusive. Although an exclusive ASSP might be
simpler to implement, it might be difficult to use for studying the algebraic
structures of expressions that have been only partially evaluated numerically.

106

For example, a symbolic-numeric expression might equal zero to within the

numerical precision employed, but a demonstration of this property could re

quire a recombination from the ASSP-generated structures. The external speci

fications of a coexistent ASSP could be extremely simple. One could, for ex

ample, reserve XX for prefixes of ASSP-structured names, with the possibility

of causing a recombination with such a statement as LET(A = XXA); . An

alternative solution to determine whether an expression equals zero would be to

have a unique form for each expression.

Principal advantages of ASSP include the saving of space resulting from de

creased repetition of common subexpressions and functional forms, reduced

intermediate swell, and improved coding efficiency. A disadvantage might be

the necessity for analyzing the propagation of numerical error. As can be seen

in the example of section 3, the completion of a parameter optimization task in

volves SINCON. The specific manner in which this is done can lead to different

types of numerical error. However, the sequences of short expressions envisaged

as the output of an ASSP transformation should be an especially suitable form

for processing in PL/I, thereby alleviating the problem of numerical error

analysis in the design of a new FORMAC. (A user would manually check the

PL/I code prior to evaluation.)

An alternative device to facilitate SINCON-is a procedure that would cause a

function variable association with an evaluated function (FAE F).

FAEF(G(1). (B)) = F(XC1));

would be a FORMAC statement, providing the code automatically for the sub

stitutions given in MIN3. A possible way for FAEF to work would be for all

occurrences of G(1). (B) and its derivatives encountered after execution of the

above statement to be replaced by the evaluated F and its derivatives; the eval

uation would be performed with the values of X(1) and B that were current

when FAEF was executed. FAEF would provide a limited form of automatic

back-substitution.

107

FAEF does not go as far as ASSP because the internal formats need not be

changed from those presently employed in FORMAC, and the problem of efficiently

generating the expressions used for F(X) still must be solved. For the same

reason, no new problem would arise in inspecting algebraic structures, such as

would arise in ASSP.

Although ASSP appears to have considerably greater potential as a reduction

device, either ASSP or FAEF could facilitate the solution of a large class of

problems. In a nuclear three-body problem, for instance, several nonlinear
parameters must be optimized in minimizing Et. 7 Because a symbolic system

is inherently slower than a numerical system, ASSP appears to be superior in

cases in which a large number of numerical iterations is required. This is be

cause ASSP should be easier to adapt for outputs to a PL/I numeric routine.

In contrast, FAEF brings the symbolic-numeric interface deeper into the logic

of FORMAC and it should therefore be more effective in making FORMAC itself

a more efficient system.

A by-product of ASSP would be improved comparisons of nested expressions.

Automatic duplication of the results of expression-matching codes such as

SHRINK, developed by J. B. Baker and reported in reference 6, should be facile.

It seems worthwhile to study implementation of ASSP and FAEF in FORMAC.

Because of the interpretive nature of FORMAC , such automatic but optional pro

cedures might easily be incorporated into the existing FORMAC system. 8 , 9

Hopefully, such implementation will not be unreasonably complex and it will not

require too much overhead of space and time.

.Bringing the additional class of problems within reach of FORMAC through

implementing these ideas would make the FORMAC system of even greater im

portance in the physical sciences and engineering.

108

REFERENCES

1. 	 Harry Eisenpress and Abel Bomberault, "Efficient symbolic differentiation
using PL/I-FORVAC," IBM TR 320-2956, 1968.

2, 	 L. Lovich and S. Rosati, "Direct numerical integration of the two-nucleon
Schroedinger equation with tensor forces, "Physics Review, 140, 4B, 22
November 1965, pp. B877-B882o

3. 	 K. Gottfried, Quantum mechanics, W.A. Benjamin, Inc., New York, 1966.

4. 	 W. C. Davidon, '"ariable metric method for minimization," ANL-5990
(Rev. 2), Argonne National Laboratory, Argonne, Illinois, 1966
(unpublished).

5. 	 R. G. Tobey, "Eliminating monotonous mathematics with FORMA.C,"
Communications of the Association for Computing Machinery Vol. 9, No. 2,
October 1966, pp. 742-751.

6. 	 R. G. Tobey, "Experience with FORMAC algorithm design," Communications
of the Association for Computing Machinery Vol. 9, No. 8, August 1966, pp.
589-597.

7. 	 L. M. Delves and J. M. Blatt, "rBinding energy of the triton," Nuclear
Physics A98, October 1967, pp0 503-526.

8. 	 R. G. Tobey, et al., "PL/I FORMAC Interpreter, User's Reference
Manual," IBM Contributed Program Libyary, 360D 03.3.004, Hawthorne,
New York, October 1967.

9. 	 R. G. Tobey, private communication.

109

PRECEDING PAGE BLRKKrNOT FILMED

THE USE OF COMPUTER-AIDED SYMBOLIC

MATHEMATICS TO EXPLORE THE HIGHER DERIVATIVES

OF BELLMAN'S EQUATION

by

Stanley B. Gershwin
Graduate School of Arts and Sciences

Harvard University
Cambridge, Massachusetts

.-19-193

Abstract

The FORMAC system is used to solve the following problem
in optimal control theory: how do the third and higher space
derivatives of the optimal value function behave along the optimal
trajectory?

Bellman's equation is analyzed by taking derivatives of
all orders. It is found that, unlike the second derivative which
satisfies a nonlinear equation, the third and higher derivatives
of the optimal value function satisfy linear differential equations
along the optimal trajectory. Analysis of those equations shows
that if certain conditions are satisfied, their solutions are unique
and bounded. Consequently, all partial derivatives of the optimal
feedback control function are unique and bounded.

A general algorithm is proposed for numerically solving
optimal control problems using the higher derivatives. The
differential equations for the third and fourth derivatives are
displayed.

111

pRECEDING PAGE BLANK NOT FILMED

THE USE OF COMPUTER-AIDED SYMBOLIC MATHEMATICS TO EXPLORETHE HIGHER DERIVATIVES OF BELLMAN'S EQUATION

by

Stanley B. Gershwin

1. INTRODUCTION

An optimal control problem is a problem of the following form. Consider

the differential equation

S=f(x, u, t) (1)

with initial conditions

x(to) = x 0 . (2)

Then if u(t) is a known function of time, x(t) depepds on U(T), to T" t.

Define

tf

J(xo, to) = / L (x(t), u(t), t) dt + 4' (x(tf)). (3)

If U(T), to T < tf is known, J(xo,to) is known. Find the function

u(T), to S T tf which minimizes J(xo,to). The minimum will be called

V(xo, to).

In this paper, only the case where x(t) and u(t) are scalars is considered.

113

It has been shown1 that the minimizing u(,r) may be obtained from the solution

of the following equations simultaneously with Equation (1).

S=- Lx - ,fx (4)

0 = Lu + xfu (5)

where

X(tf) = Oz(x(tf)) (6)

and thus V(xo, to) may be found by integrating Equation (3). Equations (4) and (5)

are the Euler-Lagrange equations.

Alternatively, it has been shown1 that V(x, t) and u(x,t) satisfy the Hamilton

Jacobi-Bellman Equation

aV_ mn aV

at u [L (x, u, t) + - f(x, u, t)] (7)

ax

with boundary condition

V(x(tf)) - € (x(tf)). (8)

This approach is known as dynamic programming.

Differential dynamic programming (see references 2 and 3) seeks to use (7)

to improve a nominal, nonoptimal trajectory, if the nominal is known to be

sufficiently close to the optimal trajectory.

It is also of interest to solve the related discrete problem: analogously to

equations (1) and (2), x(ti) is determined as.a function of u(tj), o < j E i from

x(ti+i) = f(x(ti), u(ti), ti) for i = 0, . ., N- 1 (9)

x(t0) = 0 (10)

114

and

N-i

J(Xo, to) = L(x(ti), n(ti), t.) + (X(tN))()

1=0 ~(~N)

The minimum of J(xo, to) with respect to u(to), . .. , u(tN_1) is V (xo, to).

Equations analogous to (4) and (5) are found in reference 1, and equations

analogous to (7) and (8) are found in reference 4. The latter reference also

contains a differential dynamic programming treatment for the discrete problem,

similar to that for the continuous problem in (2) and (3).

It is of interest to find perturbation feedback laws. If an optimal trajectory

passing through a given point is known, how is the optimal trajectory passing

through a neighboring point related to it? Stated more precisely, if x(t) =3i +6x,

the optimal control at time t will be u(t) = uo + 6u, where u° is the optimal

control if x(t) =3E. Find 6u as a function of dx. In particular, if this function

can be expressed as a Taylor series, find the derivatives

FX optimal optimal,

Significant computational and theoretical results have been obtained by

performing Taylor expansions to first and second order on (4) and (5) in refer

ence 1, on (7) in references 2 and 3, and on equations (9), (10), and (11) in

reference 4. The aim of this paper is to generalize some of those results by

performing higher order expansions on (7).

The second order analysis of (7) shows that the derivatives Vx and Vxx

satisfy certain differential equations along optimal trajectories. The equation

for Vxx is nonlinear, and we must show that Vxx is finite to guarantee that a

given trajectory is truly optimal and unique. The succeeding sections show that

the higher derivatives Vxxx, Vxxxx, etc., all satisfy linear differential equations

along the optimal trajectory and thus if V is finite, all higher derivatives are xx

115

also finite. Then all derivatives -- optimal' are finite (and known if the deriva

tives of V are known).

The FORMAC system was used to generate the lower-order equations (third

and fourth), from which the general analysis of this paper was performed. Similar

experimentation was applied to the discrete problem (9), (10), (11). The resulting

expressions were considerably more complicated and the analysis was not completed.

In the rest of the paper, the following notation will be used:

A = A(x, ul*, t);'A'= A R, ', t)

where A is some function evaluated along a nominal trajectory

Ax -" A (x,u*, t) l=

(X,u. u*will be defined below.)

As in the literature, the following exception is made. The derivatives of H

aV

H(x, u, t)=L(x, u, t) + -- (x, t) f(x, u, t)

av

are taken with held constant. Thus

x
Hx x H(x,u*, t) =Lx (x, u*, t) +V (x,b xX, u*, t).

Define X(= H; but when differentiating 3{ with respect to x,

allow for the variation of Vx . Thus

=H +V fx X xX

= +2V f +V f.

116

2. DIFFERENTIAL DYNAMIC PROGRAMMING

As described in references 2, 3, and (in a discrete form) 4, differential

dynamic programming has been implemented as described below.

Equation (1) is integrated using the nominal control history u(T) (which is

given and is nonoptimal) to produce the initial nominal trajectory x(t). Then

Equation (7) is integrated backwards along the nominal trajectory, using an
aV

approximation to x-. The value of u satisfying (7) (called u*) is used in calcula

ting a new nominal trajectory, and the cycle repeats.

To get the approximation to E and to see how to use u* to obtain a new
ax

nominal trajectory, the following analysis is performed. Assuming K and u*

are known, the optimal trajectory is defined by

x(t) = x(t) + 6x(t) (12)

u(t) = u*(t) + 8u(t).

If (7) is expanded in a Taylor series about x and u*, the result is

a V(X, t) + V iX, t) 6x + (13)

ax

inn [L(x u*, t) +aL 6xL+ d-Su+

+T (xt) +; X6x+...) (f(,u*,t)+fx6X+f u+...)].

The minimization is performed, and u is found as a function of x. Under

proper conditions, this may be expressed as a Taylor series

U(t) = u*(t) + 6u (t) (14)

= u*(t) +u x +1 uxx .2..

X 2

Clearly the coefficients in (14) will involve etc.

117

If the expansion (Equation (14)) for 6u is inserted into Equation (13), both sides

of (13) are Taylor series in 6x, and thus they are termwise equal. Insolating

terms in Equation (13) from which 6x is absent, one obtains a prediction of the

improved value of V:

---V (x, t) = L(x, u*, t) + - -(- %Vt f (U*,)(5 (15),t) ,u*t)

Or since

dA aA + A aA +A- (16)t= - --- x = -+ X

along the current nominal trajectory,.where

then

dV (f)- (17)

Similarly, the terms in Equation (13) containing 6x to the first power form

the equation for :
ax

d aV aL aV af a2V -- -- V f . (18)-+ + f) + + Y(dt x azx a- ax F (f

In Equation (18), the last term may be dropped because u* was found to

minimize H =L (x, u*, t) + --av (3E, t) f(% i, t)

and thus

H - a =L + W f = 0 (19)
au ax

u

118

Likewise, equating coefficients of 6x 2 in Equation (13) yields

d b 2V L V 2f 2V
3-x- -Lxx + x xx+ x -2

+ ux (Lux + V xfux + fuv xx) + xxx(f - f). (20)

Clearly there is no conceptual difference between finding Equation (20) and

finding similar equations for higher order derivatives. However, the com

putational complexity is considerable. The third order equation was found by
5MeReynolds5. In addition, T. E. Bullock informed D. H. Jacobson in a private

communication that he computed equations up to the seventeenth order for a

specific scalar problem. He noticed, in that case, that all equations of an

order exceeding two were linear.

To find the coefficients in (14) (ux and ux it should be noticed that

6u in Equation (12) is chosen to preserve

Ha(X + 6x, u + 6 u, t) =0 (21)

or
* (V (x +6x, t)

Lu(X + 6x, u + 6u, t) + x

fu(x + Ox, u + 6u, t)= 0. (22)

Thus,
Sy6x + L 6u+...=0 (23)

or
6u F-x Y(u

u x Tx- -77-- (24)lim

assuming is nonzero.

119

This may be written

a= -) (Lux + V f + fVXX (25)

or

-
ux = - (Hun) (H +f V)

3. HIGHER ORDER EQUATIONS

Form of the Equations

The Hamilton-Jacobi-Bellman Equation may be written

0=v t +3. (26)
Then the equations for V. (17), Vxx (20), and all higher derivatives. may be

written

0 = (Nx t ax275
()x) (27)

where the derivatives with respect to x are taken preserving

0 = Hu u (28

But,

(=a=x + u (29)
Hu 0 u = constant x = constant

where ux is given by Equation (25).

Thus the equation for Vx (15) may be written

0=Vx + }x (30)

because

=77' }i=}x + ux Yiu Rix (
+uJ(1Wx(31)

H =o
U=10

120

or

0=Vxt + Hx + Vxxf.

The equation for Vxx (20) is

o =Vx + (T T- Hx + VxxI) (2+ y(
xxt u(32)

x K X

or

O= Vxx t + H + 2Vxx f + V f + u (Hux + V f). (32)

This is quadratic in V because of the form of u .xx x

When the transformation (16) is applied to (31) and (32'), the latter equations

become ordinary differential equations in V and V along the nominal tra

jectory. Equation (31) is a linear differential equation, and (32) is a nonlinear

Ricatti equation (because ux is given by (25)).

It will now be shown that the higher order equations which are generated

from (27) using transformation (16) and using expressions for and uxxux

derived from Equation (25) are all linear ordinary differential equations. Thus,

Equation (27) is a linear equation for all valuesof n except n = 2, in which

case it is a Ricatti equation.

Equation (32) may be written

0 = Vxx t + R xx +R xU Ux" (33)

The equivalent of Equation (27) may be obtained by applying (29) to (33)

n - 2 times.

O= Vn + n-2 Hx +n-- xuUx (34)

where the derivative is taken along]{ = 0.

U

121

When Equation (34) is expanded, all derivatives of u with respect to x up to

u n-1 are present. The latter is present only in the term
X

xni n-i. x

From Equation (25) it is apparent that u k-i contains all derivatives of
x

V up to V k * The latter appears only linearly, as
x

H- 1- fHJfVk uu u k
x

Thus, on expanding Equation (34), the only contribution of V n due to
x

u n-l is

H-H I fV
xu uu U n x

In general, the last term of Equation (34) will expand out as a sum of terms

of the form

xi u xn-i (35)

for i=I, ... , n-l.

= +r a(L
The highest derivative of V that appears in J()

xu

is V i + 1" Thus for i I1 (i = 1 was covered above) the only occurrence of
x

V n is due to Y n-i ux, and the term containing V n is
X X U X

122

ufVxn XR (Huu) V

6 n-2gi) onibtsV ithTherefore, the last term in (34), (trx) contributes V f(HxUn in the
X

form

2uf V n
xnu x

and contributes no higher derivatives of V.

Finally, R,. = LxxXX X + VxxxfX + 2VXX fX + VSXXf . The terms involving

V n+! and V n in x n-2 X are

V n+l f + (n-2) V u (fx + uf) + 2V n fx

x X X

=V n+l f + nV jfx+(n-2) u f Vxn

X x

and no higher derivatives of V appear. Therefore, the terms in Vn

V n+l' and V in Equation (34) are

VxA + Vxn+1 f +n (fX + ufu) Vxn (36)

All other terms in (34) involve derivatives of V of lower order. Thus (34) may

be written

dV+nf - Q
dt nx U) xn - n(t) - V n+1 (f-) (37)

by means of (16) where the expression Gn(t) is formed from derivatives of L,

f, and V, and contains no derivative of V of higher order than V
x

123

In Gn(t), derivatives of L and f are with respect to x and u, and deriva

tives of V are only with respect to x.

The only quantity that appears in a denominator of a fraction in Gn(t) is

H and its powers. This situation exists because the form of u implies

that uxx must be written as a quantity divided by (H u)2 and in general, Uxk is a

kquantity divided by (Hun) . Since Gn(t) is a sum of products of powers of

u
x

k ' it will contain inverses of powers of H
U

. Clearly from the form of

(34), Gn(t) will have no other expression as a denominator.
,

In Equation (37), all quantities are evaluated at x = x and u = u , except

r, which is evaluated at x = x and u = U

The boundary conditions for equations (17), (18), (20), and (37) are given
at t = tf by Equation (38).

V n (x(t , tf) =0 xn (X(tf)) 	 (38)

for 	n= 0, 1, 2,

Higher Order Algorithms

Computationally Equation (37) may be used to generalize the first and

second order differential dynamic programming algorithms of references 2
and 3. Briefly, such an algorithm would be executed as follows.

1. 	 Guess u(t).
2. 	 Integrate Equation (1) with u = u (t)forward from

t = t o tot tf to find x . Use the boundary condition in (2).

3. 	 Integrate (15), (20), and (37) for n= 3, ... , N along x= x and
u = ne from t = tf to t = to, using the boundary conditions (38).

(f 	 f)(In the Nth equation, the V n + - term is ignored.) To find
x

124

u minimize L (x, u, t) + V(x, t) f(x, u, t4 with respect to u.

4. 	 Calculate u, Ux , ., uxN 1 . (The formulas for these are

found by differentiating Equation (24). Exactly N-1 derivatives

are possible because N derivatives of V are known.)

1 2

5. 	 Integrate Equation (1) with u=u*+ ux6x + 1 u 6x +
x 	 2 x ..

+ (N 1 ' uxN-i 6 xN-i where 6x = x - 7 and x is the solution

to (i) with the boundary condition (2). Thus 6x(t) =0, so that

u(to) = u (to).
6. 	 Go-to step 3.

Important details have been left off this description of the algorithm, such

as the fact that 6 x must be limited in size to keep the approximate expansion

V(x 	 + 6x, t) = V(x, t) + V(x, t) 6x +

(39)+ 1! VXN (x, t) 6xN

accurate, i.e., (39) must be valid within some tolerance. (This is described

more carefully in references 2, 3, and 4, along with all other relevant de

tails of the algorithm, including the process by which & is limited.)

Thus it is advantageous to use large values of N because large values of

6x will approximately satisfy Equation (39) and because, for a given value of

6x, the approximation in step 5

* +-6x + + 1. u N-1 xN-i 	 (40)
u=u ux+ (N) x

will be more exact than it would be for smaller values of N. Since larger values

of N allow the use of larger values of 6x, convergence to a given accuracy may

be possible with fewer iterations.

125

However, there are serious disadvantages to using large values of N. N

versions of Equation (37) must be integrated, and N-i derivatives

u,..., uN-i must be calculated (at each time step). These difficulties are
X

compounded immensely when (as is usually the case) x is a vector. If x has

M components, (37) represents Mn equations foreach value-of n. (There

are symmetries, but the number of independent equations is on the order of

A Sufficiency Proof

The theoretical significance of Equation (37) appears on the optimal tra

jectory, 	where u = u = u, and thus f = f . Then (37) becomes

dV nx +n (f + Uf) Vn= G (t). (41)
dt

Also, equations (18) and (20) become

dV + fV L (42)

t- Xx x

dVxx + (2f +uf) Vxx -Lxx -f xxVx

dt

-Ux (LUX + fax Vx). (43)

These equations are coupled in one direction. If we knew the optimal tra

jectory, (42) could be solved (with the boundary condition (38), n = 1). Then

Equation (43) would be solved, using (38) for n 2. Only then could (41) be

solved for n=3 and then for n= 4, etc.

126

The solution to Equation (41) with boundary condition (38) is

Vxn (x(t), t) = (44)

n fttf a(t) dt'

5n(tf) e

-f tf Gn(r) e n ftT&a(t)dt T&

for n=3,4,

where a(t) = f (x(t), u(t), t) + U(t) f (x(t), u(t),t) and ux isgivenby (25).

Thus a solution to Equation (41) exists, and it is finite for n 2 3 if

a. (X (t) = f + u f is defined and continuous on [to, tf], and ifx XII

T

b. Gn (T)= e n & (t) dt' is defined and continuous on t S t 5; tf.

Conditions a and b are both satisfied in Vxx, Hurn and sufficient derivatives

Lxu, f and Lxuu are defined and continuous on [to, tf].

Since uxk, is a sum of expressions divided by powers of Huu and since

each of these expressions is a polynomial in Vx, Vxx, ... V k-i' if Vxx
x

-and H tI are defined and continuous, u k'k= 1, 2, .. exists. Therefore
x

perturbation feedback laws and neighboring extermals exist.

The values of ux , uxx, ... are known; they are given by Equation (25)

and its derivatives. If V and H -1 are assumed finite at every point alongxx uu

the trajectory, then ux, and uxx, ... are all finite at every point.

A paper extending these theoretical results to the vector case has been

accepted for publication.

127

4. 	 USE OF THE FORMAC SYSTEM
6 7

The FORMAC batch and scope systems were helpful in arriving at the

theoretical results of the previous section. The FORMAC system did not do the

proof of the previous section, nor was it able to find the general linear form of

Equation (37). Instead, the author used the system to obtain the form of 3rd,4th,

and higher order equations. A pattern was recognized, and it was found that the

pattern could be generalized. This kind of mathematical experimentation is

discouraging to undertake without benefit of a mechanical device because,

"...the manipulations seem quite formidable.,,5 FORMAC made an empirical

approach to this problem practical.

The following are the derivatives of the Hamilton-Jacobi-Bellman Equation

as produced by the FORMAC system.

+V = xVxxf V xxf x	 (45)x +L

- -V = V f 	+ 2V f + V u f + V f (46)

+V uf +L u +Lxxxu XU.X XX

~2

4f- V V + Luu2 + 3 V f (47)

x

+ 4V u f + V 	 u f + V u2fXX Xux X xxux x xxuU

" 3V f + 2V u 	f + V fXKX XxXXxx X XXX

+ 2V u f + V 	 u f + V u2f
xxx xu xx xx u xxx uu

+ 2L u +L u +LXXU x xU xx xxx

128

S 4= 	 (48)
x

2 3

V 5 f + 3L 2 +L u + 4V34223

x x U 	 xn x

+ 9V uf + 6V u f + V u f3 x xi xx xx xi x 3- XU
x 	 x

+ 	 3V u u f + 6V u 2f

x xx x 2 xx x xuu

xu

+ 6V 3fxx + 9Vxx fSxx xxxxu

x

+ 3V u f 2 + 3V 	u 2f + 4V f

" 3V u +SVU4 xuu fux 	 x 3 V3Uxf

xii x x x

" V 3fu + 3V 3ux2f + 3V u u f
x x

+ V 2 u 2f SL u 3a + fxu~x3 2 	 Ux+ 3L
+ 3 	L 2uxu x
f
X X U xU 	 X U

+ 	 3L U + L V + L

x XC

In addition to equations (45) through (48), the fifth, sixth, and seventh de

rivatives of Equation (7) and the first seven derivatives of Equation (19) were

also produced. Space limitations preclude displaying those expressions here.

5. SUMMARY

The FORMAC system is used to obtain new results in a problem in optimal

control theory.

The differentiation of Equation (27) was first performed using the FORMAC

system to obtain the third and fourth order equations. It was perceived that

nonlinear terms did not arise, and this fact was generalized. Clearly this is

129

an important application of a symbol-manipulation system: supplying specific

examples of phenomena for the mathematician to generalize.

There are other problems in optimal control theory to which a symbol

manipulation system may be applied. One is the discrete time problem in (9),

(10), and (11), for which results like those in this paper may be obtainable.

Another is the symbolic solution of the Euler-Lagrange equations (4), (5), and

(6). An attack was made on this problem (see these Proceedings, reference

10), but the approach appears to be impractical.

REFERENCES

1. 	 A. E. Bryson, Jr. and Y. C. Ho, Optimization, Estimation, and Control,
Blaisdell, 1969, to be published.

2. 	 D. H. Jacobson, "Differential Dynamic Programming Methods for Deter
mining Optimal Control of Non-Linear Systems," Ph.D. Thesis, University
of London, October 1967.

3. 	 D. H. Jacobson, "New Second-Order and First-Order Algorithms for

Determining Optimal Control: A Differential Dynamic Programming

Approach," Division of Engineering and Applied Physics, Harvard

University, Cambridge, Massachusetts, February 1968.

4. 	 S. B. Gershwin and D. H. Jacobson, "A Discrete Time Differential

Dynamic Programming Algorithm withApplication to Optimal Orbit

Transfer," Division of Engineering and Applied Physics, Harvard

University, Cambridge, Massachusetts, August 1968.

5. 	 S. R. McReynolds, "Higher Order Optimal Feedback Schemes," un
published memorandum, September 1964.

6. 	 R. Tobey, et al., "PL/I - FORMAC Interpreter, User's Reference

Manual," IBM Contributed Program Library 360D 03.3. 004,

Hawthorne, N.Y., October 1967.

*7. 	 R. G. Tobey and J. D. Lipson, "The Scope FORMAC Language,"
these Proceedings.

8. 	 E. L. Ince, Ordinary Differential Equations, Dover, 1956.

9. 	 S. B. Gershwin, "On the Higher Derivatives of Bellman's Equation,"

Journal of Mathematical Analysis and Applications (to appear).

*10. 	 S. B. Gershwin, "An Attempt to Solve Differential Equations
Symbolically," these Proceedings.

*These articles appear in these Proceedings.

130

DESIGN AND ANALYSIS OF MATHEMATICAL ALGORITHMS

131

PRECEDING PAGE BLANK NOT FILMED

SYMBOLIC INTEGRATION OF

ELEMENTARY FUNCTIONS

by

Robert H. Risch
IBM Research Center

Yorktown Heights, New York

N71 -19194

Abstract

The problem implied by the phrase "symbolic integration
of elementary functions is difficult to formulate. This paper
presents the issues that arise in attempting such a formulation,
the formulation proposed by the author, and the work he has done
toward its solution. Actual examples are worked, employing
an algorithm for the integration of functions built up using logarithms,
exponentials, and rational operations.

The paper was prepared while the author was employed by the System Develop
,ment Corporation, Santa Monica, California.

133

PRECUING PAGEBLANfK NOT FILM D

SYMBOLIC INTEGRATION OF ELEMENTARY FUNCTIONS

by

Robert H. Risch

1. INTRODUCTION

In elementary calculus courses students are asked to find the indefinite

integrals of "elementary functions" like f ++lorfsin2x dx. The teacher

usually states without proof that there is no elementary expression in closed

2))form for integrals like f snax x dor (1-x (1-k~x . Elementary is usually

defined as those functions that can be built upon from the rationals and an inde

pendent variable using only exponential, logarithmic, trigonometric, and inverse

trigonometric operations.

Joseph Liouville 2 , 3 did the first significant work on the problem of inte

gration in finite terms during the years 1833-1841. (See also references 4, 5,

and 7 - 11 for work on integration.) Among other things, he showed that when

the integral of an elementary function is elementary it must be of a certain def

inite form, and that the two integrals above are not integrable in finite terms.

During the remainder of the nineteenth century, French and Russian math

ematicians did some work on the problem of determining when an algebraic

function has an elementary antiderivative.

In 1913 the Russian mathematician D. D. Mordoukhay-Boltovskoy discussed

integrals of functions built up using exponentials, logarithms, and the four ra

tional operations. Although he claimed that a general method exists for deter

mining whether such a function has an elementary indefinite integral and finding

the integral ifit does, he made only a vague attempt to explicitly give such an

algorithm.

135

Since the 1931 work of Gidel, mathematicians have realized that integration

in finite terms is a decision problem, and that it should be examined in order to see

whether it is decidable or undecidable. According to this modern point of view,

one must define elementary function precisely, and one must explain the phrase

"given an elementary function." The way of function is usually given is a symbol

on a piece of paper, but the function that the symbol represents must be uniquely

specified.

This paper presents the issues that arise when one tries to precisely formu

late this problem. The formulation and the work done by this author toward its

solution are discussed. Examples are worked to illustrate the algorithm de

veloped for integrating elementary functions that are built up using exponentials,

logarithms, and the rational operations, provided that exponentials and loga

rithms cannot be replaced by adjoining constants and performing algebraic

operations. The techniques a computer will have to invoke for the algorithm to

be implemented are mentioned.

2. THE PROBLEM OF FORMULATION"

In order to precisely state the decision problem, a countable set of symbols

to represent our functions must be given, and the functions corresponding to the

individual symbols should be specified. Care must be exercised here. For

example, our elementary functions might contain, as a subclass, a set of

numbers S for which the'problem of telling whether one is identically zero is un

decidable (the computable "reals" is such a class). Then the integration problem

for the set of functions laex2 :aeS I is undecidable since faex2 dx is elemen

tary iff a = 0.
6

In an unpublished thesis, Daniel Richardson constructed a class of real

functions, which he calls elementary, in which each function is either identically

0 on the real line or identically 1 on some interval. Given such a function,

whether the function is of the first or second type is undecidable. {fex2:fs

Richardson's class I gives a solution for the integration problem similar to that

136

in the preceding paragraph. The result depends heavily on the fact that IA I (or

log IA I) is allowed as an elementary operation. With the absolute value function,

the minimum of two functions can be defined and, thus, distinct analytic functions

can be spliced together.

These artificial examples do not give any real insight into the question of

why a function that is known not to be the zero function has or does not have an

elementary indefinite integral, and they seem to have little connection with the

classical problem considered by Liouville.

The formulation given here is motivated by the three considerations that

follow.

a. 	 One must be able to determine when a function of the class being con

sidered is equal to zero (or equivalently when two are equal).

It is important to know how to do this so one does not try to integrate'a

symbol that does not represent a function such as log (1) . One
elog 	/_xe

es in 1/2-ee
must avoid considering expressions for constants like

-log(3-e 6) since there is no known method for determining when two of
these constants are equal. (See reference 1 for an account of problems
of this type.)

b. 	 It is easier to deal with complex rather than real functions.

If i = is allowed as a constant, the only transcendental operations
needed are exp and log because 'in, tan-I, etc., can be written in terms
of those two; e. g. , tan-lz = 6g i-z

(T). If one starts with a given
function which has an expression involving the trigonometric functions
and real constants, and then converts to complex form and finds an
elementary indefinite integral in complex form, one can convert back
to real expression involving the functions one stirted with.. (See
reference 8 for details.)

c. 	 An unambiguous situation is necessary when dealing with the branches
of multiple-valued functions.

For 	example, fez2 (log ez -z) dz is elementary iff the branch of the
logarithm chosen is log ez =z. Generally, for an arbitrary symbol re-.
presenting an elementary function, it is an undecidable problem to tell
whether there is a choice of the logarithms involved that makes the in
tegral elementary. (See Prop. 2.2 of the revised version of reference
7.) 	 Here this situation will be avoided by choosing the symbols so that

137

- -

no matter what branch of the logarithms or algebraic functions involved
is chosen, the question of whether or not the integral is elementary de
pends only on the symbol, as in flog5F dx.

Let K be a field of constants over which one can perform algebraic opera
tions including the factoring of polynomials. Let us consider fields of elementary
functions of the form K(z, 01, ... , n) where z is the identity function and each

ei is either algebraic over K(z, 61, ... , 6i-i) or an exponential or logarithm of
an element of K(z, el,..., ei) i is it is~-i).f an exponential or logarithm,

transcendental over any field that can be obtained by adding constants to
K(z, 6, ... , 6 i-i).Then %i is called a monomial over K(z,e6,..., Oi), and

K(z, 61, . .. , en) is regular elementary over K(z). For example, in

Q(z, ez, log ez) where Q = rational numbers, ez is a monomial over Q(z).

However log ez is not a monomial over Q(z, ez) since it is in Q(z,2ri).

z+1
Similarly, e is not a monomial over Q(z, ez) since it is the square root
of an element of Q(z, ez, e).

The sequence of symbols E = <lE, ZE, expEZE> represents the generators
of the field Q(z, eZ). The subscript E emphasizes that we are dealing with
symbols rather than the functions they represent. The terms built up from these
symbols using the four binary operation symbols +,, *E, -E, serve to des
ignate each element of the field. E is called an elementary field description
(efd). Q(z, ez) is called a model of E. If an efd has a model which is regular
elementary over K(z), it is called regular. The efd given above is regular, but

<lE'ZE, exp EZ, loge expEZE> is not regular.

Regular efd's have some properties which make them particularly valuable
in finding solutions to the types of problems discussed in this paper. Since the
modelsof a regular efd E-are isomorphic, problems with branches of the loga
rithm like those described -previously do not occur. Since bases for the field
determined by the efd can be constructed, one can determine when two elements

of the field are equal.

138

Any elementary function lies in a model of some regular efd. (The treat

ment of a nonregular efd is discussed in reference 12.) The problem of inte

gration in finite terms involves:

a. Deciding for a given efd whether it is regular.

b. Deciding whether a given symbol, built up from a regular efd, repre
sents a function with an elementary antiderivative, and finding the anti
derivative if it does.

3. THE ALGORITHM

In reference 7 the author gave an algorithm for completing the two steps

above for efd's corresponding to fields K(z, e1, • .. 'n) where each Gi is an

exponential or logarithm of an element of K(z,6l, ... ,ei_). In reference 9 the

author reduced the case in which ei may be algebraic over K(z,6 1 ,...,ei-l)

to a problem in algebraic function theory.

