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FOREWORD
 

'Tis research was c&rried out under Research Grant NASA 

NGL 14-005-140 ,entitled "Fluid Dynamic and Heat Transfer Problems 

-Associatedwith Modern Propulsive Systems." This present report
 

deals with tle problem of jet mixing under non-constant pressure
 

conditions.
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12. Abstract
 

The problem of jet mixing under a non-constant pressure condition
 
is examined in detail by theoretical analysis.* The system of the
 
'non-similar boundary layer equations governing the flow phenomenon 
is solved by the asymptotic method of inteirations. The analytical 
results provided sufficient evidence to the validity of the locally 
similar approximations under these flow conditions. The problem of 
relaxation from an initially non-similar flow field toward,the final 
asymptotically similar flow has also been examined and discussed. 



NOMENCLATURE
 

a coefficients-of series in Eq. (2;24)
 

A coefficients'of series in Eq. (2.34)
 

b coefficients of series defined by Eq. (2.38)
 

C. coefficients of'series in Eq. (2.33)
 

C specific heat at constant pressure
p 

,Cr Crocco number
 

d coefficients of series in Eq. (2.36) or viscosity index
 

e coefficients of series in Eq. (2.36)
 

f stream function in transformed plane
 

F defined by Eq. (2.26')
 

h coefficients of series defined by Eq. (2.39)
 

L reference length
 

m dimensionless pressure gradient
 

p pressure
 

Pr lrandtl number
 

-ReL Reynolds number based on length L
 

T temperature

u,'v velocity components in x- and y-directions, respectively
 

x,y coordinates along and normal to dividing streamline,
 

respectively,
 

y ratio of specific heats
 

r(n) gamma function
 

F(n,x) incomplete gamma function
 

Ekinematic viscosity
 

TI transformed coordinate defined by Eq. (2.12)
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p1a/p, density ratio or T/Tla the temperature ratio
 

defined by Eq. (2.18)
 

A T0/Tola' total temperature ratio
 

Ab' Tob /Toa' freestream total temperature ratio
 

p dynamic viscosity 

vkinematic viscosity 

transformed coordinate defined by Eq. (2.11) 

p density 

7 variable of integration defined by Eq. (2.33) 

U/Ula, velocity ratio or function defined by Eq. (2.28) 

Ob Ulb/uiln freestream velocity ratio 

4stream function in physical plane 

function defined by Eq. (2.31)
 

Subscripts
 

a above dividing streamline
 

b below dividing streamline
 

i initial condition
 

j dividing streamline
 

o stagnation condition 

1 edge of mixing layer 
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1; INTRODUCTION
 

Intensive studies carried out within the last twenty years
 

on separated flows have led to a better understanding of'flow
 

problems in this field. It was recognized that for flow past
 

bluff bodies, the viscous layer cannot cope with the eventual
 

pressure rise and breaks away together with the freestream from

the wall, thereby forming a wake behind the body. The fluid
 

within the shear layer can thus be energized through the jet mix

ing action and prepare itself for the subsequent reattachment or
 

realignment of the flow. The interacting-interplay between the
 

viscid and the inviscid streams controls and determines the over

all flow field. Flow problems associated with the phenomenon of
 

the determination of the flow pattern through such viscid-inviscid
 

interaction mechanisms are now classified as "strong interactions."
 

The fact that the flow conditions downstream of separation contribute
 

equally to the overall flow determination, including its influence
 

on the location of the point of separation, properly illustrates
 

the typical elliptic behavior of all separated flow problems, which
 

is in sharp contrast with the classical boundary layer theory enunci

ated by Prandtl in its original form.
 

However, the boundary layer concept is very important and use

ful for all separated flow problems. Indeed, studies of these strong
 

interaction problems are based entirely on the boundary layer con

cept;. the pressure field is impressed and dictated by the adjacent
 

freestream. The need to correct this basic interacting link bezween
 



the viscid and ,inviscid flows only arises,when the effect of
 

streamline curvature is no longer negligible.
 

Since jet mixing is one of the important flowv components in
 

separated flow, many investigations have been carried out to study
 

constant pressure jet mixing, as a major portion of the wake
 

boundary is under an essentially constant pressure condition. With
 

idealized approaching flow (the initial condition for jet mixing),
 

this mixing flow field exhibits similarity; the governing-,partial
 

differential equations can be reduced into -an ordinary differential
 

equation through suitable transformations, and the solution of the
 

flow problem is thereby greatly simplified.
 

There are many practical situations where mixing occurs,while
 

the pressure varies in the main direction of flow. For exaniple,
 

within an'ejector system the inviscid interaction between the pri-"
 

mary and secondary streams produces changes in the flow properties
 

along the course of the flow. Thus, the mixing between the primary
 

(faster moving stream) ahd the secondary (slower stream) flow is
 

.- A previous method of
precisely such a variable pressure mixing. 


dealing with such a flow problem [lit was based on a purely specu

lative approach that the flow at each location has a locally similar
 

profile,, despite the fact that the flow is truthfully non-similar.
 

.Pithough this local similarity concept gives a reasonable estimation
 

of this effect, the validity of this approach was never properly as

sessed. Thus, one basic motivation for studying jet mixing under
 

the influence of a pressure gradient is to obtain the correct or
 

tNumbers in brackets refer to entries in -REFERENCES.
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more nearly exact solution, so that the result from any other ap

proximate analysis to this problem may be compared and evaluated.
 

A modern concept in air breathing propulsion, conceived re

cently for propulsive systems under supersonic flight conditions
 

such as a scramjet, relies on a successful combustion process oc

curring within a supersonic flow field. As combustion within a
 

flow field must depend on the diffusive process within the jet
 

mixing region, it is a necessity that the mixing process under the
 

influence of a pressure gradient must be understood, since the pres

sure within such flow fields varies considerably.
 

It was also expected that the-understanding of jet mixing
 

with a pressure gradient may lead to the possibility of attacking
 

flow reattachment onto the solid wall since all these types of
 

problems involve non-similar flow fields. It is known that the me

thod of dealing with partial differential equations of the boundary
 

layer type would he much more complicated than that for ordinary
 

,differential equations when similar situations prevail.

t --

A considerable amount of theoretical and experimental work on
 

jet mixing problems has been performed previously. Chapman [21 oh

tained laminar jet mixing similar profiles. Crane [3] calculated
 

.turbulent similar flow solutions. Studies of developing flow
 

under constant pressure conditions were all based on an integral ap

proach or finite difference calculation [4,5,6]. There are also
 

many other calculations for constant pressure jet mixing problems
 

and they are not mentioned here.
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Oneof the earliest studies of jet mixing with a pressure 

gradient was done by Napolitano and Pozzi [7] for laminar in

compressible flows. They defined a velocity defect function
 

and found the solutions for particular types of pressure gradi

ent from'the first two terms of the assumed infinite series.,
 

Their results for zero pressure gradient was compared favorably
 

with other exact numerical results. 'Other studies of mixing be

tvieen infinite stream and finite jet or wake with, pressure gradi

ent [8,9] relied the linearization of the momentum equation.
 

Sabin [10] also obtained the approximate solution for incompres-

sible turbulent mixing between'two infinite streams with a pres

sure gradient. Perhaps a more thorough study of mixing under
 

variable pressure conditions was carried out by Greenberg [11].
 

In the interest on the effectiveness of the coolinggas ejected
 

into the stagnation region of a re-entry body, he studied-first,
 

the mixing near the stagnation point and within the region where
 

theeffect of the boundary layer on the wall influences the,mix

ing region. In the stagnation region, the jet mixing problem
 

was recognized to possess a similar solution which was solved by
 

using Meksyn's method for boundary layer flows [12]. In the se

cond region of mixing downstream of the stagnation point, the-flow
 

is governed by the full non-similar equation. It was recognized
 

that Meksyn's method could not sufficiently approximate the initial
 

mixing region near the stagnation point and a series solution re

sembling the Blasius series for the non-similar boundary layer
 

flow was incorporated. Some calculations were also made using a
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finite difference technique for each of the two mixing regions
 

and compared With the series solution; in both cases the agree

ment was reasonably good.
 

It should be pointed out that Greenberg did not follow
 

Meksyn's scheme in the evaluation of the integrals by the series
 

inversion technique. Since this series inversion would improve
 

the convergence of the resulting series, it is an important part
 

of Melksyn's "asymptotic method of integration." Therefore, the
 

potential of studying non-similar jet mixing by Meksyn's method
 

was never properly explored.
 

