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ABSTRACT

The time independent Schrodinger equation expressed in parabolic
coordinates for a hydrogen atom in an electric field was numerically
integrated for the state n=5, nl=3, n2=0, and m=1 to obtain the resonance
energy Er and the rate of ionization ft@or field intensities ranging
from 8x105 to llxlO5 volts/em. It is found that near the resonance
energy, r—l varies quadratically with (E—Er)2 in accordance with the
well known Weisskopf-Wigner treatment of metastable states. When E is
nearly equal to Er’ the wave function has a node at the outer turning
point - no explanation is offered. At the very high field intensities
considered, there was considerable difference between Er and the energy

calculated by Rayleigh-Schrodinger perturbation theory.
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The spontaneous ionization of a hydrogen atom in an electric field
is an old problem, but it still remains interesting. The Schrodinger
equation separates in parabolic coordinates and the separated one dimen-
sional equations can be integrated numerically. The flux I0 corresponding
to the outward component of the wave function and NO, the number of
systems inside of the outer turning point, can then be calculated for
various values of the energy, E. The lifetime of the hydrogen atom is
then taken to be T(E) = NO(E)/IO(E). The resonance energy, Er’ is then
the value of E for which T(E) has a maximum value.

We find that near the resonance energy, the rate of ionization
varies quadratically with (E—Er) in accordance with the Weisskopf-
Wigner treatment of metastable energy states. We were surprised to find
that the wave function has a node at the outer turning point when the
energy is almost equal to Er° At the very high field intensities where
the lifetimes are less than 10—9 sec, there is a considerable difference
between the energy calculated by Rayleigh-Schrodinger perturbation theory
and Er' In a subsequent paper, we will make accurate calculations for
a large number of states of both the H and the D atomic species. We
also will consider the related problem of the scattering and capture
of an electron by a proton.

The potential energy of a hydrogen-like atom or ion of nuclear
charge Z placed in a uniform electric field (in the z-direction) of
strength F is V = -~ Z r—l + F z . This potential has a saddle point
at z_ = - (Z/F)l/2 ) X = 0= Y, - The value of the potential at the

1
saddle point is VO= - 2(ZF)/2 . Thus, on the basis of classical mechanics,



we might expect that the hydrogen atom would spontaneously ionize if
E , the energy of the atom, were greater than VO ; or, equivalently,
the atom would ionize if the electric field strength is greater than
Fo = Ez/(AZ). If we approximate E by the energy of the atomic state

0 . _ zzuz/(Zn?) where n is

in the absence of the external field, E
the principal quantum number and | 1is the effective mass of the atom,
then the classical ionizing field FO becomes F; = ZBUZ/(16n4). Be-
cause of quantum mechanical leakage through the potential barrier,
some spontaneous ionization can occur even when the external field is
very weak and an appreciable rate of ionization might occur when the
field strength is considerably less than Fo' On the other hand,
the quantum mechanical problem is separable in parabolic coordinates
and only a fraction of the energy of the atom is involved with the
motion across the potential barrier. This argument indicates that
the f£ield corresponding to appreciable ionization might be larger
than Fé . There is also the possibility (which we do not consider
in the present paper) that the rate of spontaneous ionization may
vary with pressure when z becomes comparable with the mean distance
between the hydrogen atoms in the gas.l

There may be some good experimental data, but the authors are only
familiar with a few rather old references which do not provide accurate
information regarding the rate of spontaneous ionization as a function

of field strength for each of the quantum states. From studies of field



emission2’3, hydrogen gas is observed to be highly ionized at field
strengths ranging from 1.08 F; forn=1to 2.2 Fé for n = 7. On the
other hand, the Stark Effect spectral lines of atomic hydrogen cease
to exist when the field strength is considerably smaller than the Fé
corresponding to the emitting state.4 As Bethe and Salpeter explain,
such spectral lines cease to exist when the gate of spontaneous ioni-
zation of the emitting state becomes greater than the rate of its
radiative transitions (usually of the order of lO8 per second).

