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THE BOND STRESS IN A VISCOELASTIC PROPELLANT DISK
DURING THERMAL SHOCK

by
Bernard W. Shaffer and Myron Ievitsky

Abstract

The variation with time cof the bond stress in a case
bonded solid propellant rocket assembly is studied under
conditions of plane stress, when the external temperature
changes abruptly. Maxwell, Voigt, and four elementymodéls
are assumed for the propellant, and effects arising from
changes 1n viscoelastic properties, thermal expansion co-
efficlents, and heat transfer characteristics of the
assembly are studied. It 1s found that the bond stress
equations are separable into a stress factor identical to
thé solution of the equivalent elastic problem, and a time
dependent factor, which is a function of the viscoelastic
constants. Quantitative aspects of the solution are pre-

sented in dimensionless form.

Introduction

*
It has been shown[l’gl

that when a case bonded rocket
assembly is subjected to ambient temperature variations, thermal
stresses develop at the bond surface due to differential thermal
expansion of the soiid propellant and its casing. Under certain
conditions, these stresses become high enough to cause failure

of the bond. Their magnitude may be determined from the pro-

B Superscript numbers in parenthesis refer to the references
listed in Bibliography.



pellant material properties, the casing material, the
geometrical configuration, and the rapidity of the ambient
temperature change.

Initially the thermal bond stress was explored[l’g]
under the assumption that the propellant has only elastic
characteristics. Subsequently,[3] the analysis was extended
to include some viscoelastic characteristics, which represent
a more apt descriptiqn of the propellant material behavior.
The extension was based on the assumption that the viscoelastic
propellant material is of the Maxwell or Voigt type. The
present report prcposes to extend this analysis to a somewhat
‘more physically realistic material representation of the

propéliant.

Stétement of Problen -

| In order to define the problem so that the resulting
computations yield meaningful physical results which do not
become excessively unwieldy, the range of the present analysis
will be restricted by several assumptions.

Attention will be confined to a propellant grain con-
sisting of an annular disk, as shown in Fig. 1. The disk
has an internal radius a and an external radius b ,.
surroynded by a casing whose internal and external radii are
b and ¢ vrespectively. The disk is thin compared to its
radial dimensions, so that the assembly may be analyzed as
a problem of plane stress.

The casing material may be either metallic or plasticg

in either event it is assumed to be an isotropic elastic



" material, The solid propellant is a viscoelastic material.
Following the usage of Alfrey and others[M’B] its properties
may be described in terms of one dimensional behavior which
characterizes the stress-strain relationship in two independ-
ent modes, i.e., compressicn and shear. For simplicity, the
propellant will be assumed elastic rather than viscoelastic
in compression, and in the limit, taken to be incompressible.

The bond stress will be studied by comparing results
obtained from three shear models; the two element Maxwell
angd tigt.models, and a more general four element model.

The one dimensicnal analogues of the material properties in
pure shear are shown in Fig. 2. The Maxwell model is shown
in Fig. 2a, while the Voigt model is shown in Fig. 2b. The
characteristics of each model are defined by two parameters,
an elastic and a viscous constant. The four element model,
shown in PFig. 2c¢, consists of a Voigt and Maxwell mcdel in
series. It approximates the behavior of some types of non-
cross-linked polymers fairly well. The existence of four
independent constants allows greater freedom in correlating
data which describe actual materials with mathematical
equations which describe the behavior'of the model.

In discussing results arising from variation in the
material properties, 1t willl be convenient to speak of a
Maxwell-like or Veigt-like change, by noting that in a limit-
ing sense, the four element model may be transformed into
either of the two element models, It is useful in doing this,

to evaluate the properties of the four element model quanti-



tatively in terms of an elastic parameter E1 , and three

moduli which have the dimensions of reciprocal time, namely

E E E
1 1 - e
; — 3 = —— — Rl 1
“ ny ‘2 Ny’ %3 Mo (1)

