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SU 

This contract final report discusses  the development of anal 

and computer codes for t e prediction of weight optimized radioisotope thermo- 

electric generator shields for unmanned spacecraft operating ' in vacuo@ e An 
optimization code - - - S@SC designed to  determine shield optimum weights 

and dimensions with respect to specified criterion f a s t  neutron 

photon fluxes I is described e The code employs a combination of analytic 

albedo and Monte Carlo techniques e A theoretical discussion and example 

predicted shield data are given as well  a s  a proposed verifying experiment 

design. 

iii 



1. INTRODUCTION 

This final report prepared for the National Aeronautics and Space Adaninis- 

tration GODDARD SPACE FLIGHT CENTER by NUS CORPQMTICOM under 

Contract NASS-11649 e describes the analytic procedures and computer codes 

developed for prediction of weight optimized radiation shields for an unmanned 

spacecraft operating 'in vacuo# e The design of an  experiment e to furnish data 

for comparison with and verification of predicted design, is a l so  presented a 

Analytic procedures and computer code logic have been combined to predict 

optimum weight shields for the protection of scientific experiments from the 

radiation fields of on-board radioisotope thermoelectric genera tors ii during 

unmanned spacecraft missions e The optimum weight shield was determined 

as that exposing the science payload t o  a specified neutron plus gamma 

photon integral radiation number flux, when added to the spacecraft scat- 

tered radiation contribution ,, The angular-energy transport of radiation was  

obtained by an  integrated combination of analytic, albedo and Monte Carlo 

techniques e This approach was considered as the most advantageous com- 

promise for spacecraft engineering design purposes as opposed to the sole 

use of either a costly Monte Carlo calculation or a less accurate analytic 

approximation. The spacecraft assumed for the present study is presented 

schematically in Figure 1 

The work effort was  specifically oriented to the radiation field a t  the ener- 

getic particle experiment package indicated in the spacecraft configuration 

of Figure 1 spacecraft general dimensions deployment distances and ma- 

terials were obtained from preliminary design drawings furnished by NASA- 

GSFC e The radioisotope thermoelectric generators (RTG's) were assumed to 

be plutonium-oxide fueled viz  the SNAP-27 
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A Zhield ~ ~ i ~ i i z a ~ ~ o ~  s-tidy @ode --- S SC was designed 

determine the shield material minimum thickness and weight re 
the spacecraft rniasioni experiment package to a specified 

2 posurer eg. s P O  particles/cm -sec, T e incident criterion f l  

a s  the sum of gia ma photons arid neutrons either transmi 

or scattered by the spacecraft structure. Code S 

ments for the case  of yarnma photons, according to a co 

transmission theory, the Monte Carlo transport method 8 

(backscattering theory) and the single scattering approximation method e It 

employs three component sub-codes for this determination 1) namely: E S T  

NUGAMI. and ALB, 

Although code SGSC is provisionally designed to evaluate fas t  neutron trans- 

port in a manner similar to that for gamma photons # photon transport was em-  

phasized in this stage of the NASA program. The code is presently designed 

to evaluate neutron &ansport using relaxation t h e x y  methods a This course 

for the c a s e  of the SNAP-27 was based on the fact  that the RTG total neutron 

emission rate  in the axially perpendicular direction was reported as bei 
7 5 . 7 ~ 1 0  n/sec(l)  This is in  good agreement with, but less than an e 

8 (2) MUS estimate of 1 Ow10 nJsec reported in NUS-600 Taking the 

gamma photon dose rate a s  one-tenth of the neutron dose rate and a11 
for dose-to-flux conversion as  well a s  spectral distribution gives an 

grated RTG emitted photon source of -1 Ox10 s//sec or approximately ten 

times that for neutrons. Data obtained la te  in the work program indicated a 

y/n flux ratio of 1 8 and 18,O for axial  and radial emission, respectively. 

The 1.8 ratio indicates the neutron transport in the shield should be examined 

9 

by a more exact method such as Monte Carlo. 
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Section 2 of this report presents the theory and logic on which code S@SC 

is based, Section 3 presents a description of the code and the necessary 

users input and output information. Section 4 presents a proposed design 

for a verifying laboratory experiment e 

and conclusion with respect to the work reported, A brief review of the basic 

gamma photon and fas t  neutron physics required is given in Appendix I. 

while Appendix I1 recaps the basis of the Monte Carlo technique used. 

Section 5 consists of a summary 
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2.  THEORETICAL DE SCRIPTION 

2 e 1 Introduction 

The radiation field emitted by a n  encapsulated plutonium oxide radioisotope 

thermoelectric generator QRTG) assembly consists primarily of a n  anisotro 

polyenergetic distribution of gamma photons and fast neutrons 

blies are  boom mounted on a spacecraft, as depicted in Figure 1 

mounted science experiments packages may be exposed to excessive radiation 

fields 

If the spacecraft scattered radiation is not excessive then shadow shields 

may be used to reduce RTG radiation fluxes at the experiment to  a criterion 

(acceptable) level. 

thus weight are optimized when the criterion flux is obtained e Further op- 

timization may be obtained through judicious selection of materials and their 

deployment e In the event that the spacecraft scattered flux is excessive 

then additional RTG side shielding or geometrical redeployments must be 

considered 

If RTG a 

then boom 

This radiation interference may be reduced by shielding the RTG's a 

For a given Shielding material the shield dimensions and 

In this report, section the theoretical considerations of a method for determining 

the dimensionally and thus weight optimized shield consistent with the 

criterion f lux  condition I are  presented 

theory underlying the code developed for rapid predictions --- code SGSC; 

the code is described in Section 3 ,  

The discussion is restricted to the 

The procedures developed use  Monte Carlo technique I the albedo technique 

single scatter approximation to best  advantage to  obtain an iterative solution 

of a basic  transport relationship. Since code S@SC uses  a modified version 

of the Monte Carlo code NUALGAM ( 3  

Carlo code is reproduced inA pendix 11, with revisions from reference (3) 

This section then is concerned with the components and solution' of the basic  

transport expression, Although the discussion is general, the emphasis is given to 

the theory underlying the Monte 
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photon transport as stated in  Section 1 

be evaluated in  a n  analogous fashion i n  the future. In this regard neutrons 

are considered in  the review of the  transport relationship 

Et is proposed that neutron transport 

2 .2  Theoretical Discussion 

For the purposes of this section the complex spacecraft configuration shown 

in Figure 1 is redrawn schematically in Figure 2 .  Only one RTG source is 

indicated and the mission experiment package is referred to as a detector .  

In addition, the spacecraft body is replaced by a simpler geometry and the 

boomarms omitted a 

The radiation number flux at a detector distant ro from a source S (Eo)8 of 

neutrons or gamma photons Eo , as in Figure 2 I without a shadow shield,  

may be defined a s  

I 

where 

@as (Eo& = the primary radiation number scattered to the 

detector by the area A composed of material j 

distant r1 and r2 from the source and detector 

respectively 
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$& (Em) = the  ’area A’-originating reaction product flux 

reaching the detector, 

= 0 for gamma photons as  the primary radiation, 

excepting photoneutron interactions (v , n) 

6 (E,) = the  ancollided primary radiation number reach- 

ing the detector. 

The energy arguments signify that the detected flux consists of radiation 

of primary energy Eo ,  scattered energies Eas (<E,) and reaction product 

energies,  ER. The subscript 01 refeis to the spacecraft structure a s  a secondary 

source, eg scattering i e .  to albedo fluxes e 

The number flux reaching the detector with a shadow shield,composed of 

material i ,  a s  indicated in Figure 2 may be defined a s  

where 

& (Eo; Ea)= the shield attenuated flux, 

ca, (Eo) = the number flux transmitted by the shield 

without. interaction 
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(Eas) = the  shield forward scattered radiation number 

flux reaching the detector , 

p ( ~ a p )  = the gamma photon number flux resulting from 

pair production interactions in  the shield,  

= 0 for incide on energies Eo ~1.02 M 

= 0 ,  for incident neutrons, 

&R (E,R) = the shield-originating reaction product number 

flux reaching the detector, e g , gamma photons 

resulting from (n I $  interactions, 

= 0 ,  generally for gamma photons as the primary 

radiation, excepting such as  photoneutron inter- 

actions # i * e.  ( y  ,n) * 

For fast neutrons as  the primary incident radiation, the number flux terms 

#cq (EaR) and q h R  (EaR) in  Equation (1) and (2) refers to a l l  product radiations, 

eg I )  neutrons , gamma photons alphas,  protons dependins on the reaction 
probabilities for each e 

The number flux terms in Equations (1) and (2) may be estimated either from 

a combination of analytic relationships and published empirical data or from 

experiment either numerical analogue ie E) Monte Carlo method or the con- 

ventional laboratory kind. The sole use  of the Monte Carlo method is con- 

sidered as being uneconomical and unjustified e A laboratory experiment 

is planned for the future by MASA-GSFC as  part of the overall program. 

The present work is thus confined to number flux predictions obtained by 

analytic methods and by published empirical data and judicious u s e  of Monte 

Carlo techniques 

._ * 
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Neglecting the reaction product number flux terms for the present, the 

detector incident number flux may be written as  

For a normally incident parallel radiation flux @,(Eo) 

transmitted through a shield of thickness L and reaching the detector I is obtained 

the uncollided number flux 

as  

where 

= the total linear attenuation coefficient of the shield P (Ed 
materia1 for radiation of energy Eo; the 

notation C is generally used for neutrons 

The ratio of the shield total-to-uncollided transmitted flux is referred to a s  

"build-up'a e The build-up factor may thus be defined as 

The total shield transmitted flux at the detector may be obtained from 

Equations (4) and (5) as  

i f  the build-up factor is known, 

(4,5) Although energy and dose build-up factors may be obtained for gamma photons 

and to a lesser  degree for fast-neutrons they pertain in  almost all cases to s e m i -  

infinite single-material-composition shields.  For small finite shields # I. s e 

shields and number flux requirements a s  opposed to  energy and dose recourse 

shadow 
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to either a laboratory experiment or a Monte Carlo study is a prerequisite. 

In the present work a Monte Carlo evaluation is underway for gamma photons 

oposed for fast-neutrons e 

For a spectrum of incident source particle energies the shield transmitted 

flux is obtained by integration a s  

For a stratified or homogenous shield composed of m materials, each of thick- 

ness  $i, Equation (8) may be rewritten 
m 

where 

' B (Eo)m = the build-up factor for the composite shield 

of m materials and incident radiation of 

energy Eo, and given geometry, 

i = material identity index, 

k = energy group index, 

q = number of energy groups 

The uncollided number flux in the foregoing equations may be determined 

from a relationship of the kind 
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\v her e 

s (Eo) = source emission rate for radiation of 

energy Eo8 

G (ro) = the geometry relationship for a source-to- 

detector distance roo 

For example, for a n  isotropically emitting point source and ro >> detector 

lateral extent,  the geometry factor is 

Extended source and detector geometries may be evaluated according to 

the ' Point-Kernel Method' ( 4  1 

The number flux term, 

photons scattered by an  area A I as  in Figure 2 may be redefined as 

(Eors) in  Equation ( 3 ) ,  resulting from primary gamma 

where 

dl4 = the differential scattering area, 

80 = the angle between the incident radiation direction 

and the outward normal of area dA,. 

8 = the angle between the emergent (scattered) radia- 

tion direction and the outward ncrmal of area dA, 

Cls = the azimuth angle of scattering in the plane of 

area A ,  

= the distance between the source and the area d A ,  r1 

= the distance between the area dA and the detector I r2  
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t = the thickness of the scattering material at area dA, 

measured along the inward normal to  dA, 

i = the identity index of the material of which dA 

is a part. 

For a spectrum of source particle energies the energy integrated flux, 

@as (Eas) I may be obtained by a n  integration similar to  that of Equations 

(7) and (8) , as 

The flux term in the integrand of Equation (13) may be defined according to 
albedo theory as (4 86)  

where 

0 (Eo ,eo ,$ ,st,,t;i) = the angular differential number current 

albedo with respect to the noted argu- 
ments (defined for Equation (13)), (4 86) 

= number flux incident on area dA, 950 (EoJl) 

= S (E,) G (rl) c.f Equation (1 1) 

The assumption underlying the use  of the albedo technique for complex geo- 

metry analysis is that the scattered radiation particles emerge from the 

scattering medium surface a t  a point c lose  to their point of entry, This 

assumption is generally j ~ s t i f i e d ' ~  I eg, the separation distance between 
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entry and exit for one-half of all escaping gamma photons has been found 

to be less than one mean-free-path (for incident energy Eo) ,, Photon 

scattering from very thin or laterally small structures of volume V, may be 
alternately predicted by the single-scattering approximation method ( 7 )  

from the relationship 

where 

M e  = the scattering material electron density per 

cubic centimeter, 

s) = the Klein-Nishina angular-energy intensity 

distribution function' 

energy E, and scattering angle e S ,  
, for photons of 

= the ar,gle between the primary and scattered 

photon directions e 

QS 

Equation (15) Gay be solved if values for the number albedo are known. The 

albedo may be determined by either a laboratory experiment or a Monte Carlo 

treatment a For gamma photons recently developed modification of the mornemts 

method has  been reported as  a potential source of albedo data (8 1 In the 
C9810) present work, experimental albedo data 

in  accord with both experimental and Monte Carlo results 

used for gamma photons, A similar approach is proposed for the case of 

fas t  -neutrons 

I and empirical relationships 
(4,6& $?la 

I were 

Since weight is the product of volume and density,  the weight optimization 

of a n  axially symmetric shadow shield of specified composition may be con- 

sidered as  a n  optimization of shield thickness,  Lmin, such that 
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2 (ED) , < C where C is a specified criterion I e g  10 rticlssfcrn -see 

The optimum or minimum weight of a righl-cylindrical shield of radius R 
may be obtained as 

where 

Pi 

P 

=: the density of shield material i, 

= the weighted density of the shield, 

= the shield materia1 actual density if m = 1 

The total number flux reaching the detector for the case of a polyenergetic 

source,  is obtained from Equation (2) doubly integrated over primary and 

secondary energies,  a s  

where the subscripts Y and n denote gamma photons and fast neutrons. The 

use  of the albedo and build-up factor concepts is tantamount to a n  integration 

over EN and E a ,  respectively. 

