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ABSTRACT

Much of the utility of paging a computer memory
D

depends upon the ability to execute a program with less

than all of its data resident in memory. It is

suggested that a considerable improvement in perform-

ance, that is, in the amount of Memory needed to execute

a program for a given quantum uZ time, can ^e achieved

by using the dynamic sequence of initial program load

to keep physically close in memory data that will be

accessed close together in time.
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A word is an addressable memory unit; a pjle is a contiguous set

(if' F' -® 2 p wards; a physical memory is a contiguous set of M = m X P

words,; a virtual memory is a set of V 2v words; an effective adUi oa

is are integer F , 0 < F < M ; a virtual address is an integer A

0 < A < V ; the set of high order bits of A 	 Ah = A mod P , is called

the "e selector; the set of low order bits of A , A^ = A 

is called the word selector. We assume P < < M < < V .

There is a mapping function R with arguments 0 < A h < V/P

Isuch that either:

(1) R(Ah) is detestably undefined or

(2) R(Ah) < m , and

Ah / A' h implies R(Ah) / R(A' h ) .

For any virtual address A such that R(Ah) is defined, R(Ah ) X P

+ AI < M and therefore defines a unique association between a location

in phys i cal memory and the virtual address.

The paging mechanism provides for all of:

(1) Simplicity in allocating memory.

(2) Absolute protection of programs.

(3) Optimal use of physical memory.

(1) is a result of M = m X P . There are only m slots into which

a page may be placed. (2) is provided by relocating programs at initial

load time so that different programs have disjoint sets of valid vir-
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tual addresses. When R is undefined a mechanism must be invoked to

change R so that a physical address can be returned; the argument

to R is also checked to lie within the allocated virtual memory space.

(3) is realized by letting R be undefined for data areas that are not

needed at the moment. If memory space is allocated for n programs,

the constraint of physical memory can be expressed in terms of the frac-

tion, fi , of the virtual memory space, Vi , which is mapped onto

physical memory for the program:

n

j1 fiVi<M'

where, on the other hand:

n
j1Vi>>M

The Problem.

We assume that the mechanism to evaluate R is economical and

that changing R consumes several orders of magnitude more computer

resources than evaluating R . If the sequence of access of the 
1 t

program to its pages is random in time then we expect that during its

run, f.
3
 = 1.0	 As we cycle through the programs in a time-shared

computer, it is clear that if all fi need be near 1.0 then R will

have to be changed often. Our problem then is to force as high a corre-

lation as possible between the dynamic sequence of access and the pages

accessed. The question of how much can be gained is left to the experi-

menter.
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A Bnt!rrestinn.

It is assumed that time-sharing monitors will be carefully adjusted

with respect to the criterion above. We address the problem of allo-

cating storage for compiled high-level language programs. Since program

structure will provide us with the means of achieving our result, we

will coi_centrate on highly structured languages such as Algol and PL/I.

Within a program there are identifiable logical segments of data

which can be expected to have a high probability of use for all words

as soon as one is accessed. We present some examples.

Input and output buffers. A buffer is typically treated. as a unit;

a whole record is moved at once.

The code body of a procedure. When a procedure is called, the

instructions are fetched in sequence. Some time is spent within

the procedure during which all program fetches come from the body;

after the procedure is left, no accesses to the body are possible.

A declared array. An access to an array happens only where it is

explicitly named in a program. Typically this is a few places

and therefore we expect the accesses to the array to cluster in

time around the execution of these parts in the program.

The set of local variables of a procedure. Variables can be ac-

cessed only when execution is within their scope. Thus access to

the local variables must cluster between the call and return of

a procedure.
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The body of a loop. Since it is repeatedly executed, the code

body of a loop gives a highly correlated set of accesses.

The run storage stack. If a stack is used to allocate storage,

typically only a few parts of it are actually accessible at any

given moment. In particular the global and local storage are

most active.

The first step.for the compiler writer is the identification,

based on the language and use to which it will be put, of the logical

segments of program structure. The second step is to devise a scheme

to get those logical units that themselves have correlated accesses

on the same set of pages. It is this second step for which we suggest

an approach.

We have already mentioned that the program can be relocated as a

whole to achieve protection. We propose that each logical segment be

separately relocatable and that the virtual addresses be associated with

the code at first access to the logical segment. The effect will be

to build the virtual space from the bottom in the order in which the

logical segments are first accessed. Our central assumption is that

this experimentally discovered correlation is a sufficiently good approx-

imation to the optimum that the fraction f  can remain small during

an entire quantum of execution time.
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DVlcmortation.

1410 special provisions have been made in contemporary hardware to

help in the implementation of this scheme. We propose that the compiler

allocate storage for each logical serpent starting on a page boundary

and with a virtual address dl.-joint from all other segments in this

program aw well as the final virtual space to be assigned at program

initiation time. The page selector then serves as a unique name for

the logical segment. When an undefined value of R corresponds to a

previously unloaded segment (detectable by the disjoint address) we

first must discover if the segment has been loaded but this instruc-

tion has not yet been changed to reflect the loading. If the segment 	 s

has not been loaded, it is added to the virtual space and its actual

location recorded in a table. If it has been loaded, the table is con-

sulted and the obvious change is made to the referencing instruction and

execution allowed to proceed. Other undefined values of R are handled

as normal page faults.

Conclusions.

The proposed scheme will cause R to be undefined at least once

for every memory referencing instruction in a program. The overhead

in fixing the addresses need not be excessive (and in fact could be

done in hardware). Nothing said here should deter the compiler designer

from using more static schemes where he "knows" something (such as how

his run stack interacts with paging) or even more dynamic schemes where

he cannot "know" enough (such as PL/I ALLOCATE where a hole can be

left by the corresponding :FREE ). The scheme does not make sense for
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jr(,rrwr..-, tt','hat need 1(_,200 than a whole pa(.-,e 	memory' . Ov ,:rhoad ca ti,Of

,ii	 L,, avoi(led i'or pro,_,rams that are rw. many times

by Zivirr the loado-I form of the program.

In thi.-	 a.-j iii all that depend oil statistical uffecta)

the t-r .4	 distributions ic e-ential. A compiler,af.^,vrinj- of experimental di-tribution	 ss	 #.d

can di0cover the distribution of logical ss oprment lengths (some pre-

limInary data ,gathered on the B5500 pave a median length (if 60 words

for A1jrr,.j programs). The time-sharing monitor can tabulate f and

Y,V.i 	due to various compilation methods. 	 To be generally useful,

such experiments must be reported in sufficient detail to allow their

repetition where compiler, machines or language are changed.

The main affect of the proposal is to attempt to approach the

efficiency of memory utilization of the variable length segment machines

(Burroughs Bj500 ) B6500; B8500) while retaining much of the simplicity

of the paging organization.
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