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ABSTRACT

Coextruded and brazed tubular transition joints_ between 2.5-inch-

outside diameter tantalum and Type 316 stainless steel_ were evaluated

for usage in the SNAP-8 Mercury Power Conversion System. Representative

jotnts were exposed to repeated thermal shocks by flowing 300°F mercury

through the joints which were initially heated to 1300°F. Failure of

the coextruded specimen occurred after 55 thermal shocks; no brazed

joint failure was noted after testing to 100 and 155 cycles (two brazed

samples). Posttest destructive and nondestructive examination of the

sample assemblies Lndicated that the braze method produced assemblies

which were essentially unaffected by the shock testing. The results

of the above teSting_ and other severe thermal shock tests of this

type of joint_ show that the brazing method for effecting transitions

between tantslum and stainless steel will produce a reliable joint for

SNAP-8 applications.
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MERCURY THERMAL SHOCK TESTING OF 2 1/2-INCH-DIAMETER

BIMETALLIC JOINTS FOR SNAP-8 APPLICATIONS

I. Introduction

The Aerojet-General Corporation Specification AGC-10512_ Power

Conversion System, Ground Model (PSC-8), SNAP-8 requires that the mercury

boiler be capable of a minimum of 100 restarts with a design life of

10,000 operational hours. The basic materials utilized in the system

are unalloyed tantalum for the boiler tubes and Type 316 stainless steel

for the remaining loop components. Both of these materials had been

shown to have excellent individual resistance to mercury attack under

conditions associated with the application. (I_ 2) The startup sequence

of the SNAP-8 power conversion system subjects the entire boiler section

to a severe thermal shock when 70°F mercury is injected into the 1300°F

boiler. Further, for the present boiler design, 2.50-inch-outside-diameter

tantalum-to-Type 316 stainless steel tubular transition joints are re-

quired at both the inlet and exit of the boiler. Two candidate methods

under consideration for fabrication of the bimetallic transition joints

were coextrusion and brazing. Representative joints - coextruded, manu-

factured by Nuclear Metals 3 Inc., and brazed_ fabricated by GE - NSP -

were prepared for thermal shock testing to establish the relative

reliability of the different designs and manufacturing processes. The

testing parameters selected were more severe than those conditions

associated with normal startup of the power conversion system. The

mercury testing also provided a quantitative means for reaffirming the

resistance to mercury attack of the tantalum - braze alloy - stainless

steel materials combination under SNAP-8 operating conditions, which

(3)
had been established earlier for smaller diameter brazed joints.



II. Test Specimen Preparation

The basic design configuration for the 2.5-inch-OD brazed samples

was a tongue-in-groove, as shown in Figure 1. The two brazed assemblies

(Serial No's 14-14 and 16-16) discussed within this report, were vacuum

brazed at 2160°F 2180°F for five minutes, using the cobalt-base filler

alloy designated J-8400 (B50T56-S1)*. After brazing, both brazed

assemblies were nondestructively inspected using visual, dye penetrant,

ultrasonic, and mass spectrometer techniques, and no rejectionable

defects were observed. The Nuclear Metals, Inc. coextruded joint was

purchased by the NASA - Lewis Research Laboratory and assigned to GE

NSP for thermal shock testing without performance of additional pretest

inspection by GE - NSP. In addition to the different methods utilized

in fabrication of the test specimens, the wall thickness of the coextruded

joint was 0.020 inch less than that of either brazed assembly; i.e.,

0.110 inch vs. 0.130 inch.

III. Thermal Shock Testing

For the initial shock testing_ brazed sample S/N No. 14-14 and the

coextruded specimen were assembled to form a test section by tungsten

inert gas (TIG) welding the tantalum ends of each together. The welded

assembly was positioned with the coextruded joint nearest the mercury

inlet end for the forthcoming thermal testing. A O.060-inch-diameter

orifice plate was inserted downstream of the two bimetallic joints to

restrict the flow of mercury through the test section and rapidly build

up the inlet mercury pressure to suppress film boiling of the mercury

in the joint areas.

* Braze Alloy Composition: 21Cr-21Ni-3.SW-8.0Si-O.SB-O.O4C-Bal. Co.