The algorithm in reference 7 extends the well known partialfraction algo

rithm of a rational function (i. e., K(z)) integration to functions in pure mono

mial extensions of K(z). The starting point of this extension is the classical

theorem of Liouville which tells us (in our version) that for a differential field

F (i. e., a field closed under differentiation, like those discussed above) with

an algebraically closed constant field L, if an f E 9 has an elementary indefinite

integral, then f f =v 0 + celog v. where v0 ,v. are in y, and the c. are in L.

To apply the theorem to functions f in pure monomial extensions

= K(z,6 1 ,. .. , en), one sets Y = .(6) where 6 = On . The monomial e is

treated as an indeterminate over A, and a partial fraction decomposition of f

is made (which is a rational function of e with coefficients in Dl) over D.

139

Using Liouvile's theorem to find the schemata for the functions involved in the
integral, one gets something like

AkO±... +A 0 Bk+l6k + 1 + +B 0 + d logfD
+ +..... Io jo +

A 1 A B 1k-i_ 11, fB1.+I	 Plk1 Bk1 pI 1 p11k, 	 k, _ P++ k-i

f=

As'ks A BS'ks-I B B
+ k- + " " P + 	 +k-1BS

PPs
Ps

where the pi's are monic irreducible polynomials in 6, the Aj and, Bj are in
D, and the A,, and B,, are in, £ [6]. The above schema corresponds to the
case 0 = log f. (See pages 33, 38, and 39 of reference 7 for further details.)

The right-hand side of the schema shown above is differentiated. By equat
ing corresponding parts we obtain the conditions on the B's required for the
existence of an elementary antiderivative forf. These conditions immediately

lead to the problems of:

a. 	 Telling whether an element of b has an elementary indefinite integral
b. 	 Telling whether a first-order linear differential equation with coeffi

cients in b has a solution in 0 (z=K (z, 0,..., n_l)

These problems are reduced to similar problems over R(z, 61,..., en-2), then
they finally reduced to the problem of determining whether a set of linear
equations with coefficients in K has a solution in K.

4. 	 COMPUTATIONAL ASPECTS

In this section we illustrate the algorithm, but first we shall mention a use

ful theorem that will appear in a forthcoming paper 12 which enables one to

140

easily solve the problem of determining whether a given efd is regular. This

theorem provides a monomial test. Let b = K(z, 61, ,en) be a pure mono

mial extension of K(z). Let log fi, i=,..., r, and exp g,, i=l,..., s,

(where

among

r+s=n) be respectively the logarithmic and exponential mononials

en,...,n. For f, g in b, log f, and exp g are not monomials over

iff:

a.

r ki

f =c0l 1f.
rationals.

s
1t(expgi)m i where c is a constant and ki and n i are

b. g=d+
r

P i log f. +
s
Z qig where d is a constant and pi and qi

are rationals.

It is apparent from this theorem that log z is a monomial over K(z).

Since there are no fi or gi here, if log z were not a monomial z would equal
a constant, which is a contradiction. Likewise, ez 2 is clearly a monomial over

K(z, log z). Thus the efd <IE, ZE, loge z., exp E ZE.EZE> is regular. (The

same is true for <lE, ZE, expEZE.EZE, logEz>.)

One can consider integrating functions represented by symbols that are

built up from it. In order to integrate elements of b = K(z, 61, ... ,en), one

must be able to perform the four rational operations on elements of D. One
must also be able to find the partial fraction decomposition of elements of b

over K(z, El, ... ,'n-I) where K is the algebraic closure of K. This implies

that one must be able to factor the polynomials in en over K(z, 61, •,-
For example, in bD= Q(z, log z),

4z 2
2

_ _ _ _ _
+

_ _ _ _ _

2z 2log z - log z - z log z +vz

(See page 31 of reference 7 for a discussion of how to do this.) It is generally

extremely difficult to carry out this factoring in practice, even on a computer.

141

Let us look at some functions in Q(z, ez 2 , log z) (the field corresponding

to the efd <lE IzE, explCZE.EZE logz,>). Letus examine,

z2 2o z +1
log+e + logg2 z dz

[z log Z)2 + Zl2 (log z + z

One must be able to set up a schema which indicates the form of the integral.

Here one knows that if the integral is elementary it is of the form

B2 (log z)2 +B 1 logz+B 0 +d logD 1,1 +C 1 log[(ogz)2 +z]i 2-
(logz) + z

isin Q(z,e z 2) where B0 , B1 , B2 are in Q(z,eZ2), B, 1 [logz), and e and

di are constants.

Differentiate and get

1) D!

B, (log z) 2 +(- B 2 + B'log z + 1 B + B0 + d. -2zz 1 : Di

BI, 1°gz +1) BI, I' 2 log z + 1
+ z 1, 1 + oI 2

+ z] 2[(log z) 2 (logz) 2 + z (log z) 2 + z

Now equating the corresponding parts of the two expressions for the inte

grand one gets
2 =

BI =0 so B is a constant and - 2 +B 2zez2

2B 2 2 1

Thus, B1 f2 zeZ2 dz - 2B 2 log z .

Here one has to integrate an element of b = Q(z, eZ2). We assume that this

can be done using induction. Thus B1 = ez 2 + bI - 2B2 log z where b1 is a

constant. B2 = 0 since B must be in Q(z, ez2).

142

Thus,

eZ2 2
b ez
B =eZ2 +b" + - + B0+(ZcilogDi) ' =--

B0 + Edi log Di +b 1 log z = fO = constant,

so b1 can be taken to be 0.

_13, 1 (1 log z+) logz -2 mod ((log z) 2 +z)

By the Euclidean algorithm the equation A[. log z + + B [(log z) 2 + z]

=log z - 2 can be solved for A and B in Q[z, log z], degree A<2, and degree

B = 0. Thus, one must be able to find god's of polynomials in several variables

(the monomials are the variables here).

In this case, A=logz, B=-2. ThusB 1 ,=-logz.

2 1
2 l z + BSubstituting this into log z - +

+ z]2[(log z) 2 (log z) 2 + z (log z) 2 + z

2 1 2 2
+ c 1 log [(log z) + zlj , after canceling one obtains c 1 log z + 1)=zlogz+1.

Therefore, c =1. These calculations show that the integral is ez 2 log z

log z + log [(log z) 2 + z].
(log z) 2 + z

If, instead of <lic, zE, exp zE.cZE, loge zr>, <l.,zC, logEzC, exp~z,.,z,>,

was chosen as the efd, the integrand would be written as

2 21oz1~
2 I 21log z + z +

eZ (2z log z +z-) + og++1

[(log z) 2 + zI2
 (log z) 2 + z

Here the schema for the solution runs B 1 ez 2 + B 0 + Ed i log Di

143

where B0 , Bi, Di are in Q(z, log z) and the di are constants. For B one11

obtains B1 + 2zB = 2z log z +;z One is to determine if this differential equa

tion has a solution Q(z, log z). By a discussion similar to that in the next ex
ample (or by inspection) we see that BI = log z. The rest of this problem is

worked in a manner similar to the preceding.

It is not clear whether a permutation of the monomials in an efd can lead to
a simpler computation. In certain cases the choice of an efd is important. For

example, it would be better to obtain ez 2 /2 as an element of the field

2Q(z, e,2/2) than the field Q(z, e , jeZ 2).

We next examine, in the field Q(z, log z, ez2

f (zI)2 z +2 logz- 1 +I - 2Z3 + 3z2 +2 dz

This integral must be for the form Aez2 where A Q(Z, 109Z)

(*) A' + 2zA =2 --- z+12 log-z zI +2
z(z+) 2 Z+ j z+ Z

A must be in Q(z) [log z] since any denominator would remain after differen

tiation. Thus,

A=A k log z+Ak-1 log k-z +...

-At= A' log k z + (A_ 1 + kA) log k 1 z +...k gzz(A~

In equation (*) the terms of highest degree in log z must cancel, so one

z 2 gets k= or k >I and A!+2zAAk 0=. From the latter one gets A=ce

ez 2which is impossible since is a monomial over Q(z).

144

Thus, k = 1

-A +2zA 1 =-- 1 I ~ 2
(z-1)2 z+l

1 2A1 + [2(z+1)-21 A = - -z+1 2
(z+1)

one obtains A -z+la (see page 36 of reference 8).

A a 2a -1 2 +?
1 (z+l) 2 z+l (z+l)2 z+l

- a -(z+1) 2a + (z+l) 2a = -1 - 2(z+l) + 2(z+1) 2 .

Thus, a=l and
A1

= 1
l

A0+- + 2zA0 ii1L+121 3 +z+ 2A'A +- --- 2z 3 +3z 2

2A' +2zA 0 =-2z3 -s-z +2

Let A = bk z k + . . .

AA0 = kbk zkk - I + ..

k + 1 = 3,

k = 2.

3 b 2z 2
2b2z+b +2z 2 + b +2zb 0 =-2z +3z 2 +2.

145

It is necessary to be able to solve systems of linear equations with constant

coefficients.

2b2 = -2

2b = 3
bIThis system cannot be solved, so the

2b 2 + 2b0 = 0 integral is not elementary.

b=2

5. SUMMARY

The formulation of the classical problem of integration in finite terms was
discussed. The concept of a monomial was introduced, and it was indicated how
one goes about integrating elements of pure monomial extensions
K (z, 61,..., Gn) of K(z), where K is a field of constants and z an indeter
minate. The algorithm requires one to have a facility for performing operations

on the elements of a field of rational functions of several variables

= K(Xl, Xm) viz.,,

a. Performing the four rational operations on b
b. Factoring elements of K [x.,..., xm] over K where R is the

algebraic closure of K

c. Finding the partial fraction decomposition of elements of
K(xl,..., xm)

0 over

d. Computing gcd's of pairs of elements of K[x1 ,..., xm]

e. Solving simultaneous sets of linear equations with coefficients in K.

146

REFERENCES

1. 	 S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, 1966.

2. 	 J. Liouville, "Sur la determination des integrales dont la valeur est algebri
que," Paris Ecole Polytechnique Journal, 14, 1833, pp. 124-193.

3. 	 J. Liouville, "Memoire sir les transcendantes elliptiques do premiere et de
seconde espece, considerees comme fonctiones de leur amplitude, "Paris
Ecole Polytechnique Journal, 14, 1833, pp. 57-83.

4. 	 D.D. Mordoukhay-Boltovskoy, "On the Integration of transcendental

functions, "Warsaw Universitet, Izvietiia, nos. 6-9, 1913 (Russian).

5. 	 A. Ostrowskt, "Sur l'integrabilite elementare de quelques classes

d'expressions," Commentarli Mathematique Helvetici, 28, 1946, pp.

283-308.

6. 	 D. Richardson, "Some Unsolvable Problems Involving Functions of a Real

Variable, "1Doctoral dissertation, University of Bristol, England, 1966.

7. 	 R. H. Risch, "The problem of integration in finite terms," SDC document
SP-2801/000/00, 23 March 1967 (To appear in revised form in the
Transactions of the American Mathematical Society in May 1969).

8. 	 R. H. Risch, "On real elementary functions, " SDC document SP/2801/001/
00, 22 May 1967.

9. 	 R. H. Risch, "On the integration of elementary functions which are built up
using algebraic operations," SDC document SP-2801/002/00, 22 June 1968.

10. 	 J. F. Ritt, Integration in finite terms, Liouville's theory of elementary
methods, Columbia University Press, 1948.

11. 	 M. Rosenlicht, "Liouville's theorem on functions with elementary integrals,"
Pacific Journal of Mathematics, 24, 1968, pp. 153-161.

12. 	 R. H. Risch, "Further Results on Elementary Functions" (to appear).

147

pRECEDING PAGE BLANK NOT FILMED

ASYMPTOTICS FOR FORMULA MANIPULATION

by

John I. Halton
Computer Sciences Department
The University of Wisconsin

Madison, Wisconsin

N71 -19195

Abstract

This paper presents some proposals for the implementa
tion, in a computer formula-manipulation system, of a sub
program for computing and manipulating asymptotic expansions.
The first part (sections I to 4) reviews the relevant mathe
matical theory. The second part (sections 5 to 6) discusses
implementation of the computations involved in an asympotic
package given a limit-subprogram. Notions of commensurate
functions (section 3) and of natural asymptotic expansions
(section 5) are proposed. Algorithms are given for forming
linear combinations, products, and arbitrary real powers of
given asymptotic expansions (the explicit expression for a
real power of an asymptotic series had to be derived: this
apparently new result is given in Lemma 15). Possible ex
tensions and difficulties are considered throughout the discussion.

149

PRECEDIG PAGE BLANK NOT FILMED

ASYMPTOTICS FOR FORMULA MANIPULATION

by

John H. Halton

1. 	 INTRODUCTION

This paper presents some proposals for implementing, in a computer for

mula manipulation system, a subprogram for computing and manipulating asymp

totic expansions. These proposals are viewed as merely a beginning; sufficient

(it would seem) to immediately construct only the most primitive and limited

kind of asymptotic package in an existing formula-manipulation system (such as

PL/I-FORMAC); but containing, despite many unresolved questions and difficul

ties, the seeds of a much more powerful and broad-ranging facility. It is in the

hope of stimulating further research and development of the ideas adumbrated

here that this paper is published.

Sections 2 to 4 review the relevant (more elementary) parts of the theory of

asymptotic series. Section 5 deals with the detailed implementation of theoret

ical results in a series of programmed algorithms (expressed in a suitable, ad

hoc, simple programming language).

Though the concepts described below can be extended to more general situa

tions, we limited ourselves to real-valued functions defined on either finite or

infinite intervals, or countable unions of intervals, on the real line. Such func

tions include most of those upon which computations are performed.

Frequently a function is defined in an implicit manner, and it cannot be

given in closed form in terms of simple functions. For example, the function

may be defined by an integral or a differential equation. It may be, too, that

the behavior of the function is not readily perceived from an examination of a

table of values, and that a convergent power series is not available (or would

require the evaluation of an excessive number of terms) in the region under

consideration, as is the case when this region contains a singularity of the

151

function. Even when these difficulties are absent, it still may be more labor

ious or complicated than we find acceptable to examine the behavior of the func

tion in these explicit terms. Such situations occur very frequently in pure

mathematics (analysis and theory of differential and integral equations), numer

ical analysis, all branches of theoretical physics, statistics, and engineering

indeed whenever what is broadly termed "advanced calculus" is used.

Insuch cases, we are often interested in finding a relatively simple and

well-understood "easy" function p0, whose behavior, in the neighborhood of a

certain point a, is very similar to the behavior of the given "difficult" func

tion f. (The point a must be a limit-point of the domains of definition of P

and of f, and we include a = + o'if the domains of P and f are unbounded.)

When the relation between f(x) and V(x), for x in some neighborhood of a,

is one of approximate equality, we say that ep is an approximation to f near
a. When the relation is defined in the manner which we are about to discuss,

we say that p is an asymptotic approximation or an asymptotic form, for f

near a, or just that q0 is asymptotic to f as x- a.

The study of asymptotic relations is a major branch of mathematical analy

sis (see references 1, 2, 3 and 4); but here we consider only the elementary as
pects of the subject which are relevant to the construction of an asymptotic

package to be included in a formula-manipulation system. Both theorems and

algorithms will be given for the most straightforward operations.

2. THE ORDER-SYMBOLS

Let R denote the real line, with its usual (order) topology and (Lebesgue)

measure, induced by the ordering x < y and the distance Ix - y I between the

points corresponding to real numbers x and y. Let the equation

= b(f,p) (1)

indicate that the set P R5 is the intersection of the domains of definition of

the functions f and qp, which take their values in R. (We shall later consider

larger collections of functions, and we shall always let aq denote the

152

intersection of all their domains, this being indicated by an equation such as

= b (f' ' 2' ."' k)only when necessary for clarity.) Let R denote

the extended real line (R compactified by adjoining to it the two points +),

let L be the closure of b in R, and let a E i. If we can find a neighbor

hood)1 of a in b and a constant A> 0, such that

If(x) S A I (x) I for all x E J , (2)

then we shall write

f = 0 (9)), (3)

the subscript a being omitted when it is well understood. An equivalent nota

tion, also often seen, is

f(x) = o[(p(x)] as x- . (4)

In reference 2 de Bruijn points out that this notation is easily liable to

abuse. The = sign is used very unconventionally, rather as if one wrote

x = L(y) instead of x < y . In both-cases, one must either treat = 0

(or = L) as a single symbol or interpret O(p) as denoting a class of func

tions-all f satisfying (2) for some Ra and A (and similarly L(y) as a

class of real numbers (all x < y, for the given Y)). In the latter interpreta

tion, it would be more correct to write f E Q(p) or x E L(y) . The classi

cal notation can be made fairly clear, if one interprets 0(p) as denoting a

generic member of the class of functions which satisfy (2) for some andan

A, with the understanding that O(W) does not necessarily denote the same
a

member of the class on different occurrences of the symbol, even in the same

equation.

153.

If we define the function p on b to f by

I liI foP(x)/PX
p(x) = 0 if f(x) =9(X) = 0 (5)

if f(x) 00 and 9(x) = o

then we see that (3) or (4) holds when p(x) is bounded (away from + -) on

some neighborhood Rh of a . In particular, this will be the case if f(x)/p (x)

tends to a finite limit as xa .

An equivalent notation to (3) is

= f(f) (6)

Here however, we are saying that 9 is a member of a class of functions which

satisfy (2) for some)U and A, for the given function f and point a . If

we define a on b to -k (essentially as / p) by

a(x) = q(x) =f(x) (7)Af =0
=if 9(x) A0 and f(x) 0

then we have (6) whenever a (x) is bounded away from 0 on some neighbor

hood)1a of a. In particular, this will be the case if q(x)/f(x) tends to a

nonzero (possibly infinite) limit as x-'a

Similarly, if for the given f, p, and a E

p(x) - 0 as x-'x in b, (8)

we write

f. = o (P0)c (9)

omitting the a whenever safe. Equivalently, we have

a(x)- - as x-a in L, (10)

154

and write

S= (f)(11)

A number of simple lemmas can now be obtained without much difficulty.

Since they often apply similarly to all four symbols _0, 0, a, and w, we

can abbreviate them by using Y to denote any of these symbols.

Lemma 1

If p' > 0, then

f = Y(W)a f IP Y(P)a• (12)

Lemma 2

If c1 ,C2, ... ck are real constants and we have

f. =Y(9.) for i = 1,2," ,k (13)

with Y denoting the same symbol for all i, then

Sk =~fy(rk~l(

i=1 Icfi i7- IciiI)a (14)

The modulus bars can be removed from the left of (14) (but not the right) if Y

is 0 or o, and from the right (but not the left) if Y is n or w

The relation

f(x,y) =Y[(x,y)] as x-ca in b (15)

in which the functions are defined for y in some set K, is said to hold uni

formly in K if we can find a single neighborhood Rt of a in b and a-singlea

constant A > 0, such that (2) will hold for every y in K . For example,

(13) can be put in the form (15), with K = {1,2, ',k}. For any finite K,

the relation is always uniform, of course.

155

i

Lemma 3

- If K is a set on which we define a measure A and c(y) is a real-valued

measurable function on K, and if (15) holds uniformly in K for measurable

functions f and o, then

4 (16)c(y)f(xy) Id(y)= Y(f I c(y) P(x,y) IdAL(y))

as x- e in $. In particular, if relations (13) extend to all positive integers

uniformly, then

i=1 I c.f = Y(Li Ieip i I)a • (17)

(The rules for removing modulus bars apply to (16) and (17) as they did to

(14) in Lemma 2.)

Lemma 4

If (13) holds, then

1lkf k (18)i=lfi y(" i- i).

Lemma 5

Let f and op be Lebesgue-measurable in some interval [X, a] _L.

Then

f = () a f(t) Idt = Y Iop(t) Idt) as x-a (19)

(Removal of modulus bars applies 'as in lemmas.2 and 3.)

We mentioned earlier that, for given p and a, a preferable notation to

(3) might be f EP()' with O(q) denoting the class of functions satisfying

(2) for some)Ia and A. Inthis paper a statement of the form Yl(po) = y2((P2)

means that a member of the first class is also a member of the second class, so a

better notation might be Y1 (o!) c Y 2 (o 2) . This should be borne in mind when

156

the following three lemmas are considered. Again, since the proofs ai ,completely

straightforward, they are omitted.

Lemma 6

Y[Y(P)] = Y(P) • (20)

This is to be interpreted'as meaning that, if f = Y(O) and 0 = Y(p),

then f = Y(O) . Similar interpretations apply to the results below.

0[_)] = 2((), 212(p)] = o 1,)

Cko(p)] - w), wEQ()] = W€o) .5 (21)

Lemma 7

Y(P) Y(O) = Y(O) (22)

This is to be interpreted as meaning that, if f = Y(p) and g = Y(O), then

fg = Y(O).

9(()2O)= QWq?), QP~W(O) = W(90)

9(0) + o(() = OQM), q() + W(P) = wx) . (24)

Lemma 8

=o() = O(), wL*q) (s) . (25)

q,= O((P), P = nW(o) . (26)

fO() = O(fop), fp(O) O(f) (27)
1/O0@) = £2{(1/p), 1/o(',) = c.41/(#),,)

(28)
1/CJ'so) .= O(1/ o), 1/wo() = o(1/4o) .5

If C is a finite nonzero constant, then

o Y((p) = Y() . (29)

15"

3. ASYMPTOTIC EQUIVALENCE

If f and g satisfy both

f = Q(g)a and g = Q(f)'

or equivalently, (30)

f = _(g), and f =0(g)

i.e., if we can find a neighborhood Rl of a in b and two constants A > B

> 0, such that

B Ig(x) f(x) A Ig(x) I for all x E) 1 a (31)

then we write

f -C{ g at a (32)

and say that f and g are commensurate at a . It is clear that - has the

three properties of an equivalence relation [(Vf) f - f, (Vf, g) f- g ; g -f,

and (Vf,g,h) f - g and g h = f -h .] It thus splits the class of all func

tions (or any subclass) into equivalence classes, such that two functions are

commensurate if and only if they belong to the same equivalence class. In par

ticular, we note that f c g at a if f(x)/g(x) tends to a finite nonzero limit

as x-a .

More strongly, if

f(x)/g(x)-I1 as x-'a in B (33)

then we write

f - g at a (34)

and say that f and g are asymptotic (or asymptotically equivalent). This is

an equivalence relation and yields equivalence classes of functions. Note that

the asymptotic equivalence classes are distributed as subsets of the commen

surate equivalence classes.

158

We see that (34) is equivalent to

f = g[1 +(1)] or f=g +o(g) (35)

We note also that if k is a constant, f - k at a is equivalent to f(x) - k as

x a . Similarly, we see that O(k)a is the class of all functions finitely

bounded in some neighborhood of a, and that o(k) is the class of all functions

which (The choice of the value of k in these last two

cases is arbitrary and irrelevant, by (29), so long as k A 0; and k = 1 is usually

used.)

Given a sequence of functions O0 ,9 1 ,i 2 ,• -, with 9 =0(P0 ,92•),

and some a E ", if

.-. (36)Ok = (Pk-1)A for k = 1,2,3, ,

we say that they form an asymptotic sequence for x- a in b . If the relations

(36) are uniform in k, we have a uniformly asymptotic sequence.

A very important example of an asymptotic sequence for x -. a in P,

with a finite, is

(37)
9k(x) = (x-a)k (k = 0,1,2,*.-) .

It is clear that this sequence is uniformly asymptotic, since every

9k(X)/Ok-l(X) = x-a . For x- -, the appropriate sequence corresponding to

(37) is

(38)
Sk(X). = x (k = 0,1,2,-.) .

Lemma 9

Let P1k=0 be an asymptotic sequence. Then: (i) any subsequence

92k Ir=0 (k0 < k, < k? < ") is asymptotic; (ii) for any p > 0,
r

SI]k-- is any asymptotic sequence; (iii) if qka for k = 0,1,2,• ,

159

then [k]k=0 is an asymptotic sequence; and (iv) i [k~k=0 and [k~k= 0 are

asymptotic sequences, so are [I Ik + I kI lk=0, [koklk__0, and

where f is any function.[f~k]k=0 ,

The proof of" (i) follows from (20); that of (ii) from Lemma 1, that of

(iii) from (21), and that of (iv) from Lemma 2, Lemma 4, and the definition

(8) with (5). Two asymptotic sequences related as in (iii) are called equiva

lent.

Lemma 10

(i) If [k(x)] k=0 is asymptotic, as x-a in 0, uniformly in y cK,

if all pk are measurable relative to a measure 11 on K, and if p0 is

integrable on 3, then [fI k(x,Y) Id (y)] 0 is an asymptotic sequence.
0,

(ii) i [qk(X)]k=O is asymptotic, if all the are measurable, and is in

tegrable in some neighborhood of a, relative to the Lebesgue measure on R,

then [, I(t)Idt]k is an asymptotic sequence for x-a in B

The proof of (i) is a consequence of Lemma 3; that of (ii) follows from

Lemma 5.

4. ASYMPTOTIC SERIES

We now turn to a concept due, in its present form, to Poincare 5 and

Stieltjes. 6 Let [Ok(x)]k= 0 be an asymptotic sequence for x-a in

b(q 0, 1, 12, .-)R C . Consider the formal series

S = k=0 akjk (39)

at present simply a composite symbol without necessary mathematical meaning;

though its partial sums

160

mm-i (40)

SIn= Z;k=O k

are well defined functions. If, for a function f defined on a set Yg b such

that a c 5, weknowthat

f- Si+ 1 = o(m)a. for m = 0,1,2,3,...; (41)

then we write

fnS)
or (42)

f(x) S(x) as x-U in 5,

and we say that S is an asymptotic series (or asymptotic expansion) for f at

a. 	 It follows immediately from (41) that

f- SM = ampm + o(Pm)a (43)

for m = 	0,1,2,--" (where we put So = 0) . This yields Lemma 11.

Lemma 11

If S is an asymptotic series for f at a, then for m = 0,1,2,
fx (x)sin(x)](4)

aIn=limm X-*.r f| inSm ; (44)'

(inf)

and so S is the unique asymptotic series for f at a, in terms of the given

asymptotic sequence [pk] k=0

Note that if S is an asymptotic series for f and if 0 = O(l), then (41)

implies the weaker property

f- S!m+i - 0 as x-'a (45)

tEquations of particular significance to the algorithms presented in section 5
will be marked in this manner.

161

for eachvalue of m in the set)0,1,2,3, -"" By contrast, if S were a con

vergent series for f, then we would have

f- S m+-0 as m -

for each value of x in the region of convergence.

We observe that the converse of the uniqueness assertion of Lemma 11 is

false: a formal series (39) does not uniquely determine a function to which it

is asymptotic. If f S and g S, then we only require that

f - g =Onm)a for m =0,1,2,--" (46)

max
For example, if we use the sequence (38) as x--, f - g could be like. eX.

Further, given an asymptotic sequence [P]k=0 for x-a in b, we can

find a function f, defined on D, for which no asymptotic series exists. For

example, if the sequence is (38) for x--=, the function sin x has no asymp

totic series since, formally, by (44), we would have a0 = lihxm sin x, but

no such limit exists.

The simple examples (37) and (38) can be slightly generalized by putting

X (x) (k = 1,2,3, - " wk(x)/Pk-l(x)

where(4)

X(xt-O as x-a in b

In that case,

P0k = 90Xk. (48)'

and

S = (pOk=Oak, (49)

will be called an asymptotic power series.

162

Lemma 12
0o

() If fpx)L j= aij~p(x) for i = 1,2, - , k as x-a in Y, where
0,

[4,] j=O is asymptotic as x-a in Y, then for any real numbers c, c2 ,•, c,

Lk k (5 0)ti=lcifi(x) (50)x

(ii) If fi(x) ; _Za9o (x) uniformly in i (i = 1,2,3,-..) as x-ca in Y,

and if ici is absolutely convergent, while ii ciaij converges for

j=0,1,2,.., then E cif.(x) converges for all x in some neighborhood

of a, and

(5)Zi=1icfi (x) Lj=O(Z .L7iicIaij)q j(x)

(iii) f f(x,y) z , 0 a.(y)o.(x) uniformly in y e K, if the f(x, y) (for each x

in some neighborhood of a) and a1(y) (for each j) are measurable relative to

a measure A on K, if c(y) is integrable on K, and if the integrals

f c(y)a(y)d(y) exist (for each j), then the integral f c(y)f(x,y)d/(y) exists

for each x in some neighborhood of a, and

f c(y)f(x,y)dA(y) 2Fj'_(f c(y)a.(y)dA(y)) .(x) . (52)
K -OK I3

Parts (i) and (ii) of this lemma are special cases of part (iii), with

K= t1,2,...,k and = 1,2,3,..[respectively. Thethree parts corre-K .

spond respectively to (14), (17), and (16), with Y = o and modulus bars

removed from the left. To prove (iii), we note that, since f Zj_ aj 0j

uniformly in y as x-a, by the relations (36) and (41) we know that, for

all m = 0,1,2,-,

163

f(x,y) - Lm=0 a(y)(x) =O[e (x)] (53)

uniformly in y. Thus by Lemma 3, we go from (15) (in the form of (53)) to

(16), with Y= o, to get

f c(.y)j f(x,y) - SL a1 (y)pj(x)lJdI&) =2ROm(X)f Ic&y)Idgy)]

= [2em(x)], (54)

by (29) and (21), since c(y) is g-integrable. As we noted in the proof of

Lemma 3, the integral on the left of (54) exists for some neighborhood R1

of a in V , and in that neighborhood

f c(y) { f(x, y) - zmO0a (y)p_(x) t dji(y)

f c(y)f(x,y)dp(y) - LQO(fcya(y)d(y))(pj(x) (55)
K K

since the integrals f c(y)a.(y)dL(y) are supposed to exist for each j. This
3K

shows that f c(y)f(x,y)dg (y) also exists for x E 2 a . Finally, when we cor-
K

bine (54) and (55) to obtain the relation (41) corresponding to (52), we

complete the proof of part (iii) of our lemma.

Lemma 13

If Li j_0ai.p. for i=1,2," k as x-a in 9, where 0 is

asymptotic as x-a in 7, and if the set of functions lI."-Ij _ , withii each j.

ranging through 0, 1,2, • •, can be rearranged into an asymptotic sequence

[0t4=0 (i.e., for each [ji, j2 , . we have a corresponding

t = g(jj2,...,Jk)) , then

fi f. E (56)t

i=1 I t=Opt4ot

164

where Pt isthe sum of all products a1l1 a2 y2...aj k for which t =g(jlj 2, .-.,jk).

In particular, if we are dealing with a set of asymptotic power series which satisfy

(48) and (49), then

= k (57) t

g(jl,2%-' = =1 i
and

0kxt k-i=
t t=t=o0 • (58) t

To prove the lemma, we first note that, if Ii =

with only one index ji changed to j, will be a • with t > t if ji > j.,

and t <t if j: < Ji, by (36). Further; if the products Il can be

ordered in an asymptotic sequence, then products II , for any <

can also be ordered in an asymptotic sequence [0 (h)]I=0(sincethe ordering

will be the same as that of 1rik W. with j. = 0 for h< is k). Suppose that

the relation (56) holds with k replaced by h - 1 (h : k) (this is trivially

true for h = 2), and consider f1hif.. We know by (41) that

h- m (h0-1) (h-l) \i=1 i t=O:Qt t +-(m)

and I (59)

fh = "oahj j + -°(on) •

Hence

"h if.= m _n _(h-l) o=i =2 t=02Jj=0Ptahj t .O oj ++ (h-1)) + 000(h-) n

+ o(04h-l)Pn)

In1

165

by (23). Now we know that q,04(h- (h) and 4 ()% (for some

r and s, depending on m and n. The double sum contains a finite number

w (m+l)(n+1) of distinct h). Thus, for any v! minwe have

f~ V *(h)+ () (60)i= 1i Z u

where the coefficients cu are obtained by summing Ptahj for all values of t

and j for which 4 4 h-1)4 j = (h) . Equation (60) is of the form (41) for

nlh1 f . Finally, we note that the double sum contains the (m+l)terms

0 (h) (h-1)o for which the corresponding are distinct and have u < r.t "0

Thus r > m and w>m; and, similarly, s > n and w > n. It follows that we

cantake any v minjm,n} in (60), so that (60) holds for all values of v

(as is shown by taking m and n large enough). This proves, by induction,

that (56) holds for k factors.

Inthe case of asymptotic power series, the relations (57) and (58) fol

low immediately.

The sequence

Pk(x) = x ksin2kx (k=0,,2,--.) (61)

has Ok(x)/Okl(x) = 2x-kCos2k-1 x-O as x- , so that it is uniformly asymp

totic. However, we see that

[k(X)]2/Pk.l(X)k+l(X) = cos2k-ix/os2kx (62)

and so this ratio oscillates infinitely, and infinitely often as x-- (since

k-i k+1 k cos 2 x vanishes when x = (4n+2) (i12), and cos 2 x vanishes when

x = (4n+1)(i/ 2 k+l), for all values of the integer n). This shows that the products

2
Pk and Pk-1Pk+l cannot be ordered by relation (36). Thus the condition of

Lemma 13 is not necessarily satisfied.

166

Lemma 15

If 1P]j=o is a totally multiplicative asymptotic sequence for x

z, and if (64) holds as x-4c in YcD , thenfor anyreal r,
fr aor r1P o '
i0 o t-oPtot (65)t

where Pt is the sum of all terms

a
r (r-1)" ."(r-il-i2..... .0) (. 1 a 2 . (- k-0)il'1i2 " " ik a0 ... (6)

witheach i.;0 for 1< j<k, but ik>0, andany k=0,1,2,--- (when

k=0,t=,P 0 1, and =) for which gi + 2 (1,itimes;

2, i2 times; -. , k, ik ti m es) t. Each pt is the sum of a finite nunber

of terms. -

To prove this lemma, we first note that, by (41), to have (65) we must

show that, for n = 0,1,2, • ,

fr = a r r ftn Ot + o(4n)((67)-0 o %0 , t--oPt -t

By the general binomial theorem, since (64) implies (41),

r M r(r-l-' (r-h+l) , h

Srh=O h'. m

where (68)
+
rm /aop. o /"

In j=l aTOqi 0 +,,,

By the conditions of this lemma, "In- 1/P0 and, for any n, a power s

will exist, such that DI = O(4n) whenever h> s, so that for any E > 0,

s
there is a neighborhood 9,(E) of u in F, such that Im(x) E * n(X)I

168

The last lemma corresponded to Lemma 4. The next one corresponds to

Lemma 5.

