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FOREWORD

The work described in this report was performed by Mechanical Technology Incorpor-
ated under NASA Contract NASw-1705. The overall objective of this contract was

to develop a comprehensive dynamical theory of forced-convection boiling in liquid
metals. This is the Final Technical Report of the subject contract, containing a

summary of all essential results obtained in the contract work.

The work was done under the technical management of Mr. S. V. Manson, NASA Head-

quarters, Nuclear Power Systems.
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INTRODUCTION

The combination of excellent thermal conductivity, high vaporization temperature
and moderate vapor pressure possessed by alkali metals makes them very attractive
for use as working fluids for Rankine cycle space power systems. Consequently,
considerable effort has been devoted recently toward development of once-through
alkali metal boilers in which the liquid metal enters subcooled, is vaporized and
departs as saturated or superheated vapor. Much of the work to date has concen-
trated on boilers for potassium and sodium, and considerable attention has been

paid to the problem of achieving stability of operation of such boilers.

A number of traditional instability mechanisms for boiling flow have been recog-
nized for some time, e.g. "Ledinegg Excursions' and liquid metal boilers are sub-
ject to these instabilities as well as are water boilers. The problem of the
stability of liquid metal boilers, however, is further complicated by the fact
that liquid metals can exhibit very large degrees of superheating before incep-
tion of boiling. This makes dynamic analysis of boiling liquid metal flow quite
difficult because one can no longer assume that the flow is in thermodynamic
equilibrium. Moreover, the superheating of liquid metals appear to give rise to
a unique type of flow instability associated with drastic flow regime changes in

the boiling channel. This instability is of the following nature.

When power input to the heated length of a liquid metal boiler is steadily in-
creased from zero, a point is reached when the flow temperature at the exit of

the heated length reaches saturation temperature. Due to the tendency of liquid
metals to superheat in the liquid phase, further increase in power often does

not result in inception of boiling, but rather leads to the condition that super-
heated flow exits from the heated length. As power is further increased, however,
a point is reached where the degree of superheat, @ , at the exit is sufficiently
large such that nucleation of vapor bubbles will occur and boiling will commence.
The boiling will then tend to propagate upstream into superheated liquid, causing
a sudden change of flow regimes and resulting in undesirable rapid temperature
fluctuations in the boiling channel. The vapor liquid interface then can (a)

reach a stable position, (b) oscillate within a finite zone, or (c) be swept back
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out of the boiler to reenter later as superheating again accumulates. The latter
two modes are, of course, deemed unstable and are to be avoided if possible. Which
mode occurs is governed by the thermo-hydraulic characteristics of the boiler and

its associated flow loop.

Because of the technological importance of liquid metal boilers an analytical
program was undertaken at M.T.I. under NASA Contract Number NASw-1705 directed
toward obtaining solutions for the thermo-hydraulic liquid metal boiler stability
problem. The crux of this study is the problem of the non-equilibrium behavior

of liquid metal flows.

The program was carried out in two phases. The first phase is concerned with
the prediction of incipient boiling, and the corresponding study has been docu-
mented in a topical report. MII-69TR45, "A Review of Criteria for Predicting
Incipient Nucleation in Liquid Metals and Ordinary Fluids," by J.H. Vohr and

T. Chiang [l].

The second phase is concerned with the determination of vaporization rates for
each of various relevant flow regimes. Emphasis is placed on the release of
liquid superheat with the attendant generation of the vapor phase, since the
substantial change in density would cause pressure rise and consequently would
be a principal driving force for the dynamic motion in a thermo~hydraulic sys-
tem. The specific analyses on various mechanisms of evaporation are then recast
in terms of a vapor generation rate which represents the constitutive relation
of the evaporative process. This study culminated in a second topical report,
MTI-70TR15,"Evaporation Processes in Superheated Forced Convective Boiling,®

by J.H. Vohr, [29].

This document is the Final Technical Report of the subject contract. It con-
tains a comprehensive digest of the two topical reports, including the essen-
tial formulae, graphical results, and citations of the original sources. The
substance of the first topical report is contained in the chapter entitled,
“Criteria for Incipient Nucleation for Boiling', that of the second topical

report is contained in the chapter entitled '"Void Growth and Evaporation Rate®.
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Since the subject matter is a rapidly developing technology, a discussion is
provided on areas where basic knowledge is still lacking and avenues for fur-

thering needed progress are suggested.



... CRITERTA FOR INCIPIENT NUCLEATION FOR BOILING

A review of the subject was made by compiling avéilable experimental evidence
and by discussing the basic foundations underlying the current understanding
of various physical parameters governing the correlation of experimental data.
The study was begun by Dr. D. E. Dougherty and completed by Drs. J. H. Vohr
and T. Chiang who are identified as co-authors of the topical report [17.

Dr. John Chen of Brookhaven National Laboratory, who was retained as a con-
sultant to this project, contributed substantially to the collection of pub-

lished experimental data and their interpretations.

