=
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server
\_/

NASA we—(('cgﬁ??l

ON THE ELASTIC APPROXIMATION TO THE VACANCY
FORMATION ENERGY IN METALS

S
%‘Wi L

W. J. Arnoult*, K, Salama®** and J. M., Roberts¥*#*

*W.J.A., *¥.S. and **%J .M.R. are respectively Graduate Student, Post-
doctoral Fellow and Professor of Materials Science, Department of
Mechanical and Aerospace Engineering and Materials Science, Rice
University, Houston, Texas.


https://core.ac.uk/display/85235729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

The isotropic elastic continuum model proposed by Friedel [1-3]
to describe point defects in metals is suitably modified and used to
calculate the energy and entropy of vacancy formation. The vacancy core
is considered as a defect having elastic properties different from those
of the surrounding lattice. Three criteria are set forth for the appli-
cation of the model, Firstly, the boundary conditions are satisfied on
the interface between the vacancy core and the lattice region so as .to
render the defect in the host lattice free of external stress, pressure
or body force. Secondly, the ratio of vacancy volume to atomic volume
is considered to be equal to the experimentally determined value. Thirdly,
the Voigt [4] average of the single crystal elastic constants is employed
in the calculations. Good agreement is obtained between theory and ex-

periment for a variety of metals.



INTRODUCTION

There exists in the literature many models for estimating the
energy of formation of vacancies in metals. Each of these models repre-
sents either one or the other of two basic approaches - the isotropic
elastic continuum approximation [3,5-9] and the discrete atomic lattice
model [5,10-18]. Hall [5] and Gibbs [8] made a qualitative comparison
between the two models and showed how the discrete and elastic continuum
models are basically related. The elastic model can represent the
smoothing out of a discrete atomic displacement model without serious
loss of quantitative stored energy value estimates,

To apply the isotropic elastic continuum model to the calcu-
lation of the energy of vacancy formation, three basic criteria must
be satisfied. Firstly, the boundary conditions at the interface between
the vacancy and the lattice region should be satisfied so as to render
the defect free of external stresses [19]. Secondly, the ratio of the
vacancy volume to atomic volume should be equal to the experimentally
determined value which is found to be approximately 0.5 for metals with
cubic symmetry [20-24]. Thirdly, a Voigt [4] average over the single
crystal elastic constants should be used in order to maintain the iso-
tropic concept. Mclellan [9] applied the second criteria to the elastic
continuum model described by Eshelby [7]. He found good agreement between
calculated and experimental values for the energy and entropy of formation

of vacancies. However, these calculations leave an internal pressure at



the vacancy core and the apparent use of the single crystal shear modu-
lus C44 for the isotropic shear modulus seems unjustified,

Brooks [6] considers the vacancy as a vacant core region
possessing a boundary surface energy and a surrounding distorted elas-
tic region., By minimizing the total energy of the system, the displace-
ment through which the surrounding lattice relaxes was found for copper.
The resulting displacements are rather small and predict a vacancy to
atomic ratio of 0.74. By using an uncommon method to average the elas-
tic constants, Brooks obtained a value for the energy of vacancy for-
mation which appears about twice that determined experimentally for
copper.

The present work modifies the misfitting sphere model of
Friedel [1-3], so that self-consistent elastic continuum relationships
are obtained. In these calculations the three criteria for the model
are satisfied. The thermodynamic ﬁarameters related to vacancy for-
mation are developed and the calculated values are compared with known

experimental results,



THE FRIEDEL MODEL

In the elastic model due to Friedel [1-3], a spherically
symmetric isotropic material T is assumed having radius R, atomic radius

a, and compressibility and shear modulus x and , respectively. A spher-

ical caviéy of volume <%?f3> is removed from the interior of the bulk‘
and replaced by a material II with atomic radius a', and compressibility
and shear modulus x' and y' respectively. The two materials are then
allowed to adjust under the influence of unbalanced surface stresses
across their respective interfaces until the latter become one and the
same interface. Continuity of the two media exists at a radius b. At
this point, the surface traction on the two interfaces cancel to leave

the resultant interface stress free. The displacements in material I

and II have the respective functional forms

UI&')=BE’+C r

HE (1)

