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FOREWORD

'This research was carried out under Research Grant NASA
NGL 14-005-140 entitled "Fluid Dynamié and Heat Transfer Problems
Associated with Modérn Propulsive Systems." This bresgnt repért
deals with the problem of jet mixing under non—constént pressure

conditions,
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Abstract

The problem of jet mixing under a non-constant pressure condition
is examined in detail by theoretical analysis.’ The system of the

-non-similar boundary layer equations governing the flow phenomenon

is solved by the asymptotic method of integrations. The analytical

results provided sufficient evidence to the validity of the locally

similar approximations under these flow conditions. The problem -of

relaxation from an initially non-similar flow field toward. the final
asymptotically similar flow has also been examined and discussed.
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NOMENCLATURE

coefficients: of series in Eq. (2.24)

coefficients of series in Eq. (2.3%)

" coefficients of series defined by Eq. (2.38)

coefficients of series in Eq. (2.33)

specific heax ;t constant pressure

Crocco number

coefficients of series in Eq. (2.36) or viscosity indéx
coefficients of seriés in Eq.‘(2.36) '
stream function in transformed plaﬁe

d-efined by Eq. (2.26)

coefficients of series defined by‘Eq. (2.59)

reference length

dimensionless pressure gradient

pressure
Prandtl number

Reynolds number based on length L

' temperature-

velocity components in x- and y-directions, respectively

éoordinates along and normal to dividing streamline,
respectively

ratio of specific heats

gamma function

incomplete gamma function
kinematic viscosity

transformed .coordinate defined by Eq. (2.12)



g8 pla/p, density ratio or T/Tla the temperature ratio

A defined by Eq. (2.18)
A TD/Tola, total temperature ratio
AP. T o15/To1a? freestream total temperature ratia
! dynamic viscosity -
v kinematic viscosity
£ tpansformed coordinate defimed by Eq. (2.11)
p density
T variable of integration defined by Eq. (2.83)
¢ u/u,, velocity ratio or function defined by Eq. (2.28)
t% ulb/ula, freestream velocity ratio
v stream function in physical plane
Q function defined by Eq. (2.31)
Subscripts
a above dividing streamlige
b below dividing streamline
i initial condition
j dividing streamline

o stagnation condition

1 edge of mixing layer
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1. INTRODUCTION

Intensive studies carried out within the last twenty years
on éepafated flows have led to a better understanding of flow
problems in this field. It was recognized that for flow past
bluff bodies, the viscous layef cannot cope with the evenfual
pressure rise and breaks away together with the freestream from
the wall, thereby forming a wake behind the body. The fluid
within the shear layer can tﬂus_be energized through the jet mix-
ing action and prepare itself for the subsequent reattachment or
realignment of the flow. The interacting- interplay between the
viseid and the inviscid streams controls ané determines the over-
all flow field. TFlow problems associated with the pﬁenomenon of
the determination of the flow pattern through such viscid-inviscid
interaction mechanisms ave now classified as "strong interactions."
The fact that the flow conditions downstream of sepavation contribute
equally to the overall flow determination, including its ipfluence
on the location of the point of separation, properly illustrates
‘the typical elliptic Behavior of all separated flow problems, which
is in sharp contrast with the classical boundary layer theory enunci-
ated by Prandtl in its original form.

However, the boundary layer concept is very important and use-
ful for all separated flow problems. Indeed, studies of these strong
interaction problems are based entirely on the boundary layer con-
cept; the pressure field is impressed and dictated by the adjacent

freestream. The need to correct thie basic interacting link between



the viscid and inviscid Flows only arises, when the effect of
streamline curvature is no longer negligible.

éince jet mixing is one of the importané flow* components in
separated flow, many investigations have been carried out to study
‘constant pressure jet mixing, as a major por;ion'of the %ake -
boundary is under an essentially constant pressure condition. With
idealized approaching flow (the initial condition for jet mixing),

" this mixing flow field exhibits similarity; the governing partial
differential equationé can be reduced into-an ordinary diffevential
equation through suitable transformations, and the solution of the
flow problem is thereby greatly simpiified.

There are many practical situations where mixing occurs: while
the préssure varies in the main difectibn of flow. For example,
within an ejector system the inviscid interaction between the pri--
mary and secondary streamgﬁproduces changes in the flow properties
along the course of the flow. Thus, the mixing between the primary
(faster moving stream) and the secondary (slower streami flow is
spfecisely such a variable pressure mixing. A previocus method of
dealing with such a flow problem {11+ was based on a purely specu-

lative approach that the Flow at each lﬁcatioﬁ has a locally sim}lgr‘
profile, despite the fact tﬁat the‘flow is truthfully non-similar,

.Although this local similarity concept gives a reasonable estimation
ofhthis effect, the validity of’this approach was never properly as-

sessed. Thus, one basic motivation for studying jet mixing under

the influence of a pressure gradient is to obtain the correct or
p

fNumbers in brackets refer to entries in REFERENCES.
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more nearly exact solution, so that the result from any other ap-
proxima%e analysis to this problem may be compared and evaluated.
A modern concept in air breathing propulsion, conceived re-
cently for propulsive systems pnder supersonic fligﬁt conditions
such as a scramjet, relies on a successful combustion process oc-
curring within a supersonic flow field. As combustion within a
‘flow field must depend on ‘the diffusive process within the jet

mixing region, it ig a necessity that the mixing process under the

- Tk

influence of a pressure gradient must be understood, since the pres-
sure within guch flow fields varies considerably.

It was also expected that the understanding of jet mixring
with a pressure gradient may lead to the possibility of attqcking‘
flow reattachment onto the solid wall since ail these types of
problems Involve non-similar flow fields., It is known that the me-
thod of dealing with partial differential equations of the boundary
Jayer type would be much more complicated than that for ordinary
;d%fferential equafions when similar situations prevail.

A considerable amount of theoretical and éxperimental work on
jet mixing problems has been performed previcusly. Chapman [2] ob-
tained laminar jet mixing similar profiles. Crane [3] calculated

_turbulent similar flow solutions. Studies of developing flow
under constant prgssure‘conditions were all baséd on an inéegral ap-
proach or finite difference calculation [4,5,6]. There are also

many other calculations for constant pressure jet mixing problems

and they are not mentioned here.



One -of the earliest st?dies of jet mixing with a pressure
gradient was done by Napolitano and_Poézi [7] for laﬁinar.in—
compressible flows. They defined a velocity defect function
: %nd fouﬁd the solutions for particular types of pressure gradi—-
ent from the first two terms of the assumed infinite series..
Their resglts for zero pres;ure gradient was compared fa;oraply
with other exact numerical ;esults. “otheb studiés:of mixing be-
tween infinite stream and finite jet or wake with pressure gradi-
ent [8,9] relied the linearization of the momentum equation.
Sébin [10] also‘obtaihed the‘apprpximafe solution for incémpres—-
sible turbulent mixing between two infinite sStreams with a pres-
sure gradient. Perhaps a—more thorough studyhof mixing under
variable pressure conditions was carried out by Greenberg [11].
In the intepesé on the effectiveness of the éoolihgugaSnejected

stagnation region of a re-entry body, he studied first:
. N -
the mixing near the stagnation point and within the region where

*

into the

the effeet of the boundary layer on the wall influences the mix-
iﬁg region. In the staénation region, the jet mixing problem

was fecognized to possess a similar solution which was solved by
usiné Meksyn's methed for boundary layer flows [12]. In the se-
cond region of mixing downstream of the.stagnation point, the flow
is governed by‘the full non-similar equation. It was recognized
that Meksyn's method could not sufficlently approximate the initial
mixing region near the stagnation point and a series solutiom: re-
sembling the Blasius series for the non-similar boundaff layer

flow was incorporated. Some calculations were also made using a



finite difference teqhnigué for each of the two mixiqg regions
and compared with the series solution; in ﬁoﬁh cases the agree-’
ment was reasonably g;od.

It should be pointed out that Greenberg‘did.not'fbllow_
Meksyn's scheme in fhe evaluation of the integrals by tge_series
inversion technique. Since this series inversion would improve
the convergeﬁce of the resulting serieé, it is an important part
of Meksyn's "asymptotic method of integration.” Therefore, the
potential of studying non-similar jet mizing by Meksyn's method
was never properly explored.

The present investigation of jet mixing with a pressure
gradient is a part of the overall effort in the study of separated
flow problems at the University of Illinois. Previous studies
conéerning cons%ant pressure jet mixing of turbulent flows em-
ploye@ the integral momentum techrique after adopting the error
function for the fully devéloped flow profiles [13,14]. The tur-
bulent flow structure of such flow figlds has also been discussed
T15]. A numerical integration has also beeﬁ applied to the ordinary
differential equation for a similar flow field [16]. In a recent
investiation [17], Meksyn's method of solving boundary layer érob-
lems was applied to studyiﬁg mixing probleﬁs with similarity. It
. was also récognized that this method has the potential to study
non-similar flow problems and therefore Meksyn's teqhniqﬁe forms
the basic method for the present investigations.