2
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A vacuum jacket was assembled around the test section to protect

the tantalum members of the bimetallic joints from surface contamination

during the temperature cycles. The jacket was fabricated from standard

vacuum components with either welded or copper gasket joints. A flexible

bellows coupling was used to accommodate the differential thermal expansion

between the test section and the vacuum jacket during the heating and

cooling cycle. The bimetallic joints were heated with an electrical

resistance heater attached to the vacuum jacket section surrounding the

bimetallic jointS. Heat was transferred from the vacuum jacket to the

bimetallic joints by thermal radiation. A chromel/alumel thermocouple

was attached to both the stainless steel and tantalum sections of each

bimetallic joint. Test temperatures were recorded with a high-speed

recording potentiometer which allowed the temperature transients of

each joint to be compared. The test section assembly is shown in

Figure 2.

The thermal shock test facility consisted of a mercury EM pump,

the test section, and a water-cooled heat exchanger as shown in Figure 3.

An evacuation and gas pressurization port was used to evacuate the loop

before the test and to pressurize the test section with helium for mass

spectrometer leak testing of the bimetallic joints at specified intervals

during the test. The test section was placed in a vertical position to

allow the mercury to gravity drain from the test section after each

thermal shock.

The thermal shock cycle as shown in Figure 4 was as follows: the

electric power to the heater was adjusted to heat the bimetallic joints

to 1300°F in 30 minutes. This temperature was maintained at the joints
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entrance braze flow side (outermost tantalum section). The reaction

zone in the stainless steel was largest on the inside surfaces of the

tongue (Kn 270 at 0.002 inch from the interface and Kn 200, 0.006 inch

away); the lower hardness readings were encountered less than 0.002 inch

away from the outside surfaces of the stainless steel tongue. The width

of the diffusion zone in the outermost tantalum areas was approximately

0.007 inch to 0.011 inch; the hardness decreased in that area from Kn 180,

0.0005 inch from the braze interface to the base hardness of Kn 125.

Previous studies on Cb-lZr/Type 316 stainless steel brazed transi-

tions_ using the J-8400 braze alloy (5) have demonstrated that the forma-

tion of an intermetallic phase at the Cb-lgr-braze alloy interface during

brazing limited the amount of interdiffusion occurring during subsequent

I600°F/1000-hour expesures in vacuum. Microstructural examination of

the tantalum/Type 316 stainless steel, 2.5-inch-OD joints, indicated the

presence of a similar phase, as shown in Figures 11 and 12. If equiva-

lent reaction rates are assumed between the braze alloy and both Cb-lZr

and tantalum, then the above indicated diffusion in the tantalum probably

occurred during brazing.

Microstructural examination at high magnification (to 1000X) of the

internal piping surfaces and the internal braze fillets produced no

significant evidence of mass transfer, mercury corrosion, or joint

deterioration caused by the repeated thermal/mercury shock cycles.

Figure 13 shows a typical appearance of the inner braze fillet area for

joint S/N No. 16-16; similar structures were also present at the inner

fillet areas of joint S/N No. 14-14.

Microshrinkage voids were discovered to varying degrees in the

21
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brazed flow paths of both assemblies. These voids were formed on cooling

from the original brazing thermal cycle - they occur in the last portions

of the braze alloy which solidify_ and their occurrence is a normal

brazing by-product if freezing of the alloy at a location between the

entrance feed fillet and the discussed area blocks the supply of liquid

braze. As shown in Figures 12B and 14B_ the largest zones of micro-

shrinkage were found in joint S/N No. 16-16_ near the base of the tongue

and groove in the sections taken at 180 ° and 226 ° rotation from the ultra-

sonic inspection reference index. As indicated previously_ these sections

represented (ultrasonic) intermediate and best-bonded areas of that

assembly_ and their presence to the extent shown in the microphotographs

was not anticipated. Further_ the extent of their size and agglomera-

tion_ while greater than desired_ was not prohibitive from a brazing or

structural standpoint. Microstructural examination of the most suspect

area (at 0 ° rotation) of Specimen S/N No. 16-16 revealed a completely

sound brazed section_ in direct contradiction to the ultrasonic data.

The lack of agreement_ between the ultrasonic indications and the actual

microstructures present_ may possibly be explained by realizing that in

cutting the assembliesj and subsequent metallographic preparation_

material removal may be somewhat different than expected. Thus_ the

sections examined may not have coincided exactly with the desired

locales_ and the joint characteristics could be completely different

at the positions examined.

