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ABSTRACT
A one dimensional Fredholm integral equation is derived for the
ground state solution of the delta-function model for two electron
Helium-1like ions. This equation is solved numerically; the perturbation

(20) and compared with the solution of

sefies is developed through E
the integral equation. The series is further analyzed in terms of the

singularity which determines its radius of convergence,
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Introduction

The S\—function model for Hewlike 2-electron systems is a one-
dimensional analogue of the physical He problem in which the two
particles are constrained to move along the real line and all coulombic
terms are replaced by Slfhnctions. It is a matural generalization
of the é?-function model for the hydrogen atom in which the single
electron is constrained to the real lime and the coulombic attraction
term is replaced by a single é?»function. Such a model for 2-electron
systems is not the only one which has been suggested.,fBenson, White, aad Byers-
Ci Brown1 have also considered the so called Hooke's léw He atom in
which the coulombic attraction terms are replaced with harmonic
oscillator potentials and the repulsion term is left unchanged,

é\ -functions have been used for some time as models to study
the real coulomb problem. Quite recently several authors have used
these potentials to study collections of a large number of interacting
boson=fermion systems.2 This study will concentrate on the simplest
such system, the two electron ioms,

The point of the study is really twofold. We will attempt to
answer the question, how well does the model correspond to reality and
where or how does it fail to do sol This can be done by solving the
model exactly and we present a potentially exact solution. In the
second part>of the paper we obtain the perturbation energies through
20th order. We attempt to analyze the convergence of the series they

constitute, in order to investigate for a specific problem where such



a perturbation series breaks down and what happens when it does.

Section I describes the Hamiltonian, the perturbation, the solution
of the unperturbed problem¢ some general remarks about the solution
of the perturbed problem are included as well, Section II contains the
method of exact solution, a discussion of the integral equation and a
presentation of numerical results. Section III presents some theoretical
and numerical arguments about the nature of the computed results.
Section IV contains a derivation of the equations for the perturbation
series and a listing of the perturbation energies through 20th order.-
Section V attempts an analysis of these perturbation energies in
terms of the singularity which determines .the radius of convergence

of the series they constitute.

I. Statement of Problem

The Hamiltonian for the model described in the introduction is in

suitable units:
2 z
-4 %7? -4 %7,, - =My + 28y (1)

Here A = 1/Z | where Z is the charge on the nucleus; thus N
measures the strength of the perturbation. A= 0 defines the un~
perturbed problem and non - 0 A represents a finite interaction
between the two particles of strength A . The unperturbed problem is
separable. The solution consists of a single bound state of energy -1,
a singly excited continuum beginning at E = -%, obtained by exciting one
of the particecles to the continuum and a doubly excited continuum -

beginning at E =:0, obtained by exciting both particles to the continuum
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Using the Weyl comparison theorem3 one may determine the anumber of
kound states which equation (1) possesses. J

For finite positive A the potential is bounded below by the
unperturbed potential; thus there exists at most one bound state.

For negative A the potential is bounded below by the potential of

sequation (2), with two interactions of strength A
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This problem (which is exactly soluble) also has only one bound staté:;

thus the original problem ¢ has also at most one bound state.
Furthermore for negative g the potential of (1) is bounded above

by the unperturbed potential; thus there must exist at least one bouné
state. These two statements together imply the existence of a single
bound state for negative A . The argument is equally valid for
positive A< 1, where the bound state of equation. (2) disappears.
Beyond this point all that can be 'said is that there may exist at most
a single bound state. The continuum solutions of (1) begin at

E = -%, just as in the unperturbed problem. These continuum solutions
may in fact be constructed from the unperturbed problem by taking the
simple anti-symmetric combination {oob () \oé (ta ) - @;(?) @2, (x)

-1zl . _
where (p‘;(x) = e Iz ) {og (x)= Sinkx or cos h[lxh—b] 5 Yo b A —‘/’Q,a
Whether the bound state crosses into continuum cannot be answered by

arguments of this general nature.

IIL. Method of Exact Solution

We solve equation (1) exactly with a 2-dimensional Fourier



transform. Letting

o0 w’}e 5
G(E“k;): ffe‘“e Z?-WKL?)!XJ?)
G satisfies equation (3):
00 ?—'/az‘a- ;
'é,: (k,z.;- 'é'z.z-"' pz)c()gl) k;.) - ;ga@ 7/’(0) Y's
20 o2
v-fede'xy/(x,o) dx + 7‘,(8 zy(x,x)c[x =0
- o0
~00

with E = -p2/2,
We are interested in the symmetric ground state solution, }V (x,y) =
P 03 Y x3) = V)5 P(x-y) = YPix,y). This implies
Y (x,0) Y (0,x) and that Y (x,0) and ¥ (x,x) ( Y (x,x) =
7&(-x,x) = ygé-x,-x) ) are even functions of x. Writing
F(k) = QECkzycmo)Jl
H(k) = f;zhx'¢(k)1)c/l
e