Bethe and Salpeter4 have reviewed the early theoretical work on
this problem. Already in 1926, Schrodinger5 and Epstein6 used pertur-
bation theory and Wentzel7 used the WKB approximation to estimate the
energy shift of a hydrogen atom in an electric field. In 1930, Lanczos8
used the WKB approximation to calculate the rate of spontaneous ioniza-
tion. There have been many other calculations since that time. Alex-
ander9 has carried out the most rigorous treatment for the mean-lifetime
of the ground state and his method could be extended to higher quantum
states of the hydrogen atom. In the present paper, we determine the
rate of ionization in a simpler and more direct fashion by numerically
integrating the Schrodinger equation. In principle, our procedure has
the advantage that one can determine the rate of ionization (for a fixed
external field) as a function of energy and obtain the deviations from
the familiar Weisskopf-Wigner quadratic relationship as Er - E becomes
large., Here Er is the resonance energy which plays the role of the

energy level of the pseudo-stationary atomic state.



In the presence of the electric field, all of the discrete atomic
energy levels become narrow bands of dense continuum which become wider
and more diffuse as the electric field becomes more intense. A resonance
energy Er is the centroid of a band. Kato has shownlO that the Rayleigh-
Schrodinger perturbation series for the Stark Effect energy provides
an asymptotic approximation to E_. The WKB formulation (including
higher order terms in powers of h2 and corrected for the 0O to « range
of the parabolic coordinates, but ignoring the region of space where the
electron is free) provides another type of asymptotic approximation to
Er‘ Beckenstein and Krieger3 have found that such a WKB treatment
including all of the integrals of O(h4) agrees exactly with the Rayleigh-
Schrodinger perturbation energies through terms of OCFA). They also
point out that for the ground state of hydrogen, Mendelsohn's11 calcu~
lation of the Rayleigh-Schrodinger energy through terms of O(Flo) agrees
within one percent with Alexander's9 accurate calculation of Er up to
field strengths comparable with Fo' From these results we conclude
that the Stark Effect energy shift is almost unaffected by the part of
the potential energy beyond the outer turning point where the electron
is free,

In order to calculate the rate of spontaneous ionization of a par-
ticular quantum state in the presence of an electric field of specified
strength, it is necessary to solve the Schrodinger equation corresponding
to a number of wvalues of the energy lying close to Ere

The Schrodinger equation, (H-E)Y = 0, for the hydrogen-like atom

in the uniform electric field (in the z-direction) is separable in the



parabolic coordinates ¢ =1r + 2z, N =1 - z, and ¢ into the equatj‘_ons4

,ﬁz dz@nl,m E
T T o * Cv?;m_l?@n m 0 (1
2u dg 1°
and
2
d™x
%2 DosM o .F:) _
- - FIX = 0 (2)
T n = %%, ,m
u an 2
where
22 %
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V= - 2 S (4)
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Here Z:L is the separation constant; m 1s the abselute value of the

Al

magnetic quantum number; and n, and n, are the paiﬁ'abolic quantum num-

bers. The principle quantum number of the state is n = ny + n, +m+ 1,

The complete unnormalized wave function for the atom is

-1/2

= T, L@, (et 6 (5)

nl,nz,j-_ m

1t is convenient to normalize <I>n m(z;) so that
15

Fe¢ e _dgit = 1 (6)
(o]

n,sm 1n,,m
1’ 1’



Figure 1 shows a schematic drawing of V. and Vn for different

4
values of m , As far as the rate of spontaneous ionization is concerned,
the behaviour near the origin is relatively unimportant. The classical
turning points correspond to values of n for which Vn = E/4. There

is always an outer turning point L for a very large value of n and

an index turning point Nie for an intermediate value of n . In addi-

tion, for m > 1 , there is a turning point Noe for a very small value

of n . The number of systems which lie within the outer turning point
is
2m oo n *
No=% Lao sag Sfa e v an 7
0 0 0

The flux of systems passing through a surface of constant n is

I=J 4° dAn (8)
8
Here j is the current density
i % %
i= %%)[W VY -¥ ¥V VY] (9
and Qén = p%nl/z(g + n)l/z dCd¢]a . The n component of V is
2n1/2(C + n)_l/z'gé . Thus,
it
o 2m 5% % ov
I= o £ dg £ dé n[¥ & k4 = 1 (10)
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Figure 1. Schematic Drawings of the Potential Epergy Functions VC and

Vn for Different Values of m , the absolute value of the

; e
magnetic guantum number.