Lemma 14

Let f Ej=0 ajPj as x-a in Y, where [j]j=0 is asymptotic as x-ae

in F, and let f and all the q be Lebesgue-integrable in some interval

>
[(X,] C , withthe (p.0 (j =0,1,2,.--) in [X,a] . Then

f d E0a.J (t)dt (63)t

x J= jx

The proof is a straightforward consequence of Lemma 5, Lemma 10 (ii),

and (41). It is omitted here.

By Lemma 9 (i), a subsequence of an asymptotic sequence is also asymp

totic. Thus we may, without loss of generality, suppose that

f ok=0akk, with a 0 t0, a 1 0. (64)

We call the sequence of p i totally multiplicative under the following con

ditions: the asymptotic sequence [oj]j= 0 is such that all the products

k P.J(witheach j. ranging through the values 0,1,2,•. , and

k = 1,2, 3, .--) can be ordered in an asymptotic sequence [tV=O (i.e., for

=each 1jlJ*2 , " k], we have a t gk(jl,j2 , ...,jk)); and for every j, and

j2' with <clj2' there is apower k, such that
k
l.= o(q.), while for

every j, and k there is a such that p. = o(@.).

The next lemma presents a result which does not appear to be in the

literature.

167

whenever x E9 ,(E). Also, 9 (E) can be so chosen that Iqm(X) I < 1/2,

since dIn(x)-'0 as x-a Thus, for x E gc),

Irh=s+1 r(r-1)... (r-h+1) [(x) (x)h] I 1I (IX r(r-l (r-h+) 1(1/2) h-s;

and, since the sum on the right converges, this shows that the sum on the left is

o2(n). Thus (68) yields that

fr =ar r{ s r(r-1)..h*.(r-h+l) clmh +o(@b)}. (69)

We note, too, that any product of pj , arising from terms in 1Ih with

h > s, will certainly have a g-function with a value strictly greater than n.

By applying the multinomial theorem to each I h in (69), we getm
rr ,s r(r-1) • (r-h+l)

fr = a0 j 10 .m i=0 2

i1 + i2+. +imsh

(amkn)hilo . (0(:a)'l(: 2)12 In n Im-i] ~}

and if we choose m, as we always can under the conditions of this lemma, so

that m'O = 0(()n), we can simplify (70) to

f rr Z(so r~r-1)'- -(r-h+1)aq a 2

1 1 1
11 V___ mi~; "n o \a 0 p 0i1+i2+.. • +im=h

V 0) + o)}6(71)

169

We now see that the finite sum, of terms in (71) can be rearranged, in the

manner described in the assertion of the lemma, to form terms ptt . (Any

terms with t > n are lumped into the o(4n) of (67).)

In the particular case of asymptotic power series, when (48) holds, the sequence

[P/ O~O- is t X Also,IMj0 evidently totally multiplicative with if

f ao~ + a 0 XU + 'akg0x'k- (72)t

with a0 0 and a1 IA 0, then Equation (71) simplifies to

fr r r s_ r(r-1).. (r-h+l)
0 ~il ' " PO ,...i

1'1 -$m, 12. Im
i-i. .+i =h
1+2+' m

n2 i rn-h hu+i2i3+.+ -..+(m-l)i n +) 173)t
'2 *a so x(73)t

and we choose s = [n/u] (where [x] denotes the greatest integer not greater

than x) and m=n-u+l.

We see from Lemmas 12 through 15 that, under fairly likely and lax re

strictions, we can formally combine the asymptotic series of given functions by

addition, subtraction, multiplication, division, and taking arbitrary powers, as

well as by forming infinite sums and integrals, and obtain the asymptotic series

of the corresponding combinations of functions. By a reversal of Lemma 14, we

can also differentiate an asymptotic series when the resulting series satisfies

the conditions of Lemma 14, as follows.

Lemma 16

If f Z Za. as x-a in Y, where o= Q(1) and [9 is asymp

totic as x-oe in Y, if f and the qj are differentiable almost everywhere in

170

some interval [X,a]Q Y, with oj 0 in [X,], if [pj]j=O is asymptotic as

x-a in Y, andif f .j=o biP, then = bJ (j=1,2,3,---); aj

By Lemma 14 we note that, since V and the 9 i are Lebesgue-integrable

in [X,aI, by (63), and since f- aa0o 0 =0(1) as x-'a; if X< x< y< a,

then

f(y) - f(x) f'(t)dt ._b.f o.(t)dt = L._0 b.[qj(y) - pj(x)]Jx j-sI =-

From this, since 9.(y)-O as y-(a if j=1,2,3,..., weget

f(x) r [f(y) - b 0o 0 (y)] + (x) . (74)lin bj=0bo

Formula (44) now shows that a. = b. for j > 1 . (For j = 0, we have no such3 3

result; but this corresponds to the "arbitrary constant" of integration.)

When we deal with asymptotic power series, this result can be somewhat

strengthened by Lemma 17.

Lemma 17

If f(P 0Lj=0 ajX as x-a in Y, where X-0 as x-0e in Y, and if

f, CO0 and X are differentiable in Y, and if

(75)tf1 a Xj=0aX'. 1 jb.q0 +

(i.e., (f/90) has an asymptotic power series in tejn=0);

aj =bj (j=1,2,3,..)

The proof of this is simple, and it is given in all the references 1, 2, 3,

and 4.

171

Henrici7 discusses the operations described in Lemmas 12 through 15, as

applied to convergent power-series. Although he does not give the detailed re

sults of Lemma 15, he does mention an excellent alternative approach (unfor

tunately not applicable to general asymptotic series) which he attributes to

J.C .P. Miller. Its application to asymptotic power series in which p0 = I

runs 	as follows.

f L oajX and f~ 'S7 aXf kr te
•j-	 - kf LJ=O J adf Z31j if Bk=OpkX then

f(fr) rff' rx '=P k =jaXjl and

f(fr) ok X - " "k-l ' ".X
= Lk=l PkX rj=0a.I

Thus, if we equate coefficients of powers of >. (using lemmas 11 and 13 to jus

tify our action), we get

1 h
(76) t

1-h+- (h+1)a 0 k0 [r(h-k+l)-klah-k+lPk (h--0,1,2,)

From this the coefficients p 1 ,p2 ,P3 ,• are recursively obtained in terms of

p 0 andthe aj (j=O,1,2, ..). Since p 0 = a r
, the problem of finding all the

pk is solved, straightforwardly and recursively.

5. IMPLEMENTATION OF AN ASYMPTOTIC SUBPROGRAM

Problems and Assumptions

We now turn to the main purpose of this paper; namely, implementing an

asymptotic package, a subprogram to be included in a formula-manipulation

system. What is described here is to be -seen as just a basic starting package,

which hopefully will be expanded in scope and power as larger computers be

come available.

As was explained in section 3, for any given a and any a E i, all func

tions will fall into commensurate equivalence classes. The general theoretical

172

treatment of these classes will lead to difficulties involving the axiom of un
countable choice; but in any actual computational application, we deal with only

a finite number of asymptotic series, each truncated to a finite number of terms.
Thus, no difficulty should be encountered.

For each b and a, we collect and list function subroutines for each suc

cessive "easy" function which we encounter and which is not commensurate with
any of the functions already listed. Further, whenever two functions in our list

can be ordered by an o (or equivalently w) relation, this should be indicated.

(Certain parts of functions cannot be so ordered, as was exemplified in (61)

and (62).) Thus the collection of functions are a partially-ordered set. Any
ordered subset of this collection will be an asymptotic sequence for the given

B and a . Such a sequence will not necessarily be totally multiplicative. An
o

example is the sequence [Sk]1=0 defined by

1/%Po(x) =x, 1/9k(x) = exp 1/CPk.l(X)] (k=1,2,3,...) (77)

which is asymptotic as x- in 2+ = I x : x > O I but which is certainly not

totally multiplicative, since xn = o(exp x) for all powers' n, as x-- .

To carry out the process described above, we must be able to find the
limits of ratios bf arbitrary functions as their common argumerit tends to an

arbitrary limit. Thus we must presuppose the existence in our main system

(or in the asymptotic package) of a limit subprogram such as is described by

R. Iturriaga. 8 Any shortcomings of this limit subprogram will emerge in the

asymptotic subprogram as consequent shortcomings in the form of an inability
to obtain certain limits, and hence an inability to make certain decisions essen

tial to the computation of certain asymptotic expansions. This is, of course,

inevitable; and we shall suppose that such cases (which would lead to some kind of

interrupt or negative response) are not being.considered-by the subprogram.,

Often only one limit a is considered in any given computation, and this

limit is almost always 0 or +C It seems, therefore, that it is more ef

ficient to set up the asymptotic subprogram to compute expansions asymptotic

173

as x-- only, or, at most, expansions for x-.O and for x-- . Clearly, any

formula manipulation system should be capable of transforming any but the most

unusual functions from f(x) to f(y +a) or f(% + y-1

To specify the required asymptotic expansion, one clearly needs the follow

ing information:

a. 	 an expression (say f) denoting the function whose asymptotic expansion
is required (this could be a formula, the name of a function, or the
label of a suitable subroutine);

b. 	 a variable (say x) in terms of which the expansion is to be made (this
may appear in the expression f; in any case, it will be an argument
of this expression);

c. 	 the limit (say a) to which x tends in the asymptotic process (and this
is understood to include mention of the set b or Y , if it is relevant to the
the limit process);

d. 	 a label (say L) identifying the particular asymptotic sequence

1Pkk=O relative to which the asymptotic expansion is to be made; and

e . a positive integer (say n) denoting the number of terms in the expan
sion.

It is 	suggested that, for practical purposes, it is preferable to let n de

note 	the number of nonzero terms in the asymptotic expansion.

The 	appropriate instruction could take the form

z - ASYMP (f; x, a; L; n) 	 (78)

and 	if, in fact, f L=0aj p as x-a, with

a h A 0 fo r h = 1,2 , .. .n (J < j2 < .. < jn) 	 (9
(79)

aj =0, if j<jn and i A ih(h=l12'" n)

then 	the asymptotic package should return the-expression

h=1 	a.h W(x) (80)

174

in the form appropriate to the particular formula manipulation system to which

it is adjoined.

To be specific, we assume that the limit subprogram is geared to comput
ing limits as x-.o- by means of an instruction of the form

z - LIM (f; x) . (81)

In the expression (78), if aY is omitted, it is assumed to be +-; if L

is omitted, the asymptotic sequence is assumed to be the power series (38).

Thus, if f Td _=0 ajx 3 , with (79), the instruction

z - ASYMP (f; x; n) (82)

yields the expression

z = 	 a. . (83)

Thus we note that, by (44),

ASYMP (f; x; 1) = LIM (f; x) (84)

whenever the limit on the right exists and is neither zero nor infinite.

Clearly, there will be many pitfalls, of both a theoretical and a practical

nature, which can arrest the computation of an asymptotic expansion. Next

we consider the procedures to be followed by the asymptotic subprogram to

unravel the expansion. The difficulties and pitfalls emerge in the course of the

discussion.

Step I

If a # +o, we must use the main formula manipulation system to replace

the variable x in the expression f by (a + y-), obtaining a new expression
A
f. 	 This operation will be denoted by

?-REPL (f; x, a + y-. (85)

175

If L denotes the sequence [p .(x)]j= (asymptotic as x- a) and if L denotes

the corresponding sequence [10(Y)].j=0 [pj(a + y) j=0 (asymptotic as y-. c),

then instruction (78) is equivalent to

f -REPL (f; x, +y),

z -ASYMP (f,; y;-L; n), (86)

-

z -REPL (z; y, (x -) .

The principal difficulty here is the passage from L to L. In an initial

asymptotic package, this transformation will probably have to be done by the
user, and only asymptotic expansions with a = +- will be handled automati

cally. Of course, in the simplest case, when L identifies the power sequence

(37), then L should refer us to (38). More generally, if L denotes a sub
routine which successively presents us with p 0 (x), P 1 (x), p 2 (x), and so

on, then we may replace the calling instructions

INITIALIZE L (O, x),
and (87)

CALL L,
by

INITIALIZE L (p, x),

and I CALL L, (88)

REPL (p; x, +y-);

these last being equivalent to the purely conceptual

andI
INITIALIZE L (p, y), ((89)

CALL f,

respectively. (The asymptotic subprogram may initially address itself to the

subroutine L, giving it an initialize signal (which sets the index j at zero),

the expression name q2, and the variables x; subsequent calling of subroutine

176

L (without the initialize signal) will put the function q j(x) at q' and increase

j by one; thus successive calls to L will put 4)0 (x), 9)1 (x), 2 (x),•

at 9 .) However, in this case it would be preferable to modify the subroutine
A

L ad hoc or to have an appropriate L already, in order to increase the efficiency

of the process.

Step II

Assuming that the procedure in step I has already been carried out, if

necessary, we may sometimes receive an instruction

z - ASYMP (f; y; L; n) (90)

(where the circumflex accents are omitted for simplicity). The expression f

is either expressible in the form of an operation T applied to one, two, or

more expressions fl,f 2 , ... , or f is elementary. In the latter case, f

either does not contain y or it is y itself. If f is elementary, no further

unraveling is possible, and the same applies when we encounter an

operation T which is not one of the algebraic or calculus-oriented operations

discussed in section 4. We must now use the knowledge we have, relative to

special functions and their asymptotic expansions and to the powers of the limit

subprogram, using (44). Crudely, and in the absence of special knowledge,

the procedure at this stage is as follows.

INITIALIZE L(q,y), [Note: this includes j .- 0]

h-i, z -0,

(Li) CALL L, [Note: this includes 4) -V (y), j - j + 1]

a - LIM((f - z)/q; y),

IF a t 0 1z- zz+aX), (91)

IF h=n) end of procedureI,

h-h+ 1

GO TO Li

177

[In (91), instructions end with a comma; "a - b" means that the variable a

is given the value of the expression b; the notation "GO TO label" denotes an

unconditional jump; a label in parentheses in the left-hand margin refers to the

instruction immediately to its right; the notation "IF statementlinstructions "

means that the instructions in curly brackets are obeyed only if the statement

is true, otherwise they are omitted; "end of procedure" is a jump to whatever

is to be done after the procedure is completed.]

If all the limits in (91) are obtainable and finite, and if we do not get simply

an infinite succession of zero coefficients a beyond some stage (for example,
- x is 1 + o.x - 1 + a.x - 2

the asymptotic expansion of 1 + e in terms of (38)

+ 0.x - 3 + -.. , as x -. o), then the procedure (91) will give the required expan

sion in a finite number of operations.

Now we must discuss the algorithms corresponding to the operations of

algebra and the differential and integral calculus, as they may appear in the ex
pression f. Let us suppose that the expression z in (80) is stored in our

system in the form of a heading [x; L; n], followed by a pair of parallel lists

I and ...]. (This is not a hard-and-fast specifica[j1J2 , ...in' [al, aj2, ,a.

tion, but just a proposal, to establish a notation.)

We shall adopt the notations

a - ASCOF (f; x, a; L; h), (92)

t - ASTER (f; x, a; L; h), (93)
and

j - ASIND (f; x, a; L; h); (94)

for the instructions which respectively, put, as a, the hth nonzero coefficient

of the asymptotic expansion of f (as x -. a) in terms of the sequence at L;

as t, the corresponding term of the expansion; and as j, the index jm of

this term in the sequence L. (The omission conventions will be the same as

that for ASYMP.) It follows that

ASTER (f; x, a; L; h) = ASYMP (f; x, a; L; h) - ASYMP (f; x, a; L; h-1)

(95)

178

(We adopt the convention that

ASYMP (f; x, a; L; 0) = 0 , (96)

which makes (95) meaningful when h = 1.) In general, ASTER will be a part

of ASYMP, e.g., (91) can be written formally as

h-1, z -0,

(LI) z - z +ASTER (f; y; L; h),

IF h = n I end of procedurej , (97)

h - h + 1,

GO TO Li

We also know that

ASTER (f; x, a; L; h) =ASCOF (f; x, a; L; h) x PASIND (f; x, a; L; h)

(98)

The two lists which follow the heading [x; L; n] in the assumed represen

tation of the asymptotic expansion (80) will thus be [ASIND (f; x, a; L; h)]= 1

and [ASCOF (f; x, a; L; h)]= respectively.

Step III

If we wish to perform the operation (90) and if f(y) = k=lcf(y)w

all the c.iA 0, then Lemma 12(i) yields the algorithm
1

179

z- O, i - 1,

(LI) h. .- 1, j. 	- ASIND (f.; y; L; 1),

IF i = k { GO TO L2} , i - i + 11 GO TO L,

(L2) h-1, j.-0,

(L3) a-0, i-1,

y;L; h i) (L4) IF ji=j 	 Ia=a+c i xASCOF (f; , (99)

hi h+1, j.+ ASIND(fi; y;L;hi)-

IF i=k {GOTOLB}, i-1 1, GOTOL4,

(Ls) IF a#O {z-z+axpj(y),

IF h=n lend of procedure},

h-h+l, j,-j+1, GOTOL3.

If we wish to appeal to parts ii or iii of Lemma 12 to handle infinite series

or integrals, we must verify that the conditions are satisfied, and we must have

the capacity, in the main formula manipulation system, to sum infinite series

or compute integrals. Another case arises, however, which is simpler.

If f = 1ifci, 	 but, for each index (h + 1), there is an index kh, such

that f£ jSh 	 a..g. for all i> kh (i.e., the first h+1 functions qO,.,
I j-h+1] n. 10'P1..

kh functionsPh appear only in the asymptotic expansions of the first

fl,f2, ... ,fkh) [if the kh are exact bounds, then kh will be a nondecreasing

function of ;h we can still compute (90) finitely using a modified form of (99),

in which the first line and the line labeled L3 are respectively replaced by

180

z - 0, i - 1, k -max(k 0 ,1) ,

and

(L3) 	 a - 0, i- 1, IF k k.; jGOTO L4 ,

m-k+1, k-k, 	 (100)

(M) 	 hI- 1, jm - ASIND (f; y; L; 1),

IF m=k IGOTOL41, m.-m+l, GOTOL6.

Step IV

If we wish to compute (90), if f(y) = lkfi(y), and if the condition of

Lemma 13 is satisfied; then we can construct an appropriate algorithm as fol

lows. -First, let us suppose that all the ordered sets of k indices

= [Jii can be ordered in the sequence Urm]m= = [[Jimi=lm=0, so that

every k-tuple) has a unique place (a value of m) in the sequence and, if

m !r, gU m) 5 g(j m) . In fact, let the increasing sequence of indices

m0 = 0~m,mm 2 ,• be defined by

mt = min im: g(jm) tfl 	 (101)

so that 	 g(j) =t for m=rmt, mt + l,mt+ 2 ,. -- - , mt+l-I, and for no other

values 	of m. In particular, when, [0']j=0 is the sequence (47), we can easily

verify that we can make g(j) = k J = tin precisely tt ways. Thus,

m 0 = 0 , m=l and, for t >2, it can be seen that

(102)Mt = E k-1 =k k-i

181

So if mt ! m < mt + i' we can define j, as the unique index such that

(jii2 5m-_ (t~ki (t j,-1 (103)
k - 1 k k - 1(1)

then j2 as the unique index such that
t+ k -jl-j2 - 3) r-(t +k (t+-lI - k-jl- 2) ¢+ k-jl-j,2-2)

k-2 k k -1 k -2

(104)

and so on. Thus there is a unique representation of m in the form

+-1) k t+k-l-rh~J h

m m = (t+kk + Zi)i=l (kjk - i(15
h=lihi (105)

This representation determines t and then jl,J2,'jk Generally such

values will be denoted by t = t(m), ji = q (m), where i=1,2, -. k . Clearly,
k .

t(0)=qi(0)=0 , since 00 = o in every case.

Now we proceed to the algorithm below.

z -0, h- 1, t- 0, F-ml, m 0,

(LI) p 0,

(L2) i 1,

(L3) q -q(m), s i

_ (106)
ASIND (fi;Y;;si),j (IA)

IF j<q is4-s. GO TOi +1, 14

IF j=q IFi=k JGOTOL,65, i-i+l, GOTOL3f,

182

http:is4-s.GO

(L5) m-m+1, IFm=iii1IFp#O0z-z+px 4t(y),

IF h=n I end of procedure[

h -h+ ill t -t+ !, ui- mrt+!,

GOTO Llf, GO TOL2, (106)

(L6) a-I, i-I, cont'd

(L7) a - aX ASCOF (fi;Y;L;si),

IF i=k IGO TO L8, ib-i+1, GO TO L7,

(L8) p.-p+a, GOTOLS.

Here L refers to [tt and L to []= 0 as specified in Lemma 13.

Step V

If our formula manipulation system has capabilities for integration or dif

ferentiation, we can easily use lemmas 14 and 16 to construct simple algo
rithms to perform (when appropriate) these operations -on asymptotic expansions.

These will be omitted here, since the algorithms are easy; but the theoretical

pitfalls are considerable and are beyond the scope of this paper. More sophis

ticated asymptotic packages should eventually be able to handle this question.

Step VI

The final question, and the most complicated to be considered here, is that

of computing (90) for f = gr by applying Lemma 15, when the sequence de
noted by the label L is totally multiplicative. Again, we assume that the set
of all possible products of the form (66) (for all values of k) can be ordered

by an index m which identifies the integer k and the powers i1 ,,i " , ik,2

and hence the index t and the function 4t by

t gi1 +i2+...+ik (1, i1 times; 2, i2 times;"" k, ik time s) = t(m)

(107)

183

in such a way that, if m!< m' , then t(m) t(m) . -We thenwrite k =w(m)

and ih=vh(m) (h=l,2, ,k), with vh(m) = 0 for h > k . We note, as in

(71), that, for any choice of t, the terms of the asymptotic expansion of

f = gr which contain 600,212-. Ot arise only from the products in which k

and i +i 2+. -+i are bounded above (i.e., we have kt and st, suchthatk

k-< kt and i2+i2+•+ik . Thus such an ordering is possible.

As in step IV, we could now define

mt = min m: t(m)>tt

and (108)

kt =max tw(m): t(m) < t

and proceed as in (106). Although a systematic ordering of the products can be

achieved, sometimes this can only be done recursively, the indexing of cases

cannot be set up in advance. We now assume that this state of affairs prevails

(the procedure followed below could also have been adopted in step IV by suitably

modifying (106).),

The only nonzero terms in (66) arise from factors (ahDh/ao00)4'h for

which ah A 0 (by (64)), a 0 A 0) . Thus we limit ourselves to these factors,

i.e., we assume that ih A 0 only if ah A 0 . Instead of the ordering given

above, we adopt a "diagonal" ordering of terms. If ASTER (g;y;L;m) =

ah 'Ph (m = 1,2,3,...), (66) is specified by k and the k-tuple
m m

[ih i ,... , h k], and now these terms are taken in the order (partly antici

pated in (71))

[0], [11, [2], [0,1], [3], [1,1], [0,2], [0,0,11,

[4], [2,1], [1,21, [0,3], [1,0,1], [0,1,1], [0,0,2], [0,0,0,1],

[5], [3,1], [2,2], [1,3], [0,4], [2,0,1, [1,1,1],

184

The principle is to take, first, all ih = 0 (this yields the leading term of

the expansion a0 r or , corresponding to pO = 1 and 00 = 1); then all terms

with k + s constant (s = 'h + 'h 2 • ' + h) together, in the order of in

creasing k + s . For each constant k + s (k 1, s 1), the order is that of

increasing k For each fixed pair [k, s], the order is the reverse lexico

graphic one for [ihl ,ih , ,ihk]; that is, the ordering is, first, by decreas

ing i ; then, for each fixed ih by decreasing h • then, for each fixedh1 h1' h2

pair [ihl~h], by decreasing ih ; and so on; always satisfying the condition

that s is a fixed sum, and that, while every h 0, we must have 1 -

It is clear that this ordering of terms is well defined (every term will occur in

the sequence, and no term will occur twice). Within each set of terms with

fixed k and s, if the k-tuple [h, ih i immediately precedes the
12 k

k-tuple [i' hih ,... ,It], if h +'h +..+ih s,
S2 k 1 2 j-1. j

and if j:k-2 and

ih =ih h= i h .. ih 'h 1 , ihh
j-1 j-1 j i

then
• A

(109)
h h_0h Ih.-1h =ih'hk " O, ihkh s s+.

j j1 3± k-i1

and

h ih 0,h

hj+I +±2 k-i
 k

but if j=k-1, then i'h =ih -1 and i =i +1.
hjJhk

h
hk

For a given pair (k, s), the least value of t is that corresponding to the

k-tuple [s-i, 0, - ., 0, 1], which is the first one in order. If this value is

t(k. s) = gs (hl, (s-1) times; hk once), (110)

185

then t(k, s) > t(k, s) whenever k > k, and t(k, s') > t(k, s) whenever s' > s .

Further, for a given k + s, the least value of t is dependent on the choice of

the sequence at L. If this is

f = min t(k,s) : k + s = u, k2: 1, s 	 (111)

then tu g tu, if u u, and we know that terms with k + s > u cannot contri

bute to pt for t < T . (Since the sequence is supposed to be totally multiplica

tive, it follows that we can make t as large as we like, by making u suffi

ciently large.)

On this basis, we may proceed with the algorithm as shown below.

IF n = 1 z . [ASTER (g;y;L;1)]r, end of procedure'(,

z -1, h -i, s -1, k -i, t,0, to- 0, a0 -ASCOF (g;y;L;1),

(LI) f- 1, w-r,

(L2) f4-fXw, IFw>r-s+1)w -w-1, GOTO L2}, j-1,

(L3) mj-0, IF j<k-1j1-j +1, GO TOLS, mk -l , ml - ml+s - l,

(4) q-f, j - 1,

(L5) h. - ASIND (g;y;E;j+l), IF m = 0 1GO TO L151, b-ASCOF

(g;y;L;j+i), i- 0,

(L6) q- qxb/((m-1)Xa0), IF i< mj-l i -i+ 1, GO TO ,(112

(L15) 	 IF j<ktj -j+1, GO TO L5 f ,

t - gs(hl,m 1 times; h2 , m 2 times; ... ; hkmktimes), i - 0,

(L7) 	 IF t = t4ip i - pi + q, -GO-TO L81,

IF t< t. - Z-, z- + 1,

(L14) p~j+1 j+ 	 j- OTp j',I 1 1

pi - q, ti - t, GO TO L8

186

(LS) IFk= 1{GO TO L10}, IF mk j01mk-- k~-1, mk-mk+ 1,

GOTO ,IF k=2 IGO TO LOI, i-k - 2,

(L9) IF m.= 0 {IF j> 1 {ij-j- 1,GO TO L9}, GO TO L1O},

m. - m.j - 1, mj+1 ' mk - I GO TO L4,

(L10) IFs>is-s-1, k.-k+1, GOTOL1,i.-1, j-0,

(Lii) IF i> XIGO TO L13 }, (112
z +pi ×ot. (y) ' h-h+i, otdIFti< +{IF Pi 0fz ,-

1

X ASTER (g;y;L;1)]
r,

IF h = nzz

end of procedure }},
i-i+1, GOTOL11},

(L12) IUi gt j - j+l, p j -Pi, tj - ti,ji - i+l1, GO TO L12

(L13) t-tj, s-k+1, k -1, GOTOLl.

Some explanation is indicated. The variables z, a0 , k, and s have the

same meaning as in the discussion. What is calculated in z is initially

tCoPtt, such that exactly n of.the coefficients Pt with 0 t c are nonzero

(including pC). The last instruction before "end of procedure" (between L1i

and L12) then multiplies the sum by a0ro0(y)r, as required. Initially,

z = 1= P0 0 . (113)

The number of nonzero terms of the sum already accumulated in z is

denoted by h , which is increased whenever a nonzero term is added to
c

z (between Lii and L12). The number of terms of the sum L=Ptt which

have not yet been added to z, but to which some product (66) has made a con

tribution is denoted by Z . The arrays [tl,t 2 ,". ,t and [p1,p 2 , ",pt] are

the corresponding indices and coefficients of It (as accumulated so far). In Li

and L2, we have the computation of the factor r(r-1)... (r-s+l) occurring in (66),

187

for each new value of s . At L, we compute the initial k-tuple for each new

value ofthepair [k,s], namely, [s] if k=1 or [s-1,o,-..,0,1 if k>1.

This is stored as the array [ml, m2 ,.-.,mk (i.e., mj = ih). Between L4 and
3

L7, the complete product (66) is computed; then the index t is calculated. If

this index occurs as a t i (1 i t), the product is added to the corresponding

pi ; while if this t is new, t is increased by 1, the value of t is assigned to

the new tt, and the product is taken as the new p , (between L7 and L8). If a

further k-tuple exists (for the same [k, s]), we advance according to the rule

(109) (at L8, L9); if no more exist but s > 1, we change [k, s] to [k + 1, s - 1]

and start calculations on the products belonging to these new parameters; and if

s = 1, so that all terms with a given k + s = u have been dealt with, then we

compute % 1 (which is tk+2 at this point), and search through the list of t

terms for those which have been completed (t<t+l), while adding the nonzero

terms to z, discarding all terms with ti<tu+ from the list, and moving all

remaining terms up in the list ("garbage-disposal"), so that the list will not be

come too large (between L1i and L13). The new value of k + s = u + 1 is then

initiated with k = 1 and s = u, and the computation continues. When z contains

the required number, n, of nonzero terms, the procedure terminates.

In particular, when L refers to a sequence (47), then

gsQl,mltimes; h2 ,m2 times,..times) = khm. (114)

and so

t(k, s) = (s - 1)h 1 + hk (115)

188

whence

tu = (u - 1) h 1 + min{hk- kh 1:k=1,2,-.-,u-1< (u-1)hl . (116)

We could still proceed as in (112). But now it is also possible to set up the
ordering of terms by value of t, so that a computation similar in style to (106)
can be set up. Even better, if po = 1, we can use the algorithm of Miller,

whose essential principle is contained in the recurrence relation (76). These

algorithms are straightforward and will not be explicitly displayed here.

Step VII

Let us now suppose that the algorithms described in steps II through VI are

available to us. That is, suppose that, if

f = T(fl,f2, ""- ,frm), (117)

then

ASYMP (f;x, a;L;n) = q'T (ASYMP (fl;x, a;L;nl),

ASYMP (f2 ;x, a ;L;n2), .. , ASYMP (fr;x,a ;L;nm)), (118)

where the sequence !L, the numbers nl,n2 ,• ,nm, and the function IFT are

directly computable by the algorithms contained in the asymptotic package,
given that the ASYMP (fh;x,a;L;nh) (h = 1,2,•• ,m) can themselves be

189

computed. In that case, it is necessary, first, to unravel f into a tree structure,

which can be illustrated by the example below.
f =ToE- - TI---T f31

f32

-f 2 2

-T i-- "f33

(119)TT__4Tf34

_34

-T- - T25 L f37

f38

This diagram is to be interpreted as meaning that f = 01(fllfl2fl3);

)f1 1 =T 1 1 (f2 1 ,f 2 2), f12 = T12 (f2 3 ,f24 , f 1 3 = 1 13 (f2 5); f2 1 = (f31If32)1

=f23 T2 3 (f3 3), f24 T2 4 (f3 4 ,f35 'f 36) ' = 'f25 T2 5 (f3 7 'f 3 8) '36 = 36(f41);

and f22' f31' '32' f33' f34 ' f35' f37' f3,, and f41 are elementary (as defined

in step II). Since the "tree" is listed in the computer system, the asymptotic

expansions of the elementary "twigs" are computed, and then the algorithms

described earlier are used to work down the tree to its "root," the function f.

190

Step VII

One major problem remains. If multiplications, powers, differentiations,

or integrations occur in the tree exemplified by (118), the asymptotic sequence

L occuring in the component fumctions (arguments of T) changes (in a pre

dictable way) into a sequence L for the composite function. The reverse

process of obtaining L from L is not so easily performed. What is more,

the question of choosing an asymptotic sequence L is not adequately touched

on in the theoretical literature; but is assumed to have been done a priori.

From a practical viewpoint, it is clear that a process somewhat as follows

is required.

We begin with a collection of "easy" functions: a suitable initial collection

might contain x 0 rx]r1, r 2 for all positive integers pi, [(log)P2xl

and all real ri. We know that, as x

r° =ifr < r 0x 0);

O' r ,
 r=
if rI < rl, [(exp)1!]r= p 1 rx]

x =o([exp) xl);

if p <P', [(exp)px]r = o(exlp) xI 1) for all rI > 0, r1 > 0;

if1 r >0, [(exp)xl = o(fexp) l]), for all plP'

r0 p r
ifr 1 >0, x =o(fexp) 'x] 1), for all r0 ,Pl; (120)

fr<0 [rx) r0ifr< 0, [(exp)Px]l =o(x), for all r0,Pl;

P2 r2 p2 r 2 rif r 2 [(log) x] = o([log)x]);

if P2 >lP2' [log)P2x]r2 o ([log) 2 x] 2) for all r 2 > 0,r2 > 0;

191

if r 2<O, r, 2 >0, [(log) P xIr2=o([log)P2x] r), for all p., p'2 ;I

2 <r 2ifr 2>0,[([og)Px] r g r(x fo(2), xfor all
2 0 (120

cont'd)
roo(ogp 2]r2)

ifr 0 <'0, x 2=o(log)x] , for all p2r?

Thus all these functions have a single ordering. Now, given any function

f, we use the limit subprogram to investigate whether any of these functions

(call it 0) is commensurate with f. If any is commensurate with f, we put

f a0 0 + fl, determining a0 as usual (by (44)), and lookat f1 similarly; and so on.

A refinement would be to look, not only at the functions listed, but also at

products of these functions. If f is not commensurate with any of the functions

listed, then we add f to the list (together with its powers f , [(exp) fi

and possibly [(log)2f]r2 Then f f, for our purposes.

This procedure allows the system to "learn" an ever-increasing collection

of functions for constructing asymptotic sequences. In addition, it computes

-x x
natural asymptotic expansions, in the sense that, for instance, f = 1 + e (;j-y)

would expand to

- 1 e - x 2 e - x f 1 + e -x + x + x - + • • • (121)

to as many terms as required, rather than the relatively artificial and un

interesting result

-f1 I +0.x 1 + 0.x - 2 + 0.x - 3 + , (122)

which adherence to a given sequence (here, (38)) yields. Although this pro

posal is tentative and needs further investigation, it seems to be an approxima

tion to the proper approach.