The present investigation of jet mixing with a pressure
 

gradient is a part of the overall effort in the study of separated
 

flow problems at the University of Illinois. Previous studies
 

concerning constant pressure jet mixing of turbulent flows em

ployed the integral momentum technique after adopting the error
 

function for the fully developed flow profiles [13,14]. The tur

bulent flow structure of such flow fields has also been discussed
 

[15]. A numerical integration has also been applied to the ordinary
 

differential equation for a similar flow field [16]. In a recent
 

investiation [171, Meksyn's method of solving boundary layer prob

lems was applied to studying mixing problems with similarity. It
 

was also recognized that this method has the potential to study
 

non-similar flow problems and therefore Meksyn's technique forms
 

the basic method for the present investigations.
 

The general scheme in dealing with such problems of steady,
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compressible, non-isoenergetic jet mixi-ig for eitherM laminar or
 

turbulent flows is presented in Chapter 2. To assess the validi

ty of the method of solution, the case~of constant pressure jet
 

mixing has been presented in the following chapter and compared
 

with another solution from numerical integrations. In Chapter 4
 

the solution to the problem of compressible, laminar jet mixing
 

under the influence of a streamwise pressure gradient is derived.
 

Finally, the problem of incompressible, constant pressure jet
 

-mixing is examined in Chapter 5 when the initial mixing profile
 

'is non-uniform, resulting in an asymptotic development toward
 

the fully developed flow far downstream.
 



2. 'BASIC FORMULATION AND DERIVATION OF THE TWO-DIMENSIONAL JET
 
MIXING-BETWEEN: TWO PARALLEL STREAMS UNDER THE INFLUENCE OF
 

A PRESSURE-GRADIENT
 

2.1 FUNDAMENTAL EQUATIONS AND DISCUSSIONS OF SIMILARITY
 

If one agrees that the present jet-mixing problem can be 

treated within the framework of the boundary layer concept, the 

basic differential equations governing the flow phenomena are 

the,system of boundary layer equations, namely, 

-(2.1)
a(pu) + a(pv) =0 

Tx +y
 

/ u +p n 2- a (2.2a)a u (tp 2un 


_P = 0 (2.2b)
 
3y
 

and

u 3TaT ap a / T /u 23)
 
Pep -u -) U~x + ay+ ; 23
+ v- = K-) EO ky /

where 6 is the kinematic viscosity V for the laminar flows and the
 

"eddy" kinematic viscosity for turbulent flows. The energy equa

tion can be combined with the momentum equation and written as
 

p + y / 3T + (Pr (2.4)
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.where the Prandtl" number., Pr = C sp/k, and the specific heat C 

have been assumed to be constant. The initial conditions con

sidered here are (referring to Fig: 1), 

u(O,y') = ulai = la (O), TC(Oy) = To1 a y 0
 

(2.5)
 

u(O'y) = ulbi ulb(0), T0(O,y) = Tob y < 0
 

- The boundary conditions take the form 

u(Xo) = ua(x) T(x,-) = Tla 

u(x,--) =ulb(x), T (x,--) = T 1, (-2.6) 

v(xO) = 0
 

with
 

dp du1
 

dx-= -l dx
 

A usual practice of solving this system of partial differ

ential equations is to seek suitable transformations and com

binations of the dependent and independent variables of the prob

lem so that a "similarity"t solution can be found and the system
 

of equations transforms into ordinary differential equations.
 

t"Similarity" usually refers to similarity bf velocity profiles,
 
t_.., the Velocity profiles within the region can be represented
 
by a single profile in the transformed plane.
 



This has.been studied exhaustfully for wall boundary layer flows
 

(e.g., [181) and it was found that for the existence of similarity
 

not only must the boundary conditions and the initial conditions
 

'be "compatible," the pressure gradient associated with the flow
 

problem is also restricted to specific types of functions.
 

When a similarity situation does exist for wall boundary layer
 

flows, the unknown function ft(q), (n is a combination of the x- and
 

y-coordinates) associated With the velocity profiles, invariably
 

satisfies the boundary conditions 

f"(fl= 0) = u(x,yu6(x=.0) = 0 

f(n+ c) F u(x,y - ') 1u 1 (x) 

For the present problem of jet mixing the boundary conditions im

posed on the velocity profiles are
 

u(x;y + M = 1
 
Ula(x)
 

and
 

u(x,y -) llbX)
 
uII1 (x) = a (x) = 4b x)
 

as a result of the existence of the pressure gradient. Thus, for
 

the same transformations as employed for wall boundary layer flows.
 

9
 



the function fI cannot be a function of T1alone, since f' must ap

proach a value of b(x) as y + -o. It may, therefore, be concluded 

that in general the velocity profiles of the jet mixing region 

under the influence of a pressure gradient would not exhibit simi

larity.' 

There is one specific flow case which has the possibility to
 

exhibit similarity and has been discussed by Napolitano, Libby, and
 

Ferri [19].t The two compressible streams must have the same stag

nation pressure but different stagnation temperatures. At any
 

station of the flow, the-Mach numbers of the two streams are the
 

same and the value of b will be a constant under a non-zero pres

sure gradient. The stagnation temperature ratio and the velocity
 

ratio cannot be independently selected. This particular flow case
 

does not occur frequently in separated flows where jet mixing
 

usually occurs between streams of unequal stagnation pressures.
 

Perhaps it may be argued that the meaning of "similarity"
 

.should not be restricted to velocity profiles. If one chooses the
 

stagnation pressure as the dependent variable, the boundary con

ditions imposed on the stagnation pressure would be
 

po (x,y + 

P. 
cia 

and
 

tThe stagnation flow studied by Greenberg [11] belongs.to this'
 
category.
 

http:belongs.to


p.(x,y + -) Polb
 

Pola = -= constant
Pola Po1a 

However, flow problems with different pressure gradients with the
 

same terminal values of stagnation pressure ratios at y = 
+
 

would have different stagnation pressure profiles in between. 
This
 

fact implies that the stagnation pressure profiles also will not 

exhibit similarity. 

As a result of these discussions and in view of the consider

ations already made elsewhere [19], no serious attempt has been
 

made to find transformations such that a similar solution in a
 

more general sense.may possibly be found for the flow with a non-zero
 

pressure gradient. 
 Instead the usual boundary layer transformations
 

based on the velocity potential and stream function for the inviscid
 

main freestream have been used and the resulting partial differential
 

equations solved. The study undertaken in this chapter is 'forthe
 

general case of compressible, non-isoenergetic jet mixing between
 

, two parallel streams of the same composition for laminar or turbu

lent flows, with special cases being examined in the succeeding
 

chapters.
 

The basic scheme upon which the present analysis is based is
 

to divide the flow field into two regions of flow along the stream

line which separates the two streams. 
 It is recognized that each
 

of these two regions resembles a "boundary layer type" of flow;
 

the velocity changes rapidly from the value at the dividing
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streamline and approaches the freestream value asympttically. 

Therefore, a boundary.layer method is used to solve each of -the 

two problems, and the conditions that the velocity, temperature, 

and their gradients should be matched are subsequently applied
 

to join the two streams along the dividing streamline.
 

The Meksyn method [121 is used to obtain the solution for
 

each of the boundary layer flow problems. His method essentially
 

consists of assuming a power series solution of T1 with the coeffi

cients as functions of E (transformed x variable). Treating the
 

non-linear partial differential equation as a non-homogeneous
 

linear differential equation in the second derivative of the
 

function, one may integrate twice, and the resulting integral is
 

evaluated by the method of steepest descent. This calculation
 

will produce a set of ordinary differential equations for the
 

coefficient functions of the assumed series for mixing with a
 

pressure gradient (non-similar flow case) or a set of algebraic
 

equations for cases of similar jet mixing (constant pressure con

dition is necessary but not sufficient). After these coefficient
 

functions are evaluated, the velocity and temperature profiles can
 

be established through additional straightforward calculations.
 

2.2 THE EQUIVALENT TWO STREAMS AND'THEIR MATCHING
 

As it has been mentioned in the preceding section, the mixing
 

region is now split into two subregions (Fig. 2a) along the dividing
 

(or separating) streamline; each is identified with a subscript "a"
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(above) or "b" (below).- If one employs a simple transformation
 

for the b stream by
 

xb = X3 = -y, Ub= U, 7b -v, Tb T, (2.7) 

one would recognize that the individual flow problems associated
 

wi-th the two streams (Fig. 2b) will be governed by the same differ

ential equations, Eqs. (2.1), (2:2) and (2.4) and the same.types
 

of initial and boundary conditions, (thus the subscript a or b is
 

superfluous here) which are given as
 

u(O,y) = u1 (0), T(O,y) = Te0, y > 0 (2.8) 

and
 

.u(x,FO) = u (X), T0(x,) = Tol 

u(x,0) = u. (x), T0(x,0) = T . (x) (2.9)
 

v(xo) = 0
 

with
 

dp duI
 
dx =-PlU1 

where u. Cx) and T. x) are the velocity and total temperature of
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the dividing streamline, respectively.
 

