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ABSTRACT

6.

s

A flow model has been devised to study the turbulent recompression process associ-
ated with ' .a two=dimensional supersonic free shear layer. The flow field was di-
vided into two subregions along the dividing streamline. The external supersonic

	

--	 free stream guides and interacts with the upper viscous layer. A velocity profile
of third-degree polynomial was assumed for the upper viscous layer and the pres-

_^^______ ure_difference across this layer was estimated from the normal momentum relation-
~' 	 ship. The lower viscous layer consisted of a forward flow with linear velocity

profile and a back flow with a cosine profile. The difference in pressure across
this layer was also accounted for. Tt was also pointed out that this analysi s is

4

equally applicable for cases with and without the downstream bounding wall.' Con-
servation principles were subsequently applied to these regions and a system of
ordinary differential and algebraic equations was obtained. In conjunctioA with
the flow conditions prevailing at the end of the constant pressure jet mixing re-
Sion, the system of equations may be integrated and solved numerically. For a
given flow problem, the correct value of base pressure and the location along the
wake boundary where recompression starts were established through iterations until

 procedure ofthe conditions at the rear sta gnation point were satisfied. This

	

" 	 s	 P	 P
calculations fully illustrated the typical elliptic behavior of all separated flow
problems. Calculations for isoenergetic flow cases with thin initial boundary
layers have been carried out and the y results showed good agreement with the ex-

	

?,	 perimental data. It was also found from the results of calculations that the eddy
diffusivity remained to be in the same order of magnitude as that of the constant

Ya pressure mixing region. With the suggested estimation for the eddy diffusivity
within this recompression region, the turbulent normal stresses were also found
to be cne to two orders of magnitude smaller than the important flow quantities
of such problems. These findings fully supported and justified the method of
analysis suggested for this recompression process.
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INTRODUCTION r

For a flow passing a body with blunt trailing edgy , the flow always separates away
from the body ahead or at the base, creating a wake behind the body. The pres-
sure within the wake, usually termed as the base pressure, is usually much lower
than that of the free stream thus accounting for the large drag suffered by the
body. This phenomenon exists irrespective of whether the problem is in the low
speed or high speed flow regima. Since the advent of high speed flight, the base
drag was recognized to be a serious problem, and a considerable amount of research
has been directed into this area within the last two decades.

For a supersonic flow past a back step (see Fig. 1), it is recognized that the
flow separates at the corner and the main flow will expand from the initial pres-
sure to the lower base pressure. The initial boundary layer flow which is more
or less guided by the free stream will also follow this expansion process. Along
the early part of the wake boundary, ->a pressure is reasonably uniform, and for

- 'flows with large Reynolds number, a :N•s cant pressure turbulent jet mixing process
occurs. -Nearing the end of the wake, the ci ►ain flow 'as to realign itself to the
horizontal flow direction, initiating thereby a compressive process. As a result

r	 .-of this recompression, part of the fluid entrained within the viscous layer is
turned back to form the recirculatory wake flow, while the rest will proceed down-
stream. Criginally dealing with a simplified model for this flow problem, Korst
[1] suggested an "escape criterion" associated with this recompression process.
It specifies that the "dividing streamline" which separates the jet fluid from the
wake fluid should assume such a mechanical energy level at the end of the jet mix-
ing region that when it stagnates at the rear stagnation point through an isentro-
pic (although irreversible-diabatic) process, its pressure is equal to the static
pressure impressed behind the shock at the end of the wake. Employing this escape
criterion would yield a unique base pressure solution for the problem. Experi-
mental data have indicated, however, that the pressure at the rear stagnation

t	
point is much lower than what is impressed behind the shock. Nash [2], suggested
empirical correlations of the two pressure levels. Page [3], Carriere and
Sirieix [41, also developed empirical schemes individually to correlate character- 4. .
istics associated with this recompression process.