The general scheme in dealing with such problems of steady,



coﬁpreésible,_non—isoenergetic jet mixing for either’ laminar or
‘turbulent flows is presented in Chapter 2. To assess the validi-
ty of the method of solution, the céseyof consfant preséure'jet
mixing, has been presented in the following chapt?f and compared
with another solution from numerical integrations. 1In Chapter 4
the solution to the problem ;f compressible, laminar jet mixing
under the iﬁflhgnce of a streamwise pressure gradient is derived.
Pipally{ the problem of incompressible, constant pressure jet
mixing is examined in Chapter 5 when the initial mixing profile
is non~uniform, resuwlting in an asymptotic development toward

the fully developed flaw far downstreamn.



2. "BASIC FORMULATION AND DERIVATION OF THE TWO-DIMENSIONAL JET
MIXING BETWEEN. TWO PARALLEL STREAMS UNDER THE INFLUENCE OF
A PRESSURE -GRADIENT

" 2.1 FUNDAMENTAL EQUATIONS AND DISCUSSIONS OF SIMILARITY

If one agrees tﬁat‘the present jet mixing problem can be
treated within the framework of The boundary layer concept, the
basic differential equations governing the flow phenomena are

the: system of boundary layer.equations, namely,

Bpw) | 3ev) _

. 5y - (2.1)
f odu guy _  dp , 3 . j&i
ki 0 (2.2b)

and .

3T 3T\ _ . 9p ., @ 3T duy’
pCp(u ax+v8y)—u x+3y(K3y)+€p(ay) (2.3)
where € is the kinematic viscosity v for the laminar flows and the
eddy" kinematic viscosity for turbulent flows. The énergy equa-

tion can be -combined with the momentum equation and written as

BTO BT; 3 Jep BT; a u?
pu-§§~+vgy—— =—§§ ?:E; By + {Ppr _1)¥(§EH):| {(2.1)

P




_where the Prandtl number., Pr = Cpep/k, and the specific heat CP_
have been assumed to be constant. The initial conditions con-

sidered here are (referring to Figlr 1),

u(0,y) = Yag ~ ulaco‘)’ TO(O,Y) = Tola ? y>o0 .
' (2.5)
u(0,y) = u.. =‘u1h(0), To(o,y) =T vy <0

clb?

The boundary conditions take the form

u(x,®) ='u1a(¥) Ta(#;”? =T .
u(x,~») =u1b(x), -Tofx,—m)’= T 1y (2.86)
v(x,0) = 0
with
dpn_ dl'11
Ix T AR oI

A usual practice of solving this system of partial differ-
éntial equations is to seek suitable transformations and com-
binations of the dependent and in@ependent variables of the prob-
lem so that a "similarity"i solution can be found and the system

of equations transforms into ordinary differential equations.

T"Similarity" usually refers to similarity of velocity profiles,
Z.2., the velocity profiles within the region can be represented
by a single profile in the transformed plane.



This has been studieq exhaustfﬁlly for wall boundary layer flows
{e.g., [181) and it was Ffound that for the existence of similarity
"not only must the boundgry conditions and the initigl conditions
‘be "compatible," the pressure gradient associated with the flow
problem ‘is also restricted to specific types of functions.

¥hen é similarity situation doés exist for wall boundary layer
flows, the unknown Function £'(n), (n ié a combination of the x- and
y-coordinates) associzted with the velocity profiles, invariably

satisfies the boundary conditions

uﬁx,y = 0) -

£(n = 0) = u, (%) 0,
f!(n+m)=M=l

B, x)

For the present problem of jet mixing the boundary conditions im-

posed on. the velocity profiles are

uleyy » )
ula(x)

and

(r)
3 o, ()

ulx,y + -») _ ip
w, (%) T

1a

as a result of the existence of the pressure gradient. Thus, for

the same transformations as employed for wall boundary layer flows.



the functicn f' cannot be 2 function of n alone, since f' must ap-
proach a value of ¢, (x) as y * -». It may, therefore, be concluded
that in general the velocity profiles of the jet mixing region
under the.influence of a pressure gradient would not exhibit simi-
larity.’

There is one specific flow case which has the possibility to
exhibit similarity and has been discussed by Napolitano, Libby, and
Ferri [19].1 The two compressible streams must have the same stag-
nation pressure but different stagnation temperatures. At any
station of the flow, the -Mach numbers of the two streams are the
same and the value of ¢b will be a constant under a non—zéro pres-
sure gradient. The stagnation temperature ratic and the velocity
ratio camnot be independently selected. This particular flow case
does not occuf frequently in separated flows where jet mixing
usually occurs between streams of unequal stagnation pressures.

Perhaps it may be argued that the meaning of "similarity"
.should not be restricted to vglocity profiles. If one chooses the
stagnation pressure as the @gpendent variable, the boundary con-

ditions imposed omn the stagnation pressure would be

Po (XaY + ®)

b.

cla

=1

and

1The stagnation flow studied by Greenberg [11] belongs.to this’
category. ’


http:belongs.to

= constant

However, flow problems with different pressure gradients with the
same terminal values of stagnation pressure ratios aé y=ite
would have different stagnation pressure profiles in between. This
fact implies that the stagnatiop préssure profiles also will ﬁot
exhibit similarity.

As a result of these discussions and in view of the consider-
ations already made elsewhere [19], no serious attempt has been
made to find transformations such that a éimilar solution in a

moreéeneralsense.may possibly be found for the flow with a non-zero

pressur; gradient. Instead the usual boundary_layer transformations
based on the velocity potential and stream function for the inviscid
_mgin fygestream have been used and the resulting partial différentia;
equaticns solved. The study undertaken in this chaptér is 'for the
general case o% compressible, non-isoenergetic jet mixing between
..two parallel streams_of the same composition for laminar or turbu-
lent flows, with special éases being exgmined in the succeeding
chapters.
- The basic scheme upon which the‘present analysis is based is
" to divide the flow field into two regions of flow along the stream-
line which separates the two streams. It is recognized that each

of these two regions resembles a "boundary layer type" of flow;

the velocity changes rapidly from the value at the dividing

T 11



streamline and appfoaches the freestream value asymptotically.
Therefore, a boundary .-Ilayer method is used to solve each of the
two problems, and the conditions that the velocity, temperature,
and their gradients should be matched are subsequently applied
to join the two streams along the dividing streamline.

The Meksyn method [12] is used to cobtain the solﬁtion for
each of the boundary layer flow problems. His method essentially
consists of assuming a power series solution of n with the coeffi-
cients as functions of § (transformeq x variable). Treating the
non-linear partial differential equation as a non-homogeneous
linear differential equation in the second derivative of the
function, one may integrate twice, and the resulting integral is
evéluated by the method of steepest descent., This calculation
will produce a set of ordinary differential equations for the
coefficiené functions of the assumed seriés for mixing with a
pressure gradient (non-similar flow case) or a set of algebraic
equations for cases of similar jet mixing (constant pressure con-
dition is necéssary but not sufficien%). After these coefficient
functions are evaluated, the velocity and temperature profiles can

be established through additional straightforward calculations.

2.2 THE EQUIVALENT TWO STREAMS AND THEIR MATCHING

As it has been mentioned in the preceding section, the mixing
region is now split into two subregions (Fig. 2a) along the dividing

(or separating) streamline; each is identified with a subscript "a"

12



(above) or "b" (below). If one employs a simple transformation

for the b stream by

X X ¥y T Y, W o=u, v,o=-v, T =T, (2.7)

cne woula recognize that the individual flow-probiem; associated -
with the two streams (Fig. 2b) will be governed by “the éame differ—
ential equations, Egs. (2.1}, (2.2) and (2.4) and the gamé.types

of initial and boundary conditions, Sthus the subscript a or b is

superfluous here) which are given as

u(0,y) = w (0}, T(0,y) =T , y>0 (2.8)
and

ux,) = up(x), T (%) =T ,

u(x,0) = v (x), T (x,0) =T (x) (2.9)

j o oj

v{x,0) = 0
with

.. M

dx - A% X

WherE'% (x) and Toj(x) are the velocity and total temperature of

13



the dividing streamline, respectively.

The tw; individﬁal flow problems are necessarily related
to each other due to the fact that the velocity, velocity gradi-
e;t; teﬁperature, and temperature gradient must be the'game fgr

+

.each stream along the dividing streamline. Therefore, the follow-

ing four matching conditions must also hold

u (%) = u  (x)
ia jbh.

(2.10)

8T _ 9T
5), o0+ ), oo

2.3 TRANSFORMATIONS FOR LAMINAR OR TURBULENT FLOWS

For the iIndividual flow problems under consideration, the co-

ordinate transformations are introduced according to

F P 2 u
= E — 1a 1a '}_{'
° f v g7 (pola) U, d(L) (2.11)
0 ola
/ReL'ul yz ,
a -
" AL (2.12)
128 Yai fpola (L)

14



with

R _ 1aiL
Y
ola
and
8 = p1a _ T
p Tla

. 2-d , . .
It is stipulated that £/ is a function of x only, and the
index 4 is introduced for the convenience of adapfing any commonly
used viscosity law for both laminar or turbulent flows into the

analysis. L 1s an arbitrary reference length.