The two individual flow problems are necessarily related
 

to each other due to the fact that the velocity, velocity gradi

ent, temperature, and temperature gradient must be the' same fdr
 

.each stream along the dividing streamline. Therefore, the follow

ing four matching conditions must also hold
 

u. (x) = u. b(x) 
a b3
 

2a)a (x,o) -i b (x,o) 
@b ay)
 

(2.-10)
 

Ta (x) = T.b(x)
 

(x0)
3T (x,0) 
a @Yb 

2.3 TRANSFORMATIONS FOR LAMINAR OR TURBULENT FLOWS
 

Fpr the individual flow problems under consideration, the co

ordinate transformations are introduced according to
 

2 

c a a
nl x)
 

= Ula i 

T1= Re ila~P d(t) (2.12) 
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with
 

Ulai L 
ReL - a01I 

and 

Pla 
 T 

la 

It is stipulated that 6/ 2-d is a function of'x only, and the
 

index d is introduced for the convenience of adapting any commonly
 

used viscosity law for both laminar or turbulent flows into the
 

analysis. L is an arbitrary reference length.
 

Introducing
 

2uaiL f(E,T) (2.13) 

and
 

T 
h( ,T) = T (2.14) 

one may easily establish that
 

U = f (2.15)
P ay la 11 

and 
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I.3 _ Pola U; L Ft 
p ax P [_(~ +V-C) +~cnk 3 \2ax6a 

where the subscripts n and indicate partial differentiation.
 

The momentum and .energy equations, Eqs. (2.2a) and (2.3), are now,
 

respectively, transformed into
 

_df + if = ) + 2g(f f ff(.7 

where
 

=-2 dua
2Ula 

(2.18)
 

-and
 

n-d2
 

where Crlais the square of the Crocco number of the main freestream
 
22 

and
 

A.--Cr '22la 1 nr (2.20) 

1 - Cr1 a 

holds for an ideal gas.
 



The initial conditions can now be "written as 

u.(O) To0 
f (01) - and A(O,q) = - (2.21)

Ulai Tola-


The boundary conditions become
 

SU To11 (x-)
f(E) =u x) A(g,) - o 

-la Wola
 

u.(x) T .(x)
 
f C ,o)= I A(g,o) o'
 

- u a(ola 
(2.22)
 

f(,O) = 0 

f (,o) = 0 

Finally the matching conditions are
 

f (;,o) = f n(E,O) 

f C(,O) = -.f(O) 

A (E,0) - CrEf (E,0)] 2 = (,o) - Cr Ef (,0)3 (2.23)
a Ia afl labf
 

°A ( ) - 2Cr 2 f (,O) f C(0)
aTI la ar) aflflI
 

2

-[kn(EO) - 2Cr 1 a fn(C,o) fnn(Eo)J 
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The last two equations in Eq. (2.23) can be simplified into
 

A(,)= Ab(,O) 

and" 
 (2.23a) 

A (E) = 

It is appropriate to point out now that the transformation
 

introduced in Eqs. (2.11) and (2.12) are a generalization of the
 

Illingworth-Stewartson transformation [20] so that all mixing
 

problems, whether laminar or turbulent, can be treated by a single
 

formulation. For turbulent mixing when the original exchange co

efficient concept by Gortler is extended to compressible flows so
 

that the average value of the eddy diffusivity across the flow is
 

utilized, i.e., e = £(x), one needs only to set d = 2 in the analy

sis." On the other hand, stipulation .of 6/ 2 x) has been introduced 

by Ting and Libby [21] and Alber and Lees [22] for turbulent flows
 

to expedite mathematical transformations, and one needs again only
 

set d = 0 for these situations. Another eddy diffusivity model
 

suggested by Feri, Libby, and Zakkay [23] is lit 
 Pt (x) and one 

may adopt this model into the present analysis by setting d = 1. 

Indeed, setting d = 0 covers all flow cases for laminar jet
 

mixing since the expression
 

(x)= P--x) 
2 2 

Pla
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is effectively the relationship
 

= b(x) T
 

ola
 

introduced by Chapman for laminar compressible flow to decouple
 

the energy and momentum equations. 
For these flow cases the trans

formations, Eqs. (2.11) and (2.12) become
 

x~lb(x) p (x) (X) 

0oa Ulai L) 

and
 

4Re u1 Y 

lalad
 

which is precisely the Illingworth-Stewartson transformation.
 

It is worthwhile to remark that the value of d may also be
 

evaluated according to'anj viscosity-temperature relationship
 

such as Sutherland's formula.
 

2.4 METHOD OF SOLUTION
 

For each of the two streams, series solutions are assumed
 

,or 
the stream function f and the dimensionless stagnation tempera

tume A. They are given by
 

>) n! 
an() 2 2 

= a,(E)n +- 2-- +- " (2.24) 
n19
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and 

n,(V) n! 

))=- n + T +- =E() ( n() (2.25) 

n= 0
 

'Two of the boundary conditions, Eq. (2.22), are automatically satis

ieas aresult of the assumed form of the series. 

Upon substituting the series, Eqs. (2.24). and (2.25), into the
 

differential equations, Eqs. (2.17) and (2.19), the coefficients
 

a., a4 , and 02" "3 can be found as functions of all
 

a2 , 0., 0,., and their derivatives. It is found that
 

a(1* 	 2da3 	 . 2Cr 2a, a 2 ) + 1 
Cr a L 	 (ICr 

0 la 1IC, 	 l 

2=k2 

2_____ al + 2 a, a,) (e C a 2] 

1 -Cral2 

2Cr 2 a 22 

a4 1 2 2 - la 2a 2 

+ae C 	 +(1-2r
(d2Eaa 4a )a,' 
+O@a3 -2crl a - ala) a3aaa3]- 1_2Cri2 

0.-Ca
 

13 la 1 l 2 

-2 - E'+ 	 d r+ 1- 2-f2 XaXa + 2ga aj 

(1.- C rl1) lCr i - Crla1 la 

(d 	 + + 2 - n) 2 2 1) n-I 
( 0- Crla a 


)0
(n 

na 

1 l
(0, 2Cr 1 aa + + 

12 Cr 
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81 	 [( 1 - 2CrIa a)01 - 2(Pr -1)
.2 - c 2, C 

2 - 22 	 2 
* CnIa o Cr1,a) (as 3 + a.) 

2 2 
+ 	2d(Pr -1) Cr1 - 2Crlaal2) a, a 

+'--- F lao-1 
2Fr ~ r d+11,OC C22 

2 o ra1 

2C (aa + a )] 02r
Oo _Cr12al 

112 

21e 2ia%a2 ] 02+ d[0 -	 2Cr,,a 21 
2 " 2 2 

- 2 1) - ) +'(Pr Cria[(81 2Crala 2 (a e2) 

2 2
 
+(e 0 Cra a) (aa 4 

+ 3a 29)] 
Ct2(r1 { E62 2 t 2 )]at2Cr 
 -C 

2d(Pr - 1) Cla 2 a 52 )] 

+[ -2Cr aa (2 a a2 (6 - 2Cra-. a2
1 la 1 2 1 	 a 2)/ 

+ 12 E-Pr a 06 + 2Pr (a + 2')(1 - Cr 1 )o 
2), f 2 0' 

-2Pr, a0eil (0, - Cr2a2 + 2Pr a 01 
1 Pla 	 0 

(d + 1) d . . . (d + 2 - n) 
(n+- 1),

n'= 	1 

2 2 n-I 2
(a - Cla a - 1) (1 - 2Cra a1 a2 

The momentum equation is first integrated with an integrating
 

( 	 )
factor e , where
 

F(E,,n) = 	 f df dn (2.26) 

0 

'01 



and the resulting expression may be written as
 

(2.27)
f " 

no 

where
 

a eI- - f 

0
 

+ 2E(f f -ff f l d4 (2.28) 

A second integration yields.
 