U@ = A7 @)

where A, B and C are constants to be determined from the boundary con-
ditions, Equations (1) and (2) can be suitably differentiated to yield
the strains and, hence, the stresses in each material. Balancing the
stresses in medium I and II at r =b and imposing continuity of media

yields:
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APPLICATION TO VACANCIES

1) The Elastic Model

To apply the Friedel model to vacancies, material II is
assumed to be a compressible and perturbed Fermi electron gas originating
from the local electron charge redistribution when a vacancy is formed
and the local lattice relaxes. The effective electron gas pressure in
the vacancy cavity is balanced with the negative pressure of the relax-

ing elastic material across the interface at r = b, so that

The expression for the bulk modulus of an electron gas has been employed
[25-26] in the above relation.
The elastic model described above defines the displacement at

r = b as radial and equal to (b - a), so that the local vacancy dilatation

3(b - a) .
a

is We define the local vacancy dilatation as (f - 1)Q where
f is the experimentally evaluated relaxed atomic volume ratio. The local
and atomic vacancy dilatations being assumed equal, it follows that:

3b - a) _ £ -1

" ()



b - a

where the approximation b-ax <~ has been made and an error of
a b

less than 107% introduced., The experimental values of f are accurate
only to + 5% so that this assumption appears justified.
The continuity of media criterion of the elastic model shows:

b = {a’ + % %% a} % (8)

Solution of equations 6, 7, and 8 shows that:

b= —3 a 9)
Lo- £
T a. - -
a—q_f\:3+(f 1)2:&] (10)
and '= —2 (11)
20u(1 - £)

Tﬁe elastic stored energy of the vacancy is found by evaluating the work
done on the internal surface of medium I and the external surface of
medium IT, each surface undergoing determined displacements under

known forces. Combining the two contributions to the total energy, one
finds the elastic stored energy per vacancy to be:

|
1+ & 2 (12)

Use of equations 9, 10 and 11, reduces equation 12 to:
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Thermodynamics of the Model
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The elastic stored energy E, 18 a Gibbs free energy associated
forming a vacancy. Following a development given by Friedel [1, 2],
otal free energy change per vacancy in the crystal can be consid-
as the sum of two terms:

AFy 'is the configurational free energy change associated with plac-

vacancy in the crystal so that:
a7y = kT {ejdne, + (1 - ¢ Ma(l - cv)} (15)

¢, is the atomic concentration of vacancies and k and T have their
meaning. AF, is the Gibbs free energy change per vacancy due to

contributing terms and may be written as
AF, = AU, - TAS, (16)

AUp is the energy of formation of the defect and AS, is an entropy
e due to the change in vibrational frequency of the atoms locally

iated with the .crystal defect. Knowing E, to be the Gibbs free

energy change evaluated at low temperature (0°K in the present paper),

one obtains the vacancy formation energy at any temperature T, as

The t

Eo
0, = 5y +(20) 1 an
P
otal free energy change of the crystal is therefore
DEN : n
AF = cy [EO + T <——é—%/P - TSZ] + kT ‘:cv{ncv + (1 - cy)dn(l - CV)J (18)



The size effect refinement is neglected in this type of calculation [27]
since the radius of the sample is assumed to be in the macroscopic size
range of 1 em, Upon minimizing AF with respect to c,» one finds the

equilibrium concentration of vacancies, cJ, to be

VS

-E; - T j) -+ TAS
cd = exp [ \aT 2] (19)
Differentiation of equation 12 with respect to T yields
o) =E, [3 +1 (20)
P s dT

where o is the coefficient of linear expansion,

To evaluate ASZ, it is assumed that each atom can be approxi-
mated as a simple harmonic oscillator vibrating with a frequency wv.
Applying a high temperature approximation to a quantum statistical aver-
age vibrational energy, the free energy per oscillator per degree of
freedom is found to be kT 4n <§%> [28]. Differentiating this expression
with respect to temperature, one finds the change in atomic vibrational

entropy to be
1
A5, = - o (%L) (21)

where v' is a reduced vibrational frequency per atom associated with the
relaxed lattice neighboring the vacancy. Because v' is very close to v,

