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ABSTRACT 

The origin of Apollo 11 basalts is discussed in terms of two 

hypotheses: (i) formation by a small degree of partial melting in 

the lunar interior and (ii) formation by prolonged near-surface 

crystallization differentiation in a lava lake. The second hypoth- 

esis is rejected on the following grounds: Most Apollo 11 magmas 

are far removed from the plagioclase-pyroxene-ilmenite cotectic; 

fractional crystallization cannot explain the large variations in 

concentrations of incompatible trace elehents in conjunction with 

the small variations in major element compositions, particularly, 

_I Mg ratios; experimentally determined partition coefficients show 
Fe 

that the high abundances of Cr and V in Apollo 11 cannot be reconciled 
Pack3 
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with the previous separation of large quantities of ore minerals and 

pyroxenes. On the other hand, the major element and trace element 

contents of Apollo 11 rocks can be explained by partial melting of 

sovvromaterial which buffers the major element compositions and 

jq 

causes enrichments of incompatible elements according to the degree 

of partial melting( fiisk hypbthesis) 

Two alternative sources have been suggested for  Apollo 11 

basalts formed by partial melting: (i) unfractionated pyroxenite 

source region at depths of 200-600 km, (ii) fractionated source region 

with incompatible elements (e-g. Ba, U, rare 'earths) strongly enriched 

over chondritic abundances and containing plagioclase (approximate 

eucritic composition). Mass balance calculations'and plagioclase 

stability conditions show that the second hypothesis requires 

Apollo 1l.basalts to be generated by partial melting in the outer 

150 km of the moon. This is very difficult to achieve one billion 

years after the moon's formation, since the outer 200 km will have 

cooled well below the solidus by conduction. Furthermore, magmas 

generated by partial melting,of a plagioclase-bearing source region 

should have plagioclase on the liquidus, which is contrary to obser- 

vation. The second hypothesis accordingly appears improbable. The 

first hypothesis is capable of explaining the major element chemistry 

(ii) 



and the trace element abundances (Eu-see below) in terms of a simple, 
b*i 

' single stage model which is consistent the moon's density, moment of 

inertia and inferred thermal history. A possible explanation of the 
f i  

europium anomaly is suggested on the basis of the first hypothesis. 

It will be necessary to determine the appropriate partition coefficients 

in order to test this explanation. 

If the lunar highlands are anorthositic, extensive differentia- 
I 

tion of the outer 150 km of the moon is required. This may have 

been caused by heating arising from ,partial conservation of gravita- 

tional potential energy during the fino1 stage of accretion. ' Forma- 

tion of Apollo 11 basalts by partial melting 3 . 7  billion years ago ,. 

was probably the result of.radioactive heating (U, Th) in the deep 

interior 'of the moon. A .two-stage magmatic history for the moon is 

thus required. 

Similarities between compositions of Apollo 1l.and terrestrial 

basalts and between their respective source regions are suggestive 

of a genetic relationship between moon and earth. Nevertheless, 

important differences in trace element abundances, major element 

compositions and oxidation states exist, These abundance patterns 

are unfavourable to the traditional fission, binary planet and 

capture'hypotheses of lunar origin. However, they may be explicable . 

(iii ) 



in terms of the precipitation hypothesis proposed by the authoro 

This maintains that during the later stages of accretion of the earth, 

a massive primitive atmosphere developed which was hot enough to 

evaporate selectively a substantial proportion of the silicates 

which were accreting upon the earth. Subsequently, the atmosphere 

was dissipated and the relatively non-volatile silicate components 

were precipitated to fonn a swarm of planetesimals or  moonlets, from 

which the moon accreted. 

- (iv) 



PETROGENESIS OF APOLLO 11 BASALTS AND IMPLICATIONS FOR LUNAR ORIGIN 

1 INTRODUCTION ). 

It can scarcely be denied t h a t  the revelat ions from the  Apollo 
I 

11 Lunar Science Conference i n  Houston, January 1969, w e r e  something 

of a disappointment t o  the  world a t  large. Instead of f inding a 

consensus among experts  a s . t o  the broader s ignif icance .of the Apollo 

11 rocks and the i r  bearing upon the nature  of the lunar  i n t e r i o r  and 

on the  or ig in  and evolution of t he  moon, near ly  a l l  i n t e rp re t a t ive  

aspects (as d i s t i n c t  f r o m  the  descr ip t ive)  w e r e  submerged i n  contro- 
I .  

versy and the  ove ra l l  impression obtained by non-scient is ts  w a s  one 

of considerable confusione This w a s  unfortunate i n  view of the  

intense worldwide publ ic  i n t e r e s t  shown i n  the Conference. 

In  retrospect, it i s  d i f f i c u l t  t o  see how th i s  s i t u a t i o n  could 

have been avoided. W i t h  over 130 s c i e n t i f i c  t e a m s  working on special-  

ized problems and ignorant of the f indings being made by t h e i r  

colleagues (and r i v a l s ) ,  it i s  not  surpr i s ing  t h a t  broad interpreta-  

t i o n s  which w e r e  f requent ly  based upon invest igat ions’with narrow 

s c i e n t i f i c  perspect ives  should have been so of ten  i n  conf l i c t ,  Now 

t h a t  the  de t a i l ed  s c i e n t i f i c  r e s u l t s  on Apollo Il rocks have been 



published, there is no longer any excuse for this degree of con- 

fusion. It is important that the broad scientific conclusions which 

can reasonably be drawn from the study of Apollo 11 rocks with accept- 

able degrees of probabil’ity should be defined so that they can be 

used as boundary conditions for further investigations. It is 

equally important that unsolved problems which remain the subject 

* of legitimate scientific controversy should be clearly defined, so 

that the investigations and data needed to secure solutions can be 

characterized. 

In this paper, certain aspects of the petrogenesis and chemistry 
.. 

of Apollo 11 basalts are discussed with the above considerations in 

mind, and an attempt is made to critically assess existing informa- 

tion and hypotheses relative to the origin and significance of the 
# 

Apollo 11 basalts. The bearing of data and interpretations derived 

from the basalts upon theories of lunar origin is then considered. 

2, PETROGENESIS OF LUNAR BASALTS 

The first order discovery from the Apollo 11 mission was .that 

rocks from the Sea of Tranquility were clearly recogiisable as 

members of a class of basaltic-type rocks, This is ‘also true of 

Apollo 12 rocks and is inferred from compositions elsewhere on maria 
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sites obtained from Surveyors 5 and 6. ,Furthermore, detailed studies 

of lunar soil containing material of much wider provenance than the 

sites studied so far reveal that about 95% of recognisable rock 

fragments are composed of the same mineral assemblage as occurs in 

the rocks of local origin. These observations justify the conclusion 

that 

like 

show 

the maria generally are almost certainly composed of basalt- 

rocks e 

High-pressure phase relationships of Apollo 11 rocks and basalts 

that they cannot be representative of the lunar interior. 

(Figure 31, At a relatively shallow depth, they would transform to. 

3 eclogite with a.density of 3.74 g/am compared to the moon's 

dens,ity of 3 . 3 6  g/crrn3. It follows that Apollo 11 rocks and the maria 

generally are differentiates of a less dense (lower ~e/~g), more 

primitive material which comprises the bulk of the moon. (Ringwood 

and Essene 1970 a, b; O'Hara et. ale, 1970 a,b). 

This is confirmed by the very high concentrations (up to 100 

times the chondritic abundances) of incompatible elements, found in 

Apollo 11 basalts. These elernents(eg, u,, ~ h ,  Bar rare earths) possess 

ionic radii and charges which inhibit their ready entry into the 

major rock-forming silicates. Accordingly they are very strongly 

partitioned into the liquid phase during fractionation processes 

involving common silicates and magmae 

incompatible elements imply the operation of highly efficient crystal- 

~ 

The observed. concentrations of 

liquid fractionation processes, 



# 

Two mechanisms have been proposed. 

The first maintains that Apollo 11 magma was primarily derived by a 

small degree (1 to 5%) of partial melting in the lunar interior during 

which the incompatible elements were almost totally partitioned into 

the liquid phase (eg-'Ringwood and Essene (1970 a,b). According to 

the second hypothesis, the Apollo 11 magma is a highly residual liquid 

resulting from extensive crystallization differentiation in near- 

surface regions, probably in large lava lakes (eg. O'Hara et. al., 

1970 arb; Smith et. al., 1970 a,b). It is of the utmost importance 

. -  . . .  
- 

to many broader problems of lunar origin and evolution to determine 

which of these two hypotheses is correct. I believe that sufficient, 

evidence is now available to permit a firmaconclusion to be drawn. 

(a) Fractional Crystallization versus Partial Melting 

O'Hara et. al., (1970b) state: "Tranquility Base rocks have 

compositions similar to those of liquids in equilibrium simultaneously 

with crystals of olivine, two clinopyroxenes,.feldspar and iron- ' 

titanium oxide'. This remarkable situation must be attributed to 

coincidence if the Tranquility samples are primary magma (i.e. formed 

directly by partial melting): Howevero if the samples are the 

product of extensive low pressure fractional crystallization, their 

cotectic character is not only unremarkable: it is mandatory". 

These authors also 'cite the 

interval ( 60-l4O0C). and 'the 

small liquidus-solidus temperature 

depletion of  Apollo ll'magma in europium 
4 

. 
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as evidence that Apollo 11 basalts are the "residual liquids of 

advanced near-surface crystal fractionation, most probably in a 

vast 'lava lake ' Is  

The 

clusions 

pressure 

liquidus 

experimental phase equilibrium data on which these con- 

are based are very limited - 3 runs at atmospheric 

above the solidus.on an A60110 rock and some near- 

runs in simplified analogue systems lacking Na20 and Cr2o3. 

I I  

fi  

Half of these latter runs were carried out at an oxygen fugacity 

of lo-* bar and are not directly relevant to the crystallization 

of Apollo 11 basalts which occurred at an oxygen fugacity of 

10-13. 5 bar (12OOOC). When one examines the remaining data, it . 
khey m e  

becomes evident that &kz& much too sparse to justify the conclusions 

reached. 
A 

It is true that the temperature.interua1 between soli'dus and t I  . 
,-. 

I r 7 - - .  ~ I liquidus ,JI. c . r L i  '.-'I for different Apollo 11 rock compositions is 

not large and is in the same range as for terrestrial basalts. 

This property, however, does not permit firm conclusions to be 

drawn concerning the closeness of the Biquid 'to a multiphase cotectic. 

It could also arise in situations where the 1iquidus.temperatures 

in primary phase volumes were not strongly dependent'upon composi- 

tion of the melt, Examples of this kind of behavior are not 

uncommon in complex systems. 
. I  

. '  ' c.D 5 5 0 .  

U P  
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The closeness of a crystallizing liquid to a cotectic of major 

phases is to be measured not in terms of crystallization temperature 

intervals, but by the amount of crystallization necessary to bring 

the liquid from its observed composition to the cotectic composition. 

One of the most important observations made upon Apollo 11 basalts 

at atmospheric pressure was the late crystallization of plagioclese 

which did not appear as a primary phase until 30 to 50 percent of 

the liquid had crystallized as olivine, pyroxene and ore minerals 

(Ringwood and Essene, 1970 arb: Roedder and Weiblen, 1970; Smith 

et. al., 1970 arb: Weil et. al., 1970). This observation shows 

decisively that Apollo 11 basalts were not close to the cotectic 
composition and sharply contradicts the c.onclusions (above) of 

O'Hara et, al. It has been suggested by Smith et. al., (1970b) that 

S C  t at higher pressures in the lunar interior, Apollo 11 basalts may 

represent a cotectic composition in equilibrium with pyroxene, 

plagioclase and ilmenite. ,This is quite impossible, since pressure 

has exactly the opposite effec,t to that required; further depressing 

the crystallization field of plagioclase relative to pyroxene,. 

(Green and Ringwood, 1967: Ringwood and Essene 1970b). 

The fact that most Apollo 11 basalts are so far from the 

cotectic composition is a strong argument that the converse of 

O'Hara et. al.<'s conclusion holds - namely that the parent magma.' , 

' - 6 -  . .  
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had not undergone extensive, near-surface fractionation, This would 

lead to saturation with plagioclase which should, therefore, appear' 

on the liquidus in cotectic relationship to okher major phases. 

Further arguments showing that fractional crystallization 

has - not been a dominant factor in producing the abundance patterns 

characteristic of Apollo 11 rocks, but to the contrary, these have 

been produced dominantly by partial melting, are given below, See 

also, Ringwood and Essene (1970b). 