The principal premise of the study attributes the boiling nucleation process
to be dominated by sites present on the boiler walls as surface cavities. The
need of superheating to initiate nucleation is presumed to be the requirement
for a pressure excess abpve the saturation vapor pressure in the cavities to
overcome the surface tension of the liquid. That is, for incipient boiling

nucleation to take place, a lower bound of the vapor pressure is, Eq. (3) of

(1]:

PV = P - Pg + 20/t (1)
where,

?v = vapor pressure in the cavity

P = gystem pressure

Pg = partial pressure of inert gas in the cavity

o = surface tension of liquid at saturation temperature corresponding

to P
r = bubble radius of nucleating cavity.

The required superheat is related to PV - P along the saturation line of the

fluid in question, or according to the Clausius-Clapeyron equation.

dPsat . hfg

deat Tsat(vv




where
hfg = latent heat of vaporization at Tsat
v = gpecific volume of vapor phase
v, = specific volume of liquid phase, and

the subscripts’ 'lsat!' refer to the saturation state. Available experimental data
on boiling incipience were analyzed and correlated in relation to interpretations

of the bubble radius r and the reference temperature T.

From twenty-one reported investigations [2-227, experimental data on the boiling
incipience of alkali metals were critically reviewed. A summary of the signifi-
cant findings of these investigations is given in Table I. Because of the good
thermal conductivity of liquid metals, temperature variations in the immediate
vicinity of nucleation sites are believed to be negligible. The major parameters
governing the magnitude of incipience superheat are identified as the system pres-
sure and deactivation history. The available experimental data on the effect of
deactivation history can be interpreted according to alternative postulated detail
mechanisms regarding penetration of liquid into surface cavities. The Holtz-Chen-
Dwyer model required penetration of liquid into nucleation sites to be terminated
at a non-wetting condition and the presence of non-condensible gas being compressed
by the deactivating pressure inside cavities of conical shape. The re-entrant cav-
ity model allows the nucleation sites not to become completely flooded by a wetting

liquid by geometrical arguments.

To check the plausibility of the actual existence of surface pits or cavities which
would function as nucleation sites at the incipience of boiling according to the
mechanisms postulated above, sections of SS 347 tubings were examined under 750 X
magnification. Samples were made from both seamless extruded and welded tubings.
Typical photo-micrographs are shown in Figs. 1 and 2. Pits less than 0.2 mil in
overall dimension would not be discernible. All pits found were less than 0.6

mil at their mouths. They are classified into five geometrical types, as shown

in Table II. The population density of pits found on the welded tubing was about 2-
35 times those found on the seamless extruded tubing; otherwise the different

methods of fabrication do not seem to have caused much difference in the surface
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TABLE II

Number of Pits at 0.D.

0.5 in 347 SS Welded Tubing

10

Pit Type 1 11 111 v v
Specimen \53 \v/ \kunu
1 29 0 3 8 1
2 22 1 6 3 3
3 17 1 7 3 5
4 i 30 3 3 5 11
5 36 2 1 12 4
6 34 5 3 18 5
7 24 5 4 8 7
8 26 2 5 12 3
9 32 0 4 6
10 |36 3 5 8 2
Total 286 22 41 81 47
Average 28.6 2.2 4.1 8.1 4.7
Number of Pits at 0.D.
0.5 in SS347 Seamless Tubing
Pit Type/ I II IIT v v
Specimen No. _—\\,) (;) A\V/ ‘\L___
11 14 1 1 4 7
12 14 3 3 8 3
13 7 0 1 3 2
14 6 1 3 5 1
15 7 0 1 3 1
16 9 1 2 4 1
17 9 1 1 4 0
18 6 3 7 5 0
19 6 0 4 4 0
_ 20 6 1 2 0 2
—--m”&;;al - M‘84 11 25 40 17
Average 8.4 1.1 2.5 4.0 1.7

MTI-10087
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characteristics. This limited study rendered some support to various postulated
mechanisms cited above in a qualitative manner, for instance Type II pits shown

in Table II may be regarded as re-entrant pits, but it is not sufficiently pre-

cise to discriminate the various postulations with respect to their relative

credence.

The alternative models led to qualitively similar formulas for the incipient boil-

ing conditions

Holtz-Chen-Dwyer Model: [12,23,24]

G

By o= o ('R - S (T+TT) (2)
r
m

Re-entrant Cavity Model: [6]

Pl
R R RO ®

where primed quantities are those at the most severe deactivating condition, G0
= PgOrOB/To is a measure of the content of the noncondensible gas and a® allows
the interface radius at inception of boiling to be different from that during
deactivation. Geometrical parameters in the Holtz-Chen-Dwyer model are shown
in Fig. 3. These two formulae predict similar trends in the effect of deactiv-
ation subcooling, the former correlates somewhat better with the experimental
data. Incipient boiling superheats calculated according to the Holtz-Chen-

Dwyer model for cesium and potassium are given in Figs. 4 through 9. In using

these results, the following points should be borne in mind:

1. Because of the statistical nature of the phenomenon, the proposed pre-
diction method would at best give an estimation of the most likely
superheat. The actual superheat of any particular run may deviate
from the predicted value by as much as t 20°F since there was typically

40°F scatter in a most carefully controlled experiment.

