
CoMmJTER ENHANCEMENT

through

INTERPRETIYE TECHNIQUES

Semi-Annual Status Report

for bhe

National Aeronautics and Space Administration
Goddard Space Flight Center

under

Grant NGR 33 - 022 - 125

Garth H. Foster
Principal Investigator

https://ntrs.nasa.gov/search.jsp?R=19710013959 2020-03-11T21:08:10+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/85235362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I. Introduction

This study has as i t s thesis the improvement i n the usage of the

d i g i t a l computer through the use of the technique of interpretat ion

rather than the compilation of higher ordered languages.

Nmadays more and more computer programs i n the sc i en t i f i c and

commercial sectors are being wri t ten i n higher l eve l languages such as

FOR=, AIGOL, PL/I, and COBOL. Such programs are compiled o r trans-

la ted t o the machine language of a specif ic machine and run i n a pro-

duction environment, generally tha t of multiprogramming.

The rationale of t h i s study i s that there are three areas where

interpret ive techniques could enhance the performance of computers.

The f i rs t would be i n those instances where in te rpre te rs could bes t

compilers i n execution speeds.

implies the r e s t r i c t ion of the problems to areas i n which both tech-

niques could be appl&d and of course the use of higher leve l languages

i n coding the problems. We shall discuss t h i s fur ther shortly.

Investigating such a poss ib i l i t y

The second way i n which u t i l i t y could be provided by in te rpre te rs

i s tha t of trading machine cycles i n execution speed f o r space i n the

run t i m e code stream. The th i rd way i n which interpretat ion techniques

would be of value would obtain i f the implementation of an in te rpre te r

of a given language provides more effect ive use of programmer t i m e i n

the development of software and fo r problems which are t o be run once

or only a very f e w number of times.

t ha t a given language would have two (and perhaps more) implementa-

I n t h i s context it i s envisaged

tions;

would be done and the other would be a compiler i n which the production

one would be an in te rpre te r on which the program development

work would be done. If the problem is t o be run few enough times, then . .

the in te rpre te r only would be used. Here the number referred t o as a

f e w depends upon the size and complexity of a program, the execution

and compile time i n addition t o the interpreted m time, the cost of

the program development, and the nwber of compilations used before the

program may be run usefully for the first t i m e .

view re la t ive t o interpretat ion given above sketch a range of capabili-

The three points of

t i e s ranging from d i r ec t superior i ty t o sometimes usefulness.

turn at tent ion t o de ta i l ing investigations i n these areas.

We now

11. E’undamental Choices

The equipment and machine configuration on which t h i s study i s

being conducted i s an IB4 System 360 Model 50 - I (512 K bytes) with

2 2314 disk uni ts .

Operating System (SUOS) a modification of MVT I1 release 18.6 using a

The operating system is the Syracuse University

HASP-like spooling program t o provide spooling and allocation of ports

t o interact ive problem processors.

The interpret ive system considered f o r t h i s study i s ~ ~ ~ j . 3 6 0

(A grogramming Language f o r the System 360). More than ju s t being the

time sharing available a t t h i s ins t i tu t ion , APL was chosen f o r several

specific reasons. F i r s t , by the nature of an in te rpre te r the input

source s t r ing i s interpreted requiring syntax analysis and run time

elaboration of every statement every time it i s encountered. The im-

p l ica t ion i s tha t only i f the language i s imbued w i t h powerful language

primitives and compact constructs,can there be a hope of absorbing the

overhead of interpretat ion. It i s our judgment that APL comes closer

t o t h i s objective f o r a reasonable var ie ty of problems than other

avai lab l e computer language s .

3

Next, the more condensed the source s t r ing the interpreted lan-

guage has, the higher the r a t i o of the s ize of the run time object pro-

gram of compiled code t o the length of the source t o be interpreted.

This leads t o be t t e r space trade of fs for computer cycles lo s t i n in-

terpretation. The te rse nature of "good" APL code makes it a natural

choice i n t h i s context.