192

6. 	 CONCLUSION

We have now reviewed the theory of asymptotic series, and considered

fairly completely the problems and procedures to be met in the implementation

of an asymptotic package for a formula manipulation system. Many questions

still remain unanswered or only partly answered: these are indicated, as they

arise, in Section 5. However, we hope that we have established enough to en

able a programmer to begin writing a basic asymptotic package for an existing

system, such as FORMAC, as soon as a limit-subprogram (however rudimen

tary) has been written. (Initially, it may be necessary to limit consideration to

asymptotic power series, based on the sequence (38), and to-handle only

polynomials, power series, and the results of applying addition, subtraction,

multiplication, division, and the formation of arbitrary powers. In that case,

the limit-subprogram would be very easy to write and could be part of the as

ymptotic package.)

It is the author's belief that indeed a working program, however elementary

and limited, will prove to be of great help in engendering and encouraging sub

sequent development of more ambitious systems having greater scope and power.

It is in this spirit that the present paper is offered.

Note: Dr. Ralph L. London and the author have examifed the algorithms

(91), (97), (99), (100), (106), and (112), and have rigorously proved their

validity. In the course of discussing the process of proof, quite a number of

corrections were found to be necessary (this illustrates the great value of such

proving procedures.) The proofs are to be published at a future time.

193

REFERENCES

1. 	 E. T. Copson, "Asymptotic Expansions," Cambridge Tracts in Mathe
matics and Mathematical Physics, No. 55, Cambridge University Press,
Cambridge, England, 1965.

2. 	 N. G. DeBruijn, "Asymptotic Methods in Analysis, "Bibliotheca
Mathematica. Vol. IV, North-Holland Publishing Co., Amsterdam and P.
Noordhoff Ltd., Groningen, 1961, 2nd. Edition.

3. 	 A. Erdelyi, Asymptotic Expansions, Dover Publications Inc., New York,
1956; also Technical Report No. 3, Office of Naval Research No. NR 043
121, Contract No. Nonr-220(11), Washington, D.C.

4. 	 W. R. Wasow, "Asymptotic Expansions for Ordinary Differential Equations,"
Pure and Applied Mathematics, Vol. XIV, Interscience Publishers, John
Wiley & Sons Inc., 1965.

5. 	 H. Poincar6, Acta Mathematica, Vol. 9, 1886, pp. 295-344.

6. 	 T. J. Stieltjes, Annales Scientifiques de l'Ecole Normale Superieure (3),
Vol. 3, 1886, pp. 201-258 and Oeuvres Completes de T.J. Stielties, Vol.
2, P. Noordhoff Ltd., Groningen, 1918, pp. 2-58.

7. 	 P. Henrici, "Automatic computation with power series," Journal of the
Association for Computing Machinery, Vol. 3, 1956, pp. 10-15.

8. 	 J. R. Iturriaga, "Contributions to Mechanical Mathematics," Ph.D. Thesis,
Carnegie Institute of Technology, Pittsburgh, Pennsylvania, April 1967.

194

COMPUTING TIME ANALYSES FOR SOME ARITHMETIC AND

ALGEBRAIC ALGORITHMS

by

George E. Collins
Computer Sciences Department

The University of Wisconsin

Madison, Wisconsin

N71 :.' 996

Abstract

Computing time bounds are derived for the author's polynomial
reduced sequence (p.r.s) algorithm6 for computing the g. c.d. of
two polynomials with integer coefficients. A new g.c. d. algorithm
which uses congruence arithmetic is presented. The computing
time of the new algorithm is analyzed, and it is shown to be more
efficient than the old one. Using easily obtained bounds for opera
tions on large integers, computing time bounds are derived for
the integer Euclidean algorithm, extended Euclidean algorithm,
and the Chinese remainder theorem algorithm.

This research was supported by the Wisconsin Alumni Research Founda
tion, by the University of Wisconsin Graduate School through the University
of Wisconsin Computing Center, and by the National Science Foundation,
Office of Computing Activities, through Grant GJ239.

195

TPAE BLANKPRECED

COMPUTING TIME ANALYSES FOR SOME ARITHMETIC
AND ALGEBRAIC ALGORITHMS

by

George E. Collins

1. INTRODUCTION

In a recent paper (reference 6), the author presented a new algorithm, the

reduced polynomial remainder sequences (p. r. s) algorithm, for computing the

the greatest common divisor (g. c.d.) of two multivariate polynomials with integer

coefficients. It was asserted that the computing time for this algorithm, when

applied to two univariate polynomials of degree n whose coefficients are d digits

long, is approximately proportional to n4 d2. Section 3 contains a thorough and

rigorous analysis of the computing time for this algorithm in the univariate case,

and proof is given that, if the two polynomials are weakly normal and d bounds

their norms, the computing time is bounded by the function 0 (n4 (ln d) 2), the

norm of a polynomial being the sum of the absolute values of its coefficients.

This result is obtained as a corollary of a more general theorem which bounds

the ,computing time as a function of four variables.

Section 4 presents a new and faster algorithm for computing the g. c. d. of

two univariate polynomials with integer coefficients, and proves several theorems

to show that the algorithm always terminates and produces the greatest common

divisor. The new algorithm, which uses congruence arithmetic (arithmetic per

formed in finite fields GF(p) containing a prime number of elements), is based

on the theory of reduced polynomial remainder sequences and subresultants that

the author developed in reference 6.

In section 5, the computing time of the new algorithm is analyzed. The

bound that is obtained for the computing time of the new algorithm is
3O(n 4 (In d) + n (In d)2). We also show that the average computing time for the

197

new 	algorithm is O(n3 (ln d)2), a substantial improvement over previous al

gorithms. Furthermore, we show that the average computing time for the new

algorithm, when applied to polynomials with a g. c.d. of degree zero (which

frequently occurs in practice), is O(n 2 + n(ln d)A. Finally, we propose a

method for extending the algorithm to multivariate polynomials.

To analyze the computing times of polynomial algorithms, we must have

bounds for the computing times required to perform operations on large integers.

Such bounds, easily obtained for the operations of addition, subtraction, multi

plication, and division (with or without a remainder), are stated in section 2.

We also obtain bounds, in section 2, for the time required to compute the g. c.d.

of two integers using the Euclidean algorithm, and show that these bounds also

apply to the extended Euclidean algorithm.

In the congruence arithmetic g.c.d. algorithm, as in other congruence

arithmetic algorithms (see, for examples, references 1 and 14), one must

apply the Chinese remainder theorem algorithm. A bound for the computing

time of this algorithm is also derived in section 2.

2. 	 OPERATIONS ON LARGE INTEGERS

Throughout this paper we assume: that integers are represented in radix

form using an arbitrary base P 2. Computing times for arithmetic algorithms

are then naturally expressed as functions of the number of P#-digits in certain

numbers N which occur in the algorithms, i.e., [logg-N] + 1. However, since

log#pN = (In N)/(lng) where In is the natural logarithm function and since we

will 	uniformly ignore constant multipliers because they are dependent (1) on the

computer that is used, (2) on numerous details of the version of the algorithm

used, and (3) on the precise manner in which data is represented in the com

puter, we shall express computing times in terms of In N.

The following theorem on addition and subtraction illustrates the general

form in which our theorems will be stated.

198

Theorem 2.1

Let t(a, b) be the time required to compute a + b (or a - b). Let T(d) =

max jt(a, b): I al, IbI d }. Then T(d) = O(ln d).

The statement that T(d) = O(In d) means that a constant C (independent of

d) exists such that T(d) s C in d for all sufficiently large d. The theorem still

appears to be quite ambiguous since it does not specify what algorithm or what

computer is to be used. However, if we choose any standard classical algorithm,

any familiar data representation which uses radix canonical form, and any well

known computer, then such a C will exist for that combination of choices.

The theorem can be readily verified for several choices by consulting references

5, 8, and 13.

The next theorem states a similarly well-known fact about various classical

multiplication algorithms.

Theorem 2.2

Let t(a, b) be the time to compute a . b. Let T(d, e) = max {t(a, b):

laI d and I bj z e . Then T(d, e) = O((ln c)(ln e)).

Here we have applied the O-notation to a function T(d, e) of more than

one variable. This means that, for some C, T(d, e) s C(In d) (In e) whenever

d d0 andem e0 .

Theorem 2.2 applies to the classical multiplication algorithms. As a

special case we have T(d, d) =O((ln d)2), although the stronger form of the

theorem, which contains two variables, will be important in many applications

in which one argument is much smaller than the other. In recent years several

multiplication algorithms, which are much faster for very large integers, have

been devised. One such fast algorithm, based on earlier work by A. L. Toom,

is given by Cook in reference 11. It has the property that T(d, d) = O((in d) •

E > 0, T(d, d) = O((ln +)25 d)). It follows that, for every

199

It is easy to construct a simple version of this algorithm for which

T(d, d) O((ln d) In 2 3 =((ln d1.585). Throughout the present paper, however,

we assume that the classical multiplication algorithm is employed, and Theorem

2.2 is applied.

So far, we have bounded computing times as functions of bounds on the in

puts to the algorithms. A tight bound on the time for division must be expressed

in terms of bounds on one input (the divisor) and one output (the quotient), as

in Theorem 2.3.

Theorem 2.3

Let t(a, b) be the time to compute q and r, given a and b such that

a=b- q+r, 0 9 rl < Ib!, ar0, and abq0. Let T(d, e)=max

jt(a, b): Ib!1 dand I qj <e. ThenT(d, e)=O((lnd)(lne)).

The truth of Theorem 2.3 follows from the observation that most of the com

putation required to produce q and r from a and b is essentially the same as

that required to produce a from b, q, and r.

The bound for the computing time for the Euclidean algorithm is derived

from Lemma 2.4, which bounds the product of the quotients computed by the

algorithm.

Lemma 2.4

Let. q1 , q2 f . . ., qn be the sequence of quotients obtained when the

Euclidean algorithm is applied to a and b where a b > 0. Let c = gcd (a, b).

n-1 2
Then qnTI i=i (q +1) < ab/c

Proof. Let aI=a, a2 =b, ai =a+i+ i +a i +2 with 0z ai+2 <a i + 1 for

IE i:n, and an+2 =0 so that c=an+1 . Then a i =a i +l q +a.± 2 >

=a.a.+ q +a, n. Taking the product of thesei+2 i+2 i+2 (+ 1) for 1 s i

200

inequalities for 1 < i n-i, we have 17i=1 a. > n i=1 +(q + 1). When we
2_n-i

cancel the a.s on both sides, we obtain ab = a 1 2 > a 11 ijl). But

2en-1
since an = a %c, ab > %C 11 (I + 1).

As an interesting sidelight, notice that each c1i and. q. 2 except when

< 2a=U. Hence, r in1 (%i.+1)<ab/c 2 : ab a so that n<2log2 a.

This bound for the number of divisions compares with a bound of about 1.44 log 2 a

obtained from Lame's theorem.

Theorem 2.5

Let t(a, b) be the computing time for the Euclidean algorithm. Let

T(d, e)=max t(a,b):a>.b>0 and b d and a/gcd(a, b) < ej. Then

T(d, e) = O((in d)(in e)).

Proof. Let c = gcd(a, b). By Theorem 2.3, there exist constants C and

C2 such that the time for the ith division in Euclid's algorithm is : C, (In q)

(Ina.i) + C2. Hence, the time for all divisions is C1 F n=n(in q.) (in ai) +

2 n C 1 (inb) nI + C2 n= 1 (inb)(lnri=q) +C 2n<C(nb)

(ln(ab/c) + 2 C2 log 2 a< C, (in b)(ln (a 2/c5) + 3 C2 In a < 2 C1 (In d) (In e)

+ 3 C2 in ceg 2 C1 (in d)(in e) + 3 C2 in d + 3 C2 (lne)= O((ln d) (In e)).

In analyzing the computing time for the Chinese remainder theorem algo

rithm below, we shall also need a bound for the time required to compute the ex

tended Euclidean algorithm which, given a and b where a - b> 0, computes

not only c = gcd(a, b) but also, simultaneously, integers x and y such that

ax + by = c. The extended Euclidean algorithm may be defined in the manner

that follows (see references 12 and 10.) Let the ai and %. be defined as above.

201

Set x ! =1, Yl=0,2 =, and Y2 = 1. For 1i n -, let = x i

qixi+l and y,+2 = y, - qi yi+, . Then x- x,+1 and y = Yn+,"

Theorem 2.6

Let t(a,b) be the computing time for the extended Euclidean algorithm. Let

T(d) =max It(a,b): a>b>0 and bsd and a/gcd(a,b) df. Then T(d) =O((ln d)2).

Proof. The additional computing time for the extended Euclidean algorithm

is that required to compute xi+2 and Yi+2 for 1 ! i < n - 1. It was shown in

reference 10 that I xi I 2 b/2c and I yi I ! a/2c for all i. Hence, the time
n-1 (n qi)(In x.for all the multiplications q x1 is, by Theorem 2.2, C in I

n-1 In qi + C2 n< C1 ln(b/c) ln(ab/c + C2n = o((ln d) ,

as in the proof of Theorem 2.5. It is also shown in reference 10 that the x.1

(also the y.) alternate in sign. Hence, I q, x,+l [xi+2I s b/c and

-Siy,+, y+2 a/c for all i. Each subtraction x. - X.+, can

therefore be performed in C1 (lnl x,+2 1) + CiC 1 In d + C2 time units. Since

2n d 2 , the time for all such subtractions is O((ln d)f. Likewise, the time to

compute all yi is O((ln d)2).

In the application of the extended Euclidean algorithm in the Chinese re

mainder theorem, as in many other applications, a is a prime number p, so

that c= gcd(a, b) = 1. We thenhave px+by= 1, i.e., by - I (mod p).

Since I y I gp/2, the inverse of b in GF(p) is y or y +p according to

whethery> 0 or y<0.

Our next theorem bounds the computing time for the Chinese remainder

theorem algorithm. The computations performed in this algorithm to make

202

the theorem more precise are summarized below. These steps are also referred
to in the proof of the theorem. Input to the algorithm includes a sequence

(P' P2' . ., p.) of pairwise relatively prime numbers. We shall assume

each p1, 2. In our application below, the pi will be prime numbers, but this

need not be assumed in the theorem. Additional input to the algorithm is a
corresponding sequence (al, a2 , . . ., an), such that 0 ! a. <p. for all i.

The output of the algorithm is the unique integer A such that A P" P2

Pn/2 and A E ai (mod pi) for all i.

Chinese Remainder Theorem Algorithm

1. Set Q1 =P 1 and compute Qi =Q i pi for 2 in. Set P=Qn

2. Compute P. =P/pi for i= 1, 2, n.

3. Compute q. and ri such that Pi = Piq+ r and 0 ri <pi for 1: i ! n.

4. Compute ti such that r ti 1 (mod p and 0 <t i <pi for 1* .5 n.

S=2n PtEan5. Compute i7-1 P i i

6. Compute Q and R suchthat S=PQ+ R, 0 R<P.

7. Compute H = [P/2].

8. Set A=R -P if R> H; otherwise, set A=R.

Theorem 2.7

Let t(pl, P2 1 . . .I Pu 1'a2' , an) be the computing time for the

Chinese remainder theorem algorithm. Let T(d) = max I t(Pl, ... Pn

" a., a): n p dl Then T(d) =O((Ind)).

203

Proof. It suffices to show that the time for each of the eight steps is

O((in d)). The time for step I is n1=2 (C(ln Q- 1)(ln P.) + C)s0

(in p. 6 (C .) CInl (n) 2 c1
+Cn

(In P) r,=2 27 2 (In 1,ni-2 Pi) + C2n c2(ln d 2 +C
 n

2nO((in d)2, since Pgd so that n= O(ln d).n (1(ni)npi+C)<C1(n
The time for step 2 is <5 i (l i=1

(In pi) + C2n = O((ln d)f. The time for step 3 is , n 0C((ln Pin i +

2f1 (In d) Z n (In pi) + C2n = O((n d)5. By Theorem 2.6, the time for step

n 2+ 2 n 2
~is _ (C 1 (in pi) + C2) I0 Ci (Ilnp.) +0 2 n 01 (Z n=1 (in p)) +

C2n C1 (in d)2 +C 2n = O((ln d)5.

The time to compute all products in step 5 is clearly O(in i)5, since

ti <P , a< pi Pi < P, Pit <P and P <d. Let S =zS Pita . Then

z j

1 r pSj gPx 1 a=<P lP lPr 2 5 d2 .Hence, the time for all addi

tions is cn (C1 (in d5 + C2)= n(2 C (In d)+C2) = O((ln d)2.

In step 6, S=Sn <P 2 , so Q<P and, hence, the time isO((lnd)25. The

time for steps 7 and 8 are clearly O(in d).

3. OPERATIONS ON UNIVARIATE POLYNOMIALS

The primary purpose of this section is to give a relatively complete analysis

of the time required to compute the g.c.d. of two univariate polynomials

using the reduced p.r. s. algorithm of reference 6. And we also bound the

computing time for other operations on univariate polynomials with integer

coefficients.

204

It is very useful, for the purpose of such analyses, to define the norm of

such a polynomial in the manner that follows.

Definition 2.1. If P(x) = nDefniton. 1 IfP~x F4i=_0 a1i x' is a polynomial with integer coefficients,

the norm of P is defined to be Eni- I ai

Norm (P) is, in fact, a norm for the ring of polynomials over the integers,

as shown by the following theorem.

Theorem 3.2

Norm (P + Q),s norm (P) + norm (Q) - norm (P Q) norm (P) norm (Q).

xProof. The first part is trivial. Let P(x) a1 x, Q(x) =

and R(x) =D 0 c i where R= p Q. Then norm(R) =5J I

m+n Im+n = In On Ik=O [~ ~ Z = D =k Iaibj I aaib =Z=Oj=kai b] F, i-o
k=0 ~ Jk~b ~ mI i~ la 3 1=0 Ja.ilk= 1ajb j=

0n I b1j =norm (P) norm (A).

The norm has two other important properties which are frequently used in

the material that follows: Ia. norm (P) for all i and norm (P) (a 1/2

The following notation is frequently useful for simultaneously bounding norm (P)

and deg (P).

Definition3.3. U(d,m) = 4P: norm (P) ed and deg (P) : m .

The following three theorems bound the computing times for the sum, differ

ence, product, or quotient of two polynomials, using the classical algorithms. It

is assumed here that the polynomials are represented by a canonical form as in

reference 2, 5, 9, or 13.

205

Theorem 3.4

The time to compute P +Q or P -Q for P, Q EU(d, m) isO((Ind)m).

Here we have, for the first time, stated a theorem using a more elliptic

phraseology. If stated in full, the theorem would have the same form as our

previous theorems, i.e., let t(P, Q) be the time to compute P +Q (or P - Q).

Let T(d, m) =max I t(P, Q): P, Q EU(d, m) } . Then T(d, m) = O((in d)m).

Proof. At most, m + 1 coefficient additions or subtractions are required,

and each takes g C In d + C computing time. But (m + 1)(C in d +1 02 1nd+C2
O((ln d)m).

Theorem 3.5

The time to compute P - Q for P EtU(d, m) and Q E(e, n) is O((ln d)(ln e)mn).

Proof. At most, (m + 1)(n + 1) coefficient multiplications are required, the

time for each being C1 (In d)(ln e) + C2 . Also, at most, (m + 1) (n + 1) addi

tions are required and, by the proof of Theorem 3.2, the time for each addition

is C3 inde+C4=C 3 (Ind+Ine) +C 4 But (m+i) (n+i) (CI (lnd)(lne) +

C3 (in d + In e) + C4) = O((ln d)(ln e)mn).

Theorem 3.6

The time to compute P/Q for Q EU(d, m) and P/Q EU(e, n) is O((ln d)(ln e)mn).

Proof. At most, n + 1 coefficient divisions are required. By Theorem 2.3,

the time for each division is g C1 (In d) (in e) + C2, and (n+1) (Cl(lnd)(ine) +

C2) = O((ln d)(in e)mn). The other required arithmetic is essentially the same

as in multiplying P/Q by Q.

We now begin an analysis of univariate polynomial g.c.d. algorithms by

considering the content and primitive part algorithms.

206

Theorem 3.7

The time to compute cont (P) for P EU(d, m) and norm (pp(P)) 2 e is

O((ln d)(ln e)m).

Proof.Pro.Ltix=Let P(x)x=rki - a. xei where ei 2 . . . an ah .e 1 >e >e k andeacha./i 0.

Let d= a, and d. 1 gd (di, a.+)for 1 i!k-1. Thencont (P)=dk.

0 <dd i ! a._ norm (P) d for all i. Also, cont (P) d, for all i. Hence,

maxIdi, i ai+I /di+1 :norm (P) /cont (P) = norm (pp(P)) e for 1 . i :k - 1.

By Theorem 2.5, the time for the k-i g.c.d. Is is (k - 1)(Cl(ln d)(ln e) + C2) =

O((lnd(lne)m), since k-1 m.

Theorem 3.8

The time to compute pp(P) for P EU(d, m) and norm (pp(P)) e is

o((In cd(ln e)m).

Proof. To compute pp(P), we first compute cont (P), then divide P by

cont (P). By Theorem 3.7, we need show only that the time for the division is

O((in d)(in e)m). The division requires, at most, m +1 integer divisions and,

in each of these, the divisor is cont(P) d while the quotient is a coefficient of

pp(P) and, hence, bounded by e. Now apply Theorem 2.2.

Corollary 3.9

The time to compute either cont(P) or pp(P) for P E U(d, m) is O((ln d) 2M).

Proof. Apply theorems 3.7 and 3.8, noting that norm (pp(P)) norm (P).

Next, we study the time required to compute a reduced polynomial remainder

sequence over the integers. For this purpose the following theorem on the

standardized Euclidean remainder, Rt(P, Q), is helpful.

207

Theorem 3.10

Let t(P, Q) be the time to compute "E(P, Q). Let T(m, n, e) = max

jt(P, Q): deg(P)=m and deg(Q) =n and m n>0 and norm(P) e and

norm (Q) 5 e } . There is a constant C such that T(m, n, e) s C(m + n)(m - n

+ 2) 2 (in e) 2 for all sufficiently large e.

Proof. Let PV P2 ' Pr-n+2 be the sequence of polynomials such

that P1 = P ' P1 +1 = p (P,, Q) if deg (Pi) ?n, and P1 +1 = L(Q) • P, if deg (P)

< n. Then (P, Q) = Po-n+2 *

Let M.1 be the i+1 by m+1 matrix

bn bn- 1 bn- 2 ' . b 0 0 0 ... 0

0 bn bn-1 . b I b 0 0... 0

0 0 b . b2 b1 b 0
1[. = 1n

1

aIn.........M '*0
a a 2 , a 0

It is easy to see that P+l is the associated polynomial of M. Since the

Euclidean norm of each row of Mi is, at most, e, Hadamard's theorem implies

ei +1 that the coefficients of Pi+1 are bounded by . At most, m + n multipli

cations are required to compute Pi+ from Pi, and the time for each multipli

cation is :C1 (In e)(ln ei)+ C2 = C (i(ln e) 2 +C2 _pCln - n + 1)(ln e)2 + C2 .

The time for all multiplications is therefore bounded by (m --n + 1) (m + n)

(Cl(m - n + 1)(ln e) 2 + C2). At most, m additions are required to compute

Pi+1 from P and the time for each is s C3 (ln ei+ + C4 03 (m - n + 2)

208

(In e) + C4 . So the time for all additions is r (m - n + 1)m (C3 (m - n + 2)

(In e) + C4). The validity of the theorem is now evident.

In reference 6 we defined a p.r.s. P 1 ,P 2 ... , Pk to be normal in case

ni - nI+ 1 =1 for 2!ci gk-l where n =deg(P). It was shown that, among

other nice properties, a normal reduced p.r.s. agrees, to within signs, with

the associated subresultant p.r. s. There it was stated that, empirically, almost

all p.r. s. Is are normal. As Knuth observes in reference 13, this is also true

in a definite mathematical sense. Notice that if P 1 and P 2 have a g.c.d. of

degree greater than one and if PI P 2. . . "' Pk is the complete p.r.s., then

Pk-1 is an associate of the g.c.d. and Pk= 0. Hence, nk 1 -n.>i, and

Pis P,21 . . " Pk is not normal.

Since, in practice, g.c.d. Is of degree greater than one will occur frequently,

our computing time analysis, to be useful, must not be restricted to a normal

p.r.s. So we now define a p.r.s. PI' P2' " " "' k to be weakly normal in

case deg(Pi) - deg (Pt+l) = 1 for 2 ! i : k - 2. We can now make the stronger

assertion that, for any r, almost all complete p.r.s.s PlIP 2 " 1Pk

for which deg(gcd(P 1 , P2)) = r are weakly normal.

In the following, we bound the time to compute a complete weakly normal

reduced p.r.s. For convenience, we also say that (P,Q) is weakly normal

when any complete p.r.s. PI, P 2 . . . "I Pk for which P1 = P and P 2 =Q

is weakly normal.

By Theorem 1, part b of reference 6, we have the theorem that follows.

209

Theorem 3.11

Let P1, P2 . . . "' Pr be a complete weakly normal reduced p.r.s. Let

P, P . .. , Sr be the associated complete subresultant p.r.s. Then,

for 3 i r, P. = Si if i is even or if n1 -n 2 is odd; otherwise Pi = -Si.

The next theorem bounds the coefficients of a weakly normal complete re

duced p.r.s.

Theorem 3.12

Let P1V P 2 ' . . *' Pr be a complete weakly normal reduced p.r.s. such

that deg (P 1) = m, deg (P 2) = n, norm (P1) < e, and norm (P 2) !e. Then the co
m-n+2i-4fo3 I r

efficients of P are bounded by e for 3 < i < r.

11
Proof. By weak normality, deg(P i) = n -i + 2 for 2-<i-<r - I and, by

Theorem 3.11, Pi = ± Si for 3 :isr. The coefficients of Si are, by defini

tion, determinants of order (m + n) - 2(deg(P 1-) - 1) = m - n + 2i - 4 of

submatrices of the Sylvester matrix of P1 and P2 By Hadamard's theorem

m-n+2i-4they are therefore bounded by e

Theorem 3.13

The time to compute the complete reduced p. r. s. for P and Q, such

that deg(P) = m, deg (Q) = n, m n >0, deg (gcd(P, Q)) = k, norm (P) <e,

norm (Q) e, and (P, Q) is weakly normal, is O(((m + n)(m - n + 1)2 +

(m +n - 2k + 2) 2 (n - (k - 1)2)(In e) 2).

Proof. Let P 1 ' P2' . ., P. be the complete reduced p.r.s. By Theorem

3.10, the time to compute P3 =R (P1 , P 2) is O((m + n)(m - n +1) 2 (In e)2).

This completes the proof if r = 3.

210

Suppose r >4. For i>2, let P"=P (Pi' P.). Then T (Pi P.) is
1 i+ 1)+ 1
1
I.

either P (P,, P.) or L(Pi+) ' P1 deg (Pi-l)<deg (P.) n - i + 2. Therefore, at
1

.most, 2(n-1+2) 	multiplications are required to compute P. By

-Theorem 3.12, 	 the computing time for each is 9 C1 (In em-n+2i-4)(In em - n+2i 2) + C2

01 (m - n + 2i 	- 2) (in e) + C The coefficients of Pjt are bounded by

e2m-2n+4i-6 e2(m-n+2i-2).
2 e <e . It follows that the time for all multiplications

- i + 2)(Cl(m - n + 2i - 2) 2
in computing "t(Pi, P.,l) has a bound of the form (n

2
(In e) + C 2). 	 Such a bound continues to hold when additions are also considered.

" (P 2 ' Now P 4 = P 3)/(L(P2))m-n+l. The successive powers (L(P 2))j, where

2SjSm-n, can be computed in (m-n+i) (C3(m-n+)(ine)2 + C 4). The

- n + l- n +4 	 emI (L(P 2))m'coefficients of P 4 are bounded by e m and

m-n+1
Hence, g (P 2 ' P 3) can be divided by (L(P 2)) in (n - 2)(C 5 (m - n + 1)

(m - n + 4)(In e) 2 + C). The total time to compute P 4 from R(P 2 ' P 3) is

therefore gC 7 (n - 2)(m - n + 1)(m - n + 4)(In e) 2 + C 8 m. Adding to this the

time above to compute f (P2' P 3) gives a bound of the form (m +n)(C 5 (m

n+1) (m-n +4)(ine) 2 + C 6) , which is O((m+n)(m-n+1) 2(ine)5. This

proves the theorem for r = 4.

Suppose r>4. For i>3, Pi+2= (Pi Pi+l)/(L(Pi))2 . Since deg (Pi+2)=

2n-i, Pi+2 can be computed from j(Pi, Pi+l) in (n-i(C 3 (m-n+2i)2 (Ie) + C 4).

Altogether, the time to compute Pi+2 from Pi and Pi+ has a bound of the

form (n-i+2)(Cl(m-n+2i)2(ne) 2+C2). Since r=n-k+3 if k>O

211

and r=n+2 if k=0, then r.n-k+3. The total time to compute P 5 , P 6,

. ' P r is therefore bounded by (C3 (m - n + 2(n - k + 1))2(In e) 2 + C4)

n-k+ 2 2 n-k+l -i= ((m n-2k
in-k, (n-i) <(C3 (m+n-2k+2) (1ne) +C4 , i = 3(n

22 - JM~e)2), s nce l (n-i) 12
- 1) 5 (2) 2(n2 (k n e) since ri=3 (((n-2)(n-3)-(k-1) =

O(n 2 - (k -)).

Theorem 3.14

The time to compute god (P, Q) by the reduced p. r. s. algorithm, such

that deg(P) = m, deg(Q) = n, m ,n >0, deg (gcd(P, Q)) = k, norm (P) < e, norm
(Q)Se, and (P, Q) is weakly normal, is O(((m+n) (m-n+1) 2+(m+n-2k+

2)2 (n2 - (k -) 2))(In e) .

Proof. The required computations are as follows:

=1. a = cont (P), b = cont (Q), Pl =Pp(P), P 2 PP(Q)I c = god (a,b).

2. Compute the complete reduced p.r.s. P1' P2. . ."'Pr"

3. if Pr = 0, compute R = c • pp(Pr-l)-

By Theorem 2.6 and Corollary 3.9, the computations in step 1 can be per

formed in O((m +n)(In e)2). The time for step 2 is O(((m +n)(m - n + 1) 2 +
(m+n- 2k+2)2 (n - (k-)5)(ine)5 by Theorem 3.13. IfP = 0, k>0 and

r
r - I = n - k + 2. By Theorem 3.12, the coefficients of Pr-I are bounded by

Sm+n-2k. Next we notice that Corollary 3.9 would still hold under the weaker
assumptions that deg(P) ! m and that the coefficients of P are boundedby d.

Since deg (Pr-1) = k, Pp(Pr) can be computed in O(k(m + n - 2k)2 (In e)2.

212

The multiplication of pp(Pr-1) by c can be done in O(k(m + n - 2k)(ln e)2).

2 172 , So the time for step 3 is 0(k(m +n - 2k)2(1n e)5. But k ,n _ (k - since

kI n.

By eliminating the variables n and k, singly or together, we obtain the

three corollaries of Theorem 3.14 that follow.

Corollary 3.15

The time to compute god (P, Q) by the reduced p.r.s algorithm, such

that deg(P) = m, deg(Q) = n, m >n>O, norm (P) - e, norm (Q) e, and (P,Q)

2is weakly normal, is 0(((m +n)(m - n + 1) 2+ n (m + n) 2)(in e) 2).

Proof. Use Theorem 3.14, 	 noting that (m + n - 2k + 2) 2 (m + n +2) 2 =

22 nn -(k-1) 2
0((m+n)) and

Corollary 3.16

The time to-compute gcd (P, Q) by the reduced p.r.s. algorithm, such that

P, Q EU(e, m), deg (gcd(P, Q))= k, and (P, Q) is weakly normal, is

((m 3 + (m - k + 1) 3 (m +k)(ln e)2 .

Proof. Use Theorem 3.14, noting that (m +n)(m - n + 1)2 <2m (m + 1)2=

< kO(m 3) and (m+n-2k+2)2(n2 -(k-1) 4(m-(-1)) 2(m2 -(k-1)5=

4(m-k+1) 3(m+k-1) =0((m-k+l)3 (m+k)).

Corollary 3.17

The time to compute god (P, Q) by the reduced p. r. s. algorithm such

that P, Q E U(e, m) and (P, Q) is weakly normal is 0(m 4 (In e)5.

213

Proof. Use Corollary 3.16, noting that m3 +(m -k+l)3(m +k) m 3 +

3 4
2m(m + 1) = O(m).

Having now analyzed the computing time for the reduced p.r.s. algorithm,

let us observe that theorems 3.12, 3.13, and 3.14, and corollaries 3.15, 3.16,

and 3. 17 still hold if we replace "reduced p. r. s." everywhere by "primitive
QI' Q2 "be the complete primitive p.r.s. Then 0.

p.r.s."1 Let Q* *2*Q r 1.

is a divisor and associate of P. for all i. Hence Theorem 3.12 still holds.
1

In Theorem 3.13 we now have to compute ppa (Qi, Qij+) in place of dividing

6. +1
a(Pi, Pil) by (L(Pi)) '_ The computing time bounds are of the same

order for the two operations. In Theorem 3.14, the computation pp(Qr-1) is

omitted, but this does not affect the bound of the theorem.

It would be interesting to know whether theorems 3.13 and 3.14, stated for

a primitive p.r.s. without the assumption of weak normality, would still

hold. It seems likely that they would, but we have not attempted a proof. It

also seems quite unlikely that they hold for a reduced p.r. s. without the weak

normality assumption.

4. 	 A CONGRUENCE ARITHMETIC G. C.D. ALGORITHM FOR UNIVARIATE
POLYNOMIALS

In this section we describe a congruence arithmetic algorithm for comput

ing the g.c.d. of two polynomials with integer coefficients. We also prove

several theorems to show that the algorithm does what it is supposed to do. In

section 5, we will analyze the computing time for the algorithm, showing that,

on the average, it is much faster than previous algorithms.

For any prime number p, let GF(p) be the finite field with p elements

0, 1, . . ., p - 1, and let P be the unique homomorphism of the integers

onto GF(p) so that 0 (i) = i for 0 <i <p. Let P* be the homomorphism from
p p

214

I

* n
I[x] onto GF(p) [x] induced by (p . That is, (Zi= x) 0 i.p 0 a i=2 p

We shall usually just write p in place of p .