2. G, should be best regarded as an empirical constant established in
recent experiments on deactivation history, instead of rigidly inter-

preted according to any particular model.

*Estimated to be about 1.5,
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3. Data used in establishing the correlation were obtained with test appa-
ratus built of commercial grade materials and would not be applicable

to specially treated surfaces.

Other relevant factors recognized are heat flux and flow rate. Available data

are too scanty to warrant any definitive conclusions at this moment.

For Ycommon' fluids with relatively poor thermal conductivity, substantial tem-
perature gradients can be present in the vicinity of the nucleation sites. It
has been postulated [25-287 that boiling incipience would commence only if the
fluid temperature at the bubble height is high enough to enhance bubble growth.
Thus, the required wall superheat would increase with heat flux as shown in Fig.
10 for water. This criterion does not by itself contradict the Holtz-Chen-Dwyer
criterion. In fact, for "common' fluids, both criteria should be checked, that
giving the higher superheat would dominate. For water due to the likelihood of
ample noncondensible gas in the nucleating cavities, the heat-flux criterion

is most likely to prevail.
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VOID GROWTH AND EVAPORATION RATE

When boiling occurs in a superheated liquid, vapor generation is accompanied
by substantial pressure rise which in turn induces hydrodynamic disturbances.
The degree of violence of the latter would largely depend on the vapor generation

rate.

In the second topical report [29], two different modes of vapor generation in the
initial stage have been considered. The first one dealt with the growth of a
small bubble, presumably coming from a wall nucleation site, in the superheated
liquid. Such bubbles, while increasing in its size, would be swept downstream.
If the liquid flow speed is low in comparison with the bubble growth rate, then
the very first bubble to appear would quickly fill up the duct cross-section in
the form of a large void. Subsequent vaporization would then appear as the prop-
agation of the void upstream, with phase change occuring across the head of the
void while the presence of any other bubbles or the lack of it would play a rath-
er insignificant role. The latter situation is most likely to take place in
liquid metal boiling and was separately studied as the second mode of void growth.
Analyses of these two problems are summarized under the section heading "Void

Growth Mechanizms®.

In addition to these two "early stage'" evaporation modes there are two other im-
portant modes in forced convective boiling; they are the annular and the dispersed
flow regimes. Thermodynamic equilibrium is approximately maintained in the annu-
lar flow regime, while evaporation in the dispersed flow regime again become
characterized by superheating not only of the liquid phase, but also of the duct
wall and of the vapor phase. Under thermodynamic non-equilibrium, the evaporation
rate is essentially controlled by simultaneous mass and heat transports. This
view was stressed in the derivation of the evaporation rates in (29] , the results
of which are collected under the heading "Constitutive Equations for Evaporative

Processes®.
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VOID GROWTH MECHANISMS

Growth Rate of Vapor Bubble

The growth of a vapor bubble in a superheated liquid subsequent to incipient
nucleation is governed by the simultaneous actions of several physical processes;

namely

(1) heat conduction in the liquid with the vaporization occurring at the

interface behaving as a heat sink,
(2) dinertia of the liquid being displaced by the growing vapor bubble,
(3) mass transfer kinetics at the interface, and
(4) surface tension of the liquid

Historically, various aspects of this problem were considered by numerous inves-
tigators [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. From the standpoint of a
generally applicable analysis, all above cited processes should be considered.
Satisfactory formulations of such an analysis already exist [37, 38, 39], however,
the required computations to obtain results for a large number of‘fluids and en-
vironmental conditions turned out to be rather tedious; consequently only a limited
amount of usable numerical information has been published. Thus, a major ob-
jective with respect to this topic is to establish a generally applicable but

also convenient computation procedure for the bubble growth rate. This objective
was made possible by invoking a number of simplifying assumptions which can be
subsequently verified a posteriori with the calculated results. The major assump-

tions so invoked include

(1) The vapor bubble is quasi-quiescent. The change (increase) in its mass
content due to density change is negligible in comparison with that due

to its size change (growth).
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(2) Expansion work done by the growing bubble is approximated by a constant

pressure process.

(3) Temperature profile in the thermal boundary layer around the bubble is

parabolic.

(4) Energy transfer across the bubble boundary is dominated by the balance
between heat conduction through the liquid and the latent heat of evap-

oration.

(5) The thermal boundary layer thickness is small in comparison with the

bubble radius.

(6) Mass transfer kinetics at the interface takes place isothermally approx-

imately at the liquid ambient temperature.

(7) The Clausius-Clapeyron relation is approximated by a straight line in
the T-P diagram joining the saturation states corresponding to the

liquid ambient temperature and pressure.