{
0 

Wul / -F 

--a- a, = e ,n) dn (2.29) 

Following a similar manipulation for the energy equation, one obtains

whrA= e - (Pr) (2.30,) 

where
 

92(ET)sd~e N( EO)] + fe I Ie'F2FrCf AE -f A) 

(2K"-f f jd (2.31)(pr-_l) Cr~21a '5nTITT 

T 01 -Pr 

(2.32

e Q(E,n)) dT e0 = 

0
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The integrals given in Eqs. (2.29) and (2.32) are evaluated by 

the method of steepest descent. Meksyn pointed out that, due to the 

special character of the boundary layer problems, the velocity and 

temperature gradients are rapidly decaying functions away from the 

C-axis. The main contribution of the integrals comes from the region 

near il= 0, the stationary point of F. Only a few terms in the series 

are-needed and the low radius of convergence of the series is thus 

unimportant. 

To evaluate the integrals in ,Eqs. (2.29) and (2.32), the series
 

for F is first inverted by defining
 

n nT = 22= (2.33) 

n= 0 

where the coefficients Cn may be found by carrying out the integra

tion in Eq. (2.26), and
 

A 
= -+ m (2.34) 

m 0 

The coefficients Am have 'been found to be given'by' 

" A =C-1/2
0 0 

C 
A

1 - 2 
0 

C2 (2,.35) 

A 
2 

3 
2 

C2 
C5/2 

15 
+8 

1 
7/2 

0 0 
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The integrands of Eqs. (2.29) and (2.32).mus-t be expressed also
 

as functions oft. For this purpose, it is convenient to-define (see
 

[12] 	for details)
 

m/2
din
 

m 0
 
(2.36)
 

dn -1/2 m/2 

dt e t
 
m= 0
 

The 	coefficients d and em have been found to be given by
 

bA 	 hA
 
0 0 	 0 0


d 	 e =
0 	 2 o 2
 

bA, 1 ) h A A
bA h 
d + 20 e 2 + (2.37) 

where the coefficients bU and h are the coefficients of the expansion 

of'4 ahd 0 in T, namely, 

b = ( ,n= O) 	 (2.38)
n 	 an
 

nh = 	- ( , = O) (2.39)n 	 aTIn 

and can be evaluated from Eqs. (2.27) and (2.30).
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Equation (2.29) may now be written as
 

U11
 
ae 1 (2.40U=fe0 (m=t0 am12)d 

which becomes, upon integrating,
 

u' - ( + l )a(g) (2.41) 

ula 
 0
ii= 0
 

Likewise for the energy relationship, Eq. (2.32) becomes
 

T1 C. Pri -112m/ 
" (2.42)
-eTol o2m eem '2d 

0 m O 

which yields
 

ol 2 (m+lh e1(2) (2.43) 
o 2 

01a 
 = 

where r(m + 1)/2] is the Gamma function.
 

The above.equations hold for either of the two streams. There

fore, Eqs. (2.41) and (2.43) yield four relations, two for each stream.
 

These equations contain basically eight unknown functions: ala, a2 a 

~ab a o and 6 . The remaining four equations ndeded 
al 2b' oa ' 01a' ob,'n lb 

to obtain a solution are the following four matching conditions:
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a () = alb () 
a ( ) lab (.4aa = -ab ( ) 
2a ()(2. 
 44)
 

and
 

a1 (E) =-01b 

Once the eight coefficient functions are evaluated (often through
 

numerical integrations), the velocity and total temperature profiles
 

within the mixing region can be found from
 

u /~
 
(2.45)
a (m + , T)d() 

U1= 0
 

and
 

T co 

T 0 + r (m 2 ) Pr- '+.I) e() (2.46)

T 0a
 

where F[(m + 1)/2,t] is the incomplete Gamma function and the l,T
 

relationship given by Eq. (2.34) is needed if the results are to be
 

interpreted in the E,71 plane. The additional transformation relation

ship between q and y given by
 

YL U f $ dn (2.47) 
la la
 

is also needed in order to obtain the profiles-in the physical plane.
 

26
 



It should be stressed that, in locating the profiles within the 

physical plane, certain boundary (or constraint) conditions assumed 

.bythe inviscid streams have to be known [e.g., v((C,n= ) = 0 or 

vb(E, = - ) = 0]. The system of coordinates within which the solu

tion of the present problem is described is intrinsic and it can only 

be localized after the trajectory of the dividing streamline is known 

in the physical plane.
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3. SIMILAR,'NON-ISOENERGETIC, 'CONSTANT PRESSURE JET,MJXING
 

The general analysis presented in Chapter 2 can easily be reduced
 

to cases of similar, non-isoenergetic, constant pressure jet mixing
 

for,either-laminar ot turbulent flows. The conditions that the pres

sure be constant (zero pressure gradient) and the uniform flow entrance
 

condition compatible with the boundary conditions would assure the
 

similarity (see [241) of the velocity profiles The stream function
 

f thus depends on T1only;the unknown coefficient functions become
 

numerical constants which are related now'by algebraic equations -re

duced from Eqs. (2.41) and (2.44).
 

3.1 -BASIC EQUATIONS FOR CONSTANT PRESSURE JET MIXING
 

Equation (2.17) is now reduced into
 

d + ff = 0 (3.1)
 

and the energy equation, Eq. (2.19), becomes, for unity Prandtl num

*ber,
 

d + fA, = 0 (.2) 

An obvious solution which satisfies the energy equation is
 

A = Af' + B
 

which is,-of,course, the Crocco integral relatiohship. After.one
 

PRECEDW" PAGE T LAA"{ '?TOT FfrJj 
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evaluates the constants A 	and B in the above expression according
 

to the boundary conditions, it becomes
 

A =l +!- b (1 f') 	 (3.3)
 

Since
 

A Cr2 f,2
 

A-Cria
1 - Cr
 

Sq.(3.1) becomes
 

ft + (1- f,) 	 - Crda ff1T bfC 2
+ 	 2 \d
 

If 
 f,,
 
la
 

2

1 Cr 


-(2C 2 = (3f)
-f1 	 0 

ft
1+t!T (2 - 'Cr 2 1+ -b (1_f',) _ C 2 f,2 

a
'. - Lb. 

The coefficients a3 , a4 , , , C1 , , are now given by 

da. (Q + 2Cr2 a a1 ) 
3 -2 2 
1 - a)- Cr2 

1Ia 1I 

ls Q(1 	 a2
 

2
(1-Cr )d[(1-2d)(Q+2Cr2 a )a2 a-2dCr2 3J-(Jy)d+l a 
Ia. 1 alaa2 1 12 

U4 - CrIad El + Q(l - a ) CrIa a1( 


(3.5")
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i(+ )d a
 
C =22(1- Cr )
 

la 

+ . dd-1j.. d+l-nj ni
1 2! [. fl+ n Y1
 

2 2 d (3.6)tC2 
3(lCr1 a a)
 

where
 

Ab1
 
Q = 

=Y1 Q(1 al) -Cr 
2 

a 
2
 

=
Y2 -Qa2 -2Cr 
2, 

a a 2 

Finally, the coefficients b and d aren n 

b a2
 

b- 1 2 a d 
 (3.7) 

1b a + . 
2 4 1 r 2 Ta 1a2 

±For integer values of d, the infinite series in these equations have
 
a finite number of terms.
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and 

b
0


d 
 = 

o 12U 

d1 	 2 

0 (3.8) 

B C 	 B C bC b
 
15cr1 3o 2 3 11 2
 

2 16 4 5/2 4C/2
T72 5/2 

0 	 0 0 0 

For the two streams under consideration (identified with subscripts
 

a and B), Eq. (2.41) gives
 

,- a, =r d + r(1) d (2)+ d2 • 
(3.9) 

4
 -ab-r 	 (-) dob + rl) d b+r d2b+
 

The matching conditions given by Eq. (2.44) reduce into
 

alb la 

and
 

a2b -a2a
 

The four unknowns alas a2a , alb' and a2 b can be found from the above 

four algebraic equations. 

It should be mentioned that, for turbulent jet mixing under the 

condition of constant pressure, the eddy diffusivity formulation usu

ally assumes the form of 
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C (x) =1- x u 
- d 2 la 

2 I 


where a is the spread rate parameter. The value of c for incompres

sible flow has been established to be around 12. It is also known
 

that d increases with the freestream Mach number, indicating a smaller
 

spread rate, although the precise variation of a is still subject
 

to \speculation. This information is needed, however, in order to
 

interpret the results of the calculations and its comparison with
 

experimental data in the physical plane as dictated by Eq. (2.47).
 

3.2 RESULTS
 

The infinite series of the right side of Eq. (3.9) is the asymp

totic representation of the integrated functions and the resulting
 

values of a and a2 depend upon the number of terms employed in the
 

calculations, although the series showed rapid convergence for nearly
 

all cases investigated.
 