Given two polynomials with integer coefficients P and P2' where deg(P 1)

deg (P2) >0, the algorithm decides whether deg(gcd(P 1 , P 2)) = 0 and, if it

does not, computes the last nonzero term S of the complete subresultant p.r.s.

for P 1 and P 2 (this being an associate of gcd (P1 , P 2)). A complete g.c.d.

algorithm is constructed from this algorithm in an obvious way.

Let PIt P 2 S3 . . .' Sr be the complete subresultant p.r.s., and let

S be the last nonzero subresultant. The general idea is to compute P p(S) for

a sufficiently large number of primes p that S can then be computed by the

Chinese remainder theorem algorithm. The required number of primes is de

termined by Hadamard's theorem as a function of deg(P) and norm (P.) for

i = 1 and 2.

In addition to P and P21 the algorithm requires as input an infinite

sequence of distinct prime numbers plp 2 ,p 3 , . . . and an integer h such

-> 2hthat Pi for all i. In practice the pi would probably be the first few

2hhundred primes greater than 2h , where is about half the largest integer

which can be stored in one computer word.

A complete description of the algorithm follows.

Congruence Arithmetic Subresultant Algorithm

1. Compute d =norm (P1), e = norm (P 2), m = deg (P1), and n = deg (P2).

Compute the least integer r such that 2 r >d, and the least integer s

2ssuchthat 2e. Compute t= ms +nr and u= [t/h] +1.

215

2. 	 Set I=0 and M=S=--=().

3. 	 Select the next prime p.
4. 	 Compute =(P-- (P.) for i= 1,2. If deg (P) <m 	 or if deg (P)<n,

go to step 3.

5. 	 Compute the complete reduced p.r.s. P P29 . "'Pk of PI and P2

over GF(p)o

6. If p* /0, terminate with indication that deg (gcd(P 1 , P 2)) =0.

7. 	 Set N=(n , n 2 , . . ., n where n. = deg(Pi)

8. 	 Compute the subresultant associate S of Pk-1' using Theorem 1 of re

ference 6.

9. 	 If N <M,go to step 3.

10. IfN>1>M, set S =(S), 9= (p), I=1, and Mv=N, thengoto step 3.

11. AdjoinSto S andpto 9. Set I=I+l. IfI<u, goto step 3.

12. Let 9 = (plp 2, . . . ,pu)and S =($I,$29 . . .,Su). Each Si isa

polynomial of degree k >0. By k + 1 applications of the Chinese

remainder theorem, compute the unique polynomial S of degree k

such that Ppi(S) = S, for 1 si u and such that the coefficients of S
1

are 	bounded byIp1 , 12..

The remarks that follow explain the above algorithm. In step 1 we are

applying Hadamard's theorem to obtain an upper bound u for the number of

primes p for which p (S)will be needed to determine S. By Hadamardts

m s+n 2t <r =

2hUm <pl'P2 pu for any u primes greater than 2h
theorem, the coefficients are bounded by dnem , 2

216

1 is a list of primes (p1 ,p 2 , . . ., PO which were used but not discarded.

is a corresponding list of polynomials (S.,$2. . . . SO for which hopefully,

Si = pi(S). If it later turns out that S. / p(S), both pi and Si are discarded.

The value of I is always k; the number of primes in the list P.

For each prime p, the sequence of degrees (n1 , n 2 , . .. , n) is com

puted. All such sequences are ordered lexicographically. The value of the

variable M is always the maximum of all degree sequences which were com

puted. Since (), the null sequence, is least among all sequences, M is ini

tialized to (). Any prime whose degree sequence proves to be nonmaximal is
discarded. It will be proved below that if any u distinct primes all have the

same degree sequence, their common degree sequence is that of the complete

reduced p.r. s. for P 1 and P 2 over the integers and, hence, their degree

sequence is maximal. It will also be shown that if p has a maximal degree

sequence, the complete reduced p.r.s. over GF(p) is the homomorphic im

age under (Dp of the complete reduced p.r. s. over the integers.

Theorem 4.1 and its corollary justify step 6.

Theorem 4.1

Let P and Q be nonzero polynomials over I, and let p be a prime

suchthat fp((P)) / 0 and (pp(£(Q)) / 0. Then deg (gcd(gp(P),

(op(Q))) >!.deg (gcd(P, Q)).

Proof. Let R= gcd(P, Q). Then P=R P 1 and Q=R - Q 1 Since

Pp is a homomorphism, gp(P) = (p(R) • pp(Pl) and p(Q) = mPp(R) •p(Ql).

Hence, Op(R) is a common divisor in GF(p) [x] of 9p(P) and of pp(Q). Also,

£(P) =Z(R) • Z(P 1), so 0 /p(Z(P)) = p(Q(R)) "(4bt(Pl) and p((R)) .0.

Therefore, deg (gcd (p (P), Pqp(Q))) > deg ((pp(R))= deg (R).

217

Corollary 4.2

Let P and Q be polynomials over I,, deg(P) >deg (Q) >0. Let p be a

prime such that pp(£Z(P)) / 0 and pp(4(Q)) A 0. Let P1,P, . . ., Pk be a

complete p.r.s. over GF(p) suchthat P ='p(P) and P2= p(Q) if

Pk / 0, deg (gcd(P, Q)) = 0.

Proof. If Pk #0, deg(gcd(P,P 2))=0. UseTheorem4.1.

Lemma 4.3

Let P and Q be polynomials over I, deg(P) > deg(Q) > 0. Let p be a

prime such that 9p(L(P)) / 0 and p(P(Q)) /0. Thenp T(P, Q)) =

R (qp(P), (Pp(Q)).-

Proof. Let m = deg(P), n= deg (Q), and R = R(P, Q). i is uniquely de

termined by the condition that (g(Q)) m-n+1, P,= Q • S + R for some S with

deg(R) < n. Since (pp is a homomorphism, ((pp((Q))) m-n1. qp(p) =

qPp(Q) • 9p(S) +Pp (R). But, qp(p(Q)) =.zr(vp (Q), deg (p (P)) = m, and deg

(pp(Q)) =n. Also, deg(9p(R)). deg(R)< n. So pp(R) (pp(P), pp(Q)).

Theorem 4.4

Let P 1 , P 2 , .'Pk be a reduced p.r.s. over I, and let p be a

' prime such that deg(p (P.)) = deg (Pi) for f<i! k - 1. Let P 1 , P 2 .

P1 1

beareduced p.T.5r over GF(p) suchthat P,--pp(P1) and P2= p<P2)

Then P i= p(Pi) for lsi:k.

218

Proof. P 3 =a(P i , P 2) and P 3 = R(Pip P 2) = R((P(P) (P 2)).

Therefore P 3 = qp(P 3) by Lemma 4.3, since deg (pp(Pi)) = deg (Pi) implies

p(£(P i)) 0. Let ni = deg (Pi) and 61 = n. - ni+l for all i. Assume

P=.9p(P) and Pi+ =(Pip+l) where 2 i k-2. Then P1+2=

* * * 6 i-i+1 6t-f
(P1 p P+)/(Z(P- 1)) - p F (Pi, P--p))/(f(z(P,))g (A (Pi, P.

6i-1 *

= p(P+2) by Lemma 4.3. By induction, P1 = (Pi) for all i.

Theorem 4.5

Let Pl' Pk be a reduced p.r.s. over I. Let p be a prime.

Let PI1 P 2 . ".Pk be areduced p.r.s. over GF(p) suchthat

P1 = 9P(PI)' P 2=P(P 2) and deg (Pi)= deg(P1) for 1 !: k -1. Then

*
PI==Pp(Pi) for ll~k.

Proof. Proceed by induction on k. For-k = 3 the theorem is an immediate

consequence of Theorem 4.4 applied with k = 3. Assume Theorem 4.5 holds

for k=J, and assume its hypbtheses for k= j + 1. Then Pi = (Pi) for

1 i j by induction hypothesis. Hence, deg (P.) = deg (gp(Pi)) for 1 i sj.

Hence, Pi= @ (P.) for l i j+1, by Theorem4.4 applied with k=j+1.

The next theorem shows that if- u primes produce the same degree se

quence, that common degree sequence is the degree sequence over the integers.

By the previous theorem, therefore, each prime produces a homomorphic

image of the reduced p.r.s. over the integers.

219

Theorem 4.6

Let P1 'P 2 ' .. , Pk be a complete reduced p.r.s. over the integers.

Let deg (P 1) = m, deg (P 2) = n, norm (P) d, and norm (P 2) se. Let

ni = deg (Pi). Let p 1 ,p 2 , . . . ,pu be distinct primes such that

.i P1 >dnem Let l, 2, . .. , Dr be suchthat: for every i, 1hiru,

the complete reduced p.r.s. over GF(pi) for pi(Pl) and'pi(p2) is a

sequence P(i, P) P(i) suchthat x.= deg(P9 for j_<jr, 1) = n

and 2 =n 2 . Then r=k and 0 i=n i for li k.

Proof. Assume r Zt and 1j = n. for 1 sj st. This holds by assumption

for t= 2. We show that if it holds for t and if t<k, it holds for t+1.

Let S1 ,2' . .S k be the complete subresultant p.r.s. over the integers

such that S1 =P and S2 = P 2. By Hadamard's theorem we know that the co

efficients of all S. are bounded by dn em. Now ot = nt >nk= 0, so u

r .t+l 11u p. is not a divisor of £(St+i so, for some j, p1 is not a
i7- S+_ ci 1 (6-js+

divisor of £(St+i). By Theorem I of reference 6j P = ti 6 (6 -1)
divsorof1 (St 1 1i2 c.i t+

where = n. - n.+1 and c. £ (P.) for 2 i st-I. By induction hypothesis,

3i=n for 1fist. Hence, n. =deg (Pf)) for 1 1 t. By Theorem4.5,

Pi(P (Pi) for 1!ig t+I. So deg(P)=deg(Ipj(Pi) for 1 i t. Hence,

P(g (Pi)) = p (c.) X 0 for 1 si st. So pj is not a divisor of

- I pj_1
6nti2 ei-i ,r'and it is not a divisor of £(Pk+i), i.e., 0)

220

By induction we now have r >k and 0i = ni for 1 si k. This implies

k= nk =0, and therefore, r=k.

Let P... P2' .,.I Pk be the complete reduced p.r. s. over I for the

two polynomials P and P2 which are inputs to the algorithm. Let Sk- 1 be

the subresultant associate of Pk-l The next theorem shows that if step 12 of

the algorithm is ever reached, Si = 9pi(Sk-1) for each p. in9

Theorem 4.7

Let P1,P2' Pk be a complete reduced p.r.s. over I.- Let

P =Pp(Pi) , and assume deg(P.) = deg (Pi) for 1 igk. Let $1'2' . Sk

be the subresultant p.r.s. over I suchthat S=P 1 and S2 =P 2 . Let

Tk-1. _ .k-3 * 6i-li(6i-h h *
Sk- = (-1) k-il/ i=2 L(Pi) where n. = deg(P n

k k-3 k 1 2
Tk = i=! n. n. +(n +k-)(nk 2 + 1). Then S_ (S

Proof. Since deg (P.) = deg (Pi), z (Pi) = £ (p (P)) =uPp(Y (P)). Apply

Theorem I of reference 6, and use the homomorphism property of Op.

We still have to show that if step 12 is reached, Sk 1 is an associate of

god (P 1 ,P 2), i.e., that Sk = 0. But this follows easily from the proof of

Theorem 4.6.

Finally, we must show that the algorithm will eventually terminate. This

is equivalent to showing that only a finite number of primes can ever be dis

carded by the algorithm in steps 4, 9, and 10. But a prime is discarded only

221

k-i
when its degree sequence is nonmaximal, i.e., when it divides l i=1 c. where

P1' P29 """'Pk is the complete reduced p.r.s. and c. = g(Pi). In the next

section, we take a closer look at the number of primes which can be discarded.

5. 	 ANALYSIS OF THE CONGRUENCE ARITHMETIC ALGORITHM

In analyzing computing times for the congruence arithmetic g.c.d. algorithm

we consider h to be a constant. h will ordinarily be in a range between 30 and

60, 	 depending on the computer word length. Since there will then be a minimum

2h 2h + of about 2h - 1 /h >107 primes in the interval from to , we can safely

ignore the size of the primes in our analysis and assume they are all single

precision. There will then be a fixed bound for the time required to perform any
arithmetic operation in GF(pi) for all primes pi encountered. Likewise, we

may 	safely assume m, n, r, s, t, and u are all single-precision integers.

Theorem 5.1

The time to compute norm (P) such that P e U(d, m) is O(m(ln d)).

Proof. Obvious.

Theorem 5.2

2rThe 	time to compute the least r such that d is O((lnd)5.

Proof. Let d0 =d-1 and di+1 = [di/2]. Pick the smallest k such that

dk = 0. Then r = k. r divisions are required, and the time for each is

O(in d). But r =O(In d).

Theorem 5.3

The time to compute qp(d) is O(In d).

222

Theorem 5.4

The time to compute 9 p(P) for P E U(d, m) is O(m(ln d)).

Theorem 5.5

The time to compute the complete reduced p.r.s. P 1 , P 2 . . " PPk over GF(p)

from P1 and P 2 , such that deg (P 1)= m and deg (P 2) =n, m ;n> 0, is 0(m).

Proof. Let deg(Pi)=n., Z(Pi)= c, 1--nni, for 1 i k, and

* * * * _+

,
0=- 1 . Then P+ 2 (P Pi+1)/C 1-1 for 1 si k - 2, Clearly,

31i(6 i + 1) is the maximum number of operations in GF(p) required to compute

(P P (*6 -1 can be computed in 6i+1 operations, and

P i+2 can then be computed in, at most, ni+2 + 1 :ni+1 operations. But

+ +k-2 3n(6 1) 3m Fk-2 (6i+ 1)g6m 7k-2 i!6m2 2 (6 i 1)

1=1 i(&-l 1 6 i-1 (b
r i7(+- i

k-3 k-2 2

-g1 + 2 k-i=1 6 i!+ 2 (m-nk-2) :2m, and Z- n. 2 m2 Sothetotal

number of operations is, at most, 7m 2 + 2m <8m2

Theorem 5.6

Given a complete reduced p.r. s. P1' P2' . . " Pk over GF(p) such

that deg (P 1) = m, the time to compute P£ / *) i-- i

O(m).

.k-S 6k-3 6 k-3 ,i2 2
Proof. .i=2(i-i1) F=2 i- i %(i=2 6.) (m nk 2) So

-k- -2
* i

dk-3 = 2 (P) 6 .- can be computed in a maximum of (m nk_22

223

operations. dj%1 and djI Pk- can then be computed in nk_1 + 2 additional

operations. But (m - nk_2) 2 +nk-i + 2 (m2 mn 2) (nk-2 + 1) m 2 2 nk- 2
1<2 .

In steps 9 and 10 of the algorithm, we have to compare two degree sequences

M and N. Since the maximum,length for such a degree sequence is m + 2,

the time for this operation is O(m). This observation, together with theorems

5.4, 5.5, and 5.6 gives us the theorem that follows.

Theorem 5.7

For each prime pi selected by the congruence arithmetic subresultant

2algorithm, the computing time is O(m + m(ln d + in e)).

Next, we show that the number of primes selected by the algorithm is

O(n(n in d + m in e)).

Theorem 5.8

Let PV P2' . . "'Pk be a reduced p.r.s. over I. Let S, S, . . .Sk

be a subresultant p.r.s. over I such that SI =P I and S2= P2 . Let p bea

prime and 1:< i <k. If p divides £ (P then p divides £ (Si) for some j r i.

Proof. The theorem clearly holds for 1! i 3. Assume it holds for t

where 3 t <k. Let ci = £ (P.) and di = £ (Si). By Theorem I of reference

.
6,ct+ 1 = -i=2 ci i-!(6i-1) dt Suppose p divides Ct, but not d

Then it divides c. for some j t - 1 andhence, by induction hypothesis, d..3 3

So the theorem holds for t + 1.

224

Theorem 5.9

Let S1, S2, S3' ... , Sk be a complete reduced p.r.s. over I with

deg(S1) = m, deg ($2) = n, norm (SI) d, and norm ($2) <e. Let d. =

1 di 1! dn2 e mn(S). Then I=

Proof. By Hadamard's theorem, IdiI<dnem for all i, so ik-3 iI

k- 3 . 49(dne) But 1d1j1 d and Id21 e, so Ink-di:g(dnem)k- 2 4

(dne')n.

Theorem 5.10

The number of primes selected by the congruence arithmetic subresultant

algorithm is O(n(n In d + m in e)).

Proof. Since every prime discarded by the algorithm is a divisor of some

Z(Pi), by Theorem 5.8 some z(Si) = di, Isi k- 1. By Theorem 5.9, the

product of all discarded primes is, at most, dn 2 emn since each prime is

greater than 2 h, if N is the number of discarded primes, we have 2Nh<

dn 2 emn; hence, N<(n2 log 2 d +mn log2 e)/h. SoN= 0(n(nlnd +mIne)).

The number of primes selected but not discarded is, at most, u : t/h +
l!(ms +nr)/h+ I(m(s- I) +n(r-1) +m+n)/h+1<(m(log 2 e+ l) +

n(log2 d + i))/h + 1 = O(n in d + m In e).

After we put all the pieces together, we have the computing time bound for
the entire process in Theorem 5. 11.

225

Theorem 5.11

The computing time for the -congruence arithmetic subresultant g.c.d.

algorithm, such that deg(P 1) = m, deg(P 2) = n, norm (Pl) ! d, and norm

(P 2) :e, is .O(mn(m + In d + In e)(n in d + m in e)).

Proof. By theorems 5.7 and 5.10, the time to process all primes is

0(mn(m + in d + in e)(n in d + m In e)). Therefore we need to show that the

same is true of the other parts of the algorithm. By theorems 5.1 and 5.2,

the computing time for step 1 is O(m In d + n In e + (in d) 2 + (ln e)). In

accordance with the remarks at the beginning of this section, we assume that

2h + l neach prime is . Hence, ln(pIP 2 ... pu) (h+ l)u= O (nlnd+m e),

as in the proof of Theorem 5.10. By Theorem 2.7, the time for each of the

k + 1 applications of the Chinese remainder theorem algorithm is

O((n In d + min e)2 . Since k + 1 = O(n), the computing time for step 12 is

0(n(nnd + mine)2 . Incorporating this algorithm into a complete g.c.d.

algorithm, we must consider the times to compute pp(P 1), pp(P 2), pp(S), and

c , pp(S) where c = god (cont (P1) cont (P 2)). The times to compute pp(P 1),

and pp(P 2) are O(m(ln d)5 and- O(n(ln e)5 by Corollaiy 3.9. Since the

coefficients of S are bounded by P1 P2 ... Pu' Corollary 3.9 shows that the

time to compute pp(S) is 0(n(n In d + m in e)5, the same as step 12, and the

time to multiply pp(S) by c is then O(n(ln d + in e)(n In d + m In e).

The next two corollaries follow easily.

Corollary 5.12

The computing time for the congruence arithmetic subresultant g. c. d. al

gorithm, such that deg(P) = m, deg(P 2) = n, norm (P1) e, and norm (P 2)

e, is 0(mn(m + n)(m + In e)(In e)).

226

Corollary 5.13

The computing time for the congruence arithmetic subre sultant g. c. d.

algorithm such that PII P2 E U(e, m) is O(m 3 (m + In e)(In e)).

Comparing corollaries 3.17 and 5.13, we see that the computing time bound

for the reduced p.r.s. algorithm is larger than that for the congruence arithme

tic algorithm by a ratio of m(in e)/(m + In e), a ratio which grows indefinitely

with m and e. Actually, the superiority of the congruence algorithm is much

greater than this ratio indicates. We found that the number of primes discarded

is O(n(n In d + m in e)), while the number of primes retained is only

O(n In d + m In e)). This suggests that most primes are discarded whereas,

it is intuitively clear that, on the average, a prime will be discarded only on

very rare occasions. If one chooses an integer N at random, the probability

that pp(N) = 0 is only i/p. Hence, if the leading coefficients of the sub

resultant p.r.s. are random in an appropriate sense, the probability that p

will be discarded is, at most, 1 - (1 - 1/p)n n/p, since n is much smaller

than p in all cases of interest. This reasoning suggests that the average

number of primes selected is O(n In d + m In e). Going back over the proof

of Theorem 5.11, one can easily show that, under this hypothesis, the average

computing time is O(k(m + n) 2(In e) 2 + m2 (m + n)(In e)), where k is the

degree of the g.c.d. Hence, O(km2 (ne) 2 +m 3 (in e)); hence, O(m3 (in e) 2).

If P1 and P 2 are relatively prime, there is a very high probability that this

will be proved by the value of p, via Corollary 4.2, provided that n is much

smaller than p. If we assume that the average number of primes selected in

the relatively prime case is less than two (or any other fixed number), then

we easily conclude that the average computing time for relatively prime poly

nomials is O(m 2 + (m +n)(In e)2); hence, O(m 2 + m (In e)5.

The above algorithm can be made faster in two ways. The first way re

quires only a simple modification of step 12. In step 12, if M = (nl,n2, . .nd

227

then na =0 and nai is the degree k of the g.c.d. If a=3, P 2 is the

primitive associate of the g. c.d. and the Chinese remainder theorem is not

needed. If a> 3, then S, the subresultant associate of the g.c.d., has

-coefficients bounded by d(n - na 2+l) e (m-na-2+,1) by Theorem 1 of reference

6 and Hadamard's theorem. Hence, only v = [((in - ha_2+1) s + (n -na_ 2 +l)r)/h + 1

primes are needed to determine S by the Chinese remainder theorem. The

last u - v elements of o and 8 may be ignored. If, for example, m = n = 2k,

then na_2 - 1 k and v = u/2 approximately. By Theorem 2.7, the computing

time for step 12 will therefore be reduced by a factor of about 4.

The algorithm as thus revised computes an a priori bound u for the number

of primes needed. After processing u undiscarded primes, it determines k

and adjusts downwards its original estimate forthe number of primes needed.

The second modification avoids this waste by determining the degrees

n., n2 3 , ... , na sequentially. n, = m and n 2 = n are initially given.
Let S , SV... I S be the complete subresultant p.r.s. over the integers.

a

The coefficients of S3 are bounded by d(n - n2+1) e (m-n 2+1). Hence, at most,

u3 = [((m -n 2 + 1)s + (n - n2 + 1)r)/h] + 1 primes are needed to determine S3 .

Having accumulated u3 undiscarded primes,- n3 is determined as m3 where

lv - (mlm 2 ,m3 ,...). If n3 = 0, then S3 - 0 and step 12-is undertaken.

Otherwise, u4 = [((m - n 3 + 1)s + (n - n3 + 1)r)/h] + 1 primes are needed to

determine S4. Continuing in this way one eventually goes to step 12 with ua

primes in 9. The Chinese remainder theorem is then applied using ua_, of

these primes. If, for-example, m = n =2k, this modification will reduce by
a factor of about 2 the time required to compute reduced p.r. s. 's and sub

resultant associates over fields GF(P).

228

The univariate congruence arithmetic g. c. d. algorithm can be advantageously

used as part of any multivariate g. c.d. algorithm since the calculation of a

multivariate g.c.d. requires the calcufation of numerous univariate g.c.d.'s.

Also, the methods employed in the univariate algorithm can be extended to

multivariate algorithms. Viewed abstractly, we wish to compute the g.c.d. of

two polynomials P1 and P 2 over an integral domain &(where 0 itself may be

a polynomial domain). We have at our disposal a sequence 0., 02, ... of

homomorphisms from 6 to some integral domains J.. Instead of computing a1

complete p.r.s. PP 2'P3" Pk over 5 , we compute a complete p.r.s.

P(i),P ,,P(4, ...over J. suchthat P(i)= (and M) (2 for

i = 1, 2, 3, . i being the homomorphism from [x] to JI[x] induced by

$i" If i preserves the degrees of P1, P2' P3 "'" we have PSf= 4i (P).

One must then have a mechanism for discarding those 0i which do not preserve

degrees. One must also be able to compute a bound u such that Pk-i can be

determined from Pk-T) $2 (Pk-I)'Ii " Su (.k-i)"If, for example,

&= I[y], one can let zi be the evaluation homomorphism 0, (P) = P(i) from

I[y] to I. In this case, a bound u can be computed as a function of the degrees

of the coefficients of P1 and P 2 , and the interpolation replaces the Chinese

remainder theorem for computing Pk-1 from the)i(Pk-1)" Those di which

produce nonmaximal degree sequences are discarded as in the univariate

algorithm above. One advantage of so choosing the 6b.1 is that it leads to an

algorithm which is recursive in the number of variables. To compute the com

plete reduced p.r.s. of 0i (P1) and 4i (P 2) over I, the univariate con

gruence algorithm above can be used (since only the degree sequence and the

229

subresultant associate of the last nonzero term are needed). From an algorithm
for polynomials in n variables, an algorithm for polynomials in n + 1 vari

ables is thus obtained using the evaluation'homomorphisms from Ijx 1 , ..., xn+1]

to I[x1, ..., xn]-

REFERENCES

1. 	 I. Borosh and A. S. Fraenkel, "Exact Solutions of Linear Equations with
Rational Coefficients by Congruence Techniques," Mathematics of Computa
tion, Vol. 20, No. 93, January 1966, pp. 107-112.

2. 	 W. S. Brown, "The ALPAK System for Non-Numerical Algebra on a
Digital Computer-I: Polynomials in Several Variables and Truncated
Power Series with Polynomial Coefficients, It Bell System Technical Journal
Vol. 42, No. 3, September 1963, pp. 2081-2119.

3. 	 W. S. Brown, J. P. Hyde, and B. A. Tague, 'The ALPAK System for
Non-Numerical Algebra on a Digital Computer-fH: Rational Functions of
Several Variables and Truncated Power Series with Rational Function
Coefficients, "Bell System Technical Journal, Vol. 43, No. 1 March 1964,
pp. 785-804.

4. 	 J. P. Hyde, "The ALPAK System for Non-Numerical Algebra on a Digital
Computer-HI: Systems of Linear Equations and a Class of Side Relations,"
Bell System Technical Journal, Vol. 43, No. 4, July 1964, pp. 1547-1562.

5. 	 G. E. Collins, "PM, A System for Polynomial Manipulation," Communica
tions of the Association for Computing Machinery, Vol. 9, No. 8, August
1966, pp. 575-589.

6. 	 G. E. Collins, "Subresultants and Reduced Polynomial Remainder
Sequences," Journal of the Association for Computing Machinery, Vol. 14,
No. 1, January 1967, pp. 128-142.

7. 	 G. E. Collins, "The SAC-i List ProcessingSystem,"University of
Wisconsin Computing Center Report (34 pages), Madison, Wisconsin,
July 1967.

8. 	 G. E. Collins, "The SAC-1 Integer Arithmetic System," University of
Wiscohisin Computing Center Report (31 pages), Madison, Wisconsin,
September 1967.

9. 	 G. E. Collinsj "The SAC-1 Polynomial System," University of Wisconsin
Computing Center Technical Reference 2:1968 (68 pages), Madison,
Wisconsin, January 1968.

10. 	 G. E. Collins, "Computing Multiplicative Inverses in GF(p), "University
of Wisconsin Computer Sciences Technical Report No. 22 (8 pages),
Madison, Wisconsin, May 1968.

230

11. 	 S. A. Cook, "On the Minimum Computation Time of Functions, "Harvard
University Computation Lab. Report BL-41, Cambridge, Massachusetts,
May 1966.

12. 	 D. E. Knuth, The Art of Computer Programming, Vol. I: Fundamental
Algorithms, Addison-Wesley, 1968.

13. 	 D. E. Knuth, The Art of Computer Programming, Vol. H: Seminumerical
Algorithms, Chapter IV, Arithmetics, Addison-Wesley, 1969.

14. 	 H. Takahasi and Y. Ishibashi, "A New Method for 'Exact Calculation' by a
Digital Computer," Information Processing in Japan, Vol. 1, 1961, pp. 28-42.

15. 	 J. V. Uspensky, and M. A. Heaslett, Elementary Number Theory,
McGraw-Hill, 1939.

231

PRECEDING PAGE BLANK NOT.FWW

SYMBOLIC METHODS FOR THE COMPUTER SOLUTION
OF LINEAR EQUATIONS WITH APPLICATIONS TO FLOWGRAPHS

by Nfl
N71-1997

John D. Lipson
Graduate School of Arts and Sciences

Harvard Univer~ity
Cambridge, Massachusetts

Abstract

The paper considers the computer solution of linear equations
with symbolic coefficients. A method of solution based on a mul
tivariate polynomial extension of the two-step integer-preserving
elimination algorithm due to E. Bareiss1 which avoids the necessity
for time-consuming rational function arithmetic is proposed. This
two-step method is compared with the classical one-step method in
the context of multivariate polynomial domains and found to be
considerably superior.

The proposed fraction-free algorithm is used as the basis for
a new method of computing the generating function of a flowgraph,
superior to the traditional node elimination technique of S. J.
Mason. The application of flowgraphs to enumeration problems of
combinatorial analysis and automata theory is presented.

Proposed algorithms are implemented using the IBM 2250 Scope
FORMAC System. 43 - The 2250 listings, along with sample output
are presented.

The help and encouragement received from Professor Garrett Birkhoff, Dr.
Elizabeth Cuthill, Dr. Robert Tobey, and Professor Donald Tufts are greatly
appreciated. The support for this research received by IBM and the Office of
Naval Research is gratefully acknowledged.

233

PRECEDING PAGE BLANK NOT FILMED

SYMBOLIC METHODS FOR THE COMPUTER SOLUTION OF LINEAR

EQUATIONS WITH APPLICATIONS TO FLOWGRAPHS

by

John D. Lipson

1. INTRODUCTION AND OVERVIEW

Linear Equations With Symbolic Coefficients

The use of computers in conjunction with computer languages, such as FOR-

TRAN, ALGOL, and PL/I, in computing the solution to linear equations with

numeric (real) coefficients is well known. (An account of this area along with

sample programs is provided by reference 12.) This paper is concerned with the

analogous problem in the area of nonnumerical analysis and symbolic mathemat

ics by computer, namely the computer solution of linear equations with symbolic

coefficients.

An example of a system of linear equations with symbolic coefficients is

provided by

0 1 -x -1 u 0

o 1 - x -1 (1.1)

0 -x 1-xy -1 3 0

o0 0 0 1 1141

Here the coefficients are in I[x, y], the domain of bivariate polynomials over the

integers I. The solution, which then lies in the field I(x,y) of rational functions, is
2 2

-1-2x+xy-x 2+x 2
Ul I - xy - xZ

21 x-xy -x 2

22351 - xy - x2

235

2
-x2n3 2 (1.2)

U4= 1

A simple but important observation for the sequel is that any system of

linear equations with symbolic coefficients, regardless of the nature or com
plexity of the coefficients, can be transformed via substitution to a system of linear

equations with coefficients in some multivariate polynomial domain. For example,

suppose the given system of linear equations is

1 - sin(ar) - sin(ar) -1 u1 0

0 1 - sin(a) -1 u (1.8)

0 - sin(ar) 1 sin(ar) -1 u32
+ra

0 0 0

1
Substituting x for sin(ar) and y for 2 2 yields (1). The solution to (1. 3)

a +r
is eventually obtained by making the inverse substitutions into (1. 2).

Computation With Multivariate Polynomials

The time-honored method of Gaussian elimination is valid over any field. Thus

it is applicable to computing the solution to a system of linear equations with

polynomial coefficients, provided that a rational function arithmetic capability

is available. Indeed, systems have been implemented with this capability, notably

ALPAK 5, 6, 20 and MATHLAB, 26 and they employ standard Gaussian elimina

tion to solve linear equations with multivariate polynomial or rational function

coefficients.

236

Gaussin elimination is considerably less efficient over the field of quotients

of a polynomial domain* than over the real field due to the nature of computation

with quotients of polynomials. First, the arithmetic® and G)of quotients

a 	 c _ad+bc and a c ac

d bd b d -=

involves multiple polynomial operations-three multiplications and one addition

in'the case of quotient addition 0, and two multiplications in the case of quotient

multiplication 0. Second and more important is the problem of reducing quo

tients to lowest terms. For example, over the field of quotients of I[x,y] one

6x 5 15x6y2+Sx5y y 2does not want to accommodate rational functions such as 3y2 +246x+S3xy 2 + + xy'

instead one wants the equivalent reduced from 5x4y . The reduction of

2x3 + xy

rational functions to lowest terms generally involves computing the greatest

common divisor (g. c.d.) of the numerator and denominator polynomials by some

variant of the Euclidean algorithm. In spite of the significant results recently

achieved by G.E. Collins in this area, 7, 8, 9 the amount of computation required

to determine greatest common divisors, especially in the multivariate polynomial

case, 	 is formidable.** As remarked in reference 26 on page 88, most computation

time in any application involving rational functions is taken up with g. c.d. calcu

lations. Thus we are sorely tempted to employ a method for solving linear

equations with polynomial coefficients that does not involve computation with

rational functions. Of course one such method is provided by Cramer's rule,

but the excessively large number of operations required to directly evaluate higher

order 	determinants more than negates any advantages gained-by avoiding g. c.d.

calculations.

*Unless specified otherwise, polynomials are understood to have integer co
efficients. Although there is no harm algebraically in admitting polynomials
with real coefficients, serious computational difficulties arise due to roundoff
error.

**In reference 32 it is reported-that to compute the g.c.d. of a polynomial of
degree 5 in two or three variables can take on the order of a minute on the 7094.

237

Fraction-Free Gaussian Elimination

Given a system of linear equations Ax = b with integer coefficients and

right-hand side, the problem arises of computing the exact solution, i.e., not

tolerating any roundoff error. A modification of Gaussian elimination, attributed

to Jordan in reference 1, transforms an integer system to triangular form such

that:

a. No rational numbers are produced, only integers; i.e., all transforma
tions are integer-preserving or fraction-free, and hence not subject
to roundoff error.

b. The magnitude of the coefficients in the successive transformed matrices
of the triangularization process are minimized by dividing out a factor
which occurs systematically.

c. A by-product of the method is the evaluation of the determinant of the
coefficient matrix and, by an appropriate back-substitution scheme,
the same solution is obtained as would result from applying Cramer's
rule.

The algorithm referred to above is described by Bodewig (reference 3,

Chapter 1) and Fox (reference 13, pp. 82-86). The importance of the exact

divisibility property of step b can be appreciated by observing the size of the

integers in an example of Rosser 38 in which elimination is carried out by a

simple cross-multiplication scheme. Luther and Guseman 24 essentially re

discover the fraction-free technique described by Bodewig (reference 3, p. 109)

for computing the adjoint of an integer matrix.