Consequently, six equations are derived.in [29] which were givemw as Eqs. (11), (17),
(23), (26), (27) and (34) there: :

[ == [(P - P - Egi) - = (1 - Egi)] 4)
3 pL ® RV3 Ry sz

T, Tp .
K, GoR) 5 hgg oy Ry ()
L v

R03

Corp (T T)(Ry- R ) = he o oy Ry (L- ;—-3-) (6)
v

g
_ _C- C % -
Ry = % oy P 7 B N
v oo



which simultaneously determine the six unknowns: Rv’ Pv’

*
PL = (T, — TL) (8)
PV
- (9
RTsat

*
TL’ PL’ (RL - Rv)’ and

o, The symbols in these equations represent
C = coefficient of evaporation (and condensation)
g, = gravitational constant
hfg = latent heat of vaporization

thermal conductivity of liquid
saturation pressure corresponding to TL
saturation temperature at T

pressure of vapor (inside bubble)
ambient liquid pressure

gas constant of vapor

radius at edge of thermal boundary layer
initial radius of bubble

radius of vapor bubble

time rate of growth of bubble radius
liquid temperature at interface
saturation temperature at P

ambient liquid temperature

dp

AT sae

Clapeyron relation

= constant in the linear approximation of the Clausius-

liquid density
vapor density inside bubble

)

£ t i f liqui
surface tension of liquid (at P_ and Tsat

24
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Numerically computed results from above equations are compared with the more pre-
cise ones given in [37] respectively for sodium at 14.7 psia with a superheat of
273°F and for water at 1.47 psia with a superheat of 4.81°F in Figs. 1l and 12.
It is seen that the error of the present approximate analysis is at its worse for
water at low pressure, but even then is no more than 16%. TFurther more, it is
seen that for the wide range of bubble size, e.g. 10 < Rv/Ro < 104for sodium,l.{V
is practically constant, approximately equal to it§ maximum for each value of C.
Consequently, it is useful to present the maximum R& (for each C). This is done
in Figs. 13, 14 and 15 respectively for water,potassium,and cesium, in which the
maximum bubble growth rate at atmospheric pressure is plotted against superheat

for three values of the vaporization coefficient.

In Fig. 16, the maximum bubble growth rate is plotted against system pressure at
a constant superheat for potassium, again for three values of the vaporization

coefficient. For a large vaporization coefficient, e.g. C = 1, bubble growth is
controlled by inertia, then an increase in system pressure primarily results in

an increase in the driving force k = . ;. therefore, the maximum bubble growth

dT. .
rate increases monotonically with the sy:?:m pressure. On the other hand, for a
small vaporization coefficient, e.g. C = 0.01, the bubble growth rate tends to
be limited by mass transfer, and since the vapor density would increase with sys-
tem pressure, the maximum bubble growth rate tends to decrease with the system

pressure instead.

Assuming the vaporization coefficient is fairly large, e.g. C = 1, then, from the
numerical results in Figs. 13, 14 and 15, the maximum bubble growth rate is

in excess of lO2 cm/sec. This is especially true in the case of the two alkali
metals considered. Thus, for typical convective boiling situations, the bubble
growth rate is likely to be much larger than the convective velocity. Then once
incipient nucleation has started, the rapidly growing bubbles would quickly fill
up most of the flow passage cross section to cause the flow to change from the
all liquid situation into the annular flow regime. For this reason, one may ne-
glect altogether the bubble flow regime, and with sufficient superheat, vaporiza-
tion would take place in the form of aﬁprbpagation of the head of the annular

flow regime upstream of the point of inception of nucleation.
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Propagation of Vapor Void

During non-equilibrium boiling, once incipient nucleation has started, void propa-

gation is likely to extend into regions where wall nucleation sites are not avail-

able due to-alarge bubble growth rate, It is useful to consider an analysis of

such a mechanism. In [29], the problem of void propagation in a constant head

duct was formulated. The considered situation is illustrated schematically in

Fig. 17.

(1

(2)

(3)

(4)

(5)

(6)

(7

(8)

The principal assumptions employed in this formulation consist of:
The liquid in the duct is initially superheated (at least at the exit).
The heat input per unit length of duct is maintained constant.

The head drop across the length of the duct is balanced by the sum of
the friction loss in the liquid section, inertia of the liquid column,
pressure drop across the head of the void, and friction loss in the

annular flow section.

A constant friction factor is used to calculate friction losses in eirher

the liquid flow and the annular flow regions.

Duct cross-section is constant and flow velocity in the liquid column

is uniform at all instants.

The linearized Clausius-Clapeyron relation based on the inlet tempera-

ture is used.

Levy's "momentum exchange model® [49], is extended to yield a relation

between the void fraction and the flow quality.