The Maxwell material is characterized by an initial elastic
deformation and unrestricted viscous flow under stress. Its
behavior may be described in térms of the four element model
as the limiting case, either as 5 for which Kll>>K2 and
K1>>K3 , Or when Eé+w and Kéﬁw . The Volgt model has an
infinite resistance to suddenly applied stress, and under
constant stress tends toward an elastic-like behavior. This
characteristic occurs in the four element model when both
Elﬁm and n1+m

The ratio El/'nl should not he left ambiguous by the
preceding limiting process. Any ambiguity may be avoided by
observing that in the Voigt-like material, the relaxation
effects associated with the Maxwell element have a relaxation
time l/Kl which is much greater than the corresponding

retardation time 1/K A Voigt-like material thus behaves

3
in a manner similar to the four element material for which

b

2

3

K2>>K3>>Kl : the two element model is formed when K
and K20 .

Another important factor in evaluating the bond stress
is the temperature distribution in a rocket assembly subsequent
to an ambient temperature change. When the ambient temperature
changes abruptly after the assembly has been in thermal equili-

brium with its surroundings, the assembly is said to be sub-



jected to a thermal shock. To describe the thermal character-
istics of the assembly, it is convenient to introduce a

dimensionless parameter called the Biot number

Hb
Npi = % (2)

where b is the external radius of the propellant, k i1s its

thermal conductivity, and
1 1 1 1
e I (3)
H ho hc hi

The surface heat transfer coefficient hO is evaluated at the

external surface of the assembly, while the surface heat trans-

fer coefficient hi is evaluated at the propellant-casing

interface. The coefficient hC is equal to kc/b&n(c/b)

where kc is the thermal conductivity of the casing material.
When a rocket assembly 1is subjected to a thermal shock,

the ambient temperature change TA , measured from an arbi-

trary equilibrium temperature, varies with time t in accord-

ance with the relation

T, (¢) =0 t<0 ; T,(t) =T, t>0 (1)

If the casing is thermally thin, its temperature T, 1is

immediately affected by a change in ambient temperature so that
t) =0 t<0 ;3 T(t) =T, t>0 (5)

The temperature within the propellant Tp , on the other hand,
may be shown to vary independently of the radius, to a degree

of approximation determined by the Biot number[6] s
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where B 1s a temperature time constant equal to twice the
product of the Biot number and the Fourier number. It is a
function of geometric and thermal conditions.

Use of the preceding temperature equations restrict the
range of applicability of the subsequent stress calculations
to a Biot number consistent with the assumption of uniform

“temperature throughout the propellant.

General Method of Splution

E.H. Lee[Y] has shown that there exists a correspondence
principle whereby viscoelastic stresses are related to the
stresses of an equivalent elastic problem. The correspondence
is applicable to quasi-static problems of small strain in which
the surface forces or surface displacements, whichever are
prescribed, are ldentical in the elastic and in the visco-
elastic problems.

To transform an elastic solution to a viscoelastic solution,
it is observed that the viscoelastic linear operators P , Q
and P' , Q' are related to the elaétic constants E and o ,

Young's modulus and Poisson's ratio respectively, by the relations

5-5E 3@

(7)




and to G and K , the shear modulus and bulk modulus

respectively, by the relations

o

-6, % -k (8)

Thé viscoelastic linear operators appear in the stress-strain

relation of a viscoelastic material

P s

Qe i,J‘ - rg Q, Z

i

ij ij #

H

Plog = Qe

where the linear differential operators

n ar n ar
P-ZZ p, B — Q= q —
r=0 r Btr r=0 r Btr
(10)
n r n r
d 3
P = £ pl —x Q =2 q! —
r=0 T at" r=0 © a3t
Sij and eij are the stress and strain deviators respectively,

and where o Kk and €xk are three times the mean normal stress
and strain, that is

%k = %pr * %90 * %2z

(11)
‘kk = Srr ¥ €00 * €2z

in a cylindrical coordinate system in which r , & and 2z are
the radial, circumferential and axial directions respectively.
The coefficients Pn and p% are constants which depend upon
the material properties. The stress and strain deviators are
related tc the stress tensor Gij and the strain tensor eij
by the relations



S13 7 913 " 3 %k %13
(12)

€.. = € —'—Jle O.

