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SHAPE RESONANCES AND ROTATIONALLY PREDISSOCIATING LEVELS:

THE ATOMIC COLLISION TIME-DELAY FUNCTIONS AND QUASIBOUND

LEVEL PROPERTIES OF H-(X V")*
2 g

by

Robert J. Le Roy and Richard B. Bernstein

Theoretical Chemistry Institute and Department of Chemistry

University of Wisconsin, Madison, Wisconsin 53706

ABSTRACT

The energy dependence of the collisional time-delay function has

been computed for H(1S) atoms interacting via the ab initio H2(X E )

potential. Peaks in this function determine the scattering resonance

energies E and widths T, and the lifetimes for each of the corresponding

quasibound vibrational-rotational levels. Small differences are found

between these E and F, and the values obtained by a "maximum internal

amplitude" approach (intended to characterize the spectroscopically

observable predissociating levels). Approximate procedures for rapid,

accurate numerical evaluation of E are appraised; a new outer-boundary-
i

condition criterion for resonances leads to the best agreement with the
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1969-71. Present address: Department of Physics, University of Toronto,

Toronto 181, Ontario, Canada.
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exact results. Also, a primitive WKB procedure yields F's of usable

accuracy. For ground-state H_, HD and D_, the onset of line broadening
£ &

due to centrifugal barrier penetration is found to occur at energies

some hundreds of cm below the locus of barrier maxima. The predis-

sociation method of estimating long-range interatomic forces therefore

cannot be expected to yield valid results for hydridic diatomics.
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I. INTRODUCTION

The influence of long-lived quasibound states, or orbiting resonances,

on virial and transport properties of gases and on chemical reaction rates

is now widely recognized. ~ While any pair of colliding atoms may be

considered to be temporarily bound with some sort of characteristic life-

11 12time, * what'is considered here is the purely quantal phenomenon of

the metastable levels arising from the existence of both a minimum and

a maximum in the effective interaction potential. These levels qualita-

tively correspond to discrete vibrational-rotational diatomic levels

which would be truly bound by the barrier if it were impenetrable.

Although orbiting (or "shape") resonances are, in principle, observable

13-17in molecular beam scattering experiments, the beam technology has

not quite reached the point at which the required resolution is

18obtainable. On the other hand, under the pseudonym of "rotation'ally-

predissociating levels", spectroscopists have been studying them for more

19 20than 40 years. ' The structure seen in these experiments is a mani-

festation of the "pseudo-quantization" of the continuum wave functions

by the potential barrier. In the present paper the properties character-

izing the observables in the two types of experiments are examined and

small systematic differences are noted. The relation between the limiting

curve of dissociation (LCD), corresponding to the breaking-off of rota-

tional series due to rotational predissociation, and the locus of the

centrifugal barrier maxima (LBM) is also examined.
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A number of different procedures for determining the resonance

energies and widths for a given potential are examined; rapid and

accurate approximate algorithms are presented. All results are illustra-
t -

ted with calculations for the ground (X Z ) state of H and its isotopes,
& ^

using the ab initio relativistic-adiabatic potential of Kolos and

21 22Wolniewicz. ' The influence of small potential corrections is also
I

considered.

-2-
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II. RESONANCE ENERGIES AND WIDTHS VIA SCATTERING THEORY; THE TIME-DELAY

FUNCTION

A. General

The manifestation of a resonance in the energy dependence

of an atomic scattering cross section arises from a. rapid growth (essen-

tially by IT) of the phase shift 6T(E) for a partial wave with angularj
7-9 13 23 24momentum quantum number J, with increasing collision energy E. > » >

13However, it is well known that this structure can exhibit a variety of

shapes, depending on the so-called background phase shift. Thus, it

may be difficult to characteri2e this observable cross-section structure

by a precise resonance energy E and width F. On the other hand, a

resonance can always be characterized by the functionality of the appro-

priate partial-wave phase shifts. Within the Breit-Wigner parameteriza-
25

tion, in the neighborhood of an isolated resonance:

6_(E) = e (E) + arctan =^f I , (1)
J J lJi_—r< I

where 3j(E) is the background phase shift. If 8.(E) = 0, the resonance

width F is the full width at half maximum (FWHM) of the resonance peak

in the cross section. Fo.r energies well below the maximum in the

effective potential, the energy dependence of the background phase is

7-9negligible, and the phase shift derivative

r/2
(Er-E)̂  + (F/2)'