Equation (19) may be further redefined as 
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where 

The flux 

(13) and 

material 

terms in Equation (20) may be obtained from Equations (10) a 

Lmin obtained by a n  iterative solution. For example, for a 
shield exposed to a monoenergetic source of neutrons and photons, 

Equation (20) reduces to 

The foregoing theoretical discussior. has  presumed a knowledge of gamma 

photon and fas t  neutron interaction phenomena. Such phenomena and the 

relevant interaction physics are  summarily reviewed in  the Appendix 

addition, a familiarity with the solution of radiation transport problems 

by means of the Monte Carla method is presumed; the reader is referred 

to the references in  this regard (13,141 

The second 'term in the right-side of Equation (20) is defined by Equation (2) a 

It includes the shield originating neutron-reaction product flux 

as  yet not discussed in any detail .  Although the flux (;eaR(EaR) reaching the 

detector I may be predicted by means of either a laboratory experiment or 

a Monte Carlo code evaluation, it may be estimated for the case of reaction 

product gamma photons such as  result from fas t  neutron inelastic scatters or 

absorptions i n  an  axially symmetric shadow shield,  as 

where 

= the cross-section area of the axially symmetric 

shadow shield I 
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2 = j$xs f for a cylindrical shield,  

.e = the distance from the shield face at the source 

to the differential volume g .d t  (see Figure 3) 

(rJ = the  geometry factor for distance P$# c , f .  

Equation (11) 

= the distance from the differential volume 

g .d .% to the detector (see Figure 3 ) ,  
r4 

= the  linear attenuation- coefficient of the shield 

material for fast-neutrons of energy Eo, for 

production of gamma photons, 

%(EO) 

q o t ( E o )  = the total linear attenuation coefficient of 

the shield material for fast-neutrons of 

energy Eo,  

&(Eo)n = the  shield normally and parallel incident flux 

of fast neutrons of energy Eo, 

(Eoz(ro-rC))nP c,f, Equation (11) 

B(EaR) = the  total  linear attenuation coefficient of the 

shield material for reaction product gamma 

photons of energy EaRQ 

x = the radioactive decay constant of the reaction- 

produced or compound nucleus 

1" = the duration of exposure to the neutron flux, 
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For inelastic scattering the decay constant in Equation (24) is relatively 

large and thus 

1 - e - k T =  1.0 0 (2 5) 

This is a l so  true for activation where the product )a a 7 is large 

Considering again the primary radiation emitted by the sources ,  a modified 

form of Equation (241, where g , 6 ,  r t  and the exponent p (EaR)(L-9 are replac- 

ed by cL4, t ,  r2 snd p (EQR) e t  respectively , may be defined a s  

to estimate the spacecraft structure reaction product 'albedo' I CY for pre- 

diction of fluxes ,@m(E&); a R  is analogous to Q! of Equation (15) €or 

(eo ,  6 , q )  = ( 0 ,  0,O) This albedo, valid for normal incidence and emer- 

gence,  may he used as  in Equation (29) of Section 3 e 2, to estimate the 

angular differential albedo a Primary and secondary energy integrations 

of Equations (24) and (26) are as  defined for Equation (20) 

R 

The shadow shield a s  a secondary source of both photons and neutrons, 

ie 

ing to the detector may be accounted for either by the use of the build-up 

scattered and reaction product radiation, has  been discussed e Scatter- 

factor concept or a Monte Carlo analysis  and reaction product radiation 

intensity may be predicted by the use  of Equation (24) or a Monte Carlo 

analysis 

In addition to being a second order source, the shield may also be consid- 

ered a third order source,  ie 

produce secondary radiation which in turn may interact with the spacecraft 

structure to  yield a third order flux a t  the detector 

primary radiation interacting in the shield may 

The detected flux resulting from such interactions in the spacecraft struc- 

ture may be predicted i n  accord with either Equations (15),  (16) or (269 and 
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discussions thereto, providing the shield-originating flux (EaR, rl shield)= 

), is known and substituted for &(E r ) The night-cylindrical (EaR' 1 s 0' 1 

shield originating flux in the axially perpendicular direction, may be esti- 

mated a s  

where the function f(Rs,rls IEaR) I valid for 8 < e l s  

absorption into account. This function is defined for the cylinder as 
takes the shield self - 

where 

Y = integration variable; a distance I 

P = integration variable, an  angle,  

= the limit, sin" (Rs/rls) 81 

= the shield-to-spacecraft 'area dA' distance; 

analogous to r l  (see Figure 3) e 

"s 

For reasons of clarity the fluxes discussed in this report section a re  

schematically summarized in Figure 3 
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3 .  CODE S@SC DESCRIPTION 

3 e 1 Introduction 

This report section describes the general logic, user information and pre- 

liminary results obtained using code S@SC , a spacecraft shield optimizing 

study codeo a code written in  the FORTRAN-IV language for the IBM-360/91 

digital computer. Code S@SC consists of three distinct component code 

complexes: XEST NUGAMl and ALB Code XEST predicts approximate shielld 

dimensions based on analytic methods Code NUGAM1 predicts shield build- 

up factors for final shield dimensions, by the Monte Carlo method. Code 

ALB determines flux intensit ies resulting from scattering by the spacecraft 

structure based on the albedo technique and/or the single scatter approximation e 

The code may be optionally run to  evaluate spacecraft scattering only or in- 

stead to optimize the shadow shield @ neglecting spacecraft scattering. Thus 

if  the scatter contribution is already known then it may be input instead ob 

calculated and the shield optimization carried out 

Code S@SC logic is presented in  Section 3 e 2 e Code SOSC consists of a 
main controlling program --- MAIN, a shield thickness prediction program 

--- XEST I a complex geometry scatter flux program --- ALB and a Monte 

Carlo buildup factor calculating program --- NUGAM1 e Development work 

on these programs focussed on gamma photon transport a s  noted in  Section 

1 of this report. Neutron transport was  coded according to  'removal' theory 
( "  15) 

D 

3.2 Code Logic 

MAIN executes input and final output operation, Details of the input-output 

are given in  Section 3 3 3 

Equation (20) It calls )(EST to estimate an  approximate thickness value I 

Lmine for Equation (20) The Monte Carlo code, NUGAM1 I s  called to 

The main programs cal l  ALB to determine F for 
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determine buildup factors corresponding to the estimated value of L,dn, 

Using the thus determined values of P and the  buildup factors,  the code 

solves Equation (18) for the  optimum thickness Lmigo by iteration. It will 

optionally recall NUGAMl to determine the deviation of the buildup factors 

for Lmin from those for Lmine. If this  deviation exceeds a tolerance value 

the code will  reiterate. Iteration may be  arrested at any loop number speci- 

fied by the user. Code S@SC logic is summarized in Figure 4, 

Code ALB determines the angular-energy integrated flux scattered to the 

detector by the spacecraft complex structural components illuminated by 

primary source radiation. Code ALB consis ts  of an albedo package and 

a generalized geometry package. In its present form the albedo package 

is only coded for gamma photons because of the lack of fas t  neutron differential 

number albedo data ,  It is proposed to generate fas t  neutron data according to the 

Monte Carlo technique, in the future. 

The albedo routines in code ALB determine the scattered energy integrated 

flux @ (E ) defined by Equation (13) The main calling program carries 

out the integration over primary source energies. The gamma photon number 

current albedos defined by Equation (15) were obtained from the relationship 

CYS as 

where 
= a(Eo;i) .f(& ) .cos (3 0) 

a(Eo;i) = the angular differential number current albedo 

for gamma photons perpendicularly incident 

=0) and emergent ( 0) from scattering 
0 

0 material i ,  ie, 180 ( ) backscatter, 
S 

g (t) = a function to account for reduced backscattering 

from a materia1 of finite thickness t ,  

= a function to account for the albedo behaviour 

with change in 
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From reference (16) 

and the total  scattering angle 

the azimuthal dependence may be defined i n  terms of 

where 

= the angle between the incident and emergent photon 
S 

vectors I i. e the scattering angle 

(9 a 10 0 1 zt The present version of code ALB assumes 

g (t! = cr(Eo,t:il a(Eo:i) I (32) 

t (33) 
-ct = 1 - e  

- -  ~ 

where c is a constant such that g(t) = 0.99 €or t = 2~ (Eo)i; (E ) is the 

mean-free-psth in  material i for photons of energy E e Code ALB uses scatter- 

ing angle 8 to  eliminate the albedo dependence on azimuth q d  in  accord with 

the method of reference (16)  e 

0 

0 

S 

Experimentally measured values for the perpendicular differential number 

current albedo 01 (E 0 i) were encoded. 
0' 

For fast neutrons Monte Carlo data from reference (12) was used for pre- 

liminary evaluations 

obtained from references (9 , l o )  

The code ALB geometry routines require that the spacecraft structure be 

defined in  terms of the  spatial  coordinates of simple geometrical shapes ,  

e , g ,  cylinders, tubes I boxes s labs  I e tc ,  

flat-sided cylindrical spacecraft body boom-arms antennae 

These shapes allow the 
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science platforms etc. to  be accounted for,  Coordinates are  specified with 

respect to a reference Cartesian coordinate frame as shown in Figure 5 ,  The 

Cartesian frame may be located arbitrarily but the spacecraft vertical axis  is 

suggested for the Z-axis of the frame. From a n  engineering standpoint, coor- 

dinates may be  readily obtained from preliminary or final design drawings 

The code determines whether the radiation illuminated surfaces a re  visible 

to  the detector 

for albedo determinations I) The dimensions of the strips are determined 

as a function of the specific cylinder radius with respect t o  distance from 

source and detector,, The lateral  extent of a l l  plane areas  is subdivided into 

dimensions which are  s m a l l  relative to  distance from source and detector 

Cylindrical scattering may be optionally carried out according to either the 

albedo or single scat ter  methods, Booms are evaluated using the single 

scatter technique. Wall thickness must be specified for a l l  volume geo- 

metries; solids may be specified by taking the wal l  thickness equal to  the 

radius for a cylinder or the half-breadth in the case  of a box, 

It subdivides cylindrical regions radially into planar strips 

Code XEST determines the value of E, min satisfying equation ( 2 

obtains W of equation (17), or the t i  of equation ( 18). Although 

specifically-designed for the purpose of shadow shield optimization it is 

coded for larger shields.  Co e E S T  solves equation ( 2  by the technique 

of iteration. For the first  iteration the code assumes a build-up factor of 

unity to determine E 

( l )  and calculated by NUGAM 1 is used to  iterate up factor based on E 

%ine (2) 

min min 

For the second iteration a Monte Carlo build- (1) 
mine 
mine 

Iteration is arrested when 

where 
= preassigned tolerance 

h = iteration number dl 

-21-  



3 3 CODE CiPEWTING INFORMATION 

3 3 1 General 

Code S@S@ is written in  FQRTRAN-%V for the NASA-GSFC IBM-360/91 digi- 

tal  computer. It may be  run on any IBM-360 with sufficient core size, ie. 

the present version requires bytes 

Switch or special  tape requirements e Input formats are  standard FORTRAN- 

IV, a s  given in any IBM or CDC Fortran manual; the code has  been designed 

with a view to ease of translation €or u s e  on other than IBM computers 

Input/output tapes  a re  presently coded a s  LI  and I,@ equal to 5 and 5 ,  res-  

pectively, a t  the beginning of MAIN. A code listing is given in Appendix 

n[I* 

(4 bytes/word) There are no Sense 

Section 3 3 e 2 defines the constants appearing in the various subroutines 

throughout the code e Input card details  order , formats, restrictions and 

location are given in  Section 3 . 3  e 3 Card numbers are  encircled and de- 

fined in  the order in which they a re  read by the code, A sample input list- 

ing is presented in Appendix IV * 
Section 3.3 5 is a discussion of the resul ts  obtained with code S@SC e 

Appendix V is a sample output listing. It corresponds to the sample input 

of Appendix IV, Debug type output may be obtained by input of card 

The user ' is  cautioned with respect to profusion of output under this option 

- - - a trial using sample data is recommended first .  The code S@SC in- 

put data card deck consists of twenty-two (22) types of cards ,  referred to  

as Card @ Card etc, If the type requires more than a single card 

the reference is ma 

Code output is reviewed in Section 3.3 @ 4. 
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Code W G R M 1  determines the angular energy tra.nspoirt of gamma photons 

in a finite cylindrical shield,  1% was derived from a n  existing Monte Carlo 

source self -absorption code --- MUALGaM developed for NASA-GSFC by 

NUS Corporation, and described in  NUS-S36(3 
transport and considers pair-production Compton scattering and photo- 

electric interaction phenomena e A description of this code is given in Appeduc 

11. In code NUGAMl 

or complex composition or stratifications i e e e "discs"  

composition, including vacuum. The code is presently designed for either an 

axial  point or plane parallel source but may be readily adapted to other distri- 

butions e Similarly, the code may be readily modified to allow the study of 

annular-cylindrical shields , rectangular s labs  e t c  e 

This code follows photon 

the shield may be composed of a single material of simple 

of simple or complex 

The source spectral distribution may consis t  of a large number of photon 

energy groups. In order to reduce costly Monte Carlo evaluation a t  each 

energy the code may be restricted to  user  selected energy groups in the 

energy domain. Intermediate energy evaluations over the source spectrum 

are obtained by quadratic interpolation 

Code NUGAMl may be used to determine angular differential forward build- 

up for gamma photons. Preliminary studies with this code,  which may be 

either called by code SOSC or used a s  a separate code,  have revealed that 

the forward buildup factor for the shadow shields is less than that to be 

expected for a large (semi-infinite) shield,  i n  agreement with qualitative 

argument 
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3 3 2 Code Con.stants 

The consiant 0.51097 is required fof energy conversion from MeV to the 

unit of electron res t  mass 

GENSHG @UTpUa, SINGS@ SPECTM and XEST 

This value appears i n  subroutines DCPMP 

The constants PYE, RADAP and CMPI are  coded in MAIM and communicated 

by C@MM@N/C@NST/ and C@MM@N/C@RDS/, They are defined a s  PYE = 

~p = 3 14159, WDAP = factor for conversion of angles from degrees to rad- 

ians # CMIP = factor for conversion from c m  to  inch. 