~ Introducing
Y = %—E— u, L £(Em . (2.13)
L
" and
TO
ACE,n) = T s (2.18)
ola -

~one may easily establish that

pola au
gy _
5 5y a fﬁ (2.15)

and

15



514 oy Pora Miial £ 2& = on: | - N
-y = < e = e = | [ A2 F V22 +4f28 £ — {2.186)
p 9% p f_‘ReL _(, /_*2 £ - Z—;) 9% n-9x '

where the subscripts n and § indicate partial differentiation.
The momentum and .energy equations, Egs. (2.2a) and (2.3), are now,

vespectively, transformed into

- a _d B _ - _ -
o (B me) + ££ = A(B f;) +2(E S - FE ) (2.17)
where
du
28 P
A= T (2.18)
“and

d ~d : 2 9 {,-49 2
5 (B M) + Pr fA (ij - 1) Ce ‘aﬁl% £ (fn):l

= 2Prg (anE - fEAh) (2.19)

z ., - .
where Crla is the square of the Crocco number of the main freestream

and

:2 2
A - Crla F
B = ———————*—31l ) (2.20)
1 -Cr
la

holds for an ideal gas.



The initial conditions can now be written as

-ur(O) 0l
fh(o,n) = . and A(O,n) = T (2.21)
The béundary conditions becomne

R b AE ) = =22
£ R e £,»2) =
n qla(x) Tola

L u (x) Toj(X)
o

(2.22)

FEL0) =0
£.(5,0) =0
i £,0)

Finally the matching conditions are

£ (£:0) = £ (£,0)

f_ann(gso) _fbnn(gao)

2

A (E,0) - e TE, (£.00T = A (£,0) - cr’[£, (5,007 (2.29)

2 * .
Aan(g,o) - QCrla f;n(g’9) f;nn(E’O)

= —{Abn(g,o) - QCrI: fbn(s,o) fbnn(a,b)]

17



The last two equations in Eq. (2.23) can be simplified into

1l

ﬂ;(E:O) Ab(Eso)
and - (2.23a)

ABT](E’D) _I\:'n(g’O)

It is appropriate to peint out now that the transformation
introduced in Egs. (2.11) and (2.12) are a generalization of the
Illing%orih—Stewartson transformation [20] so that all mixing
problems, whether laminar or turbulent, can be treated by a singleh
formulation. For turbulent mixing when the original exchangé co-
efficient concept by Gortler is extended to compressible flows so
that the average value of the eddy diffusi%ity across the flow is
utilized, z.e., € = e(x), one needs only to set d = 2 in the analy-
sis.” On the other hand, stipulation of e/Bz(x) has been introdﬁced
by Ting and Libby [21] and Alber and Lees [22] for turbulent flows
to expedite mathematical transformations, and one needs again only
set d = 0 for these situations. Another eddy diffusivity model
suggested by Ferri, Libby, and Zakkay [23] is H = ut(x) and one
méy adopt this model into the present analysis by setting d = 1.

Indeed, setting d = 0 covers all flow cases for laminar FJet

mixing since the expression

=) = B (w)
B )

a

13



is effectively the relationship

5 = b(x) <

ola ola

introduced by Chapman for laminar compressible flow to decouple
the energy and momentum equations. For these flow cases the trans-

formations, Eqs. (2.11) and (2.12) become

5 oa ulaz L
and
L la p v
" A ()
2 u'].ai P

which is precisely the I1lingworth~Stewartson transformation.
It is worthwhile to remark that the value of d may also be
evaluated according to any viscosity—tempefature relationship

such as Sutherland's Fformula.
2.4 METHOD OF SOLUTION

For each® of the two streams, series, solutions are assumed
Jfor the stream function f and the dimensionless stagnation tempera-

ture A. They are given by

a (&) a, (&)
£(g,n) = Z - N o= a (e + —= Nl ae . (2.2m)

n! 21
n=121

19



and

w

en(g) n ' .
AEn) = -j{: =—n =0(&+86&E n+ - - (2.25)

n=0

. Two of the boundary conditioms, Eq. (2.22), are automatically satis-

[:fiéff as a result of the assumed form of the series.

PR —— PR — - e s e o e R

Upon substituting the series, Eqs. (2.2%) and (2.25), into the

I

differential equations, Egqs. (2.17) and (2.19), the coefficients
By Bys T 7t and 02~, 83 « + < can be found as functions of ;s

3, s Go . 81 » and their derivatives. It is found that

’ 2, 1
a, = - _l T3 el a2(81 - 2CI'la .alaz) e
6 - cp° & (xr—-c¢cr.”)
o . 1a e la
- 2 2 .
B -Cr. - a2 d+i
o la 1 2 2 2
. (}\ 2 - A a + QEaI ai)‘ (60 - Crla al)
1l - Cr . )
la
"
- = af6.a - 201 2( + &)
4 = 2 7 Y3 T1atd8 T 37 8
8. - Cr. &
o Ta 1
+6a—20rzaa ]—(G—QCrz'aa)a“
173 12 1%% ™1 la 1 2 3 -
2 2
. 8 ~ Cr a '
+ ._..____._l_z_d_ {()\ ° 1a 21 - laf + 2£a]:al)
(1 -c¢cx ) 1-¢r
la la
[+2]
. (d +1) de=(d +2-mn) _ 2 2 n-1"
Z {n - 1)t (eo cr}.a al D
n-=1 ’

2
a )t +l-aa +A B 2T A%
2 172 - T2

. 2

. (e1 - 20r, a

l1-Cr
la

1

-t

RN 2 2 .d+1 -
~.—_21 a a, + 2£a1a'2) (6° - Cr al) }
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1

'82 = ——— [d(el - 2Crfaéla2) 91 - 2(Pr - 1)

2
Bo - Crl_‘aa1
2 2 2 2
) Crla (’50 - Crlaal) (8183 + az)
2 2
+ 2d(Pr - 1) Crla(el - QCrlaalaz) a a,

' 2Pr £ 2 2 .d+l

+ (6 - Cr ) 6']

4(1 _ Crf )d o laal a.l o
. _a
~ 1 2 2
O = 57 U8 - 2, (g3 £ 3] 8

6 - Cr =Y .

-} la .

- 2 .
+ dl:B1 - QCrlaalazj 62

?(Pr - 1) ACr'ia[(Gl - QCriaalaz) (alas + az)

+

8 - cl»faaf) (a8, + 33,a.)]

+

2 2 2
2d(Pr - L?.) Crla {[62 - 2Crla(ala3 + az)] a a,

2 2 2
o+ [Bl - ZCrlaalazj (atla3 + az)} - (81 - 2Cr1aa1a2) 6,
e {[—Pr a6, + 2Pr £(a, 8! + a,0!)
(x -¢c )
la
2 2. .d+1
- 2Pr <§a1'91‘] (60 - Crlaal) + 2Pr Eal 8;
[»0]
. 2(d+1)d---(d+2—n)
(n - 1)1
n'= 1
2 2 n-1 2
e - Cro & - 1) (e1 - 2Cr|_aa,)

~ The momentum equation is first integrated with an integrating

factor eF(E’n), where
0
F(E,m) = f gt an (2.28)

0
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- and the resulting expression may be written as
© «F
£ =e ¢(Em) (2.27)

nn

where

¢ (€.n) =.s"{a2[5<a,o>3‘d + j I - £)

0
+ 28 (f £ - £ f a . (2.28
& Ehfe Enn)'] n} ( )
. A second integration yields
<o
Y ~F
-3 =f e ¢(E.n) an (2.29)
la. .
0

Following a similar manipulation for the energy equation, one obtains

A= eTTF ae,m (2.30)
where
8
g, = 8° 6}1[8(5,0')_]"1 + feP‘F[QPr E(anE - £AD
(Pr - 1) Cr,_ %ﬁ (287 £ £ _)]»anl (2.31)

n nnw

-Pr F .
e Q(E,n) dn (2.32

Oka [+]
|
fo ]
|
OCD
i
o
'\.8

22



The integrals given 'in Egs. (2.29) and (2.32) are evaluated by
the me%ﬂod of steepest descent. Meksyn_pointgd out that, due to the
special character of the boundary layer problems, the velocity and
tempera£ure'gradients are rapidly decaying functions away from the
g-axis. The main contribution of the integrals comes fro% the‘fegion
near n = 0, the stationary peint of F. Only a-few terms in the series
are needed and the low radius of convergence of the seriés is thus

“unimportant.
fo evaluate the integrals in Egs. (2.29) and (2.32), the series

for F is first inverted by defining

F=T=1 z cn (2.33)
n=20

vhere the coefficients C_may be found by carryiné out the integra-

tion in Eq. (2.26), and
= A
| = Z B fmi/2 (2.34)

The coefficients A have been found to be given by

A =C—1f2-

o [}
C
1

A = - —
2

1 Co ‘
5 (2.35)
c C
A :_—3- 2 ‘+.']_'5_ 1
2 205/2 .8 c7/2
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The integrands of Eqs. (2.29) and (2.32) must be expressed also

as functions of . For this purpose, it is convenient to define (see

[12] for details)

m =0
(2.386)
o«
- 2
Q dn _ - 1f2 Z e m/
T m
m=20
The coefficients 4 a-nd ¢, have been found to be given by
. b A h A
d = o o e - o ©
° 2 o 2
3 N 2
ba b A h A b A
<.’11 =t 5 e =513 (2.37)

where the coefficients Bn and hIl are the coefficients of the expansion

of ¢ and 2 in n, namely,

b = E-fl (E,n = 0) (2.38)
on

h = _a___g (§.n = 0) (2.39)
an

and can be evaluated from Egs. (2.27) and (2.30).
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Eguation (2.28) may now be written as

Lea) [=4] -
= - 2
. —a=feTT”2 Zd'rm, dt
u].a 1 - m
Q m=0
which becomes, upon integrating,
<
u
1 _ m + l)
S5 = ) (2@

la

Likewise for the energy relationship, Egq. (2.32) becomes

T

ola

[++]
T -
1 . =P ~1/2 2
° —‘B°=fe"rTT g e Tml dt
4 .

which yields

" _
ol _ m+ 1 —m+1)/2
2o, = ) (2 oy 8)

m = 0

where TP[{m + 1)/27 is the Gamma funection.