The metallographic sections prepared from joint S/N No. 14-14_ at

0°_ 160°_ and 316 ° rotation from the ultrasonic index_ yielded essentially

identical microstructures. Again_ complete agreement between the actual

23
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structures and the ultrasonic indications was not achieved_ although

generally better correlation was evident than with sample S/N No. 16-16.

The microshrinkage present in sample S/N No. 14-14 (Figure llA) was

uniformly widespread, and individual voids were very small (0.0001 inch).

It was possible that these voids were the cause for the ultrasonic

indications at the above specified locations if the inspection equipment

sensitivity was set too high. Also_ the spacing between each void

(approximately 0.010 inch) may have been small enough that the sensing

transducer could not resolve their separation_ since the transducer does

sweep a finite distance. One additional factor that should be pointed

out, since it could have influenced the ultrasonic data_ was that the

braze alloy on the inside of the tongue and groove (both brazed assemblies)

was two-phase in nature_ as shown in Figures llA and 12A. This zoning

effect essentially represented another possible interfac% and the

chemistry changes present therein could have altered the speed of the

sound waves passing through_ which in turn could cause suspect areas to

appear on the ultrasonic "A" scans. Because none of the described

phenomena for joint S/N No. 14-14_ as well as joint S/N No. 16-16_ were

unacceptable from a structural standpoint_ it was obvious that the

ultrasonic inspection technique required refinement to more clearly

define objectionable defects. The bulk of the difficulties associated

with ultrasonic inspection of tongue-in-groove brazed specimens were

contingent on the lack of a satisfactory "standard" brazed specimen.

To alleviate the problem_ "standard" specimens containing good and

bad brazed areas at prespecified locations_ are presently being prepared

for future applications.
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Other pertinent facts established by the microstructural examination

and microhardness testing of the brazed specimenswere as follows:

a. The capillary spacing between the outside of the tongue and

groove for the two specimenswas different; 0.0015 inch for

joint S/N No. 14-14_ 0,005 inch for joint S/N No. 16-16.

b. The previously mentioned microshrinkage voids in both brazed

samples were prevalent in the wide gap side of the tongue and

groove_ in the light etching areas of the two-zone braze

material. The braze material in the outside of the tongue and

groove etched darker and was essentially free of voids.

c. The two-zone nature of the braze in S/N No. 16-16 extended

around the base of the tongue from the wide gap side and into

the 0.005 inch capillary side for approximately 0.030 inch.

Thus_ somemicroshrinkage was also noted on the capillary side

of that joint (see Figure 12B).

d. The grain size of the stainless steel in the tongue areas of

the brazed joints was larger than that determined in the

remainder of that component. Twopossible reasons for this

larger grain size were stresses associated with (1) the original

machining operation and/or (2) differential thermal expansion/

contraction induced during testing. These stresses could

have caused plastic deformation which coupled with the elevated

test temperatures resulted in the increased grain size.
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e. The reaction zones identified in the stainless steel tongues

by the microhardness testing resulted primarily from interdiffusion



with the J-8400 braze alloy. This was substantiated further

by the fact that the grains in that area were equiaxed_ implying

that the thermal/mechanical stresses induced during machining

or testing were completely relieved.

f, As shown in Figure 14B, the corners at the base of the tongue

and groove of joint S/N No. 16-16 were rounded (approximately

0.001-inch radius). This effect could have been produced by

(1) interalloying of the base metals with the braze alloy during

the brazing cycle or (2) the initial machining operation. In

either event, the effect was beneficialj since the stress con-

centration factors are reduced; thus_ the assembly can more

readily withstand the stresses associated with thermal cycling.

A similar corner rounding was observed for joint S/N No. 14-14.

No detrimental reactions between the joint components and mercury

were noted; nor did the thermal stresses during testing cause degrada-

tion of the brazement with the possible exception of the stainless steel

variation in grain size. Also_ the fact that the ultrasonic inspection

results before and after the thermal shock test were identical was

meaningful because any significant degradation would no doubt have been

identified by that technique. Since no change was observed in that data_

the metallurgical phenomena observed were attributed primarily to the

brazing operations and not to the thermal shock testing.
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V. Summary of Evaluation Data from Failed Coextruded Joint

The 2 1/2-inch-diameter tantalum/Type 316 stainless steel coextruded

joint was examined, after testing, nondestructively by ultrasonic and

dye penetrant techniques and then sectioned for metallographic examination.