The Avogadro number, 0 , 6 0 2 3  x 

NENSIG. 

is used i n  subroutines GENSIG and 

-12 The constant value 0 .28183~10 

classical  electron radius ro 

c m  used in subroutine CIGMa is the 

The constant value 0 , 4 9 8 9 5 ~ 1 0 - ~ ~  used in  subroutine SIGMA is equal to 

The experimental albedo data used in subroutine ALBEDG are  given in re-  

ference (9) * The number albedos DAdN, the corresponding energies EE 

and the atomic number M N  of the scattering medium are coded in the DATA 

statements in ALBED@. 

The value 0,69314718 in subroutine INDEX is the natural logarithm of 2 
Gamma photon and fas t  neutron cross-sections input data may be taken 

directly from the references (17 18, 19  20 2 1  22) 
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3 . 3 . 3  Card Input Details 

- NAME COLUMN FORMAT DESCRIPTION, PURPOSE OR USE 

(single card to define the problem case path; 1814; MBIM)  

(NPATH (I), 18) 1-4, 5-8, etc, 14  Execution path options (see 
Figure 6 for specific integer 
values) 

Card c;>- 1 (single card: 6F10 4; MAIN) 

xs 
YS 
zs 
XD 

YD 

ZD 

1-10 F10.4  Cartesian coordinates (x, y ,  z ,I 
11-20 F10 .4  of the source geometric center 

(inches)". 
21-30 F10.4 

31-40 F10.4  Cartesian coordinates (x, y ,  z )  

4 1-50 F10.4  

51-60 F 1 0 , 4  

of the point detector eg. science 
package (inches)* 

RADIUS 61-66 F6 .3  Radius of shield ( inches) .  

DIS T 67-72 F 6 . 3  Source to shield distance 
(inches) 

*The reference Cartesian frame (and its origin) are located by the user a s  
described in  Section 3 2 e 

Card (single card; 31 5 ,  F10 5; MAIN) 

NE 1-5 I5 

NG 6-10 I5 

Number of gamma source spec- 
trum energy increment midpoints 
(520) P 

Input card option signal: 
=0 ,  gamma source only, ie e 

input card sets @ and Be 
=1 ,  neutron source only, ie e 
input card sets @and 6 
=2 ,  gamma and neutron source , 
ie. input cards sets @ through 

@e 
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COLUMN FORMAT DESCRIPTION, PURPOSE OR USE NAME 

NNE 1.1-1s I5 Number  of fast neutron source 
spectrum energy increment mid- 
points (s20) - 

INE 16-20 I 5  Number of equal energy inter- 
vals in  escape spectrum from 
in  the range 0 to  EE(NE) (g25) (. 

N4PT 2 1-25 I 5  Option for intermediate output 
=O, no intermediate output, 
h 0  intermediate output and 
NGAMA set equal to 100 .  

NRaND 26-30 Initial random number (must 
be odd number and different 
for each job submitted) 

I 5  

NGES 31-35 I 5  Number of indices (and history 
multipliers) in card set @ -1 
and -2; 4 N E .  

ALLCdWF 36-42 F7 .a  Total number flux allowed at  
the detector, ( y+  n)/cmz-sec a 

EC T 43-49 

ARREST 50-56 

F7.4 

F7 - 4  

Low energy cut-off (MeV) 

The iteration arresting criterion I 
I as  in  Equation (34) and Fig- 

ure 4; a fraction. 

TANDEM' 57 - 63 F7.4 The number of tandem sources I 
ie, final data is multiplied by 
TANDEM, eg. = 2 for config- 
uration of Figure 1 

FRG 64-7 0 F7.4 Gamma photon source axial- 
to-radial emission ratio; axial  
is in  source-to-detector direc- 
tion e 
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NAME COLUMN FORMAT DESCRIPTION, PURPOSE OR USE 

FRN 7 1-77 F7.4 Fast  neutron source axial-to- 
radial emission ratios 

Card Set 2 -1 (single card input only if NE > 4; 2014: MAIN) 

LE (NC~IES) 

5- 8 I4 

I4 

Card Set  2 -2 (single card; 20F4.0; MAIN) 

HGAMA (1) 1-4 

NGAMA (2)  5-8 

HGAMA (N(21ES) 

Index of source spectrum 
first  selected energy mid- 
point at which a buildup 
factor is to be determined by 
code NUGAM 1; intermediate 
index values will be code 
interpolated (first energy is 
lowest energy) . 
Ditto 
For second selected energy 
midpoint 

Ditto 
for NQES selected energy 
midpoint 

F4.0 Multiplier for obtaining the 
number of Monte Carlo his- 
tories (in thousands) to be 
generated at the selected 
energy index LE(1); eg . 
HGAMA( 1) = 3 e 0 generates 300 
3000 histories e 

F4.0 

F4,O 

Ditto 
for LE(2) 

Ditto 
for LE(N0ES) 
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NAME COLUMN FORMAT DESCRIPTION, PURPOSE OR 
USE 

( (ME/12) + 1 cards*; 12F6.2; MAIN) 

EE( 1) 1-6 F6 .2  Gamma photon source spectrum 
energy a t  first (lowest energy) 
increment mid-point (MeV) 

EE(2J 1-6 F6.2 Ditto 
for second energy 

EE( 12) 7- 12 F6.2 Ditto 
for twelfth energy 

EE(NE) - F6.2 Ditto 
for NE energy 

*NE/12 = 0 i f  NE < 1 2 :  = 1 if  12  S NE < 24; e t c .  This iteger meaning applies 
throughout Section 3.3.  

Card Set @ ( (NE/7) + 1 cards: 7F10.3;  MAIN) 

ss (1) 1-10 F10.3 Gamma photon source isotro- 
p ic  emission rate correspond- 
ing to energy EE(1);  (photons/ 
second) e 

SS(2) 11-20 F10 .3  Ditto 
for EE(2) 

SS(7) 61-70 F10.3  

F10.3  

Ditto 
for EE(7) 

Ditto 
for EE(NE) 
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COLUMN FORMAT DESCRIPTION, PURPOSE OW 
USE 

( (NNE/7) f 1 cards;  7F10 3; MAIN) 

EN( 1) 1-10 F10.3 Fast neutron source spectrum 
energy a t  f i rs t  (lowest energy) 
increment mid-point (MeV) % 

EN(2) 11-20 F10.3 Ditto 
€or second energy 

EN(7) 6 1-70 F10 .3  Ditto 
for seventh energy 

EN(NNE) - F10.3  Ditto 
for EN (NNE) 

Card Set @ ( (NNE/7) + 1 cards; 7F10.3; MAIN) 

SN( 1) 1-10 F10.3  Fast  neutron source isotro- 
pic emission rate correspond- 
ing to energy EN( 1) (n/second) s 

SN(2) 11-20 F10.3  Ditto 
for EN( 2) 

SN(7) 61-70 F 1 0 , 3  Ditto 
for EN(7) 

Card (single card; 12; ALB) 

N ~ R F  1-2 I2 

F10 .3  Ditto 
for EN( NNE) 

Number of spacecraft scattering 
structural members in the pro- 
blem model, ie defines the num- 
ber of t imes  card sets @ through 
@) are to be repeated; card sets 
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NAME COLUMN FORMAT DESCRIPTION, PURPOSE OR 
USE 

@ through @ not input 
the M value repeated (struc- 
tua1 material unchanged) 

(single card: 8 2 2 ;  WLB) 

S TRUC T 1-8 "A8" 

PS'INT 9-16 "88" 

RMAT 

n 

17-22  "86" 

Alphanumeric name of space- 
craft scattering member geo- 
metry, eg e BOOM , CYLINDER, 
etc e 

Alphanumeric name of space- 
craft scattering member identi 
fier or label , e .g . M-F 

C a r d w  (single card; 11, 14, 215, 3F10.5; ALB) 

Alphanumeric name of space- 
craft scattering member mater- 
i a l ,  eg s IRON, LEAD, etc * 

NNNN 1 

M 

IP 

I K  

2-5 

6-10 

I1 

I4 

15 

11-15 I5  

The number of spacecraft 
scattering member material 
elements , eg = 2 for A1203. 
(assumed =1 if  input omitted) 

Atomic  number of spacecraft 
scattering material 

Number of Cartesian coordin- 
ate points required to describe 
spacecraft scattering member , 
eg. = 2 for cylinder. (see 
Figure 5). 

Spacecraft scattering member 
geometry identifier: 
= 0 , plane 
= 1 , boom arm or cylinder 
= 2 rectangular box structure 

-30- 



NAME 

T2 

T 1  

Tb 

NT 

COLUMN F O W T  DESCRIP?aON, PURPOSE OR 
u 

16-25 F10.5 Spacecraft scattering member 
thickness for plane or outer 
radius for cylinder or boom 
(inches) .) 

26-35 

36-45 

46-50 

F10.5  Spacecraft scattering member 
inner radius for cylinder or 
boom: not required for plane 
(inches) e 

F10.5 Photon scattering method option: 
T 0 , albedo method 
= 0 , single scattering method 

i f  IK  = 0 o r l .  

I 5  

((IP/3) + 1 cards; 9F8.5 ;  ALB) 

NU 1-8 F8.5 

Y( 1) 9-16 F8 .5  

1) 17-24 F8 .5  

Single to  signify the direc- 
tion of the outward normal 
for plane (see Figure 5) 
= + 1 , i f  origin ( O , O , O )  of 

Cartesian frame is 
within material de- 
fined by surface 

thus "viewing") the 
plane 

= o  or blank, if IK = 0 
( i ,e .  not a plane) 

= - 1 , i f  origin outside (and 

Cartesian coordinates (x, y ,  z ,) 

cribe location of spacecraft 
scattering member (inches) * 
(See IP of Card Set @ and 
Figure 5) 

t required to des-  

*The order of input of the coordinates must be clockwise ''viewing" each 
surfact from "outside" the volume; the input order for surfaces may be 
arbitrary e 
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NAME COLUMN FORMAT DESCRIPTION, PURPOSE OR 
USE 

X(IP) - P8.5 Cartesian coordinates (x, y,  z) 
of IPth coordinate point requir- 

y (m - F8.5 ed to describe location of space- 
craft scattering member (inches) 

Z(IP) - F8.5 (see IP  of Card Set @ and Fig- 
ure 5) e 

(single card; 315; GENSIG) (See Figure 7) 

NIN T 1-5 I5  

IL@w 

IHIGH 

6-10 

11-15 

I5 

I5 

(single card; I5,3F10 e 5: GENSIG) 

ME 125 I5 

DENSTY 11-20 F10.5 

AT@MN@ 21-30 F10 ,5  

ANDAW 31-40 F10,5 

Gamma photon cross-section 
table parameter: ZNINT energy 
intervals/group a 

Cros -section table  parameter: 
2 is lowest energy bound 
of table  (moc2 units) 

Cross-section table  parameter; 
2 IHrGHis highest energy bound 
of table  (moc2 units) 

The number of energies for which 
cross-section data to b e  input 

The density of the  medium 
element for which cross-section 
data to be input (gm/cc) ., 

The atomic number of the medium 
element for which cross-section 
data to be  input, 

The atomic weight of the medium 
element for which cross-section 
data to  be input a 
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COLUMN FORMAT 

((ME/3) + 1 cards; 9E8.3; GENSIG) 

E(1) 

SIGPE ( 1) 

SIGPP(1) 

E(2) 

SIGPE (2) 

SIG PP ( 2) 

E (3) 

SIGPE ( 3) 

SIGP P ( 3) 

E(4) 
e 

E(ME) 

SIGPE(ME) 

SIGPP(ME) 

1-8 

9-16 

17-24 

25-32 

33-40 

41-48 

49-56 

57-64 

65-72 

1-8 

- 

- 

E8.3 

E8,3 

E8.3 

E8.3 

E8.3 

E8.3 

E8.3 

E8.3 

E8.3 

E8.3 

E8.3 

E8,3 

E8.3 

First (lowest) energy for input 
of cross-section data (MeV 

Photoelectric cross -section 
for energy E( 1) I (barns/atom) 

Pair-production cross -section 
for energy E( 1) I (barns/atom) 

Similar to  E(1) 

Similar to  SIGPE(1) 

Similar to  SIc"sPP(1) 

Similar to E( 1) 

Similar to SIGPE(1) 

Similar to SIGPP(1) 

Similar to E(1) 

Highest energy for input of 
cross-section data (MeV) 

. 