-3-
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attains its maximum (namely 2/D at E = Er. However, for the broad

resonances lying near (above or below) the barrier maximum, 6 T (E) hasj
7—9distinct negative curvature which will tend to shift the maxima of

d6T(E)/dE to energies somewhat lower than E . On the other hand, theJ v r

division of the total phase shift into a resonant and a background

contribution (i.e., fitting to Eq. (1)), does not appear to be parti-

cularly fruitful. In the present work, the more conventional ' '

scattering-theory definitions will be usedj that is, taking the
r

resonance positions as the points of inflection of 6 (E) (i.e., the
_, _ , J

maxima of d<S (E)/dE ), and the widths as
J _ _ . _, __ -

T = 2/[d5J(E)/dE]m̂  (3)

B. The Collisional Time-Delay Function

12 ' 11
In 1960 Smith elaborated on the original Eisenbud-Wigner

concept by defining the collisional time-delay function

Td(E,J)[in Smith's
1'4'12 notation Q̂ (E) or Q(E,L)] in terms of an

integral of the time-independent wave function. He then related it

sto the phase shift derivatives by proving the identity

T,(E,J) = 2 * d6T(E)a J (4)
dE

Scattering-theory resonance- energies for the J-th partial wave

therefore correspond to the energies at which maxima occur in T,(E,J),

while the widths [from Eq. (3)} are

-4-
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(5)

It should be noted that Eqs. (4-5) are identities; also [t,(E,J)]
a

is not the predissociation lifetime T of the quasibound state • The

latter may be shown to be

i

T - 7 [T,(E,J)] = */r .4 d max

12The method used here for computing T,(E,J) from Smith's formal

expression is described in Appendix A.

The nature of the time-delay function is illustrated in Figs. 1

and 2 for several partial waves for H + H and D + D collisions governed

by the (X Z ) ground-state molecular potential. Contrary to the
O

suggestion of Fig. 5 in Ref. (4), T,(E,J) shows no structure at energies

significantly above the potential maximum (this was found to be the case

for H + H, H + D and D + D, for all J). As is inferred from the

phase shift curves in Refs. (7-9), at sufficiently high energies

T,(E,J) eventually becomes negative as the influence of the repulsive

core of the potential becomes dominant; it then passes through a very

broad minimum and asymptotically approaches zero from below. This

behavior is seen in Fig.3 (solid curves) for several low partial

waves of H + H. There is apparently no localized structure in T,(E,J)

associated with the barrier maximum; the only noticeable effect is the

change in the sign of the slope of the non-resonant background time-

delay (see Figs. 1 and 2). However, for low J this occurs at energies

-5-



below the barrier maximum (see the J = 4 curve in Fig. 3), and in any

case it is usually obscured by the structure due to the highest resonance

It is desirable to examine the appropriateness of the Breit-Wigner

parametrization,j implicit to Eqs. (l)-(3) and (5), for broad resonances

near the barrier maximum where the curvature of the background phase

32
is not negligible. it implies that the full width at

half maximum (FWHM) of a resonance peak in T,(E,J) is equal to the

F defined by Eq. (5). This question is examined in Table I for broad

H + H resonances lying close to the barrier maxima for the indicated

J's; the penultimate column tabulates the FWHM of* the T,(E,J) peaks,

while the preceding one lists the widths given by Eq. (5). The

agreement is good, especially for the narrower resonances, which indi-

cates that the simple parametrization of Eq. (1), with $,(E) = 0,

is at^least adequate for resonances narrower than ca. 100 cm" .

III-. SPECTROSCOPIC RESONANCE POSITIONS AND WIDTHS; THE INTERNAL-

AMPLITUDE FUNCTION

A. Qualitative Discussion

A quasibound level may be observed spectroscopically as a peak

in the continuum absorption or emission for transitions between it

and a discrete bound state. The transition probability varies as

P (v,E)

00

j VR) VR> V00
0

(6)

-6-
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Here v is the frequency of the emitted/absorbed light, 7,(R) the

radial wave function of the discrete state, M£(R) the electronic

transition moment function, and ¥_ T(R) the continuum quasibound-level
£>, J

wave function with total orbital angular momentum quantum number J,

at an energy E above the diatomic dissociation limit. The function

p(v,E) factors into the density of continuum levels at energy E,
3

times unity for absorption or v for emission. For h\> » T (the

usual situation) this frequency factor does not affect the intensity

distribution near a resonance, and hence can be ignored. Also, the

asymptotic wave function normalization will be chosen such that the

33density of states is constant, J completely'removing the p (V,E) term

from the problem. This normalization is

fE)J(R) ~ A k^ {sin(kR + fij(E) - Ju/2)} , (7)

where A is a constant and k = yZyE/n . Observable spectroscopic

structure arises because the amplitude of ¥„ T(R) behind (at smaller
& , J

R than) the potential barrier, peaks sharply in the neighborhood of

a resonance. At the same time, despite the drastic change in the

internal amplitude, the radial positions of the wave function nodes

lying behind the barrier change only very slightly across the width

34of the resonance. This suggests that the continuum wave function
*

behind the barrier and near a resonance may be factored into a nearly

energy-independent radial function, and an energy-dependent amplitude:

-7-
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IA(E,J)« <f>j(R) , (8)

Resonance structure in the absorption/emission intensity thus depends

only on IA(E,J) ; this "internal amplitude" function is examined below

and its behavior compared to that of T,(E,J) .

B. Semiclassical Treatment of Orbiting Resonances

Before proceeding with the fully quantal computational investiga-

tion,, it is instructive to examine the implications of a semiclassical

analysis. The best semiclassical treatments of orbiting resonances

start by approximating the potential barrier by a simple model function

(e.g., an inverted parabola) for which the exact wave functions are

35-37known. They next define the semiclassical wave function over the

potential well behind the barrier:

R \

J pjw*-*]. <»
'

where

and R..(E) is the innermost classical turning point at the energy E.

Then the exact solutions for the model barrier are used to connect-

Eq. (9) to the solution outside the barrier at asymptotically large R:

-8-
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ff(E) sin

(10)

where f(E) and g(E) are complicated functions of the energy and the

properties of the model barrier. Casting Eq. (10) into the semiclassical

form equivalent to Eq. (7) yields

and

IA(E,J) = [f2(E) + g2(E)]~1 , (11)

6j(E) = arctan [g(E)/f(E>] . (12)

Substituting Eq. (12) into Eq. (4) yields

Td(E,J) = 2ft [f(E> g'(E) r g(E) f'(E)] [f
2(E) + g2(E)]~1 , (13)

where primes denote differentiation with respect to E. Comparison of

Eqs. (11) and (13) suggests the origin of the coincidence previously

noticed between the scattering-theory resonance positions and the

structure in the internal amplitude function (and thus in the optical

transition probability). ' ' However, the residual energy dependence

of the middle term in Eq. (13) will cause a "skewing""of the resonance

peaks of T,(E,J) relative to those of the IA(E,J) function, which may

be sufficient to cause a significant difference between their respective
)

maxima. This question is examined below using exact numerically calcu-

lated wave functions 'for ground-state H_.

-9-
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C. Resonance Behavior of the Internal-Amplitude Function

Buckingham and Fox . noted that the internal amplitude passes

27through a maximum at resonance, and both.Allison and Jackson and

30Wyatt suggested quantitative criteria for locating resonances, based

on this effect. In Ref. (27) the resonance energy was taken as that

corresponding to the minimum in the asymptotic normalization of the

wave functions obtained on numerically integrating from "constant

initial conditions" at the inner boundary (where R -*• 0) . Because of

the uncertainty inherent in the definition of this constant initial

condition, in Ref. (30) the resonance energy was located at the maxi-

mum in the "ratio of the maximum amplitude inside the centrifugal

barrier over the amplitude at large internuclear distances". However,

both these approaches neglect the additional E energy dependence of

the asymptotic normalization (see Eq. (7)), which can be fairly

38important for broad lowrlying resonances.

In the present work, exact numerical continuum wave functions

were calculated and given the asymptotic normalization appropriate

to a constant density of states (see Eq. (7)). Then quadratures were
f \ A.*

carried out from the origin to R (E), the n node of Vv T(R) lying
Ci, J

inside the potential barrier, and a conveniently scaled amplitude

function defined as

R(n)(E) '

IA(n)(E,J) = \ |y; T(R)|
2 dR/[R(n)(E) - R1(E)], (14)

-10-

\
1-
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where (as in Eq. (9)) R.(E) is the innermost classical turning point.

In Figs. 3 and 4 the internal amplitude functions (right ordinate

scale) defined by Eq. (14) for n = 1 (upper dashed curves) and n = 4

(lower dashed curves) are compared to the T,(E,J) functions (solid

curves, left ordinate scale) for several J values for ground-state H..

The IA(E,J) values in Figs. 3 and 4 have units [cm] and correspond
I*

to the constant A in Eq. (7) being A = (4 y c a /n) , where a is theo o

Bohr radius. While the absolute value of IA (E,J) depends on n,

the functional dependence on E is virtually independent of n for

R(n^(E) < R (J), where R (J) is the position of the potentialmax max
39barrier maximum.