Or making use of Eqs. (5) and (6)‘9

] (11)



I. THE SCHRODINGER EQUATION FOR ¢

Equation (1) in the variable ¢ behaves like & one~dimensional
Schrodinger equation for a system with pound states. At L = 0 and
L = , the value of @nl,m is zero. Between { = D:aﬁd L =%, the
@nl,m has ny nodes. Since values of E and F are assigned, Zl serves
as the eigenvalue. There are a numbey of'wayg in which this equatiopn

can be solved:

1) From perturbation theory, through the third order of the field

strength

N
]

L= (e/Winy + %(mﬂ)] + (Flbe 2)[6nl(qlrhnﬂ) ¥ (1) (mt2) ]

(F u/32¢ )[2n -l»m+1][8m +34m(2n +1) + 4(17:\34-17:*) ]

4 a2 acg]
} + 300003 + 3168n] + 1668n, + 356

+ Asoqni + 3168n, + 834]

+ @u2/66€® T 1500n

+ m[3000ni

+ m2[1992n% + 1992n

1 . 692]

1

+u’[492n) + 246] + 32"

(12)

Here €= (—2uE)l/ 2, Basul2 calculated the enérgy through the fourth

order. However, he expanded the seculér equation apd therefore he
never calculated Zl. Presumably Doi, Ishida and Hiyama,13 who calcu~
lated the energy through the thivd order, obtained the third order

term of Zl but we have not been able to obtain a eopy of their paper,



However, Bethe and Salpeter4 only give Zl through the second order.

2) Probébly the best method of obtaining Zl.tp”high precision is

q14,15

the power-series boundary-cendition method which’Alexapderg adapted

to the solution of this problem. Alexander assuymed that Qﬁ, n 80 be
1’

- %
expressed in terms of a power series . Then

® - c(m.+l)/2

n,m exv(-~2uc/2-n)[ao + a, g+ a2§2'+>.w,~] (13)

T T 7 T

¥ Unfortynately, Alexander9 omitted the factor gm/z fvum'hié power
series. Since this factor is required in order to satisfy the indiciél
equations, his reecursion relation Eq. (12) is wrong exggpt‘for cases
where m = 0. This does not affect the remainder 6EIAI#$amder’s»papen
since numerical results are only given'ﬁor the ground suatq‘bf hydrogen,

The correct recursion relations are given by our Egs, (8) - (10).

7 ™ Py ———r—y 3 e -

Substituting this power series into Eq. (10) leads to the four-term

recursion relations,

al/ao = (Zu/2n) - Zlu(m+l)-l (14)
2(m+2) (ay/8,) = [Ge+3) (2u/20) - Zyul(a,/a) - [Zw/20)" + 5 E]  @15)
k() (2 /a ) = [ @rk2k-1) (21/20)-2 1) ay_y/a )

- (/2 + 5 B Gay fa) + (FulbCay gfa)  (16)

For large values of [, the value of @n 0 approaches zero, However,
1’

it is found that if the correct value of Z; lies/betwﬁep two trial
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values, for one trial value the series diverges so as to make @n -
. l’

approach + @ es L becomes large; for the other trial value @ o
- l’

¢approaches - © , Alexander. proves thlS by showing that only the first

.

)few ak s alternate in s1gn 50 that beyond a crltlcal value of k all

‘ of the ak s are elther p031t1ve or negative. Furthermore, beyond a
critical value of k, the absolute value of ak is greaﬁer than
bk = (Zu/zn)k/k! where the bk-are the coefficients in the power serigs
expansion of exp(ZUg/2n). Thus, the power-series boundary-condition
technique can be used to obtain Zl,to a high degree of pre¢ision.
;Eq¢ (12) provides an excellent ipitial};rial value of zl.