Photoelectric cross-section for 
energy E(ME) (barn/atom) 

Pair-production cross-section 
for energy E(IVIE) (barn/atoi-ri) 
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NAME COLUMN F O M T  DESCRIPTION, PURPOSE OR 
USE 

Card @ and Card §et @ are  not input in the present code version. They 
will be input in a future version for neutron scattering calculations 
though they are  not input (and the code does not expect them) they are de- 
tailed * 

Al- 

(single card; 12 ,  3F10 e 5: NENSIG) 

NN 1-2  I2 Number of energies for which 
fas t  neutron cross-sections 
are  input. 

DENSTY 3-1 2 F10.5 , Density a s  in  Card 

ATfiMN@ 13-22 F10.5 A t o m i c  number a s  i n  Card 

ANDAN 23 -3 2 F10,5 A t o m i c  weight a s  in  Card 

( (NN/3) + 1 cards; 9F7.2; NENSIG) 

ENNC1) 1-7 F7.2 First (lowest) energy for input 
of fas t  neutron cro s s - s ection 
( M e 9  e 

XSN (1) 8-14 F7.2 Fast  neutron total. cross-section 
for energy ENN( 1) (barn/atom) 

15-21 F7.2 

57-63 F7 ,2  

Fast  neutron scattering cross- 
section for energy ENN(1) 
(barn/atom) e 

Fast neutron scattering cross- 
section for energy ENN(3) 
(barn/atom) a 
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NAME COLUMN 

F7.2 ENN(NN) - 

XSN(NN) 

XAM (PJN) 

F7.2 

F7.2 

(single card; 'A80'; MAIN) 

TITLE 1-80 'A80' 

(single card: IS; MAIN) 

W j M  1-5 I5 

(single card; 9(F5 e 2,12); MAIN) 

U(1) 1-5 F5.2 

NELE ( 1) 6 -7 

0 

I2 

DESCRIPTION, PURPOSE OR 
USE 

Highest fa sf neutron s 
cross-section for energy ENN(NW 
(barn/atom) e 

ttering 

Fast neutron total cross- 
section for energy ENN(NN) 
(barn/atom) e 

Fast neutron scattering cross- 
section for energy ENN(NN) 
(barn/atom) e 

Alphanumeric description of 
shield for user identity e 

Number of shield material layers 
1 for a laminar shield (s9) a 

Shield layer thickness fraction 
with respect to shield total 
thickness; for first (I at source 
end of shield) layer, 

Number of elements in first  
shield layer 

F5,2 Shield layer thickness fraction 
with respect to shield total 
thickness; for l a s t  (NOM) 
shield layer 

I2 Number of elements in shield 
layer r\a@M e 



I_p__ NAME COLUMN FORMAT I___ DESCRIPTION, PURPOSE OR USE 

4- 1; 7(F4.O,  F6.4); MA1 

DENSY( 1 1) 

Atomic number of f i rs t  shield layer 
first elemental component 

Density in  first shield layer of 
material ZZ( 1 , I )  elemental component 

Density in  N p M  shield layer of 
material ZZ(N@M NELE(N~.M) ) 
elemental component 

Consists of Card Set repeated once to define energy variables for the shield. 

(NENSIG) 

Consists of Card and Card Set o define shield photon 
repeated for each Id element a h layer, i.e. Cards 
input a s  a pair N t i m e s ,  where 

M 

1 = 1  
N =  NELE(1) 

Card Set @ (NENSIG) 

Similar to Card @) and Card Set @ to define shield fast  neutro cross- 
sect ions,  repeated for each shield and each layer,  i . e . ,  Cards &and @, 
both input, M times, where 

M 

I = 1 .  
N =  NELE@) 
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The remainder of this section consis ts  of comments and additional explan- 

ation of the input jus t  described. Only those i t e m s  which it is felt  require 

special  treatment will be discussed e 

NPATH (I): The option values input on Card @route the code a s  shown in 

Figure 6 .  New values must be input for each shield c a s e  being studied. 

At  present only the first seven (7) options are  used by the code: the re- 

mainder NPATH (8) to NPATH (18) are  spare for future use  * 

XS, YS, ZS, )(D, YD, ZD, RADIUS, DIST: 

The first  six i t e m s  input on Card @ -1 define the geometric center of the 

source on tandem source pair and the point detector e The input values 

are  relative to the location of the Cartesion axes and origin chosen by 

the user.  All  coordinates unput are similarly referenced The i t e m s  

RADIUS and DIST correspond to Rs and ros defined in Figures 2 and 3 ,  

respectively. 

INE, NaRP,  NRAND, ALLaWF, ECT, ARREST, FRG, FRN: The shield 

escape distribution is catergorized into an energy spectrum of INE groups 

NB'PT allows the user to obtain a profusion of code intermediate output, 

i f  * 0 ,  however only 100 Monte Carlo histories a re  traced in this event.  

Repeated use  of the same input value of NRAND will result in identical 

results , hence the instruction that arbitrary but differing values be input 

for a sequence of runs and run sets. The NASA-GSFC IBM-360 random 

number generating code requires that NRBND be a n  odd number. ALLaWF 

is equivalent to the specified criterion flux, C , defined preceeding Equa- 

tion (17) C = 1 0  e 0 in the present report examples e Monte Carlo histories 

are  terminated for photons whose energy is degraded below ECT, ECT 

should be input such that it is 2 2ILQ(Vv (see Figure 7). In the present 

work examples ECT was taken a s  0 .1  MeV. Monte Carlo computer t i m e  is 
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generally increased by decreasing ECT, Buildup factor iteration, as in 

Figure 4 is arrested according to un ut value of the fraction, ARREST, 

which corresponds to e: in  Figure 4 and Equation (34) e Taking Figure 8 

a s  an example the axial-to-radial emission, ratios FRG and FRN are 

obtained a s  0 0833 and 0 804 I respectively 

NE, LE(I), NGfES,. HGAMA(1): if the source spectrum contains a large number 

of enerqy groups I e .g . NE = 18 the Monte Carlo evaluation is carried 

out a t  the user selected group indices (LI(I)/ I = 1 ,  NGfES) and inter- 

mediate values quadratically interpolated, e .g * evaluation may be request- 

ed a t  LE(1) = 1 , 5 , 7 , 9 / 15 and 18 where NGES + 6 (the number of indices) . 
Since transport intensity is a function of energy for a given material, the 

number of Monte Carlo histories per energy index may be varied through i 

input of HGAMA(1) I e ..g e for the above HGAMA(1) might be = 5 , 4 , 3 , 2 , 2 , 

and 1 which corresponds to 5000,  4000,  2000 and 1000 histories 

e card sets @ through es after input of 

GRS) Since card sets are cross sections 

for scattering i t e m s  defined by ca 

same for many sequentially input i t e m s  their input is emitted 

for repeating value'of M ,  For ex and two iron 

structural members defined by f i  

in  turn, M = l3, 13 @ 13 26, 26 and input twice (for the 

underlined M) e 

and thus may be the 

then 

X(1) Y(I) a Z(1C) I P  I K ,  '62 T 1  TB I rsS: References toFigure 5 is recommended. 

The coordinates of the corners of each geometry defining the scatter structure 

model are  specified by X(T) Y(1) ,and Z(0 
area the number of corners IP = 3 and 4 , respectively. IP  = 24 for a box struc- 

ture; 4 corners/face for six faces  

For a triangular or quadrilateral plane 

For a box or quadrilateral plane $he angles 
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subtended by the s ides  a re  arbitrary. For a cylinder (or boom tube) only the 60- 

ordinates of the axial  ends are  specified,  and thus IP = 2; the  inner and outer 

radii are  specified per T 1  and T 2  respectively. T 2  specifies wall thickness for 

a plane or box. Since a cylinder and a plane may be  optionally analyzed by 

either the albedo or single scatter technique, the decision is specified though 

the value of T e In order to define the "exterior" s ide of planar media the direction 

of the outward normal is specified (+) or (-) per NT = il. 

whether the origin (0 

origin is inside the medium then NT=+1 else = -1, It is pointed out that 

the code automatically subdivides cylinders radially and axially into ele - 
mental a reas  which are s m a l l  relative to the distance from either source or 

detector; this is necessary to maintain validity of inverse square relationships e 

The shapes allowed by the code may b e  combined to generate other geometries 

e.g. a cone may be  represented a s  isosceles plane area triangles in contact 

on each s ide ,  

The user must determine 

,O) is "inside or outside" of the planar medium e If the 

the cross-section table generated by subroutine GENSIG 

sub-intervals e 

NINT consists of (IHIGH - IL@W) energy groups each containing 2 

The total  number of subintervals over a l l  groups is equal to 1+ (IHIGH - IL@w) 
e The energy width of each sub-interval within any given group is the NINT 

) I  where N is the group interval N-1 (2  IL@W/ NINT same and equal to 2 

number, beginning a t  N = 1 the lowest group. The energy bounds of group 
PHIGH-1 1 are  2 ILgW and 2 ILGW + The energy bounds of group N are 2 

The energy unit pertinent to this entire explanatory comment IHIGH and 2 
2 is moc (=.Slog7 MeV) e An illustration of this  comment is given in  Figure 7 

The relationship of the cross-sections generated with respect to E@T are also 

indicated, B should be noted that ECT 2 2 IL@W 
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where the source medium consis ts  of 

only a single element, e , g ,  Fe, the  earlier descriptions are  considered ade- 

quate.  m e r e  the source consis ts  of such a s  a cornpound then further clari- 

fication is now given: 

(or@and@) for spacecraft (read as 19 through 

22 for shield) must be repeated €or each element in  the compound, 

e . g ,  for Sm 0 input data for Sm and for 0 Continuing with 

Sm203 a s  the example, NELE = 2 ,  to  indicate two elements (SmandO); 

AT@MN@, ANDAW are  input as  62.0, 150.35 and 8 - 0 ,  16.0,respective- 

ly.  Only the input values of DENSTY need reflect the number of atoms 

of Sm and 0 in  Sm DENSTY is determined as  

2 3  

0 2 3 "  

* DENSTY/ - - 2 *ANDAW/sm 

2 3  Sm2 O3 A N D A W ~ ~ ~  

= 2 * 150.35 * 1 - 5 1  = 1.302 
348.7 

and 

3 * 16 * 1.51 = 0,208 - - 
D E ~ S T Y ~  348.7 

ME il SIGPE SIGPP E: the  cross-section data required for input on card 

typeQmay be obtained from the references (17-21) The number of value- 

s e t s  input from energy E (1) t o  E (ME) d need only encompass the energy range 

with spacing as  per the references. The code generates IHIGH 2 ILgW t o  2 

its own cross-section table using logarithmic interpolation e A table 

of E SIGPE SIGPP is given in Appendix VI of reference (3) 
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s 

:: the  shield may be defined a s  having laminar layers (R[I) 

f = 1 NgM) and each  lamination may have NELE(%) elemental components 

W ( I )  is a fractional length e g e i f  the shield length = L and W(1) RA(2) 
and RA(3) a re  = 0 e 1 0 e 2 and 0 * 7 I then the lamination lengths in  the source 

to  detector direction are  lengths O e l L o  0 - 2 L  and Oe7L, The code determines 

the optimum value of L Each lamination I may have elemental composition 

NELE(1) e ,g ,  NELE(1) 

LiH + Fe + Pb shield,  

NELE(2) and NELE(3) = 2 ,  1 and 1 for a three layer 

3.3.4 Code Output 

Throughout the discussion in  this sect ion,  reference to the Sample Code 

Output listing of Appendix V is necessary and understood. Output which is 

adequately defined by headings is either not discussed or mentioned only 

briefly. Output pages are referred to  by means of the encircled letters A, 

B ,  C ; ,  etc, 

This page consis ts  of the input gamma spectrum and/or neutron spectrum 

data and the flux at the detector for each energy interval. 

This page consis ts  of the albedo and single scatter information for each 

input scattering item (e.g,  spacecraft structural member or component) 

The total (integrated) scattered flux at detector is a l so  given. 