For the broad H2 resonances closest-to the barrier maxima the

resonance positions defined by the maxima in T, (E,J) and IA(E,J) are

compared in Table I (columns 3 and 4). The FWHM of the IA(E,J) peaks

(last column) are also compared there to FWHM(T,), and to the widthsa

predicted by Eq. (5). It is evident that the IA(max) criterion always

places the resonances at slightly higher energies than does T,(max),

40the differences being about 5% of the widths F. Also, though the

IA(E,J) peaks are skewed to higher energy relative to the more

symmetrical T,(E,J) maxima, the FWHM of the two functions are still

in good accord with each other, and with the widths yielded by Eq. (5).

Only for the very broad resonances lying well above the barrier or at

low J and E does the relative magnitude of the non-resonance background

significantly alter this conclusion. Examples of this are the v = 14,

-11-
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J = 6 and 7 resonances in Fig. 3, and the v » 7, J = 25 resonances in

Fig. 4. However, these cases are relatively unimportant, as the

structure is too diffuse to be spectroscopically observable and the

collision delay time too small to be of physical interest.

The fact that the internal*amplitude criterion places resonances

at energies higher than those of the maxima in T,(E,J) was previously

noted in Ref. (27) for one particular quasibound level of H (v = 14,

J = 5). It is seen here that this is probably true for all resonances,

and that the magnitude of the displacement is proportional to the

resonance width. Thus, spectroscopic measurements should place

quasibound levels at slightly higher energies than yielded by the time-

delay (or phase shift) analysis-. However, due to the complicating effect

13of the background phase the differences would probably be unobservable

in a comparison with possible molecular beam cross-section measure-

ments .

An effect which may distort the spectroscopic implications of

the IA(E,J) analysis arises from the fact that the separation of

variables in Eq. (8) is only approximate, particularly for broad low-

energy resonances. This means that the residual dependence on E of

the nodal structure of the continuum wave function (i.e., of <f>T(R) in
J

Eq. (8)) will tend to skew the transition probability of expression

(6) relative to the IA(E,J) peak. Of course the direction and magni-

tude will depend on the particular discrete state (l'j(R) in expression

(6)) connected to the resonance by the transition. However, if this

-12-
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skewing is steep enough there may be a significant shift of the

transition probability peak away from IA(max). Furthermore, if

this displacement is a significant fraction of F, it could also

result in a considerable narrowing of the spectral line relative

to the FWHM(IA).41'

IV. ACCURACY OF PRESENT RESONANCE ENERGIES AND WIDTHS FOR GROUND-

STATE MOLECULAR HYDROGEN

21 22The Kolos-Wolniewicz (KW) potential ' for ground-state H2

was the first ab initio potential to achieve "spectroscopic

accuracy", yielding a better dissociation energy than the experi-

42 43mental value then available. ' However, analysis of the

vibrational level spectrum indicated that even after non-adiabatic

effects were taken into account, this potential still required

44small corrections at moderately long range. One indication

of this is the fact that the v = 14 , J = 4 H- resonance

predicted from the KW potential lies 3.8 cm above the

-13-
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dissociation limit, while experiment shows it to be bound by

0.8 (+ 0.5) cm" . This particular error is significant, since it

implies that this quasibound level should not have been utilized in

the calculation of the termolecular recombination rate for atomic

hydrogen (see Ref. (2)). Apart from this, errors introduced by

ignoring non-adiabatic effects and omitting the empirical potential

44improvement will be small. Correcting for them would shift the

predicted resonances some 0-6 cm" to lower energy, while not signi-

ficantly affecting the widths, as is shown below.

44The influence of the empirical potential correction -A" on the

resonances considered in Table I is shown in Table II; clearly

effects on both the energies and, widths is quite small. The continued

neglect of nonadiabatic effects is quite unimportant for these cases,

since their magnitude depends on the expectation value of the kinetic

44 47energy ' which becomes very small for levels near the top of the

centrifugal barrier. Since the correction A" was defined so as to

bring the experimental and calculated J » 0 vibrational energies

47 44(including the nonadiabatic correction ) into agreement, the results

in Table II are essentially correct and unlikely to be significantly

altered by further improvements in the potential. Indeed, when the

noriadiabatic correction (following Ref. (44)) was added in, the v = 14,

J = 4 level in Table II becomes barely bound with an eigenvalue of

- 0.08 (+ 0.15) cm" , almost (within mutual uncertainties) the

experimental value of - 0.8 (+0.5) cm" . However, the Ref. (44)

-14-



109

estimates of the nonadiabatic corrections are believed. to be slightly

large, so that further small corrections to the potential may be
j

needed (i.e., increasing A" slightly, particularly at long range).