Major element and trace element abundancest ' An important measurb 

of the degree of crystallization undergone by a magma is given by 

Mg 
the Mg + Fe ratios of derived rocks and minerals. This is a 

particularly useful parameter (eg. Figure 2 )  in Apollo 11 rocks 

which show the effects of very strong crystal fractionation 0n.a 

MS 
microscopic scale,with Mg + Fe ratios varying from 0.74 to 0.02 

(eg. Essene et. ale, 1970 a), It is most significant that despite 

very different cooling histories as indicated by textural varia- 
r 

Mq 
tions from basaltic to gabbroic (LSPET, 1969), the Mg + Fe ratios 0 

il 

of individual rocks are very similar and the Mg + Fe katios 



.of the earliest pyroxenes to crystallize are also similar and 

close to 0,74 (eg. Essene et. al., 1970) .' Thus, the variations 
of total rock compositions do not provide any evidence of the 

operation of extensive fractional crystallization. 

In contrast to the relative constancy in abundances of major 

I elements.between individual rocks, the abundances of incompatible i 

' I  

trace elements vary systematically over a five-fold range among 

different Apollo 11 rocks (eg. Compston et. al., 1970:.Gast et. 
I 

\ 
! 

t .  1 
I !  

ale, 1970; Haskin et. al., 1970: Philpotts and Schnetzler, 1970). 
r 

If these five-fold variations in the abundances of incompatible 
I 

elements are to be explained in terms of fractional crystallization, i 
I 

it would be necessary that the degree of fractional crystallization 

\ 
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experienced by  d i f f e ren t  Apollo 11 rocks has varied 

by a f a c t o r ' o f  f i ve  o r  more. T h i s  would cause corresponding major 

var ia t ions of MS r a t i o s  which a r e  not observed. The r e l a t i v e  
Mg + Fe 

constancy of Mq 
Mg + Fe 

ra%ios of Apollo 11 rocks and the small varia- 

t i o n  i n  the abundances of other  major elements cannot be reconciled 

with an explanation of the  var ia t ions  of incompatible element 

abundances i n  terms of f r ac t iona l  c rys t a l l i za t ion .  
8 

I n  cont ras t ,  t h i s  general pa t t e rn  i s  exactly what might be 

expected fo r  small b u t  variable degrees of p a r t i a l  melting where 

the major elements i n  the l iqu id  a r e  buffered by equilibrium with 

residual  unmelted phases and a re  .present i n  r e l a t ive ly  constant 

proportions,whereas the incompatible elements a r e  almost t o t a l l y  

par t i t ioned in to  the l i qu id  phase and 'display wide var ia t ions  i n  

amount according t o  the degree of p a r t i a l  melting. '(Section 2d)  

T h i s  conclusion is fur ther  supported by de ta i led  s tudies  of 
I 

the f ine  s t ruc ture  of r a re  ear th  abundances, including the  europium 

anomaly, I n  t h e i r  l a t e s t  papers, Haskinset. a l . ,  (1970 a r b ) ,  Phi lpot t s  

and Schnetzler (1970) and Gast and Hubbard (1970) a l l  favour the 

in te rpre ta t ion  t h a t  ra re  ea r th  pa t te rns  were caused by p a r t i a l  

'melting ra ther  than f r ac t iona l  c r y s t a l l i z a t i o n ,  Results of 

t !  

. 

Gast and Hubbard (11970,) comparing r a r e  ear th  abundances i n  b a s a l t i c  
.$ . .  

- 9 -  
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Fig. 1. Rare earth and barium abundances 

lunar samples and frrom some basaltic 

from Apollo 11 and 12 

achondrites. The Hl-Rb 

group and sample 10020 represent Apollo 11 rocks. Most other 

Apollo 11 rocks fall between these samples as does ’the Apollo 

11 soil, 10084. In contrast, the Apollo 12 rocks, 12051, 

12053 and 120.02 occupy a generally intermediate position 

between the Apollo 11 rocks and the basaltic achondrites. 

Apollo 12 soils 12070 and 12044 have muc?hrh’2gher rare earth 

abundances than the corresponding rocks”and fall within the 

Apollo 11 range. 

(After Gast and Hubbard, 1970) 
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achondrites, and in Apollo 11 and 12 rocks are of particular interest 

(Figure 1). The Apollo 12 rock abundances are generally intermediate 
# .  

between those of Apollo 11 rocks and the achondrites, and a system- 

atic relationship exist.sYbetween the absolute abundances of the rare 

earths and the magnitudes of the europium anomalies, strongly 

suggesting a genetic relationship between the achondrites and the 

lunar basalts. 

B 

Despite variationr in the absolute abundances of 

rare earths by a factor of 15, the ma.jor element compositions of 

the Apollo 11, 12 and basaltic achondrites are generally similar. 

(Some Apollo 12 rocks display evidence of moderate major element 

fractionation, but a negligible scale compared to the trace element 

variations), Gast and Hubbard (1970) point that the patterns are 

readily interpreted in terms of a model which has Apollo 11, 12 

on 

A 
@Gt 

A 

,i 
rocks and basaltic achondrites formed by increasing degrees of 

partial melting of a common source material. This hypothesi? had 

been suggested earlier by Ringwood (1970) and Ringwood and Essene 
Q 

fi  

(1970 a,b). 

Abundances of chromium and vanadium: The high abundances of 

chromium (av. 2000 ppm) and vanadium (av. 75ppm) in Apollo 11 basalts 

are particularly notable. These elements are present at levels of 

0 ,5  and 0.8 of the chondritic abundances, Essene et, ale, (1970b) 
c t  

have determined the crystal-liquid partition coefficients for C r ,  b '4' 

. .  - 10 - . 



V and some other elements for the principal phases crystallizing 

from Apollo 11 magma. (Table 1) Note the very high partition 

coefficients of Cr and V in the ore minerals which are observed 

on the liquidus of Apolfo 11 basalts at atmospheric pressure. 

These show that extensive near-surface fractional crystallization 

Ob- flear 

R 

with' accompanying precipitation of ore minerals and clinopyroxenes 

would cause drastic decreases in Cr and V abundances, leading to 

the effective removal o f  these elements from the magmci. The high. 

average abundances 05 chromium and vanadium remaining in Apo.110 11' 

rocks severely limit the amount of previous low pressure fraction- i 
I .  . I  

ation which may have occurreaand are totally incompatible with the i 

.amount of fractionation which has to be postulated in order to 

explain the abundances of incompatible trace elements. They also 

contradict O'Hara et. ale's (1970 a,b) hypothesis that mascons 

are caused by massive accumulations of ore minerals which have 

> .  

crystallized from the Apollo 11 lava near the surface of 'lava lakes 

* and sunk to the bottom. 

On the other hand, the magnitude of the chromium and vanadium 

abundances are readily explicable in terms of the experimental 

partition coefficients (Table 1) if Apollo llbasalt had formed 

by direct partial melting from parental material possessing the 
' $ 4  chondritic Cr and V. abundances, leaving behind a refractory r *  

acesidiium of pyroxenes and olivine. (Essene et. al., 1970b)- 



Table 1 

Crystal - liquid partition coefficients ( K )  for phases on or 

near liquidus of synthetic Apollo 11 basalts* containing (A) 

0 e 1% V. and (B) 25% additional nonnative anorthite 

plus 0.5% each of Ba, Sr,, Eu, and Yb. 

(A 1 
Phase 

I 

K Vanadium K Chromium 

Armalcol i te 

Spinel 

Zlmenite 

Sub-calcic 
clinopyroxene 

Olivine 

18 

38 

12 

3.4 

1.3 

7 .  

77 ' 

6 

3.5 

0.9 ' 

I -, 

(K) Plaqioclase - Liquid (B) 

Ba 0-16 f Oe04 

S,r 1.5 f 0-1 

Eu L O  f 0.1 

" e  
. *> 6, 

* The basalts were enclosed in sealed iron capsu1es"and the 

oxidation 

basalts a 

states were similar to those of natural Apollo 11 

Compositio? of basalt is given by'Ringwood et. ale, (1970a,b)- 



Fig. 2. C r 2 0 3  contents p lo t t ed  against  Mg r a t i o s  for 
Mg f Fe 

pyroxenes from Apollo' 11 basa l t  sample 10047. Data w e r e  

obkained by electron microprobe analyses. 

( A f t e r  Essene e t  al, 1970a) 
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The chromium contents of most Apollo 11 rocks fall between 

rather narrow limits (2000 700 ppm Cr), Tn Figure 2 (Essene 

et. al., 1970) the .Cr 0 contents of pyroxenes from rock 10047 
2 3  . I  

are plotted against corresponding Mq ratios. The strong decrease 
Fe + Mg 

of chromium with increasing'degree of differentiation as indicated 

by' Mq ratios is notable. The initial sharp decrease from 0.6 
Mg + Fe 

to 0,3% Cr203 is $robably caused by crystallization of armalcolite, 

spinel and ilmenite from the magma. (Table 1) These minerals 

commenced crystallization before pyroxene.. The continuous depletion 

from Cr 0 values of 0.3 to less than 0.1 is probably caused by 

pyroxene fractionation (pyroxene-liquid partition coefficient 3.5)' 
2 3  

combined with late separation of plagioclese. 

These results,. particularly the sharp decline between ' Mg 
Mg + Fe 

ratios of 0.74 and 0.70 apparently caused by separation of spinel 

and armalcolite, demonstrate the large changes of chromium contents 

which are 'caused by moderate degrees of crystal-liquid fractionation, . 

It is also significant that the chromium content of'most Apollo 11. 

rocks falls within such a narrow range.despite the fact that these 

rocks have been subjected to very different cooling histories as 
." 

evidenced by textural variations from basaltic to gabbroid. (LSPET, 

1969) s 



(b) Fractionation Mechanisms: Conclusionsand Some Consequences 

From evidence discussed earlier and also from additional 

considerations (Ringwood and Essene, 1970b) it is concluded that 

the characteristic abundance patterns of Apollo 11 rocks were not 

established primarily by near-surface crystallization differentia- 

tion processes. This does not rule'out the possibility that a small 

amount of near-surface fractionation, probably less than' 10 percent 

in Apollo 11 rocks (and perhaps somewhat greater in Apollo 12 rocks) 

might have occurred. This, however, would have a negligible effect 

on the abundances of incompatible elements. It seems clear that , 

the high abundances of this 'group of elements is a primary character- 

istic of the Apollo 11 magma, and can be explained only if the magma 

were formed by a small degree of partial melting of source material., 

(Section 2d) Ringwood and Essene (1970b) demonstrated that the 

Ccyprqm'a Le 

A 

partial melting hypothesis explained the'major element abundances 

of Apollo 11 basalts and furthermore, that the composition and 

minerology of the source region, as derived experimentally, provided 

an explanation of the moon's density and moment of inertia, 

8 

( I )  Impact meltinq hypothesis 

It has been suggested (eg, Urey, 1952: Opik, 1967) that the 
I 1  

maria were formed by,'impact melting caused by the collisions of * ' "  

B 
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large gianzcesimals with the moon. I t  i.s d i f f i c u l t  t o  reconcile 

t h i s  process w i t h  the highly d i fzeren t ia ted  nature of Apollo 11 

lavas and -'?e conclusions tha t  the d i f f e ren t i a t ion  was not the 

resalk of ,:car-surface fractionLtioc,  but  on the contrary wss 

caused by p a r t i a l  melting within the lunar i n t e r io r .  (Sections 

2a ,d) ,  If  impact events led ,to shock melting, it would be expected 

t h a t  the melting was confined t o  near-surface regions and would 

be non-selective and t o t a l  (where it occurred). I t  i s  d i f f i c u l t  

to envisage impact leading d i r e c t l y  t o  p a r t i a l  melting i n  the 

in t e r io r .  It  follows t h a t  i f  impact melting i s  assumed, the surface ' 

rocks rxst lclave a t ta ined  t h e i r  highly d i f f e ren t i a t ed  nature p r i o r  

t o  iz.pzct. The impact hypothesis does noto therefore ,  explain the 

observed chemistry of Apollo 11 lavas;  it relegates  the problem t o  

an e a r l i e r  episode of magma:genesis, which a s  we.have seen, almost 

certairily involved p a r t i a l  melting. 

i-:pac: melting on the scale  necessary t o  produce the maria 

. .  i s  a --;ghll speculative process which has ye t  t o  receive an adequate 

theorzcical  o r  experimental j u s t i f i c a t i o n .  The conditions which 

are  xGc-uirzd i f  the k ine t i c  energy of an impacting planetesimal 

i s  -a >e rcansfonned e f f i c i e n t l y  , into thermal energy, resu l t ing  i n  

the r e i a t rde ly  uniform and r e s t r i c t e d  degree of heating required 

- la, - 



t o  cause melting throughout a large volume, a r e  very d i f f i c u l t  t o  

f u l f i l .  For t h i s  reasonp advocates of impact melting, (eg. Opik 
11 

1967, 1969)  conceded t h a t  the process reqirirs a s  a precondition 

t h a t  the surface regions of the moon were already very close t o  

the melting point  before the impacts occurred, 

However, t h i s  requirement i s  conkradicted by the age of the 

Apollo 11 b a s a l t s  which a r e  about one b i l l i o n  years younger than 

the age of the  moon. Even i f  the moon were o r ig ina l ly  a t  high 

temperature, thermal calculat ions emp1oyh.y a wide range of boundary 

conditions (eg Urey, 1962)  show t h a t  deep-seated cooling would 

occur t o  a depth of about 200 km, over a period of 10 years and 9 

t h a t  the mean temperature of the outer  200 km of the l i thosphere 

would .be about 5000C. This i s  not consis tent  with 6pik ' s  require- 

ment fo r  impact melting. W e  conclude t h a t  t h i s  process appears / .  

most improbable a s  an  explanation of the maria. 