3) The'WKB procedure isyt@e oldest methodwfo; determining Zlf
It was first ueeq”by Wenpzel7; later by Rice and Goodl6 and Bailey,

. Hiskes, and Riviere;17”ané.recenyly by Bekenstein and KriegerB. Eq. (1)
is a "two—turning—p01nt" Schrodlnger equatlon 51m11ar to the equation
for the vibrational motion of a diatomic molecule. Before applying
the quantization rules, Bekénstein and Krieger made the Langer traps-—
formation frem I to x =“loge(§) so that the range of the independent
variable becomes - ® < x < @ , They also included Dunham's correction

&.

terms so as to make @ accurate through terms in“h4 The expressions
P npo®

for Zl whlch they ‘obtained (but unfortunately did not publish) are"

accurate through the fourth powér in the field strength, or one order

better than the best current results from perturbation theory [Eq. (12)],*
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* Treating both Eq. (1) and Eq. (2) by this sort of corrected WKB
procedure, Bekenstein and Krieger3 obtained expressions for the weak
field limit of the energy levels which agree through terms of the

orde: of F4 with the perturbation calculations. The WKB treatment

is pérticularly accurate when applied to perturbations of either hydrogen
atoms or simple harmonic oscillators, since the formulation without

the Dupham corrections gives the exact energy of the unperturbed

system,

From perturbation theory, through the first order of the field

strength,

s () = o9 4 Eha) oD 4, (17)

n;,m ny 5 n,,m
where € = (—ZuE)l/z. Letting s =e and
m k+m
ey == S (e (18)
ds ds
then
n, ! 1/2
@éo)m(C) = [ —"—l—“‘B ] (m+l)/2 L (s) exp(-s/2)
1° (nlﬁm)! l

(19



and

1

@r(ll,m(c) = —%[nfl) (n,+2) (ny+mtl) (n1+m+2)]l/2@(0) )

nl+2,m

1/2®(0)

nI+1,m(§)

+ 2 (2n1+fn+2) [ (o +1) (n Hmtl) ]
(20)
- 2(2n 4m) [, (n +) ]1/2¢§ii L (®

+ 11t -Dny (aptmed) (nptm) 12 @ﬁi{z’mcc>

Then since

- mtl _m m
e s Lkﬁmﬂs) L2+m(s) ds

o~ 8

]

(2t (k) 1P, L=k

- ) Ly 2D T

P
i
o
T+
=

(21)

o (rbk-1) Tk 12T (k1) 17T, R

]
T
|

0 for all other values of & ,

it follows that through the first order of the field strength,

% -1
@nl,m(C)¢nl,m(§)dC = € [2nl+m+l] (22)

o 8

- e“*[enlcnl+m+1> + (L) (kD) ]
+ .

Eq. (22) is useful in the evaluation of NO from Eq. (7).

12



ITI. THE SCHRODINGER EQUATION FOR n

The Schrodinger equation in the n variable, Eq. (2), has no
discrete energy states since V approaches — © as - Fn/8 when n

becomes large. At some intermediate wvalue Ny the effective potential

has a maximum value (Vn)o. If m = 1, then n, = 2[(Z—Zl)/F]l/2,
(Vn)0 = —-%[(Z—zl)F]l/z, and the classical ionizing field [where
(Vn)o = E/4] is Fg = Ez/[4(z-zl)]. If m dis not equal to unity, in

order to determine n, it is necessary to solve a cubic equation. Note
that because of the partitioning of the energy into the Z , n , and
@ degrees of freedom, Fg is greater than F .