In any case, none of the resonance energies of Table II is likely to

change by more than 1.5 - 2.0 cm

A further demonstration of the insensitivity of the resonance

widths to moderate changes in the potential will be discussed in

Section VI.

A compilation of the energies of all quasibound levels of ground-

state H-, HD, and D» with widths of less ,than 100 cm , and the widths

for those which are broader than 0.05 cm is available in Ref.- (48).

The locus of the centrifugal barrier maximum as a function of J is also

given there. Annotated FORTRAN listings of the, computer programs used
/q

in the present calculations are also available.

V. ROTATIONAL PREDISSOCIATION BROADENING AND THE LIMITING CURVE OF

DISSOCIATION (LCD)

The onset of line broadening, followed by the "breaking-off " of

a rotational series is often related to the height of the maximum in

the effective potential U(R) arising from the centrifugal potential

19 20for a given J value. ' , The locus of the energy, of this onset as a

function of J(J+1) is kriown as the limiting curve of .dissociation

(LCD), and its extrapolation to zero J has long been used as a means

19of obtaining diatomic dissociation limits. This relation has been

-15-
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14further exploited by Bernstein who related the shape of the LCD to

the nature of the long-range interatomic potential tail. His treatment

involved two assumptions: (i) the long-range potential may be accurately

approximated by a single inverse-power term for R values near the cen-

trifugal barrier maxima for the J values considered, and (ii) the

experimental LCD is identical to the locus of (centrifugal) barrier

maxima (hereafter designated LBM) . The second of these assumptions

is critically examined below.

In Fig. 5 (lower half) is plotted the LBM for the ground (X ll+)
"g

states of H-, HD and D2; the three isotopes ate combined by use of the

indicated reduced abscissa scale. The dashed curves represent the

predicted experimental LCD's (i.e., the onset of observable predis-

sociation broadening), defined as the loci of the energies of quasibound

levels having widths

0.05 < T < 0.25 cm~l.

Also shown are the "error terms" AE, i.e., the differences between the

LBM and the predicted LCD curves, which range from 10 to 40% of the LBM

energy with the greatest relative error at small J. Thus, it is clear

that the predissociation analysis of Ref . (14) should not be applied

to diatomic hydrides or deuterides, and should probably be used

cautiously for other light diatomips,.

-16-
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VI. RAPID AND ACCURATE DETERMINATION OF RESONANCE ENERGIES. AND THE

WKB APPROXIMATION FOR THEIR WIDTHS

A. Determination, of Resonance Energies

,*

Most of the procedures suggested for locating quasibound states

either utilize an asymptotic property of the wave function, or treat

the resonances as bound levels with a discrete outer boundary condi-

tion. The, first type includes the approaches discussed in the

preceding sections, defining the resonance energy as a, maximum of the

T,(E,J) or IA(E,J) function. These require considerable computational

effort; the wave function must be numerically integrated out to the

asymptotic region where the non-centrifugal part of the potential is

negligible, and there is no efficient algorithm for converging on a

53resonance,. In addition, these method? do not readily yield reasonable

estimates Q£ the widths of very sharp resonances unless the entire

calculation is performed in multiple precision arithmetic capable of

resolving T.

' In the boundary condition (BC) method one tries to select a

discrete criterion for the wave function at some arbitrary outer

boundary (such as the barrier maximum) which corresponds to the maximum

of T,(E,J) or IA(E,J). Combining this with the usual inner boundary

condition yields a simple one^dimensional eigenvalue problem with no

necessity of numerically integrating past the chosen outer boundary.

-17-



This also allows utilization of the eigenvalue predictor-corrector

formula which automatically converges very rapidly to the eigenvalue
54

nearest to the arbitrary initial trial energy.

Other approximate methods of locating resonances fall into neither

of the categories described above, in particular, the method of Ref . (28)

and the bound-state approach of Ref . (16). While these approaches

avoid the necessity of integrating beyond the potential barrier, they

do not include a means of rapidly converging on the resonance energy, as

54
is introduced by the use of a discrete outer boundary condition.

Hence, they will not be considered further.