The above arguments a re  not directed against  the  suggestion 

(eg. Roncol 1966) t h a t  impacts d id  not form the lavas d i r ec t ly ,  b u t  

" t r iggered off" the  subsequent volcanic a c t i v i t y  by some s o r t  ,of  

tectonic  act ion (eg. pressure release o r  thermal bfanketing).  Such 

models a re  en t i r e ly  consis tent  with deriving the lavas by p a r t i a l  

melting processes from a source region within the lunar i n t e r i o r .  
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(ii) T o t a l  meltinq of moon 

Smith et, al., (1970 a,b) propose that the moon was fonned 

from chondritic material (depleted in iron and volatile metals), 

after which it was completely melted. The entire interior was 

subjected to crystallization differentiation and the Apollo 11 

basalts are regarded as the residuum of extensive and prolonged 

near-surface crystallization differentiation. Their hypothesis 

is the very antithesis of the one presented by Ringwaod and Essene 

(1970b). 

The first problem encountered by the Smith et. al. model 

is the mechanism which caused complete melting of the moon, This 

is dismissed in one sentence "There is no difficulty in finding 

sources of energy to melt the moon (radioactive heating, gravitational 
. ' *  

infall energy, compression)"'. It is a simple matter to show that 

the second factor is capable only of melting the outer regions of 

the moon, whilst the third factor is trivial, For, rafiioactive 

heating, the ad hoc assumption must be made that a short lived 

nuclide, eg, A126 was present in sufficient amount, However, a 

chondritic moon heated internally by radiocactivity 'is incapable 

. of complete melting, The melting interval of chondritic material 

is about 500° C, Melting commences at about 1100-12OO0C and as 
\ <  soon.as a significant amount of partial melting has occurred. . I  
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throughout the i n t e r i o r ,  probably , l e s s  than 10 percent,  convection 

w i l l  occur accompanied by segregation of b a s a l t i c  l iqu id  from i t s  

source region, forming a magma which r i s e s  t o  the surface.  Since '-. 

the  heat source i s  s t rongly par t i t ioned  i n t o  the l iqu id ,  fur ther  

heating of the depleted source region i s  grea t ly  reduced. Transfer 

of heat sources t o  near-surface regions by t h i s  type of d i f fe ren t ia -  

t i on  permits the radioact ive heat  t o  be removed by conduction. 

Smith e t ,  a l e ,  account fo r  the undersaturation af the residual  

l iqu id  with plagioclase by pos tu la t ing  t h a t  the  parent mater ia l  of 

Apollo 11 b a s a l t  consisted of a suspension of pyroxene and i lmenite 

c rys t a l s  i n  a res idual  l iqu id  which was a t  the plagioclase-pyroxene- 

ilmenite co tec t ic .  The unmelted c rys t a l s  had s e t t l e d  from an over- 

lying body of c rys t a l l i z ing  l iquid.  The suspension of c r y s t a l s  and 

l i qu id  was then completely remelted by subsequent meteor i t ic  impact 

t o  form the Apollo 11 magma, # 

Whilst t h i s  sequence of events may be capable i n  p r inc ip le  of 

explaining the delayed c rys t a l l i za t ion  of plagioclase,  it is  highly 

contrived and en t i r e ly  lacking i n  supporting evidence. 

The model encounters a f a t a l  d i f f i c u l t y  i n  connection with the 

proposed time scale .  I f  the moon were extensively melted 4.7 b i l l i o n  

years agol it would so l id i fy  from the  core outwards i n  a few mil l ion 

years a t  most, depending upon the assumed hea t  source (e,g. A1 ) e  9 
26 6 
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Smith et. a l . ,  maintain that fractional crystallization ultimately 

led to the formation of a thin plagioclase-rich crust, 5 to 20 km 

thick underlain by residual liquid rnaqma containinq suspended 

pyroxene and ilmenite crystals, Meteoritic impacts 3 .3*7 billion 

years ago caused total melting of this magma-crystal mush to form 

Apollo 11 basalts. 

5 

/ 

The time constant for thermal conduction in a crust up to 

8 20 km thick is much shorter than 10 .years, According to Smith 

et- ale's model, the liquid magma which was the parent of Apollo 11 

lavas remained unfrozen at a depth of 20 km for 10 years wa.iting 9 

to be tapped by meteoritic impact. This .is simply out of the question. 

Smith et. ala's hypothesis is subject to most of the earlier 

objections which have been raised against fractional crystalliza- 

7 '  tion. To account for the incompatible tra-ce element concentrations 

in Apollo 11 basalts, from 95 to over 99 percent of a parental melt 

possessing chondritic abundances would need to have crystallized. 

At least half of the crystallizing phases would be pyroxenes, the 

remainder being olivine. 

and vanadium in pyroxene and olivine (Table 1) show'that 'this amount 

in o d l y  
The partition coefficients for chromium 

P 

of prior crystallization would have effectively removed Cr and V 

from the residual liquid, This does not agree with the observed 

abundances (2000 ppm Cr, 75 ppm V) in Apollo 11 basalts, Smith 

et, ala's hypothesis fails entirely to'explain the wide variations 

- 18 - 
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in abundances of incompatible elements observed within Apollo 11 

basalts (and also within Apollo 12 basalts - Figure 1) as contrasted 
with the very restricted degree of major element fractionation 

between these rocks as. 'indicated by Mq ratios. 
Ng f Fe 

Mascons were presumably formed at about the same time as the 

maria, and their survival implies the existence of a strong cool, 

lithosphere underlying the maria at the time they were formed 

(Urey, 1969)'. According to Smith et. al.'s hypothesis, the outer 

regions of the moon were still very hot and weak at the time of 

8 

mare formation, Accordingly they do not provide a framework for 

understanding the continued existence of mascons, 

(C) Depth of Oriqin 

In this section, we adopt the hypothesis, following earlier 

discussion, that Apollo 11 basalts have formed by partial melting, 

The following lines of evidence indicate that the source region was 

probably at a depth greater than 200 km. 

(i> Apollo 11 basalts were generated one billion years after 

formation of the moon. We have already noted (P - ) that over 

this period,extensive cooling would occur to depths of about 200 km 

and the mean temperature of the outer 200 km is unlikely to exceed 

500° C, Cooling of the moon is effective to greater depths than in , 
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the earth because its surface area to volume ratio is'nearly four 

times higher than the earth's. 

It is difficult to understand how.magmas might be formed by 

partial melting processes in this outer cool shell, 'On the other 

hand, radioactive heating at depths greater.than 200 km where 

substantial conductive heat-loss had not occurred, might readily i 

lead to partial melting (Section 3 ) .  

(ii) The mascons were presumably formed either before, during, 

or soon after the formation of the respective maria in which they 

occur. Their cokk%ued existence for 3.7 billion years implies the 

presence of an underlying lithosphe're possessing substantial long- 

term strength (Urey, 1969; Urey and MacDonald, 1970). An origin 

for the lavas by partial melting within the lithosphere implies 

loss of strength and destruction of. the 'lithosphere. Preservation 

of mascons would not be explicable. 

(lii) Incompatible elements are present in Apollo 11 basalts 

at levels ranging from 30 to'100 times the chondritic abundances, 

If this range of compositions is characteristic of maria, it implies 

that maria have been derived by partial melting of volumes 30 to 

100 times greater than their own, assuming chondritic abundances 

in the source material. The ii&i.cknesses of maria may range from 
b 
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10 t o  50 km (Baldwin, 1963; O'Keefe, 1968) .  These relat ionships  

imply extensive fract ionat ion of much of the moon's deep i n t e r i o r  

and a re  not explained by near-surface melting processes. 

1970)  .) 

(Baldwin, 

(iv) The assumption t h a t  the l u n a r  highlands a re  anor thos i t ic  

implies t h a t  complete d i f f e ren t i a t ion  of the outer  150 k m  of the 

moon has occurred (Section 3 ) .  This  d i f f e ren t i a t ion  must  have 

occurred long before the period of mare formation, and.most probably 

. 

during o r  soon a f t e r  the formation of the moon e It i s  d i f f i c u l t  to 

understand the high absolute abundances of incompatible elements 

and the chondritic-type abundance pat terns  (Eu excepted) i n  Apollo 

11 basa l t s  i n  t e m s , o f  a second phase.of p a r t i a l  melting of a highly 

. d i f f e r e n t i a t e d  outer  c r u s t  (Figure 5)  i n  which the incompatible 

elements a re  strongly depleted and fract ionated.  The source regions 

of Apollo 11 basa l t s  must  l i e  i n  r e l a t ive ly  undifferent ia ted mater ia l ,  

below the leve l  reached by the ear ly  anor thos i t ic  phase of different- ,  

i a t i o n  (Figure 5 ) .  

(v )  Ringwood .and Essene (1970 a ,b )  have determined the melting 

relat ionships  of Apollo 11 basa l t s  up t o  pressures equal t o  those 

reached a t  a depth of 700 kms They concluded t h a t  Apollo 11 b a s a l t s  
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were unlikely to have been generated at depths less than about 

100 km* 

(d) Nature of Source Reqion 

Two principal methods have been used to obtain information on 

the chemical composition and mineralogy of the source region of 

Apollo 11 basalts, One was based upon high pressure-high temperature 

investigations of phase relationships, and conclusions were drawn on 

the basis of major element chemistry. The other was based upon an 

interpretation of the trace element geochemistry of Apollo 11 lavas 

in terms of partition coefficients with possible source materials. 

The conclusions reached by these two methods have been contradictory* 

6 

(i) Partial melting of pyroxene & olivine source region. 

Ringwood and Essene (1970 a,b) carried out an extensive 

high pressure-high temperature investigation of melting equilibria 

d'isplayed by an average Apollo 11 basalt composition in which 

compositions of near-liquidus phases were determined with the 

electronprobe microanalyzer, (Figure 3 ) .  Three principal 

pressure regimes were recognized: (i) a low pressure regime 

in which the liquidus phases were olivine and armalco'lite, (ii) 

an inteirnediate pressure regime in which the liquidus phase was 

a sub-calcic clinopyroxene, (Table 21, and (iii) a high 

pressure regime in which liquidus and near-liquidus phases ---..._ 
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'Fig. 3 .  Stab'ility fields of mineral assemblages and melting 

equilibria in average Apollo 11 basalt composition at high 

pressures and temperatures. Each dot represents a separate 

experiment. Note: Armalcolite is the approved mineral name 

corresponding. to the term "kar@oite" used on this figure. 
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were clino2yroxene and garnet ( ec log i t e ) .  Since the equilibrium 

between c rys t a l s  and magma is independent of the proportions Of 

e i t h e r  phase presentl  the compositions of the l iquidus and near- 

l iquidus ;;bases so determined represent possible  bulk compositions 

f o r  the source regions from which the  magma was derived by p a r t i a l  

melting. It was possible t o  t e s t  these derived source compositions 

for  d i f fe ren t  depth in t e rva l s  t o  see whether they were capable of 

explaining the  moon's mean densi ty  and moment of i n e r t i a .  This 

t e s t  eliminated the low pressure and high pressure regimes as 

l i k e l y  sauces; whereas the intermediate pyroxenite regime provided 

a reasonable match. Xushiro e t ,  a l . ,  (1970) and O'Hara e t .  a l .  