These equations were programmed on a digital computer and values
 

of a and a2 were found by using Newton's iteration method of'solv

ing a system of nonlinear equations. With given values of 4 b' Ab'
 

Cr , and the index d, values of a and a2 were calculated for suc
laI
 

cessively larger numbers of terms from the infinite %eries.* In Figs.
 

3 and 4, a comparison of the results for al, which represents the
 

,velocity of the dividing streamline, and a2, the velocity gradient
 

at the dividing streamline, is shown for different numbers of terms
 

from the infinite series with b = 0.0 and 0.8 and k = 1.0. They
 

*It is not necessary to take the same number of terms from the two
 
infinite'series in Eq. (3.9); however, it is expedient for numerical
 
calculation purposes that same number of terms are always used from
 
the two series.
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indicate that the convergence is poorer for larger values of Crocco
 

number and viscosity index d. However, for the larger values of ve

locity ratio b , the convergence improves markedly. Such an example 

is also shown in the same figure for b = 0.8 where only the one

and two-term'results are presented for cases of d = 0 and 2. The
 

four-term results agreed very well (usually up to the third digit
 

after the decimal point) with those obtained from numerical integra

tion of the ordinary differential equation, Eq. (3.1), given in [16J.
 

Figure 5 shows the results of a, for various values of k indicating, 

the convergence of the series and its relative insensitivity with
 

respect to the stagnation temperature ratio.
 

Results of these calculations for many other cases have been
 

obtained and are not reported here. In general, taking three terms
 

from the series would give good results. The series showed conver

gence' except for larger values bf b and Crla where the fourth term 

assumes a larger value than the third term, although they all remain
 

small.. 

The velocity profiles have been calculated and plotted against 

- the similarity variable p. Figure 6 shows-such a calculation for 

various viscosity index values. It is interesting to observe that
 

all profiles shown in that figure seem to pass through a common point;
 

its physical significance is, however, not obvious. Figure 7 also
 

shows velocity profiles for various values of Cb= = 1.0,
(d 1.0, A 


Cr2 
 = 0.5). In Fig. 8, the effect of the main freestream Crocco
Ia 

number is illustrated for a velocity ratio of 0.5 (Ab = 1.0, d 1.0).
 

The width-of the mixing region in the p plane is seen to decrease as
 

the mainstream Crocco number increases.
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4. 	TWO STREAM LAMINAR JET MIXING WITH
 

A PRESSURE GRADIENT
 

In many of the practical situations, turbulent jet mixing occurs
 

within a non-constant pressure flow field and a study of the turbu

lent flow 	case would be more suitable for application purposes. How

ever, one 	shoula remember that, due to a lack of basic knowledge in
 

turbulent 	flows, the prediction of eddy diffusivity under the influ

ence of a pressure gradient can only be based on speculations and
 

.it would be difficult to interpret the result in the physical plane.
 

The main purpose of studying laminar flow cases in this chapter
 

is to investigate the mathematical method for such flow conditions.
 

The knowledge gained in this study can no doubt be equally applica

ble to turbulent flow cases.
 

It has been shown in Chapter 2 that, if one sets d = 0, one ob

tains
 

__ = - (x)
22 

which is equivalent to the statement that pp is a function of x only.
 

This is the assumption usually introduced to solve laminar flow prob

lems. We now set d 0 and the momentum and the energy equations
 

,become
 

f + ff =X( - f2) + 2(ff - ff ) 	 (4.1)
flflyl Till fl flT ~ TITI 

and 

A +Pr f A + (Pr-- 1) Cr2 Cf )2T 2Pm (f A -f A ) (4.2)T ~TiTil)Ia 	 prr) El 
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where
 

x p~x) ua (x)
 
ola a.
 

0 

- (4.4)
dE
ha 

and 

A- 2l (4.5) 
2 

As-already presented in Chapter 2, one would obtain Eqs. (2.41) and
 

(2.43) which are to be written with subscripts a and b and solved
 

with the matching conditions given in Eqs. (2.44).
 

For this case, the coefficient functions for the series in Eqs.
 

(2.24) and (2.25) become
 

a = eo -Cr 2 a2 aa 

a. a 
=, 

Ca 2-+(a Ia 3 ; 

a4 =-aa 2 + ? 2aa 2 + 2 a (4.6) 

and
 

2 2 e 

e2 = -2Cr2(Pr - 1) (a, a + a2 ) + 2Pr a O 
2 

03 = -Pr a - 2Cr2(Pr - 1) (ala + aa)
1 la 14 23a(4.7) 

'+ 2Pr C(aI0 + a20 - al' ) 
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where the primes indicate differentiation with respect to g. The 

coefficients C in Eq. (2.33) can be written as
 
n 

a 
n+l
C = (4.8)
(n+ 2)! n = 0, 1, 2, 

Finally, the coefficients for Eqs. (2.38) and (2.39) are found to
 

be given by
 

b a 	 *h
 
o 2 	 o 1 

hb 	 a h I = 0
 
1 3 2 
 (4.9) 

b aa+aI =FaO0 +60
 
h2 12 4 2 = a
 

and Eqs. (2.41) and (2.43) can be written for each of the two streams
 

as
 

UI---- a d + + r + . .).d (4.10)U 1 o 12 

T 0 =r(21)P-l/2 eo +r(l)hK'- el 

ola 
1 2 

*1 .+r () pr e r+ 	 (4.11 

2 2 

with
 

d 2 2 o 2 
1 / 

dl 3 a) 1a . (4.12) 

5a3 712 5aa 5/2 (a a + a 2 

d2 192 al 8 ) +21 
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and
 

1 2
 

e Ia2 6' 

1 Sa2 aI 

(4.13) 
7/2 Ga 5/2 a 5/2 

52 3 13 (22 2( 
e2 192 1 - 3 2 a, 8 

(Pr a 6 e + 6 2 /
4 ( , 

with matching conditions
 

ala ab 

a -2b 
 (4.14)
 

ea 

ob
 

a lb 

4.1 METHOD OF CALCULATION
 

With the given initial condition (two uniform flows) and the 

prescribed pressure gradient (represented by the function X), aa' 

alb' a2 a' a2 b' 6 a oh' la and 6lb are to be found from Eqs. (4.10) 

and (4.11) and the matching conditions (4.14). 

Perhaps it is proper to mention that the arbitrarily prescribed
 

pressure gradient may be either generated due to the variation of the
 

external inviscid streams (inviscid interactions) or may be induced
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due to the mixing action itself (viscid interaction). In general,
 

the inviscid flows are usually subjected to the constraint that a
 

natural boundary,condition is imposed, (e.g., va ( ,c) = 0) on the
 

jet mixing region so that the location of the profiles in the
 

physical plane can be determined [161. It is also worthwhile to
 

mention that the static pressure across such a mixing region is
 

by no means constant although the difference is indeed small.
 

Nevertheless, within the framework of the boundary layer concept,
 

one considers for the present flow problem that the pressure field
 

is prescribed and is constant across the mixing region.
 

Additional manipulations on the C and X variables are in

troduced by defining
 

la
 

Ula i
 

p 
- 0 a Ua 

x 
X* r
L 

Bernoulli's equation is now given by
 

dp* / Cr2 u ,2 ) l/y-li dula(
E7 l lai ra a dX(. 

It may be shown that and A can be expressed as
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yU* 2 u (.
er li laU dp,(X*a . u*2)(Y + I )/(Y-l), 2 b(X dua (4.16) 

and 

dp.x2 dX*_______ 
/X (X*) 2 ,(y+I y-) (4.17) 

la
la- lai 


Thus, for given initial velocity ratio between the two
 

' 
streams bi (=Ulbi /.uli) stagnation temperature-ratio
 

A.(=T b/Toa), Prandtl number, initial Crocco number .ofthe main
 

stream, viscosity coefficient function b(x) and the pressure gradient
 

(-dp/dx), the problem may be solved by integrating the system of
 

Eqs. (4.10) and (4.11).incorporating the matching conditions
 

(Eq. (4.14)).
 

It is important to note that if only the first term from the
 

series in Eqs. (4.10) and (4.11) is employed, the system of equations
 

becomes algebraic and is independent of and A leading to the-same
 

one term "similar" solution for constant pressure jet mixing already
 

discussed in Chapter 3. With the first two terms from the series
 

included into the considerations, first derivatives of aI and 80
 

appear. The derivatives of a2 and.e1 will also appear if one
 

additional term is added, and the second derivatives of a, and
 

e0 will appear when the fourth term is included. It is usually
 

expected that the second derivatives are relatively'small, at least
 

in part of the domain [25] and thus one may neglect its contribution;
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justification can only be supported by checkingthe results ob

tained.
 