(3) becomes

F) + Flk) =2 Hlerke)

(ky, ky) =
G i, Ll ky¥ e p™) )

That is, the unknown function G of the two variables kl and k2
may be expressed in terms of two unknown functions, F and H, each of
which depend only on a single variable, and a known denominator which
depends on k1 and RZ. These two functions F and H are obviously

related in some way; they are obtained by Fourier transforming a single
function 1%’(x,y) along with x axis and along the line y = x respectively.
Below we deduce what that relation is. But the essential poinE is

that via equation (4) the problem of determing the unknown function

G of two variables simplifies to the problem of determing the two



(related) functions of one variable, F and H.

To obtain equations for F and H, note that inverse Fourier
transforming G gives back the function ]P (x,y) in terms of intggrals
over F and H. We use this expression and the definitions of ¥(k) =
Scéhxf(z,o)and H(k) = Sc.‘-kx'lo()c, x,) to get two coupled integral

equations for the functions F and H. Thus

‘/’(76)‘7)‘: (ﬁ‘%-)& f:(@ _L&)xe'c.hz? G(é/) }z,_)j/c, ‘/k?_
) yg -kix  -chvy /:ae,nrae,) —AHy ik, )] L, Loy
er =z (k l "’/9)‘)
and

F(h) = fe;kxgﬁ(x,o)a/x = __I__)mgggec'(h—k/)l ECk)rFih,) - AHG thy )'L//g,a//a,a'k
e TR s> ep>)

Hk)= fe‘kx‘/(x,x)dz— Gr)® §§§e ook, h")k/?("f)*'c(h») AW‘M’n)L’k Ad .
[ 4 Clerthatp)
These simplify to

Elh) = S[th Plk)laﬂh’ ,\ S Hik +k') Lk’
- 2 ——

Lok k! *4p*) L CR*R" p”)
and ‘[ , cé
_ 2 ( Flk-b')dhk - X Hk) h!
k) = 77 \gr'»_E k-k' )7+ b e 2T {[(/z—b‘)"ue'hpj
which further simplify to
/
‘ Flk) — A KH)dh
F(k)= &£ E‘;(“&:)T"‘;. * S T ) (R*(e-k")+p)
m k't p { k>+p
and
/_,(&) - 3-— ,F_‘_(;/?——)——M"”""""‘ - A H(}Q)

[(h=b)+ &% p*] edpe



The second of these equations gives H in terms of an integral over F
which may then be substituted into the first to give a single integral

equation for the function F:

£+ ElR)
Fer)= 4 (L)AL + ER)
f/@ TP e,
-2 (dk’ F ) dh” VR 4

m* [(h’k)#—h—l—fﬂ [(h"/&)-}—h” :.( Zf’#k’z +a>
(3)

The integral over k' in the last term of (5) may be worked out

explicitly. Equation (5) is thus of the form

Feb) dee) = § K Chyp') FLR) D (6)

wit+h

= |- Fe )

and —
! - ,;m x S [ TEL L
KCor)= 7 prsp Lo+ chnvpe] Co'% (kL p)p™] g+ )
—pd
(8)

Thus the bound state solutions of equation (1) are the normalizable
solutions of (6) with SIS and K given by (7) and (8); the
eigenvalues E = — PVZ- are the values of p2 which for each \ allow
such normalizable solutions.

Equation (6) is (almost) of the standard Fredholm type. It
may in fact be cast in this form provided the function %(/ﬁ) never

vanishes, If this is the case (i.e. if [91) 9. ) we may write



~ B - A P-4 kl /
Flk) = MLKU@,/@)F( ) dke 5

with F(k)

ro + &, Rek'y = Kk, k') and A an
Vak) J #k7)

eigenvalue. We then seek solutions of this standard Fredholm integral
equation of the second kind5 with eigenvalue 4 = 1. i.e. the dependence
of pon A is fixed by requiring that @n: eigenvalue:. £C of (9) be 1.
Furthermore since K is symmetric in k and k' and square integrable for
all values of AY O and pz)() (see Appendix I),/E’is also symmetric
in k and k' and square integrable for all values of A >0, but now only
for all values of p2 > 1. This guarantees that (1) eigenvalues g exist
and}(2) they are discrete and (3) the corresponding eigenfunctions F
are normalizable.5 Thus we determine p( A ) by solving (9) with fixed A
by adjusting p so that 4 = i.