The ultrasonic inspection was performed using a focused transducer

and a longitudinal wave mode through the total joint wall thickness; scans

were made eircumferentially along the outside diameter of the joint area.

A "C"scan ultrasonic trace was prepared, from repeated "A" scans, by

means of appropriate gating techniques_ to differentiate and record any

electronic signals different from those obtained for the outside and

inside tube wall reflections and those found for a completely bonded

cross section. The nature of the ultrasonic indications is shown in

Figure 15.

The locations of the principal ultrasonic suspect areas were marked

on the outside of the tested joint; after which the assembly was dye

penetrant ("Zyglo") inspected. Continuous indications were noted around

the "feather" edge of the joint area on the inside of the assembly and

at several locations on the outside feather edge.

After "Zyglo" inspection, the joint was sectioned for microstructural

study at the principal ultrasonic and "Zyglo" suspect areas. Several

microstructures obtained at these locations are presented in Figure 16.

The correlation between the inspection indications and the actual micro-

structures was excellent; i.e., at every suspect location examined_

separation of the interface was observed metallographically. No evidence

of any significant intermetallic phase formation at the interface was

observed during examinations to 1000X. Further, no microstructural
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Figure 15. Presentations from Ultrasonic Inspection of Coextruded Tantalum/

Type 316 Stainless Steel Joint After Mercury Thermal Shock Test

(58 Cycles).
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Figure 16. Typical _icrostructures in Joint Area Coextruded Tantalum/
Type 316 Stainless Steel Joint After _ercury Thermal Shock
Test (55 Cycles).

3O



indications of mercury corrosion or erosion were found along the inside

of the assembly. Microhardness traverse data were determined across the

wall of the coextruded specimen. As shown in Table I, essentially

constant hardness values were obtained throughout the individual components,

tantalum and stainless steel, in the joint area. The data also verified

the visual observations that no intermetallic phases were present at the

joint interfaces.

The susceptibility of the coextruded joint to failure under severe

thermal shock conditions was clearly indicated. Further, good agreement

was realized between ultrasonically detected flaw locations and actual

separation points of the joint.
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TABLE I

TYPICAL MICROHARDNESS VALUES ACROSS WALL OF 2 1/2-INCH-

DIAMETER COEXTRUDED SPECIMEN AFTER MERCURY THERMAL SHOCK TEST

Impression Location Hardness

(Inches from Interface)

0.002

0.004

0.006

0.008

0. 010

0.012

0.014

0.016

0.018

In Stainless Steel

(Knoop-lO0 gm Load)

251

258

258

272

247

259

259

259

263

0. 002

0. 004

0.006

0.008

0. 010

0.012

0.014

0.016

0.018

0.020

0.022

In Tantalum

159

146

154

166

156

151

156

147

138

140

159
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VI. Summary

Tubular transition joints between 2.5-inch-OD tantalum and Type 316

stainless steel are required as components in the SNAP-8 Power Conversion

System which utilizes mercury as the working fluid. Two candidate fabrica-

tion methods_ coextrusion and brazing_ were considered and both subsequently

evaluated by exposing representative joints to repeated thermal shocks

in the 1300°F to 300°F temperature range. Each individual thermal cycle

was achieved by flowing mercury at 300°F through the joints which were

initially heated to 1300°F. These test parameters were selected to

simulate those conditions expected at the joint transitions during start-

up of the SNAP-8 system. Failure of the coextruded joint was observed

after 55 thermal cycles. The failed joint was subsequently replaced by

another brazed joint and the testing continued until the initial brazed

assembly had accumulated a total of 155 thermal shocks. Subsequent

posttest examination of the brazed joints_ using both destructive and

nondestructive inspection techniques_ indicated that the braze method

(1) produced assemblies which were essentially unaffected by the mercury

exposure and (2) could be used with a high degree of reliability to

fabricate the transition joints necessary for the power conversion system.

This report summarizes the results of the posttest evaluation of the

brazed joints which support the previous statement regarding the suita-

bility of the brazed technique for fabrication of the tantalum/stainless

steel SNAP-8 bimetallic transitions.
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