(2.120)

(2.41)

(2.42)

(2.u43)

The above-equations hold for either of the two streams. There-

fore, Eqs. (2.41) and (2.43) yield four relations, two for each stream.

These equations contain basically eight unknown functions: a

: 0
alb’ aZb’ eoa’ la

to obtain a solution are the following four matching conditions:

25
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3. €) =a,E&)

a, €)= -g, &) o)
2.4

eoa (E) - 6c:l:» (E)

and

8, (€)= -6 (8)

la 1b

Once the eight coefficient functions are evaluated (often through
hY .
numerical integrations), the velocity and total temperature profiles

within the mixing region can be found from

o -

U _ ; m+ 1
o Z r (2 ,T) d (%) (2.45)

m=0

and
;-[l .
+ 1 ~(m+1) /2

= o= eo + :E: T (m 5 ; T) pp (™ ) em(E) (2.u46)
ola )

m= 0

vhere T[{m + 1)/2,1] is the incomplete .Gamma function and the n,T
relationship given by Eq. (2.34) is needed if the results are to be
interpreted in the E,n plane. The additional transformation relation-

* ship between 1 and y given by

u].a

%— f\/ReL = A/ 2E

1 oia

f 8 dn (2.47)
u B
la Ia n

is also needed in order to obtain the profiles-in the phyéical plane.
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It ghould be stresse@ that, in locating the profiles within the
physical plane, certain boundary (or constraint) conditions assumed
by the inviscid streams have to be known [e.g., V;(E,n = ®} = 0 or
VB(E,n =‘—W) = 01. The system of coordinates within which the solu-
tion of the present problem is described is intrinsic and it can only
be localized after the trajectory of the dividing streamline is known

in the physical plamne.
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‘3. SIMILAR, NON-ISOENERGETIC, ‘CONSTANT PRESSURE JET MIXING

The general analysis presented in Chapter 2 can easily be reduged
to cases of similar, non-isoenergetic, constant pressuré jeﬁ mixing.
for- either laminar of_tﬁrbulent flows. The conditicns that tﬁe.pres—
suge be ceonstant (zero pressure gradient) and the uniforﬁ flow entrance
condition compatible with the boundéry conditions would assﬁ?e the
similarity (see [24]) of the velocity profiles. The stream function
f thus depends on 177 only;.the unknown coefficient functlons become
numerical constants which are relatéd now by algebraic equations-£e~

duced from Egs. (2.41) and (2.44),
3.1 .BASIC EQUATIONS FOR CONSTANT PRESSURE JET MIXING

Equation (2.17) is now reduced into

) 11 !
FRCL 0.1
g8 -

and the energy‘equation, Eq. (2.19), becomes, for unity Prandtl num-

+ ber,

d /A . )
?ﬁ_(;ﬁ')+ fA' = 0 . (3_.2)

~ An obviocus solutien which satisfies the energy equation is
A=Af" + B

which is, -of .course, the Crocco integral relationship. After one

PREG@ (o) S e N
¥ PAGE BLANE W07 Fiiyim
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evaluates the constants A and B in the above expression according

to the boundary conditioms, it becomes

-1

= - — 1
A 'l+l‘¢'b -(l £1) o (3.3)
Since
A~ CJ:*2 £12
. 1la
B = — 5
ZL—-Crla

Eq. (3.1) becomes

Ab -1
2 21d
- ! - t
l+1—¢(l ') -¢Cr, £
Frrro4 b p FEIL
1 - Cr'la
l—Ab
”2 2 2 '
df (l— ¢b 201:'1 f) '
- AD _— =0 (3-1'!')
: 2
- v - 1§
l+l ¢b {1 £r) _C'I‘la £

The coefficients Bys 8yn * %, C0 ) Cl, *+ » +, ave now given by

2 2 "
L daz_ {(Q + QCI’Ia al)

3 ) z 2
1 +0(1L - al) - Cr,, 3 .
2 .d ‘2 2 3 d+1
. (l-—Crla.) [(l—2d)(Q+QCr1aa1 )azaS—QdCr-laazj—(l-le) a a,
4 : 2 d 2 2
(1 - Crla) [T + Q1 - al) - Cr 313
(3.5)

30 -



d
) (l-fTi) a

c =
° o1 -02 ¥
ia
a =)
d 2 d{d-1)ss+ {d+1-n) n -1
(L +v,) §T+|:nz-:l ! nY, Y2]81
C1 = o o >3 f (3.8)F
- rla al
where
2 1\b __l
Q =
1- }%
2 2
Y, T Q1 - al} -0l g
2,
Y, = —Qa2 - 2Craa a, a,

Finally, the coefficients bn and dh are

b°=a2
b1 = a5 (5.7)
2 2ld :
L -a )+ 1-~Cr a-]
b =a + ! ta 1 a a
2 4 l—Cr2 J 172
la

TFor integer values of d, the infinite series in these squations have
a finite number of terms.
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and

° . (3.8)

(» W)
|
|
Flw

For the two streams under consideration (identified with subscripts

a and b), Eq. (2.41) gives

NI

1-a, =T(3) 4, +T@ dla_+r(

oo

(3.9)
%= =T (%') dp + T d) + T (

N w
o
(="
o
-

+

-

.

.

The matching conditions given by Eq. (2.44) reduce into

1b la
apd
b T T%a

The four unknowns .5 B 8 and a,, can be found from the above
four algebraic equatiomns.
It should be mentioned that, for turbulent jet mixing under the

condition of constant pressure, the eddy diffusivity formulation usu-

ally assumes the form of
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e 1 .
P (x) = — xu_
1 ¥s]

where‘é is the spread rate parameter. The value of ¢ for incompres-
sible flow has been establ;shed to be around 12, It is also known
that ¢ increases with the freestream Mach number, indicating a smaller
sﬁreadsrate, although fhe precise variation of 0 is still subject

to ‘speculation. This information is needed, however, in order to

interpret the results of the calculations and its comparison with

experimental data in the physical plane as dictated by Eq. (2.47).

3.2 RESULTS

The infinite series of the vight side of Eq. (3.9) is the asymp-
totic representation of the integrated functions and the resuifing
values of 3 and a, depend upon the number of terms eTployed in the
calculations, although the series showed rapid convergence for nearly
all cases investigated.

These equations were programmed on a digital computer and values
of a, and a, were found by using Newtoﬁ's.iterati;n method of ‘solv-
ing a system of nonlinear equations. With given valués of ¢%, Ab,

2 .
Crla, and the index d, values of a and a, were calculated for suc-

cessively larger numbers of terms from the infinite series.® In Figs.
3 and L4, a comparison of the results for a s which represents the
vvelocity of the dividing streamline, and g, , the veloeity gradient
at the dividing streamline, is shown fér different numbers of terms

from the infinite series with ¢, = 0.0 and 0.8 ard A = 1.0. They

*It is not necessary to take the same number of terms from the two
infinite series in Eq. (3.,9); however, it is expedient for numerical
calculation purposes that same number of terms are always used from
the two series. -
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indicate that the convergence is_pooref for larger values of Crocco
Qumbe? an@lviscosity index d. However, for the larger values. of ve- .
locity ratio ¢b, the convergence improves markedly. Such an exaﬁple
is also shown in the same figure for ¢% = (0.8 where only the éne-
and two-term results are presented for cases of d = 0 and'2t ‘The
four-term results agreed very well (usually up to the third digit
after the decimal point) with those obtained‘from numerical integréj
tion of the ordinary differential equaﬁion, Eq. (3.1}, given in [16].
Figﬁre 5 shows the results of a, for various values of Ab indicating,
- the convergence of the series and its relative insensitivity with
respect to the stagnation temperature ratio. ‘