This was done numerically. Since Y)(;,O) is even in x, so is F(k)
(= gbe“-k‘x 1/ (x) 0)dx ) even in k; thus we need only consider positive k by
replacing K (k,k') with (K(k,k') + K(k,-k')) in (5) or (9). The
integral may then be transformed easily to an integral over the interval (0,1)
in a variety of ways, e.g. by letting x = k'/(k'+1). The integrand
then is well behaved over the new interval (0,1) (because K(k,k')— 0
like l/k'2 for large k') and an approximate integration scheme may
be expected to work very well. The numerical results of Table I and
Figure I were obtained this way using a Gauss Legendre integration
scheme of first 10, then 20 points. (Hardly any improvement was observed
by increasing the number of points to 20, and’ the: .tahles.presént the 10

point results.) The results were obtained using equation (5), not

(9). Replacing the integral of (5) with a finite sum converts (5)



to a homogeneous finite set of simultaneous equations in the values of

the unknown function F ( 7%%& ) at the quadrature points X, . A

is fixed and p varied until this set has a solution, i.e. until the

determinant of the set of simultaneous equations = 0.

III. Theoretical Discussion of Results

Figure 1 shows a smooth curve which starts at E = -1 with slope
% and increases up to E= -% at about A = 2.65 where it stops; the
slope of the curve at this point is 0. One might ask why doesn't
the curve cross into the continuum; or why does it stop at all; or why
rdoes it stop where it doesy or why is the slope 0 at this point?
Physically one might expgct the bound state to disappear by making
the repulsive interaction between the two particles large enough. .
This apparently happens in the real 3-dimensional He probleméat
A o= 1.1184., but not at the onset of the continuum but within
the continuum and not with O slope. Thus physical arguments and
analogy  with the real He problem do not alone provide the answers
to these questions.
Some of them may be answered by examining equation (5) in
the vicinity of the point p2 =1 (E = -%), For pz,ﬁ 1)equation (5)
completely changes character; when the factor 96 has a zero it is do. longer
possible to construct equation (§) from (5). (This required divisionm
of K (k,k') by JQQET JTEEZB ). Even so, it is possible to rule
. out some of the possibilities suggested in the first paragraph
through use of the square integrability of K (k,k') for all pz > 0,

A 0 . A square integrable kerngl defines perhaps the simplest

~



completely continuous (compact) transformation.7 Equation (5) may be put
in the form
N - KF = AT, (10)
where N is a bounded normal transformation; K is a completely continuous
transformation and 4¢ is an eigenvalue. The solutions of eq. (5)
are solutions of eq. (10) with eigenvalues 4 = 0. A theorem due
to Neumann and Weyl8 states that the continuous spectrum of a normal
transformation is invariant under the addition of a completely continuous
transformation. The continuous spectrum (all of the spectrum) of the
normal transformation in question is the range of the function ;{ .
As long as p2 > 1 the range of ;5 is bounded away from 0. This implies
the continuous eigenvalues of (10) are also bounded away from O also.
This means that the only solutions of (10) with eigenvalue 0 are bound,
a fact we knew anyway.
As for the questions outlined above, suppose first of all, E( » )
exists only for A <€ Ao and E( », ) < E < -%. Then
one could easily compute a variational ’E for ( Ao4-éj Yy > 2o, with
gj small enough, which would provide an upper bound for such A

SY(x,9)%dxd
=E(26) +E'( D) (X =23). ( EI(A> is a decreasing function

~ Gy idx

sufficiently close to Mo below E = =%, E = E( A°)+(§zi{
‘?,

of A and is finite (=%) at ) = 0). By hypothesis this could not be a
bound state. But a continuum state cannot have energy < -%. This
provides the required contradiction. Similarly neither can E ( 2\) exist
for A< 2y (i.e. in an open interval) with E(p) < E‘C-%, and not exist for
A= Ap . 1f this were so we could define the completely continuous operator

of equation (9) at the point ( 2, , lgm‘yodzjz). Let Fi be a
—;AO

sequence of solutions of (9) corresponding to ( X ., P ()\fD )



with A¢ — A o, Eo"'ﬁg, From the sequence of functions
(I‘{( 2o, Po‘) h,) 39.’ ) Fi one can then extract a convergent subsequence.
Using this subsequence and arguing as below, one can define a solution
at the point >, f, . This provides the required contradiction,

Having dealt with these two simpler cases, suppose now that E ( 3 )=
-5 as D2 — Do for some Ao (including the case Dy = oo ),
Then we have a sequence of normalizable eigenfunctions Fi’ and a
sequence of points ( Ao, p (>;) ) such that pG)=1; >, o> A, and
Fwd, ()= (" ki (rr') Fy(hDdh'
Ry R)z K (ac,plac) ) 2 R') ¢ = (- ”)—:,"4—/99\(-)" )
-Ki,-aka(b'k‘);_ k(Ao)I‘,h,h') du"éo,f‘ U"/’%ﬁ?)