(1970 a r b )  a l so  concluded t h a t  the parent of the  Apollo 11 magma 

might be derived by p a r t i a l  melting of a clinopyroxenite source 

material  a t  depth, but did not specify the nature or composition 

of the clinopyroxene. 

Ringwood and Essene (1970 a , b )  also demonstrated t h a t  between 

1 0  afid 20  kb, ,Apollo 11 basa l t  was very near ly  saturated with 

orthopyroxene (Table 2 ) ,  suggesting t h a t  t h i s  phase may also have 

been present i n  the source region. Clinopyroxene alone did not 

appear t o  be a su i tab le  source since i t s  A1 0 /GOratio of 0 . 5 3  

was substant ia l ly  lower than ' the  value of 1 . 2  f 0 , l  which was 
2 3  

cha rac t e r i s t i c  of a l l  chondrites, euc r i t e s  and howardites (Ahrens 

and Xichaelis, 1979)  and probably also of the ear th .  Because of \ '  
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Table 2 

Compositions of model lunar pyroxenite and of Apollo 11 basalt 

near-liquidus pyroxenes (After Ringwood and Essene 1970b)  

Si0 
, 2  

2 
Ti0 

A1203 

Cr203 

FeO 

52.0  50 .6  53.9 

1.0 

5.0 

0.4 

13.5 

0,9 

1 2 , 8  

1 .0  

2.9 

0.6 

1 2 . 2  

MgO 22 .5  2 2 * 4  26.4 

CaO 4.0 7 . 2 ,  2 .8  

100 Fe 
Fe i- Kg- 2 5  2 4  20  

(1) Model l u n a r  pyroxenite capable of yielding Apollo 11 basalt by 

small degree of.partia1 melting. 

(2) Av. sub-calcic clinopyroxene 011. liquidus of Apollo 11 basalt 

in 5-20 kb interval. 

(3) Orthopyroxene L O Y I ,  124O0CP near  liquidus of Ap0110 11 basalt 

' (nodified by slight iron-loss) 



* I  

6tB 

the very low z,n2 similar volatiles of AI 0 and CaO, and the wide- 

spread belie€ (eg, Gast et. al., 1970, Haskin et, ale, 1970) that the 

k 2 3  

relative a3undanees of other elements possessing oxides of low vola- 

titility in the source regions of Apol50 11 basalts are similar to 

their relaxive abundances in chondrites, it is reasonable to assume 

that the overall A1203/Ca0 ratio in the moon is similar to that in 

meteorites and in the earth. In the light of the experimental data 

cited above I t h i s  suggests strongly that orthopyroxene possessing 
(‘bL 2 )  

a much higher A1 0 /CaO ratio than the clinopyroxene was probably 
2 3  f i  

also present in the source region, 

calcic clinopyroxene and orthopyroxene demonstrated to be in 

Using the compositions of sub- 

equilibrium or close to equilibrium with Apollo 11 basalts at 10- 

20 kb, a model lunar pyroxenite representing a possible source rock 

* ,  
composition was synthesized, (Table 2 )  Mineral stability fields in 

the possible source rock were ketermined over a wide range of P,  T 
/ I  

conditions (Fig. 4 ) -  .It was demonstrated that for the probable range 

of temperature distributions existing in the lunar interior, this 

composition, with only very slight modification, was capable of 

explaining the moon’s observed density and moment of inertia, The 

composition of the source region thus derived was not unique, to 

the extent that variable amounts of olivine could a l so  be present 

in addition to the pyroxenes. This, however, did not affect the 
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Fig. 0.. Stability fields and densities of mineral 

Gisplzyed by model lunar pyroxenite (Table 2) 

assemblages 

in relation 

.I- LO probable range of lunar internal tenperature distributions 

(Urey, 1962; MacDonald, 1959; Urey 2nd MacDonald, 1970; 

Fricker et al 1967;  Levin, 1960; McConnell et al, 1967). 

bro?.=en lines in the garnet pyroxenite f i e l d  indicate the 

A1 0 contents (specified i:-.. weight percent) of pyroxenes 2 3  

The 

i n  

equilibriun w i t h  garneto They also indicate the respective 

densities si" the garnet pyroxenite assemblages as a function 

of pressure and temperature. 
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a b i l i t y  of -2:e source mater ia l  t o  explain the moon's densi ty  and 

.moment of i - ier t ia .  

The c a p x i t y  05 the above I;..del of ti?e lunar  i n t e r i o r  t o  

provide explanations both of the major element chemistry of A p o l l o  

11 basa l t s ,  and of -2he pr inc ipa l  physical  propert ies  of the moon, 

was rr,ost sat isfying.  Was it a lso  possible t o  explain the t r ace  

element d i s t r ibu t ions  i n  Apollo 13- basa l t s  i n  t e r m s  of the model? 

RingwGoZ and Essene (1970b) argued t h a t  with a very small 

degree 02 p a r t i a l  melting, the incompatible elements would be 

stro-?-gly .par t i t ioned i n t o  t h e  l iqu id  ghase and t h e i r  high abundances ' 

i n  A20110 11 b i s a l t s  thereby explained. On the contrary, Gast e t .  

ax., (1370), Xaslcin e t .  a l . ,  ( 1 9 7 0 )  and Phi lpot t s  and Schnetzler 

(1970)  showed t h a t  ir' measured p a r t i t i o n  coef f ic ien ts  for the  r a re  

ear ths  were used, it was not possible t o  explain t h e i r  high concen- 

t r a t ions  i n  Apollo 11 b a s a l t  i n  t e rns  02 a s ingle  stage of p a r t i a l  

melting f i r o m  parent mater ia l  possessing chondkitic abundances, 

They argued t h a t  the parent mater ia l  should possess abundances 

several  tirrzs higher than chondrites. A l s o  it was argued t h a t  the 

p a r t i a l  melting of a pyroxenite source region was unlikely t o  produce 

the observed europium anomdy. Final ly ,  Smith e t .  alx,, (1970) 

claiined t h a t  the Ringwood and Essene p a r t i a l  melting model could 

not explain the high t i tanium content of the  Apollo 11 rocks, 

(Titani-an i s  enriched to a corrparable degree t o  Ba,  U, and the r a r e  % 
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- .  earzhs, a m  LS, therefore ,  behaving as an incompatible element). 

Tnese zre weighty objectioxs, which must indeed be met i f  

the model i s  t o  survive, I suggest t h a t  the  answer l i e s  i n  the 

d i rec t ion  of 2 suggestion by Goles e t .  al,, (1970).. They point 

o u t  t h a t  rmst of the incompatible a lenents  i n  Apollo 11 rocks occur 

not dispersed throughout the major c rys t a l l i ne  phases, as assumed 

i n  the equi 1 i b r  ium p a r t i t i o n  ca lcu la t ions  used by Gast, Haskin and 

Philpot-ts, but i n  l a t e  stage accessory minerals 62ften occurring 

a t  grain bounderies, It i s  considered probable, t h a t  i n  the source 

material  of Apollo 11 basal-ts, a s imi la r  d i s t r ibu t ion  of incompatible 

elements may occur. it s e e m s  e n t i r e l y  conceivable t h a t  with very 

small degrees of p a r t i a l  melting, conditions of surface o r  l oca l  

equilibrium only,., r a the r  thaa ,bulk equilibrium, are  achieved. Under 

the,;ccircurnstances, the accessory minerals containing the incompatible 

e lenents  (eg. zircon, whitlockite,  ge ik i&te)  are  completely o r  

extensively incorporated i n t o  the e a r l i e s t  l i qu id  t o  form, which 

accordingly i s  s t rongly enriched i n  these elements, Increasing 

degrees of p a r t i a l  melting serve only t o  d i l u t e  the e a r l i e s t  l iqu id  

w i t h  major components so. t h a t  the  abundances f a l l -  (eg Figure S . )  e 

This  model appears capable of explaining the high enrichments of 

incompatible elements i n  Apollo 11 basa l t  and a l so  the high t i tanium 

content, which requires  that t i tanium was a l so  present i n  an 

__ accessory mineral (geikie$.?$e) i n  the source regions e (Alternative 
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explanztions of the titanium abundance are also possible-- 

(Ringwood an2 Essene, l970b) 

we come now to the celebrated europium "anomaly" (Figure 1). 

It would Se remarkable if such an "anomaly" did not exist. At the 

redox s t a t e  of Apollo 11 basalt, i-iost europium occurs dominantly 

as  EL^+ whezeas under the more oxidizing conditions in terrestrial 
systems, most europium occurs as ELI This. is shown by the 

experimental plagioclase-liquid partition coefficient for europium 

of 1.0 for A20110 11 basalt (Table L) compared to values in the 

range 0.06 to O o 4  in terrestrial rocks (Philpotts and Schnetzler 

1970, Easkin et. ala, 1970) - 
properriss resembling Sr2+ and quite different from those of the 

neighboring trivalent rare earths Sm and Gd3+*  Accordingly, 
2 1  the partition coefficient of Eu is expected to be more similar 

to that of ~ r 2 - I -  

34- 

The Eu2" ion has crystal chemical 

3 4- 

3-k (Table l), than to those of Sm3+'and Gd 

Rilngwoodi and Essene (1970b), Essene et..al-, (197033) and Goles 

et, al., (1970) suggested that most of the europium in the source 

regions of lunar basalt occurs a s  a dispersed element replacing 

Ca2+ in sub-calcic clinopyroxene and orthopyroxene 

hand, rhey sxiggested that most of the trivalent rire earths occur in 

On the other 

acces'sory minerals, which accordingly posgess a negative europium 

anomaly, As Ciscussed above, a small degree of partial melting 

-' 27 - 



lea25 to ?referentla1 incorporation of the accessory minerals i n t o  

the liquid which accordingly has a xegative europium anomaly. The 

behaviour of europium i n  lunar ma9mas is thus considered to be 

analogous -LO that of strontium in terrestrial magmas which is 

depleted relatively to Ba when alkali basalts form by small 

degrees of _partial melting in the ezrth's mantle (Gast, 1968a). 

2 -:- 

'71:s zbove explanation of the behaviour of europium is no nore 

than a hy2otkesis which remains to be tested by experimental deter- 

minations of the Eu and Sm partition coefficients under the 

corract redox state- When these data become available, a key test 

2 i- 3; 

of the Rii:gwood-Essene partial melting hypothesis will be possible. . 

3. the zbsence of these data, it 4s not possible to claim chat the 

hypothesis is incapable of explaining the trace element abundances 

in Apollo il basalts. 

(ii) Partial meltinq of plaqioclase-bearinq source reqion 

Easkir ,  et al., (19701, Gast and Kr;bSard (1970), and Philpotts 

a-cd Schnetzler (1970) concluded that the trace element abundances 

.in Apollo 11 basalt were more readily explained in terms of partial 

melting 02 a source material containing plagioclase, than by 

extensive fractional crystallization of felspar from a parent liquid, 

The preser,cc of plagioclase was believed to be necessary in order 

to explaiz the europium ancxaly, These authors found it necessary 

-I to ~ G S ~ U ~ Z - L S  2 source material er-rFched ;rn rare earths, Ba, U, Th, 

and Sr over  the  chondritic abczndance Sy a factor of 5 to 2 0 ,  The 
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ma;oz ?j--zszs i n  the source rec;:ioi?_ wzrc pyroxenes (~g-ri~h) 

p lq - roc i s se  and olivine- ~ h e  mineralogy were somethir,g l i k e  t h a t  

of a e u c x i t e .  T h i s  model thus implied a t w o  stage magmatic h i s to ry  

for the ir.oon~(i)Xpi-izial melting and d i f f e ren t i a t ion  -leading t o  the 

f0rir.atio-r of an outer  s h e l l  possessing an overa l l  e u c r i t i c  ( b a s a l t i c  

ackondri-ce) composition. This prob-ably occurred during the moon's 

E o r m z t i o r i .  (idPartial melting i n  this  outer  s h e l l  a b i l l i o n  years 

l a t e r  cc,used the Eormation of ApoLlo lI basa l t s .  