Finally, the spectrum of language processor implementation ranging

from in te rpre te rs t o compilers has blurred with increased importance

placed on binding variables c loser t o execution, tracing and debugging

aids, and incremental compilation. Thus, we do not exclude the possi-

b i l i t y of "smart" interpreters which enlarge the segment of the input code

s t r ing skannedin determinlng the env5ronment f o r interpretat ion.

would not be compilation since no code would be saved and the process

i s so data and code sequence dependent t ha t it can not be considered

compilation.

the power of such an approach, The advent of large scale micropro-

grammed computers, par t icu lar ly those with writable control stores,

leads t o the poss ib i l i t y executing a higher l eve l language as the

This

I n t h i s respect P.S. Abrams [11 has already established

native language of the computer ra ther than machine language. The

s t ructure of APL suggests tha t implementation of it i n such a computer

as a native lan&age i s worthy of fur ther exploration.

I n suggesting the pr incipal compiler language we have chosen

F0RTRA.N IV which for IB.4 computers the choice has been FOR'IRAX IV -3

(Opt 2). FORTRAN i s probably the most widely used language i n t h t s

country and the period of development of compilers fo r tha t language

suggests a wealth of experience from which improvements have come.

Other versions of FORTRAN including those kept in-core f o r load and go

4

'CQMPIIE LOAD and GO

VARLABLF: wrm WITHOUT

I*4 746 611
R*4 769 608
R*8 741 591

TYPE PRINTING PRINTING

operation w i l l be referred to, PL/I may be considered although such

GO CPU time

WITH wrmouT
PRIN'ITNG PRINTING

20 15
21 22*

21 17

ref lect ion has not been extensive a t t h i s t i m e .

111. Relative Raws Speed

I n i t i a l e f for t s were t o examine some of the powerful APL program-

ming constructs from which more complicated programming expressions

could be bu i l t . If the interpret ive system can not compete on t h i s

level, then i t w i l l not be able t o compete on a more macroscopic level,

Reduction, inner and outer products are three of the more obvious oper-

ations t o investigate ,

The reduction expression x/156 for example generates the in te -

gers 1 through 56 (if the ORIGIN of indexing i s 1) and the pa i r of

symbols x/ causes a l l of the number t o be multiplied together.

Clearly t h i s i s equivalent t o 56 f a c t o r i a l wri t ten i n ApL as r56

A s a side comment this i s the la rges t f a c t o r i a l which may be cal-

culated precisely i n the System 360.

To execute 56 fac tor ia l ' as x/t56

APL required an average of 3.9 6 0 t h ~ of a second of Cp'U time (but

not console time) t o execute.

required the following times (6 0 t h ~ of a second) to:

On the other hand FORTRAN IV H(OPT=2)

On the other hand, looking a t the summation of t h e ' f i r s t 7500

integers (coming close t o the l i m i t s placed upon us by the standard 35K

6 0 t h ~ of a second
FORTRAN
VARIABLE WITH WITHOUT
TYPE PRreTTING PRINTING

I*& 744 600
B*4 605 614*

byte

of a

6 0 t h ~ of a second

WITH WITHOUT
PRINTING PRINTING

1-7 16
48 48

workspace) which i n APL notation is: +/I7500 takes 165.6 6 0 t h ~

second on the average (over 10 trials).

The comparable figures i n FORTRAN are:

GO s tep only < I C W I I E LOAD and GO

I n the f i rs t instance APL appears t o be about 5 times f a s t e r than

the GO s tep f o r FORTRAN whereas i n the second case the GO s tep i n

FORTRAN i s anywhere from 3.5 t o 9.75 times as fast as APL.

Several observations are i n order.

1) I n APL i n both of the reduction cases c i ted a l l of the data i s

generated and temporarily stored and then the multiplications o r addi-

t ions are performed. The compiled code on the other hand calculates '

the product or sum as a par t of a DO loop, thus using less t ransient

core space than APL. This i s an inherent pr ice due t o the interact ive

nature of the system hnd protecting the workspace environment i n the

implementation of the in te rpre te r .

been passed APL does not back up.