1
In Y~ can be expanded in a Taylor series around y. Multiplying and
v

dividing by the local lattice dilatation, %¥ , it is found per Z nearest



neighbor oscillators per degree of freedom that:

ASy _ L 7k d(aw)

AV Q d(4nV)
The negative of the differential is the Griineisen's constant, v, which
is relatively independent of the temperature and the Einstein frequency.
Since the local atomic dilitation per oscillator surrounding the vacancy
is given by £l—é~£2- and we assume as did Cottrell [29] for the atomé
near thg core of a dislocation, that only one degree of freedom has its

frequency perturbed, equation (22) becomes:
A8, = ky(l - £) (23)

Applying relations (20) and (23) to (19), one obtains:

1 du
cg = exp [:E%] exp [—EO(BU i HE) + ky(d - f)] (24)

3) Application of the Model to Experiment

The concentration of vacancies is determined experimentally
either by resistivity measurements on the bulk sample [30, 31] or by
the simultaneous measurement of length and lattice parameter change [32].

or some property proportional to el is plotted vs l/kT , the

When in e v

v

. . . f .
slope of the resultant straight line is designated EV and the intercept

£
at L -0 is designated S, . From equation (24) then it appears:
T
f
E, = E (25)

and
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du
at ./ ’(26)

4) Prediction and Results of the Model

The present model has been solved, i.e., equations (13) and
(26) evaluated for a variety of metals with cubic symmetry using the
experimentally determined value of 0.5 for £. ZLow temperature values (near 0°K)
of the elastic constants published by Simmons [33] were used in the cal-
culations. All the investigators cited in Simmons and the value of the
elastic constants which each investigator determined for a particular
metal were carefully compared to ensure a choice of values which
warrant most confidence. The Voigt elastic constants T and XV were

was calcu-

e

evaluated as described by Hirth and Lothe [34] and i
lated at room temperature from the selected single crystal data published
by Simmons., Values of ( and ¢ were taken from the Metals Handbook {357,
and values of Yy were taken from Mott & Jones [28]. Table I lists the
values of the actual physical constants employed. The temperature for which
the elastic constants were aetermined was 0°K unless stated otherwise.

A wide range of experimental values of Eg and Sg were found
to exist in the literature. Friedel's [2] published values, being aver-
ages of many experimental observations, were in turn averaged with more
recent experimental results to yield the experimental values cited in

Tables II and IITI.
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Table II suggests that the present model with the value of.

0.5 for f yields good agreement with the experimentally determined
values of wvacancy formation energy for the cubic metals other than the
alkalis Li and XK. Agreement was also found in the case of the almost
ideally packed h.c.p. Mg(c/a = 1.623) and f.c.c. Co. This agreement can
be expected since the value of f = 0.5 used in calculating Ef is that
determined experimentally on gold and copper. However, using the same
value of £ in the case of b.c.t, Sn and h.c.p. Zn and Cd (C/a = 1,856,
1.886 respectively), the agreement was poor. Knowing the experimentally
determined values of vacancy formation energy for these metals, f was
adjusted in equation (13) until agreement was obtained., For Cd and Zn
a value of £ = 0.78 and for Sn a value of £ = 0,75 was obtained., These
f values are in fair agreement with the value of 0.67 for f assumed by
Wallmark and Gilder [36] in their work on Zn. Higher values of £ than
0.5 suggest that there is less lattice relaxation in the non-cubic lattices
than the fcc lattices,

E

. core/p .
The ratio total, the fraction of core energy to total

energy of vacancy formation, is found from the theory to be

E 3

Core/Etotal = >/[5(1 - £) +3]. Table II shows this ratié varies from
0.55 for cubic crystals to 0.72 for the h.c.p., indicating that the
largest portion of the total defect formation energy is contributed by
the core region. One minus this ratio clearly yields the fraction of
the total energy of formation stored as elastic energy in the lattice

surrounding the vacancy, i.e., medium I.