Again, since K is square integrable for all non-0 A and p , Ki
and Ko are completely continuous transformations. Furthermore Ki —_ Ko
strongly, i.e. in the sense of the norm HK,'- Ko 11— 0, since R, is
completely continuous we can extract a convergent subsequence from
the bounded sequence of functions KoFi such that. KOFin-*}D in: the mean.
Since K F, = (K ~K, + K,) F, and K,-K strongly we also have K F, - ‘YJ

o i o i i’ 71 i "o i“i
Thus ¢z’ F, ——‘-Y/ , which means the sequence ?So F. as well as F,
itself converge also, ]3‘i — Y = . Thus Fi converges to a

0
function F = i which may or may not be normalizable. ( QSOL'O)‘:- <)
o
If F is normalizable then ||FIll= lVm R = | . This implies
?

that '\P is not identically 0 (otherwise ¥ would have 0 norm),

and that ’1,0(0) =Q, so that F has finite norm). If F is not normalizable,

then again ‘Y/ cannot be identically 0, and y/ (0) must still be 0.
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This is so because \/} (k) is finite: /1/—’(/@)[ < /":," [f/(o(/e)le') Frlk)dk'l <

. z 1
l:w\lfk;(hb Jak'l < oo (the Fi's are assumed normalized). Assuming without

proof, as we do below, that the limit and the integral may be interchanged,

1im § ko C,k') Ecth)dt'= [Ko(b, k) FR)db' = [k, (5,60 W (k) 44,
: Jo k)

we have W}U (k)

Since ¢‘O(k') o(k'z), the term on the right is infinite unless

]

Ko(k,k'))b(k') = o(k'(1+d)),d) 0 for small k'. Ko(k,O)fO, so in order that
y)(k) be finite, we must have V’(k')=o(k'<l+ﬁ>) for small k'. Note this
does not imply that F = ¥ is necessarily normalizable.

The vanishing of Y(0) implies that the limiting function

F= VY is also a solution of equation (5') below, provided that KO(O,O)%O.

o

NE(D ! Tk, (0,00 K, (O Dl
F(/Z) ¢0(&)$ y’(o()@)/@)":(é)‘ﬂ/z J./{ (0)0) k) Fk!)dk (51)’

since the last term on the right is identically 0. That is , the
original square integrable symmetric kernel Kc(k,k') may be replaced by the

new square integrable symmetric kernel:
Koll, k') = Ko(0h') Ko (0,8) = K (h k')
Ko(0,0)

of (5') provided KO(O,O)#O. The reason for constructing this new

kernel is that we may now proceed in exactly the same manner which

led us to equation (9). That is, since Kl(O,k') = o(k'): Kl(k,O) = o(k),
we may divide K, by JH;ZZ? JEQZ];T . Letting?g(k) =\/:&:?£37F(k),
R, (e, k=K, (k, k") /([gm) (g5 ) » F satisfies the standard Fredholm
integral equation of the second kind:

FR)= o (K, (l,k')FlR)dk,
At an eigenvalue. Direct calculation shows that eigensolutions with 4L = 1

do not exist. This calculation is performed by fixing «t at 1, p at 1

and replacing the integral with a finite quadrature sum.As ) varies the
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determinant of the corresponding set of simultaneous equations remains
bounded away from 0. The variation in this determinant with 2 is
indicated in Table II. The single point M,= Z1,6673 ¢ where
ko(D) O), = O (at this point one may not conmstruct KI_(k,k'))
emerges &s the only point where E { N ) may cross over into the

0§ (57)
continuum. At all other points X, p= l) solutions,do not exist.
One of the consgequences of this results is, for exampie, that E
cannot tend asymptotically to -,7': as A\ oo , a fact which
was not at all obvious either from physical arguments or from the
general shape of the computed curve.

The numerical evidence that the analysis is correct is very
convincing. It is a simple matter to calculate the value of J\ for
which ko (o, 0) = O . Alternatively (this was actually done
first) one may solve equation (5) by quadrature and let 2\ ihcrease
to determine p as a function of N . The curve levels off and —> 1
as A—2>, . The two calculations fix Do at 2.66736 in entirely
independent ways.