Lees and his associates [5,6] considered this type of problem on an entirely dif-
__ 	 ferent_.approach. Following the original idea suggested by Crocco and Lees [7],

they treated the attached and separated viscous layers under one single framework,
and showed that a critical point existed at the end of the wake (downstream of the
rear stagnation point) which is somewhat similar to the nozzle throat. The,cor-
rect base pressure associated with this type of flow assures a smooth flowpassing
through this critical point. Calculations for cases of turbulent flows hae also
been performed [8]. extension to include the normal pressure gradient app1ared
recently [9]. Similar- ideas were applied to laminar flow with axial-symmetric
configurations by performing detailed numerical calculations for the outer flow
[10], However, the recompression slaw process, particularly for turbulent flow,
was never properly studied in detail. Other studies of wake flow problems are
based on the method of integral relations [11], or complete numerical solutions of
the Navier-Stokes equation [12]. These calculations require a considerable amount
of time even with high speed computers and the turbulent flow cases have not been
studies?.	 -

The p-.resent investigation was intended to consider this turbulent recompression
process associated with a two-dimensional supersonic flow past a back step. A
flow model which is equally applicable to laminar flows is presented. The estab-
lishment of the initial conditions for this recompression process is subsequently
discussed. Numerical calculation procedures which illustrate the typical elliptic
behavior of all separated flow problems are described. Finally, the results of
calculations for flow cases with thin initial boundary layers and their comparison
with the experimental data are presented and discussed.
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Theoretical Flow Model

The present study of this recompression process is exclusively based on an inte-
gral approach. Referring to Fig. 2, the flow model guiding .the present analysis
can be described and discussed as follows:

1. The recompression region is split into two parts along the dividing
streamline. The fluid above the dividing streamline will dver,:ks311y
proceed downstream, while the fluid below will be turned back to form
the recirculatory wake flow as a result of recompression. The upper
viscous layer interacts with the external inviscid stream; the latter
guides and receives the influence of the former by following itself a

r	 Prandtl-Meyer compression relationship. This interaction is described
by the fact that the transverse velocity component at the edge of the
viscous layer induces an increase of pressure in the free stream which,
1p turn, influences the flow properties within the viscous layer, in-

s	 eluding this transverse velocity component at the edge of the viscous
layer.

r

._"Integrating the continuity equation,

a, c^, t 300 = 0	 (1)

across the upper viscous layer, one obtains for the streamline angle at
the edge of the viscous layer (see Fig. 3a)

.	 v	 1
tan^e -u =dx d= (1-p 0)dc

	

•	 0	 e
y	

1pa j	 d^

	

_	 0 ed U	 2 1/f y-1)

where

i	 ueu	 andce =v	 vs	 e	 ma x	 ZW x	 , ^^+•

rte'"`
Since the free stream follows the Prand-cl-Meyer relationship, the st-eam-
line angle Se is related to the Prandtl-Meyer function w by

0e = 0. + w(c.) - W(CO)	 (3)

where 0. is the difference of streamline angles beiween the dividing
streamline and the free stream within the upstream constant pressure jet
mixing region.

It is recognized, however, that the pressure difference across this upper
viscous layer is not negligible. This difference can be calculated from

C

pa = 1+ Y 2
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' with tan	 = tan S (2C - C$ ), which is obtained by integrating the normal
momentum equation,

a(puv) +	 3(pvs) 	 + 
3T my

(5)
ax

across the layer da .	 The shear stress Tmy in Eq. (5) has been evaluated
by

au	
.sy = PE Y

where a is the average eddy diffusivity across this layer and is, thus,
a function. of x only. t

2.	 For this up;er viscous layer, a velocity profile of third-degree poly-
nomials is assumed; namely,

= ^d + a^ +
I d

3(1 - d ) - 2 a^I 1d]
^^ + a^ - 2(1 - Od ) Cs	 (6)

d

which obviously satisfies conditions of

¢ = 0d ,	 R= a^d
at 4 = 0 ,	 = 1 , R= + 0 at C = 1

' In view of the fact that, at the rear stagnation point ( Od = 0). the
shear stress at the dividing streamline should vanish, a simple corre-
lation between the slope parameter 00/%)d and Od would be that they
shall be linearly proportional to each other; the constant of proportion-

; ality being determined from the initial condition prevailing at the end
of the mixing region.

3.	 The lower viscous layer consists of a forward flow characterized by the
dividing streamline velocity and a back flow characterized by a maximum
back flow velocity.	 A linear velocity profile is assumed for the forward
flow and a cosine profile for the back flow (see Fig. 3b). 	 It was also

4 --	 —recognized that the pressure difference across the lower viscous layer
would influence the rate of recompression.	 For simplification purposes,