Results:of these calculations for mény other cases_?ave been
'obtaineg and are not reported here. In general, taking three terms
from the series would give gcod resulis. The sefies showed conver-
gence'ex;ept for larger values of ¢b and Cr*?a where the fourth term
assumes a larger value than the third term, although they all remain
small“- -

The velocity profiles have been calculated and plgtted against
éhe similarity variable 1. Figure 6 shows- such a calculation for
various viscosity index values. It is interesting to observe that
all profiles shown in that figure seem to pass through a common point;
éts physical significance is, however, not'obvious. Figure 7 also
shows velocity profiles for various values of ¢b (@ = 1.0, Ab = 1.0,
Crfa = 0.5). In Fig. 8, the effect of the main freestream Crocco
number is illustrated for a velocity ratio of 0.5 (Ab = 1.0, d = 130).
The width.of the mixing region in the 7 plame is seen to decrease as

the mainstream Croceco number increases.
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4., TWO STREAM LAMINAR JET MIXING WITH
A PRESSURE GRADIENT

In many of the practical situations, turbulent jet mixing occurs
within a non-constant pressure flow field and a study of the turbu-
lent flow case would be more suitable for spplication purposes. How-
ever, one should remember that, due to a lack of basic knowledge in
turbulent flows, the prediction of eddy diffusivity under the influ-
ence of a pressure gradieﬁt can only be based on speculations and

. it would be difficult to interpret the result in the physical plane.

The main purpose of studying laminar flow cases imn this chapter
is to investigate the mathematical method for such flow conditions.
The knowledge gained in this study can no doubt be equally applica-
ble to turbulent flow cases.

It has 5een shown I1n Chapter 2 that, if one sets d = 0, one ob—-
tains

£
2

-B

(x)

m‘m
(3]

which is equivalent to the statement that py is a function of x only.
This is the assumption usually introduced to solve laminar flow prob-
lems. We mow set d = 0 and the momentum and the energy equations

~ become

£ o0+ EE = A(B - f;) +2B(E £, - £ ) (4.1)

and

A+ Pr £A 4 (Brl- 1) ot (£ )2

= A - £.A .
o - 2Pp E(fn f n) (4.2)

£ 7§
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where

X
(x)
(x) Ya e
g = f bxy BRE 2 g X (4.3)
0 Pola ulai L
du
A= - X _1e (4.4)
W, 9%
and
A - Crfa £ -
B - - _2__._n._. (”--5)
1l.- Cr]:a

As-already presented in Chapter 2, one would obtain Eqs. (2:41) and
(2,43) which are to be written with subscripts a and b and solved
with the matching conditions given in Egs. (2.44).

For this casée, the coefficient functions for the series in Egs.

(2.24) and (2.25) become

2 2
_Aeo_crlal o '
8y = 2 cap 28 ey
1 -Cr
la
2
: 8, - 2Cv a . A
- 1 13812 R
a, =-aa, +A 3 - 233, | 28 34 (4.8)
l1-2Cr
la
and
6-202(P 1) ¢ 2) 2P p!
, = -2Cr, _(Pr - 3133'*'32"',1'5310
2
93 = -Pp alel - 2Cr1a(Pr - 1) (ala.4 + 33233)

) (5.7)
«+ 2Pr E(aIB; + azeé - a{ﬁl)
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where the primes indicate differentiation with respect to E. The

coefficients € 1in Eq. (2.33) can be written as
n -

n+l

Cn = (n + 2)1 *

n=0,1,2, s« {4.8)

Finally, the coefficients for Eqs. (2.38) and (2.39) are found to

be given by

o 2 o 1
bl - as . h1 - 62
(4.9)
b =aa +a h =Pra g + 86
2 12 2 11 z

and Eqs. (2.41) and (2.43) can be written for each of the two streams

das
2o ar(Ba srwa v (B ... (4.10)
u1a 1 2 o 1 2 ;2 -
T
=g =1(z)ee? e s B e
o 2 o 1
ola
3 -3/2
+ I‘ (-2—) PI? ez 4 s = @ (L}-ll)
with
& /o
& =3 ala
1
a 2 a
4 =- %(Tai) * 53_
s . i (4.12)

. - 5a, 2_-7/2 i 5a,a, 2_-5/2 , (ala2 + 34) 2_-3/g
2 192 a 8 a L a
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and

0. a 8
S b 2 1
3a 1
(4,13)
5/2 )
. - 5 eas(g_)vlz_ea (2____)5,2_82&2(2__)/
2 182 1 a,1 32 g 8 a,
+(P:o ale1 +63)(g_)3/z
L a,
with matching conditions
4a T %1
a = -a
2a 2b (4.14)
eoézeob
e1a =—elb

4.1 METHOD OF CALCULATION

With the given initial condition (two uniform flows) and the
prescribed pressure gradient (represented by the function A), a.

a a,. s a 6, , and 6,, @re to be found from Egs. (.10)

ib? T2 2b’eoa’eob’ la
and (4,11) and the matching conditions (&.14).
Perhaps it is proper to mention that the arbitrarily prescribed

pressure gradient may be either generated due to the variation of the

external inviscid streams (inviseid interactions) or may be induced
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due to the mixing action itself (viscid interaction). In general,
the inviscid flows are usually subjected to the constraint that a
natural boundary. condition is imposed, (q.g., VA(E,W) = 0) on the
jet mixing region so that +the location of the profiles in the
physical plane can be determined [16]1. It is also worthwhile to
mention that the static pressure across ;uch a mixing region is
by no means constant although the difference is indeed small.
Nevertheless, within the frame%ork of the boundary layer concept,
one considers for the pfesen{ flow problem that the pressure field
is prescribed and is constant across the mixing region.

Additional manipulations on the £ and A variables are in-

troduced by aefining

ok = ula

la =
Yyag

PO P

p~ = 5"‘“‘—1‘1‘"“2
0la "lai

= = .}_(,
L

Bernoulli's equation is now given by

It may be shown that £ and A can be expressed as
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u:’:

- la (v+1)/(y-1) - .
g :f (i — er-;lz u‘c':z) . .uf‘\'z .—B.(.Z(-_)-:-— du:'! (4_16)

ai 1la dpf-*_) la
1 ‘ (" dx*
and
_ gp%.
2 -
' 4.17
ARG T T D7D (4.17)
ur (l - Cr_ ., u® ) -

lai la

1za-

’ Thus, for given initial velocity ratio betweer the two

1 -

/u ai), stagnation temperature-ratio

streams 9,; (=u X

1bi
Ab(zTOIB/Tora)’ Préndtl number, initial Crocco number of the main
stream, viscosity coefficient function b(x) and the pressure gradignf
(-dp/dx), the problem may be solved by integrating the system of

. ﬁqs. (4.10) and (%.11).incorporating the matching conditions

< (Bq. (4.14) ).

It is important to note that if only the first term from the

series in Egs. (4.10) and (4.11) is employeé, the system of equations.
becomes algebraic ang is independent of £ and A leading to the'séme
one term "similar" solution for constant pressure jet mizing already
discussed in Chapter 3. With the first two terms from'ﬁhe series

included into the considerations, first derivatives of a, and 0,

1

appear. The derivatives of g, and. 6, will also appear if one

i I

‘additional term is added, and the second derivatives of a and
90 will appear when the fourth term is included. It is usually
expected that the second derivatives are relatively 'small, at least

in part of the domain [25] and thus one may neglect its contribution;
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justification can only be supported by checking. the results ob-
tained.
Considering that the three—term representation of the in-

finite series would give fairly .accurate results, one now needs

5

to kno% the initial values of the firgt derivatives of a5 3y,
Bo, and 6, at the ofiéin (£ = 0) in order-to carry out effectively
%he integration. Inspection of Eqs. (&.10) and (4.11) shows that
these derivatives are always multiplied by &, indicating the
singular behavior of the system at the origin. However, these
derivatives may be found from the following consideration: when

one sets £ = 0, the resuliing a;gebraic equations will again yield
the results for al(O), az(o), BO(O), and 61(0) which correspond to
«the. similar mixing solution‘(zero pressure gradient solution). Al-
thouéh there are discontinuities in the velocity and temperature
profiles at the origin, one sﬁould'take these values as the correct

~

initial conditions for 2, 2, Go; and 91, and the derivatives of

-~

these functions aﬁ the origin' may then be found from limiting con-
siderations by L'Hospital's rule."These procedures can also be
%dopted to find a{;(o) and 8;'(0) when four terms are employed from
the series. One should be aware, however, that in such situatlions
the pressure field should have continuous second derivatives at the
érigin.

Equations (4.10) and (%.11) can now be integrated numerically
to establish the coefficient functi;ns al(E), az(E), BO(E), and

~

GI(E). These equations were programmed on a digital computer and
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solved by using a predictor-corrector integration technique. with
the Rungaakutta method for starting the solution.

One difficulty in carrying out the numerical integration
was that it was usually not possible to solve for the desired
derivatives explicitly from the differential equations. It was
necessary to use a Newton-Raphson iterative technique for this
‘purpose.