What can be said about the slope of the function FE(> Yats= PP

Numerically the slope seems to be going to 0. The Hellman~Feynman

JE _ C¥Ox, ) Ix
_&—S‘— f%(k,o{)”p/)t:d?

i.e., the siope is every where positive. Since the 2nd corder energy is

theorem applied to equation (1) gives

6 . 2 . .
always negative, i.e. since & E: £¢) , the slope is a decreasing
&

function of }\ . At any point A,where dF = 0, either
PN
/7

A
S’W[k,)c) jk must be 0, i.e. Y(x,x ) must be O almost every-

where, or ;Y"/()c,k>l&{>€ must remain finite and S}[[k,c{ )L/Kﬁ%

nust become infinite, (x,x ) cannot vanish for the nodeless
)
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ground state; thus if ever %’E‘ =0 s ')é{z,ly) must be
non-normalizable at that point. i.e. the solution must be a
continuum solution. The Weyl-Neumann theorem insures that at

E=-% (p=1), a continuum solution must exist. (A bound solution
may be degenerate with it however). At the point ( }so = 2,66736,
P=1) A unique (numerical) solution of (5) was found. The uniqueness
insures that it must be an approximation to the continuum soluticn
guaranteed by the Weyl Neumann theorem, and explains why the slope
of the curve is 0 at this point, S‘f(k,c,)}o{x%? = 00, It was
thought at first that this continuum solution was a simple delta
function. If /g(o,}?—\ were identically 0 a delta functiom, &C}Q)
would satisfy eq. (5) éxactly.‘k}(o) k,) is however not identically
0 (though it remains small) and the exact Continuuwm solution is
more complicated than a simple 5\ -function.
To summarize, using the complete continuity of the operator

we have been able to show that (1) ETC;\) must either cross or touct
the line E = =% which bands the continuum;(Z) it cannot touch or
cross the line E = =% except at the single point A= Mo where
k:o[o)o) =% and (3) it does in fact touch there with O slope. The
solution at this point goes over from bound to continuum. (It is
conceivable but highly unlikely that the bound state could

reappear beyond this point in the continuum.)

IV. The Perturbation Solution of Equation I

It is of interest to determine how well these results can .
be reprocuio with high order perturbation theory. Though equation

{1) has the exact solution described in the previous two sectioms,
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the real 3-dimensional problem does not permit an exact solution.
Perturbation theory is in fact often the only way of solving difficult
problems and in this example we have an excellent opportunity-to see
how well it does in describing the true result.

W. Byers Brown has worked out the first three of these perturbation
energies and Stillinger and White4 have repeated the calculation in a
very interesting article that examines many electron problems with an
Ho that involves the hyper-spherical average of the true H. For
the two electron S'—function model this circular average gives rise
to a 2 dimensional H atom Hamiltonian with an attraction term
(?{Z‘/%>/{J’Z’T\‘r> . Thus for A)ZE this term changes sign; the
attraction becomes repulsion; one might expect that the series of
perturbation energies would break down for values of A > QJ;?
since for such values the Ho problem does not have a bound state
solution. Indeed the >\° of the previous section is fairly close
to 2.828.

One way of getting the perturbation series is to expand everything
in equation (5) in powers of A and equate the coefficient of each
term to 0. The algebra soon becomes very involved and it is slightly
easier, but entirely equivalent, to expand the Fourier transform of
equation (1) directly. When that is done one has the infinite set

of equations:

L (k™ F ") C ™ b, k) - F

()

(ki) = F (k)
_ @) s -
= 2 E ¢ o, s - H' ')(la,w'zz) (1D

1z



where

Clhiob) = 5 a"C (ki k) \
. ’h) _ > - E(G

F= S»"F , ~T

F(h)= ZA F (k)

BkY= =2 H™ (k)

Thus

CCh b)) = F“')(kz) F o) """"z’»,@k>+,1$275“’c<”""

(hl"’nl*Po)

It is easy to see inductively that

n { ) N i
=) k, (. )
G (hl)k‘—) = ?,Z; A (}Q )+4 f))u—i * Z B"‘ “Qﬂ"h)
: - i = *
Lz ¢ ] "L rs h;"!«po‘)] *
Vv b YN .
The A'a,, 2 _a"vwe 51 “” obey the following recurrence scheme:
o (hel)
Ape = F o) "
) ”
At = ETAG E Al e E A
S m _ (mb2-m) M, wm-l
An = E A nn'l +o EOAL
'n{-| n
A nel = E A n
ach
) C‘“‘
Burl H 0y
(m) o | =
Boasl = EM B+ BW |
1) —Ci) ~
_B N - (et~ B o E B ~
nl
a th — 1) L
ntl 4 B“
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As in section II, we inverse Fourier transform i‘h)()@” k, )
(n)
to get 4% (15»7) and then use the definitions of ¥ and H to
Cn) ()

obtain the two nth order equations for F and H

FO) (- Y = L (™) 4k
Jh‘H%) 4 (R 2 4p)