13 = €13 ~ 3 ke %13

where Bij is the Kronecker delta, equal to unity when
i =J and equal to zero when 1 £ J .

The‘strains ére small in the problem under consideration
because the viscoelastic propellant is surrounded by an elastic
casing. The boundary requirements are met by virtue of the
fact that the radial displacement of the propellant's outer
surface 1is restricted by the casing both in the elastic and
in the viscoelaétic problems; the internal surface of the
propellant is traction free. Thus the elastic solution for
the stress in a case-bonded propellant disk 1s identical to
the Laplace transform of the stress in the viscoelastic
problem, when time t 1is the transform parameter. By making
use of Equations (7) or (8) and (10), where the time deriva-
tives an/Btn are replaced by powers of the inverse transform
parameter pn , the transformed expression for stress may be
obtained directly from an elastic solution by replacing the
material constants with the aforementioned equivalents. The
viscoelastic solution for stress can then be obtained by taking
an inverse laplace transform of the resulting expression.

Using the foregoing concept, Shaffer and Levitsky[3] have
shown that the Laplace transform of the time dependent visco-

elastlic radial bond stress is given by the expression



_ 2 2 a,T.(p) - a T (p)
o(p) =b 2a cL ) ED (13)
2b l(.l. £)3+lﬂ+J
2\37,22 27 3¢@

where the subscripts ¢ and p refer to the casing and the

propellant respectively; and where

2 2 1+ W 2
b - a 1 c a®\
J=<Me_ )Eg"*‘"""“eEc (1'5'2‘/ (1%)

a function of the dimensions and elastic constants of the

casing,
“c = Poisson's ratio for the casing material
E_ = Young's modulus for the casing material

c
a,b,c =z dimensions of the assembly as shown in Fig. 1

%e

%o

"

thermal expansion coefficient of the casing

]

thermal expansion coefficient of the propellant.

The variable p 1is the transform parameter identified by the
operator relation p = 3/3t , Té(p) and Tb(p) are the
Iaplace transforms with respect to time of the mean tempera-

ture of the casing and propellant respectively, i.e.,

-

Té(p) = j T, (t) e Pt 4t (15)
T, (p) = Lw T, (%) e Pt g¢ (16)
where
T (t) (2 553 I T(p,t) d (17)
P Y £ 0.5 ce !



2
T (t) ( - 9—2-) = —%—L T{p,t) d¢ (18)

T(p,t) 1is the space-time temperature distribution within the
assembly expressed as a function of the dummy radial variable
¢ - When the temperature throughout the casing or propellant

is uniform radially, Equations (15) and (16) show

p® T
— i -p o]

t

where H(t) 1s the Heaviside unit function defined by

H(t) = 0 t< 0
(20)
H(t) =1 t>0
and
T 7 _ e Bty Pt BT,
‘I‘p(p) _.JO To(l e ) e dt = m (21)

Use is made here of the restricted temperature variations
expressed by Equations (5) and (6).
For a material which is elastic in compression, it is

convenient to write the ratio of linear operators,

P1 1
T = (22)
Q! EB

where, in view of Equations (8) and (22) EB_ is a viscoelastic

-constant related to the elastic bulk modulus K 4by the relation

Substituting Equations (19), (21), and (23) into Equation

(13) shows that bond stress in the assembly may be written

10,



- P r 1
59 B p(IprB)]L 2 J (24)

which is independent of and thus not affected by any subsequent
variations in the viscoelastic shear properties of the propellant.
With this new parameter the bond stress expression may be written

in the form

2 2
e N I

o) = ———=Lp " sl

1
b~ ¢ 3a + ) (26)

P
) L

The time dependent bond stress o(t) is then, in principle

determined once the material properties of the propellant in

shear are specified by the operator fraction P/Q .