I n other words once the code has

Where the data i s present i n the en-

vironment and not required t o be generated, the overhead of interpreta-

t i o n many be spread somewhat further. This i s true even when data has

t o be generated.

sions+/i2000 and +/2000pl, which sum the f irst 2000 integers and

For example consider t ha t two APL reduction expres-

2000 ones, have execution times which average 46.7 and 44.1 6 0 t h ~ of a

second, respectively. Clearly the cost of generating 2000 d i f fe ren t

integers i s not much higher than generating 2000 constant values of one.

Since the t ime f o r +/I1 averages 1.4 6 0 t h ~ of a second, thus we see

t h a t there i s a small amount of overhead but when we’sum the f i r s t 7500

integers ra ther than the f i rs t 2000 w e do roughly 3.75 times as many

operations at an expenditure of 3.6 as much time.

2) There are improvements i n both compile, load and go as well as

j u s t the go s tep i n almost a l l cases.when there i s no pr int ing required

i n the FORTRAN program formulation. Those cases i n which no improve-

ment i s seen i n the timings are marked w i t h an aster isk; these probably

follaw a similar pat tern but it has been masked by system timer inaccu-

racies. The reduction i n times are i n areas i n which FORTRAN has i t s

c loses t approach t o being interpretive, tha t i s i n I /O and i t s associ-

ated format control.

Thus compiled FQRTRAN programs can suffer some interpret ive degra-

The dation when a great deal of output using many formats i s required.

c loser tha t we seek t o having control a t run time the more wil l ing we

have t rad i t iona l ly been wil l ing t o give up execution speed.

3) The compile times for a fi:ced FORTRAN variable type are some-

what constant as one might expect and one might ask how should these

times be considered, re la t ive t o the GO step. We might charge the cm-

p i l e and l ink ed i t ing times off against a number of program runs and

ask where the break even point would be f o r

L(C!ompile, Load and Go - Go) + Go = APL
time time. time time

Ncr(compiie, Load and Go - Go) f APL - GO so

The posi t ive N would then be a figure of merit. I n the f irst case

' I

VARIABTB and GO
TYPE 6 0 t h ~ 6 0 t h ~

I

a posit ive N does not e x i s t and i n the second i l l u s t r a t i v e case N is 5 .

I n the previously mentioned side cases of +/f2000 and +/200Cpl

(having'APL times of 46.7 and 44.1 6 0 t h ~ of a second) we have compara-

and KI
6 0 t h ~ 6 0 t h ~

ble FORTRAN times (with pr int ing) of:

+/I2000 +/200opl

I*& 723 741 22 21 1
R*4
R*8

715
646

N - 26

26
22

761 25
734 2 1

31

4) It should be noted i n a l l cases c i t ed if REAL variables are

required there are some advantages i n using R*8 even when R*4 w i l l

suffice.

A number of preliminary steps i n examining the eff ic iencies of

inner and outer product evaluations i n APL compared with comparable

"mini"-programs wri t ten i n FORTRAN have been undertaken.

Typical of these i s the inner product represented by the execution of

the expressions

D + 3 3 P t 9

and then timing

D + . L D

I n APL t h i s timed t o 2.4 60ths of a second. I n FORTRAN 4 the com-

parable times are

FORTRPN
VARIABIE
TYPE

c w 1 m
LOAD and
GO (6 0 t h ~)

GO
only
(6 0 t h ~)

I*4
RJc4

684
854

1-9
1.9

8

hroce s so r

As semb le r
FORTRAX-IV G

WATFIV

PL/I (a
PL/I c

Once again 'there does not ex i s t an N

were run N times the compilation overhead could be absorbed.

such tha t i f the compiled version

Size i n bytes

26
120
140

510
550

The inner product does not have significance as Par as we know,

(DL. +D gives the shortest 2 leg t r i p through a distance graph), but

was chosen t o use sinrple functions e i the r readiLy available i n a c q u -

ter 's machine language or easily synthesized.

N. Core Savings a t R u n Time w i t h an Interpretive System.

For the sake of comparison we again consider a rather t r iv ia l pro-

gramming problem, t h a t i s : Write a generalized routine which for arbi-

trarily named parameters takes the value of R and adds 5 t o it and

assignes the value of the r eu l t to variable Z.