Pressure of vapor at the head of the void is in equilibrium with the
stagnation pressure of the liquid relative to the propagating void and
is equal to the saturation vapor pressure at the corresponding liquid

temperature.
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The resulting governing equat

ions are
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cross-sectional area of duct

specific heat at constant pressure of liquid

hydraulic diameter of duct

Clausius-Clapeyron line

friction factor

gravitational constant

total head maintained across the duct

length of duct

location of the head of the void

location immediately downstream of the head of the void
heat flux per unit length of duct

flow velocity of liquid

time derivative of the flow velocity of the liquid column
void propagation speed (positive upstreams)

vapor mass flow quality relative to the head of the void
area fraction of vapor

specific latent enthalpy for evaporation

pressure drop across the head of the void

pressure drop from inlet to it

pressure drop in the annular flow region from the head of the void
superheat at f+

superheat at inlet (may be negative)

liquid density

vapor density

() at (z=8)



36

The above set of equations appeared in [29] as Egs. (41), (42), (52), (59), (63),
(64), (69); the order of their appearance have been altered and some minor

rearrangements have been made for clarity of presentation.

In the first approximation, (dT/dp) Py> hfg’ and f may be regarded as system

sat’
invariants. Clearly, accuracy of the analysis would be improved by evaluating

them in accordance with the local thermodynamic and hydrodynamic considerations.

L, D, A, oy, g, and H are clearly all constants. Given Vi, Eqs. (10) through
(16) can be solved simultaneously for (AP', AP, @, X', «, Vi + v, and AP),
Because of the nonlinear nature of these equations, a numerical method would be
necessary. Subsequently, Eq. (17) can be integrated to obtain Vi at a later

instant; then the process can be repeated. In this manner, the nonequilibrium

propagation of a void can be readily calculated.
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CONSTITUTIVE EQUATIONS FOR EVAPORATIVE PROCESSES

In a forced convection evaporative flow, regardless of its specific flow structure,
the concept of "source" of the vapor phase can be used to describe the rate of
phase changes. Consider a duct 6f constant cross-sectional area A. At any given
instant and location (t,z), the fraction of A through which the vapor phase flows
is designated as oA, then the liquid phase flows through (l1-o)A. Thus the differ-

ential continuity condition is

5% [apv + (1-a)pL] + g% [apvvv + (1—a)pLVL] = 0 (18)

which accounts for the total mass conservation of both liquid and vapor phases.
P,> Ppo Vv’ VL are respectively the densities and velocities of the vapor and
liquid phases. The rate of generation of the vapor phase is [29]

-1 2
1qv TRt (apv) + ?z (apv Vv) (19)
(A slightly different definition of vaporization rate was used in [40), where,
—= - 1— 1 -
v ﬂapVVV + (1 a)pLVL]/[dpv + ( a)pL] took the place of VV in the above equa

tion).

The corresponding latent heat must be derived from the heat addition to the duct

and reduction in the sensible> heat. Thus

- L1 Jg,1 2 . -1 9. - -5 -3
Fv - hfg A + J 3t & a)pL (Bt + VL az) hL 0lpv (Bt + Vv Bz) hv

(20)

hfgis the specific latent enthalpy, q is the heat input per unit duct length, P
is the pressure, hL and hv are the specific enthalpies of the respective phases.

A complete analytical description of any forced convection evaporative flow must
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in some way account for some knowledge of Fv as well as the slip-velocity (VV- VL).

In the special case that thermodynamic equilibrium is approximately maintained, at
each (t,z) the two phases would have the same temperature which is determined from

P(t,z) according to the equilibrium saturation state. That is,

dh

dhL
dh, = =—= dP, dh = —% dp 1)
L dp sat v dp sat

In general, both FV and (VV- VL) would depend on the flow structure or flow regime.

Classification of two-phase flow structure recognizes the following flow regimes

(417

(a) bubble flow
(b) coalescing flow
(¢) annular flow

(d) dispersed flow

These flow regimes were established in forced convection experiments of air-water
mixtures. 1In a boiling flow, particularly in the presence of superheat, transition
from bubble flow to annular flow takes place very rapidly (see previous estimate

on bubble growth rate) so that separate allowance for the presence of coalescing
flow would not be necessary. In fact, with sufficient superheat, once boiling
nucleation had commenced, bubbles would rapidly grow into a central void, which
would then propagate upstream into the superheated liquid not withstanding whether
or not wall nucleation sites were present. The body of the void would primarily
consist of annular flow. In annular flow, the bulk of the liquid phase clings to the
duct wall, and the vapor flowing faster in the center would strip droplets.of lig-
uid off the liquid layer which would further break up into dispersed minute par-
ticles. Most of the evaporation in the annular flow would come from the surface

of the liquid layer which directly receives the heat input. Eventually, the lig-
uid layer would be completely evaporatéd; .then. the liquid phase exists only in

the form of minute dispersed particles which would evaporate either when impinging
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on the ‘superheated wall or by receiving heat from superheated vapor around them,

or by *flashing" as they enter lower pressure environments.