Several different outer EC's were tested here. These required,

respectively, that the wave function: (i) have zero slope at the

barrier maximum, R (J) , ' (ii) have zero slope at the outermost

classical turning point, R«(E), (iii) behave as an Airy function of

the second kind at R3(E), (iv) behave as the first-order WKB

sQlutiorj with negative exponent (exponentially increasing inwards)

59at Rmn ( J) , (v) have a node at R0(E), and (vi) have a node atmax j

R (J) . In Table III the energies of the broad quaslbound levels of

H2 calculated using the first five of these criteria are compared to

those defined by the maxima in IA(E, J) . Considering these shifts in

units of the respective widths F (from Table I) shows that: BC(i)

yields eigenvalues too low by some 250% of T; BC(ii) results are too

low by ca. 75% of T; BC(iii) is the best criterion considered,

yielding eigenvalues in error by only ca. +4% of T; BC(iv) results

are either too high or too low, with average errors of ca. + 25%

-18-
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of F; BC(v) predicts resonance positions which are too high by ca.

100% of F. In addition, the fact that wave function nodes move

inward with increasing energy discredits BC(vi) , since necessarily

<BC(i) < BC(ii) < I cav < BC(v) < BC<iv> •

where the equalities hold only at the energies of the barrier maxima

where R (J) = R9(E) = R,(E) . The magnitudes of the shiftsnicuc 4* w

described above should be considered in light of the fact that the

average difference between T,(max) and IA(max) is 5% of F.

Since the Airy-function boundary condition [BC(iii)] yields the

best results, the resonance positions it predicts are, listed in Table I

(column 5). Of the other criteria, BC(i) and (ii) may also be of

some practical use for detecting resonances which lie slightly above

62the barrier maximum, where they cannot be located by BC(iii).

However, in most cases the Airy- function approach, in addition to being

most accurate, successfully detects all Important resonances. For H.,

except for (v,J) - (9,19), (12,12), (13,9) and (14,5) [see Tables I

and III], the only resonances undetectable by this approach lay signi-

ficantly above the centrifugal barrier, with widths > 100 cm" .

B. WKB APPROXIMATION FOR RESONANCE WIDTHS

The predissociation lifetime T of a quasibound state may be
24

obtained semiclassically as the product of u, the probability per

collision of tunneling through the barrier, times t ., , the period of

-49-
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oscillation in the potential well. The latter is simply the quadra-

ture over the potential minimum
R2(E)

vib [E - U(R)]3 dR (15)

R,(E) and Ro(E) are the first t;wo classical turning points,

at which the effective potential

U(R) = V(R) E

Similarly, the former involves a quadrature "through the barrier",

yielding

0) f exp •

R,'VE)\ [U(R) - E] dR

R2(E)

(16)

where R3(E) is the third (outermost) classical turning point. Thus,

by thp uncertainty principle,, the level width is

tylb) (17)

Resonance widths for H, calculated from Eqs. (15-17) at the energies

corresponding to the Airy-function boundary condition are presented

in column 6 O'WK?") of Table I; they are within ea. 12% of

the more accurate estimates of columns 7-9. It should be noted that

Eqs. (15r-17) provide estimates of widths (or quasibound-level predissoci-

ation lifetimes,) for resonances which are far too narrow for convenient;

evaluation by the methods of sections II and

-20-



It is interesting to consider the dependence of these WKB widths on

the estimate of the resonance energy. This is conveniently done by

evaluating Eqs. (15-17) at the resonance energies predicted by five'
i '

of the boundary conditions discussed above. The results are presented

in the second half of Table III. The energy dependence of the widths

is small enough that no significant errors are~ introduced into the WKB

widths in Table I by the displacements of the Airy-function eigenvalues

from the exact resonance energies. This small energy dependence

also confirms the conclusion (see Section IV) that any future corrections

required by the ab initio ground-state H2 potential would not signi-

ficantly affect the resonance widths given in Table II.

An entirely different procedure (the "stabilization method") for

determining resonance energies and widths has been described by Hazi

63
and Taylor. However, it would appear to be most useful as generalized
1 ' - 64to the multi-channel case (compound-state resonances); it.seems

unnecessarily complicated for the practical description of single-

channel (shape) resonances.
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APPENDIX A: Calculation of T,(E,J) and Verification of Eq. (4)

Smith's12 collision delay time Td(E,J) (his Q(E) or Q̂ CE)) is

the difference between the time two particles spend together during

an actual collision with energy E, and the transit time for the same

initial conditions in the absence of an interaction potential. Here

the orbital angular momentum quantum number J (Smith's &) merely

specifies the magnitude of the centrifugal contribution to the

effective potential. Smith showed that this "delay time" was

COr / \ r i
T,(E,J) = \ (Y V - V V ) dR + MV) 1sin(26T(E) - JTT) , (Al)
a J oo oo \fcK. I L J J