This page consis ts  of shield information:: source energy groups shield 

material composition, buildup factors direct and attenuated fluxes a s  well a s  

the estimated thickness and weight e Initial output of this page for each shield 
uildup factors of unity. 
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@   he values on this page are a s  input accorciing to  Section 3 . 3 . 3 . ,  with 

a number of exceptions,  namely: 

1 ESCAPE SPECTRUM ENERGIES (MC**2) - photons escaping 

from the source cylinder are terminally categorized within 

these energy bounds e 

2 ESCAPE SPECTRUM ANGLES (RADIANS) - photons escaping 

from the source cylinder are terminally categorized within 

solid angles defined by the escape angles .  Zero angle is 

defined along the + Z-axis in  the direction "source t o  detector" e 

These page(s) consist  of the terminal results of unscattered photon - 

escapes categorized a s  a function of source energy. 
photon energies are  identified obviously for each table ,  a s  are the escape 

The somce 

angles and solid angles (both in  radians) 

fied as  follows: 

The other columns are identi- 

1, NUMBER -- the number of photons escaping between angle 

Ai and Ai + 

space ,  

ie in the noted solid angle; based on 

2, NUMBER/STER - the number of photons escaping between 

angle Ai and Ai + per steradian, 
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3 ,  

4. 

5. 

6, 

7. 

8. 

@These page(s) consist  of the terminal results of scattered photon escapes 

categorized according to escape energy interval tables .  The escape inter- 

val energies,  aagles and solid angles are identified obviously. The re- 

maining columns are analogous to E above, except for the following: 

1 e SCATTERED ESCAPES-the total number of source photons 

escaping after one or more scatterings is given a t  the 

bottom of each table ,  analogous to C4, above 

P e ED ABSORPTIONS-the total number of source photons 

"lost" to  photoelectric abosrption 

NO .IN FWD CONE/STER-the scattered photon escapes in  the 

the forward 10 degree cone; number per steradian. 

2 e 

3 

-4 3- 

FRACT/STER - the number of photons escaping between 

angle A. and Ai + 

photon histories initiated 

PAIR PHOTONS - the number of pair photons escaping 

between angle Ai and Ai + 

UNSCATTERED ESCAPES - the total number of source pho- 

tons escaping without a single collision, ie. the s u m  of 

i t e m  1 above is given a t  the bottom of each table. 

NUMBER AV/STER - the average number of escaping pho- 

tons per steradian, ie. the sum of item 1 divided by +. 

PAIR PHOTON ESCAPES - the total number of unscattered 

pair photons escapes,  ie. the sum of item 4 .  

NO pp IN FWD CONE-the total number of unscattered 

pair photon escape in  the forward 10 degree cone. Note: 

in  this discussion 'forward' 1 0  degree cone excludes shield 

s ide escapes ie. forward face escapes only. 

per steradian per total number of source 1 



The output on this  page consists largely of summarization of the data 

in  E and F above The TO- 

TAL NO, OF COLLISIONS does not refer to a terminal classification and is 

thus only of either s ta t is t ical  or incidental interest  e The termination table 

consists of the following: 

Initial and Cut-off energies a re  in MeV units 

1. 

2. 

3. 

3A 

4. 

5,  

SA 

ENERGY - the number of histories terminated through . 

scatter reducing the photon energy below the input cut-off 

energy (ECT) threshold e Such terminations are considered a s  

absorptions. 

WEIGHT - the number of histories terminated through the 

weight being reduced to less than the termination threshold 

value (coded a s  10 

absorptions 

-5 
) e Such terminations are  regarded as 

ESCAPE - the number of histories terminated through 

UNSCATTERED ESCAPE plus TOTAL SCATTERED ESCAPE ie e 

the sum of i t e m s  5 and 6 l isted below, 

ToTAL ESCAPING FRACTION - excaping fraction per his-  

tory I ie i t e m  3 divided by the total  number of histories .. 
ABSORBED (1 + 2 + 7 -) - the  number of histories termi- 

nated through ENERGY plus WEIGHT plus PHOTOELECTRIC 

ABSORPTION ie the sum of items 1 2 and 7 e 

TOTAL UNSCATTERED ESCAPES - this  is i t e m  E4  repeated, 

TOTAL UNSCATTERED FRACTION - i t em G5 per history. 
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6 e TOTAL SCATTER ESCAPES - the number of scattered es- 

caping photons summed over all escape energies,  

6A. TOTAL SCATTERED ESCAPE FRACTION - i t e m  G6 per history, 

7 ., PHOTOELECTRIC ABSORPTION - the  number of photoelec- 

trically absorbed photons summed over all energies e 

8 e PAIR PRODUCTION PHOTONS - the total number of 0 e 5 1 

annihilation photons originating in  pair production interactions e 

9. TOTAL ESCAPES IN FWD 10 - DEG CONE - total  escapes 

through forward 10  degree cone and summed over all energies 

10. TOTAL IN FWD CONE/STER - i t e m  G9 per steradian. 

11 . TERMINATION PAIR PHOTONS-this termination table 

categorizes the fate of the shield pair produced photons e 

1 2 .  TALLY CHECK-this i t e m  should equate to the total number 

of photon histories 

Page sets D, E ,  F and G are output for each input index LE(1) and iteration, 

i .e e NB'ES t i m e s  for each iteration , e .g e i f  3 iterations then D , E, F and 

G are output 3" NGES t i m e s .  A t  the  end of each iteration i .e every NB'ES 

set of D,  E ,  f and G ,  page C is repeated. The last page C output is the 

final resul t  for each shield problem and is thus noted. The final results 

on page C cons is t  the gamma photon and fast neutron source spectra 

as  well as  the corresponding iterated buildup factors and detectable 

attenuated fluxes a The note of change of flux as  a function of shield 

length is tabulated for four shield lengths in  the "length-vicinity" of 

the criterion flux. The first length value: the table is the predicted 
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optimum obtained by quadratic interpolation remaining three values 

The optimum shield length L ,  weighted density p and total weight, W,  

are  given. The total structural scattered and shield attenuated fluxes 

calculated by the code a re  also output, as are the same values corrected 

for the number ef spacecraft symmet r i c  sources or cource tandems, eg e 

in the example in  Appendices IV and V I  TANDEM = 2 e 0 ,  corresponding 

to the two Fondem sets shown in Figure 1 e Thus although the code 

calculated Scattered and attenuated fluxes of 0 a 608 and by TANDEM = 2 

to  equate to ALLGWF = 10 .0  when summed, ie the values become 1 a 2 1 6  
2 and 8 7 84 particles/cm second 
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3 e 3 5 a Discussion 

Sample resul ts  obtained with the S@SC code are reviewed in  this  report 

section. They assume the  typical unmanned spacecraft  as in Figure 1, 

The dimensions of this  craft were obtained either directly or by scaling 

NASA-GSFC preliminaty design drawings ., 

The sample calculations assumed four (4) SNAP-27 RTG8s I each five (5) 

years aged and of 1575 thermal watt  capacity,  The RTG's were taken as  

being in  tandem pairs a s  in  Figure 1 

located 6 e 87 meters from the RTG's The unshielded direct and energy 

integrated number fluxes at the experiment package were taken as 25 2 

y/cm -set and 13.5 neutrons/cm -sec per tandem pair of RTG's; t hese  

values were obtained from NASA source data.  Fluxes in  the axially per- 

pendicular direction (radial) were taken as  1 2  e 0 and 1,25 t imes  those in  

the axial  direction. The fluxes assumed a t  a dis tance of 6 87 meters from 

R T G  tandem pair are shown in Figure 8. 

The science experiment package was  

2 2 

The spacecraft structure scattered flux at the science package w a s  pre- 

dicted by th6 code as being 1 . 2 2  particles/cm -sec I for the four RTG's e 

The Code SGSC predictions for 8.04 c m  diameter optimum weight shields 

per RTG tandem pair and the noted materials were: 

2 

LiH A1 Fe Pb 

1651 1932 245 1 2617 grams 

(3,64 4,26 5,40 5.75 lbs) 

A two lamination shield of total length 10 56 c m  made up of 1 e 056 c m  Pb 

(nearest source) and 9 .SO4 c m  A1 requires a shield weighing 1900 gm, This 

is 32 gm less than a n  A1 shield and 3 4 c m  shorter in  length. A laminas 

shield of Pb and LiH, in  the same length fractions 0 , l  and 0 ,9  reduced 
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the optimum weight to 1580 g m  for a length of 16,59 c m  compared with 

39 e 5 c m  for a LiH shield 

Pb + 0 9 LiH to 0 I 9 LiH f 0 1 Pb , in the direction: source to detector, 

led to  a weight reduction from 1580 to 1550 g m s .  Although two laminations 

of the same materials (e .g 

A reversal of the shield material order from 0 1 

Pb-81-Pb-A1) generally did not 

Figure 9 shows the weight of a LiH f Pb shield a s  a function of the ratio of 

LiH length to total shield length. The optimum weight shield is seen to be 

given for a ratio of 0 9 2  (i e e 0 92 LiH f 0 08 Pb) The optimum is obtained 

for a slope of zero. The dashed curve in  Figure 8 indicates the change in 

total length of the LiH f Pb shield A t  a length ratio of 0.92 the total length 

is < 50% of the 'al l '  LiH shield: a t  a weight ratio of 0.83 (weight - 1600 gm) 

the total length is reduced by a factor of - 3 .  Thus this curve, obtained by 

running code S@SC, allows a best  compromise between optimum weight and 

shield length to be chosen: this may be  important i n  a spaceflight mission 

launching where volume is a prime consideration 

When only gamma photons were considered high atomic numbered material. 

gave the most favorable results 

i .e e photons only, tungsten and tin shields weights were predicted a s  

1567 and 1903 g m Q  

For the sample c a s e ,  ignoring neutrons 

The sample problem output given in Appendix V indicates , on page type C , 

the range of the buildup factors for the c a s e  of the 0 e 9 LiH + 0 1 Pb shield 

They can  be seen  to  range from 1 . 0  to 1 08, a s  compared with 1 .O to 1 e 15 

for 0 e 1 Pb + 0 $ 9  LiH; for Pb only, the factor ranged from 1 e 0 to  1 33 e The build- 

up factor behaviour in  the shadow shield is quite different from the expected 

for a semi-infinite or bulk, shield.  Photons and even neutrons, have a high 

probability of escaping after one or more scatters e This coupled with the low 
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probability of being scattered to the distant detector accounts for the values 

being only some 10 or 20% above unity, Only radiation escaping through the 

shield face closest  to the detector were considered as possible contributors 

to the buildup factor 

From the sample problems run and reported herein and as substantiated by 

earlier determinations reported in  MUS-600' ) 

payload design yields a n  energy and particle integrated flux at the payload 

which is cv 10% scatter and 

approximated approach t o  the scatter problem which is designed into Code 

the assumed spacecraft- 

90% shield attenuated. This supports the 

S@SC 0 

Code S@SC determinations of the scattered flux at the science experiment 

i.e, at the detector although based on albedo and single-scatter techniques 

which are of course approximated allow the inclusion of all structural ' 

detail .  The direct and complete Monte Carlo approach to the scatter problem 

would be prohibitively complex and costly and would still only provide a 

good approximation. The Monte Carlo approximation may be inferred from 

the fac t  that even in simple geometries Monte Carlo predictions frequently 

deviate 10% to  50% from good experimental data.  

Calculations reported i n  NUS-600' ) indicated relatively good agreement 

between single scatter and albedo predictions for geometries where material 

was either relatively thin or where such as tube members were being con- 

sidered, Sample evaluatiow from NUS-600 are reproduced in Appendix \% 

this present report 
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The design of an  experiment to verify the predictions of code SGSC, is 

outlined in this report section, The experiment is required to verify both 

the spacecraft scattered and shield transmitted radiation fluxes a s  well  

as the optimum shield weight and configuration Although the experiment 

must necessarily be carried out in a terrestrial laboratory and thus be in- 
fluenced by such a s  air and laboratory structural material interactions as 

opposed to the ideal in-vacuo environment of deep space ,  these effects can 

generally be corrected foro 

Referring to Figure 3 I the experiment must provide data to substantiate 

predictions of flux: 

shield length, L, The experiment should be carried out for both gamma 

photons and neutrons. In order to  carry out the experiment for an  actual 

spacecraft with PuO fuelled RTG sources the spacecraft RTG's and a 

suitable detection system are required to be located in a suitable laboratory, 

Assuming the availability of these i t e m s  the experiment becomes very straight 

forward. Such an experiment requires a n  efficient detector for fast neutrons 

in  the presence of a relatively high gamma photon field,  e.g.  a liquid or- 

ganic scintillator such as NE-213 or -218" 

discrimination for detected photon rejection to be accomplished e The gamma 

photons will be most efficiently detected by a thallium-activated sodium- 

iodide scintillation detector 

sequent analysis for both of these detector types with respect to the proposed 

@a (E,) -t- @a (Eo; Ea) a s  well as  give optimum 

2 

which allow pulse shape 

The detection capabilities and necessary sub- 

(32) experiment have been adequately described in  NUS-486 

In the likely event that a n  actual spacecraft is unavailable for an  experiment 

a mock-up may be fabricated using "everyday" materials of composition di-  

mension and mass closely similar to th,at of a spacecraft u Again laboratory 

neutron and gamma sources may be judiciously substituted for an  actual RTG 

a s s e mb% y a 

* NE -2 13 and NE -2 18 are organic liquid scintillators manufactured by: Nuclear 

Enterprises Bnc,, San Carlos California 

__1-= 
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However accepting the fact that a mock-up experiment will  verify code SQ'SC: 

data,  leads to the obvious idea of simplifying the mock-up, FCX example, the 

use  of a small number of typical structural component mock-ups will suffice 

for comparison of experimental data with code predictions €or the same con- 

figuration. Shield transmission may be studied experimentally by the use  

of axially located and a d j a c e ~ l  thin discs-h va-rfous-.quantities and material 

combinations 

plementation in a conventional laboratory a It requires the availability of the 

necessary detectors and a n  associated multichannel pulse-height analyzer 

a s  well a s  neutron and gamma photon sources of known emission strength. 