Considering that the three-term representation of the in

finite series would give fairly-accurate results, one now needs 

to know the initial values of the -first derivatives of a,, a2 , 

e8,and 6 at the origin ( = 0) in order-to carry out effectively 

the integration. Inspection of Eqs. (4.10) and (4.11) shows that
 

these derivatives are always multiplied by E, indicating the
 

singular behavior of the system at the origin. However, these
 

derivatives may be found from the following consideration: when
 

one sets = 0, the resulting algebraic equations will again yield 

the results for a (0), a2(0), 0.0), and e(O) which correspond to 

%he. similarmmixing solution (zero pressure gradient solution). Al

though there are discontinuities in the velocity and temperature 

profiles at the origin, one should-take these values as the correct 

initial conditions for a1 a;, 6; and 61, and the derivatives of 

these functions at the origin'may then be found fromlimiting con

siderations by L'Hospital's rule.' These procedures can also be
 

adopted to find aT?(O) and 80''(0) when four terms are employed from
la o 

the series. One should be aware, however, that in such situations 

the pressure field should have continuous second derivatives at the 

origin. 

Equations (4.10) and (4.11) can now be integrated numerically 

tq establish the coefficient functions al(C), a2 (), 0Cc), and 

0 (6). These equations were programmed on a digital computer and 
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solved by using a predictor-corrector integration technique,with
 

the Runga-Kutta method for starting the solution.
 

One difficulty in carrying out the numerical integration"
 

was that it was usually not possible to solve for the desired
 

derivatives explicitly from the differential equations. It was
 

necessary to use a Newton-Raphson iterative technique for this
 

purpose.
 

The velocity and temperature profiles were calculated also
 

by using a digital computer. From the coefficient functions
 

a,( )_,a2(E) , 8( ), and 01 (), all the coefficients needed in
 

Eqs. (2.45), (2.46), (2.47), and (2.34) to establish the desired
 

profiles in both the transformed and physical planes can be de

termined.
 

4.2- RESULTS
 

Calculations were carried out using a constant pressure
 

gradient. It was thought that for any arbitrary pressure distri

bution one may always approximate this function by segmented
 

straight lines within each small increment in . Thus restricting
 

-the flow to the case of a constant pressure gradient would simplify

the analysis, yet it does retain the essential'features of the sys

tem of equations. Denoting
 

dp
dp _ K (4.18)
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where k is a constant, one may write in dimensionless form
 

dp*
d- = m (4.19) 

=M L 2 (4.20) 
- 2 
PoaUi a
 

The reference length L may be so chosen that I = 1. -Thus,
 

mi +1 indicates a favorable pressure gradient while m = -1 is for 

an adverse pressure gradient. Unity Prandtl number was used
 

throughout all calculations. Also, b(x) was chosen as unity.
 

Figure 9 presents the coefficient functions a,, a2 ., and a3 . 

for the specific flow case of bi = 0.5 and Ab = 1.0. The re

sults are shown for cases where one, two and three terms -were used 

from the series in Eq. (4.10) and Eq. (4.11) for initial Mach num

bers of 0.0 and 1.0. It is interesting to note that for both
 

cases the values of a for the two and three term resiflts are
la 

nearly the same. However, for the coefficient a2, the three term
 

results appear to deviate away from the two term results. It should
 

also be mentioned that for the case of a constant adverse pressure
 

,gradient, the secondary stream will decelerate to zero velocity near
 

= 0.0727 for an intial main stream Mach number of 1.0 and near 

x* .0.125for incompressible flow. Similarly, for a favorable
 

pressure gradient, the main stream will accelerate to an infinite
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Mach number (unity Crocco number) near x* = 0.4528 for an initial
 

Mach number of -1.0. No such limit exists for incompressible flow.
 

For boundary layer flow problems, the curvature of the velocity
 

profile has a particular meaning since it may be easily seen from
 

the equation of motion that the change of mechanical energy of
 

the fluid is closely related with its curvature; a postive curva

ture indicates an increase while negative curvature implies i de

crease in mechanical energy. Since the coefficient'as is directly
 

proportional to the curvature of the velocity profile at the di

viding streamline, the values of a are also presented in Fig. 9.
 

The velocity.profiles of these flow cases are presented in
 

Fig. 10. Since the profiles are not greatly different for the
 

one, two and three term results, only representative profiles
 

(thiree term results) are shown for various locations in the flow
 

field. It should be noted that the velocity profiles may differ
 

little between the one, two and three term results; however, the
 

thickness of the mixing region may be quite different.
 

It should also be noted that a smooth velocity profile is
 

presented in this figure as the initial condition. One should,
 

however, be aware of the fact that the mixing layer has no-thick

ness at this initial section, thus the profile actually shows a
 

discontinuity in the physical plane.
 

Results of these calculations seem to indicate that the in

finite series in Eqs. (4.10) and (4.11) converges quickly and cal

culations with three terms from these series would be adequate.
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Other results presented here were produced from this same scheme
 

of calculations.
 

The curves-in Fig. 11 are the results for isoenergetic mix

ing with a favorable pressure gradient. They are given for three
 

initial'velocity ratios,of 0.1, 0.5, and 0.9 fb incompressible
 

flow. Also shown are curves for initial Mach numbers of 0.0, 0.5,
 

1.'0,. and 1.5 with an initial velocity ratio of 0.5.-


The effect of non-isoenergetic mixing, i.e., A . 1, is shown 

in Figs. 12, 13, 14, and 15. It-should be pointed out that for 

large values of 4 (, >> 1), when two inviscid streams expand 

through the same pressure ratio, the initially slower stream 

(kbf < 1.) may assume a larger velocity than the initially faster 

stream. Thus, the value of b may be greater than one. 
-One
 

should not be surprised to find that ala ,maybe greater than one 

(naturally a2' will be negative) when Ab is much greater than one. 

Values of b for those cases are presented in Fig. 12. 

The coefficient a,, a2, e, and 0 are presented in Fig. 13. 

The results are plotted up to the point where the Crocco number 

Crla is close to unity (x* = 0.4528). The velocity and tempera

ture profiles are plotted as a function of r1in Figs. 14 and 15, 

respectively, for an initial Mach number of 1.0 and an initial
 

velocity ratio of 0.5 for mixing with a favorable pressure gradient.
 

It has been mentioned in the INTRODUCTION that the motivation
 

of making such a detailed mathematical study is to set up a standard,
 

or to obtain a solution in a more nearly exact fashion if possible,
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for such flow problems so that the merit of any other approxi

mate method may be assessed and evaluated.- One such simple and
 

convenient approximation which is based more on physical grounds
 

is the "locally similar" solution. A locally similar profile is
 

defined for a certain location x* as the profile resulting from
 

a constant pressure jet mixing starting from the origin--the
 

pressure being the local value. It is expected that this ap

proximation should give reasonable results from the considera-.
 

tions that
 

(1) 	This profile satisfies the correct boundary con
ditions at T = + - and 

(2) 	Any difference in the upstream flow conditions tends
 
to disappear as the governing system of equations is
 
parabolic in nature.
 

Indeed, the present investigation does support this con

jecture when locally similar solutions (produced by the method
 

discussed in Chapter 3) are compared with the results from the
 

present detailed mathematical calculations.
 

Figure 16 shows a plot of a, the velocity ratio for the di

tiding streamline, and a., the velocity gradient at the dividing 

streamline, as a function of x* and . The curves are given for 
b 

both favorable (m = +1) and adverse (m = -1) pressure gradients
 

for an incompressible flow. Recalling that the initial velocity
 

profile is similar,.the deviation between the locally similar and
 

non-similar values of aI and a2 is initially zero. The results
 

of flow cases with different initial freestream Mach number are
 

shown in Fig. 17. The curves are for isoenergetic mixingawith an
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initial velocity ratio of 0.5 and initial Mach numbers of 0.0, 

0.5, 1.0, and 1.5 for both m = +1 and m = 

It is evident from the results of these numerical calcu

lations that the locally similar flow concept provides adequate
 

approximations to the actually non-similar flow situations. it
 

is pertinent to remark'that the results for different initial
 

freestream Mach number (Figs. 17b and 17d) do not differ signifi

cantly from each other when plotted against 4 b so that they are
 

presented by one single curve. Since d is zero for these-calcu

lations, the compressible flows are transformed into the corre

sponding incompressible flows and thus the results for different
 

freestream Mach numbers should fall into one single curve. The
 

effect of compressibility should, of course, be noticeable when
 

the results are transformated into the physical system of coozdi

nates. The last series of curves, Fig. 19, illustrates the ef

fect of different stagnation temperature ratios for the case of
 

Mlai = 1.0, b, = 0.5, and m = +1. The locally similar results
 

again provide good approximations to the non-similar solutions,
 

'xcept in the extreme case with A = 10.0 where the difference is
 

not negligible. it is also noteworthy to remark that the values
 

of a and a2 for locally similar solutions, when presented as
 

functions of b should appear as one single curve for all stag

nation temperature ratios.
 