A it was assumed that the forward flow has the constant pressure p d of the
' dividing streamline, while the back flow has the constant wall pressure

pw .	 The difference in pressure across this layer may be calculated from

- a
b

p= = 1 t 1 dux sin 9^ d - ax	 pug sin e,, dy	 (7)
Pd 	 pd	 w	

0
which is the momentum relationshiptt normal to xw-direction for the small
region as shown in Fig. 4a. 	 If one further assumes that the dividing
streamline and the line of zero-longitudinal velocity component follow
straight line trajectories, Eq. (7) may be written for isoenergetic flows
as

pw	 sin 8 ,	 cos 8d	 Td	
Z 1/(y-1) Z

( 1Pd = 1 + Y - 1
 (pd /P. )(pe /P. -)

e.)	 rcacos ( 6- - 8d ) u$
poo 00

_a
 [ 

p p	 1 + cd e 
Sb 2c Inl-cd -1	 (8)

W pe po 0	 d	 d

Me expression for c within such a recompression region is given later.

ttNote that the contribution from the lateral shear stresses is small as the eddy
diffusivity within the ,rake is exmected to be at a lower level.
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It should be mentioned that; for cases with the presence of the lower
wall, one is compelled to consider the wall boundary layer of the back
flow. It can be shown for the isoenergetic flow that, if the wall
boundary layer has also a cosine flow profile, the total back flow mass
and momentum fluxes would be the same as long as the back flow height and
the maximum velocity are the same. The only difference between cases of
with and without the wall is the wall shear stress, which is very small
and can be neglected. Thus, flow cases of reattachment onto a solid wall
are also included in the present formulation.

--The geometry of the wake gives also relations such as

db	 ^k— ( ^ + X)
(9)

T_ oo	 Rte" M

r	 a`	 sin 0.

" sin .e. - 6 
where Rk is the length of the wake boundary. Application of the conti-
nuity principle across the lower viscous layer would produce a relation-
ship which correlates the flow properties by (for isoenergetic flows)

---- c----b---/[_,. (1 - c2 )l
Tl-C,

It should be noted that fluxes associated with the transverse velocity
component (normal to the indicated velocity profiles) would not contrib-
ute significantly in the foregoing considerations because they are small
In their order of magnitude; in addition, they tend to cancel each other.

4. Integral momentum principle is applied to both parts of the viscous
layer (see Fig. 4) and two differential equations are obtained,

am 
4 pw	 Cd tan-1

bb 'ff Pd 1 - cb
(11)

1	 1	 du
dx:pe ue Sa	

p u 
Cl - u) d4 - pe ue Se p u d C dx

gS	 1	 ^
a _ d ^.

+ 
pe d dx (pe Sa p d^ _ Td

0 e 1

	

dx	 2
d 

pS +pbb cos a +p sin a 	 w+a [PduS p u
dx.d b 	w	 w	 w	 dx	 dX 	 d b pd ud

s 1p u ^	 0

+ pbubhb Pb vb	
d^ COS 8100 = Td	 .

0

Upon introducing

P_ = pd - 2 (pd - 1 + 2 pd - 1^3
pe	 p•	 pe	 pe

(12)

dC

(13)

into Eq. (12) for the pressure variation across the upper layer, and the
assumed profiles for the lower viscous layer into Eq. (13) and normaliz-
ing, Eqs. (12) and (13) become, for isoenergetic flows,
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z

1
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0	
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Td (1 - M)1
/(Y-1)co	

(12a)

and	
p«'um

-	 s ^=dx d • db + `^ hb cos 8 . t 2=1 sin 8^ cos-
8 d'	 p• po m	 pd	 Y	 d

P•, Pd P• 	 P	 1+ c	 p
— + d 	 = d =Ind- 1 + Phbcosem

Pd p• Pom

	fP4
P. POGOb 2cd 	 1 - cd	 Pd

•	 11	 = —d - (1 - Co
2 )1/(Y-1)^	 (13a)
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The shear stress Td which appears at the right sides of these two equa-
tions is evaluated from an eddy diffusivity formulation for this recom-
pression process which assumes the same form as that of the preceding
constant pressure mixing region and the equivalent a value is assumed to
vary inversely as the upper viscous layer thickness; namely

8
^- z (Mtx) u. with F=-a-a-m-

4Q.	 a

Thus, the shear stress term appearing in both Eqs. (12a) and (13a) can
be-evaluated from

5. The initial conditions are provided for from the upstream constant Ares-
sure jet mixing process. In order to achieve a smooth joining between
'the mixing and recompression regions, a constant pressure turbulent jet
-mixing analysis was performed by adopting a velocity profile compatible
with that for the recompression study.