. -  

T h i s  model has two important a t t r i bu te s .  It provides a ready 

explwakion  of -2he europium anomaly, and! it i s  capable of providing 

ail explanation of the nature of the lunar highlands (assuming them 

eo be anorthosi t ic  -- sect ion 3 ) "  

Tkk model a lso enctou_rters s o m e  ser ious d i f f i c u l t i e s :  

(:.)   pol lo 11 basa l t  i s  not saturated with plagioclase 

which does not  appear u n t i l  30-50% of the rock has c r y s t a l l i z e d ,  

LL Apollo 11 basa l t s  had r'ormed by p a r t i a l  melting of a 

souLrce rock in which plagioclase remained i n  the re f rac tory  

residiuum a f t e r  the melting episode, then the magma i s  

7-.c 

necsssar i ly  satura-ted w i t h  p lagioclase which must .  appear 

on the l iquidus,  (Ringwood and Essene 1970b) e Appealing 

t o  a pressure e f f e c t  does not help s ince pressure a c t s  i n  

ths opposite d i rec t ion  t o  khat required (Section 2a) 

, 



6.1) The hypothesis f a i l s  t o  explain the depletion of 

l i g h t  r a re  ear ths  i n  some lunar basa l t s  (Gast and Hubbard, 

(1970);  Figure 1, Rock 10020) .  Likewise, it does not  

readi ly  explain the 'lack of . f ract ionat ion between Ba 

and Yb (Figure 1) i n  view of the subs tan t ia l  difference 

i n  t h e i r  plagioclase-liquid p a r t i t i o n  coef f ic ien ts  ' (Table  1). 

(iii) It i s  d i f f i c u l t  t o  understand how, even a t  

sol idus temperatures, plagioclase can e x i s t  as  a phase 

a t  depths below 200 km. I f  the e n t i r e  e u c r i t i c  f r ac t ion  

were segregated from a moon possess'ing the chondri t ic  

abundances of non-volatile oxyphile elements, it would 
- 

form an outer  s h e l l  l e s s  than 150 km thick.  I f  a less 

e f f i c i e n t  degree of segregation i s  assumed-for example, 

i n  the parental  mineral assemblage proposed by Gast et. 

a l .  , 1970. (Olivine 40%; clinopyroxene 32%, plagioclase 

phase a t  the sol idus a t  a depth grea te r  than about 200 km. 

(Moreover, the concentrations of incompatible elements 

i n  t h i s  layer  would then be too low t o  b e c o n s i s t a n t  with 

the Haskin-Gast p a r t i a l  melting models). 

Models of t h i s  type encounter the  problem of explaining 

i-:.;v..; formation of Apollo 11 magma by a process i n  
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the outer 200 km of the moon, i . e .  i n  the lunar l i thosphere,  a t  a 

period one b i l l i o n  years l a t e r  than the formation of the moon, 

The d i f f i c u l t i e s  of accomplishing this  object ive w e r e  discussed 

i n  seccion 2c where it was concluded t h a t  the Apollo 11 lavas  must' 

have been derived Erom deeper than 200 km-i.e., from a region i n  

which plagioclase i s  no longer s table .  

Gast e t .  a l . ,  (1970)  and Haskin e t .  a l . ,  (1970) conclude from. 

measured r a re  ea r th  p a r t i t i o n  coef f ic ien ts  t h a t  the source mater ia l  

of Apollo 11 basa l t s ,  was s t rongly enriched i n  ra re  ear ths  compared 

t o  chondrites presumably owing t o  an e a r l i e r  d i f f e ren t i a t ion  process. 
I 

8 

They;. are  a l i t t l e  vague about the degree of enrichment, bu t  it con 

.;-:_-:.:'be inferred from t h e i r  stud;?$ t h a t  t o  generate the H i - R b  basa l t s ,  . 

it must have been between 5 and 20  fold.  Taking the lowest estimate, 

t h i s  would require  t o t a l  f rac t iona t ion  of r a r e  ear ths  from the e n t i r e  

moon (assumed t o  possess chondri t ic  abundances) i n t o  an outer  s h e l l  

l e s s  than 150 km thick.  If the source mater ia l  contained more than 

f i v e  times the  chondri t ic  abundanca; the s h e l l  would be correspoond- 

ingly thinner.  The d i f f i c u l t i e s  of producing Apollo 11 b a s a l t s  

by p a r t i a l  melting i n  such a th in  outer  s h e l l  have already been 

remarked. 
I 

Dickey .(1970) has suggested 'a compromise between the two 

hypotheses of lunar basa l t  o r ig in  mentioned above. H e  suggests, 

i n  agreement with Gast and others ,  t h a t  e a r l y  melting processes i n  
5 
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led t o  the formation of an outer  s h e l l  of overal l  e u c r i t i c  com- 

posi t ion.  H i s  model which uses chondri t ic  abundances, would not 

permit t h i s  s h e l l  t o  be more than 150 km thick.  

s h e l l  fur ther  d i f f e ren t i a t e s  i n t o  a plagioclase-rich upper layer  

(anorthost ic  gabbro) and a pyroxene-ri5h lower layer ,  which 

consists"' nzo;aly of cumulates. 

The e u c r i t i c  

Apollo 11 b a s a l t s  were subsequently 

formed by a small degree of p a r t i a l  melting of the  pyroxenite l o w e r  

layer .  
I 

T h i s  model accounts s a t i s f a c t o r i l y  f o r  the europiym deficiency 

but encounters other  ggoblems. It is  very d i f f i c u l t  to , .explain 
- 

the  occurrence of widespread p a r t i a l  melting i n  the lunar l i thosphere 

one b i l l i o n  years a f t e r  the formation of the moon, when the  outer .  ' 

200 km had cooled extensively by conduction (Section 2 c ) .  Further: 

more, the pyroxenite source region envisaged by Dickey is a cumulate 

i n  which the incompatible elements would be s t rongly depleted and 

fract ionated among themselves compared t o  the parent magma. It is 

d i f f i c u l t  t o  explain the high abundances of incompatible trace 

elements i n  Apollo b l  basa l t s  and t h e i r  l imited r e l a t i v e  fract iona-  

t ions  (eg. Yb/Ba i n  Figure 2 )  compared t o  chondri t ic  abundances by 

p a r t i a l  melting of such cumulates. Haskin e t .  a l . ,  (1970) have 

pointed out  t h a t  the lack of s t rong fract ionat ion of heavy from 

l i g h t  r a re  ear ths  i n  Apollo 11 b a s a l t s  implies t h a t  high calcium 

clinopyroxene was not an abundant phase i n  the source region, < 

(Section 2d, iv), 
t 
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(iii) Discussion 

In my opinion, the' balance of arguments discussed above (2d (i) 

and '(ii))' strongly favours the hypothesis that Apollo 11 basalts have 

formed by a small degree of partial melting of a pyroxene 2 olivine 

source region at depths of 200-600 km and have ascended to the 

surface without extensive fractionation en route. This hypothesis 

provides a satisfactory explanation of their major element,. chemistry, 

it is capable of explaining most aspects of the trace'element 

chemistry; it explains the density and moment of inertia of.the moon, 

and is consistent with thermal history considerations. Furthermore, 

the process advocated is of a type which is known to occur widely 

on the earth-the alkali basalt suite, particularly the nephelinites, 

are believed to have formed by a very small degree of partial melting, 

comparable to that suggested for Apollo 11 basalts, in the earth's 

mantle, and display similar degrees of enrichment of incompatible 
, 

elements such as Ba, U, and the light rare earths. Segregation of 

Apollo 11 basalt after only a very small degree.of partial melting 

would be facilitated by its low viscosity which is only about a 

tenth of that of terrestrial basalt .(Weill.et, al., 1970), It is 

not demonstrated that the above partial melting hypothes'is can 
/ I  

explain the europium anomaly, nor has it yet been demonstrated that 

it is incapable of providing an explanation- This will provide a 

critical future test of the hypothesis. 
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On the other hand, the hypothesis of partial melting of an outer 

shell of previously differentiated eucritirc material, whilst capable 

of explaining the europium anomaly, encounters 'a number of fundamental 

objections, two of which do not appear soluble even in principle. 

In section 5, several boundary conditions for the origin of the 

moon will be derived on the assumption that the first hypothesis is 

correct. It is important to note that of these boundary conditions 
soma , 

4 
could also be derived from the second hypothesis. Both have hportant 

attributes in common, requiring an early near-surface melting and 

differentiation process to produce the (presumed) anorthositic 

highlands, followed by a later extended phase of partial melting of 
s 

internal origin to produce the maria, The mean lunar chemical 

compositions and oxidation:. states in both models are similar; the 

debate rests chiefly upon the depth at which the second phase of 

partial melting occurred and the thickness of the outer shell which 

was subjected to the primord.i:al differentiation, One of the most 

definite conclusions about lunar history which can be drawn at the 

present stage is that the moon. during the first billion years or so 

was subjected to extensive high-temperature crystal-liquid fractionation . ,  

I 

processes which must have afEected a large proportioh of its mass. 

The proposition that the moon-Jwas born cold, and has never been heated 

entensively to near the melting point except, perhaps in a thin, $ 

+ 
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near-surface zone (Urey, 1969) cannot pos'sibly be sustained. 

(iv) Source Reqions of Lunar and Terrestr i .a l  Basalts 

Here we sha l l  be concerned with some comparative aspects of 

the major element chemistry and mineralogy of the e a r t h ' s  mantle 

and the lunar  i n t e r i o r . .  The coef f ic ien t  of moment of i n e r t i a ,  

I/MR , of the moon, 0.402 2 -002 (Kaxi-la, 1970b) ,  i s  very s i m i l a r  

t o  t h a t  of a sphere of uniform densi ty  (0,400).  

2 

To a f i r s t  

approximation, thermal expansion and compressibil i ty cancel each 

other  out i n  the  moonJ The above s imi l a r i t y  thereby implies t h a t .  

providing ad hoc complex compensating s t ruc tures  a re  not introduced, 

phase transformations leading t o  mineral assemblages of higher 
1 .  

density w i t h  increasing depth can play only a very minor ro l e  i n  

the moon. The r e s t r i c t i o n  t h a t  major phase changes i n  the lunar  

- i  
i n t e r i o r  a r e  not  * . tolerable  i s  a n  important boundary condition f o r  

the 'composition of t h i s  region, Ringwood and Essene (1970 a,b) 

demonstrated t h a t  f o r ' a l l  p rac t i ca l  purposes, t h i s  l i m i t s  the  mean 

A1203 and CaO contents of the lunar  i n t e r i o r  t o  less than 6 percent 

each, and tha t  the  moon, l i k e  the e a r t h ' &  mantle, i s  dominantly com- 

posed of iron-magnesium s i l i c a t e s .  

There a re ,  however, some important differences between the lunar  

i n t e r i o r  and the  e a r t h ' s  mantle. '*The t i o  o f .  the  lunar  
MgO f Fe0 * 
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interior is probably between 0.74 and 0.80, compared to 0.88 in the 

terrestrial interior (Ringwood and Esseneo 1970b). Moreover, the 

oxidation state of the lunar.interior, being characterized by the 

coexistence of metallic iron with ferromagnesian silicates,. is. ,  much 

lower than of the terrestrial mantle in which metallic iron is generally 

absent and ferric iron occurs as a significant component of most min- 

erals (Ringwood and Essene, 1970 arb; Ringwood 1966a, 1970c(), 

Whereas olivine is generally believed to be the dominant mineral in 

the earth's upper mantle,. liquidus phases of Apollo 11 basalts 

suggest that Mg-rich pyroxenes may'predominate in the moon, although 

the preswce of olivine in the lunar source regions is not excluded. 

(Ringwood and Essene, 1970b). 