Alexander9 expressed Xy m(n) as a power series having the same
3

functional form as Eq.(13). The coefficients a, are then given by

Eqs. (14)-(16) which are modified so that (Z—Zl) replaces Zl and -F

replaces F. TFor weak fields, Alexander found a significantly large
range ko < k< kl in which all of the ak's have the same sign and
where |akl >b,. If k, were infinite, then the series would diverge
to either + « or. - « depending upon the sign of the ak's in the range

ko <k <k The weaker the field, the larger is kl. Thus, for weak

1

fields the sign of the ak's in this region provides upper and lower

bounds to the "energy" of the atom. This criterion is no longer ap-—
plicable to strong fields where the range ko <k < kl becomes small
and indistinguishable. For values of k > kl, the signs of the a

oscillate corresponding te the oscillations of the wave function values

of n beyond the outer turning point, netn

13



Beyond the outer turning point, it is convenient to express

X (n) in the WKB-type functional form
n,,m

/2

X m(n) = cw'l cos[i% S Wan + al (23)

)
Here o is the phase shift (a function of the energy), C is the norm-
alization constant, and W is a function of n . Substituting the

Xn n of Eq. (23) into the Schrodinger equation (2) and letting
2’

= E _
G—2u[4 Vn:l (24)
it follows that
2,21 d%W 3, 4w |2
W+*ﬁ[-2—ﬁ-;]—2-—zﬁ2('7]‘)] = G (25)

The WKB series corresponds to expanding W in powers of i 4 ,

W= WO # W2 + 4 W4 esavs (26)
where
W o= g2 @27
(o]
2
L4532 s, L 32
W)= 78 © an! T %8 © 2 (28)
g ood E“;'5/2 e 196 '? ae d%¢, 11672 46,3,
4= d a2 o3 1 @ g 56 (@
o 2 s | wct? o gc (29)
28 @ 3 2068~ ‘an

14
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Here Wz, W «se are the Dunham18 correction terms to the usual WKB

49

treatment (in Dunham's notation our Wn is his yn)o Egqs. (23) and (26)

provide an asymptotic approximation to Xo .m which converges rapidly
29
for values of n slightly larger than not’

For strong fields, Alexander9 used the power series solution for

X for values of n less than some point n., (where n, is slightly
Ny, 1 1

greater than not) and the WKB-type solution for n greater than Ny-
The values of C and o are chosen by requiring that at Ny the functions
X,

for W after the first Dunham correction term, W2 . Other research
8,16,17

and dxn m/dn are continuous. Alexander truncated the series
2’

*
workers who have used the WKB technique for n greater than

n have considered W =W .
ot o

Bechenstein and,Krieger3 used the WKB technique for n less than

not with W truncated after W4 .

however, they made the Langer transformation from n to y = 1oge(n).

Before applying the WKB treatment,

This improved the accuracy of their quantization condition for the

energy.
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III. DIRECT INTIEGRATION OF THE SCHRODINGER EQUATION FOR n

The Schrodinger equation for n can alse be directly integrated.

At n = 0, the value of Xn o must be zero. For small values of n ,
25
the terms - E/4 and - Fn/8 in Eq.(2) can be neglected and ¥

1/2

approaches n times an m-th order Bessel function of argument

n, 0

Z[u(l—zl)n]l/2 which can be expanded in the form

1/2
an’m;gn [u(l—zl.)n] ey Sy e L

+ ... ] (30)

Numerov's method19 can then be used to integrate Eq. (2) fromn =0

to large values of n and obtain Xn m(n) for given values of E and

29
F. If we take the interval size of n to be d , then the Numerov

difference equation corresponding to Eq. (2) is

2 - (5a%/3)] % - v, ()]

X (kd)

X, ’m((k+l>d) = n,,m

2 L+ @6 F _ v, (kd) ]

- an,m ((k-1)d) (31)

If an,m(kd) and an,m<(k—l>d> were accurate, the error in Xn2’m((k+l)d)
might be expected to be of the order of (d6/240)d6xn m/dn6. The two
2,
initial values, ¥ (d) and ¥ (2d), are taken from Eq. (30). How-
MM N, M
ever, since Eq. (30) is only valid for very small values of 1 (of the

order of 10~/

ao), the initial value of d must be taken to be extremely
small. As n becomes larger, the value of d can be rapidly increased

without any appreciable loss of accuracy.
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Calculations were made for the staten =5, m = 1, n, = 3, and

1
n, = 0 (which is a hybridized mixture of 5p, 5d, 5f£, and 5g spherical
wave functions). A rough estimate of the resonance energy for various
values of the field strength was obtained from perturbation theory. In
the Numerov integration of the n equation, d was varied from 10—7aO
near N = 0 to 0.01 a, at nota Beyond not’ the value of d was taken
to lie between 1 a, and 3 ag- Simpson's Rulezo (with an error of
around (d5/180)d6xn ’m/dn6 per interval) was then used together with
Eq. (7) to determini NO .