L S‘? L )+ A G )] k!
t(}ev, hllrpo‘ﬂ L4l

4 4 gf ?1. (k) Ak’
A Y R iz')"H%"j

\(12)
and
(n) =z f
H (b.)’-:— ﬁ’L Szf’o (k) )/é
! 2
[R5 @-a)er )]
i1 > B mg
277 v [ Eh»h)-rr/ﬂ, +f/‘]
(13)
here pi= 2. E_ﬁ ua 1 o
(12.) is an inhomogeneous integral equation for F (4'); the
inhomogeneity involves the unknown nth order emergy E ¢ which

is determined by requiring that the equation have a solution.
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4 CAm[l@h—A’(b )]0“/ +i g""‘”(A ° (0)+ AS(h"))

?TT 7- l[/&(h—fk O»)]u‘( F{)Q 4}@ _”00 )J‘L

. ¢ ; ' /
.y g%" F (A 0 +Ase ) Ly (2 Bﬁ’mg{fv ok
- ] ; ) '."i
= - C{(wuk”ﬁtm‘ﬂl 20T (z(klr 12

=1

e
be orthogonal to the homogeneous solution, F db:: o

'2-_"’ #
. tn) ene seeond
This uniquely fixes E . (All of the 4erms buta in the inhomogenecus

term involve energies and functioms of order < n -1 which are

(%)

assumed known.) With this choice of E 5 CiZ)has a solution

which is uniquely determined by requiring that F tm) be orthogonal

(s . .
to F (intermediate normalizetion counvention). Once we have Fé™)

)

we calculate H directly using equation (13), All of the

terms on the right are now known. Again this entire procedure
was carried out numerically by replacing the integrals with finite
quadratire sums, after transforming the semi-infinite intervael

(0, to (0,1) with x=l_ | Furthermore, as equations (1Z) and

Je+)

(13) are written, it is clear that at no time does one need the functioas

U

2
B, andA ; at points other than the original set of quadrature

points. That is no interpolation scheme is necessary. In this way

?
the perturbation energies through 20th order were calculsted using

20, 32, and 50 quadrature poirts. The results are listed in table III
along with the first three analytic resulass@ The functions F ()
and H““) were also retained in the calculation and are available,

ut no iste ere, onvergence does seem to have been reached wi
but t listed h C é e to h be d th

the 32 quadrature points,
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V., Anziysis of Perturbatiop Energies:
(2}
it .

The sign changes every third term (beyond } in the
sequence of perturbation energies was something of a surprise. 1In
the real He problem 211 of the available variation perturbation
energies (beyond E(B)) are negative, Stillinger was able to fit this
sequence of numbers to a singularity of the type A ((J’/\ )64' BC)J
where TB(s) is assumed to have no singularity as close as or closer
than (7 to the origin. This was possible because the expansion of
( e-> ) & aiso gives rise to a series with constant signs and
indeed the fit was quite good.6 Furthermore we have already argued
in Sections II and III that the bound state disappears at = Ao =
2.66736; and a term of the type (2.66736 — > ) ez > |, in Eﬁé analytic
expression for E ( ) ) would account for this behavior as well as for
the observed 0 slope at )\ = 2.66756 and the general shape of the
curve in Figure I.

The nonconstancy in sign of the perturbation energies precludes
the existence (or at least the importance) of such a term however.
Nevertheless, can ome say anything about the analytic behavior of E(N
by looking at the terms in the series? It is well known that the
radius of convergence of a series representation of a function is
determined entirely by the location in the complex plane of the singularity
of the function which lies nearest to the origin.g 1t is also known
that the convergence of a series is determined entirely by the

behavior of its high index coefficients. Thus the behavior of these

high index coefficients must reveal the nature and position of the
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nearest singularity. It is just this idea that enabled Stillinger
to evaluate I and © with the first 20 terms in the perturbation
series for He.

Quite recently W. Byers Brown and B. McLeod have succeeded in
identifying the singularities of certain l-dimension Strum-Liouville
eigenvalue problems which depend on a perturbation parameter / as
branch points in the complex plane where two or more eigenvalues

3

coalesce, Byers Brown has been able to locate these controlling
branch points for all of the low lying states of the linear rotor in
a perturbing Stark Field,11

We attempt here to use Byers Brown's method of analysis on our
perturbation energies, although the original problem itself actually does
not belong to the category of problems for which the approach is strictly
applicable. Nevertheless if one assumes E ()} ) = A ()\7‘_2,\72505/+ Ez)e
+ B ( N), where B has no singularity as close or closer to the origin
than R then the high index coefficient E('h’) will behave like the
high indéx coefficient in the expansion of the first term. Writing
A (IA"~2Achs?/+R‘)9 = A'(Ng_%g + 2= H®