..- I 

This approach to the experiment allows i t s  economical i m -  

Figure 10 (a) shows a source,  detector, shield and scatterer located i n  the 

geometry of a proposed experiment e Although the distances ro r1 and r 

should be chosen such a s  to model the experiment after the actual spacecraft 

configuration 

generally dictate their actual dimensions For example since shield attenu- 

ation factors will generally be studied in  the range 0.2 to 0 - 0 2  a source 

strength 

for r = 1 meter; inverse-square law considerations allow strength to  be 

determined for other values of r e Removal of the shield will yield detector 

count ra tes  larger in  accord with the noted attenuation factors, The flux 

scattered to the detector by the spacecraft mock-up member of area A will 

2 

dependence on source strength and detection s ta t is t ics  will  

1 It 0 m C  .I is desirable to yield a statist ically good detector count ra te  

0 

0 

2 2 2  be less than that along path r in the ratio r /(r r2  ) for geometrical 
O 8  0 1  

reasons I assuming total reflection a t  A e Since reflection will be far from 

total being instead expressed by the differential albedo (see  Section 3 e 2 e )  

and s ince the actual value of the area A is a l so  a factor, it will be necessary 

to use a source strength, S >>S 

strengths S and S may be varied to some extent y choice of counting duration 
0 Q 

for this experiment phase. Actual source 
a 0  
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Referring to Figure 1 0  ( a ) ,  and assuming sources So and S,, the experiment 

may be carried out a s  follows: 

using source %, detect radiation transmitted by a shield of length L 

and scattering from an  area A 

tor will eventually detect  only radiation scattered by area W 
manner 8b, (Ecac) is experimentally obtained after background subtraction 

and spectral unfolding analysis e The choice of shield material for 

this  phase is not critical since only elimination of direct radiation 

is a requirement e Background is determined by repeating the experi- 

mental counting for the "infinitely thick" shield with the scattering 

area W removed It is recommended that the area A be located away 

Increasing L incrementally the detec- 

In this 

from laboratory structure throughout the experiment The methods 

noted here are very similar to those successfully employed in the 

research of reference (1 0) excepting that radiation beam collimation 

will be a s  indicated in Figure 1 0  (a) 

I1 using a source So which is identical to  S, in a l l  respects except 

emission strength, scattered flux may be taken a s  = (So/Sor). C& (Ea), 
for the shield phase of the experiment; this assumes the presence 

of area W 
ment, the geometry of Figure 10 (b) is proposed 

detector is shielded from radiation other than that transmitted by the 

shield I) The detector response function is obtained by counting source 

radiation with the shield removed; this takes detector shielding and 

collimation effects into account 

length the transmitted radiation flux da (Eo : Ea) is obtained, If code 

SaSC is run for G, ro and this flux a s  the criterion flux and ALB is 

omitted then comparison of the computed shield with the experiment 

shield may be carried out 

studied in the same manner. 

Since area A is not necessary for this phase of the experi- 

In Figure 10  (b) ,  the 

For a given shield composition and 

Laminated shield verifications may be 
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Although the  above experiment description calls for reduction of radiaiti~n 

counts to particle fluxes approximate resul ts  may be obtained without re- 

duction i€ the researcher is cognizant of detector response as  a function of 

energy e 
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5, SI; MivlARY AND CONCLUSIONS 

Analytic procedures and computer codes have been developed for the predic- 

tion of weight optimized radioisotope thermoelectric geners tor shield 3 to prote Jt 

science experiments for unniariaad spacecraft operating il: deep space , The 
analytic procedures, presented in Section 2.2  # ronsist  of iteratively solvinq 

the basic transport relationship after first determining the spacecraft scattered 

flux component. The transport relationship is solve 

Monte Carlo technique and analytic approximation. The scattere? flux is 

obtained through the use  of albedo, single scatter and analytic techniques . 

3roLqh the w e  of the 

A FOP.''-'\N IV IBM-36Q/91 digital computer code package --- SGSC was 

d e s f y e d  and developed to carry out the prediction of optimum shield weights 

and dimensions. This code uses  all of the developed procedures to best  

advantage. In addition to its desigfied application of shield design for 

protection of science experiments it may be used to either design shadow 

shields or to map radiation scattering for general application. 

In addition to the technique and code development, an  experiment to evaluate 

piedicted data has been presented. This experiment, outlined in  section 4 ,  

is proposed for future effort. The anticipated spectrometry data to be ob- 

tained from the experiment may be readily analyzed with the aid of the spec- 

tral analysis codes CUPED (33) # CUNEG ' 'and SGSC developed by NUS for 

NASA-Goddard Space Flight Center. 

(:- 4' 

It is proposed that a future work program consider the incorporation into code 

2@SC, of 3 Monte Carlo neutron transport routine. It i? also proposed that 

code S@SC be modified to tal.2 neutron swttering from the spacecraft structure 

into account. Consideration should also be given tc .-le prodtiction of' secon- 

dary radiation in the shield as a r e s d t  of neutron interactions 4 e.g. activation 

gamma photons. It is proposed that gamma p b t o n  transporf rssults - - - albedos # 

single scattering and bdflbup factors - - - obtained in the work scape being 
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developed by NUS for NASA-GSPC under contract NAS5-1178P be incorporated 

into S@SC to the extent necessary and appropriate. 

It is concluded that code s@sC and its encoded techniques provide a useful 

addition to the field of spacecraft radiation transport. The code makes a 

valuable engineering tool available for both preliminary and final craft en- 

gineering design. 
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N O M :  ALL SYMBOLS 

DEFINED IN SECTION 2 

1 

REA0 
1 PROBLEM VARIABLES 

CALL ALB 
TO PREDICTSPACECRAFT 

DETERMINE 
FLUX CRITERION 

F - C - Q h  

SATISFYING FLUX 
CRITERION F. 

BUILO.UP FACTOR E l ' )  = 1.0 

CRITERION F. 
BUILO.UP FACTOR = Bfhl 

NO YES - 
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INTERACTION PHYS 
1: GAMMA PHOTON INTERACTION PHENOMENA 

In their passage through a medium, photons interact with the  electrons 

and nuclei of atoms in their path. These phenomena form the  basis both 

for their detection and for the deposition of their er.ergy, 

of the kind and effect of these interactions as they pertain to the present 

work is given in this report section (23-27) 

(27) There are  four kinds of basic gamma photon interaction processes B 

of which only two are relevant in the present work, namely: 

a) interaction with atomic electrons , 

b) interaction with the electric field 
surrounding nuclei or electrons e 

The effect of (a) may be either scattering or absorption; the latter is 

the Photoelectric Effect. The scattering may be either one of the two 

types: 

1. Compton inelastic scattering (incoherent), or 

2 .  Rayleigh elastic scattering (coherent) e 

The effect of (b) is the disappearance of the photon and the creation 

of an  electron-pair; this phenomenon is referred t o  a s  the Pair Production 

Effect a 

A brief discussion of these four microscopic phenomena, and their 

macroscopic attenuating effect on a beam of photons, follows under 

the headings: 

A) Photoelectric Effect 

B) Compton Scattering 

C) Rayleigh Scattering 

D) Pair Production 

E) Attenuation 

-7 1- 



A .  Photoelectric Effect 

At relatively low photon energies the most probable effect of an interaction 

is absorption of the incident photon by a n  electron of the traversed medium 

followed by ejection of that  electron and emission of either characteristic 

X-rays or "Auger electrons" as explained below e This phenomenon, called 

the Photoelectric Effect, results in t h e  complete disappearance of t h e  inci- 

dent photon: 

In order that  total absorption may take place,  and momentum be conserved, 

the interacting electron must be initially bound, in which case the residual 

atom recoils. The most tightly-bound electron, with respect to  the incident 

photon energy , has  the greatest probability of absorbing the photon e The 

interaction cross-section is a maximum when the photon energy Ey, is just  

equal to  t h e  electron binding energy; it decreases gradually as Ey increases , 

and decreases sharply as Ey decreases 

an  atom is in the K-shell; it accounts for in excess of 80% of the photo- 

The most tightly-bound electron in 

electric absorptions , with t h e  L-shell 

The energy of the ejected electron, or 

is given by: 

accounting for most of t h e  remainder. 

photoelectron as it is usually called,  

E = huo - Eeb, (MeV) e 

where 

h u = incident photon energy (MeV) 

Eeb 

0 

= electron binding energy (MeV). 

The energy E is carried away from the atom by radiation emitted a s  the 

inner shell 'vaeancy is filled by an outer shell  electron, such radiation is 

referred to as Characteristic X-rays. If the X-rays interact with an  outer 

shell  electron as  they leave the atom, they will be absorbed and the  

absorbing electron emitted instead -- an  Auger electron. The nuclear 

decay processes of internal conversion and electron capture may also 

eb 
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lead to  the emission of characteristic X-rays; so a l so  will t he  absorption 

of beta particles. 

The photoelectric effect does not lend itself easily t o  explicit theoretical 

calculation. Determinations of its cross-sections are  usually based on a 

combination of empirical treatments which vary according to the energy 

range under consideration. It is the practice of most researchers to make  

use of tabulations for CT PE ' the photoelectric cross-section e 

B. Compton Scattering Effect 

A s  the wavelength of gamma photons decrease and their photon energy 

increases ,  their behaviour tends towards that of a particle and their 

identity with a wave diminishes. The region of this  transition corresponds 

t o  the Compton scattering "threshold. I' This threshold I not sharply- 

defined, is entered upon gradually as hu+m c I (= 0.51 MeV), where 

m 

photon and t h e  electron have comparable "masses a I' A s  the Compton effect 

becomes significant, the photoelectric effect significance diminishes e 

2 
0 0 

equals the rest  mass of t h e  electron. Viewed a s  solid bodies, the 
0 

Compton scattering may be considered as an inelastic collision between an 

incident photon and a "free" electron of the medium; the collision is 

analogou's to that of billiard ball mechanics. The electron may be thought 

of a s  free to recoil on the basis  of h u  >> E 

incident photon may transfer a portion of its momentum and energy. The 

consequence of the collision is a scattered photon of energy h y ,  travelling 

in a new direction and at an angle Q with the original photon direction, and 

a recoiling electron of energy E making an  angle 9 with the incident photon 

direction. 8max = 180 : Qmax = 90'. 

as a result of which the o eb' 

e 
0 

The angular and energy relationships of these statements may be expressed 

as:  
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zv 
E 

' MeV. ' 0  

v E E =  
71 - 

(1 - cos e) 1 $.T 
' 0  

L m c  
0 

E = E  - E  
y1 e 

E = h u ,  MeV. 
Y 

where 

E = incident photon energy, MeV. 

E = scattered photon energy, MeV. 

8 = angle between incident and scattered 
photon directions 

$ = angle between incident photon and 
recoil electron directions e 

(3) 

(4) 

(5) 

For convenience in t h e  remainder of this section the following conventional 

short form is used: 

The differential "collision" cross-section for the scattering of photons 

into a given solid angle d R  at a particular angle 8 is given by the Klein- 

Nishina formula, a s  
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where 

- d o  - 

d o  = 

- - r e 

Equation (7) 

2 differential cross- section, c m  /electron 

2n Sin 8 d 8, the differential solid angle 

“classical electron radius, - 2 

2 e 

m c  
0 

- 1 3  2 . 8 1 8 ~  1 0  c m .  

assumes t h e  incident photons t o  be unpolarized. It 

indicates that for large a ’ 
cone. A s  Q 0 , and cos 8 1, we see 

scattering is predominantly in t h e  €orward 
0 ’  

1 

2 r 
( 1  + cos2€))  d o  e 

2 d a  

From Equation (2) equation (7) may be rewritten in  terms of energy 

for 
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The integration of 

the total Compton 

Equation (9) over a l l  scattered energies yields 

scattering cross-section pes electron, (p , : cs 

The total Compton scattering cross-section per atom is given by Z 8 cy 

where Z is atomic number. 

, cs  

C . Rayleigh Scattering Effect 

In Compton scattering the atomic electrons are assumed to be unbound. 

This  assumption is only valid a t  photon energies which are large with 

respect to the electron binding energy. A low energy photon may be 

elastically scattered by a tightly bound atomic electron, with t h e  atom 

a s  a whole absorbing t h e  recoil momentum. A bound electron has a 

"mass" which is equivalent to that of its atom. The energy transferred 

to t h e  atom i s  small, and so t h e  scattered photon proceeds with a 

relatively unaltered energy and only a slightly altered direction. This 

effect is  known as t h e  Rayleigh or small-angle scattering effect e 

Since all  the electrons in a given atom behave similarly, Rayleigh 

scattering is coherent. 

packed regularly, the effect may extend to  the electrons of different 

atoms, When the scattering angle, 8 * 0 ,  the scattering will be in 

phase,  i a e constructive interference A s  Q increases .the tendency 

Because a l l  the atoms of a given solid may be 

R 

R 
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is towards destructive interference and so t h e  scattered photons will 

be found concentrated mainly in a narrow forward cone, and to a lesser  

extent in other discrete directions, This may be realized from consid- 

eration of t h e  photon wavelength, and the atomic radius, analogous to 

Bragg reflection e 

where the independence of the electrons precludes the liklihood of 

interference. 