11



In addition to the results reported in Table II, the energy
of vacancy formation was calculated using the arithmetic average [37]
of the Voigt and Reuss [34] appropriate elastic constants for each
element., The energies thus evaluated were found to be consistently

smaller in value by 30% than those shown in Table II.
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Table I

Physical Constants Used in the Calculations
of the Energy and Entropy of Vacancy Formation

Element

Cu
Ag
Au

pe (1)
Na (2)
Li(3)
g (&)
Ni
Al
w(5)
Pb
co(6)
Mg
Sn
Ccd

Zn

l~l’Voigt Q
x10712  x10%4
dynes/ 2 cm3
0.593 11.77
0.375 17.07
0.337 16.94
0.665 15.11
0.044 39.85
0.071 21.5
0.017 75.3
1.011 10.94
0.29 16.59
1.753 15.82
0.137 30.34
0.8 11.13
0.194 23.23
0.26 27.3
0.319 21.6
0.51 15.24
(1) Extrapolated to
@) " "
3) " "
(4) Value at 83°K
(5) Extrapolated to
®) " "

13

o
x100

¢yt

16.5
19.7
14,2
8.9
71
56
83
13.3
23.9
4.3
29.3
12.4
25.0
23.0
29.8
39.7
0°K from

0°K from
0°K from

0°K from
0°K from

1.96
2.4

.54
.25
.17
.34
.88
.17
.62
.73
.87
.51
.14
.19
.01

NOONN R N RN e e N

300°k
90°K
78°K

77°K
300°K

- (L du
<@ at./
%103

eyt

0.266
0.373
0.24
0.13
1.2
0.412

0.329
0.536
0.099
6.735
0.24
0.40
1.21
1.09
0.42



Table II

Theoretical Predictions of the Model and the Experimentally
Determined Values of the Energy of Vacancy Formation

Element

Cu
Ag
Au

Pt

X

x1012

-1
[?ynegémzj

1.52
2.4
2.67
1.41

22.5

13.0

53.0
0.895
3.13
0.55
6.56
1.1
b, 6L
6.95
6.42
4,0

E

core

Etot

0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.71

0.72
0.72

g
caYc

1.00
0.92
- 0.82
1.44
0.25
0.22
0.18
1.59
0.69
3.9
0.60
1.28
0.65
0.5
0.42
0.47

14

o O =

rf
v
exp

.02
.96
.84

—
I~

.28

.31

.69

.59
.25

OO WO = 0 O O
~

0.5
0.4
0.5

Reference

2,38,39
2,40
2,41,42
2,42-b4
2,45

46,47
2,48-50
51

2,52



Flement

Cu
Ag
Au
Pt
Na
Li

Ni
Al

Pb
Co
Mg
Sn
Cd
Zn

Theoretical and Experimental Values of the

Table TIZI

Entropy of Vacancy Formation

1dy
’Eo[uv at
+ 3@]

k

2.5
3.35
1.9
1.6
2.68
1.0

5.34
3.7
3.7
4.8
3.1
2.4
7.0
5.08
1.74

y(1 - £)

0.98
1.2
1.51
1.27
0.62
0.58
0.67
0.94
1.08
0.81
1.36
0.93
0.75
0.53
‘ 0.48
0.44

15

f
v

k
calc

3.48
4,55
3.41
2.87
3.3

1.58

6.28
4,78
4,51

.15
.53
.56
.18

[RV] ut ~J w £~
.