R‘-
with x = -cos% , and expanding ( / £ A>X ; %

2

) o out, the

o =
expansion coefficients Zfﬂjib F41(RX) are ultraspherical polynominals
'2"31

and obey a 3 term recurrence relation

e
FC (ax)= 2ax(e-m) Ff(a?X) + Qo+l=x) F (2x)
e (mrl) (msc)
=)

If our assumption is correct, then the high index E R should
obey this same three term recurrence relation for some choice of

R, © , and x. One may test the hypothesis by using three consecutive
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(Y (msl) El‘hn) _cued) _ Owvd)

such equations (involving E ) to

> 3 )
determine the three unknowns R, & , and x. As =7¢ increases, that
isjthe next set of three equations is used, the computed values of

R, é},qnj x change, 1If they change only slightly and begin to

tend toward definite limits then our hypothesis is probably correct.

For every -1 the three equations may be reduced to a single cubic

egmh'om
2
equation in ? 7 a quadraticpin e (with coefficients that
e% natbtiom
depend on R), andalinearﬂin x (with coefficients that depend on © and
R). We look for real positive R, real & , and real x such that

x|l <€ [ s which change only slightly as we change . .
Each equation in the set of three which determime R, & , and x is

of the form:

for R¥= Axle-m) R +(286lm) e n mil min
m+l Py s+ | J

where Yoh = é_‘n n > 1
-l

The results of this calculation for various values of n. are
presented in Table IV. Although there are some bad discrepancies,
particularly at n =12 and~155the numbers do-suggest the presence of a
singularity of the branch point type in the amalytic expression for E
as a function of A . The point lies in the complex plane at a
radius R with ,?‘ Z2< R < 3,0, One might be tempted to make other
guesses about the singularity. Some of these were tried but nothiné
gave results as good as the single branch point described above.

How does this result relate to our previous assertion that
.ét the point >% = 2,66736 the bound state disappeared and that at

this point CQE =0 ? If R < M, then the series would tell us
A
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nothing about the behavior of E( » ) at 2o since it is not valid
there, If however R > X, , as it seems to be, what is the series
describing in the interval ):Ao)'2> , where it still converges?
First of all, it is possible for dEF to be 0 at Ay : only the

N
high index coefficients are determined by the branch point singularity;
there certainly must exist another term in the expression for EG) =
AF(X"" JXAﬂ* ’Ql) U*BQ‘) . (This is so because we know asymptotically
E — — 2% ). This second term makes it possible for Oyé to
vanish at , even though the first term does mnot. (:In'zt;le"S't'i’l'li_nger
analysis of the variation perturbation energies for the true
He problem it was the presence of just such a term which made o%&;i ¢ 0
a -t A = 1,1184), If in fact K is > Ao we may examine
the curve in the vicinity of Mo by using the series itself, both

for the function and its derivative, since for |xI< ® the series

converges uniformly and absolutely. When this is done it is indeed

¥ 20 . ¢
found that E (M) = oZA""t

has a ma}_{imum hear 2o at >:k‘ = 2.65171
and beyond that point decreases; i.e. fO‘l:; 2> kox) E'(s) <o . The
true eigenvalue E( A ) is however everywhere increasing. This

means that for K> > > Ao‘ﬁ, the series, though it is convergent;is
converging to a non-physical result. It further implies that the
behavior of E( M ) is the region of Ap is as described in

Section II. E_(%) cannot cross into the continuum; for if it did
the series would describe such a crossing and it does not do so; it

. Cretid Y %
instead converges to a non-physical decreasing function for A > X, .
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Simpler examples of this sort of beheaviocr for a functicn and
its perturbation series exist. Consider s hydrogen atom perturbed by

an additional coulombic term of strength ‘%% ; the ground state energy

2% ) b
is "(Z‘j_Q y for A>=1 . For AZ I the bound state
2.
disappears. However the perturbation series ~j£} ->~-1  converges
2. 2.

for all values of A , positive and negative as well. In the regionm

N4 -] , the series converges to a non-physical increasing function.

VI. Conclusions

We have examined the solution of the delta-function model for Hew
like ions with interactions = AJ‘(}:’?) , A= ",2_’ . The exact
solution was obtained by solving numerically a l-dimensional Fredholm
integral equation of the second kind. The bound state disappears
at A = 2.66736 and does mot cross into the continuum. This is to
be contrasted with the real He problem where the bound state
disappears at a much smaller value of \ = 1,1184 and does appear to
cross over into the continuum. The perturbation series for the ground
state was developed through 20th order and the coefficients fit to a
branch point in the complex plane at approximately R=2.9, cos¢ =,;5 and
exponent 1.1. The perturbation converges to a non-physical result
in the range R ) 2.66736.