More subtle, but equally important differences exist. The Group 

1 Apollo 11 crystalline rocks contain on the average, less than 9% 

of A1203 compared to the usual range o f J 1 2  to 18% A1 0 in comparable 

terrestrial basalts. This suggests that the (thermodynamic) activity 
2 3  

of A1203 in the lunar interior 

Green and Ringwood (1967) have 

. major role in basalt. genesis in 

of lunar basalts combined with 

is less than in the earth's mantle. 

shown that aluminous pyroxenes play a 

the'earth, The low alumina content 

the observations that the alumina 

contents of clinopyroxenes on the liquidus of lunar basalts are much 

i 

'poorer in A1 0 than,are the clinopyroxenes on the liquidus of terrestrial 
2 3  



basa l t s  a t  s i m i l a r  pressures (Ringwood and Essene, 1970b; Green 

and Ringwood, 1967) imply t h a t  the alumina contents of pyroxenes i n  

the  source .regions of lunar  b a s a l t s  are correspondingly smaller than 

i n  the  source regions of terrestr ia l  basalts. This could be explained 

by postulat ing a s i m i l a r  absolute amount'of A1 0 i n  the earth and 2 3  

moon, b u t  w i t h  the lunar  i n t e r i o r  being much r i che r  i n  pyroxene than 

the  e a r t h ' s  mantle, so tha t  the r a t i o  of A1203 t o  pyroxene i s  lower 

i n  the moon. Alternatively,  i f  the less l i k e l y  pos tu la te  i s  made 

t h a t  o l iv ine  i s  an abundant phase 'in t he  lunar  mantle, the amount 
/ 

of pyroxene i n  the lunar mantle i s  correspondingly reduced without 

a l t e r i n g  the A1203 content of the pyroxene, so that  the absolute 

abundance of A1203 i n  the  lunar  i n t e r i o r  i s  then smaller than i n  

the e a r t h ' s  mantle. Ei ther  way, w e  are obliged t o  assume tha t  the 

Pyroxene and/or A1203 r a t i o s  d i f f e r  between lunar  i n t e r i o r  
Olivine " MgO + FeO + Si02  

terrestr ia l  mantle. I f  we  accept the  ear l ier  argument t h a t  the 

CaO/A1203 r a t i o s  i n  ear th ,  chondrites,  achondrites, moon and sun 

are the same an analogous conclusion follows-namely tha t  the average 

calcium content of pyroxenes i n  the source regions of lunar basalt  

i s  smaller than i n  the  source kegions of terrestrial  basalt .  
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Further evidence t h a t  the average CaO r a t i o  of pyroxenes 
. .  MgO -k FeO 

i n  the lunar mantle i s  l e s s  than i n  the e a r t h ' s  mantle comes from 

rare-earth d is t r ibu t ions .  I n  Apollo 11 basa1ts) the l i g h t  r a re  ear ths  

a r e  great ly  enriched b u t  by about the same amounts, and the d is t r ibu-  

cml h p i l ~ d  

A 

I t ions  a re  approximately p a r a l l e l  t o  the chondri t ic  pat tern.  (Figure 1) 
I 

However, large differences e x i s t  between the p a r t i t i o n  coef f ic ien ts  

fo r  heavy and l i g h t  ra re  ear ths  i n  the high-calcium clinopyroxenes 

(approximately 16% CaO-Green and Hibberson, 1970)  which a re  present  

near the sol idus i n  the  earth's mantle (Gast, 1968; Haskin e t .  a l . ,  

1970) ,  and the heavy r a re  eakths, eg. Yb, are  not strongly discrimin-. . 

. ,  

ated against  so t h a t  they do n o t  behave as  incompatible elements. 

Under these circumstances, a s m a l l  degree of p a r t i a l  melting pro- 

duces a highly skewed r a re  ear th  pa t te rn  with s t rong r e l a t i v e  enrich- 
, I  > ; 

' i  
ment of the l i g h t  ra re  ear ths ,  which i s  cha rac t e r i s t i c  of t e r r e s t r i a l  i. 

I 
i basa l t s  formed i n  t h i s  manner. (Gast, 1968), The absence o f  skewing i 

1 

i n  lunar basa l t s  implies a much smaller amount, o r  absence, of I .  

Ca-rich clinopyroxene i n  the lunar source region (Haskin e t .  a l . ,  1 

I 

1 9 7 0 ) .  On the other  hand, the heavy r a r e  ear th  p a r t i t i o n  coef f ic ien ts  ! 

i n  Mg-rich pyroxenes a re  much smaller and permit these minerals t o  I 

t 

be present i n  the  source regions (Haskin e t .  a l . ,  1970) .  

c 

J 
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3 .  NATUFU3 O F  HIGHLANDS: THERMAL HISTORY 

Several researchers (Anderson et, al., 1970; King et. al., 1970: 

VonEnglehardt et. al., 1970; Short et. al., 1970, Wood et, ale, 1970a) 

suggested that the small proportion of plagioclase-rich rocks and glasses 

found in the fiaes were derived from the lunar highlands and that the 

latter were generally of "anorthositic" composition. The most com- 

prehensive case for this hypothesis was stated by Wood et. ale, (1970b) 

and need not be restated here. Although the evidence is circumstantial, 

the overall case is impressive and may be accepted as providing the' 

basis for a tenative working hypothesis, The following discussion 1- 

/\ 

assumes that this hypothesis is correct, 

Isotatic considerations (Kaula, 1970) imply that lunar high- 

lands of presumed anorthositic composition are about 11-5 km thick. 

Assuming approximate chondritic abundances of oxyphile, non-volatile 9 ,  

elements.in the moon, an anorthositic crust of this thickness could 

be derived by efficient magmatic fractionation processes from an outer 

shell about 150 km thick containing about 20% of the mass of the 

moon, This would imply that the outer shell had been extensively 

melted, probably during, .. or soon after the moon ' s formation, to 

form a deeper zone about 125 km thick of residual orthopyroxene and 

olivine from which all the low-melting "basaltic" components had been 

removed to form an overlying shell of eucritic magma about 25 km 
. %  ' 

thick This layer of convecting eucritic magma then crystallized 
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Fig. 5. Proposed section (simplified and not to scale), of outer 

regions of moon with flow sheet illustrating two-stage magmatic 

history. The original layer (overlying the anorthosite) of 

quartzo-felspathic residual mater’ial containing high concen- 

tration of incompatible elements would have been largely 

destroyed and redistributed by subsequent impact craters. 

Formation of mascons by transformation of basalt and gabbro 

to eclogite in conical feeder structures beneath circular‘ 

maria is discussed elsewhere (Ringwood and Essene,. 1970b). 



c 
, 
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and differentiated in a manner analogous to some mafic stratiform 

intrusives to form an upper layer rich in anorthosite and a lower 
I 

layer dominantly of clinopyroxene, (from'which orthopyroxene 

subsequently exsolved at lower temperature). The residual liquid 

ultimately resulting from this phase of crystallization differentia- 

tion was probably quartzo-felspathic in nature, and would have possessed 

very 

such 

poss 

high abundances of incompatible elements. Small intrusions of 

material may be widespread throughout the highlands.. It is 

ble that rock 12013 is derived from one of these intrusions. A 

sketch of the proposed model is given in Figure 5 ,  

The proposed igneous history combined with interpretations of 

lunar cratering (Baldwin, 1963) provide the following boundary con- 

ditions for the thermal history of the moon: 
9 

(1) Anorthositic highlands 11.5 km thick imply the occurrence , ' 

of extensive melting in a shell about 150 km thick,probably, 

some 4.7 billion years ago. 

( 2 )  Baldwin (1963) showed that older pre-mare craters were 

systematically shallower than younger pre-mare craters and 

concluded that the degree 02 isostatic adjustment during 

the cratering period decreased with time, 'implying increas- 

ing strength and decreasing average temperatures in the 

outer lithosphere during this interval 
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( 3 )  Generation of Apollo 11 and Apollo 12 basalts by partial 

melting at depths of 200 to 600 km from 1 to 1.4 billion 

years after the formation of the moon rec+uir&5 heating 

of this regiono presumably by the long lived radioactive 

elements, uranium and thorium. 

(4) Presumed rarity of extensive mare regions younger than 

2 billion years old suggests subsequent cooling at depths 

of 200 to 600 km. This is consistent with magnetic 

observations which may indicate low electrical conductivity 

and relatively low temperatures throughout the bulk of the, 

moon (Ness, 1970). 

Ringwood (1966a) proposed a thermal history which is consistent 

with these observations. (Figure 6 ) ,  He suggested that gravitational 

energy of accretion played' an important role (See also, Baldwin, 1963, 
.' 

p. 396). The mean gravitational energy disspated during formation 
. .  

of the moon is approximately 400 cal/gm based on a free fall model. 

The energy per gram increases as R 8 reaching about 690 cals/gm at 2 

the end of accretion. 6pik (1961) has suggested that the moon may 

have accreted in a period of about 100 years, Presumably the rate of 

accretion also increased as the nucleus grew. Under these conditions 

it is possible that a large proportion (eg 50%) of the energy of 
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Fig. 6. Notional temperature distributibns within the moon at 

.- different stages of its history in relation to solidus 

and liquidus of possible pyroxenite source material (Table 

2) for Apollo 11 basalt. 

I. ,Soon after accretion; 11. 0.5 - 1.5 b.y. after accretion; . 

111. Present day. 
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accretion.was conserved thermally .during the f i n a l  s tages  of 

accret ion.  This could have l e d  t o  extensive par t ia l  melting of the 

outermost s h e l l  of the moon during accret ion.  A suggested course 

of thermal. evolution ( a f t e r  Ringwood 1966a)' is given i n  Figure 6 ,  

After accret ion, the temperature of t he  moon would increase f r o m  t he  

centre  outwards as i n  curve I,  crossing the sol idus i n  t he  outer- 

most s h e l l  and 

f ica t ion  would 

permitt ing d i f f e ren t i a t ion  of the highlands, Solidi-  

occur a timescale of a f e w  mil l ion years  o r ' l e s s ,  and - 
1 

the  outermost s h e l l  would cool by conduction on a timescale of 10 

t o  10 years.  Increasing thickness of l i thosphere during t h i s  

i n t e rva l  accounts f o r  Baldwin's observations on d i f f e r e n t i a l  i s o s t a t i c .  

8 

! 

recovery of crater floors.  Superimposed on the conductive cooling 

i n  the outer  regions of the moon, heating by uranium and thorium 

occurred a t  depths below 200 km. It i s  postulated t h a t  this  w a s  

su f f i c i en t  t o  carry the  thermal maximum through the  sol idus as i n  

Figure g J  11, producing widespread volcanism' !and mare formation 

over an in t e rva l  a t  l eas t  1 . 0  t o  1-5 b i l l i o n  years  a f t e r  accret ion.  

(It seems possible  that  magmatic act ivi ty 'occurred episodical ly  on 

the moon from 4.5 t o  about 3 b i l l i o n  years  ago with the  loc i  of the 

of the source regions of t he  magmas becoming deeper with t i m e . ) .  

Over a longer t i m e  scale I the sharp maximum decayed 

Furthermore, d i f f e ren t i a t ion  of t he  i n t e r i o r  and t r ans fe r  of 

conduction. 
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radioact ive hea t  sources t o  near-surface regions during the  period 

of  m a r e  formation d r a s t i c a l l y  reduced the  ra te  of hea t  generation 

i n  the deep i n t e r i o r ,  leading t o  the  temperature d i s t r ibu t ion  

shown i n  curve 111. 

Wood e t .  a l . ,  (1970b) have suggested t h a t  t h e  sho r t  l i v e d  

radionuclide A126 w a s  responsible f o r  the  melting event which 

caused the  formation of the anor thos i t ic  highlands. However, heat ing 

by this  source would not  have been confined t o  the near-surface 

regions bu t  would have been' e f fec t ive  throughout the  body of t he  

moon leading t o  p a r t i a l  melting of the e n t i r e  moon, and upward segre- 

/. gat ion of t he  melted f rac t ion .  This model thus leads t o  complete 

chemical d i f f e ren t i a t ion ,  as indeed i s  postulated by Wood e t .  al., 

resu l t ing  i n  concentration of the  heat  sources i n t o  near-surface 

regions, so  tha t  deep-seated cooling t o  depths of several  hundred 

9 kilometers occurs over a period of 1 0  

d i f f i c u l t  t o  understand how the maria w e r e  formed by par t ia l  melting 

processes - - : L  * i n  the lunar  i n t e r i o r  a f t e r  t h i s  t i m e  in te rva l .  

Furthermore, Wood e t .  a l e ' s  model implies t h a t  the source regions 

of Apollo,11 basalts w e r e  strongly fract ionated about 4.7 b i l l i o n  

years ago, The high absolute  abundances and sub-chondritrc pa t te rns  

of incompatible elements occurring inl-.-Apollo 11 basalts are not  

consixtept with t h i s  implication, 

years.  It then becomes very 

c 

, 
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. 4. DEPLETION OF LUNAR BASALTS IN VOLATILE METALS 

Analyses of Apollo 11 rocks (e.g. Ganapathy et. al., 1970) 

show that they are depleted by factors of 3 - LOO compared to 
terrestrial basalts in a wide range of metals which are well known 

to be relatively volatile under high temperature, reducing conditions. 