In comparing our numerically determined Xo m with the functional
29
form given by Eq. (23), it is convenient to define CQ as the £ -th
. . . 1/4 1/4
maximum (beyond the outer turning point) of (UF/4) Xy @ - In
2’

the limit as £ becomes large, W2 approaches G which in turn approaches
(UF/4)n  and CQ approaches C . Thus, when £ = 30 we found that CR
had converged to within one percent of its final value. However, our
precedure for numerical integration was not sufficiently accurate to

enable us to obtain accurate values of the phase shift o . That is,

the values of O which we obtained did not vary smoothly with energy

in the vicinity of a resonance.
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IV. THE RATE OF SPONTANEOUS IONIZATION

Now let us consider the lifetime of a quasi-stationary state from

21,22

the Weisskopf~-Wigner standpoint. Beyond the outer turning point

we can express ¥ (n) as a linear combination of an outgoing wave
D, st
X and an incoming wave Xq2

>
~
3
~
il

A(E)X, + B(E)X, (32)

According to Eq. (23), if E is real, then

A(E) = % C exp(ia(E)) = B(E)* (33)

rof

and

-1/2

X, = W2 exp(A Wan) =" (34)

Since ansm is necessarily real for real values of E , it follows from
Eq. (11) that the net flux I is zero; or, the outward flux Io (cal-

culated with A(E)xo) is equal to minus the inward flux Ii (calculated

with B(E)Xi).

However, if & dis complex, then it is possible for A(E) to remain
finite while B(E) = 0 . Indeed, this situation occurs when the energy
is equal to Ec = Er - i T where Er 1s the resonance energy and [' is the
half-width of the energy wave packet. Thus, for E = Ec s, the wave
function contains only the outgoing component and represents a hydrogen

atom dissociating into a proton plus an electron. The time factor for

this wave function is exp(—i(Ec/ﬁ)t) = exp(-(PM)t) exp(—i(Erﬁﬁ)t).
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Thus in a time To = 4H/(2T), the absolute square of the wave function

has been reduced in value by a factor of exp(-l). In this sense, T,

is the lifetime of the hydrogen atom corresponding to the complex energy
E, . If there are No(Ec) hydrogen atoms (with their electron inside

of the outer turning point) and each one has a rate of ionization l/T09

then the outward flux Io(Ec) is given by
I (E,) = N (E)/T =2 IN (E)/A (35)

In the vicinity of the resonance energy, the phase shift changes
rapidly with the energy. It is convenient to express the phase shift
as the sum of a slowly varying component uO(E) which is analytic in
the complex energy, and a rapidly varying component ar(E) which is not

analytié. Thus;,
o(E) = ocO(E) + ocr(E) . (36)

It is easy to show from arguments with respect to the analyticity of
the wave function with respect to the energy that (except when the
resonance energy is degenerate) B(E) has a simple zeroz3 when E = Ec

Thus,

B(E) ='% (E - E_+1T) exp(- 1 o (8))C' (37)

Similarly, it must be possible to expand A(E) in a Taylor's series in
E - Ec for energies close to Ec . Thus, we can express A(E) in the

form

A(E) =-%[(a+ib) + (eHE)(E - B+ D] exp(d o_(B))C'  (38)



The constants a,b,c, and £ are uniquely determined by the requirement
®
that for real values of E, we must have A(E) = B(E) . With these

values for the constants, for complex (as well as real) energies,
AR) =2 (& - E_ - iT) exp(i o, (8))¢" (39)

Now for real energies, Eqs. (36) and (38) agree with Eq. (33) if

1

¢' = - C[(E - Er)z + %173 €40)

and

tan_l[I‘/(Er - E)] (41)

123
]