Recently Bareiss (reference 1, Equation (2.12)) devised a two-step variant

of this fraction-free elimination algorithm. In this scheme, variables are suc

cessively eliminated two at-a-time in transforming a given system of linear

equations to triangular form. The interesting computational aspect of this two

step algorithm is considerably increased efficiency (reference 1, Section IV)

over the classical one-step method.

The applications of fraction-free Guassian elimination reported in the above

references are primarily numerical in nature. Bodewig and Fox are concerned

238

with computing the exact solution of linear equations with integer coefficients,

and Luther and Guseman* report writing a program for the IBM 709 which finds

the adjoint of 50 x 50 square matrices using integer arithmetic. Except for

brief remarks (reference 1, Sections IV and VI) that multistep fraction-free

methods can also be applied to the mechanized algebraic (i.e., nonnumeric)

expansion of determinants, the applications that Bareiss discusses are numeric.

In addition to the usual application of fraction-free (integer-preserving) methods

in computing the exact solution of linear equations with integer coefficient s, **

Bareiss discusses an interesting new application (reference 1, page 576) of such

methods in devising a completely stable (roundoff-free) general elimination

routine.

In this report we shall apply a two-step fraction-free elimination method

in computing the solution of linear equations with multivariate polynomial co

efficients. In section 2 of this paper, a new and elementary proof of the crucial

fraction-free property of the elimination methods is presented. The proof holds

for an arbitrary integral domain. The algorithms are analyzed from the viewpoint

of computational efficiency when applied to multivariate polynomial domains.

Computation of Generating Functions of Flowgraphs

The multivariate polynomial extension of Bareiss' two-step elimination

algorithm can be used to compute the generating function or gain of a flowgraph.

(It is this problem which served as the starting point and motivation of the

research reported here.)

*Note: In the Luther and Guseman paper, 24 Equation (20) on page 448 contains
the essence of a two-step elimination algorithm (but it was not recognized or
applied as such).

With respect to the problem of computing the exact solution of linear equations
with integer coefficients, the reader is also referred to methods 4, 33, 40 based
on congruence (finite field) arithmetic. These methods derive their power by
largely avoiding higher precision arithmetic.

239

Flowgraphs as presented in section 3 of this paper constitute an amalgamation

of two powerful mathematical notions: that of a generating function and that of

a directed graph. Flowgraphs are frequently applied in such areas as circuit
27, 28, 29 . 19, 23, 36, 39 36

theory, Markov chains, graph theory, , and coding
37

theory

Two methods for computing the generating function of a flowgraph currently
_, . 28, 29

exist. Mason's gainformula provides a topological method which requires

the detection of certain sets of paths and loops in the flowgraph. This detection

generally turns out to be a difficult pattern recognition problem, and Mason's

gain formula does not seem suitable as the basis for a computer algorithm. A

systematic (i.e., programmable) method, also due to Mason, 27, 29 is based

on a node elimination scheme. However, this method involves computation with

rational functions, and the proposed fraction-free method for computing the gen

erating functions of flowgraphs promises a great increase in efficiency. In

addition, the application of flowgraphs in solving some enumeration problems

from combinatorial analysis is presented.

Implementation

A set of routines called FFP (fraction-free package for the solution of linear

equations with multivariate polynomial coefficients) was implemented using the

IBM 2250 Scope FORMAC System 43. These routines are used by two applica

tions programs, FGRAPH and STAT. FGRAPH computes the generating func

tion of a flowgraph according to the algorithm presented in section 3; STAT

computes the stationary probability vector of a Markov chain specified by a

transition matrix with symbolic elements. The above programs, along with

sample output, are presented in section 4.

240

2. FRACTION-FREE GAUSSIAN ELIMINATION. OVER INTEGRAL DOMAINS

In this section integer-preserving elimination methods are extended to

arbitrary integral domains and the' computational aspects of such methods are

investigated in the context of multivariate polynomial domains. This extension

makes possible their application to the computer solution of linear equations

with symbolic coefficients. A new and elementary proof of the important

fraction-free property of these methods is also presented.

Let A = (aij) and B = (bij) be an nxn matrix and nxm matrix respectively

over an integral domain D, and consider the m systems of linear equations

AX = B with common coefficient matrix A . Note that any number m of

inhomogeneous terms are allowed; e.g., B is the identity matrix when the

inverse of A is desired.

The n x (n+m) augmented matrix of the given systems is defined by

AP = (a(.)) [A B]. (2.1)Ij iiI
=

Division-Free Gaussian Elimination

A(0) With given by (2.1), a sequence of matrices A(k) ="a(k)- (k =1, 2,... ,n-1)

is computed according to

a(k) = a(k-1) a(k-1) - a(k-) ak(k-1) (2.2)

(i = k+l,...,n; j=k+l,...,n+m)

where it is implicit that

a).. = (k-1).. (i ,...,k;j1,...,n+m)1) 13
0 (i=k+,...,n;j=1,2,...,k).

Provided that A is nonsingular (2.2) generates matrices A(k) which represent

A(0) systems of linear equations equivalent* to those represented be , and the

left-hand n x n submatrix of A(n -) (the transformed coefficient matrix) is in

upper triangular form.

*The usual account must be taken of zero pivots.

241

The lower right (n-k) x (n-k+m) submatrix of A 'k) (computed according

to (2.2)) is denoted by A(k) ,i.e.,

A(k) = (a(k) (i =k+l,...,n; j=k+l,...,n+m). (2.3)L ij

Recall that, in an integral domain D, a divides b or b is divisible by

a when a= be for some c in D.

Theorem 2.1. The minors of order two of A(k) are divisible byL-1)7k (t k-t +l
tk- I , for k=1,2,...,n-2

The proof isgiven inAppendix A.

Corollary. The a.k) of Ak) are all divisible by
1] L

k- [(t -1] k-9 for k=2,3,... ,n-I

Proof. Each a(k of a) (k= 2,3,. .n-1) is a minor of order two of

-)
AL , for (2.2) may be written as

)(k a(k-i) a(k-i)

(k) a(kk1 a(k1

The desired result now follows from Theorem 2.1.

The division-free algorithm is now analyzed when the integral domain D

is specialized to a (multivariate) polynomial domain I[xI....,xr.

The (total) degree of a polynomial

a(xl. a 12ee2 er

a xe...,x)=E eX1 x 2 - r e

e

242

in I[x 1 ,.... ,xr] is defined by the maximum of the degrees el-e2+... +er of the

er

monomials a x I x2 ... x r of a(x,...,x). The degree function deg a

eI e 2

obeys the same rules as the familiar univariate degree function

degab = dega + degb

dega+b max(dega, degb)

and indeed specializes to the univariate degree function for the case of I[xI].

Assume now that a system of n linear equations Ax = b has polynomial

entries a and bi all of degree d. Then the division-free algorithm (2.2)

generates polynomials a(k) of degree d x 2 k at stage k (k = 1, 2,... ,n-i).
iJ

For example, applying the division-free algorithm to a 10 x 10 system having

first degree polynomial entries results in polynomials of degree 29 = 512.

The storage and time required to accommodate such large degree polynomials

is intolerable. Moreover, Cramer's rule (and the definition of a determinant)

indicates that the solution to such a system consists of numerator and denomina

tor polynomials having maximum degree 10 (generally, degree nd). An elimina

tion algorithm is now considered that yields the results promised by Cramer's

rule.

Fraction-Free Gaussian Elimination

With A" again given by (2. 1), the division-free algorithm (2.2) is modified

to: for K=1,2,...,n-1

(k)
aja

_
(k-1) (k-1) a(k-1)a(k-1)

akk ai - kj ik
(k-2) (2.4)
ak-l,k-I

(i = k+l,.....n; j = k+l,..., n+m)

with a(01) = 1, where again it is implicit that
00

243

a =k 	 a~k' (1=1.. k =,. nm

0 (= k+l,...,n; J=1,...,k).

A(0 5 Clearly the algorithm (2.4) triangularizes . Although the a 5 of (2.4) appear

ij

to lie in the field of quotients of the integral domain D, the following theorem

shows that the transformations of (2.4) are all fraction-free.

Theorem 2.2. The a(k) obtained by (2.4) are inD.
ii

Proof. Consider the a(k) generated by the division-free algorithm (2.2),

and change the notation there to b(k) to distinguish these elements from the

a(k) generated by algorithm (2.4). The corollary to Theorem 2.1 proves that

k-ithe b\ 1) of (2.2) are all divisible by p 	 Consequently, if]
it is shown that

(k) - bV' 	 (2.5)
ik-a ~ I - 1)] k-t 	 25

then Theorem 2.2 immediately follows. Equation (2.5) is established by a simple

proof by induction, which is given in Appendix A.

The explicit relationship given by (2. 5) between the elements generated by

the division-free algorithm (2.2) and those generated by the fraction-free algorithm

(2.4) seems to be new; but it seems interesting only inasmuch as it provides a

new and elementary proof of the fraction-free property of algorithm (2.4). Again,

knowledge of (2.4) has been attributed to Jordan.

The proof of Equation (2.5) also establishes the following corollary.

Corollary. For the fraction-free algorithm (2.4), any minor of order two of

A(k - 1) is divisible by a(k- 2)
k-1,k-1

244

L

Theorem 2.3. Al = a(nl)

nl

The proof is given in Appendix A.

Next we analyze the fraction-free algorithm (2.4) again for a system of n

linear equations Ax = b , with the ai and bi polynomials of degree d.

Then (2.4) generates polynomials a(.) of degree d(k+1), a vast improvementij

over the division-free algorithm (2.2) in which the degree was d x 2k , result

ing in a great reduction in storage and computation time.

The algorithm of key computational importance for this report is a two-step1
variant due to E. Bareiss of the fraction-free algorithm (2.4). This algorithm,

valid over any integral domain, is readily derived from (2.4) as follows. Apply

ing (2.4) to the numerator of the right-hand side of (2.4) gives

! (k-2) (k-2 (k-2) (k-2) a(k-2) a(k-2) - a(k-2) a(k-2)ak-1,k-lak-k - ak-l,1k,kl - k-l,k-l ij - k-l,j i,k-1

ak-2)-2 -2,k-2

a(k-2) (k-2) a(k-2) a(k-2) . (k-2) a(k- 2) - (k-2) a (k-2)' /a(k-2)
k-l,k-l-kj k-1,ak,k-1 k-l,k-l ik -k-l, j i,k-1 /k-l,k-1

a(k-3)/
k-2,k-2a(k-3) k-2,k-2

(k-2) (k-2) (k-2) (k-2) (k-2)
ak-l,k-I ik-l,k-iakk ak-a,k Sk,k-1 a(k-2)

(k-3) / aj
a(k-3) Lk-2,k-2 L-,

(k-2) a(k2) N ^a (k-2)2%1,1-1 aik(k-2) a(k- 2)

a(k- 3) / kJjk-2,k-2

ak,k-laik - kk ai,k-1) a(k2)].k2a (k-2) a(k-2) _ (k-2)a(k-2)+ (k-3)) a j] / -k-l,k-I
\ ~ k-2,k-2 /

245

http:a(k2)].k2

1 2 4k-2 k-2) l(k-2) (k-2) (k-2) (k-2) (k-2) (k-2)
[k-3) 2 1k-k-k-k-jik- -l-kkl-lki-i

k -2,k21

Now the term within curly braces[{ }]vanishes and thus need not be com

puted-this is what reduces computations when the two-step method is used in

stead of the one-step method. Now the expression in parentheses on the line
"
marked © " above is equal to ak-2 , k-i and the expression in parantheses on the line

(k-2)

marked " © " above is equal to a(k -2) ; hence both are in the integral domain D by

Theorem 2.2. Also the numerator of the expression in parentheses on the line

marked "0" above is a minor of order two of A
L
(k-2) and hence, by the

corollary to Theorem 2.2 is divisible by a(k-3) .

ak..2k.2 Thsepesin*

(k -2)
in parentheses is in D. Next we can cancel a . Finally we note that the
k-1,k-i

S(k-3) because a(k) i nD gi
entire bracketed term is divisible by ak-2,k2 a is in D, again

by Theorem 2.2. This establishes the fraction-free property in any integral

domain of the following algorithm.

Two-Step Fraction-Free Gaussian Elimination Algorithm (Bareiss)

I 1; a() = a..; a(°) = b.
0 ij ij i,n+m im

0 -(k{-2)= -- (k-2) - (k-2) (k-))/ (k-3)c(k-2) ,k-lakk - 1, -k-2,k-2
(lk-2) (k-2) a(k-2) (k-2) a(k-2) (k-3)

ait-l,k-= ak-i- a(k- h / ak-2,k-2 (2.6)

c(k-2) - (k-2) (k-2) a(k- 2)a(k- 2) (k-3)1ak, k-laik - kk i,k-1 %-2,k-2

ak) = 2(k-2) (k-2)(k-2))(k-3)(ak2)(k2)+ (k-2)
13 1] 0 ~ ii ak.-li a-2, k-2

for i=k+1,...n; j=k+l,...n+m

246

with the pivot row computed by the one-step formula

a(k- 1) - (k-2)
akk 0
a 1) -(k'a (k-2) a (k-2) - (k-2) a(k2) (k-3)

k 1 k-l,k k akl,ak, -i ak-2,k-2

for 9= k + 1,...,n +m.

The proper sequencing of computation is presented in the flowchart of Figure

1. 1 which implements some modifications in the logical flow of control shown on

page 569 of reference 1 (see also the following remarks).

A pivoting algorithm for two-step Gaussian elimination is necessarily more

complicated than one for a one-step method because of the necessity of checking

two pivot elements, a (k-i) and a(k- 2) for zero. The reader is referred
kk k-i,k-I '

to the pivoting algorithm of reference 1, Figure 3 which replaces

0

of Figure 1.1 of this paper.

. Comparing Figure 1 of reference 1 with Figure 1. 1 of this paper, it is ob

served that the flow of control is different. Our alteration corrects an error

in reference i, due to the last pivot element a(n-2) of an even order matrix
n-,n-I

not being tested for zero; e. g., failure would occur for a coefficient matrix of the

form

0o

Efficiency also increases slightly by assigning the previously computed value

(k-2) to a (k-i) Also a(n- l) should be checked to be sure it is nonzero
0 kk nn

before exiting as a final test that the coefficient matrix is nonsingular.

247

(0) (0)t

ai i1 ' i ,,n'f¢

1,2, M
2 k

Cc(k-2) yes kn1_nn EXI

yes kn k+2 -. k

k "- i

a (k-1)
c(k-2);II (k-2)c12 t(Lk l k' .. nm

no

(k)yes (k-2)-__ (k_)

-(k , .,n+m)akk 0

Figure 1.1. Two-Step Fraction-Free
Gaussian Elimination

248

Relative Efficiency of One and Two-Step Fraction-Free Elimination Algorithms
Over Multivariate Polynomial Domains

The analysis of the fraction-free elimination algorithms (2.4) and (2.6) is

given in terms of the number of integer multiplications and divisions required

to carry them out over the multivariate polynomial domain I[x 1 ... ,Xr].

Let a(x1 , ... ,x.) be a polynomial with integer coefficients of degree d in

each of r variables of the form

d d e1 er
a(): = Z ... ax *.. x (aeci)

e1=0 r=0
e r r

Note that the total degree of such a polynomial is rd. Clearly a(x) has (d+l)r

terms, assuming there are no missing terms. For simplicity of analysis, this

assumption is made throughout.

If a(x)c and b(2) are two polynomials in r variables of degree d and e in

each variable respectively, then the number of integer multiplications required

to compute a(xb(x is

[(d+l)(e+l)] (2.7)

and the number of integer multiplications and divisions required to compute

a(x/b(x) assuming, of course, that bQx divides a() , is

[(d-e+l)(e+l)] r. (2.8)

Furthermore, the degree of a(xbQx is d+e and the degree of a(x_)/b(x_) is d-e.

Now consider m systems of n linear equations in n unknowns AX = B

with a common coefficient matrix A, and assume that the a.. and b.. of

A and B are all polynomials of degree d in each of i variables. Then,
0) 1)referring to (2.4) and (2.6), the a are of degree d, the a 9 are ofi 13

)degree 2d, and in general the a. are of degree (k+l)d in each variable.

249

Let Ns(m,n,d,r) and NT(m,n,d,r) be the number of integer multiplications

and divisions required to carry out the single-step algorithm (2.4) and the two

step algorithm (2.6) respectively. From (2.4) follows
n-1
 r+1

Ns (m,n,d,r) = - (n-k)(n-k+m) [2(kd+l)2r + (kdId+l)r(kd-d+l)r].
k=1 (2.9)

For the two-step algorithm (2.6) care must be taken to distinguish between n

even and n odd. If we define q by n-1 if n is odd and by n-2 if n is even,

from (2.6) follows

NT(m,n,d,r) = 111 (tl+t2 +t 3 +t 4) +t 5 (2.10)
k=2,4, ...,q

where

= 2(kd-d+l) 2r + (kd+l)r(kd-2d+l)4
tI

t 2 = 2(n-k)[2(kd-d+1) 2 r + (kd+l)r(kd-2d+)r]

t3 -- (n-k)(n-k+m)[3(kd-d+l)r(kd+l) r + (kd+d+l)r(kd-2d+) r]

(n-k+m) [2(kd-d+l) 2 r + (kd+1)r(kd-2d+l)r
t =

and

t5 =X0 if n is odd

S(m+l)[2(nd-d+1) + (nd+)r(nd-2d+l)r] if n is even.

0 k2 (k-2) and
The term t corresponds to the computation of c , t2 to C(k2)

1 0 2 ii

a k) c(k-2) (i=k+1, .. ,n), t3 to (i=k+l,...,n;j=k+l,...,n+m), and
2 3 ij t4

to (k-1) (A = k+l, ... ,n+m). For n even, t5 corresponds to the computa

tion of a(n-1) (4= n,...,n+m).

250

NT cCf

lim - 1

mn00 S br
a1

From (2.9)

a1 = 2(m+l), b, = (nd-d+l)2

In determining c1 and dI from (2. 10) there are two cases to consider:

a. 	 n odd in which case c1 and dI are determined from t3 of (2.10) as

I = 3(m+1), dI = (nd-2d+l)(nd-d+l)

b. 	 n even in which case cI and dI are determined from t 5 of (2. 10) as

2
c = 2(m+l), d, = (nd-d+l)

,Noting that bI > dI for n odd and that a,= c1 and bl = d forn even, it

follows that

NT
 0 fornoddlira = (2.13)
r - NS I for n even

Thus we have the rather surprising resultthat for higher variate polynomial

systems the two-step method offers a potentially unbounded increase in efficiency

over the-one-step method, provided that the coefficient matrix is of odd order.

Cone ?sely, when the coefficient matrix is of even order, then in the limit as

r -c the two-step method offers no advantage whatsoever over the one-step

method. Moreover, the limiting behavior of (2.13) is strongly exhibited for

very moderate values of r as indicated by Table 2-1, where the ratio NT/NS is

computed 	with m and d arbitrarily set equal to unity.

252

To ascertain the computational savings afforded by the two-step algorithm

(2.6) over the one-step algorithm (2.4) it is useful to examine the ratio

NT(m,n,d,r)/NS(m,n,d,r) in two limiting cases:

a. large mn (large systems of linear equations)

b. large r (systems with high-variate polynomials).

As for case a, first observe that the number of integer multiplications and di

visions in carrying out the transformation A(k- 2) - A(k) by the one-step

algorithm is given from (2.9) by

(n-k+l)(n-k+m+1)[2(kd-d+1) 2 r + (kd+) r(kd-2d+l)]

+ (n-k)(n-k+m)[2(kd-1) r + (kdfd+l)r(kd-d+1)rl .

Comparing the above with the term t 3 of (2. 10), which dominates for large

mn, it follows that, for fixed r and d,

(2.i1)limNT 2

Thus for large mn, the two-step method requires only two-thirds the number

of operations required by the one-step method.

Turning now to case b (large r), it is observed from (2.9) and (2. 10) that

NS and NT have the form
u

r
= Z a.bfNs(m,n,d,r)

i=1 11

(2.12)

v
= Z c.d r NT(m,n,d,r)Ti=1

where the a, bi, i, di , u and v are functions of in, n, and d but are in

dependent of r. Assuming in (2.12) that b1 > b2 > b3 - and d >d 2 >d 3

it follows for fixed m, n, and d that

251

Table 2-1

SAMPLE VALUES OF NT/NS

(m = d = 1)

r N 2 3 4 5

0 1. .96 .90 .87

1 1. .83 .82 .81

2 1. .64 .76 .75

3 1. .45 .77 .69

4 1. .29 .82 .60

5 1. .19 .88 .50

6 1. .12 .93 .41

For example, Table 1 indicates that, for a system of three linear equations in

three unknowns, Ax = b with the aij and bi polynomials of degree 1 in each

of three variables. Then the two-step algorithm (2.6) requires less than half,

specifically .45, the number of integer multiplications and divisions taken by

the one-step algorithm (2.4). However, also note that the advantage of the

two-step over the one-step algorithm rapidly disappears with increasing r when

n = 4, as indicated by (2.13).

The above analysis should be interpreted only in a relative sense, i.e., in

indicating the relative superiority of the two-step method over the one-step

method. Thus there is nothing, in an absolute sense, to be gained by augmenting

a system of linear equations with an even order coefficient matrix in order to

obtain an odd order coefficient matrix.

Finally, two distinct limiting behaviors were established for NT/NS , one

for large mn (2. 1-1), and one for large r (2.13). If both mn and r become large,

then (2.13) 'determines the limiting behavior of NT/NS because of the strong

exponential dependence of NT and NS on r.

253

Fraction-Free Back-Substitution

Both the one-step (2.4) and two-step (2.6) fraction-free algorithms produce

A(n -l) an n x (n+m) matrix with the left-hand n x n submatrix (the transformed

coefficient matrix of the systems AX=B) in upper triangular form. The solution

vectors (1 , "'E "') are then given by the familiar back-substitution

formula

- nn-) (2.14)xn, a(n-a))

Ii_) n 0i-1)
xa(i , - -~E a ij x.

aii-I) J=i+l

(i = n-1, ... , L) i

The division operation in (2.14) is not generally exact; the xit 's are in the field

of quotients of the integral domain over which the given systems of linear equa

tions are specified. However by Cramer's rule, the xit 's have a common

denominator I Al. Writing x= yi/ IA I and invoking Theorem 2.3 that

a(n-) = A j the following fraction-free back-substitution formula for the

Yi's is obtained:

a(n-1)o (2.15)=Yn n-1i- nn,

-a 1)YU = Lai-1n (-1)nF n a(i-1)
ii j=i+l]

By Cramer's rule, the division operation in (2.15) is exact. Reduction to lower

terms may be possible for the quotients xi, = Yi in the case of Gaussian

254

domains. To determine quotients in lowest terms (i.e., with numerator and

denominator relatively prime) the application of a GCD algorithm is necessary.

3. 	 FLOWGRAPHS AND THEIR GENERATING FUNCTIONS

In this section, we define flowgraphs and their generating functions.

As devised by Mason (see references 27 and 28, and reference 27, Chapter

4), a flowgraph is a graphical representation of a system of linear equations.

This point of view is pursued by showing both the equivalence of the concepts of

the flowgraph generating function as defined in this paper to flowgraph gain or

transmission as defined by Mason, and by showing the applicability of Mason's

node elimination scheme (see reference 29, Sections 4-1 to 4-6) to computing

the generating function of a flowgraph.

A flowgraph technique for solving certain kinds of enumeration problems

from combinatorial analysis and automata theory is presented and examples are

given to illustrate its value.

This section also gives a new method for computing the generating functions

of flowgraphs, based on the two-step fraction-free elimination algorithm (2. 6),

and compares this method with Mason's node elimination algorithm for compu

tational efficiency.

Basic Definitions

Flowgraph. A flowgraph F = (9, s, f, 4) over an integral domain D con

sists of:

a. 	 A directed graph 9 = [n, A, q] specified by a set n= {1,2,...,n}
of nodes, a set A of arcs, and a function : A- n x n which associ
ates with each arc a its endpoints 0 (a) = (ij);

b. 	 A starting node s En and a final node f En; and

c. 	 A function @: A-ID which associates a label *(a) E D with each arc
a E A.

255

Transmission Matrix. The transmission matrix T = (ti) of the flowgraph

F is the n x n matrix defined by: for i, j E n

t.11 = Ia: * (=i,J)(;)(a) (3.1)

where t. is called the branch transmission from node i to node .

Generating Function. The generating function G of the flowgraph F is de

fined by

G = [(I-T)-l]sf (3.2)

-i.e., G is the (s,f)t h element of (I-T) , where I is the identity matrix.

Clearly G exists when I I-T j # 0.

Consider now a special case of the above which arises when the transmission

matrix T has the form T= zA, where A is an n x n matrix (a..) over an

integral domain D. Each branch transmission tii is a monomial aijz in the

polynomial domain D[z]. From (3.2) the generating function in this case is

given by

= [(I-zA)-l]sf (3.3)

[W kAk

=1Z zA

l

k=O sf

(k) k= as z
k=O

where a(k) is the (s,f) element of Ak. Thus the flowgraph generatingsf

function G is the generating function (in the usual mathematical sense) of the

sequence Ia(k)(

sf k=O2

256

Furthermore, a closed form may be obtained for the power series

-a(k)zk by observing from (3.3) that
=0 	sf ,b bevn rm(.)ta

C
G = 	 (3.4)

SI-zAr

where Cfs is the cofactor of the (f, s)th element of I-zA. Thus the generating

function of the sequence I a (k) is a rational function of the indeterminate z.tsf}

Also note that the existence and uniqueness of the power series expansion for

the 	rational function (3.4) follows from purely algebraic considerations.

n
For the denominator polynomial I I-zA = 1 + ; s z considered as an

i=1

element of D[[z]], the domain of formal power series over D has an invertible

constant term, namely unity; hence it is invertible in D[[z]] for any integral
domain D (for example see reference 2, Chapter 13).

Two choices for the matrix A give rise to classes of flowgraphs which

have received much attention in the literature.

a. 	 A is the transition matrix of a Markov chain. Then the higher transition
probabilities are given by successive powers of the matrix A (for ex

ample see reference 11, Chapter 7) so that a(k) in (3.3) is the prob
sf

ability of a transition from the initial state s to the final state f in
k steps. The flowgraph analysis of Markov. chains originated with the

39 19 	 18 23
work of Sittler and Huggins. See also Howard , Lorens , and

Ramamoorthy and Tufts. 36

b. 	 A is the adjacency matrix of a multi-graph, with a.. equal to the

number of arcs (paths of length one) from node i to node j. Then the

element a(Ii
) of Ak is the number of paths from node i to node j

of length k (for example see reference 17, Chapter 2). Thus (3.3)
and (3.4) in this case yield a path enumeration generating function with
respect to a fixed starting node s and final node f of the given

257

multigraph. The generating function approach to path enumeration was

considered by Ramamoorthy and Tufts3 6 using flowgraph theory, and by
Kasteleyn, who does not explicitly use flowgraphs, in reference 17,
Chapter 2.

Since our definition of a flowgraph does not restrict the branch transmissions

to monomials, a branch transmission may be a polynomial or power series. For

example, in a path enumeration problem the branch transmission tij = 2z

+4z 3 + 5z 7 might indicate that there are two paths of length 1, four of length

3, and five of length 7 associated with arc(s) for node i to node j. Similarly,

tij = (1-az) - 1 might convey the information that there are ak paths of length

k for k = 0,1,2,... associated with the arc(s) from node i to node j. The co

efficient gk of the power series expansion of the generating function

gkz kG is then the total number of paths of length k from the starting
k=0

node s to the final node f. An example involving the above concepts follows.

The computations were carried out using the Scope FORMAC program presented

in the next section.

Example 3.1.

3z

Z-e-122 30 0

31Sz 1 T = 3z 1+2z

-3z + z 3z+z 0 0

Flowgraph F Associated Transmission Matrix

(s=1, f=3)

G = [(I-T)-11 3

4
z+2z

1-3z-3z2_z3_6z5_2z
6

258

k
zThe first few g's in the power series expansion G = Xgk are:k=O

g 0 = g4 = 48

=
1 g 5 = 183g 1

= g6 = 711
3g2

=
g 3 12 g7 = 2750.

Thus from node 1 to node 3 there are no paths of length 0, one of length 1, three

of length 2, twelve of length 3, etc. Also, complex variable techniques may be

used to obtain information about the gk 's. For example, the asymptotic rate

of growth of the g's is given by

= 1lim Rgkk-

where R is a root, of the denominator polynomial of G which is smaller in absolute

value than all other roots. For the above generating function, R-- . 26.

Flowgraphs and Linear Equations; Flowgraph Reduction

Let F be a flowgraph with n nodes n = {1,2,...,nf, starting node s,

final node f, and transmission matrix T = (tij). An augmented flowgraph F

is constructed from F by introducing two new nodes, a source node 0 and a

sink node f, with branch transmissions as shown in Figure 3. 1.

Flowgraph F
(unaltered)

0<(5 rF n+1

Figure 3.1. Flowgraph F

259

A system of linear equations is associated with F as follows: the source node

node 0 represents an independent variable x 0 , and the nodes 1,2,... ,n+l

represent dependent variables x., x 2 , ... , X+ 1 . These variables are related

according to the equations

n
X.= L xit(1,2,...,n; js)i I ij(3.5)

n

x =X +~ x.t.

- 0 +isi= 1

xu+1 = xf

By eliminating the dependent variables xi, ... , xn from (3.5), a relationship

X+ = G x0 (3.6)

is obtained. Mason refers to G as the gain or transmission of the flowgraph F.

Theorem 3.1. G = [(I-T)-l]s f .

The proof is given in Appendix A. Theorem 3.1 states that the gain G of

(3.6) is precisely the generating function of the given flowgraph F.

Mason's node elimination algorithm is essentially a graphical variant of

Gauss-Jordan elimination. Consider the elimination of a variable x. in (3.5).J
Now

n t..
X. 1 3x=

- i=1 I 1-tjj

and substituting for x. in an equation
j

n
xk = x-iki=1 u

gives

260

n / ttk

xk k~P x. t ik + ___1 tjj . (3.7)

i/j ti/
Equation (3.7) states that when node j (variable x.) is eliminated, the relation

ship between node i (variable xi) and node k (variable xk) implied by (3. 5)

is retained if the branch transmission tik is replaced by

= + t i jt kjtk tik (3.8)1-tj

Thus a new flowgraph is obtained with one fewer node and with branch transmis

sions given by (3. 8). The dependent nodes 1, 2, ... , n are eliminated in turn;

finally the flowgraph corresponding to (3.6) is obtained

with G the generating function of the original flowgraph.

Note from (3.8) that in eliminating a node, say J, the transmission function
from node i to node k is altered only if node i and node k are adjacent to

node J. Herein lies the power of the node elimination scheme: in eliminating
a single node from a large flowgraph one need only be concerned with a (usually)

small part of the total graph, namely those nodes adjacent to the one being

eliminated. This principle is illustrated below in Figure 3.2. (Note in partic-,

ular how the relationship between node i and itself is preserved when node j

is eliminated.)

261

tjik

-- - ti + . k k

1 ~~t.. ! -t.3

Figure 3.2. Node Elimination

The two flowgraphs of Figure 3.2 are equivalent (-) in the sense that they

represent equivalent systems of linear equations.

Application of Flowgraphs to Enumeration Problems in Automata Theory and
Combinatorics

The applications of flowgraphs to the analysis of Markov chains 19, 39 and

to the enumeration of comma-free code words 37 have suggested to this author

the possibility of applying flowgraphs to problems of a more general combina

torial nature.

Many combinatorial problems can be cast in the following form: "over an

alphabet A determine the number of sequences a a2 ...an(aic A) of length

262

n having some prescribed property P"'. The reader is referred to Sections

Lin2 2 3-4 and 3-5 of for several examples of problems of the above form.

A method to solve such problems, based on elementary automata theory

and flowgtaph theory, is now proposed. An outline of the method follows.

Step 1. Construct a machine M (automation, recognition device,
Rabin-Scott automation-see, for example, reference 16, Chapter 3 and
reference 34) with input alphabet A that accepts or recognizes precisely
those sequences specified by the property P.

Step 2. Transform the state diagram of the machine M to an appropriate
flowgraph F to enumerate all paths from the starting state to any final
state of the machine M.

Step 3. Compute the generating function (3.2) of the flowgraph F.

znThe flowgraph generating function G = E g obtained in step 3 then
n=O

yields the solution to the given combinatorial problem, i.e., gn is the number

of sequences of length n having the prescribed property P. Thus the flowgraph

generating function G is precisely what one would get using classical generating

function techniques, as described in Riordan (reference 44, Chapter 2) and

Liu (reference 22, Chapters 2 and 3). However, the author has found that many

problems requiring at least a modicum of ingenuity to solve using traditional

combinatorial techniques can be handled routinely using the proposed method.

Some examples follow.

Example 3.2. (See reference 22, page 77). Find the number of n-digit

binary sequences that have the pattern 010 occurring for the first time in the

nth digit.

263

Step .

1

Figure 3.ga Machine M1

Step 2. z

Step S.

T =0

Z

(

Figure 3.3b.

z

0

0 0

z

Flowgraph F

264

G = [(I-T) -1]14

3z
3

1-2z+z2-z

3 4 5 6
- z +2z +3z +5z +...

Thus there is one sequence of length 3, two of length 4, three of length 5, etc.

Note that the machine M of Figure 3.3a is incompletely specified in that no

transition is indicated when the machine is in state 4 and an input of 1 is received.

It is assumed in this case that a transition is made to some absorbing dead state.

The generating function is clearly unaltered by ignoring a dead state or any

other state from which there is no path to some final state.

Example 3.3. The machine of Figure 3.4a appears in reference 30, p. 165.

The generating function G of flowgraph 3.4b enumerates the number of binary

sequences of length n recognized by the given machine.

0 .z

,2 2

0 1 z

o
0 z

Figure 3.4a Figure 3.4b

T =(zz)

z265

265

G = [(I-T) -113

2
Z-Z 2

1-z-2z

2 1
___ +

1+z 1-2z

- I - I2n + 2(-1) n n

n=1 3
2nn-1

2 n1 + 2(-1)'
Thus the machine recognizes - sequences of length n.

3

The flowgraph approach-to the above enumeration problem also admits the

potentially useful generalization of analyzing a machine which processes different

symbols in different lengths of time. If the automation requires t i units, time

to process an input symbol ai, then the branches of the flowgraph correspond

ti t
ing to ,an a. transition are labeled z The generating function G = E gtz

t t=0

266

then enumerates the number of sequences gt recognized by the automation at

time t.*

The next example considers an infinite machine.and flowgraph.