The velocity and Femperature profiles were calculated also
by using a digital computer. From the coefficient functions
a (&), a,(€), 6_(&), and 61(5), all the coefficients needed in
Egs. (2.u45), (2.u48), (2.47), and (2.34) to establish the desired
profiles in both the transformed and physical Planes can be de-

‘ termined.
4,2 RESULTS

Caiculations were carried out using a constant pressure
gradient. It was thought that for any arbitrary pressure distri-
bution one may always approximate this function by segmented
sfraight lipes within each small increment in £. Thus restricting
-the flow to the case of a constant pressure gradient would simplify .
the analysis, yet it does retain the essential features of the sys-

tem of equations. Denoting

dp _
3 = K (4.18)
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where k is a constant, one may write in dimensionless form

a*.:;'{-g—:- = ('4--.19)
m = ___K_L___z_ - (4.20)
. Po1a%1ia
The reference length I may be so chosen that [ml = 1. ‘Thus,
m = i1 indicates a favorable pressure gradient while m = -1 is for

-

an adverse pressure gradient. Unity Prandtl pupber was used
thréughout a2ll caleculations. Also, bf%) was chosen as unity.

Figure 9 presents the coefficient functions 4., 43, ,and aza‘
for the specific flow case of ¢bi = 0.5 and Ab = 1.0. The re-
sults are shown for cases where one, two and three -terms_were used
from the series in Eq. (%.10) arnd Eq. (#.11) fof initial Mach num-
bers of 0.0 and 1.0. It is interesting to note that for both
éase§ the values of a . for the two and three term resiults arve
nearly the same. However, for the coefficient 3, the three term
results appear to deviate away from the two term results, * should
also be‘mentioned that for the case of a constant adverse pressure.
gradient, the secondar& stream will deceleraﬁe to zero velocity near
x® = 0.0727 for an intial main stream Mach numbér of 1.0 and near'
x% 0.125 for incompressible flow. Similarly, for a favorable

pressure gradient, the main stream will accelerate to an infinite
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Mach number (unitf Crocco number) near x* = 0.4528 for an initial
Mach number of 1.0. No such limit exists for incompressible flow.

!Epr boundary Iayer flow problems; the curvature of the velocity
profile has a particular meaning since it may be easily séen from
the equation of motion that the change of mechanical energy of
the fluid is closely related with its curvature; a postive curva-
ture indicates an increase while negative curvatﬁre implies a de-
crease in mechanical energy. Since the coefficiemfa.3 is directly
proportional to the curvature of the velocit& profile at the di-
viding streamline, the values of ésfare also presented in Fig. 9.

The velocity profiles of these floﬁ cases avre presented in
Fig. 10. Since the profiles are not greatly different for the
one, two and three term results, only representative profiles
(three term results) are shown for various locations in the flow
field. It should be noted that the velocity profiles ma} differ
little getween the one, two and three term results; however, the
thickness of the mixing region may be quite different.

It should also be noted that a smooth veioéity profile is
ﬁresented in this figure as the initial condition. One should,'
however, be aware of the fact that the mixing layer has no-thick-
ness at this initial section, thus the profile actually shows a
éiscontinuity in the physical plane.

Results of these calculations seem to indicate that the in-
finite series in Egs. (4.10) and (4.11) converges quickly and. cal-

culations with three terms from these series would be adeguate.
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Other results presented here wege produced from this same scheme
of calculations.

- Tbe curves-in Fig. 11 are the results for isoenergetic mix-
ing with a favorable pressure gradient. They are given for three
initiél'velocity'ratios~of 0.1, 0.5, and 0.9 for incompressible
flgw. Also shown-are curves Ffor initial Mach numiers of 0.0, 0.5,
1.0, and l.é with an initial velocity ratio of 0.5. -

The effect of non-isoenergetic mixing, i.e., A # 1, is shown
in Figs.‘lz, lé, 14, and 15. It should be pointed‘oﬁt thaf-for
*iargg valués of A% iﬂb >> 1), when t#o invigsecid streams expand
through éhe Séme.pressure ratio, the Initially slower stream
(¢bi < 1) may assume a larger velogcity than)the initially faster
stream. Thus, the value Qf ¢b may be ggeater than one. . One
should not be surprised to find that a,, may be .greater than one
(naturally a,, will be negative) when Ab is much greater than one.
Values 6f ¢b for thosé case; are presented in Fig. 12.

The coefficient al; 32; 60, and 81 are presented in Fig. 13,

?he results are plotted up to the point where the Crocco number

Cr, ~is close to unity (x% = 0.4528). The velocity and tempera-

ture pgofiles are plotted as a function of n in Figs. 14 and 15,

respectively, for an Initial Mach number of 1,0 and an initizl

velocity ratio of 0.5 for mixing with a favorable pressure gradient.
It has been mentioned in the INTRODUCTION that the wotivation

of making such a detailed mathematical study is to set up a standard,

or to obtain a solution in a more nearly exact fashion if possible,
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for such flow problems so that the merit of any other approxi-
mate method may be assessed and evaluated. One such simple and
convenient approximation which is based more on physical grounds
is the "locally similar' solution. A locally similar profile is
defined for a certain location x%* as the @rofile resulting from
a constant pressure jet mixing starting from the origin--the
pressure being the iocal value. It is expected that this ap-
proximation should give reasonable results £rom the considera-.
tions that

(1) This profile satisfies the correct boundary con-
ditions at 1 = + « and

(2) Any difference in the upstream flow conditions tends

to disappear as the governing system of equations is
parabolic In nature.

'Indeed, the present investigation does support this con-
jecture when locally similar solutions (produced by the method
discussed in Chapter 3) are compared with the results from the
present detailed mathematical calculations.

Figure 16 shows a plot of a s the velocity ratio for the di-

viding streamline, and a_ , the veloelty gradient at the dividing

2
streamline, as a function of x%* and ¢b. The curves are given for
_ both favorable (m = +1) and adversé {m = -1) pressure gradients
for an incompressible flow. Recalling that the initial velocity
;rofile is similar, the deviation between the locally similar and
non-similar values of'a1 and a, is initially zero, The results

of flow cases with different initial freestream Mach number are

shown in Fig. 17. The curves are for iscenergetic mixing with an
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initial velocity ratio of 0.5 and initial Mach nuﬁhers of 0.0,
0.5, 1,0, and 1.5 for bothm = +1 and m =

It is evident from the results of these numerical calcu-
lations that the locally similar fléw concept provides adequate
approximations to the actually non-similar flow situations. It
is pertinent to remark that the results for different initiai
freestream Mach number (Figs. 17b and 17d) do not differ signifi-
cantly from each other when plotted against ¢b so that they are
presented by one single curve. Since d is zero for these-calcu;
lations, the compressible flows are %ransformed into the corre-
sponding incompressible flows and thus-the results for different
freestream Mach numbers should fall into oné single curve, The
effect of compressibility should, of course, be noticeable when
the results are transformated into the physical system of coordi-
nates. The last series of curves, Fig. 18, illustrates the ef-
fect of different stagnation temperature ratios for the case of
Mlai = 1.0, ¢bi = 0.5, and m = +1. The locally similar results
again provide good approximations to the non-similar solutions,
except in the extreme case with Ab = 10.0 where the difference is
not neéligible. It is also noteworthy to remark that the values
of &, and a, for locally similar solutions, when presented as

1

functions of ¢b should appear as one single curve for all stag-
nation tempervature ratiocs.
For any practical problems, the pressure gradient would not

have a constant value and the calculations by this scheme of
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analysis should not present any difficulties. One may_approximate
this pressure distribution by seémeﬁted sfraigﬁt lines. If a fixed
L is employed as a reference length throughout the analysis, differ-
ent segments would have different.values of m. A step by step calf
culatiqn‘with different m values would providé the results for the
problem., Early investigations by assuming segmented parabolic

pressure distributions for incompressible flows do not produce sig-

nificantly different results,
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5. _THE DEVELOPMENT OF INCOMPRESSIBLE, NON-SIMILAR JET MIXING TOWARD
. THE ASYMPTOTIC SIMILAR SOLUTION )
The problem of comnstant pressure jetrmixing betﬁeen two incom-
pressible parallel streams,f where the velocity profile at some
initial section Eo is pot similar, is considered here. This initi-
al non-similar profile could possibly result from a non-Zero. pres-
sure gradient upstresm of Eo or‘from the separation of the boundary
layer from a bluff based body. In the latter case, the velocity
profile at the point of separation (or slightly downstream) is con-
side?ed as an initial mixing profile. The lower stream is stagnant,
and the velocity and its slope at the separating streamline are also
zéro. One has to ignore the small pressure gradient which exists in
the vicinity of the point of separation. For such a type of flow

A = 0 and the. momentum equation, Eq. (2.17), becomes

£.£ ) (5.1)

=F = 3 -
£ i n 2E(fn-fin £ nn

nmn

with an initial velocity profile fn(Eo,n) specified,tt The non-

similarity comes, of course, from the existence of the non-similar

TSince the compressible flow can be transformed into incompressible
flow under isobaric conditions, we are essentially dealing with
equivalent incompressible flow problems.