Fully Developed Constant Pressure Turbulent Jet Mixing

Upon employing the momentum principle

0	 aa
dx pu dy = Td = dX pu(um - u) dy

1
-8b	 0

and the stipulation that the velocity profile slope at the dividing
streamline matches with that of an error function profile, i.e.,

dO = 1
do id

It may be shown that, for such an isoenergetic fully developed jet mixing
region, all flow quantities are functions of a dimensionless homogeneous
coordinate n[n = am(y/x)] only and following relations are obtained

k

1
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a

.r_ ^ (1 - a te ) 1 In --- ^ - cd^	 (15)
4n	 2	 1	 ®m

a_ --- ,-
	

(16)dc d ^

nb = Od^ 	
(17)

and

1 1 c2	 1p

	

---- CO =	 d4	 (18)na
 Pea 

$ (1 - ^)
4'^ 1 — Com 0

where

0= OaCO +dCI dGO

^+
 1

3(l-^d^ ) - 2 d 	r!
 d ec^

t d	 - 2 (1 - ^do,) Cs (for C > 09 = u - ' C = ^^",

	

doo	 Us	 aGo

and

^ = (1 + 4) ( for -1 < 4 < 0 9 C =	 - !	
u

`	 bw	 uda,

have been used as the velocity profile. Values of n
a. 

= Q $ /1L and

% = mdb^/ A. are solved from these relations. 	
a^ 

M

Developing Flows

For all practical flow cases, the flow at the end of the mixing region is
never fully developed and the initial boundary layer has predominant in-
fluence on the recompression process. For thin initial boundary layers,t
R was shown by Frill and Page, Carriere and Sirieix, and Korst and Chow
that the effect of its presence may be accounted for through the origin
shift concept [13] and the equivalent bleed concept [4,14]. Thus, the
initial flow properties of the recompression region can be obtained from

corrections of the fully developed flow through

da oo = na (M + o) Ia.	 (19)

•

	

	 8b^ = nb ( ^ + o) /Q- 	 (20)

where

082
X = n	 (21)tt

J a pLU 1-u-d
-	 pCO uCO	 u^ n I f d

T "b

is the origin shift, 8 2 being the momentum thickness of the profile at
the beginning of the mixing region. The dividing streamline velocity
(cd ) for the non-fully developed flow is found from

etd	 ,

	

$	 2 d	 1 Q 8z
[- !^n (1•-cd 	)^=	 s^	 P	

1-	 dn td- R (22)

	

at d	 (1 - c )c¢ nb -
	

M
d ^	 nb

The strearline angle 0. appearing in Eqs. (3) can be approximately esti-
mated by

Me effect of lip shock is also disregarded. Thus, the present calculation is
also restricted to lot-r supersonic free stream Mach numbers.

f ttRanceforth, fd denotes fully developed, while nfd denotes non-fully developed
flows.

r

4
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.	 n 1
tan ^^ = QCl - P  ) dClatd	 (23)

^o

, and the relationship concerning the spread rate parameter

ciao = 12 + 2.76M0 	 '`•J

has been tacitly employed [13].

It would be emphasized that these correction techniques are valid only

a	 for thin approaching initial boundary layers.

CALCULATION PROCEDURES

Specializing for isoenergetic flows, one may select for given initial conditions a
pair of values for the base pressure ratio pb /pl and the length R,t along the wake
where recompression starts. The momentum thickness of the viscous layer at the
beginning of jet mixing may be calculated by White's formula [15]

6	 c s. Z• 1 - c 2 1' 4'
Z	 1	 1	

(24)
CW	

1 - C.

or the streamtube expansion method and the initial conditions required for recom-
pression study may be established according to the previously described scheme.
One may start to integrate the system of differential equations through a step-
by-step procedure. At each location along the course of recompression, the free
stream Crocco number c, and the dimensionless dividing streamline velocity Od may
be selected and iterated upon until the system of equations is satisfied. It may
be noted that, for each pair of values of c, and Od , 88 may be found frow Eq. (2),
Pd /pe from Eq. (4) , 6  from Eq. (9) , pv„/pd from Eq. (0 9 hb from Eq. (10) , and cb
from Eq. (11). Upon substituting all this information into Eqs. (12a) and (13a),
two residues are usually obtained. Values of c and $ at this location should
be iterated upon until these residues vanish. !	

d

^ ---- These calculations can be continued until the rear stagnation point is reached.
At this location, % is set -to zero and the wall pressure becomes the stagnation
pressures of both the dividing streamline and the representative back flow. From
the normal momentum relationship given by Eq. (8), the correct free stre am Crocco
number at the stagnation point can be established when the wall presssure is ob-
tained from the intersection (and averaging) of previously established curves for
pod and pob . Again, two residuf! are usually obtained from Fqs. (12a) and (13a)
at the rear stagnation point.