1.5
1.5
1.2
1.4
2.0
1.8

0.3
1.4
0.7
2.3

Reference

2,38,39
2,40
2,41,42
2,42-44
2,45



DISCUSSION

Table ITI shows that the present model predicts rather well
the energy of vacancy formation in many metals with the exception of two
of the b.c.c, alkalis. This agreement is rather surprising when one con-
siders the weaknesses of the present model which must alter the true
representation of the displacement field. The linear anisotropic elas-
tic solution to this problem for crystals of cubic symmetry has been
recently published by Masumura and Sines [55]. These authors normalized
the anisotropic radial displacement to the isotropic case. ‘The present
authors  find this normalizing constant to be the same as that used in
the current calculations, i.e, C in equation (1). Therefore, it is
expected that the displacement strengths in the‘current study are com-
parable to those of the anisotropic solution even though the direction
and senses are somewhat different. Energy calculations are not sensitive
to the anisotropy of the displacements but depend strongly on their
magnitude. There also exists non-elastic continuum and quantum mechan-
ical effects at the vacancy site which are impossible to consider iﬁ
the light of a linear elastic continuum approach,

There are, however, distinct advantaggs to the current type
of calculation., The local ion core rearrangement due to their mutual
repulsion [5], and the electron charge density redistribution at the
vacancy site have,-in fact, been qualitatively considered through the

estimated core distortion as a medium of different compressibility and

16



shear modulus from the host lattice. Secondly, the maximum strain
around tﬁe vacant site has been estimated as 14%, which is not so large
as to be considered unreasonable for a linear model. 1In fact, this value
is in accord with the results of previous investigators [10-15]. Thirdly,
the model predicts more than one half of the energy of vacancy formation
to be local core energy and the remaining amount to originate from the
elastic distortion of the surrounding medium. This result is in good
agreement with the work of Hall [5], who also quantitatively compared
the core to surrounding lattice stored energy. In the latter work, the
comparison is made from a discrete lattice type calculation and the
average value of the ratio of core energy to the total energy of wvacancy
formation was 0.5 for cubic crystals. Fourthly, this method produces a
continuous stress and strain field associated with the vacancy everywhere
in the body. Therefore, the model shoud be able to be extended to pre-
dict the interaction effects of vacancies with either interstitials or
substitutional impurities ;n metals,

Table II shows that the predicted formation energies are lower
than the experimental values for the b.c,c. alkali metals Li and K,
Ajusting the f value to give agreement between experiment and theory
shows f = 0.27 for Li and O for K. It seems difficult to justify such
a large local vacancy formation volume. It is possible vacancy formation
in the b,c.c. alkali metals may be accompanied by atomic rearrangements

in the (111) direction such that the configuration appears more like two

17



split half vacancies, In this case, our model would not be applicable
and agreement between theory and experiment not expected,.

Table III shows the oxder of magnitude agreement between the
experimental values of entropy of vacancy formation and those predicted
by the current model, Analytically, the calculated values of the
entropy of vacancy formation are quite sensitive to the values of 1 dy

iy 4T
employed.  This coefficient can vary considerably with temperature and
in the present work was evaluated at room temperature from the elastic
constant data [33]. These data are sparce and exhibit scatter appre-
ciably between differing experimenters studying the same metal.

The data points taken for vacancy concentrations representative
of high temperatures near the melting point are extrapolated several
orders of magnitude to infinite temperature (% - d) in order to find
the intercept of the 4n ¢ vs %-curve. This intercept is related to
the experimental value of Si and due to the above extrapolation procedure,
is very sensitive to the accuracy of the data points. For these reasons,
the agreement we find between experiment and theory for Sg is considered
satisfactory.

In summary, it appears the advantages enumerated above for the
current model favor a reliable calculation of the energy and entropy of
monovacancy formation in metals. This agreement results even though the

actual displacement field surrounding the defect may in some cases be

quite different from that predicted by the model.
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