For any practical problems, the pressure gradient would not
 

have a constant value and the calculations by this scheme of
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analysis should not present any difficulties. One may approximate 

this pressure distribution by segmented straight lines. If a fixed 

L is employed as a reference length throughout the analysis, differ

ent segments would have different values of m. A step by step cal

culation with different m values would provide the results for the 

problem. Early investigations by assuming segmented parabolic 

pressure distributions for incompressible flows do not produce sig

nificantly different results. 
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5. 	THE DEVELOPMENT OF INCOMPRESSIBLE, NON-SIMILAR JET MIXING TOWARD
 
THE ASYMPTOTIC SIMILAR SOLUTION
 

The problem of constant pressure jet mixing between two incom

pressible 'parallel streams,t where the velocity profile at some
 

initial section is not similar, is considered here. This initi
0
 

al non-similar profile could possibly result from a non-zero.pres

sure gradient upstream of E or from the separation of the boundary
 
0
 

layer from a bluff based body. In the latter case, the velocity
 

profile at the point of separation (or slightly downstream) is con

sidered as an initial mixing profile. The lower stream is stagnant,
 

and the velocity and its slope at the separating streamline are also
 

zero. One has to ignore the small pressure gradient which exists in
 

the vicinity of the point of separation. For such a type of flow 

X = 0 and the.momentum equation, Eq. (2.17), becomes 

f + ff 2E(f 	 -ffn)
 

with an initial velocity profile f o, ) specified.t The non

similarity comes, of course, from the existence of the non-similar
 

iSince the compressible flow can be transformed into incompressible
 
flow under isobaric conditions, we are essentially dealing with
 
equivalent incompressible flow problems.
 

ttFrom the analysis in Chapter 4, one should see that when a1 ( o) and
 
a2 (E) at o 'are known, the detailed profile within the viscons layer
 
(whether it is a wall boundary layer or mixing layer) is completely
 
determined.
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profile at the location 0 ( is non-zero). This type of flow
 

is similar to any relaxation process, and it is appropriate- to 

label this flow as a-"dynamicallyrelaxatingflow." 

5.1' DEVELOPMENT-OF THE AUTONOMOUS EQUATION: 

Following the same manipulations presented in Chapter 4 by
 

setting X = 0, Eqs. (5.1) together with the matching conditions would
 

yield
 

2 3 

1-a a2 ( a 2)+ 2 -24. -2 
V2a - a1 

5a.fa' 

' 3/2 1 112)
a, - a 

2 21 a 4 E a a 4 
a
2
1 a' 

± 5 2 5 2 3 a 
al a. 
 I
 

2 4,
a2 a 

+ 2 - a' a2 2Eal + ea,' +3ri- 27 

+ 

5
a1 a1
 

and (5.2)
 

aaa
2 aa2

ba + K1a/ 

3 

24 a772 4 3/2 + 
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Upon examining the solution for various numbers of terms on
 

the right side of Eq. (5.2), it is interesting to observe again
 

that the one term solution is identical with that from the similar
 

analysis. The functions aI and a2 are constants which are given by
 

1 12i b 

(5.3) 

11 1+' 1a,1T11a =A - b) 2 

Using two terms in the right side of Eqs. (5.2), one obtains
 

a differential equation in a given by
 

da da =1 = !n - a I ) a,12) 
'dC- ding (1 4 + 12al (.4 

and an algebraic relation for a2 in terms of a, which is expressed by
 

a24 ( i a2 = ;t.5) (5 

2 22f 

the latter also holds for the one term solution. The asumptotic simi

lar condition, corresponding to fully developed mixing flow, can he
 

obtained by setting a' = 0. Denoting such a condition by the sub
- 1 

'script 'e', Eq. (5.4) can be rewritten as
 

aI ale a ( 1 ] 
lnE 2 61 a1ale 
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with 

ale a -
I+44 .* ¥ 

b)]
_/ 

b2 

b v4l:5T 

This two term solution shows that a stable condition results which ' 

is typical for all relaxation processes. Since the bracketed

quantity in Eq. (5.6) is always positive,,any a1 value different 

from ale would produce a.change which is proportional to the differ

ence and is in a direct-ion to reduce this difference. If.a, is
 

less than the asymptotic solution a, e Eq. (5.6) shows that
 

da I/d ln "is positive and aI will therefore increase with E toward 

a e. If a 1 is greater than a.1e , da /d ln is negative and a, 

will decrease toward ale Thus, for any given initial value of a
 

at E corresponding to a non-similar initial velocity profile, the
 

resulting mixing process is such that the similar solution (fully
 

developed profile) will be reached asymptotically. 

By taking three terms on the right side of Eq. (5.2), two
 

first order, ordinary differential equation in"a, and a2 result.
 

Since appears only with derivatives, they may be rearranged to
 

yield
 

da b 5 1+ b 13a2 

d 1 8 2 a 8 -2
 

= " (5.7) 
da, da1 + b)
a-2- 2 aa+ 

which is a differential equation between a and a only. The
 
2 
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"autonomous" character of the original equation is illustrated by
 

the successful elimination of'C in Eq. (5.7). One now recognizes
 

that a2 can be considered as a function of a, , or vice versa. The 

asymptotic condition, corresponding to a' = 0 and a' = 0, is ob
1 2
 

taine& when both numerator and denominator are zero. To be specific:
 

they correspond to the constant pressure jet mixing solution when
 

three terms are used from the infinite series in Eq. (3.9). These
 

asymptotic conditions are presented in Fig. 20.
 
To integrate Eq. (5.7) initial values of a (o ) and a2(% ) are 

needed. This is in contrast to the above mentioned cases where the
 

one term solution is independent of the initial velocity profile and
 

the two term solution requires an initial value of a only. For the
 

four term solution it can be seen from Eq. (5.2) that values of a
1 ,
 

a2, and a' are required. However, the second (or higher) derivatives
 
2 1
 

are usually small and can be neglected [251. The E variable can again
 

be eliminated and a2 can be found as a function of a, only.
 

5.2 DEVELOPMENT OF FLOW AFTER SEPARATION FROM THE SOLID BODY
 

Particular attention is now given to the flow development after
 

it separates from the bluff based body. The resulting downstream
 

flow can be considered as an isobaric mixing between the approaching
 

freestream and the quiescent fluid within the wake. Under such a con

dition, the velocity ratio between the main and the secondary free

streams is approximately zero. 

The one-term results as given by Eq. (5.8) are a = 0.5 and1 

a., = 0.282. For the two-term solution, the relation between aI and a2 
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can easily be established through Eq. (5.5). For any initial value 

of'a.I, jet mixing action will take place such that a, (and thus a2 ) 

will change toward the final asymptotic value (a = 0.590, 

,a2e = 0.306). It'must be kept in mind that for inversion of the 

infinite series of flto be valid, the first term involving aI must 

not be small. Therefore, the solutions-given above do not hold for 

the region near a,, = 0. Thus, the-two-term solution presented in 

Fig. 21 is not shown near:the origin. 

,For the integration of the differential equation, Eq. (5.79,
 

which was,obtained from the three-term representation of the original
 

series, it-was found that there were definite regions in the al a2
 

plane where convergence of the series was a problem. This is in ad

dition to the region near the a, axis where a, is small. On the 

other hand it was found that in certain regions the values of al and 

a2 were such that the convergence of the series (now represented by 

the first three terms) was ai good or even better than the point 

dorresponding to the similar solution.- By examining the third term, 

it was found that its magnitude becomes zero when 

a 

this, of course, is identical with that from the two-term solution.
 

Near the similar point, it was found that the first term is never
 

smaller than the second term; therefore, in the region near this
 

point the series convergence is-good. When the magnitude of the
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second term is small, poor convergence results, unless the third
 

term is even smaller. The second term is zero for a, = 0.5 for
 

'b =0. 