Example 3.4. In reference 31, Section 4.2. 2 Minsky discusses the problem

of recognizing "grammatical" or "well-formed" sequences of parentheses; e.g.,

(0), () () , and () (()) are well-formed, while (,) ()(, and (())) are not.

(See reference 31, Section 4.2.3 for further details.) Consider now determin-

W n
z
ing the enumerator G = F gn for the numbers gn of well-formed sequences

nI=0

of parentheses of length n. The infinite state automation of Figure 3.5a recognizes

precisely those sequences of parentheses that are well-formed, and the corre

sponding infinite flowgraph of Figure 3.5b serves as a parenthesis counter.

Figure 3.5a. Parenthesis-Checking Machine

z z

Figure 3.5b. Parenthesis-Counting Flowgraph

Since the transmission matrix T of Figure 3.5b is an infinite matrix,

formula (3.2) for the generating function G is not useful for computational

*In reference 21 this problem is treated (using flowgraphs) from a regular ex
pression viewpoint.

267

purposes. Instead, G wili be computed using the node elimination scheme

discussed earlier. Eliminating nodes 2, 3, 4,... in Figure 3.5b gives the

equivalent flowgraph of Figure 3. 5c, while eliminating nodes 3,4, 5,... gives

the equivalent flowgraph of Figure 3. 5d.

z

1 H 	 12H

Figure 3.5c 	 Figure 3.5d

Equivalent Flowgraphs

When we eliminate node 2 in Figure 3. 5d and equate the resultant transmission

from node I to itself to H in Figure 3.5c, we get

2
=H

1-H

whence

-
H

2

the negative sign for the square root being chosen so that the series expansion

for H has positive terms. The desired generating function G is then given

by
1

G-
 1-H

1 	- 1-4z 2

2z 2

[(2n)!1 2n
I 	z

n=o nt(n+lytj

The last equality follows from application of the binomial theorem and subse

quent simplification. Thus there are n' (2n)' well-formed sequences of

parentheses of length 2n, e.g., there are 14 sequences of length 8 which agree

with the enumeration given by Minsky in reference 31, page 75.

268

It is well known in automaton theory that the properties and capabilities of

infinite machines are quite different from those of finite machines. Therefore

it is interesting to note that their sequence-enumerating generating functions

have different analytic properties: for finite machines the generating function

is always a rational function, whereas for infinite machines a generating func

tion with a branch point has been encountered.*

The previous example in conjunction with Theorem 3.1 suggests using

flowgraphs to compute specific elements in the inverse of an infinite order

matrix with a finite periodic structure. Thus element (1, 1) of the inverse of the

infinite tridiagonal matrix

1 -Z

-z I -z 0

-z I -z

I-T 0

-z 1 -z

is determined as the generating function of flowgraph 3.5b, which has trans

mission matrix T and node 1 as both the starting and final node. From Ex

ample 3.4 the two values for this inverse element are

I + ,/i-4z2

2z

The final example illustrates application of the machine flowgraph technique

in deriving a bivariate generating function.

*In reference 39, page 265, the flowgraph analysis of a 2-way infinite random
walk -results in a generating function which also has a branch point singularity
due to a square root.

269

Example 3.5. (See reference 22, page 83). Find the number of n-digit

binary sequences with exactly r pairs of adjacent

(Note: The sequence ill has two pairs of adjacent

l's and no adjacent

I's.)

O's.

A machine

in Figure 3.6a.

M which recognizes sequences having no adjacent O's is given

4

I0

Figure 3.6Sa. Sequence Recognizing Machine

State 4 which is accessible from states 1, 2, and 3 via the empty tape Ais in

troduced in order to have a single final state-any sequence accepted by state

1, 2, or 3 is also accepted by state 4, and conversely any sequence accepted

by state 4 is accepted by state 1, 2, or 3.

nr
What is desired is the generating function G(x, y) = E an rX y , where

a is the number of sequences of length n having exactly r pairs of adjacent
n , r

l's. In the flowgraph corresponding to machine M, the branches are labeled

with bivariate monoeials x 1 y , in which E = 1 indicates the occurrence

of a 0 or a lE =0 indicates no occurrence of a 0 or 1 (i.e., the empty

270

tape), E2 = I indicates the occurrence of the sequence 11 (i.e., a 1 when the

immediate preceding input symbol was also a 1), . 2 = 0 indicates no occurrence

of 11. The resulting flowgraph is given in Figure 3.6b.

4,

Figure 3.6b. Resulting Flowgraph

the transmission matrix T of the above flowgraph is0xx I
0 x xy

0-D 0 0

G = [(I-T)-1]14

= 1-(y-2)x - (y-1)x2

1-yx-x 2

This computation was carried out using the FORMAC program which appears

in the next section as sample output, along with the first several terms in the

expansion of G as a power series in x.

271

It is. instructive to compare the machine-flowgraph method used above with

the more traditional method used by Liu (reference 22, page 79) in treating this

same problem. The flowgraph approach generalizes effortlessly to bivariate

and higher variate problems; traditional generating function methods do not

seem to have this property.

Computation of the Generating Function of a Flowgraph

Let F be a flowgraph with starting node s, final node f, and n x n
transmission matrix T = (t..). The branch transmissions t.. are in an integral

domain (typically a polynomial domain in one or several variables with integer

or rational coefficients). Algorithm 3. 1 below is proposed for computing the

generating function G = [(I-T)]sf.

Tt r 1. 	 Define A = (I-Ttr), where = transpose, of T.

2. 	 Interchange columns f and n of A.

th

3. 	 Define the n-vector b as the s unit vector.

4. 	 Solve Ax= b for xn by transforming A @3 b to triangular form

according to the 2-step fraction-free algorithm (2.6).

Then G=x =a(n-l) /a(n-1).
n 	 n, n+1 nn

The interchange of columns f and n in step 2 means that no back-substitu
required. [(I-Ttr)-1f insteads The above algorithmloih computesoptsGa G as (- ~ stion is reurd h bv

of as [(I-T)-l sf in order to take advantage of the fact that step 2 may be

omitted, when f--n, as is the case for most flowgraphs.

The proposed method is more efficient than the traditional method of flow

graph reduction-by node elimination. The reasons for this are twofold. First,

Mason's node elimination scheme is essentially a diagonalization procedure,

equivalent to Gauss-Jordan elimination, whereas the proposed algorithm is a

272

triangularization procedure. Moreover a simple interchange of columns (step 2)

avoids the necessity for back-substitution. The second and by far the most im
portant advantage of Algorithm 3.1 is that, in the polynomial case, we avoid
computations with rational functions and therefore time-consuming GCD cal

culations.

Mason's celebrated gain formula (see reference 28, page 922) does yeoman
service in enabling one skilled in its use to write down by inspection the gain of
a flowgraph which has a discernible loop and path structure. However, Mason's
gain formula is not suitable for computer implementation because it is generally
difficult to detect algorithmically the special loop and path sets required for this
formula. This turns out to be a difficult pattern recognition problem.

4. 	 SCOPE FORMAC IMPLEMENTATION OF A SYMBOLIC LINEAR EQUATION
SOLVER WITH APPLICATIONS

The IBM 2250 Scope FORMAC System 43 was used to implement a set of
routines, called Fraction-Free Package, (FFP) for computing the solution of a
given system of linear equations with multivariate polynomial coefficients over
the integers or rationals. The routines are:

a. SETDIV and DIVIDE which together constitute
for multivariate polynomials;

an exact division routine

b.

c.

BAREISS, a two-step fraction-free triangulari
multivariate polynomial domains; and
BACKSUB, a fraction-free back-substitution r

zation routine (2.6) for

outine for multivariate

polynomial domains.

The set of routines FFP is used by two applications programs. The first,
program FGRAPH, computes the generating function of a flowgraph according
to Algorithm 3.1. (Thus FGRAPH does not invoke BACKSUB). The input.to
FGRAPH is an N X N transmission matrix T, a starting node SS, and a final
node FF. The elements T(I, J) of T may be arbitrary multivariate polynomials.

273

http:input.to

The output of FGRAPH is the generating function GG and the first L coefficient

G(I) of the power series expansion GG = FG(I) VI, where the variable V and

the positive integer L are specified by the user. The expansion of the gen

erating function is carried out using a linear recurring sequence technique (see

reference 2, Chapter 13 and reference 36). The coefficients of the expansion

of a rational function

- .n gza +alz+...+amz

+b +... +bn k=0 k
0 1 n

over an integral domain (b0 invertible) satisfy the linear recurrence

k
-1

-b0
n

i=1
bi (k>max {m,n)

with initial conditions determined by the numerator polynomial.

The second application program which uses the set of routines FFP is

STAT which computes the stationary state probability N-vector T of an ergodic

(reference 11, Section 7.4) Markov chain specified by an N x N transition

matrix P with symbolic elements. Thus T satisfies TP = T with DT(I) = 1.

The IBM 2250 Scope FORMAC listings of FFP, FGRAPH, and STAT are in

Appendix B.

Sample Applications of FGRAPH

Consider the labeled directed graph given in Figure 4.1

For FGRAPH, the graph in Figure 4.1 is considered a flowgraph, with starting

node s = 1 and final node f = 6 and with transmission matrix T = (t..) given

by tij = label on edge from node i to node j (e.g., t1 2 = A and t1 3 = B).

The generating function G is consequently obtained as a rational function of

two variables A and B.

274

A

Figure 4.1

For STAT, the above graph is interpreted as a Markov graph, with which

the labels A and B = 1-A represent the transition probabilities of P of a

stochastic matrix P. The stationary probabilities t. are computed as rational
I

functions of the variable A.

Computational results are now presented, first for FGRAPH then for STAT,

in the form in which scope FORMAC displays them.

The generating function GO of the flowgraph of Figure 4.1 is

2 3 2 3 2 3 4 3GG= Ah +A B +AB + B + 8)/ (-2AB-A B

2 2 2 3 4 3

- Slb -A B -A - Be - A) o p

275

---- -------------------- -------------------- -

For path enumeration from node 1 to node 6 the substitutions A = Z and

B = Z are made in GG (using the FORMAC EVAL routine 42) to obtain the gen

erating function

- 3 4 5 2 3 4

GG= (Z +2 Z +2 2 / 2 Z -2 Z -4 Z + 1)

The coefficients G(K) in the power series expansion of GG are

G(1) = 944
G(O) = 0
G{i|= 0 G(14) = 1840

= 0 G(151 = 3760
G(2)

G (16) = 7392

G(3) =

G(17) = 14976
GMA) = 2

G(I) = 29664G(5) =4

= 6 G(1S) = 59776
G(6)

G('7)= 16 G(20) = 118848

GM = 28 G(21) = 238784

G(9)= 60 G(221 = 4759C4

....... 11 G(23) = 954368

G(1C) = 112

8(2AJ = 1904768
GII) = 240

G(12) = 456 G(25) = 3815680

Thus, for example, there are 112 paths of length 10 from node 1 to node 6 in

Figure 4. 1. Note the rapid -convergence of G (K+1)/G (K) to its asymptotic

value of 2 (R = 1/2 is the smallest root in absolute value of the denominator

polynomial of GG).

276

------------------------ ------- --

---------------------- ---- -----------------

When Figure 3.1 is interpreted as a Markov graph, in GG A is replaced

and B is replaced by 1/4 Z, indicating 1-step transition .probabflitiesby 3/4 Z

of 3/4 and 1/4 respectively. This results in the generating function which

follows.

A=3/4 Z, 8=1/4 Z

5 	 2 33 4
GG 3/64 Z + 1/64 Z + 9/256 Z 	 1/1-31 - 15132Z

4

5/32 2 I

Expanding GG yields

G6G) = 0 G(13) = .03498888

G(14) = .03527426
G(1) = 0

G(15) = .03506509G(2) = 0

G(3) = .046875 G(16) = .03507772

G(4) = .015625 G(171 = .03515123

G(5) = .05273437 G(181 = .03510251

G(19) = .03510331G(6) = .62783203

G(20) = .03512147
G7) = .03442382

G(8) = .03759765 G(21) = .03511042

G19) = .C3419494 G(22) = .03511

G(OO) = .03458404 G(23) .03511449=

G(ill) = .03582572 	 G124) = .03511199

G(25) = .03511175G(12) = .03487253

277

Thus,. for example, the probability of being in state (node) 6 after a 10,step

transition is .03458404.

As a final application of FGRAPH, the generating function of flowgraph

3. 6b of Example 3.5 is computed and expanded below as a power series in x

(with coefficients that are polynomials in y).

278

--

------------------------- ----------------------

--------- --

GG= ((- Y + 2) X + I -Y + I) X +)/ - XY- X +)

FIRST L TERMS OF THE PCWER SERIES EXPANSION OF GG

G[O|

C-I)

=

=

I

2

G(2)

G(3)

G(4)

G(51

G(6)

G7)

=

=

=

=

++ 2

2
2 Y + Y + 2

2 3
3 Y + 2 Y + Y + 2

2 3 4
4 Y + 4 Y + 2 Y + Y + 2

2 3 4 5
5 Y + 6 Y + 5 Y + 2 Y + Y + 2

2 3 4 5 6
6 Y + 9 Y + 8 Y + 6 Y + 2 Y + Y + 2

GUIS) = 18 y + 81 Y + 24C Y3 + 540 Y4 + 924 Y5 + 1386 Y6 + 1584 Y

7 8 9 10 iI 12 13

+ 1782 Y8 + 1430 Y + 1287 Y + 728 Y + 546 y1 + 210 Y1

14 15 16 17 18

+ 2

32 Y1 + 18 Y + 2 Y + Y
135 Y1 +

2 3 4 5 6

G(20) = 19 y + 90 Y + 285 Y3 + 660 Y4 + 1254 Y + 1848 Y6 + 2508

7 +a 10 11 12 .13

- - 2574- + 271- + 2002 + 1729 Y + 910 Y + 665 Y

14 15 16 17 18 19

+ 240 Y + 152 Y + 34 Y1 + 19 Y1 + 2 Y + Y + 2

Thus, for example, there are 2717 sequences of length 20 having exactly 9 pairs

of adjacent l's.

279

Sample Applications of STAT

Program STAT produces the output

STATICNARY STATE PRCBABILITY VECTOR

T{ I)=XNUM(I)/CET

2 3

DET = 5 A - 6 A + 2 A - 4

XNU(l) = 0

2 3 4
XNUM(2) = 2 A - 5 A + A A - A - I

2 3 4
=XNUM(3 2 A - 2 A -A +

2 3
XNUM(4) = A - A + A - 1

2 3 4
XNUMt5) -2 A + 4 A -4 A + A

2 3 4
XNUM(6) = 2 A - 2 A + 2 A - A - 1

Evaluating T = (T(I)) for A = .25, .5, and .75 gives the stationary state prob

ability vectors below.

AVAL = .25 AVAL = .5 AVAL = .75

TVAL(I} = 0 IVALI) = 0 TVAL(1) = 0

TVAL(2) .24368686 TVAL(2) = .29545454 TVALC2) = .33848314

TVAL(3) = .20580808 TVAL(3) = .20454545 1VAL(3) = .26264044

TVAL4) = .25757575 TVALC4) = .22727272 TVAL(4) z .14044943

TVAL(5) = .09974747 TVAL{5) = .1590909 TVAL(5) .2233146

TVAL(6) = .19318181 TVAL(6) = .11363636 TVAL(6) = .03511235

280

Thus when A = .75 the probability of being in state 6 after a large number of

steps is .03511235. The transient probabilities of being in state -6 when

A = .75 were previously determined using FGRAPH, in which the k-step

probabilities are seen to converge quite rapidly toward the above asymptotic

value, e.g. G(25) = .03511175. Thus FGRAPH and STAT constitute two routines

for analyzing Markov chains; FGRAPH yields a transient analysis, whereas

STAT yields a stationary analysis.

5. SUMMARY AND CONCLUSIONS

A method is proposed for the computer solution of linear equations with

symbolic coefficients, based on a two-step elimination method for computing the

exact solution of linear equations with integer coefficients. 1 Section 2 presents

a new and elementary derivation of the fraction-free property of the elimination

algorithm (2.4) and establishes the algorithm's applicability to solving linear

equations over arbitrary integral domains. The primary integral domains that

arise in solving linear equations with symbolic coefficients are multivariate

polynomial domains with integer (or rational or real) coefficients. For such

polynomial domains the fraction-free elimination scheme is valuable because it

avoids multivariate rational function manipulations with attendant time-con

suming GCD calculations, resulting in considerably increased efficiency over

ordinary (fraction-producing) Gaussian elimination. The fraction-free algorithms

(2.2), (2.4), and (2.6) are analyzed in the context of polynomial domains, and

the superiority of the two-step method (2.6) due to E. Bareiss I is established.

A new method for computing the generating functions of flowgraphs was

presented (Algorithm 3. 1). This algorithm is superior to Mason's node elimina

tion algorithm because it avoids rational function arithmetic and because it

triangularizes rather than diagonalizes a coefficient matrix. Furthermore, it

does not require use of a back-substitution step.

281

The usefulness of the definition (3.2) of the generating function of a flow

graph lies in the (formal) identity
[(I-T)Ilsfk

•- k=O [Tsf

The higher powers of an appropriate matrix T yield important information in

various problems, such as the higher transition probabilities in a Markov chain

and the number of distinct k-step paths in a multi-graph.

The use of flowgraphs in conjunction with both finite-and infinite-state

machines in solving problems arising in combinatorial mathematics is presented;

the examples of section 3 indicate the power of the flowgraph concept.

The IBM 2250 Scope FORMAC system was used to implement a package of

routines, called FFP, for solving linear equations with coefficients that are

polynomials in one or several variables with integer or rational coefficients.

Two applications programs, FGRAPH for computing the generating function of

a flowgraph and STAT for computing the stationary probabilities of a Markov

chain, invoked this linear equation solver. Experience with the Scope FORMAC

System has indicated the usefulness and convenience of an interactive system,

both at the program development state and program running stage.

Linear equations with nonnumeric coefficients also arise naturally in

numerical contexts, and the linear equation solver FFP should be useful in such

situations. Suppose, for example, that the coefficient matrix and right-hand

side of the system of linear equations Ax = b involve two parameters r and s,

i.e., A = A(r, s) and b = b(r, s). Either of two courses could be followed in

computing the solution x = x(r, s) for r and s with each taking on say ten

numerical values. First, the system could be solved numerically, using

standard numerical methods in conjunction with a language such as FORTRAN,

ALGOL, or PL/I one hundred times, one time for each pair of (r, s) values.

Alternatively, one could solve the system Ax = b symbolically, obtaining the

solution vector x = x(r, s) with the parameters r and s explicitly displayed.

Clearly there are situations in which the latter course of action may be preferable

from the viewpoint of efficiency alone.

282

Moreover, other considerations that make symbolic solution highly preferable

may exist. An example is the problem of computing

max f(x)

(r, s)

subject to

Ax = b

where f is some specified scalar-valued function. Solving Ax b symbolically,

one obtains the solution vector x = x (r, s) with each component of x in the

form of an analytic expression involving r and s.

then reduces to the form

The maximization problem

max f(r, s)

(r, s)

which can be solved analytically using the calculus -0 -= -

A numerical approach to this same problem would be most cumbersome.

Even if one had an iterative scheme for moving from one (r, s) value to an

improved value, the multiple numerical solutions of a system of linear equations

could be prohibitively time-consuming.

283

PRE~gONGPAW& BLANK V4OT Ffl2

Appendix A

PIROOFS

285

PRECEDING PAGE BLANK NOT FILMEtt

Proofs are given for.Theorem 2. 1, Equation (2.5) of Theorem 2.2, Theorem

2.3 and Theorem 3.1. These proofs are established mainly with the use of the

following basic property of determinants: replacing a row R i of a determinant

I (aij)I by a linear combination--.R i +6R of rows i and j (i:Fj) results in a

determinant with value ax (a.)I

THEOREM 2.1

The minors of order two of A (k) (k =1,2, ... ,n-2) are divisible by
L

k
ri

_)

Proof. The notation of Gantmacher (reference 14, page 2) for specifying

minors of order p from a given n x m matrix A = (ai) which follows is used.

2 pdenotes the determinant (a.A (~

1 2 p 1

A(k)Consider any minor of order two of

L

A(k) 12)(k+l :l <i2 n; k+1 %l<j 2 -Sn~m)

where the a k) of A (k) are computed according to (2.2). From (2.2)itis seen
D L

-1)
that the transformation A (' - A(t) (X,= 1,2, ... , k) results in each of the

last k - ,+ 2 rows of A ('-) being multiplied by the

12 ...kJlj2/

287

-factor a(t) By the fundamental property of determinants it follows that

A~t') (.. 1A2t...(112 x ~ k-,+2Ii2 '

and consequently that

(1 = A(O) .. ki)

But columns 1, 2, ... , k of A(k) have zeros below the main diagonal, so that

::ii2) ()
kk

A(k) 1 2) = Ak) x k a
(12 ...k J1J2 \jl J2/ =

Combining the last two equations givesiIi201)i12x;k-+
(112 = x 1 aw)A(O (: 2)

which completes the proof of Theorem 2. 1.

PROOF OF EQUATION (2.5)

(k) = bij
(k)

1T k-: 1 l k-t

The proof is by induction on k starting with the basis k 2. First note

b!1that a(O) b0) and ai() = b(i 1 - . 1) / From (2.4) follows

288

a(1)a(1) _ (1)a(1)

a..="kk iJ -"k] ik

aY a()

b(1)bT1 - b(1)b (1)

kk ij kj ik

b(0)

= 1J

11

4) which establishes the basis. Assume now that the aV (i ... In;ij
... ,n+l) are given by (2.5) for all t= 2,3, ... ,k-1. Then

(k-i) (k-i) (k-i) (k-i)
(k) = ak -ai - 8 k-aik by (2.4)1

(k-2)1J~
\k-l,k-i

b(k)

. 1k-2k-t-1 2
z=1 bQ by the induction hypothesis

2)
b(k
k-1,k-1

k-3 (']7 k-4-2

which yields the right-hand side of (2.5) by routine cancellation, completing

the proof.

The corollary to Theorem 2.2 is readily obtained by replacing ak) and

-b09) in (2.5) by arbitrary minors of order two of A(k 1) and B(kl) he

proof goes through exactly as before). Applying Theorem 2.1 then gives the

desired result.

289

THEOREM 2.3
A =a(n-1)

nl

Proof; Observe from (2.4) that for k= 1,2,.... ,n-1, the n-k-i rows

ak+l through n of A(k - l) are multiplied by the factor /-1) / a(k-l

Ignoring columns n+l, ... ,n+m of the A(k) due to the inhomogeneous terms,

it follows by the fundamental property of determinants stated at the beginning

of the appendix that

IA -2 [-(k-)] n-k- 1ki ~ I t)21

n-1
}

x An)-i
n-2i n-- ikn-k-

nI [a~k-i)] n-- l

1 n (k-)

ImxI
k-i

ri a(n 1) k=i

a .a(n-1) Q.E.D.

290

THEOREM 3.1

G = [(I-T)-l]s f

Proof. Writing out (3.5) in matrix form gives

x I r "-tl I1 tlIs .. ti n 0

x2 t21 .. t2s ... t2n 0

I . tfs ... t -0 x! tr

1-tnl i. ... in- os

xt+ 0 	 ... 0 ... 0

where esis the s	t h unit (n+l) vector. Denoting the above coefficient matrix

x tr
by A and applying Cramer's rule gives

I t

where e is obtained by replacing row n+1 of hA aoby cef Expanding

1

x

bA aalong row n+ gives

JAI (_1)2n, I-T I

SI-I-T I
Expanding 	 along row n+ gives

(*) II -	 (-1)nlx 0 M

291

where M is the minor obtained by deleting row n+1 and column s from IA

Expanding M along its last column gives

(**) M = (-)n+f+ Mfs

where Mfs is the minor of II-T I obtained by deleting row f and column s.

From (*) and (**) follows

I_ = (-)n+ 0 Mfs

and consequently

(-l)n+fMfs

+ I+ 0o1-TI

1
= [(I-T)-l sf x 0

completing the proof of Theorem 3.1.

292

Appendix B

-LISTINGS OF FFP, FGRAPH, AND STAT

293

.....
NOT F
PRECEDING PAGE BLAQ

LISTING OF FFP

" THE FOLLOWING THREE ROUTINES CONSTITUTE A FRACTION-FREE PACKAGE

LINEAR EQUATIONS WITH SYMBOLIC COEFFICIENTS.
"FOR THE SOLUTION OF

"THEY ARE:

" (1) SETDIV AND GIVIDE: TOGETHER THEY CONSTITUTE AN EXACT

"1 OLVISION ROUTINE FOR MULTIVARIATE POLYNOMIALS.

" (2) BAREISS: A TWO-STEP FRACTION-FREE TRIANGULARIZATION ROUTINE

t OF E. BAREISS (SEE MATH. COMP., P.565, JULY 1968), EXTENDED

it TO MULTIVARIATE POLYNOMIAL DOMAINS.

" (3) BACKSUB: A FRACTION-FREE BACK SUBSTITUTION ROUTINE.

SETDIV: IF AA=O

DO PUT "** ZERO DIVISOR **" SET STOP END

NVAR=O EE=AA

QI: IF LOP(EEJ=24

DO TA=EE

FOR I0=1(14

DO TA=ARG(1,TA)

I-F LOP(TA)=46 TO 02

END

PUT "1* BAC DATA IN SETDIV **" SET STOP

Q2: NVAR NVAR+

V(NVAR)=TA

HPV(NVAR)=IGHPOW(EE,TA)

EE=COEFF(EE,TA**HPV(NVAR))

TO Q1

END

CF=EE

END "SETDIV"

CIVIOE: QQ=O RR=BB SC=I

Q3z 	 PRDD=L CC=RR

IF NVAR=O To BEG

FOR II=I(1)NVAR

DO HP=HIGHPOW(CC,V(IlHl

PRDD=PRCD*V(II)* (HP-HPV(II)

CC=COEFF(CC,V(II)**HP)

END

B8G: 	 DO=CF/CF

IF 0D=1 DO FF=CC/CF4 2/2 TO BG END

D0=-CF FF=-CC/CF*2/2

BG; 	 TThFF*PRDD

IF DENOM(TT)=1 TO DV

DO PUT "AA DOES NOT DIVIDE BB'! SET STOP END

DV: QQ=QQ+TT

RR=RR-TT*AA

IF 	RR=O TO ED

SC=SC+1 IF SC<15 TO Q3

PUT "SAFETY CHECK EXCEEDED IN DIVIDE" SET STOP

ED: 	 END "DIVIDE"

"
"

"

"

"

"
"

295

BAREISS: A(O,O)=1

K=2

AG: IF K>N TO FB

PUT ******".K,I****"

AA=A(K-2#K-2)

00 SETDIV

"PIVOT ALGORITHM"

IF A(K-1,K-i)=C

DO FOR I=KCI)N

DO IF A(I,K-i)=O TO Li

FOR J=K-1(I)(N+I)

DO DD=A(I,J) 	A(I,J)=A(K-1,J) A(K-1,J)=DD END

TO L2

LI: 	 END

TO SING

L2: END

FOR I=K(1)N

DO BB=A(K-1,K-I)*A(I,K)-A(K-1,K)*A(I,K-i)

IF BB=O TO LL TO L3

LL: END

To SING

L3: DO DIVIDE CO=CQ

IF K=N TO EV

IF I-=K FOR J=K-I1)(N+i)

DO DD=A(I,J) 	AtI,J)=A(KJ) A(K,J)=DD END

"PIVOT ALGORITHP COMPLETED; CO COMPUTED"

FOR I=K+i(1)N

DO BB=A(K-i,K)4A(I,K-I)-A(K-i,K-i)*A{I,K)

DO DIVIDE CII=QQ

BB=A(K,K-I)*A(I,K)--A(KK)*ALI,K-1)

00 DIVIDE C12=QQ

FOR J=K+1(1)(N+I)

DO BB=A(I,J)*CO + A(K,J)*C[I + A(K-1,J)*CI2

DO- DIVIDE At I,J)=QQ

END

END

EV: A(K,K)=CO

FOR J=K+1(I)NtI)

DO BB=A(K-i,K-i)*A(K,J)-A(K,K-I)*A(K-i,J)

DO DIVIDE A(K,J)=QQ

END

K=K+2 TO AG

FS: IF A(N,N)=O TO SING TO EB

SING: PUT "** COEFFICIENT MATRIX IS SINGULAR **" SET STOP
EB: PUT "TRIANGULARIZATIGN COMPLETED"," ",to "

END "BAREISS"

296

BACKSUB: 	DET=A(N,N)

XNUM(N)=A(N,N+1)

FOR IJ=1(1)(N-1)

DO I=N-IJ

BB=DET*A(I,N+I)

FOR J=I+(1)N BB=BB-A(I,J)*XNUM(J)

AA=A(I,1)

DO SETDIV E0 DIVIDE

XNUM(I)=QQ

END "IJ LOOP"

END "BACKSUB"

"END OF FRACTION-FREE PACKAGE"

297

LISTING OF FGRAPH

FGRAPH:

SORT=CHAIN(IHG,F,E,DC,B,A,StR,Q,P,D,N,M,L,K,J,Z,Y,X.W,V,U,T)

PUT " FGRAPH (FLOWGRAPH) IS A FORMAC SCOPE PROGRAM FOR COMPUTING
PUT "THE GENERATING FUNCTION GG=GG(SS,FF OF A FLOWGRAPH SPECIFIED BY
PUT "AN NXN TRANSMISSION MATRIX T=(T(I,J)) , A STARTING NODE SS ,

t
i

PUT "AND A FINAL NODE FF . EACH T(I,J) IS AN ARBITRARY

PUT "(MULTIVARIATE) POLYNCMIAL.

PUT "

INIT: 	 SET NE

V=Z L=C

FOR I=1(1)7,J=1L1)7 T(I,J)=O

GET DATA

pUT "STARTING NODE SS",SS,"FINAL NODE FF",FF," "

t-OR I=I(1)N

DO FOR J=I(1)N PUT TCI,J)

PUT

END

PUT " ,1

PUT " SETUP FOR TRIANGULARIZATION ROUTINE: DEFINE A=(I-T)-TRANSPOSE, "

PUT "COLUMN N+1 OF A =DELTA(I,SS) . THUS THE NX(N+I) MATRIX A IS THE"

PUT "AUGMENTED MATRIX OF THE SYSTEM OF LINEAR EQUATIONS AX=B , WHERE "

PUT "BCII=DELTA(I,SS). COLUMNS FF AND NN ARE INTERCHANGED TO AVOID"

PUT "THE NECESSITY FOR BACK SUBSTITUTION. "

PUT "I

SU: SET E

FOR I=1(l)N,J=I(1)N A(I,J)=-T(JI)

FOR I=1(1)N DO A(I,I)=I+A(I,I) ACI,N+I)=O END

A(SS,N+I)=I

IF 	FF-=N

FOR I=1(1)N DO DD=AII,N) AII,N)=A(I,FF) A(I,FF)=DD END

PUT INVOKE TWO-STEP FRACTION-FREE TRIANGULARIZATION ROUTINE BAREISS "

DO BAREISS

CC=A(N,N+1) DC=A(N,N)

SET NE GG=CC/DD HH=GG

PUT " GENERATING FUNCTION GG",GG," "

PUT *

PUT " MAKE ANY DESIRED REPLACEMENTS FOR VARIABLES IN GG. THEN

PUT " THE FOLLOWING RCUTINES MAY BE INVOKED:

PUT " 1. GF: OUTPUTS GG AS A RATIONAL FUNCTION OF "A SPECIFIED
PUT " VARIABLE V o

PUT " 2. PS: COMPUTES THE FIRST L TERMS OF THE POWER SERIES
PUT " EXPANSION OF GG W.R.T. V FOR SPECIFIED L
PUT **

PUT " " SET STOP

298

GF: 	 CC=NUM(GG) DD=DENOM(GG) SET E
CC=CC DD=DD
Mf=HIGHPOW(CC,V) NN=HIGHPOW(DD,V)
CC(O)=COEFF(V'CCV) DO(O)=COEFF(V*DD,V)
CCC=CC(O) DDD=DC(O)

SET NE

FOR 1=1(1)MM DO CC(I)=COEFF(CC,V**I) CCC=CCC+CC(I)*V**I END
FOR 1=1(1)NN DO CO(I)=COEFF(DU,V**I) DDD=DDO+DDII)*V**I END
GG=CCC/DDD PUT GG," "," "
SET E

PUT "FIRST L TERMS OF THE POWER SERIES EXPANSION OF G'G
PUT "**,* FOR P.S. EXPANSION SPECIFY L AND DO PS ***- SET STOP

PS: IF DD(O)=O DO PUT "NO POWER SERIES EXPANSION FOR GG".",., ,"
SET STOP END

RDDO=t/CDC(0)*2/2

GIO)=RDDO*CC(O) PUT G(O)

FOR 1=1(1)L
DO SM=O

MINN=NN IF I<NN MINN=I

FOR K=1(1)MINN SM=SM-DO(K)*G(I-K)

IF <=PM SM=SM+CC(I)

G(I)=RDDO*SM

PUT G()

END

Ti-RU: PUT - ,",,* EXECUTION OF FGRAPH COMPLETED **"
PUT I1 lttt4 it i, I ii II, I

END '"FGRAPH"

"t** DATA **".

DI: N=4 SS=I FF=4 V=X
T(l,2)=X T(1,3)=X T(1,4)=1
T(2,3)=X T(2,4)=1
T(3,2)=X T(3,3)=X*Y T(3,4)=1

END

D2: N=4 SS=l FF=4

T(I,3=Z T(1,2)=Z

T(2,2)=1 T(2,3)=Z

T(3,1)=Z T(3.2)=Z T(3,4)=Z

114,1)=L T(4,3)=Z T(4,4)=Z

END

299

LISTING OF STAT

STAT:SORT=CHAIN(IHGFEDC,BASRQ,P,O,NKM,L,K,Z,Y,X,W,V,UT]

A FORMAC 	SCOPE PROGRAM FOR COMPUTING THE STATIONARY
PUT 1" STAT IS

T ASSOCIATED WITH AN SXS
MATRIX P F

PUT 	"PROBABILITY S-VECTOR

T 	 SATISFIES TP=T.
PUT "TRANSITION PROBABILI-TIES ; I.E.,

PUT "THE MATRIX P MAY HAVE SYMBOLIC AND/OR NUMERIC ENTRIES.