0

where the exact radial wave function is asymptotically normalized as

(A2)

with notation as in Sections II and III. For most cases of interest

(i.e., those considered here) the non-centrifugal part of the inter-

action potential is effectively negligible at some finite internuclear

distance R+. Thus, for all R > R t h e exact solution is indistinguishabl

from

where j.,(z) and yT(z) are the spherical Bessel functions of the firstj J

and second kind. In the present approach, as in the standard phase

shift calculation, exact numerical integration of the radial wave

equation is performed out to the smallest such R . There the solution

-22-



117

'is decomposed into the form of Eq. (A3) to -yield "Sj(E), and given

the desired asymptotic normalization. Then, defining Z+ = kR+,

Eq. (Al) becomes

R+
Td(E,J) = P V* Y dR - ̂2 [2Z+ - . sin(2Z+ + 26j(E) - Jir)] +

 A(Z+'J)
+
P V* Y

0
(A4)

Here the integral may be readily computed from the exact numerical

wave function, and the residual asymptotic contribution

(A5)

where z = kR, and V and Vm are given by Eqs. (A3) and (A2) respectively,

may be computed essentially analytically.

For J = 0 , A(Ẑ ,J) is identically zero, while its evaluation
T

for J > 0 is described below. The magnitude of this term clearly

depends on the criterion used for selecting Z, (i.e., for selecting

R. ) . In the present calculation this was done by constraining Z , > J
+ - "T

and requiring differences of £ 10~* radians between the values of
OOL

£_(£) evaluated at three consecutive wave function nodes. The rela-j

tive contribution of A(Z" ,J) to the sum in Eq. (AA) varied from being a

negligible fraction (at a very sharp resonance) , to becoming the

dominant 'term both at broad resonances and away from resonance.
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Using the Rayleigh expansion for the Bessel functions in Eq. (A3)

one obtains:

J

65

sin [z + (J-m) ]

m=0

where for the coefficients NT :

for all J

for all m > J

N1? «• N1? . - (J-hn-l)rfJ", for all m < J
J J-l J—1 s

A simple corollary to Eqs. (A7) is

(A6)

(A7)

Substituting Eqs. (A6) into Eq. (A3), and the latter and Eq. (A?) into

Eq..(A5) yields:

where A^? , B^ and C1^ are simple functions of the known N^ coefficients:j j j j
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J2 ^ NT11'1
n = 0

min[m,J-m]

n = 1

min[m,J-m]

n •= 1

The remaining factors in Eq. (AS) are the quadratures

S(2m-l)

C(2m-2)

00

!
sin(2z + 2Sj)

2m=I

CO\
dz

2m-2
dz

which -are related through the recursion relations

S(2m-l) - co8(2Zf +26j) _ (m 1) c(2m)

C(2m-2)
26j) s(2m_1)

(AID)

These relations are used to generate the terms in the sum in Eq. (A8)

' ' " ' 66
as m decreases from J to 1; thus one needs C(2J) as a starting

value. Making use of the fact that Z > J, C(2J) may be expanded by

repeated applications of Eqs. (A10). After n iterations it becomes
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C(2J)
2(Z+)

2J
- sin (2Z. + 26T)

T J

c«.(2Z++2«J)

where

R(n)

It is readily seen that

2(Z+)
2J

21

TT
k = 1

2n - 1 ,
C(2J + 2n) TT (J + k/2)

k - 0

T T 1

k - 0

-+R(n) , (All)

(A12)

(A13)

and hence the series in Eq. (All) converges for n < n , where nmax , max

is the largest integer < (Z + 1 - J) . If the bound given by

Eq. (A13) is not negligible for n = n , the remainder R(n ) mayj ' ' , ' daX nicix
be evaluated using a numerical quadrature for C(2J + 2nmax)• Because
*

of the large power of z in the denominator, this requires very few

mesh points.

The evaluation of A(Z ,J) via Eqs. (A7) - (A13) was tested for

a number of cases by comparing the results to a numerical quadrature

of Eq. (A5) with expressions (A2) and (A3) substituted for * and 4̂ .

For !-,< J <_ 30 and Z = 2J the numerical quadratures (which required

orders of magnitude more computation time) were in excellent agreement

with the "analytic" results from Eqs. (A7) - (A13). In the present
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calculations on ground-state H2, HD, and D- the total time delay

computation, including the calculation of the phase shift, took- on
£ Q

the average less than 0.2 sec for a given J and E, compared to

0.15 sec for the evaluation of the phase shift alone.