Solutions for Viscoelastic Materials

Let us now specialize the bond stress equation derived
in the previous section for a Maxwell material, for a Voigt
material, and for the general four element material.

For a Maxwell material in shear, the stress strain law
may be written
(%I * ﬁzl1r> 813 % %1y (27)

ot

where El is an elastic parameter and uit a viscous constant.

11.



Comparison with Equation (9) indicates that for a Maxwell
material the polynomial fraction P,/Q may be written in

terms of the operator p as

P _ 1 1 (
q El * ﬂlp (28)

Substitution of Equation (28) into Equation (26) shows that

. (29)

Rearranging terms cf the last equation gives

2 42
_ e, Ty (1 - a%/b%) (1 - ap) B+ Py
o) = T Rexaoicaaad (30)
(‘3- + F El + 3EB + 2J

where the new parameter o6 1is defined by the relation

3

TN

Wj
-
Im

ol

m‘H
+

W)

& o
+
no

Bl
ol
n

'j‘r—'

7~

W)+
+
lm

NS

(31)
and

ap = ap/dc (32)

The inverse lLaplace transform to Equation (30) may be obtained

by partial fractions, yielding

2,2 - st Bt
- a,T, (1 - a°/p°) {Lé - (1-ag)s | e™" - B age™ }
(L.2) 1, 2, 5 - B
\3 * .2/ B T 3E;
(33)

which is the expression for the time dependent bond stress in

a case bonded rocket assembly, with a Maxwell type propellant,

12,



under temperature conditions of Equations (5) and (6).

Similarly, since the stress-strain law for the shear

properties of a Voigt material is
3\
<E2 * M2 3%/ %15 T 84y (34)
the operator expression for P/Q may be written

1
Ey 7 ngp (35)

ol

so that Equation (26) becomes

2 2, % %P
SRR -, - — 1 L .
E2 + n2p

Subsequent calculations are made more convenient by

rearranging Equation (36) so that it reads

(0) acTo(l‘ag/bg) {pgf {(l-aR)ﬁ*Eg/ﬂg} p+(l-GR)BE2/ﬂ2}
3§B v 27 p(p + B)(p + &)
(37)
where
L + 2_ 4+ oF (~l— + J)
2 2 ‘3E
5. o_D T B (38)

The inverse Laplace transform to Equation (37) is taken

again by partial fractions, and gives

2,2
a T (1 - a“/b%) - E .
VRS L(1-ag) 75 +Ty + T, (39)
3B,

o(t) =

26 ( + J)
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E E,\ i
= Tg*%*gj'{(l~a3) B ﬁi - ((l-aR) B+ ﬁijé * 52} e % (39¢)

For future comparison with the corresponding bond stress
equation for a Maxwell propellant, the preceding equation is

rewritten as

-~ 2219 _
o(t) = 1. g\il aa/b - (2 - ag) + 1] (40a)
3¢ JE 3R ¢
where
Bn ] _
ry = g (oo (22 1) %+ ((a - 2 + 4)(2- g0

(40b)
The stress-strain law for the four element mouel of

the form iliustrated by Fig. 2¢ is

1
Lf J 8, (41)
Ey + “2 a— “1 BT

It may be written in the form of Equation (9), namely

2 E E E
1332 Ep 31 "1 (332 /1.1 2\ 3 2
16 M, 3EJ°1J T LE] \‘5‘) *\my s Elnl> 3T * mnod i

(42)
Making the formal substitution p = 3/8t , Equation (42)

may be rewritten

14,



Ap” + BP + © (43)

£ .
Q Do + p2

where the parameters A,B,C and D are given by

E
1 2 1 1
Aﬂ"—‘ B= g o F e
Eq Emp M3 M2
(44)
E, Ey
C o= —on D= —=
1Mo Mo

Substituting Equation (43) into Equation (26) shows that the

transformed bond stress takes the form

— 31, (b°-2%) ~(ag-a,) B+ ag.
R el R N

p+D
b~ + 3a 2 ']

Ap~ + Bp + C + Lp2 + LDp

(45)