It also seems likely that the general method of solution could
be extended to many one dimensional particles interacting through

é? -function potentials.
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Appendix I
The arguments of Section III depend upon the square integrability
of the kernel of equation (5). The first term is obviously square

integrable. The second term is as well:

e
+hen

<o Gor = (K (hyR') K CRTRY) ¢ b

f . \ 2 l_lbll
wi kl(h)hqz, :P~ N aund ¢Cb) — iJfl So
£ (k') 4p 2 k' A

T’hus MS{h? the Schwavrtz ‘héjuah+?)
W, e, e T2 LSk o k) gan) )db'] [Sk(k"}e)ﬁlk)ﬂa]

< Q(kcw mn—ﬂt] [fk(b"h)ﬁ"dk)

with C  sowe comstamt < L.

The first term is 'a function of k', the second of k.. We  now
-
9

maximize the norm of K

Ck, o) dedb’s ¢* K ok Ve idh d : (i, () Vagtiod e 2

V2 OV Lhdh’
But § K, O k) Vzpish™dh'd b = &% )

270 coSB—Sin _"}/
?%ﬂaﬁiLiiiLi? ol /7 <o,
o0 (P )T RNt

And rhus Nk, Il < 00 a4y Ad>o, po,



A
0.00000
0.10000
0.20000
0.30000
0.40000
0.50000
0.60000
0.70000
0.80000
0.90000
1.00000
1.10000
1.20000

1.30000

1.40000

1.50000
1.60000
1.70000
1.80000

1.90000

Table I. E ( A) Computed from Equation (53) and

First 20 Terms of Perturbation Series

25"
2.,00000
1.90323
1.81281
1,72854
1.65025
1.57773
1.51078
1,44920
1,39276
1.34126
1.29445
1.25212
1.21403
1.17995
1.14964
1.12287
1.09942
1.07905
1.06154

1.04668

2° 7 ¢
“2( g X F
L =5
2.000060
1.90323
1.81279
1.72852
1.65022
1.57769
1.51075
1.44916
1.39273
1.34122
1.29442
1.25209
1.21401
1.17993
1.14962
1.12286
1.09941
1.07904
1.06154

1.04668

’)



Table I. (continued)

2.00000 1.03425 1.03426
2.10000 1.02408 1.02408
2.20000 1.01595 1.01596
2.30000 1.00968 1.00971
2.40000 1.00508 1.00518
2.50000 1.00207 1.00222
2.60000 1.00046 1.00075
2.65171 1.00056
2.66736 1.00000** 1.00058
2.70000 1.00073
2.80000 1.00223
2.90000 1.00552
3.00000 1.01121

+ calculated from equation (5) with 10 quadrature points

*
maximum of series in viecinity of Mg

**A
[#]



Table 1I. Determinant of Numerical Approximation
of Equation (9) with ?‘.—:fﬁ; of Section III

as a Function of A

)\ Determinant
0.0 12,299
2 10.475
N 8.9458
.6 7.6426
.8 6.5170
1.0 5.5344
1.2 4.6694
1.4 3.9036
1.6 3.2237
1.8 2,6222
2.0 2.0988
2.2 1.6722
2.4 1.4408
2.6 2.7531
2.7 =4,6611
2.8 -1.2062
3.0 =.87210
3.5 -1.4361
4.0 -2.0874
4.5 ~2.6782
5.0 =3.2034
7.5 =5.1088

10.0 -6,3038
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11

12

13
14

15

16

e

Table IV. Calculated Location cf Singularity From

Perturbation Series

R
2.48709

2.32952
3.05225
3.26928
3.02570
2.91419
3.01022
2.92230
2.92744
2.71314
2.87769
2.92077

2.43990
3.58377

2.85221
2.91163

2.27117
3.44697

2.83658

index of first equation used to get R, x, ©O.

néither of the two solutions listed seems to fit the pattern of the

X

=,304675

.331994

-.455821

=.533929

.508510

503415

]

.514613

.507873

.508036

.490979

.502320

H

.503401

i

.468808
.516634

.497089

1

498344

]

454410
.506628

g

.492697

&

e
1.00506

1.09351
1.04563
0.896274
1.05530
1.18401
1.02348
1.16779
115695
1.71100
1.29332
1.16053

Jok
2,79992

~1.56745
1.42019
1.17797

e
3.88184
-1.58211

1.53892

other results. This may be dhe tc increasing inaccuracy in the

perturbation energies.
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