The ,depleted metals include Na, K, Rb, CS, Zn, Cd, Eg# Si, T1, In, G e ,  

Pb, Sb and As. These depletions,when correctly normalized, are one 

of the most spectacular aspects of the comparative chemistry of 

'Apollo 11 and terrestrial basalts. 

Two explanations of this abundance pattern have been suggested. 

The.strong depletion in volatile metals may be a primary feature of 

the lunar basalt source reglion in which case the abundance pattern 

assumes major genetic significance. (e.g, ~ingwood, 1966a; 1970a; 

Ringwood and Essene 1970 arb: Ganapathy 'pt. al., 1970). Alternatively, 

it has been suggested that the volatile elements were "boiled off" 

during extrusion of the Apollo 11 basalts, and that the original 

composition of the lunar magmas was not significantly different from 

that of terrestrial basalt, ( e e g .  O'Hara et., ale, 1970 a,b) .  

The strontium isotope ratios show definitively that the depletion of 
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rubidium re l a t ive ly  t o  strontium i n  Apollo 11 b a s a l t s  occurred a t  

a very ear ly  stage of lunar h i s tory ,  and lonq before extrusion of 

Apollo 11 lavas some 3 - 7  b i l l i o n  years ago (Ganapathy e t ,  a l . ,  1970; 

Gast e t .  ale, 1970; Hurley and Pinson, 1970; Ringwood and Essene, 

1970b)-  It was pointed out  by Hurley and Pinson (1970) t h a t  the 

source region of Type B Apollo 11 rocks was characterized by Rb/Sr 

r a t io s  about one f i f t h  of t h a t  of the  e a r t h ' s  upper mantle and t h a t  

"these r a t io s  came i n to  existence a t  or close t o  4600 mil l ion years 

ago and not a t  the t i m e  of volcanism" (my i t a l i c s ) ,  

A s imi la r  conclusion holds i n  the case of the enormous depletion 

of lead which is  observed i n  lunar b a s a l t s  r e l a t i v e l y  t o  uranium, a s  

compared with t e r r e s t r i a l  basa l t s .  Tatsumoto (1970) showed t h a t  the  

i n i t i a l  V238/Pb204 r a t i o  established i n  the moon 4.6 b i l l i o n  years 

ago was much higher than the .corresponding r a t i o  i n  the e a r t h ' s  

mantle. He concluded t h a t  the gross depletion of lead r e l a t i v e l y  t o .  

uranium i n  the moon is  a primary feature  es tabl ished during the moon's 

formation and that '  the Pb/U r a t i o  i n  the moon has always been much 

smaller than i n  the e a r t h ' s  mantle, Similar conclusions were 

reached by Gopalan e t .  a l .  , (1970) and by Compston e t .  a l e  (1970) . 
Although a very small amount of lead-loss might have occurred during 

subsequent extrusion of Apollo 11 b a s a l t s ,  this was trivial in 



amount compared to the primary fractionation and does not affect the 

above conclusion (Tatsumoto, 1970; Compston et., al., 1970). 

The Apollo 11 basalts are characterized by remarkably cons.tant 

sodium abundances, despite a wide range of cooling histories as 

indicated by textural variations from basaltic through doleritic to 

gabbroic. This is difficult to explain if solium was being lost by 

volatilization during cooling, (coles et. al. 1970) Plagioclase 

in Apollo 11 basalts displays normal zoning with an increase of sodium 

and potassium towards the rims. ,Most of the potassium and rubidium 

in these rocks occurs in late stage interstitial material. It is 

clear that the concentrations of K and Rb in the residual magma 

increased by very large amounts during the course of crystalliza- 

tion of Apollo 11 magma. This behaviour corresponds to expectations 

for closed-system fractionation. It would not be readily explained . 
if a five-fold depletion and Rb had occurred volatiliza-. 

tion during crystallization of the magma. 

It is concluded that the depletions of Pb, R b 8  Na and K in 

Apollo 11 basalts compared to terrestrial basalts are characteristic 

of the respective source regions and are unrelated to the 

extrusion of Apollo 11 magma. It is reasonable to infer that 

the corresponding depletions of the other relatively volatile 

metals (Cs, Zn, Cd, Hg, Bi, TI, In, Ge, Sb, AS), . 
. .  
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& .  have a similar origin and significance. 

5. SOME BOUNDARY CONDIT.1ONS FOR THEORIES OF LUNAR O R I G I N  

The preceeding sections have.been devoted primarily to a 

critical discussion of some aspects of the chemistry and petrogenesis 

of lunar basalts - particularly those aspects relating to the condi- 
tions of formation of Apollo 11 basalts and the chemical and minerdo- 

gical nature of their source regions. The discussion has also been 

concerned with comparisons between lunar and terrestrial basalts 

and between their respective source regions. 

below to summarize the principal similarities and differences 

An attempt is made 

between lunar and terrestrial basalts, and, by inference, between 

the lunar interior and the earth's mantle, with the objective of 

defining some boundary conditions for theories of lunar origin. 

(a) Overall Similarities between Earth and Moon 

(i) The moon and the earth's mantle are both dominantly 

composed of ferromagnesian silicates with subordinate 

CaO and A1 0 2 3 .  

(ii) The relative abundances of most of the non-volatile 

,incompatible class of trace elements in the source 

regions of lunar and terrestrial basalts appear to 

have been similar and. closely related to the ch0ndrit.k 

abundances. 
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(iii) The absolute abundances of most of the non-volatile 

oxyphile elements in lunar basalts fall within the 

range of concentrations of these elements displayed 

by terrestrial basalts (LSPET, 1969). 

(iv) Elements which are comparatively volatile under high 

temperature reducing.conditions e.g. K, Rb, Pb, T1, Bi, 
> 

. .  In, are relatively depleted in the earth (by factors 

.of 5-10) compared to the probable abundances of 

these elements in the primordial solar nebula (Gast, , 

1960, Ringwood 1966 a,b). Likewise, this group of 

volatile elements is also relatively depleted in the moon. 

The above similarities, particularly (iv) might be taken to 

indicate that some of the fundamental chemical fractionation processes 

which occurred when the earth and moon formed from the solar nebula 

were similar, and tenatively, might point i n  the direction of a gene- 
# 

tic,relationship between earth and moon. 

(v) This suggestion is supported by the history of tidal 

evolution of the earth-moon.system which implies that 

the moon was’once only 2.8 earth radii distant from 

earth (Gerstenkorn, 1955), This is almost identical 

with Roche’s limit, and it does not appear likely that 

the similarity betweenthese distances is a mere coin- 

cidence as is implied by the capture hypothesis 

(dpik, 1961). Additional reasons for  rejecting the 

> 
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capture hypothesis a re  given i n  the  next section. 

I f  capture i s  rejected,  the t i d a l  h i s tory  ind ica tes  

t h a t  the moon was probably born very close t o  the 

ea r th  and, therefore,  a close genetic re la t ionship  

might be inferred.  (e.g. Section 7 ) .  

(b) Chemical Differences between Earth and Moon I; 

I 
Superimposed on the general resemblances which e x i s t  between moon 

and ear th  (above) there  a r e  some very important spec i f i c  differences:  

(i) The moon i s  strongly depleted i n  i ron r e l a t i v e  t o  the  

ear th .  I f  a core is  present,  it cannot amount t o  

more than a few percent of the mass. 

(ii) Apollo 11 b a s a l t s  a re  strongly depleted i n  many 

siderophile elements r e l a t i v e  t o  t e r r e s t r i a l  basa l t s .  

(e.g. Ganapathy e t .  . a l a ,  1970) .  

(iii) The moon is much more strongly depleted i n  v o l a t i l e  

metals (e.g. Na, K, Izb, cs8 Pb, In ,  T I ,  Zn, Kg e t c . ) , .  

than the ea r th  compared t o  primordial abundances, 

( i v )  The molecular r a t i o  i n  the ,source regions 
FeO f Mgo 

! 

I 

i 

of Apollo 11 b a s a l t  i s  probably between 0,20 and 0.26 

compared t o  a probable value for  t h i s  r a t i o  of Oe12 

i n  the source regions of t e r r e s t r i a l  basa l t s  (Green 
9. 

. .> 

and Ringwood 1967,.Ringwood 1970b), 
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(v) The mineralogy of the lunar mantle is probably 

pyroxene-dominated as compared to a preponderance 

. of olivine in the.terrestria1 mantle. The ratios of 

A1203 and CaO-to total pyroxenes are smaller in the 

lunar mantle than in the terrestrial mantle. Thus, 

important differences exist in the relative abundances 

of the major components: Si02, MgO, FeO, A1203 and 

CaO between the lunar inferior and the earth's mantle.. 

(vi) Studies of the chemistry of rare earths in lunar and 

terrestrial basalts (Haskin et. al., 1970; Gast and 

Hubbard, 1970) indicate that calcium-rich clinopyroxene 

is a less abundant phase in the lunar mantle than in 

the terrestrial mantle.. 

* ;  
(vii) Terrestrial basalts and their source regions are much . 

more oxidized (oxygen fugacity of 

at 1200° C) than lunar basalts and their source 

to lo-' atm. 

regions (fo2 = 1 0 - ~ 3 . ~  atm. at 1200~'~). 

(viii) A s  a consequence of the low oxygen fugacity in the 

moon, H20 and C02 are unstable relative to Ha and CO 

at magmatic temperatures. Water and carbon dioxide 

are, therefore, very rare in lunar rocks compared to 

terrestrial rocks: 
t 
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6 THEORIES OF LUNAR ORIGIN 

. ( a )  Capture Hypothesis 

Gerstenkorn's (1955) study of lunar t i d a l  evolution .placed t h e  

moon very close t o  t h e  ea r th  as recent ly  a s  2 b i l l i o n  years ago. 

Because of t h e  conf l i c t  between t h i s  date  and t h e  age of t h e  ear th ,  

he appealed to a capture mechanism fo r  t h e  moon on a retrograde 

o r b i t  s l i g h t l y  e a r l i e r  than the  t i m e  o f c l o s e s t  approach. MacDonald 

(1964) and Opik (1969) pointed out t h a t  ear th  and moon would be 
II 

strongly heated and deformed dur ing . the  time of close approach and 

t h a t  the  surface fea tures  of t h e  moon must have been formed subse- 

quently t o  t h i s  time. The ages of t h e  Apollo 11 basa l t s  and the  

older ages infer red  fo r  t h e  lunar highlands a re  i n  d i r e c t  conf l i c t  . 

with the assumed timescale of lunar t i d a l  evolution and consequently 

t h e  j u s t i f i c a t i o n  from t h i s  source fo r  t h e  capture hypothesis 

disappears. 
I 

? ,  . .  

Urey (1962) argued f o r  capture o f . t h e  moon about 4.5 b i l l i o n  

years ago on d i f f e ren t  grounds. He maintained t h a t  t he  moon is  a 

"primary object" composed of t he  so la r  abundances of elements 

(excluding gases) .  H i s  case res ted  on an assumed agreement i n  

Fe r a t i o s  between the  moon and t h e  s u n ' s  atmosphere, i n  contrast  
Mg + S i  
t o  t he  r a t i o s  i n  the  t e r r e s t r i a l  p lane ts  which w e r e  believed t o  be 

much higher than i n  t h e  sun, Recent remeasurements of the  f-values 

of i ron  (Garz e t  a l ,  1969) have removed t h e  l a t te r  discrepancy and 
E ,  
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and with it, the basis of Urey's hypothesis. The solar Fe ratio 

is now in agreement with the chondritic value within error limits, and 

furthermore, as demonstrated by Ringwood (1966a) and Ringwood and 

Mg 4 Si 

Clark (1970), satisfactory models of earth, Venus and Mars can be 

constructed from these abundances. The strong depletion of volatile 

elements in the moon also contradicts its identification as a 

"primary object". The evidence for the existence of lunar-sized 

primary objects originally rested upon the assumption (once also 

held by the author) that the diamonds'found in some meteorites were 

produced under equilibrium conditions by static high pressures 

(Urey, 1956, 19661, This assumption is now known to be wrong since 

the diamonds were produced by shock waves (Lipschutz and Anders, 1961). 

Capture of the moon by the earth is an event of low intrinsic 

probability. The two bodies must possess generally similar orbits 

and thus have been born in the same region of the solar system, 
\ 

,and presumably, from the same parental material. The deficiency 

of iron in the moon, compared to the earth, Venus and Mars is thus 

inexplicable on the capture hypothesis, which furthermore does not 

offer any explanation for the remaining characteristic features of 

lunar composition discussed in section 5 .  