This  behaviour differs from Compton scattering, 

T h e  transition from Rayleigh scattering to  Compton scattering is smooth 

with increasing energy, E . The Rayleigh scattered photon does not 

have a unique energy as  a function of scattering angle, having instead 

a n  energy distribution peaked at a value close to that given by Equation (2) 

'YO 

D. Pair Production Effect 

At photon energies of approximately 1 e 0 MeV t h e  predominant interaction 

phenomenon is Compton scattering, A s  E is increased considerably 

above this energy t h e  photon may interact with the electric field surrounding 
70 

either a nucleus or an electron. The photon will be absorbed and replaced 

by a pair of electrons, a positron and a negative electron. This effect is 

called Pair Production, 

The cross-section for pair production in the field of a n  orbital electron 

is negligible until E,, 

however, has a cross-section which begins at t h e  photon threshold energy 

2 m c , (= 1 02 MeV), and increases rapidly thereafter 

The electron pair share and carry away the energy in excess of that 

required for their creation, a s  kinetic energy; t h i s  may be expressed as  

2 3 4 m c , (=  2 04  MeV) a Nuclear pair production, 
0 0 

2 
0 
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2 
( E e -  +E,+) = E - 2 m  0 c 

The free positron is quickly annihilated by a negative electron after its 

kinetic energy has  been dissipated a The annihilation yields a randomly 

oriented pair of back-to-back photons, each with an energy of m c 

The electron pair are  distributed mainly in the forward direction with the 

2 
0 

CI 

average angle of "deflection" being expressed by m c'/E 

F o r 2 m  c < E  <4m c I a 2  

e 

0 e 
2 2 2 

0 PP vO 
0 

E. Attenuation 

The passage of a beam of photons through a medium is characterized by 

their interactions with the atoms of that medium. This leads to a reduc- 

tion in the number of uncollided primary photons at a depth. The reduc- 

tion is referred to a s  the attenuation of the  incident photon numbere 

The discussion on interactions has  shown that the total microscopic 

energy dependent cross- section for a particular interaction process 

occurring, is given by either a PE I z.cscs I uRS or (P ppo The total 

cros s - s ect ion D ( E,, ), for "some" process occurring, is then given 
TOT 0 

by the 

from w 

sum of the partial cross-sections as 

2 = a  + Z.aCs + %s + crpp , (cm /atom) u TOT ( E  Y o  ) = o T O T  PE 

iich a total macroscopic cross-section per c m  of path may be 

defined as  

-7 8- 



and similarly 

= NORS ; B$F = "c.7pp RS = NZeCS : E 

where 
P xAv 

; (atoms present/cc ) M N =  

assuming one type of atom only, 

p = density of medium, (gm/cc) 

Av= Avogadro number, (atoms/mole); 6 . 0 2 3  x 1 0  - 2 3  

M = atomic or molecular weight. 

TOT ' 
The inverse of Equation is defined as  the mean free path, 1 
for a photon prior to  interaction, i .e .  

(13) 

R,,, 1 RS, and dp, may be defined from Equation (14) RE ' Similarly R 
The. total macroscopic cross-section is generally referred t o  a s  the total 

linear attenuation coefficient a 

2 The number of normally incident photons per c m  -sec  in a parallel beam 

which penetrate a thickness x of a homogeneous medium without inter- 

action, is given by the exponential law a s  

where 

2 number of photons/cm -sec incident at x= 0 

2 

d (0) = 

d (x) = number of photons/cm -sec  emerging at x. 

P = cross-section appropriate to  the interaction 
effect under consideration: energy dependent 
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Thus , it follows that the probability of uncollided photon transmission 

through a thickness x i s  given by p , where 

Equation (18) is in  agreement with Equation (4) of Report-Section (2.2) 

Similarly the probability of some kind of interaction occurring in  

path length x is given by 

%‘OTx) 
E (x) = ( 1 - p )  = (1  - e  TOT 

Equations I and assume a normally incident 
parallel or collimated, photon beam. In practice this can only be nearly 

achieved by narrow-geometry restrictions a For the case of a poorly 

collimated or uncollimated photon beam it is necessary to  introduce a 

factor to  express t h e  increase of the photon number flux at  x over the 

valued predicted by Equation (3 e 4 e 17)  a This factor, known as a number 

Build- Up  Factor, B(x) , may be defined as  

(20) 
Total Number Flux a t  x ~ ~ 

Uncollided Flux a t  x 
which is in  agreement with Equation (5) of Report-Section ( 2 , 2 )  

Energy and dose build-up factors may be similarly defined. 

(x) = 

, and the properties E y  0 
That p i s  a function of both incident photon energy, 

of the traversed medium is apparent from the discussions of sub sections 

(A-D) and equations (12) to (15) It follows then, that any property, 

including B (x) which i s  dependent on pI is similarly dependent on E y  (I 

0 
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I1 FAST NEUTRON INTERACTION PHENOMENA 

Neutrons interact with the nuclei of traversed matter through the mechanism 

of nuclear force, An interaction is generally referred to a s  either having 

scattered or absorbed the incident neutron a The probability of either seat%ering 

or absorption varies a s  a function of the incident neutron energy and the 

atomic number of the target nuclide, the dependence on atomic number being 

general and such that for each isotope there is a unique probability, or 
(2,288291 cross-section 

Perhaps the m o s t  convenient and systematic manner of describing neutron 

interactions consis ts  of invoking the "compound nucleus 'I concept According 

to  this concept all interaction modes result  i n  the formation of an  intermediate 

reaction product - a compound nucleus - formed by a n  absorption of the incident 

neutron. Symbolically this may be represented as 

0 where I 1 n is the incident neutron, 

and z." + the compound nucleus formed by the interaction. The asterisk 

denotes that the compound nucleus wil l ,  in general, be left in an  excited s ta te  

the target nucleus before interaction 

for a finite period of t i m e .  The energy of the compound nucleus includes 

both the binding energy and/or part of the kinetic energy of the incident 

neutron. This energy excess over that of XA, distributed i n  a complex 

fashion among the nucleons, will cause the compound nucleus system to 
z 

seek 

its state of lowest permissible energy i n  a characteristic "relaxation time" I 

typically about 10  -"to 10-l '  seconds 

The laws of quantum mechanics allow only those reactions t o  take place 

which obey certain rigid energy and momentum relationships This obedience 

is observed with respect to  the available excitation energy of the 

incident neutron and the distribution of energy levels in the target nucleus 

a s  well a s  with respect to the symmetry requirements of the interaction, 
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e o  g. parity, baryon number charge conservation, statistics e) 

In accord with the compound nucleus concept, scattering and absorption of 

an  incident neutron may b e  defined in terms of whether or not the cornpound 

nucleus emits a neutron during de-excitation 

scattering may be separated into two kinds - elastic and inelastic.  In 
e las t ic  scattering the compound nucleus e m i t s  a kinetic energy degraded 

neutron in a very short relaxation t i m e  < lo  

exactly the same internal energy state as  before the interaction. In iilelastic 

scattering the compound nucleus e m i t s  a neutron of partially or totally degraded 

kinetic energy and is itself left in a n  internal energy state above that of 

9; the excess energy is evolved by emission of one or more gamma photons e 

Z 
The degradation of the neutron kinetic energy by scattering is referred to 

a s  thermalization. The compound nucleus may be de-excited by emission of 

particles other than neutrons 

photons in which case neutron absorption is said to have resulted. 

Further and more important 

-2 0 
seconds,  and is itself left in 

such a s  alphas and betas accompanied by gamma 

The interaction processes reviewed above a re  summarized: 

(i) Elastic Scattering, (n,n)- A neutron of reduced kinetic energy 

is emitted by the short-lived compound nucleus which is left in an unexcited 

s ta te .  Kinetic energy is transferred to recoil the target nucleus. In the 

case  of hydrogen target nuclei ,  for which energy transfer is a maximum, 

recoil protons result 

(ii) Inelastic Scattering, (n ,n')----- A neutron of reduced kinetic 

energy is emitted by the compound nucleus, The compound nucleus is de- 

excited by gamma photon emission. 

(iii) Radiative Capture (n , y ) I h e  compound nucleus form,ed by 

absorption of an incident neutron is de-excited by relatively high energy 

gamma photon emission 
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( iv) ------The compound 

nucleus formed by absorption of an incident neutron is de-excited by emission 

of a charged particle such as  a proton, deuteron or alpha,  accompanied by 

gamma photons 

(v) Fission, ( n , f ) I h e  compound nucleus formed by absorption of 

an  incident neutron breaks into two ionizing fission fragments, and one or more 

energetic neutrons, accompanied by gamma photon emission. Fission is most 

probable in  heavy nuclei of odd mass number and less so  in  heavy nuclei 

of even mass number. It can occur either as  the result of a n  externally 

incident neutron or a s  a consequence of quantum mechanical leakage through 

the Coulomb barrier, ie. , spontaneous fission. 

(vi) Other Reactions, (e, n) , ( y ,  n ) y w o  interaction processes which 

give r i se  to neutron emission and thus which must be identified are (a,n) and 

(7 ,n) phenomena in  the plutonium-oxide source and its immediate environment, 

The first reaction proceeds when the energy of a n  alpha particle exceeds the 

energetic threshold and Coulomb repulsion barrier for the reaction, and is 

thus significant only for plutonium alphas ( ~ 5 . 5  meV) incident on light-target 

nuclei such as beryllium. The second reaction, photo-neutron formation, 

results from the interaction of high energy gamma photons with light nuclei 

such a s  are  present in plutonium-oxide a s  impurities. High energy photons a re  

present i n  the PuO, source through (n#f) reactions and the decay of the T& 208 

256 daughter of the Pu isotope present in  plutonium oxide. 

-83- 



APPENDIX I1 

SUMMARY DESCRIPTION OF SUBPROGRAM NUGAM1 

-84- 



APPE I1 

RY DESCRIPTION OF SUBPROGRAM NUGAM1 

Code NUGAMl derived from wVALGAM(3' is programmed to predict differential 

and integral energy-angular fractional gamma photon number transport in cy- 

lindrical media geometries. It employs the Monte Carlo technique of following 

and catagorizing a large number of photons from "birth to  death" E% uses  ran- 

dom number and probability theory combined with known interaction distributions 

termine such as  source and collision site spatial location, as well  as 

trajectory energy and direction throughout each history e 

After n interaction events in the source medium,photon number s ta te  may be 

characterized as 

where 

E = photon energy 

8 = polar angle 

+ A azimuth angle 

x ,  y I  z = Cartesian co-ordinates 
t h  n = subscript t o  denote n event 

m = n-1, a subscript: O , l , . e e O l m , n l e O e O  

o = subscript to denote photon history origin, i d  e e I' zero interaction I 

which describes the spectrum at the arbitrary point Pn (xn, yn, zn ) .e If inter- 

action site Pn is outside the boundaries of the cylinder of height h and radius 

p and Pm is within I then the fate of the photon is deemed a s  escape I and 
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so tal l ied by the  code, If an escape is recorded a t  Pn where Pm = Po, then 

the  photon escape energy is unaltered and identical with the initial OK birth 

energy. A typical escape history is indicated in Figure 11-1 where escape  is 

shown between P2 and P3. The code employs Cartesian co-ordinates and 

direction cosines to  determine trajectory between interactions a 

Although Equation (1) and Figure 11-1 characterize photon history state terminal 

escape classification is computed with respect to space co-ordinates 

( 0 ,  0 ,  3 ) e If a detection band about the Z-axis is assumed at  a great dis- 

tance from the source cylinder then al l  photons escaping from any point on 

the source boundary and striking the band may be considered a s  having the 

same Z-axis directional cosine.  If the detection band subtends the solid 

h 

h at  n(0, 0 ,  ) then, the photon escape s ta te  may be characterized 

a s  

where 

E = photon escape energy 

In Equation (2) the understood arguments and subscripts are omitted. Multi- 

plying by differentials in energy and solid angle, the differential angular- 

energy photon number escape spectrum is given by 

keeping in mind that 

= Sin 0 d 8 d + #  (4) 
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where 

8 = polar angle between escape vector and Z-axis; 0 2 

= azimuth angle of escape vector; 0 .s 

Substitution of Equation (4) into Equation (3) and integration over energy 

and angle between desired l imi t s  gives the total  photon number escaping 

from the source. The geometry for photon history escape classification is 

illustrated in Figure 11-2 
The co-ordinates of the source point .Po , within the source cylinder are 

chosen by random number selection as (13) 

where 

Ri = denotes a sequence of pseudo random numbers a 

The initial direction cosines of the source history are determined similarly 

by random number selection a s  (13) 

w = 2 R i +  3- 1, 

u = cos [( 2 R i +  4 - 1 ) n] ( 1-W2 ) 1/2 
( Z R i + 4 - 1 ) ~ ]  ( 1 - W 2 )  1/2 