In passing through the entire rescnance region (going from energies

less than, to energies greater than Er), o increases by m . Also,

(do,_/aE)™ =TT 1 + { cEr-Em"} 2] (42)

When E = Ec , it follows from Eqs. (32), (34), and (39) that the

wave function is
. ¥ » —1/2 .
X = - 1 ['C' exp(ia_(E)) W exp( (i/4)/W dn) (43)
n,,m : o) »
Thus, according te Eq. (1ll), the corresponding flux is
1 &) =2 pPEehAt L4k)

However, in order for Egs. (35) and (44) to be consistent,

NE) =34 T @) (45)

20



21

Now let us return to real values of the energy close to Er' According

to Eqs. (34), (39), and (11), the flux corresponding to the outgoing

component of the wave function is
1 () =37 P21+ {(E-—Er)/?} %) (46)

Since there is no interference between Ié and the flux of the incoming

component of the wave function, the lifetime of the state is
T(E) = N_(8)/T_(E) (47)
If we adjust the normalization so that NO(E) = No(Ec)’ then
T ¢ - oy 2471
T /T, = I (E)/I (B = & [1+ ((E-E)/1)°] (48)
Note that T(Er) = ATO. Furthermore, since T, = h/2m),

4/T(E) = (I/2)[1 + {(EfE,,r.>/P }2] (49)
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V. NUMERICAL RESULTS

For the case n = 5, n, = 3, n, = 0, m = 1, we have numerically

calculated NO(E) (according to Eq. (7)) and Io =-% m uhlczp This gives

1/T(E) = IO(E)/NOCE). Fig. 2 shows a plot of 1/T(E) versus E for

a field strength of lO6 volts/cm (1.9448x10—4

a.u.). The minimum value
of 1/t = T/2 . We define Er as the energy at which this minimum
occurs. It appears from Fig. 2 that the parabola corresponding to

Eq. (48) is indeed an excellent approximation to 1/T(E) for values of

|E—Er| as large’as 3T.

Table I gives the values of E. , ', v, n,

PP not , and Zl which

we calculated for very strong electric fields ranging in intensity
from 8x10° to llxlO5 volts/cem.

The lifetime T is compared with the calculations of Bailey, Hiskes,
and Rivierel7 who used the method of Rice and Good16 which is essentially
a first-order WKB approximation to both the Z and n equations. However,
they made a number of corrections to the standard WKB treatment while
making a number of additional approximations such as omitting the

(mz—l) terms in V_ and Vn . Bekenstein and'Krieger3 point out that at

4
weak fields, the Rice and Good treatment only gives the energy to a
precision comparable to Rayleigh—Schrodingef perturbation through the
first order. Thus, the disagreement at F = llxlO5 volt/em is not sur-
prising.

Fig. 3 shows the variation of 1oglo(T) with F. When the field

strength is equal to Fg = ll°73x105 volts/em, the effective energy
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Figure 2. The rate of ionization 1/T versus E for the case of n=>5, n1=3, n,=0, and m=1 in a field of

106 volts/cm. Here E, = — 0.01502415 a.u- and T'-= 0.552x10-6 a.u. The solid line represents
the calculated values. The dotted-line corresponds to the Weisskopf-Wigner parabola as
_given by Eq. (48)..--.. . ' s




TABLE I. Numerical Results Calculated for a Hydrogen Atom in the State n=5, n,=3, n2=0, and m=1.

1
Here Epert(4) is the Rayleigh-Schrodinger perturbation energy calculated through the fourth power

in the field strength; 21(3) is the value of Z, calculated through the third power of F making use

1
of Er° Also, T(BHR) is the lifetime as calculated by Bailey, Hiskes, and Rivierel7; the + corresponds

to the error in reading their graphs. The T , Ny Noes and Z1 correspond to Er' The values in

%
parenthesis are given in atomic units.