I n APL th i s would be written:

V Z b F R

[1] Z c5 + R

The t o t a l amount of space required i s 68 bytes, 40 of which i s
v

header overhead,
Disregarding the f a c t tha t the APL expression works independent of

whether the argument of F i s a scalar, vector, matrix or an array of

higher rank and the s ize of programs be quoted i s for scalar R only,

we have for similar programs written i n assembler (BAL), FORTRAN IV G,

WATFN (i n core extended FORTRAN), PL/I F, PL/C (an i n core FL/I subset)

9

The differences of: the coding s izes between assembler and the

FORTRAE3s may be presumed t o arise from t igh te r code and complete con-

trol i n function ca l l ing and handling of paraneters. The added s izes

of the use of PL/I processors r e su l t s i n pa r t from a difference i n

language philosophy and such considerations as default parameters.

Par t of those s ize differences however come from the f a c t tha t symbal

table maps and other conveniences for program tracing, debugging, and

maintenance are generated f o r the PL/I processors

are usually a f a c i l i t y found i n interpret ive systems and th i s should be

Such conveniences

kept' i n mind when e i t h e r trying t o w r i t e off the ex t ra s ize i n the com-

piler based system or when keeping i n mind the s ize of the in t e rp re t e r

generally residing i n core.

Even a t that, the run t i m e packages can be s ignif icant f o r ordina-

r y programs; hawever, fo r FORTRAN programs equivalent t o the APL ex-

pressions given earlier the run kime load modules are overbearing. For

example, the FORTRAN program for x/t56 has the following program and

load module sizes.

FORTRAN FORTRAN LOAD
VARIABIE PROGRAM MODULE
TYPE SIZE ' (BYTES 1 SIZE (BYTES)

I*4 320 20,696
R*4 304 20,680
R*8 3u 20,688

Load modules of sizes similar t o these hold f o r the other examples

including the program equivalent t o Z c5 + R.

While the surface has only been scratched i t appears tha t on the

microscopic l eve l APL has a good chance t o compete i n code space densi-

t y considerations.

Overall, if APL succeeds i n competition with a compiled language

10

it w i l l be pa r t ly because those of us i n computing ac t iv i ty have not

questioned suf'ficiently the overhead costs tha t present batch systems

have i n t h e i r operation.

The one program which we have been supplied by NASA which has been

coded both i n FORTRAN and APL and which may be taken t o be typical of

work required at Goddard Space Flight Center has been found t o be

exceptionally long and- inef f ic ien t i n i t s APL form; that i s t o be

rewrit ten while the FORTRAN program i s learned.

A paper, "The Use of APL t o Investigate Sequential Machines" 523

considered a number of programs which had already been developed by

other researchers t o study a number of aspects of logical and sequen-

t i a l machine theory. Even when modeling the orginal programs down t o

the d e t a i l of the I O formats and console interact ions the APL programs

were anywhere from 2.5 t o 6 times as dense on the source statement

l eve l than the BASIC and F O R T M programs. This i s of l i t t l e meaning

however, although it i s a source language comparison such as t h i s which

i s usually made. If even s l igh t incompatibil i t ies are allowed i n I O ,

then some ra t io s go as high as 42 t o 1. Further observations on a more

detailed l eve l w i l l be made about selective programs.

V. Other Considerations

A pa r t of our e f f o r t has been t o study some microprogrammed pro-

cessors t o examine the poss ib i l i t i e s of imbedding an APL executing

engine i n such a machine. This could e i the r be a standard APL imple-

mentation or one of the " intel l igent" var ie ty as described by Abrams.

The primary l i ne of investigation has been t o examine a processor

which i s under design and construction by Burroughs. Other than t o

11

report our thoughts i n these directions it i s yet too ear ly t o make a

more def in i te statement.

References

[I] P. S. Abrams, "An APL Machine", 7h.D. Dissertation, Stanford Uni-

versity, SLAC mPORT NO 3-14, Feb. 1970, AD 706 - 741.

[21 G. H. Foster, "Using APL t o Investigate Sequential Machines",

NEFBM-70 70 C 63 ltJERFN Technical Applications Sessions,

pp. 120-128.