When the quadratic expression in the denominator is factored

1

in terms of its roots,

31, (b%-a%)a, -p®+ [(B+D) - applp + (1 - ap) D

E_(p) = ) L T -
(b= + 3a)(A+L) (b -R") (p -R) (p + B)

] (u6)

where the roots R' and R are given, for the moment, as

+ 17
R = 5| -

B + LD /B + LD\2 ho oo
TrLtVA+T/) "E ] (47)

In this form, it is simple to take the inverse IlLaplace trans-
form of the bond stress by partial fractions, resulting in
the time dependent bond stress expression

2 .2 2
3T (a"-b%)a -B°-(B+D-~a,p) B+(l-ay,)RD- _
o(t) - g S c {i - R - R le Bt+kl+l2}
(b%+ 3a%) (A+L) (B +R )P +R)

(48)

15.



2
R+ B +D-apB) R + (1L - a,)BD _-
A = — B R° (49a)
| (R- -R)(R +B8)
D
Y+ (8 +D-ap) RV + (1 -a,) BD _+
Ay = . R R et T (49b)

(R* - RT)(R" + B)

With the notation R- = R + € , where

E E

o 1 11
Ro= "o " 3T ELD Lnl * ﬁ;j (50)
7 - 2 5
B R (R A ey
Mo Mol L+ty Mo M’ (1+E; L)° ]

the bond stress may be more simply written in the form

o T (1 - a°/b°)

U(t) = (l 2 1 5 F(t) (52)
=+ &) == ¢ 2Jd
\3 be) E, = 3Eg M
where
¢ aph

=% F(t) = (1 - ﬁ—:—g—:—é><R + €t D> etet _ (l -5 e . B)

(R-e+ D) e [ | ); 2]

(53)

Equations (50) - (53), taken together, give the vari-
ation with respect to time of the bond stress with a four

element propellant model in a case bonded assembly.

16.



Discussion of Results

The expressions developed for the bond stress variation
in the three cases of the Maxwell type, Voigt, and four element

propellant models have been put into a general form
o(t) = S, F(t) (54)

A comparison among the three pertinent Equations (33), (40),

and (52) shows that So is the same in each case,

Q

2 .2
c ET, (1 -a%/b )
2

a

2E
b e 4 e ¢+ 2JE
b2 3EB

W

subject to proper interpretation of the elastic parameter E .
That 1s, under suddenly applied constant loading for the
Maxwell and four element models, E represents an elastic
modulus associated with an initial deformation of the
propellant; for the Voigt model, it represents the elastic
behavior at infinite time. The common consideration is that
viscous effects are inoperative in the coefficient SO
Further study then shows SO to be identical with the elastic
stress produced when the temperéture of the casing changes by
an amount TO , while the propellant is still at the initial
temperature. The conditions under which the magnitude of SO
may be decreased for a fixed temperature change are essentially
similar to those discussed for the elastic case in prior papers(l’E)
Of course, in the viscoelastic problem, variations of the time
dependent factor F(t) may be more significant than S, in

determining the maximum bond stress to which an assembly may be

subjected.

17.



The complex manner in which the equations for PF(t)
depend upon the various physical parameters precludes much
gquantitative analytical discussion of their significance.
Instead, a number of computations will be performed in order
to indicate the general characteristics of the time dependent
factor. Several conclusions may be drawn on this basis.

The numerical work will be restricted to a steel
encased solid propellant rocket whose physical dimensions,

a/b = .5 and c¢ - b = .0lb are representative of an assembly.

The material properties typical of a steel casing are

7.3 x lO°6 in/in/OF

11.53 x 106 psi

E 30 x 106 psi a

c

M 0.3 G

3]
]

C

where Mo is Poisson's ratio, and G 1is the shear modulus,

obtained from EC and uc . It is further assumed that the
thermal expansion coefficient of the propellant is similar to
vulcanized rubber, namely a, = 2}(10“1‘L in/in/oF . Since the

behavior of the propellant in compression has been assumed
elastic, there is no loss in present calculation if, as a
limiting case, the propellant 1is madé incompressible, so that
EB may be taken infinitely large.