When calculations were made for a and a2 values away from 

the above-mentioned regions where -convergence of the series was 

observed, it was found that often the convergence of the series 

was very poor. For example, at the point a, = 0.15 and a2 = 0.50, 

the three terms gave values of 1.624, 0.350, and -1.124, respectively, 

as compared to 0.461, -0.078, and 0.039 for the corresponding terms 

at the asymptotic limiting point. 

Figure 22 shows various regions in the a1 , a2 plane where the
 

series converges quickly, slowly, or diverges.
 

To avoid the trouble of the divergence of the series, the sum

mation scheme proposed by Euler, and used extensively by Meksyn,
 

,wastried. When Eqs. (5.2) were integrated using Euler's summation
 

scheme, the convergence improved greatly. For example, for the
 

above mentioned point where a, = 0.15 and a2 = 0.50, after applying
 

Euler's scheme once, the three terms gave values of 0.812, 0.494, and
 

0.150, respectively, seemingly to indicate convergence of the series.
 

When Euler's summation scheme is indiscriminately applied, one ob

tains the integral curves in the a , a2 plane and its final asymptotic
 

value of a1 = 0.560,'a2 = 0.335 as shown in Fig. 23.
 

However, it is known that the Euler's scheme is not needed in
 

the region (including its asymptotic limit) where the original
 

series is convergent. It was therefore necessary that the Euler's
 

sum be applied only when the series appears to be divergent. An
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arbitrary scheme had to be developed such that the change over 

from one calculating scheme to another (with or without Euler's
 

summation procedure) would give smooth trajectories in the a1,
 

a2 plane.. This is accomplished by the following considerations:
 

After application of Euler's summation procedure to the in

finite series in Eq. (5.2), one obtains
 

de_2a28a (5 8)
a2
 

1 2-- a .+
6a1 

In order to obtain smooth integral curves in the a1 , a2 plane, it
 

is obvious that the change over between the two calculating schemes
 

should be made at points where they yield the same slope. Equating
 

da2/da I from Eqs. (5.7) and (5.8), one has 

2 1: 

3 a 2a, a2 _ (i - 2a) - (1 - 2a ) a2 + - 2 
1T 4 1 12 irf a1
 

53- X- 0(5.9) 

Points with a1,a2 values satisfying the above expression are joined
 

in Fig. 23 by curve "A" which should obviously pass through the two
 

asymptotic limiting points. Since these two points are quite close
 

to each other, points along this curve usually are within the region
 

where the original series converges. Furthermore, any error intro

duced from this arbitrary scheme of manipulation is expected to de

cay due to the parabolic nature of the system.
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There is another region-in the a ,, a2 plane where a, is
 

small while a2 is finite, which also presents a convergence problem
 

after Euler's summation is applied once. Although this region does
 

not seem to -be physically realistic, it is nevertheless tacitly
 

suggested that when the first term equals the second term of the
 

series, the :egular summation scheme should be applied.
 

The- final integral trajectories (phase tracks) are presented
 

in Fig. 24. It should be noted that although information of the
 

values is not needed in establishing these curves, the corresponding
 

velocity profiles of this developing flow field cannot be computed
 

until the precise variation of E is known.
 

5.3 EXAMPLE OF THE CALCULATION OF A DEVELOPING FLOW FIELD
 

Schubauer [26] performed an experimental investigation of
 

-low speed air flow past an elliptic cylinder. Meksyn El] performed
 

calculations based on Schubauer's data and produced the velocity 

profile and E value at the point of separation. Employing this 

information as the given initial condition for the subsequent flow 

field, one may easily establish the path of integration of Eq. (5.7) 

in the a1 , a2 plane. 

Another numerical scheme based-on finite difference (see the
 

APPENDIX for details) has also been worked out for this problem.
 

Results of these calculations are also presented in Fig. 24. Reasona

bly good agreement between the results seem to support the considerations
 

discussed in this chapter.
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6. SUMMARY.AND CONCLUSIONS
 

The method developed by Meksyn in dealing with boundary layer
 

flow problems is certainly interesting and useful. It provides an
 

effective tool to solve boundary layer flow problems, especially
 

when a non-similarity situation prevails. The present problem
 

of jet mixing under the influence of a pressure gradient is one
 

of these non-similar flow situations, and the application of this
 

method has successfully produced results which also supported the
 

locally similar concept.
 

However, in some situations such as the flow case discussed
 

in Chapter 5, the infinite series resulting from the integration
 

by the method of'steepest descent, diverges in certain parts of the
 

domain. To evaluate this series, one has to resort to Euler's
 

transformation.- No knowledge is available as to the extent and
 

number of.times which the Euler transformation should be applied,
 

and the arbitrariness of decision was thus necessarily introduced
 

in performing any practical numerical calculations.
 

However, even in the problem discussed in Chapter 5 where poor
 

convergence of the series has been observed, the qualitative char

acter of the flow development toward the final asymptotic solution
 

is fully illustrated by such an analytical scheme. This feature
 

probably cannot be easily illustrated by finite difference numeri

cal calculations.
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Figure 1 	Illustration of the initial and boundary

conditions of the jet mixing problem
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Figure 2 	Illustration of the mixifg profile and its
 
corresponding two boundary layer flow problems
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APPENDIX
 

Finite Difference Calculation of a Developing
 
Jet Mixing Region
 

The solution to the problem of incompressible, constant
 

pressire jet mixing with an intial velocity profile at = E0
 

can also be obtained by using a finite difference technique in
 

the von Mises plane. The momentum equation for laminar flow
 

3U u- - u (Al) 
u +vy ay2 

can be transformed into
 

Dx V 
 (A2)
 

in the von Mises plane, where */By = u, -i/Dx = v have been de

fined and introduced. Defining
 

=X; = u__- " = 'ip (A3)Lx"U 

0 0 

where L is an arbitrary reference length, u is a reference velocity,
 

and Re L is the Reynolds number based on L, uO, and V(ReL = Lu./Q), 

the momentum equation becomes
 

a@ a (A a) (A4) 
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Using an implicit finite difference scheme, the derivatives
 

can be written aa

1+1 i
 

9x, 
 - Ax* 

and
 

34,\i+1 +,1
 

Jj .j 
 (A6)
 

with 
+i i+1 +
 

and 

i " i+1 i+l
 
1+1 +,
i 4*>
 

W, 2 

where linearization has been applied to the above expressions. The 

differential equation, written in finite difference form becomes 

+ (1. +4) ) C+Y) 

++ j+ A 

with
 

Ax* 
2(A**)
 

When this expression is applied to any point i, j, only three un

known values of 4,+1 appear in the equation. Therefore, when
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Eq' (A) is written for. the n unknom,nodes,.n equations coupling'.
 

(n + 2) unknowns result. This system can be written in the matrix
 

form AX = B, where-the n X n square matrix A is seen to be a tri

diagonal matrix.
 

The boundary conditions will eliminate two unknowns from the
 

above,linear sysftem of equations (the largest and smallest index
 

in j). Thus, with given initial conditions, the velocity profile
 

can be established at new locations by solving the matrix equation
 

A= B 

This method was, of course, programmed on a digital computer and
 

used to calculate the velocity profiles for the problem of one'
 

stream jet mixing. The initial profile was that measured by
 

Schubauer at the separation point of a low speed flow past an el

liptic cylinder. This profile and its value were also determined
 

by Meksyn.
 

A total of 71 points was used for the initial profile in-the
 

=, 4* plane, and this number was increased as the width of the mix

ing region grew. To interpret the results fror'the calculations in
 

the a,, a2 .plane, one has to realize that the velocity gradient in
 

,the Ejn plane is 

u Ula L f 
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with
 

a = f n(Ef = 0) 

( n ° 
- a2 = fnC ,n= 

and from the results obtained -rom the x-, ip* plane 

au. uL V-e
 

Ty L L 34.'
 

where ReL and Re' are based on ula and u respectively, L being
 

the minor axis of the elliptic cylinder. From the measurements
 

of Schubauer at the separation-point
 

= 1.25 u*
 
0 

a la 2 

1while a, d' the value of a- (the velocity gradient at the di

viding streamline in the Ef plane) then becomes
 
2= i i 

dA0  d- - d+l 
a2 .25(A) 2 + ? 2 

where subscript d refers to the dividing streamline (identified by 

= 0). The results of these numerical calculations are presented 

in Fig. 24. 

tNote that due to the difference in the reference velocities between 
the two formulations the o obtained by Meksyn and the velocity pro
file have to be corrected before the results may be plotted in the 
a, , a2 plane. 
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