The direction cosines u ,  v, w ,  correspond t o  co-ordinates (xo, yo, zo ) of 

Equations (5) 
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Source photons are initiated with a probability of existence or weight W, equal 

to 1 0 

scattering t o  total  cross-section. Thus photons are not lost  t o  absorption un- 

less their reducing weight drops below an assigned value 

Photons may be lost  t o  absorption if their degraded energy drops below an input 

threshold value 

This weight is reduced after each interaction by the ratio of the 

-5 10 in NUGAM1 

The path length between interactions, -t, is a function of energy and material 

composition. It may be determined according t o  the Monte Carlo technique 

as 

(14) 

where 

= actual  path length of photon in medium region j 

= total  mean free path for a photon of given energy in  a 
$ j  

given medium j a 

_ _  
t h  Energy deposition within the source cylinder a t  the n interaction site is 

determined as 

where 

t h  Wm = weight after m interaction 

E = photon energy 

p = macroscopic interaction cross-section 

pp I pe s , t = subscripts to identify pais production I photoelectric 

scattering and total  cross-sections 
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are determined kom the micro- ‘IPP and %e The macroscopic cross-sections 

scopic cross-sections a 
the wall known relationship 

and ape input t o  code NUGAMl in  accord with PP 

i=k 
g i  oi 

A i  
IJ. = Ao I 

i= 1 

where 

24 
A. = Avogadro number: 0 e 6023x10 

p = material or element density 

A = material or element atomic weight 

i = subscript to  denote summation for elements, kinds 1 to k 

The total macroscopic Compton scattering cross-section per atom is obtained 

from Equation (9) and 

where 

Zi = material or element atomic number 

G e s  = total microscopic Compton scattering cross-section per 

electron 

The scattering cross-section creS is obtained from the Klein-Nishina re- 

lations hip a s  (13) 

E 2 -  2E- 2 
2E3 2 + In ( 1 + 2E ) ( 
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where 

- 1 2  ro = 0 ,28183~10  e m  , 

E = photon energy in  moc ( = * 51097 MeV) units e 
2 

Direction and energy after a scattering are governed by the angular differ- 

ential form of the Klein-Nishina distribution, with energy related to direction 
by the Compton scattering relationship (13) Code NUGAM1 selects scattering 

angle and energy in accord with the method outlined by Kahn in reference (30) e 

-. . .  

At  photon energies greater than 2 moc2 ( = 1 a 02 MeV) pair production results e 

The code temporarily stores the  parent photon characteristics and initiates a 

daughter photon with isotropically selected direction and energy moc 

( = 0 51097 MeV). The daughter is attributed twice the  parent weight in 

order to simulate an actual photon pair. Upon termination of the  daughter 

history, the parent history is recontinued. 

2 
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(O,O, h/2); CODE INTERNAL 
CALCULATION ONLY 
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APPENDIX IV 

CODE ScdSC SAMPLE INPUT DATA LISTING 
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NOTE: The following output corresponds to the second shield case in  the 

Appendix IV input sample da t a .  
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NOTE: Output pages D E and F omitted for 0.85, 1 .70  and 6.50 0.0 0 
MeV source energies.  
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APPENDIX VI 
SUMMARY OF NUS-600 DETML EVALUATION 

Sample results obtained with the S@SC component codes are  reviewed, They 

consist  of shield thickness and weight evaluations for assumed typical 

SNAP-27 RTG source strengths and spectral distributions e Example results 

obtained for the scattering from spacecraft structural members are presented 

and the significance of various factors discussed 

The calculations described in this Appendix are generally based on a RTG 
gamma photon emission distribution similar to  that of the Martin Cronus (32)  

9 (thermal loading of 4100 watts) normalized to  a total emission of 1 x 10 

~ / s e c ,  The RTG fast neutron emission distribution was based on SNAP-27-1 

reported data from reference (1): a source emission rate of 5 7 x 10 

was assumed. For both fast-neutrons and gamma photons I axial and axially 

perpendicular emission rates were taken as identical ,  although this is not 

true in  €act e This assumption was  necessitated by the lack of actual encased 

a n/sec 

RTG source data in  the early phase of t h e  work program. The assumed source 

emission spectrum is given in  Table VI-1 for gamma photons and in  Table VI-2 

for fa st neutrons e 

The typical spacecraft for which the calculations were carried out is that 

of Figure 1 (section 2 1 of this  report). The dimensions of this spacecraft 

were obtained from NASA-GSFC preliminary drawings e Figure VI-1 shows a 

schematic outline of the spacecraft for the discussions i n  this section. 

Gamma photon cross-section data were taken from references (17) through 

(2 1) Neutron cross-section data were obtained from reference (22).  
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The Table VI-1 source spactrum is that for a three (3) year old PuOz 

SMAP-27 as opposed to the five (5) year Pu02 used i n  section 3.3.5 of 

this report. Calculations in  reference (32) indicate that the total gamma 

emission rate increases by a factor of N 4 over the first  18 years ,  Table 

VI-3 , reproduced from the reference indicates that the energy groups 

0.2 to 0 . 3 ,  and 2 . 0  to 3 .0  MeV are the most cr i t ical ,  e . g .  the 2.0 to 

3 .O MeV group (2.62 MeV The") increases by a factor of more than 100  

in the first  10 years .  This age effect on shielding requirements was not 

studied during this report period because of lact  of reliable source da ta .  

The scattering of source gamma photons to the detector by aluminum boom 

tubing proximate to the  source (or the detector) was investigated. The boom 

axis was assumed a s  perpendicularly bisection a 16" long unit (1 y/sec) 

source of 0.75 MeV photons. The calculations assumed a line source and 

a single scattering model for a boom tube volume of 0 (I 79 cc /cm . The re- 

sul ts  of the calculations are  shown in Figure VI-2 along with the calculation 

geometry. In the figure it may be seen  that the calculations considered 

boom tubing coming as c lose  as  10 c m  to the source whereas GSFC drawings 

indicated actual c loses t  point of boom a s  25 c m  distant 

flux scattered by a typical boom, boom (1 , 2) in Figure VI- 1 I is obtained from 

Figure VI-2 after integration over r ,  between 25 and 80 c m ,  a s  

y/cm2-sec. Assuming boom ( 1 , Z )  a s  typical, where r1 ranges from 2 5  to 80cm, 

i .e a length of 55cm I the total  scattered flux from 6 such booms (6  per side) 

and 4 sources would be N 3 x 10-l '  y/cm2-sec. If the actual source strength 

are  taken as  10 y/sec , then < total flux of - 0 e 3 y/cm -sec is obtained 

The use  of the single scattering model as  opposed to the albedo method for 

boom structure calculations I was investigated. W 1 c m  length of 1 inch 

diameter aluminum boom was considered as  located 100 c m  from both a 

point source and a detector,  with source and detector 141  c m  apart. For 

The detector-incident 

11 (Ea) = 1 e 3 x 10 

9 2 
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Eo = 0.75 MeV, a unit source (1 y/sec), a boom wall  thickness of 0.04 

inches and a boom volume 0 79 cc/cm , the calculated fluxes a t  the de- 

tector were 

@!!s (Ed = 3 .6  x y/cm2-sec, 
a nd 

gvss 'Ed = 6 . 4  x y/cm 2 -sec. 

The difference in these calculations diminishes i f  i t  is assumed, in  the 

case of the albedo result ,  that  photons penetrating the relatively thin (0.04") 

tube frontal wall may be  backscattered from the tube interior wall  surface 

ie,  if either the wall thickness or scatt 

tion, then 

ng area is doubled for the calcula- 

This result indicates a very good agreement between the single scat ter  and 

albedo methods for small finite geometries 

A similar calculation for a large iron cylinder, in the physical position of 

the spacecraft cupola , was a l so  carried out e The cylinder dimensions were 

taken a s  20" x 38.5" x 0.5'' (dia.  x I t .  x thickness) e A unit source of 

0 Ij 75 MeV photons was assumed 

located per the spacecraft dimensions . 
The source,  detector and cupola were locate 

%YS (54 = 2 4 x lo-' y/crn2-sec I 

and 
= 2,7 x 10 -9 y/crn2-seca @wss 
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The same configuration for an  aluminum cylinder of 1 inch wall thickness ,  

gave a single scatter flux of 

-9 2 (E2 = 1 . 8 ~  10 y/cm -sec. 
@os s e 1  .. ..+-$&-A- - 

Taking a n  actual cupola "flat" , A,  as  in  Figure VI-1 , with the dimensions 

13.2" x 25.5" x 1" (width x I t .  x thickness ) and assuming the material 

to be aluminum, the albedo and single scatter fluxes were determined a s  

-10 2 = 1 . 8 ~  10 , y/cm -sec, @as (Eo!) 

#as (Eo!) = 1.9  x ~ o - ~ O ,  y/cm -sec. 

a nd 
2 

The above calculations were based on a single RTG source of 1 photon/sec, 

and Eo = 0-75 .  

Figures VI-3 and VI-4 are sodium-iodide scintillation detector spectra re- 

produced from reference ( ) .  They indicate the energy distribution of 

backscattered photons as  a function of t ,  eS and eo, respectively, for 

graphite as  the backscattering material. The prominent peak in  these spec- 

tra corresponds to single scatter the 'arrow-indicated' peak corresponds to 

double scat ter  and the continuum represents multiple scatter a 

If this  photon scattering is considered significant enough to require shield- 

ing (- C ,  the criterion flux) then such shielding would be a minimum weight 

i f  designed to  attenuate the scattered photons as opposed to  the primaries. 

Figures VI-3 and VI-4 show that the scattered photon energies will generally 

be in  the range , 0.10 to  0 5 MeV, and thus can  be readily attenuated by 

a relatively thin and thus low weight, shield located a t  the detector e 

Examples of energy-integrated shield-scattered photon angular distribu- 

tions are presented in  Figure VI-5. The angular categorization in  this figure 

is referenced to the shield geometric center,  The distributions were deter- 



mined by an  early version of the Monte Carlo subprogram: NUGAM1.. 

The current code version additionally determines the photon distribution 

to which the detector is specifically exposed I i .e I photons escaping 

from the s ide  of the shield cannot intercept the detector. 
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TABLE VI-1 

Assumed SNAP-27 Gamma Photon Emission Spectrum 
(32) Based On Martin Cronus Data 

Energy Assumed Photon Emission 
Interval Energy Rate 

(MeV) (MeV) (y/MeV- s e c) 

0,2 - 0 . 3  

0.15  

0 , 2 4  

6 .54  l o 7  

6 .87  107 

0 .311  7 88 l o 7  0.3  - 0.4  

0.4  - 0 . 5  

0 .5  - 0 . 6  

0 . 6  - 0.7 

0 .7  - 0.8  

0 . 8  - 0.9 

0.9 - 1 . 0  

1 . 0  - 1 .2  

1 . 2  - 1 .4  

0.414 

0 583 

0.650 

0 e 766 

0 .851  

1 .oo 
1 - 1 0  

1 .40  

7 .86  x l o 7  

8 . 0 3  l o 7  

7 .33  l o 7  
2.26 x l o 8  

1 .40  x L O 8  

6 .65  x l o 6  
7 1 , 8 7  x 10 
7 1 .73  x 10  

1 . 4  - 1 . 6  1.59 7 .71  x 10' 

1 . 6  - 1 - 8  

1 . 8  - 2.0 

2.0 - 3 .0  

3 . 0  - 4 . 0  

4 . 0  - 5 . 0  

5 . 0  - 6 . 0  

1 .63  

1 .go 

2.61 

3 .50  

4 .50  

5 .50  

1 . 6 3  l o 7  

1 . 5 4  107  

1 .07  x l o 8  

3.03 x l o 5  
9 .10  l o 3  

4 3 . 0 1  x 1 0  
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TABLE VI-2 

SNAP-27 -1 Fast Neutron Emission Spectrum(') 

Energy 
Int erva 1 
(MeV) 

0 - 1.0  

1.0 - 3.0 

3 .0  - 4.0 

4.0 - 5 .0  

5 .0  - 6.0 

6.0 - 8.0 

Neutron Emission Rate 

5 . 0 6 ~  l o 7  

4.16 107 
7 1 .79  x 10 

3 . 5 6 ~  l o 6  

1.90 x l o 6  
5 4 .50  x 10 
5 8.0 - 10.0 1.14 x 10 

7 Energy Integrated Emission Rate = 5 7 x 10 n/sec. 
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TABLE VI-3 

Rearoduced from Reference(32) 

Gamma spec t ra ,  photons/crn2-sec for RTG a t  var ious times 
ter plutonium separat ion ( 

energy interval  0. 5-1.0 
nna l ized  to 1.0 Lor 
eV at 18 years )  

o e o 4  - 0.5 

0 .5  - 1,O 

1.0 - 2  

2 - 3  

3 - 5  

5 - 7  

0" 12 

0,23 

0,096 

0 , 0 0 3  

0.0003 

0.00003 

5 year  

0.  56 

0. 30 

0.096 

0. 18 

0.0003 

0.00003 

10 yea r  

0.90 

0.33 

0 ,096  

0.32 

0.0003 

0 ,00003 

18 yeas 

1.0 

0.35 

0 .096 

0.37 

0 .0003  

0 .00003  
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