In the bubble flow regime, the vaporization rate is

Rmax n(R ,z,t) 9 -
r=g Y o 4mR°R_dR
v A v v v v
R
o
where
R0 = minimum radius of vapor bubbles
Rmax = maximum radius of isolated vapor bubbles
n = number density distribution of vapor bubbles
Rv = radius of vapor bubble
RV = rate of increase of vapor bubble radius

the number density would obey the equation

an R - X =
St + oy (an) + BRV (nRV) 0

which is analogous to the Liouville's theorem in statistical mechanics.
g

initial condition® of Eq. (23) is

n(Ro,z,t) RV (Ro,z,t) = §(z,t)

(22)

(23)

The

(24)

S(z,t) is the nucleation source strength in bubbles per unit time per unit length

and is dependent on the system pressure, temperature (superheat) and deactivation

history. The above equations appeared as equations (72),(74), (75), (76), (78),

(79), (80) and (81) in [29] and their implications were illustrated in terms of
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an example analyzing bubble growth from a single nucleating site. The velocity
of an isolated bubble can be estimated from first principles; however, since only
its initial growth period is of any interest (small bubbles), its velocity can be

approximated quite well by the mean flow velocity (or liquid velocity).

In the annular flow regime, because of the relatively large interfacial area,
thermodynamic equilibrium would be essentially realized except for a small amount
of temperature gradient required to sustain the conduction~convection heat trans-
fer in the liquid layer. Thus the vapor generation rate FV can be calculated by
substituting Eq. (21) into Eq. (20). The velocity components however can be quite
different. The relation between them can be calculated from a formula derived

from Levy's "momentum exchange model® [497:

0 2 _

C;E) X + L /(-2 (l-X)2 - 1\ = const. (25)
o o 2 2
v (1-o)

where X is the mass flow quality defined as

o DVVV

26
ap V. + (1-0) o V. (26)

The constant on the right hand side is determined by matching (o, Vv’ VL) at the
head of the void to those resulting from the analysis of the propagation of the
void. The relations are somewhat different from Eq. (l4), which implies a quasi-

steady state condition relative to the void. Rearranging Eq. (26), one can write

V. = (_Q_) =) Vv 27)

Or, alternately,
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_ oy X, 5
Vo "L T [ - G R pL] Ve (28)

Above relations fully describe the required constitutive laws for the body of the
annular flow. However, one must also have some description regarding the begin-
ning of the annular flow or the head of the propagating void. In order to do

this, it would be necessary to apply some judgement regarding the transition be-
tween bubble and annular flow regimes and perform self-consistent flow and energy
balance analyses. Since available experimental evidence on sodium boiling suggests
that void propagation proceeds without prior occurrence of bubble growth [43],[44],
the results given in the previous section on '"Void Propagation' applies. Thus, at

the head of the void,

FV = l-_osz(VV+V):|z=’e 8(L) 29

where £ is the instantaneous location of the head of the void and §(4) is the

Dirac delta operator defined in terms of its operating characteristics:

’

S £(z) 8(4) dz = 0 )
z<l
z2>4
g £(z) 8(0) dz = £(O) ) (30)
z<4
S £(z) 6(L) dz = O
/

z>4
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Actual evaluation of Eq. (29) is contingent on the numerical solution of the

following system of equations at z=4:

(CP)L‘ o
o ce—e—t—
) by (31)

..(1 20) + [(1-20? + @, [2 L (1-a))? (1-22,)]
- Olz ) CYZ Olz 0 df; + Ol,@ O!f,

v

! =

X T % oL ) (32)
2 (T)(l-ozz) + o, (1-20,)
\%
! =
(Vi + V) (33)
= 1 '
@, P, (V€+V) Xz or, (Vﬁ+v) (34)
where
@ = superheat at the head of the void based on the pressure on its
downstream side.

Vi = liquid velocity ahead of the void.

Corresponding to the sudden generation of the vapor phase, there is also a rapid

pressure drop across the head of the void:

2

2 .
o. (V. + v) 1 -x
L L y -1 (35)

J)
AP = (
2gc L- %
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This information would be needed to determine ¢.. Egs. (25) through (35) were

given in [29] as Eqs. (44),(71), (102), (103), (l04), (105), (l06), (107), and
(108).

The dispersed flow regime is reached when the duct wall is no longer covered with
a continuous liquid film. The liquid phase is now finely dispersed in the bulk
of vapor as individual droplets. The initial size of the droplet can be esti-

mated from the critical Weber number:

v - v)%
v = = 7.5 (36)

where 8§ is the droplet diameter. (Vv- VL) may be taken to be the value at the
point where the annular flow terminates. The number density of droplets can

be determined from the void fraction:

p. V.- p V
6 L L VARY
No= (3 . (37)
L ﬁ63 ¢ pvvv

where NL is the number of droplets per unit volume and G is the total mass vel-

ocity. Evaporation of the liquid droplets in a dispersed flow takes place simul-

taneously by three mechanisms:
(a) direct heating of those droplets impinging on the duct wall;
(b) heating of the droplets by the superheated vapor environment;

(c) flashing of the droplets as they are carried into lower pressure

environments and thus becoming superheated.