TtFrom the analysis in Chapter 4, one should see that when a (£,) and
ag(§,) at &, ‘are known, the detailed profile within the viscous layer
(whether it is a wall boundary layer or mixing layer) is completely
determined.
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profile at the location £ = EO (EO is nomn-zéro). This type of flow
is similar to any relaxation process, and it is appropriate to

label this flow as a "dynamically relaxating.flow."
5.1 DEVELOPMENT- OF THE AUTONOMOUS EQUATION:

Following the same manipulations presented in Chapter Y by

setting A = 0, Egs. (5.1) together with the matching conditions would

yield
: 2 ' .3
a a, A
: L 2 . AT [54/2" 2
l_—al =T , + QEal - . + 5 YT 7732
! S Y T3
’ T
- 5v2 72 Ea! + V2E -
L 3/z 1 i/ 2
1 1
a2 a a! a'
o _‘]_‘..._2-_&5 2 2 _..,i 2 ——
15 2 5 2 3 a
2 a 1
a; a4‘
2 8 "2
—— T . 1 — Tr s e @
+ 2 3 Eal 57 T + 2£a1 + 3 E?al +
a a .
1 1
and (5.2)

3
1
542" % 54/2° %2 . 4
54 77z T L 33 5% +V/2¢ 7z |t
al al a1
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Upon examining the scolution for various numbers of terms on
the right side of Eq. (5.2), it is interesting to observe again
that the one term sclutlion is identical with that from the similar

analysis. The functions a and a, are constants which are given by

{5.3)

Using two terms in the right side of Egs. (5.2), one cbtains

a differential equation in a given by

2

da da T (1 -4¢)
1 1 b

="2'"(l_— al)—-ﬁ—(l—¢b)+

lQﬂal (5.1

and an algebraic relation for a, in terms of a; which is expressed by

q,al
a2= 'é—ﬁ(l-‘(bb); (5.5)
r

the latter also holds for the one term solution. The asumptotic simi-
lar condition, corresponding to fully developed mixing flow, caﬁ be
obtained by setting a; = 0. Denotiﬁg such a condition by the sub-
Béript 'e', BEq. (5.4) can be rewritten as

a a - a (1 - ¢b) 1

= 1+ (5.6)
1n& 2 8 aa, .,
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with
- - B 2|
ALY IO ST )
e T Iy TUBm\L + ¢,

This two term solution shows that a stable condition results which * -
is typical for all relaxation proces;es. Since the bracketed -
quantity in Eq. (5.6) is always positive, any a, value different
from a,,. would preduce a.change whiéh'fs prpportional to the differ-
ence and is in a dirvection to reduce this difference. If,a1 is
less than the asymptotié solution alé; Eq. (5.8) shows that
dql/d in € is positive and a, wiil therefore increase with & toward
a’, - If a, is greafef than a ., dalfd In £ is negative and 3
will decrease toward a, - Thus, for any given iﬁitiai value of a
at ED corresponding‘to a non-similar initial velocity profile, the
résulting mixing process is such that the similar solution (fully
deﬁeioped profile) will be reached asymptotically.

By taking three tefmé on the right side of Eq. (5.2), two
first order, ordinary differential equation in-a1 énd a, result.

- 8ince £ appears only with derivatives, they may be rearranged to

yield
da, L ¢bw@p + E.E;:;fi.fz._ 13
Eq e, VL T8 T2 & g %2
= = : (5.7)
da da . 2
1- 1 1+ ¢ a
£ aT i b la s (2
2 2 1 3 \a

which is a differential equation between a and a, only. The
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"autonomous" chavacter of the original equation is illustrated by
the successful elimination of £ in Eq. (5.7). One now recognizes
that a, can be considered as a function of a , or vice versa. The
asymptotic condition, corresponding to a{ = 0 and aé = 0, is ob-
tained when both numerator and denominator ave Zero. To be specific,
they correspond to the constant pressure jet mixing solution when
three terms are used from the infinite series in Eq. (3.92. These
asymptotic conditions are presented in Fig. 20.

To integrate E‘q. (5.7) initial values of 3, (F,'D) aﬁd a, (&_,'o) are
needed. This is in contrast to the above mentioned cases where the
one term solution is independent of the initial velocity profile and
the two term solution requires an initial value of‘al only. For the
four term solution it can be seen from Eq. (5.2) that values of a s
az,_and a; aré required. However, the second (or higher) derivatives

aré.usually small and can be neglected [25]. The § variable can again

be eliminzted and a, can be found as a furction of a, only.
5.2 DEVELOPMENT OF FLOW AFTER SEPARATION FROM THE SOLID BODY

Particular attgntion is now given to the flow development after
it separates from the bluff based body. The resulting downstream'
flow can be considered as an iscbaric mixing between the approaching
freestream and the quiescent fluid within the wake. Uader such a con-
\dition, the velocity ratio between the main and the secondary free-
streams is approximately zero.

The one-term resulis as given by Eg. (5.8) are a = 0.5 and

a, = 0.282. TFor the two-term sclution, the relation between a, and 2,
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can easily be established through Eq. (5.5). For any initial value
of'ar, jet mixing action will take place such that a. (and thus az)
will change toward the final asymptotic value (a,, = 0.590,

8,, = 0.806). It must be‘kepﬁ'in mind that for inversion of the
in%inite series of N to be valid, the first term involving a, must
not ke small. Therefore, the solutions giwven above do not hold for
the region near a, = 0. Thus, the two-term solution presented in
Fig. 21 is not shown near: the origin.

_ For the integration of the differential equation, Eq. (5.7),
which was obtained from the ‘three-term represéntation of the original
series, it ‘was found that there were definite £egions in the a s a,
'plané where convergence of the series was a p?oblem. This is in éd—
dition to the region near the N axis where a is small. O©On the
ofhgr hand i% was found that in cértaih regions the values of a and
a, were such fhat the con%érgence of the series (now represented by
the first three terms) was as good or ;ven better‘than the point

corresponding to the similar solution. - By examining the third term,

it was found that its magnitude becomes zero when

this, of course, is identical with that from the two-term solution.
Near the similar point, it was found that the first term is never
smaller than the second term; therefore, in the region near this

point the series convergence is good. When the magnitude of the
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second term is small, poor convergence results, unless the third

term is even smaller. The second term is zero for a = 0.5 for

When calculations were made for a, and a, values away from
the above mentioned regions where .convergence of the series was

' observed, it was found that often the convergence of the series

Wag very poor. For examﬁie, at the point a = 0.15 a#d a, = 0.50,
the three térms gave values of 1.624, 6.350, and —1.124, respectively,
as compared to 0.461, -0.078, and 0.039 for ths corresponding terms
at the asymptotic limiting point.

Figure 22 shows various regions in the a,» a, plane where the
series counverges quickly, slowly, or diverges.

To avoid the trouble of the divergence of the series, the sum-
mation scheme proposed by Euler, and used extensively by ﬁéksyn,
was tried. When Eqs. (5.2) were integrated using Euler's summation

scheme, the convergence improved greatly. Tor example, for the

"

abeve mentioned point ﬁhere a 0.15 and a, = 0.50, after applying
Egler's scheme oﬁce, the three terms gave values of 0,812, 0.494, and
0.150, respectively, seemingly to indicate convergence of the series,
When Euler's summation scheme is indiscriminately applied, one ob-
tains the integral curves in the a s g, plane and its final asymptotic
;vélue of a; = 0.560,7a, = 0.335 as shown in Fig. 23.

However, it is known that the Euler's scheme is not needed in
the region (including its asymptotic limit) where the original

series 1s convergent. It was therefore necessary that the Euler's

sum be applied only when the series appears to be divergent. An

55



arbitrary scheme had to be developed such that the change over
.- from one calculating scheme to another (with or without Euler's

summation procedure) would give smooth trajectories in the 2 »

2, plane. - This'is accomplished by the following considerations:

After application of Euler's summaticn procedure to the in-

finite series in Eq. (5.2), one obtains

1 33 2
dazzl{»—_w --—Ll,az'f‘sa—l- (58).
dal a2 .
.J;_ a .+ —
2
2 6a

In order to obtain smooth integral curves in the a5, 8, plane, it
is obvious that the change over between the two calculating schemes
should be made at points where they yield the same slope. Equating

da,/da, from Eqgs. (5.7) and (5.8), one has _

2a 2a a?

3 1 5 7 1 2
rym Q-22) -3 Q-2a)a +oz Wz
1

s -
a

_ (1'5;%51 -gg—)(gg-) =0 - (5.9)
1

Points with &,,a, values satisfying the above expression are joined
in Fig. 23 by curve "A" which should obviously pass through Ehe two
ésjmptotic limitiné points. Since these two points are quite close
to each other, points along this curve usually are within the region
where the original series converges. Furthermore, any errér intro-

duced from this arbitrary scheme of manipulation is expected to de-

cay due to the parabolic nature of the system.