Singer (1968, 1969) and Alfven and Arrhenius .(1969) have 

presented modifications of the capture hypothesis aimed at relieving 

one of several.dynami.ca1 problems it faces (MacDonald 1966, Wise, <. 

? 
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1969); namely the dissipation of energy and heating of earth and 

moon during the assumed close approach. Singer is obliged to 

abandon Gerstenkorn’s time-scale for lunar tidal evolution which 

was the primary reason for turning to a capture-type hypothesis in 

the first place. Alfven and Arrhenius, on the other hand, make 

a number of highly speculative assumptions about the possibility of 

spin-orbit coupling. These doubtful assumptions reduce still 

further very low intrinsic probability (acknowledged by all) of the 

postulated capture mechanisms. 

Modifications of this sort are not aimed at coping with the 

primary deficiencies of the capture hypothesis - inability to explain 
the low iron content of the.moon and the other differences in 

composition between earth and moon. A’hypothesis which merely sweeps 

these problems under the table is hardly worthy of serious consideration. 
% 

(b) Binary Planet Hypothesis - ,  

This hypothesis maintains that moon and earth formed independently 

in the same neighbourhood of the solar nebula from a common mixture 

of metal particles and silicate particles which were present in the 

nebula, It is assumed that during accretion, iron particles were 

somehow preferentially concentrated in the earth and depleted in the 

’ moon. Physical processes which have been invoked to explain this 

metal-silicate fractionation have been ad hoc and vaguely defined - 
eeg. Latimer (1950),. Orowan (1969), ‘ A  recent suggestion by Marris . ~ 

f 
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and To,zer (1967) invoked ferromagnetic properties of metal grains 

to explain preferential aggregation and accretion in the earth, 

However Banerjee (1967) demonstrated that the mechanism was 
B 

4 inadequate by a factor of 10 to cause the desired effects. 

Irrespective of the iron fractionation problem, the binary 

planet hypothesis implies that the earth's mantle and moon have 

been formed from the same well-mixed silicate component. Accord- 

ingly basalts formed by partial melting in the earth's mantle and 

on the moon should display a generally similar compositional range. 

The major chemical differences (Section 5) between lunar and 

terrestrial basalts and between their respective source regions, 

particularly in major elements and volatile metals, are not 

readily explained on the basis of this hypothesis. 

Ganapathy et a1 (1970) have recently proposed that the moon 

collected a much smaller proportion than the earth or' volatile- 

rich material which they assume to have condensed from the solar 

nebula at a late stage. They suggest that this was due to the 

smaller capture cross-section of the moon compared to earth. 

This mechanism, however, would also be applicable during earlier 

stages of accretion of the moon from volatile-poor material, so 

that the ratio of volatile-rich to volatile-poor material would 

not be greatly affected. Moreover, the differences in major 

i 

i 

element composition between earth and moon are not explained. 

: I  
. . I  
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(c) Fission Hypothesis 

According to this hypothesis, the material now in the moon was 

derived from the earth's upper mantle after segregation of the core. 

Accordingly it would be anticipated that the chemical composition 

of the lunar interior would be similar to that of the earth's upper 

mantle and that the compositions of lunar and terrestrial basalts 

formed by partial melting from their respective source regions 

would also be generally similar. The large compositiona1.differences 

between lunar and terrestrial basalts and between their respective 

source regions , particularly of volatile 

are not explained bY this hypothesis , at 

elements and major 

least, in its 

which assumed that material from the earth's outer 

elements, 

earlier 

mantle 

forms 

was ejected 

in a condensed state (i.e., not gaseous). Recent developments of 

the fission hypothesis by O'Xeefe (1969) and Wise (1969) suggest 

that fission may be accompanied by formation and then loss of a 

massive hot terrestrial atmosphere and that the moon may be the 

residue of this atmosphere. 

in common with the hypothesis of Ringwood (1960, 1966a, 1970a) which 

These modifications have many aspects 

*is discussed in the next section. 

(d) Precipitation Hypothesis 

The history of tidal evolution of the earth-moon system implies 

that the moon was once only 2 . 8  earth-radii from the earth, which 
II 

is almost identical with Roche's limito Opik (1961, 1967) maintained 

- 55 - 



that this is unlikely to be a coincidence (as is implied by the 

capture,hypothesis) and that it is more likely that the material 

now in the moon originally came from within Roche's limit where 

it existed previously in the form of a "sediment-ring" of earth- 

orbiting planetesimals - somewhat analogous to the rings of Saturn 
only relatively more massive. Opik suggested that the moon was 

r 

I I  

formed by the coagulation of'the sediment ring after it had 

i expanded beyond Roche's limit. 
I I  

With the demise of the capture hypothesis, Opik's interpre- ! 

I I  

tation looks all the more plausible. Opik (1961, 1967) also suggested t 

that the observed ellipticities of craters on the lunar highlands 

(see also Ronca and Salisbury, 1966) were caused by their formation. 

on the moon when it was close to the earth and tidally distorted. 

From the degree of distortion, he inferred that the craters had 
I 

been formed when the moon was passing outwards through a ring of , I  

I 
earth-orbiting planetesimals at a distance of about 6 earth radii. 

It has frequently been suggested that the formation of highland i 

craters represented the terminal stage of the moon's accretion, 

Since these craters post-date the melting and differentiation of 

the outer shell of the moon (section 3 )  it may be inferred that the 

I 

B 

t 

moon was born much closer to the earth than 6 earth radii, Formation 

of most of the moon by coagulation of a sediment-ring could have 

occurred in a period of less than 100 years (Opik,.l961). 
I 1  

This 

. '  - 
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short timescale appears necessary if an appreciable pqrt of the 

moon's gravitational potential energy is to be retained thermally 

to cause the early heating and melting as suggested in section 3 .  

The considerations advanced above strongly suggest a genetic 

relationship between the earth and the material from which the moon 

was formed. This is also suggested by the chemical resemblances 

between earth and moon noted in section 5. 
i 

An acceptable hypothesis 

of lunar origin must be capable of explaining this inferred genetic 

relationship and must at the same time provide an explanation of 

the fractionation of iron and the other important chemical 

differences between earth and moon which were summarized in 

section 5. 

The "precipitation" hypothesis developed by Ringwood (1966a, 

1970a) may provide a possible framework for interpreting these 

relationships. A summary of this hypothesis is given below. A 

more detailed account is given in the 'preceding references. 

to this hypothesis, the earth accreted in the solar nebula from 

According 
I 
5 .  

. ,  

I 

planetesimals of primordial composition resembling the Type 1 . .  
i 

carbonaceous chondrites. 

together with large amounts of volatiles and carbonaceous compounds, 

These contain completely oxidized iron . .  

and have retained the primordial abundance6 of most elements except 

for extremely volatile substances. It was assumed furthermore that 

accretion was completed just before the sun entered its T-Tauri 

P 

t 
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Fig. 7. Relationship between energy of accretion and radius  of t he  

growing ear th .  The pr inc ipa l  stages of accretion a r e  a l so  

shown i n  r e l a t i o n  t o  the energy of accret ion and approximate 

surface temperatures. 

i' 
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phase characterized by rapid mass-loss and the generation of a solar 

wind some 10 to 10 times more intense than the present solar wind. 6 7 

Formation of the earth under these boundary conditions is strongly 

influenced by the gravitational potential energy dissipated during 

accretion which in turn controls the chemical equilibria in the 

accreting material. 

radius of the growing earth in Fig. 7. It increases approximately 

as the square of the radius, reaching 15,000 cals/gm during the 

The accretion energy per gram is plotted against 

final stages. 

During the early stages of accretion, the energy evolved is 

small and accretion is relatively slow. The temperature is accordingly 

l o w  and is buffered by the latent heat of evaporation of volatiles, 

e.g. H20, in the planetesimals. During this stage (Fig. 7, 3 )  a 

cool, oxidised, volatile-rich nucleus of primordial material, 
6 , perhaps about 10% of the mass of the earth, is formed. 

As the mass of the nucleus increases, the energy of infall of 

planetesimals becomes sufficient to cause strong heating on impact, 

leading to reduction of oxidized iron by carbon and formation of' a 

metal phase. This is accompanied by degassing and the formation of 

a primitive atmosphere, mainly of CO and H2 (Stage 11, Fig. 7 ) .  

With further growth (Stage 111) both the temperature and intensity 

of reduction increase and metals which are comparatively volatile 

under high temperature conditions (e.g. Ea, K, Rb, Pb, Zn, Hg, 
Lt d u c in g 

, A  
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In, T1) are volatilized into the primitive atmosphere, During 
0 Stage IV, the surface temperatures exceed 1500 C and the 

relevant equilibria (Ringwood 19GGa) show that silicate minerals 

are selectively reduced and evaporated into the primitive atmosphere, 

whilst metallic iron continues to accrete upon the earth. Finally, 

during Stage V, after segregation of the earth's core, which causes 

a further evolution of 400-600 cals/gm of gravitational energy for 

the whole earth, silicates from the outer mantle are directly evap- 

orated into the primitive atmosphere, The mass of the primitive 

atmosphere is about one quarter of that of the earth and it is 

composed mainly of CO and H2 with about 10 percent of volatilized 

silicates, 

It is assumed that this primitive atmosphere was dissipated 

immediately after accretion or during the later stages of accretion 

by a combination of factors (1) intense solar radiation as the sun 

passed through a T-Tauri phase, (ii) mixing of the rapidly spinning 

high-molecular-weight terrestrial atmosphere with the low-molecular- 

weight solar nebula.in which it is immersed, (iii) magnetohydro- 

dynamic coupling resulting in the transfer of angular momentum from' 

the condensed'earth to the primitive atmosphere, and, more specula- 

tively, (iv) rotational instability of the atmosphere caused by 

formation of the core (modified fission hypothesis - (Ringwood, 1960; 
O'Keefe, 1969; Wise, 1969). The relative importancesof these 

' i  
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processes are not known, but it seems'likely that the intense solar 

wind from the T-Tauri phase of the sun'played a major role. 

As the result of a combination of these processes, the massive 

primitive atmosphere was dissipated. On cooling, the silicate 

components were precipitated to form an assemblage of earth- 

orbiting planetesimals resembling Opik's sediment ring. A further 
I I  

fractionation according to volatflity occurred during the precipi- 

tation stage, since the less volatile components were precipitated 

first at relatively high temperatures and close to the earth, whereas 

the more volatile components were precipitated at lower temperatures 

and further from the earth. The silicates pre.cipitating at relatively 

high temperatures would probably have grown into relatively large 

planetesimals (10 - 10 cm diam.) which would tend to be left 2 7 

behind by the escaping terrestrial atmosphere. However the more 

volatile components precipitating at relatively low temperatures 

were more likely to have formed fine, micron-sized particles or 

smoke, which,would be carried away with the escaping atmosphere 

by viscous drag, and hence lost from the earth-moon system. The 

moon then accreted from the sediment-ring earth-orbiting planetesimals. 

Ringwood (1970a) showed in greater detail that this "precipi- 

O f  

r\ 

tation" hypothesis accounted for the fractionation of iron and 

silicates between earth and moon in the context of a close genetic 

relationship between earth and moon. Chemical fractionations within 
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the cooling primitive atmosphere were also shown to provide a basis 

for interpreting the strong relative depletions of volatile elements 

in the moon, the fractionation of some major oxyphile elements 

between moon.and earth, the relative depletions of siderophile 

trace elements in the moon and the different oxidation state of 

the moon as compared to the earth's mantle. 

Goldreich (1966) has shown that stable orbits of planetesimals 

within about 10 earth radii must lie in the equatorial plane because 

of the perturbing influence of the earth's rotational bulge. If 

the moon formed by coagulation of a sediment ring, it should have 

formed in the same plane, whereas tidal evolution studies s h o w  

that the lunar orbit possessed a substantial inclination to the 

earth's equatorial plane when it was much closer to the earth. 

This has been cited as an objection to Opik's sediment-ring hypothesis 
I t  

by Urey and MacDonald (1970). However Wise (1969) has pointed out '. 

that the difficulty can be avoided if the earth's rotational axis 

was tilted at about 10 degrees to the plane of the ecliptic before 

the moon was formed. The initial. tilt of the earth's axis may have 

been a consequence of non-symmetric escape of the primitive atmosphere. 
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