PUT 	 " *"

INIT: 	 SET NE
FOR 1=1(1)7,J=1(1)7 P(I,J)=O

GET DATA (S ANC P)
FOR I=1(1)S
DO FOR J=I(i)S PUT P(IJ)

PUT
END

PUT 	 " o

SETUP: 	 SET E

N=S-1

=

FOR I=1(1)N,J=I U)N A(I,J) P(JI)-P(SI)

FOR I=1(1)N CO A(I,I)=A(I,I)-1 A(I,S)=-P(S,I) END

"
 PUT 	" INVOKE ROUTINES OF FRACTION-FREE GAUSSIAN ELIMINATION PACKAGE

"TO COMPUTE THE SOLUTION TO THE RESULTING SYSTEM OF LINEAR
PUT
PUT "EQUATIONS. ,t

PUT " "
DO BAREISS

0O BACKSUB

PUT 	" STATIONARY STATE PRCBABILITY VECTOR "

PUT" T(I)=XfUM(I)/DET"," 3

SET NE

SS=DET PUT DET

FOR 	1=1(1) N

DO 	SS=SS-XNUM(I)

PUT XNUM(I)

T(I)=XNUM(I)/DET

END

XNUM(S)=SS PUT XNUM(S) T(S)=SS/OET

"THRU: PUT " "," EXECUTION OF STAT COMPLETED
" ,11 It"PUT 	it It'," "It 211, 11

END 	 "STAT"

"** DATA 	**"

300

REFERENCES

1. 	 E. H. Bareiss, "Sylvester's Identity and Multistep Integer-Preserving'
Gaussian Elimination," Mathematics of Computation, Vol. 22, No. 103,
July 1968, pp. 565-578.

2. 	 G. Birkhoff and T. Bartee, Modern Applied Algebra, McGraw-Hill

(to appear).

3. 	 E. Bodewig, Matrix Calculus, North-Holland, 1959.

4. 	 I. Borosh, and A. S. Fraenkel, "Exact Solution of Linear Equations

with Rational Coefficients by Congruence Techniques," Mathematics of

Computation, Vol. 20, No.93, January 1966, pp. 107-112.

5. 	 W. S. Brown,"The ALPAK System Nonnumerical Algebra on a Digital
Computer -- I: Polynomials in Several Variables and Truncated Power
Series with Polynomial Coefficients," Bell System Technical Journal,
Vol. 42, No. 3, September 1963, pp. 2081-2120.

6. 	 W. S. Brown, J. P. Hyde, and B. A. Tague, "The ALPAK System for
Nonnumerical Algebra on a Digital Computer -- 11: Rational Functions
of Several Variables and Truncated Power Series with Rational Function,
Coefficients, " Bell System Technical Journal, Vol. 43, No. 1, March
1964, pp.785-804.

7. 	 G. E. Collins, "PM, A System for Polynomial Manipulation," Communi
cations of the Association for Computing Machinery, Vol. 9, No. 8,
August 1966, pp. 578-589.

8. 	 G. E. Collins, "Subresultants and Reduced Polynomial Remainder
Sequences," Journal of the Association for Computing Machinery, Vol.
14, No. 1, January 1967, pp. 128-142.

*9. 	 G. E. Collins "Computing Time Analyses for Some Arithmetic and
Algebraic Algorithms, "these Proceedings.

10. 	 W. Feller, An Introduction to Probability Theory and Its Applications,

Vol. I, Third Edition, Wiley, 1968.

11. 	 M. Fisz, Probability Theory and Mathematical Statistics, Third Edition,
Wiley, 1963.

12. 	 G. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic

Equations, Prentice-Hall, 1967.

13. 	 L. Fox, An Introduction to Numerical Linear Algebra, Clarendon Press,
1964.

14. 	 F. R. Gantmacher, The Theory of Matrices, Vol. I, Chelsea, 1959.

15. 	 I. Gerst, "The Bivariate Generating Function and Two Problems in
Discrete Stochastic Processes," SIAM Review, Vol. 4, No. 2, April
1962, pp. 105-114.

*This article appears in these Proceedings.

301

16. 	 A. Ginzburg, Algebraic Theory of Automata, Academic Press, 1968.

17. 	 F. Harary, ed., Graph Theory and Theoretical Physics, Academic

Press, 1967.

18. 	 R. A. Howard, Dynamic Programming and Markov Processes, MIT

Press, Cambridge, Massachusetts, 1960.

19. 	 W. H. Huggins, "Signal Flow Graphs and Random Signals," Proceedings

IRE, Vol. 45, January 1957, pp. 74-86.

20. 	 J. P. Hyde, "The ALPAK System for Nonnumerical Algebra on a Digital

Computer -- II: Systems of Linear Equations and a Class of Side

Relations," Bell System Technical Journal, Vol. 43, No. 2, July 1964,

pp, 1547-1562.

21. 	 J. D. Lipson, "The Analysis of Finite Automata," Term Paper for
Applied Mathematics 297, Harvard University, Cambridge, Massachusetts,
January 1967.

22. 	 C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill,
1968.

23. 	 C. S. Lorens, Flowgraphs for the Modeling and Analysis of Linear
Systems, McGraw-Hill, 1964.

24. 	 H. A. Luther and L. F. Guseman, Jr., "A Finite Sequentially Compact
Process for the Adjoints of Matrices over Arbitrary Integral Domains,"
Communications of the Association for Computing Machinery, Vol. 5,
No. 8, August 1962, pp. 447-448.

25. 	 S. Mac Lane and G. Birkhoff, Algebra, Macmillan, 1967.

26. 	 M. Manove, S. Bloom, and C. Engelman, "Rational Functions in
MATHLIB," IFIP Working Conference on Symbol Manipulation Languages,
Pisa, September 1966.

27. 	 S. J. Mason, "Feedback Theory; Some Properties of Signal-Flow-
Graphs," Proceedings IRE, Vol. 41, September 1954, pp. 1144-1156.

28. 	 S. J. Mason, "Feedback Theory; Further Properties of Signal-Flow
graphs," Proceedings IRE, Vol. 44, July 1956, pp. 920-926.

29. 	 S. J. Mason, and H. J. Zimmerman, Electronic Circuits, Signals, and
Systems, Wiley, 19606

30. 	 R. McNaughton and H. Yamada, "Regular Expressions and State Graphs
for Yamada," E. F. Moore, ed., Sequential Machines: Selected Papers,
Addison-Wesley, 1964, pp. 157-174.

31. 	 M. L. Minsky, Computation: Finite and Infinite Machines, Prentice-
Hall, 1967.

32. 	 J. Moses, "A Quick Fail-Safe Procedure for Determining Whether the
GCD of Two Polynomials is 1," lMIT Artificial Intelligence Memo 126,
Cambridge, Massachusetts, March 1967.

302

33. 	 M. Newman, "Solving Equations Exactly," Journal of Research of the

National Bureau of Standards, Vol. 71B, No. 4, October-December

1967, pp. 171-179.

34. 	 M. 0. Rabin and D. Scott, "Finite Automata and their Decision Problems,"
E. F. Moore, ed., Sequential Machines: Selected Papers, Addison-
Wesley, 1964, pp. 63-91.

35. 	 C. V. Ramamoorthy, "Generating Functions of Abstract Graphs with

Systems Applications," Ph.D. Thesis in Applied Mathematics, Harvard

University, Cambridge, Massachusetts, 1964.

36. 	 C. V. Ramamoorthy and D. W. Tufts, "Generating Functions of Abstract

Graphs with Applications," Cruft Laboratory Technical Report No. 439,

Harvard University, Cambridge, Massachusetts, March 1964.

37. 	 C. V. Ramamoorthy and D. W. Tufts, "Reinforced Prefixed Comma-Free
Codes," IEEE Trans. InformationTheory, Vol.IT-13, No. 3, July 1967, pp. 366-371.

38. 	 J. B. Rosser, "A Method for Computing Exact Inverses of Matrices
with Integer Coefficients," Journal of Research of the National Bureau
of Standards, Vol. 49B, 1952, pp. 349-358.

39. 	 R. W. Sittler, "Systems Analysis of Discrete Markov Processes, "IRE

Trans. in Circuit Theory, Vol. CT-3, December 1956, pp. 257-266.

40. 	 H. Takahasi and Y, Ishibashi, "A New Method for Exact Calucation by

a Digital Computer, Information Processing in Japan, Vol. 1, 1961,

pp. 28-42.

41. 	 R. G. Tobey, "Algorithms for Antidifferentiation of Rational Functions,"

Ph.D. Thesis, Harvard University, Cambridge, Massachusetts, May

1967.

42. 	 R. G. Tobey et al., "PL/I-FORMAC Interpreter, User's Reference

Manual," IBM Contributed Program Library, 360D 03.3.004, Hawthorne,

New York, October 1967.

*43. 	 R. G. Tobey and J. D. Lipson, "The Scope FORMAC Language," these

Proceedings.

44. 	 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958.

*This article appears in these Proceedings.

303

PRECEDING PAGE BLANK NOT FILMED

SUMMARY

305

SIGNIFICANT PROBLEMS IN SYMBOLIC MATHEMATICS

by

Robert G. Tobey
IBM Boston Programming Center

Cambridge, Massachusetts

N71 -19198

Abstract

Problems of major practical significance in extending the
scope and power of present-day systems for performing literal
mathematics are adumbrated.

The author is currently with the Applied Mathematics Division of Argonne
National Laboratory, Argonne, Illinois.

307

PRECEDING PAGE BLANK NOT FILMED

SIGNIFICANT PROBLEMS IN SYMBOLIC MATHEMATICS

by

Robert G. Tobey

1. 	 INTRODUCTION

It has been 17 years since the -first work in symbolic mathematics by com

puter was begun independently by Kahrimanian 14 (at Temple University) and

Nolan1 8 (at MIT). Eleven years ago interest in symbolic mathematical compu

tation was sufficient among astronomers to stimulate discussion at a celestial

mechanics conference held in March 1958. 4 Three problems were recognized

as significant:

a. the generally slow speed of computers,

b. their small storage capacity,

c. the nonexistence of algebraic compilers for literal calculations.

The first two problems are familiar. They raise the fundamental question of

the availability of sufficient resources. Naturally, this problem persists today,

but on a different scale. The third statement is no longer true, although its

natural descendents are live problems today. To confirm this one need only

read the Proceedings of the ACM Symposium on Symbolic and Algebraic Manip

ulation. 25

The significant problems of ten years ago were nebulous and ill-defined.

This paper attempts to be more precise and specific; this task is simplified by

the context provided by these Proceedings. (Page numbers cited refer to these

Proceedings.) The discussion is limitdd to problems which are significant in

the development of practical tools for solving practical problems in a batch

processing environment.

The restriction to a batch processing environment is artifical, since methods

for coping with several of the problems may involve human decision-making in

309

an interactive environment. However, the size and complexity of expressions

and the clerical detail involved is often sufficient to preclude effective human

decision-making in all but the simplest cases. Clearly, the development of

algorithms for batch operation will enhance interactive possibilities.

The restriction to practical problems discloses the author's prejudice.

The problems cited as significant reflect the author's experience carrying out

literal computations and working with FORMAC users over the past five years.

The problems cited are quite varied. Their solutions will require expertise

from many disciplines, including applied mathematics, combinatorial analysis,

numerical analysis, computational linguistics, abstract algebra, complex func

tion theory, and graph theory, in addition to basic system design and programm

ing skills.

The problems discussed here are divided into six categories: Simplification,

Partitioning of the Elementary Transcendental Functions, Design of Polynomial

Systems, Encoding and Representation, Development of Mathematical Algorithms,

and Analysis and Evaluation. Simplification is, by far, the most ambiguous and

most complex of these categories. This is testified to by the fact that five of the

ten problems cited here fall within that category. Analysis and Evaluation is

the least developed area. This is not surprising for it mirrors computing prac

tice and the weakness of analytic tool development in computer science. The

remainder of this paper is divided into seven sections; one for each of the above

categories and a summary. For each problem, the context of the problem is

defined, the problem stated succinctly, and an attempt made to identify the pre

requisite knowledge and skills.

2. SIMPLIFICATION

The term "simplification" encompasses all the data reduction and report

generating functions which arise in performing symbolic mathematics by com

puter. In some contexts, simplification can be thought of as a function which is

isolated from other mathematical operations and which is performed after a

310

computation to clean up the results. This is the mode of operation of the auto

matic simplification capability in FORMiAC. On the other hand, certain simpli

fications can only be effectively performed as an integral part of basic algorithms.

Hearn13 indicates the nature of the problem in his discussion of substitution.

A further example is the work of Bomberault and Eisenpress 6 ,21. In designing

systems for performing large-scale symbolic mathematical computations, it is

important that simplification be an integral part of other algorithms, i.e., it is

essential to minimize intermediate expression swell continuously. Put another

way, frequent (as opposed tb continuous) data reduction is not adequate to opti

mize the utilization of space. Similarly, report generation can either be per

formed by an output editor after the computation is complete or become an in

tegral part of the computation.

The ambiguity of the term "simplification" introduces further complications.

Simplification is not only ambiguous in the large-it can mean simplification (1)

to prepare for optimal numerical evaluation, (2) to automatically minimize

intermediate expression swell, or (3) to make expressions "intelligible"-but it

is also complex in the small. Investigators frequently agree on the generic use

of the word "simplified," but cannot agree on the status of a specified expression.

Consider the example

2a C) a
d n(2dF 0) n(F+ 2)

where e= C/d. One side of this equation is the ,simpler form for antenna design

engineers while the other side is the simpler form for engineers designing the

production process.

In addition undecidability is a problem. Regardless of the sense in which

the word "simplification" is used, the tacit assumption is usually made that one

can recognize like terms or like factors, i.e., that one can decide whether two

subexpressions are equivalent. This is trivially true, for manipulating polynomials,

rational functions, or trigometric series, and it is true for a large class of func

tions represented by the symbolic forms 'which can be constructed using the

exponential and trigonometric functions. However, it is not true for suitably

311

complex function classes. The example due to Richardson 1 9 which Risch dis

cusses (page 136) indicates that if the absolute value function (or the logarithm

of the absolute value function) is admitted as an elementary operation, then we

will encounter expressions for which the question of equivalence is undecidable,

i. e., we cannot determine whether it is possible to further reduce symbolic

data.

The discussion of simplification is divided into five paragraphs: Intuitive

Simplification, Application of Identities, Minimization of Intermediate Expression

Swell, Preparation for Numerical Evaluation, and Production of Intelligible

Expressions. Although these problem areas are not mutually disjoint and results

in one may contribute greatly to another, each area deals with significant in

dependent issues.

Intuitive Simplification

Despite the ambiguity inherent in the term "simplification," a large majority

of users can agree on a basic subset of simplification operations. That subset

is quite close to the operations implemented in the 7090 FORMAC System and

described in reference 24. This approach does not attempt to reduce expressions

to a canonical form, but is satisfied with a "pseudo-canonical" form. This is

analogous, at least philosophically, to obtaining a deep structure from the sur

face structure of a sentence using transformational linguistic techniques. In

this-sense the simplication problem is as complex as developing adequate trans

formations to reduce natural language sentences.

This fact is highlighted by Fenichel's experience when he tried to replicate

the FORMAC simplification capability in FAMOUS. He was unsuccessful,

mainly because FAMOUS did not provide for interaction between individual

transformations. Such interaction is a topic of continuing study in computational

linguistics. But the interaction between basic simplification transformations

and the implications for the design of simplification algorithms has never been

thoroughly or systematically studied.

312

PROBLEM 1: Systematically study the appropriateness and interactions of
transformations in the design of simplification algorithms.

PREREQUISITES: Familiarity with the theory of functions of a real and
a complex variable, knowledge and experience in the design of
transformational grammars (recognition grammars), and ex
perience in complex algorithm design and implementation.

While studying this problem it is important to consider distinct function

subsets (see section 3). For example, one should always assume that addition,

multiplication, subtraction, and division are permitted. The complexities in

troduced by the inclusion of additional functions should be precisely understood.

This study is important to understand what costs are incurred in the design of a

simplification algorithm if additional functions are included and hence how one can

extend the capability of a system at minimal cost.

Application of Identities

It is natural to assume that identities such as
.2 2

sin x + cos x 1

will be applied automatically by an automatic simplification routine. But gen

eral application of this identity requires recognition of the pattern

2A sin2 A 2 +A cos A2 + A 3

Where A1 , A2 and A3 are arbitrary expressions. Once the pattern is found, it

must be replaced by the form

A1 + A3 •

The final replacement is easy; finding such patterns is difficult. In the worst

case it can require a combinatorial search. In simpler cases exploitation of

the sort as suggested by Marks 1 6 (see Page 32) will help. It even helps when

-the sine and cosines are imbedded in products as in the above example; the two

terms affected by the identity can still be made to sort adjacently. However, is

313

it possible to make the sort accommodate a large group of system identities?

It is clear that this approach is not sufficient to handle arbitrary identities (side

conditions) introduced by system users. This is further illustrated by Hearn's

discussion of Figure 2 on Page 15.

PROBLEM 2: Develop techniques for sorting, pattern recognition,
and replacement in symbolic expressions which minimize the
growth of combinatorial search factors.

PREREQUISITES: Familiarity with artifical intelligence techniques,
the theory of functions of real and complex variables, and persever
ance in immersing oneself in the application of identities to large
expressions.

Minimization of Intermediate Expression Swell

In his discussion of substitution Hearn1 3 emphasizes the importance of per

forming substitutions at the right point in the calculation in order to minimize

intermediate swell in expressions (recall discussion of (2. 11) and (2.12), Page

9). The application (or misapplication) of the distributive law can have similar

consequences. In many calculations expansion or factoring can make a crucial

difference in the size and complexity of the expressions manipulated. Consider

the following examples:

1000

A= (x-y)

1000 1000B=x -y2

C = 7xy2 + 3x(z-2y 2) -xz(y + 3)

It is undesirable to either expand A or factor B. On the other hand, expansion

of C is necessary for simplification to occur. Expansion produces enormous

intermediate expression swell in A and greatly reduces C. (It is due to the

frequency of expressions like C in physics that REDUCE always expands.) The

issue is more complicated: when is it desirable to reduce the ratio of two ex

pressions by their greatest common factor (G.C.F.)? It is frequently taken for

314

granted (see Page 237) that the ratio of two expressions should be automatically

reduced by their G. C. F. But consider

D = (x-y)1000

1000 1000
x -y

Is it not clear that D should be left alone?

In his fraction-free algorithm for the efficient solution of linear equations
15

with symbolic coefficients, Lipson shows that it is frequently possible to

systematically remove common factors without a G. C. F. algorithm thus saving
execution time and greatly reducing intermediate expression swell. Prior to

Lipson's algorithm, it was tacitly assumed that any algorithm for solving linear

equations with symbolic coefficients would require frequent application of G. C. F.

extraction.

12
Hartt proposes two additional strategies for reducing intermediate ex

pression swell: the automatic splitting out of subfunctional parts and FAEF,
the function variable associated with evaluated functions. Precise definition

of these suggestions and detailed design of data structures and algorithms are

yet to be accomplished.

PROBLEM 3: Develop algorithms to minimize intermediate ex
pression swell automatically.

PREREQUISITES: Well-rounded mathematical background with a
knowledge of factoring in polynomial rings, experience in com
plex algorithm design, and familiarity with artificial intelligence
techniques.

Preparation for Numerical Evaluation

A major use of symbolic mathematical systems is to obtain symbolic ex

pressions which are to be evaluated numerically. Hartt ! 2 presents the case

for a powerful SINCON (Symbolic Numeric Conversion) capability from a physi

cist's viewpoint. All major production applications of the 7090 FORMAC System 2 1

were instances of generating symbolic expressions in preparation for eventual

315

numerical calculation. This has also been a major use of PL/I-FORMAC. The

syxbolic'mathematical computation which occurs most frequently is that of

taking derivatives; not only obtaining the Jacobian but also mixed second and

third order partials. Brute force derivative calculation followed by either in

terpretation or code generation is generally inadequate (see discussion of non

linear maximum likelihood estimation in reference 21). An improvement of at

least two orders of magnitude over either of these approaches was made by

Bomberault and Eisenpress 6 , 2 1 ;'they simplified the structure of derivatives

while differentiation was performed to obtain a fairly optimal sequence of arith

metic statements for evaluation of the derivatives. However, no one has looked

at the problem of optimally structuring these arithmetic statements so as to

minimize the propagation of roundoff error in the numerical evaluation.

Three aspects of this problem must be distinguished: (a) an algorithm

which automatically splits the function into subfunctional parts while other manip

ulations are being performed; (b) development of an algorithm to handle the

clerical detail required to relate various subexpressions to the complete ex

pressions of which they are a part; and (c) development of algorithms for

structuring subexpressions so as to minimize roundoff error propagation. These

are significant aspects of the capabilities which Hartt .proposes as extensions to

Eisenpress' and Bomberault's work.

PROBLEM 4: Develop techniques and algorithms for the optimal

implementation of symbolic to numeric data conversion.

PREREQUISITES: General knowledge of classical applied mathe
matics and numerical analysis, with an emphasis on techniques

for analyzing roundoff error propagation; and familiarity

with the encoding of complex data structures.

Production of Intelligible Expressions

Frequently, the desired result of a symbolic computation is an intelligible

expression. Intelligibility requires that: (a) the expression is not so large as

to be incomprehensible. (Frequently a FORMAC program will output expressions

requiring three to six pages each of densely printed listing.) (b) the variables and

316

subexpressions within the expression are so ordered and arranged that basic

physical relationships (relationships inherent in the problem definition or to be

discovered from the problem solution) are readily perceived. (c) Basic sym

metries are retained and emphasized.

The expression editing displayed by Hearn 13 illustrates intelligibility. Ex
tension of such techniques as skeletal structure extraction which was imple

- 22
mented by Baker will be of value in addressing this problem.

PROBLEM 5: Define intelligibility in the context of specific

problems, and develop techniques and algorithms for ex
tracting intelligible expressions.

PREREQUISITES: Familiarity with the techniques of artifical

intelligence and with data structures and encoding, in addi
tion to expertise in the discipline of the specific problem

under study.

Since intelligibility is such an amorphous concept, it is imperative to con

sider substantive-problems from specific disciplines. A significant part of the

problem is to define precisely what constitutes an intelligible expression within

the context of the specific problem at hand.

3. PARTITIONING OF THE ELEMENTARY TRANSCENDENTAL FUNCTIONS

Much of the current work in symbolic mathematics is based on mathematical
intuition rather than a rigorous knowledge of the properties of the class of func

tions being manipulated. This is due mainly to our lack of knowledge concern

ing basic subclasses of functions and their special properties. For example,

which classes of the elementary transcendental functions have canonical forms?

Which classes of functions are closed with respect to integration? Which classes
of functions are closed with respect to the iterative substitution and integration en

countered by Gershwin 1 0 in applying Picard interation?

Answers to such questions will greatly increase our knowledge of the basic

functions which arise in most current symbolic mathematical computations, and

give us increased insight into which techniques are applicable to which function

317

classes. For example, when does it make sense to avoid decidability problems

in simplification by limiting one's calculation to a subset of the transcendental

functions for which there is a canonical form? This approach was suggested by

Brown informally at the ACM Symposium on Symbolic and Algebraic Manipula

tion in March 1966. His mathematical results in this direction were recently

published. 1 Caviness 2 pursued this concept further in his Ph.D. thesis. An

important question still to be answered, however, is what are the properties of

particular function classes which make them useful in solving practical problems?

Furthermore, which other functions can be neatly represented (or approximated,

if approximation is adequate to the problem under consideration) by functions

from this class?

PROBLEM 6: Define and study the properties of "useful" subclasses

of the elementary transcendental functions.

PREREQUISITES: Familiarity with the properties of the elementary

functions, with techniques and results of decideability theory,

and with the types and properties of functions which frequently

arise in the solution of practical problems.

It is clear that results and techniques from 19th century mathematics will

be quite relevant in this problem area. This is already indicated by the work of

Brown and Caviness.

4. DEVELOPMENT OF MATHEMATICAL ALGORITHMS

The development of numerical analysis has been accelerated by the develop
ment of computers. This is natural since the computer has made possible the

utilization of numerical techniques which were impractical in the past. As com
puter systems for performing symbolic mathematics develop, practical algorithm

development for many frequently applied mathematical operations must accelerate in
a similar manner. Among the more important of these operations are: symbolic

integration, matrix manipulation (determinant calculation, matrix inversion,

calculation of the characteristic polynomial and the eigenvalues), asymptotics,

greatest common factor extraction, and factoring. The papers by Collins, 3

318

Feldman, 7Halton, 11 Lipson, 15 Moses, 17 and Risch20 indicate the varied and

complex mathematical issues which must be dealt with. Studying integration
alone requires extensive mathematics. Feldman traces the difficulties he en
countered with finite field arithmetic. All these difficulties apply to integra
tion, since algebraic extension field arithmetic is central to obtaining the trans
cendental part of the integral of a rational function (see section 111. 2 of reference
23). Moreover, the integration of rational functions is central to the design of
more general integration algorithms. The specific problems in this sequence

7 20 2of dependent algorithms are traced in Feldman, Risch, and Tobey. 2 3

PROBLEM 7: Develop precise, efficient algorithms for applying

standard mathematical operations to symbolic quantities.

PREREQUISITES: An in-depth wide-ranging knowledge of theoretical
and applied mathematics coupled with the perseverance to ex
plicitly define practical processes for implementing mathemati
cal operations which are often conceptually simple.

In developing mathematical algorithms, it is important to know the theoreti

cal limitations. Knowledge of undecidability results is valuable. It is more
important, however, not to let such results cloud your approach to practical
problems. Risch is right when he says of Richardson's results, "These arti

ficial examples do not give us any real insight.,, 20 Moreover, they have yet to

arise in the solution of specific practical problems. It is important to identify
undecidability results which are significant for practical problems.

5. ENCODING AND REPRESENTATIONS

Hearn1 3 and Marks 1 6 touched on several specific encoding and representa
tion issues including expanded versus nonexpanded forms, handling of kernels
(Hearn) or common subexpressions (Marks), and encoding polynomial forms

(see also reference 23, chapter V).

Many specific as well as nebulous problems can be posed with respect to

the issues indicated above. We choose, however, to limit this discussion to

one quite specific and promising issue.

319

Marks 16 (section 2) poses the question of utilizing successive degrees of

freedom in data organization. He observes that a character string representa

tion is compact and more efficient than a tree structure representation for

operations which use the expression only as a temple, i. e., for algorithms

which treat the expression as "read only" data. Such operations as substitution,

differentiation, and numerical evaluation scan the input expression interpretively

while constructing a new expression. Because they require insertion and dele

tion of subexpressions as well as rearrangement, automatic simplification and

expansion require a list structure for efficient dynamic storage allocation. The

overhead due to copying and compactification required to dynamically allocate

variable-size contiguous blocks of storage can be prohibitively large (recall the

discussion of ALPAK and PM in chapter V of reference 23).

All systems which have been implemented for symbolic mathematics have

chosen one expression encoding and maintained that encoding throughout all

calculations. This is true not only with respect to contiguous string versus

list structure encoding, but also with respect to expanded or recursive repre

sentations for polynomials in polynomial manipulation systems.

PROBLEM 8: Determine the conditions under which it is desirable

to have more than one representation and/or encoding for ex
pressions.

PREREQUISITES: Familiarity with list processing, tree processing,
and dynamic storage techniques, with considerable experience
in algorithm implementation and design at the assembly coding
level.

It is clear that such issues as whether to have several representations for

one expression co-resident in the system or convert between representations

will have to be considered. It will be instructive and intriguing to learn for

which algorithms it is desirable to convert from one encoding or representation

to another. In this study one cannot avoid using the analytic techniques proposed

in problem 10. They will be essential in determining tradeoffs between various

encodings and representations under the action of various algorithms.

320

6. DESIGN OF POLYNOMIAL SYSTEMS

In August 1967 at the meeting of the International Astronomical Union 5 in

Prague, Herget was asked, "May we expect to find a general language to treat

analytic developments on electronic computers or must we always be prepared to

use a special apparatus?". He replied, "I expect that we will need special pro

grams to save time on the computer." General purpose expression manipula

tion systems waste both time and space when the desired manipulation is strictly

polynomial. Moreover, the polynomial systems implemented to date waste

time and space when one has a specific series structure to manipulate, such as

those commonly encountered in astronomy. It is easy to defend Herget's reply.

Too little is known concerning the tradeoffs among encoding, representations,

and algorithm designs for polynomial manipulation systems. The problem is

further aggravated by the fact that it is frequently desirable to have a polynomial

capability which is consistent with and embedded in a general expression manipu

lation system. (Feldman's recommendations 7 regarding FORMAC move in this

direction.) Recent analysis of ALPAK and PM performed by the author 2 3 and

Marks' suggestions concerning the sort (Page 32) encourage one to believe that

polynomial and general expression manipulation systems can be merged success

fully.

The basic tradeoffs in polynomial systems are between contiguous arrays

and list structures for encoding and between completely expanded and recursive

representations for multivariant polynomials. Any thorough study of polynomial

systems will pose the questions raised in Problem 8.

PROBLEM 9: Develop the necessary techniques and perform a

definitive study of polynomial encodings and representations

with an eye to both a stand-alone capability and a capability

embedded in a general expression manipulation system.

PREREQUISITES: Familiarity with the algebraic theory of poly
nomial rings and the theory and use of analytic series expansions,
and an in-depth knowledge of implementation techniques
previously utilized for polynomial systems.

321

7. ANALYSIS AND EVALUATION

Many of the problems posed require precise combinatorial and analytic

tools for assessing design tradeoffs. Collins3 and Lipson1 5 present time

analyses for their algorithms. However, more precise and general techniques

are required. Systems for symbolic mathematical computations will themselves

be of great value here since they can be used to develop and manipulate quite

complicated generating functions. (Recall Lipsont s discussion in section 3 of

reference 15.)

PROBLEM 10: Define the relevant quantities to be measured and

develop practical analytic techniques for counting and

measuring data structure and algorithm resource require
ments and tradeoffs.

PREREQUISITES: Knowledge of combinatorial analysis, signal
flowgraph theory, graph theory, and asymptotic analysis, in
addition to familiarity with assembly-level encoding and
algorithm design.

It is clear that this is one of the basic problems in computing science. Any

results obtained will be of general value.

8. SUMMARY

Ten basic problems in design and implementation of practical batch proc

essing systems for performing symbolic mathematical computation have been

discussed. An attempt was made to specify the prerequisite skills and knowl

edge required to attack each problem.

322

REFERENCES

1. 	 W.S. Brown, "Rational Exponential Expressions and a Conjecture Con
cerning ff and e," American Mathematical Monthly, Vol. 76, No. 1,
January 1969.

2. B.F. Caviness, "On Canonical Forms and Simplification," Ph.D. Thesis,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, May 1968.

* 	 3. G.E. Collins, "Computing Time Analyses'for Some Arithmetic and
Algebraic Algorithms," these Proceedings.

4. 	 M.S. Davis, "Programming Systems for Analytical Developments on

Computers," The Astronomical Journal, Vol. 73, No. 3, April 1968.

5. 	 W.J. Eckert, "The Use of Electronic Computers for Analytic Develop
ments in Celestial Mechanics: A colloguium held by Commission 7 of
IAU in Prague, 28-29 August 1967," The Astronomical Journal, Vol.
73, No. 3, April 1968.

6. 	 H. Eisenpress and A. Bomberault, "Efficient Symbolic Differentiation

Using PL/I-FORMAC," IBM New York Scientific Center Technical Re
port No. 320-2956, New York, September 1968.

* 	 7. H.E. Feldman, "Some Symbolic Computations in Finite Fields", these
Proceedings.

8. 	 R.R. Fenichel, "An On-Line System for Algebraic Manipulation,"

Ph.D. Thesis, MIT, Cambridge, Massachusetts, December 1966.

* 	 9. S.B. Gershwin, "The Use of Computer-Aided Symbolic Mathematics
to Explore the Higher Derivatives of Bellman's Equation," these
Proceedings.

*10. 	 S.B. Gershwin, "An Attempt to Solve Differential Equations Symbolically,"
these Proceedings.

*11. J.H. Halton, "Asymptotics for Formula-Manipulation," these Proceed
ings.

*12. K. Hartt, "Symbolic-Numeric Eigenvalue Problems in Quantum Mechanics,"
these Proceedings.

*13. A.C. Hearn, "The Problem of Substitution," these Proceedings.

14. 	 H.G. Kahrimanian, "Analytic Differentiation by a Digital Computer,"

Master's Thesis, Temple University, Philadelphia, Pennsylvania,

May 1953.

*15. 	 J.D. Lipson, "Symbolic Methods for the Computer Solution of Linear
Equations with Applications to Flowgraphs," these Proceedings.

*These articles appear in these Proceedings.

323

*16. 	 P. Marks, "Design and Data Structure: FORMAC Organization in Ret
rospect," these Proceedings.

17. 	 J. Moses, "Symbolic Integration," Ph.D. Thesis, MIT, Cambridge,

Massachusetts, December 1967.

18. 	 J.Nolan, "Analytical Differentiation on a Digital Computer," Master's

Thesis, MIT, Cambridge, Massachusetts, May 1953.

19. 	 D. Richardson, "Some Unsolveable Problems Involving Functions of a
Real Variable," Ph.D. Thesis, University of Bristol, Bristol, England,
1966.

*20. 	 R.H. Risch, "Symbolic Integration of Elementary Functions," these
Proceedings.

21. 	 R.G. Tobey, "Eliminating Monotonous Mathematics with FORMAC,"

Communications of the Association for Computing Machinery, Vol. 9,

No. 10, October 1966.

22. 	 R.G. Tobey, "Experience with FORMAC Algorithm Design," Com
munications of the Association for Computing Machinery, Vol. 9,

No. 8, August 1966.

23. 	 R .G. Tobey, "Algorithms for Antidifferentiation of Rational Functions,"
Ph.D. Thesis, Harvard University, Cambridge, Massachusetts, May
1967.

24. 	 R.G. Tobey, R.J. Bobrow, and S.N. Zilles, "Automatic Simplification
in FORMAC," AFIPS Conference Proceedings, Vol. 27, part 1, Spartan
Books, Washington, D.C., December 1965.

25. 	 "Proceedings of the ACM Symposium on Symbolic and Algebraic Manipu
lation," Communications of the Association for Computing Machinery,
Vol. 9, No. 8, August 1966.

*These articles appear in these Proceedings.

324

tt~o

gMD