In the case of the four element model, the viscoelastic
properties of the propellant in shear are governed by the choice
cf four independent parameters, two elastic constants El and
E2 , and two viscous parameters, ull and Mo - To avoid a

direct numerical choice of all four quantities, and thereby

render the results somewhat more general, it will be convenient

18.



to present the numerical work in terms of the ratiocs Kl B

5 and K3 > previously defined. In addition, by studying

the dimensionless stress ratio o(t)/SO rather than the bond

K

stress itself, the magnitude of the remaining elastic parameter
may be left arbitrary. No numerical values need be assigned

to the K's , providing that the reciprocal of one, say Kl )
i1s chosen as the unit of the time scale against which the bond
stress variation will be measured, for the other time-like
parameters K2 s K3 and B , may be measured with respect to
Kl . It is then necessary only to specify the ratlos KE/Kl

and K K1 for the propellant.

3/
ILet us first consider the influence of the rate of
temperature change on the thermal bond stress. Since there is
little information available on the magnitude of viscoelastic
material constants, it will be necessary to choose an arbitrary
set of material properties, say K3 = K2 = Kl . The time
dependent factor in the bond stress may be evaluated from
Equations (50), (51), and (53) for different values of the
temperature rate parameter B . The results of this calculation
are presented in PFig. 3, which shows variation of the stress
ratio a(t)/So with respect to the dimensionless time t'Kl s
plotted on semilog coordinates.
For all rates of temperature change there 1s a character-
istic change of sign in the bond stress as the curve B = (a constant)
crosses the dimensionless time axis. This arises, as a subse-

quent calculation will show, from the relative magnitudes of

the thermal expansion coefficients, as well as the rate at which

19.



the temperature of the propellant changes. Increasing

values of B , corresponding to higher rates of temperature
variation, cause an increasingly severe change from the
initial stress and a more rapidly occurring peak. Alternately,
slow variations in the temperature of the propellant result

in a lower peak stress which occurs somewhat later in dimen-
sionless time. Hence small values of B are desirable as

a means of minimizing stress.

In view of the difference in properties which may
cccur among real propellants, 1t is of interest to study the
effects of different combinations of the four element parameters
on the bond stress variation. Specific studies cannot be con-
ducted because data is lacking. Instead, some of the co-
efficients will be permitted to vary but in accordance with a
definite sequence. One such sequence 1is tc consider those
changes in the relative values of Kl s K2 and K3 whﬁch'lead,
in the limit, to a two element Maxwell type propellant model,
It can be seen from Fig. 2c that sﬁch a pattern may be obtained
by keeping El and ul} constant, but varying the viscosity
of the element n, . The effect is equivalent to keeping )
constant while varying K2 and K3 . If, arbitrarily, K2
is set equal to K3 , then in either limit, as K1 becomes
very much larger than K2 = K3 s, Or as Kl becomes very much
smaller than K, = K3 s the four element material tends
toward a Maxwell-like limit. The corresponding stress-time

curves for various values of the ratio Kg/Kl are shown in

Fig. 4 for B = 2K4

20.



In looking for a sequence of changes for K1 3 K2
and K3 which would alter a four element model to a Voigt-
like model, several factors must be taken into consideration.
In a Voigt material the final stress 1s determined by the
elastic parameter E2 and the final stress should remain
constant in the limiting process. Consequently, K3 should

be kept constant and tK3 used as the dimensionless time
scale. The parameters Kl and K2 may then be varied as
discussed earlier to evaluate the effect of increasing stiff-
ness in the propellant material. The results of some numerical
computations with B = 2K3

ratio scale has been distorted in order to present detalls

are shown in Fig. 5. The time-

near the origin but still accommodate a relatively large range.
It is seen that high values of the initial elastic parameter Eq
lead to an increasing initial stress as well as a large peak

in the subsequent stress reversal, although the latter will

be governed by the Maxwell-like compliance Kl , as well.