The first two mechanism were considered together in a comprehensive study by

Forslund and Rohsenow [45]. A derivation of the latter was due to Dougherty (46].



44

Consolidating these results, the total evaporative rate can be written as

2
3 5N TN, 8
78 L L T
r = (=) p &) + (" + q7)) (38)
v 6 L ot - hfg A4 £l
According to [45] and (477,
L/4 ” 3/4
&N 1.2 N 2/3 g 0 K AT
L _ L n_'v v W
G, T s §3/6y1/3 “ CP? 42 A*) G2
w 8( -ATL) uv(n ) L + 20 TW

is the rate of loss of droplets per unit volume due to wall impingement. D is the
diameter of the duct. &, is the acceleration field normal to the duct wall and
may be due to the combined effects of gravity and swirl flow inserts, (MV,KV,CP)
are vapor properties at the mean of the duct wall temperature, TW, and the local

%* %
saturation temperature, T ATw and ATL are the dimensionless wall and droplet

sat*
superheats defined as

C, (T -T__.)
* P W sat
ATW = T (40)

fg

(C?)L(TL- Teat)

AT, = -
- (41)
fg

[l

TL is the temperature of the superheated liquid droplet and (CP) is its constant
L

pressure specific heat. Droplet evaporation due to vapor superheat is [48]

2 1/2
™, 8 (V- v)s 8N, K *
hL q" = m {2+ 0.55 [——‘5———1‘——] pelt/3y LY g (42)
£ \ Y C v
g v P
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Here, the vapor properties (vv, K, CP’ Pr) should be determined at the mean of

v
the vapor temperature (superheated), Tv’ and the local saturation temperature.

*
ATV is the dimensionless vapor superheat

C(T - T__)

Py sat
H (43)
fg

AT
v

and the contribution from internal superheat of the liquid itself is [46]

2 5, 3 2 2

* i %
m, 6 _ IMN K, | (AT) - E(;;) - 1] (1-a1)

N 3 - (44)
(D - 1] a-ar)

KL is the thermal conductivity of the liquid and éi is the initigl droplet diameter.

The number density of droplets satisfies the equation

aNL . aNLVL . (_SE\]L)
ot 3t 8t

0 (45)

w

so long as the critical Weber number, Eq. (36), is not exceeded. Velocity slip of

the droplets is governed by

2
C.p (V- V)
-1 =X _ 3 D'v v L
L (at + v az) Vo T % o8 + g, (46)

where g, is the gravitational acceleration along the duct. The critical Weber

number condition can be rewritten as
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0. 82

L S 5,625 (47)
co <

aL =

If and when this condition is met, breakup would take place such that

)

2 (NL)
after before

(48)
(8) = 273 (g

after

before

Following the suggestion in [45], the drag coefficient in Eq. (45) is to be inter-

polated between two sets of experimental data:

Cp = Cpy *+ F (Cpp - Cpp) (49)
where
. 2
0 if a < 500 ft/sec
F = (aL- 500) /5000 if 500 < ap < 5500 (50)
1.0 if a > 5500
CDl and CD2 are shown graphically in Fig. 18.

The temperature of the superheated vapor, needed in Eq. (42), can be determined

from the overall heat balance.

8N, 3
A 2 2 L, ,m8 AT
ﬂD2 4= 0Cp [at (QQVTV) * 32 (dvavTv):] + (ét ) () AL hfg(l ATy)
W

(51)

@ 2 ] = il & - - - =
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q is the heat input to the duct per unit length., Alternately, if the temperature

of the duct wall is known, then

0.8
VD K
j— ..a_ o = pVV 0.4 A _
Cp [:at (OIOVTV) + o5 ( vaVTV) 0.076 (“v ) Pr 2 (T, 'I‘V)
(52)
The void fraction is
TT53
o = 1 - NL (—3-9 (53)
and the vapor-phase mass velocity is
3
18
G- N () opp Uy
pV = (54)
vV 3
1 -N (ILQ__)
L 6

G is the total wmass velocity. Equation (51), in its reduced form, can also be

!
used to determine the initial location of the dispersed flow regime; that is, at
the beginning of the dispersed flow regime, the heat input to the duct is pre-

sumably balanced by the vaporizing heat of the impinging droplets:

4 6NL 710
q = () () op h at transition (55)
TTD2 &t w 6 L fg
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DISCUSSIONS AND CONCLUSIONS

An analytical description of the non-equilibrium forced convective boiling has been
constructed from first principles. The chosen strategy here is to bring out the
relevant and significant features of the overall physical system. 1In particular,
emphasis is placed on the interplay of mass and heat transfer processes under

non-equilibrium conditions for various flow structures.