F —Epert(4) —Er r T T(BHR) Ny Mot 21(3)
volts/cm cm_l cm_l cm_l sec sec A A
8.0x10° 3700.03  3624.395  .000152 6.97x100°  6+1x107°,  12.5 99  .826005
~4 219 o, O 9
(1.5560x10"%)  (.0168586) (.01651396) (6.92x10 10y (2.88x10°) (2.3+5x10°) (23.7) (188)
9.5¢10° _,  3587.69  3400.989  .0244 _  4.11x107"0 41x10710 133 75 834196
(1.8500x10"%)  (.0163467) (.01549605) (1.11x1077)  (1.70x107) (I.545x107) (25.2) (142)
10.0x10° _,  3552,81  3207.419 121 __  8.78xl0p " 11+lxl0T,0 13.7 68  .838000
(1.9448x10"%)  (.0161878) (.01502415) (5.52x1077)  (3.63x10%) (4.%5x10%) (25.9) (129)
10.5¢10° |, 3517.78 314435 6.67 . 1.65x10;'0 S5+lxl0Ty 143 60 .843645
(2.0420x107%)  (.0160282) (.0143267)  (3.04x107°)  (6.82x10°) (1.945x10%) (27.1) (113)
11.0x10° 3483.48  2820.2 419. 2.54x1077% 241x107 15,0 49 860743
—4 -3 N 5
(2.1393x10™%)  (.0158719) (.012850)  (1.91x1072)  (1.05x10°) (7.6+5x10°) (28.3) ( 93)

% . -
The atomic unit of field strength is e/ai = 5.142}{109 volt/cm, of energy is ez/ao = 219474.6 cm 1,

17

of time is 433/(me4) = 2.4189x10 ~' sec, and of distance is a = 0.52917 A[see Ref. (4), p. 2].

€T
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of the system is equal to the maximum value of Vn and from the stand-
|

point of classical mechanics the atom can spontaneously ionize. Thus,
as shown in the figure, the lifetime of an atom would be extremely
small if F were greater than Fg .

It is not surprising that at the very high field strengths of
more than twice F_ = 4.27x104 volts/cm or Fé = 5.14x105 volts/em. which
we consider, the agreement between the resonance energy and the energy
caleculated by the Rayleigh~Schrodinger perturbation series is fair

1) 4. (4)

to poor. In calculating Epert(A) = E(O) + F E( + oo + F

3
the zero through third order energies are given in Ref. (4). The

fourth order energy i33

NN n'® [ 5487n"+351820°~1134n” (n, -n,) 24180607 (n, -n,)
npalys® 1024y z20
- 3402n2m2—3093(n -n )4~549m4+5754(n -n )2
172 12
- 8622m°+16211 )
(50)
One of the most curious features of the numerical calculations
was the observation that the first node in X, m(n) is located at
2 3
the outer turning point when the energy is very nearly equal to the
resonant energy. This is shown by Figs. 4 and 5. For cases where n,

is different from zero we would expect that it would be the (n2+l)—st

node which would ocecur at not when E = Er
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FIGURE CAPTIONS

Figure 1. Schematic Drawings of the Potential Energy Functions VC and

Vn for Different Values of m , the absolute value of the
magnetic quantum number.
Figure 2. The rate of ionization 1/T versus E for the case n=5,
=0, and m=1 in a field of lO6 volts/cm. Here

2
- 0.01502415 a.u. and T = 0.552::10—-6 a.u. The solid

n.=3, n

1
E
r

line represents the calculated values. The dotted line cor-
responds to the Weisskopf-Wigner parabola as given by
Eq. (48).

Figure.3. The variation of 1og10(T) with F . Note that when the field
strength is equal to Fg = Ei/[4(Z—Zl)] and the atom can
ionize classically, the lifetime is very small.

Figure 4. The Wave Function ¥ m(n) for the case n=5, n

nys =3, n2=0, and

1
m=l in a field of 10° volts/em. In (a), where E = = .015037 a,u.

is iess than Er , the first node [point b] occurs when

n>n In (b), where E = - .015010 a.u. is greater than

ot

Er’ the first node [point b] occurs when n < Noee

Figure 5. The Position n = b of the First Node in Xn m(n) as a function
29

of E for the case n = 5, ny = 3, n, = O, and m = 1 in a

field of 106 volts/cm. Note that b = not when E = Er“