Methods for determining the parameters E1 s E2 > My
and Mo based either upon vibrating reed tests, or creep and
relaxation data have been discussed in the literature B].
Appropriate values of the parameters for specific propellants
may be determined experimentally and substituted into the
equations of the present paper to evaluate the affect of changes
of propellant chemistry.

The change in sign of the bond stress may be interpreted
physically. As the initial dimensions of the casing change,
followed by an expansion or contraction of the propellant, due
to the relative thermal expansion coefficient, there develops

an over-compensation of the dimensional change relative to the

21.



casing. PFor example, if the casing contracts initially
causing a compressive bond stress, 1t is subsequently followed
by a contraction of the propellant which could be large enocugh
so that the propellant would draw away from the casing if it
were unbonded. With bonding, however, contact is maintained
and tensile stresses develop. Their magnitude depend upon
the thermal expansion coefficients, the relative rapidity of
the temperature rise, and the viscoelastic constants.

The influence of the ratio of thermal expansion
coefficients may be readily determined and the results of
some computations are shown in Fig. 6. As the ratio
ap = ap/dc decreases, the magnitude of the stress reversal
also decreases. It seems that sufficiently low values of the

ratio a also cause the stress peak to appear at later times.

R

Concluding Remarks

Equations have been obtained for the thermal bond stress
in a case bonded cylindrical propellant grain for radially
independent propellant temperature profiles. Various visco-
elastic propellant materials have been considered, such as
those represented by a Maxwell model, Voigt model,

a nd a four element model which may be thought of as a series
combination of the aforementioned. The resulting bond stress
equation is separable into the product of two factors ’So and

f(t) . The former, S, , is identical with the elastic bond

stress produced by the temperature distribution at zero time
for the Maxwell and four-element models, and at infinite time

for the Voigt model. In making use of this identification,

the elastic propellant constants appearing in SO must be

22.



evaluated at the corresponding time limits.

The time dependent factor f(t) 1is a function of all
the propellant parameters. It has a significantly large range
of variation, which may produce peaks of stress several times
the initial value.

In attempting to minimize the bond stress, the follow-
ing points appear to be of importance. The elastic behavior
of the propellant, either under initlal loading or at long
times directly affects So . This, together with other factors
pointed out in previous elastic analyses indicate a direction
for decreasing the magnitude of So . In particular, it would
appear that the initial elastic modulus should be kept as
small as practical.

The stress~time pattern is directly influenced by the
rate of temperature change and the ratio of the thermal expan-
sion coefficient of the propellant to that of the casing.

Both quantities should be kept small to minimize the stress

peak arising from the change of sign in f£(t)
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FIGURE 2A
TWO ELEMENT MAXWELL MODEL

M

E
NN

FIGURE 2B

TWO ELEMENT VOIGT MODEL

Mo

FIGURE 2C

FOUR ELEMENT MODEL

26.




- ho

SR

N\

N
L
N\

DIMENSIONLESS TIME—tK,
o |

2.

P

.8///\
AN

@,

N\

/B

N

04

DIMENSIONLESS STRESS- G/SO \ 8
] 1 !
o

©) u o I QY
~ + + + +
Figure 3
Bond Stress History for Several Rates of Temperature

Change in the Propellant. Propellant Model Kl = K2 = K
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Figure 4

Bond Stress History for Maxwell-like Variations of Propellant
Properties. Temperature Time Constant B = 2Kl

A - Pure Maxwell C - Ko =K3 =K
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E - K, = K3 = 20K,
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Figure 5

Bond Stress History for Voigt-like Variations of Propellant
Properties. Temperature Time Constant B = 2K3

A - Pure Voigt

B - Ky = 20K, : K] = .O5K3
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D - I{l = K2 = K3

E - K2 = 92K3 H Kl = 5K3 29
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Figure 6

Bond Stress History for Several Values of the Ratio of
Thermal Expansion Coefficients an . Temperature Time
Constant B = 2K3 . Propellant Model Kj = Kp - K3
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