The large degree of superheat required to initiate boiling nucleation in liquid
metals is attributed to deactivation history in which subcooled liquid would
flood and deactivate larger wall cavities. The subsequent superheat required
to create vapor bubbles attached to the smaller cavities, which would overcome
the surface tension and become a nucleus for continued vaporization, depends

on the maximum pressure and subcooling during deactivation, micro-geometry of
surface cavities, and amount of non-condensible gases. Because of the role of
the micro-geometry of the surface, the phenomenon would take some form of sta-
tistical character. Available experimental data were obtained with test appar-
atus built of commercial grade materialsy special surface treatments and exotic
materials can cause substantial deviations from available experience. Also,
the effects of heat flux and flow rate have not been explored. For liquids
with relatively poor thermal conductivity, temperature gradient in the vicinity

of nucleation would also exert some control over the incipience of boiling.

Subsequent to boiling incipience, relevant flow regimes which would have some
significance in the dynamics of the thermo-hydraulic system are recognized to

include bubble flow, annular flow, and dispersed flow.

In the early phase of bubble growth, proximity between neighboring bubbles may

be assumed to be sufficiently far apart, so that one may make use of the analysis
of the growth of an isolated single bubble. The latter has been treated previ-
ously. 1In the present work, a simplified method of computation was developed
making possible rapid compilation of accurate growth rates for most fluids of
interest. The growth rate of very small bubbles is inertially limited while

that of the relatively larger ones is thermally limited. The growth rate is
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largest for intermediate size bubbles. The range of bubble size for which the
maximum growth rate approximately applies is wide enough to cover most situa-
tions of interest. For this reason the maximum growth rates have been compiled

for water, potassium, and cesium.

Typically, the maximum growth rate is sufficiently rapid that upon incipient
nucleation, one would expect the bubble to quickly grow into a large void,
filling up most of the cross-section of the duct. Subsequent vaporization
would then take place as release of superheat across the head of the void which
would propagate upstream so that continued evaporation would no longer depend
on the presence of nucleation site, nor would there be a significant region of
bubble flow. The analysis of the void propagation was performed with the use

of Levy's "momentum exchange model' applied to the moving void.

Downstream of the void, the annular flow regime prevails. Because of the abun-
dance of interfacial areas, thermodynamic equilibrium is likely to be maintained.
The vaporization rate can be readily computed from the energy equation provided
the velocities of each phase is known. 1In the present works acondition,which is
equivalent to the determination of the slip velocity and is based on Levy's

"momentum exchange model', was recommended.

Continued boiling due to heat addition would finally result in the dispersed
flow. 1In this situation, it was necessary to consider three distinct mechanisms;
namely, direct evaporization of those droplets impinging on the duct wall, evap-
oration of entrained droplets by heat received from superheated vapor, and "flash-
ing" of the droplet because of its internal(liquid) superheat. The impingement
rate was established according to a correlation which primarily attributes drop-
let diffusion to the transverse acceleration field. Therefore, the influence of
swirl flow inserts can be directly evaluated. The transition condition between
the annular flow and the dispersed flow was determined according to a heat bal-
ance between the wall heat flow and the evaporation heat of impinging droplets.
The formula for heat transfer from the superheateéed vapor to the droplet was due
to Tsubouchi and Sato, and the derivation of: Dougherty:was used to ‘account for

the flashing process.



The formulation of analysis proposed in the present work can be expected to yield

meaningful numerical results. Such computations should be carried out for specifi

situations of immediate interest, then careful scrutiny and interpretation of

the results obtained can render valuable inputs to the design technology of once-

through liquid metal boilers as well as appropriate guidance to required research

in this field.

From a rigorous scientific point of view, the experience in performing the studies

for the present work has brought out the need to advance the present state of

knowledge in several aspects.

(a)

(b)

(c)

In the bubble flow regime, for situations in which the individual

bubble size is no longer small in comparison with the distance between
adjacent bubbles, the available information is largely empirical. It
would be desirable to carry out a combined experimental and analytical
study for this flow regime, emphasizing the determination of evaporation
rate and phase-velocity components. Since this condition would become
significant primarily when the bubble growth rate is slow relative to
the convective velocity, the amount of liquid superheat, consequently

the degree of non-equilibrium would not be substantial.

Levy's "momentum exchange model' in the form used to analyze the

annular flow regime in the present work, presumed either that the
acceleration field is negligible or that the heat flux (or evaporation
rate) is very high. TFor a situation in which the heat flux is relative-
ly low, while there is a violent transient such as may be related to

the rapid propagation of a central void, the "momentum exchange model"
may not be valid. The required research should focus on the nature

of interfacial momentum transport with a strong longitudinal accelera-

tion field.

Diffusion of droplets due to shear and turbulence in the dispersed flow
regime is not yet amenable to quantitative analysis. This. information
is relevant to the transition condition from annular to dispersed flows
and will also improve accuracy in the determination of the evaporative

rate in the dispersed flow regime.
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