12For the time delay defined by Eq. (Al) , Smith proved the

identity of Eq. (4); this is used here as a check on the present

method of calculating T,(E,J). The potential used was that employed

by Waech and Bernstein in their phase shift calculations for H2<

For the resonance energies listed in their Table V, whose widths

range from 3 to 150 cm , the present approach (i.e., use of Eqs. (A4)

and (A7-A13)) yielded widths differing with theirs on the average

69by + 5%. These differences reflect both the lower

accuracy of the computations of Ref. (16) and error introduced

.through the finite difference approximation they used for the deriva-

tive in Eqs . (4) . This latter effect is a difficulty inherent in any

calculation of delay times using Eq. (4). This problem is illustrated

here for H_ for J = 8 at E = 89.95 cm~ , which is very near the center

of the v = 13, J = 8 resonance (for which E = 89. 93 -cm""1

and T = 1.90 caT̂ ." :0sing theJEirst difference formula (energies in cm"1)

7,(89.95,8) = -i A6J (A14)
d Trc AE

with the differences centered at 89.95 cm , time delays for different

AE values are given in Table IV; the "correct" value, obtained from

Eq. (A4), is 1.119 x 10~ sec. The uncertainties in Table , IV cor-
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respond to estimated absolute phase shift accuracies of + 0.0005 radians.

As expected, use of a small AE mesh yields a loss of precision in the

phase shift differences, while for a large mesh the first difference

approximation for the derivative is no longer accurate.

Annotated FORTRAN listings of the computer program used in the presen'

<ST(E) and T,(E,J) calculations are available in Ref. (49).
J d
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TABLE II. Best estimates of resonance energies and widths for ground-
state H2, calculated from the "corrected" potential, i.e.,
including the empirical correction^ A" (cf. Table I which
corresponds to the ab initio potential21 alone).

V

0
0
1
2
3
4
5
6
7
8
9
9
10
11
11
12
12
13
13
14
14
14

J

38
37.
35
33
31
29
27
25
23
21
19
18
16
14
13
12
11
9
8
6
5
4

Er[cm ]

a ,bTjCmax) IA(max)

7509.2
6513.0
5549.1
4687.0
3923.0
3252.3
2670.2
2172.0
1751.8
1402.9
1117.0
722.4
582.0
475.7
195.5
380.3
211.4
191.4
86.3
81.5
44.1
1.0

7513.5
6513.0
5549.2
4687.3
3923.5
3253.0
2671.0
2172.8
1753.0
1405.4
1123.1
722.4
582.0
476.5
195.5
393.1
211,4 '
200.8
86.3
114.8
46.8
1.0

F[cm 1]

\jd(max)J

80.9
5.97
14.4
20.8
24.1
25.2
25.7
27.1
31.0
40.0
58.3
0.51
2.84
17.3
0.004
71.3
2.32
52.3
1.48

104.
17.4
0.0005

a) "Scattering theory" resonance energy.

b) "Spectroscopic" quasibound level energy.

c) This is identically 2/(d6T/dE)J max

d) This resonance was too | sharp to resolve T.(max) conveniently, so

this width was obtained using the semiclassical method discussed in

Section VI. As discussed in text, Herzberg and Howe's observations

41
show this level to be truly bound.
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FIGURE LEGENDS

Fig. 1 Collisional time delays Td(E,J) [sec] for atomic H + H collisions

governed by the singlet ground-state H. potential curve. The Ver-

tical dashed lines denote the energies of the barrier maxima for

the different J. The v labeling of the peaks indicates the number

of nodes in the radial wave function for internuclear separations

smaller than that corresponding to the potential maximum.

Fig. 2 Collisional time delays Td(E,J) [sec] for D\+ D collisions; as

in Fig. 1.

Fig. 3.. Comparison of T,(E,J) functions (solid curves, left ordlnate

scale) with the IA'n)(E,J) functions (right ordinate scale) for .

n a 1 (upper dashed curves) and n a 4 (lower dashed curves), for

H + H collisions. The vertical arrows indicate the precise \oca-

tion of the respective maxima; as in Fig. 1.

Fig. 4 Comparison of Td(E,J) and IA(E,J) functions for H + H collisions;

as in Fig. 3.

Fig. 5 Lower: comparison of the LBM (solid curve; with this abscissa'

it is the same for the different isotopes) with the predicted LCD's

(dashed curves) for ground-state H2, HD and D_. Upper: 'the? error

term AE = [E(LBM,J) - E(LCD.J)] vs J(J-J-l) .
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