56



There is another reglon-in the a s &, plane Where a, is
small while a, is finite, which also presenis a convepgencg problem
éfteﬁ Euler's summation is applied once. Althquﬁ this regioﬂ does
not se%ﬁ to be pﬁ&sicallyﬁreaiistic, it s nevertheless tacitly
suggested that when the First term equals the second term of the
series, the begular summation scﬂeme should be applied.

'The. final integral trajectories (phase tracks) are presented
in Fig. 24. It should be noted that although information of the £
values is not needed in establisﬁing these curves, the corresponding

velocity profiles of this .developing flow. field cannot be computed

until the precise variation of £ is known.

5.3 EXAMPLE OF THE CALCULATION OF A DEVELOPING FLOW FIELD

Schubauer [26]‘performed an experimental investigation of
Jdow speeﬂ air flow past an elliptic cylinder. Meksyn [1] performed
calculations based on Schubauer's data and produced the velocity
profilé and £ value at %he point of separation. Employing this
information as the given initial condition for the subsequent flow
field, one may easily establish the path of integration of Eq. (5.7)

in the a ., a, plane.

Another numerical scheme based .on finite difference (see the
APPENDIX for details) has also been worked out for this problem.
\ -
Results of these calculations are also presented in Fig. 24. Reasona-

bly good agreement between the results seem to support the considerations

discussed in this chapter.
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6. SUMMARY AND CONCLUSIONS

The method developed by Meksfn in dealing w%th boundary layer
Flow problems is certainly interesting and useful. It provides an
effective tool to solve boundary layer flow problems, especially
when a non-similarity situation prevails. The.present problem
of jet mixing under the influence of a pregsure gradient is one
of these nén—similar flow situations, and the application of this
* method has successfully produced resulis which also‘supported the
locally similar concept.

However, in some situations such as the flow case discussed
in Chapter 5, the infinite series resulting from the integration
by ﬁhe method of steepest descent, diverges in.certain parts of the
domain. To evaluate this series, one has to resort to Buler's
trénéformation._ No knowledge is available as to the extent and
number‘of.times which the Buler transformation should be applied,
and the-arbitrariness of decision was thus necessarily introduced
in performing any practical numerical calculations.

However, even in the problem discuss§d iﬁ Chapter 5 where poor
c;njgrgence of the series has been observed, the qualitative char-
acter of the flow development toward the final asymptotie solution
is fully il%ustrated by such .an analytical scheme. This feature

probably cannot be easily illustrated by finite difference numeri-

cal calculations.
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Figure 1 Illustration of the initial and boundary

conditions of the jet mixing problem
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Figure 2b Corresponding two boundary layer flow problems
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corresponding two boundary layer flow problems
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Figure 3 Iscenergetic results of a, for isobaric mixing
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Figure 8 Turbulent velocity profiles for various
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81

4.0 |
M . =1.0 ®
al
= 5
3.0 Fps = O —
Ay, = 1.
m =41 EA
2.0 +5 |. —
iE
R
1.0 —
0.0 { I
1.0 .
4
2.0 1 o) ]
+E
3.0 -,
TE
4.0 |
x =0.0 .05 15 .30
0 | I _
> 0. 0.5 1.0 1. 2.
u/u



4.0

2.0

M =1
ai

r.pbi.= 0.5

Ab': 10.

lx =00 ‘.15'

.05

.30

i.0 2.0 3.0 o 4.
lai

Figure l4c Velocity profiles for I\J = 10

82

0




5.0

\'4’.0""-_

i1

Figure 15a Temperature profiles for Ab

83




1.0

-1.0

-3.0

40

| l l

.0 0.5

Figure 15b

1.0 1.5 2.

T
/Tlai

Temperature profiles for A = 1.0

su

2.5



5.0

-3.0 -
E-.
.30 J18 .

x=0 0
4.0 .

-5.0 | i l f I
0.0 2.0 7.0 6.0 8.0 10.0 iz.

T
Iy

85




98

e Non-sgimilar results -

Locally similar result

x* (m=-1) x*,(m =+ 1)

Figure 16a Comparison of a; as a function of x* for the locally
similar and ndn-similar solutions




L8

1.

Figure 16b Comparison of a, as a function of ¢, for the locally
similar and non-similar solutions

/-{‘;f !
s
o
/ e/"*
— . -— ks Ty .
// T
T
// P
o"'/ — //
‘ e A = 1.0
G, = 0.5 - b
bi // .
- = 0.1 - Non-similar results
L Ppi ~ : —
- Locally similaxr results
\. N\
| | B | N | | |
] ! 2 3 4 5 .6 7 8 9 1.



88

wm e NoOn-gimilar results

Locally similar results '

Tigure l6e¢

sk
2 (m = +1)

Comparison of a; as a function of x¥ for the locally
gimilar and mon-similar solutions

1



69

[

— e e NON=gimilar results

Liocally similar results

Figure 16d Comparison of a; as a function of ¢, for the locally
similar and non-similar solutions




1.0

ssmsmem e Non-similar results

Locally similar re'sults

- - " I -
. 0 .1 .2 3T L4 .5 .6 L . 8
" .
X

(= + 1) -

Figure 17a Comparison of a as a function of x* for. the locally similar
’ ) and non-similar solutions



1,

Flgure 17b Comparison of a, as a function of ¢, for the locally
similar and non-—s:Lmllar- solutions

.

Ol = .

-
=
9 ]
/“"—' cPbi. =0.5
gl-M_, = 0.0, 0.5, 1,0, 1,5 === —
-—-.—-""‘—-‘——. - .
/. ——— Non-similar re si;.li:g'
T ~ Locally similar results —
\K . A
0 l | I | r | -
0 1 ? 3 i 5 6 7 8 1.0



43

——— Non-similar results

Locally similar results
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APPENDIX
"Finite Difference Calculation of a Developing
Jdet Mixing Region
The soiution to the problem of incompressible, constant
pressure jet mixing with an intial velocity profile at £ = Eo
can also be obtained by using a finite difference technique in

the von Mises plane. The momentum equation for laminar Flow

2 .
" %§.+ v-%E.= vazu (a1)
¥ BYZ
can be transformed into
du_ 3 ( du
20 A (42)

in the von Mises plane, where 3y/3y = u, -30/3x = v have been de-

fined and introduced. Defining

. ¢* = ia w: {(A3)

where L is an arbitrary reference length, u is a reference velocity,
and Re is the Reynolds number based on L, u , and v(ReL = Lu;/U),

the momentum equation becomes

IR ($$g$;) (A4)
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Using an impliecit finite difference scheme, the derivatives
¢an be written as

i+l i

3 ='¢j ~ 9
o= s o
and
3 i+l 3 i+l
o3 v i
3 (¢ 3¢ ) , e 1! (6)
qus ¥ opE/ T s
with
: SRR R L e L
a¢ i+l _ ¢j +,1 + ¢j ¢] +1 ¢j
¢ aqﬁ-)j S T3 XT3
and T e
. i H T+l i+l
20 )!+1 IR B T S
3/, 2 . By

where linearization has been applied to the above expressions. The

differential equation, written in finite difference form becomes

(8 v ) 40 (kv e d) 87

'

i

e

/ iy g+t 9
Wwith
A - Axd
2(Ap%)

When this expression is applied to any point i, ¥, only three un- -

i+l . .
knovn values of ¢ appear in the equation. Therefore, when
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Eq.- (A7) is written fqr_t@e‘n,gnknqgn}no@es,hn.equatipﬁs coupling . .
(n + 2} unknowns result. This system can be written in the matrix
form AX- = B, where'the n X n square matrix A is seen to pe a tri-
diagenal matrix.

The bbundary conditions will eliminate two unknowns from the
above. linear system of equations (the largest and‘smallest‘indgx
in j). fhus, with given.initial conditions, the velocity profile

can be established at new locations by solving the matrix equation
AX = B

This method was, of course, programméa on a digital computer and
used to calculate ?he velocity profiles for the problém of one*
stream jet mixing. The initial profile was that measured by
Schubauer at the separation point of a low speed flow past an el-
liptie ;ylinder. This profile and its & value were alsoc determined
by Meksyn. ‘ ‘

A total of 71 points was used for the initial profile in-the
x%, P* plane, znd this number was Increased as the width of the mix-
ing region grew. To interpret the results from the calculations in
.the a , a, plane, one has to realize that the velocity gradient in

+the £,n plane is

Su _ v Re .
dy L 26 mn
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with

a'l = fn(EaTl = 0)

8.2 = fnn(gsn = 0)

and from the results obtained from the x%, % plane

du _ o -
i s AT

where ReL and Re£ are based on u,  and u respectively, L being

la-

'd
‘the minor axis of the elliptic cylinder. From the measurements

of Schubauer at the separation point

u,_ = 1.25 u®
la o
while a, = ;, the value of a, (the, velocity gradient at the di-

viding streamline in the £,n plane) then becomes

where subscript d refers to the dividing streamline (identified by
Pt = 0). The results of these numerical calculations are presented

in Fig. 2b4.

+tNote that due to the difference in the reference velocities between
the two formulations the o obtained by Meksyn and the velocity pro-
file have to be corrected before the results may be plotted in the
a; , 2 plane. ) :
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