The initially selected values of the base pressure ratio p b /p 1 and the location
1. where recompression starts have to be iterated upon until the residues of the
system of equations at the rear stagnation point are reduced to zero. The correct
flow field is thus established up to the rear stagnation point.

It is worthwhile to point out that this scheme of calculations and iterations ex-
hibits they typical elliptic behavior of all separated flow problems. The fact
that the value of the base pressure ratio is uniquely determined according to the
conditions associated with the rear stagnation point is well evidenced by the me-
thod of calculation of this recompression process up to the rear stagnation point.
In addition, the correct flow pattern established at the point of reattachment
serves also as the initial condition for the dowzlstream flow field where addition-
al recompression and flow rehabilitation occur.

tNote that, for numerical calculations, all lengths have been normalized by the
step height H.
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RESULTS OF CALCULATIONSt s

•	 Figure 5 shows the pressure distribution on the wall for the flow case of

N1 = 2.0 9 8 i* /H 2 0.014.	 The base pressure ratio Pb /p! determined from these
calculations is 0.362. 	 It can be seen that the calculated pressure distribution
up to the point of reattachment showed excellent agreement with the experimental
data which were obtained in the blow down facilities at the University of Illinois.
Figure 6 shows also results indicating variations of pod, Pob, Ob, and
#b% = ub /u-).	 It is particularly interesting to see that the dividing stream-
line is being energized continuously throughout this part of the recompression
process.

Figure 7 shows another calculation for M 1 = 2.25, ei /H = 0.01.	 Again, the base
pressure agreed well with the experimental data.

x

Figure 8 shows the variation of base pressure with respect to the initial momentum
thickness of the boundary layer at M1 = 2.0. 	 It also shows that the theoretical
'results presented by Alber and Lees [83 are too high, especially for cases with
thin initial boundary layers.	 Pertinent experimental data from elsewhere are also

.--	 -included in the same figure.

Figure 9 presents results of calculations for M 1 = 1.56 as functionsof the in-
- itial momentum thickness. 	 Results for one set of flow conditions of M i = 3.0,
81 /H = 0 . 003 have also been obtained. 	 The base pressure of Pb /P1 = 0.133 agrees
very well with the experimental data compiled by Reda and Page [63 and reproduced
in Fig. 10.

It should be pointed out that, in all these calculations, the influence of the
pressure variations across the upper viscous layer to the density was not ac-

'' counted for and the density was estimated as if the viscous layer had the constant
free stream pressure; i.e.,

P/Po = (1 - c2 )/(1 - 201)
w

}• Also, in estimating the pressure difference across the layer, the shear stress
term has been ignored in Eq. (8).

y^
y	

DISCUSSION AND CONCLUSIONS

In comparing theoretical calculations with the experimental data, it appears that
the method suggested here for the reattachment process produced reasonable results.
In view of the lack of knowledge in the eddy diffusivity within the recompression
region and the inadequate data concerning the spread rate of the preceding con-
stant pressure mixing process, it is felt that the analysis suggested here can
only be considered as a workable scheme. 	 In addition, there is considerable room
for improvement to the present analysis. 	 Particularly for cases of thick initial
boundary layers, the upstream jet mixing as well as the recompression re^'on may
well have been imbedded within a rotational flow field and a "Local freeLtream'l
concept would seem to be useful under these situations.

J

__Nevertheless, it is interesting to point out that, under the present formulation
of the eddy diffusivity, the normal turbulent stresses have been found to be one
to two orders of magnitude smaller than the important flow quantities.	 In addi-
tion, the eddy diffusivity was found to remain in the same order of magnitude as
that of the preceding constant pressure mixing region. 	 These findings fully sup-
port and justify the method of analysis suggested for such a recompression pro-
cess.

Further calculations toward downstream direction are possible by adopting the

tAll calculations were carried out on a digital computer IBM7094, Department of
Physics, University of Illinois at Urbana-Champaign.

y;
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same system of equations. Referring to Fig. 11 where the Initial conditions for
downstream calculations can be estimated from the information obtained at the rear
stagnation point, it may be anticipated that the characteristic feature of the

r	flow is the realignment of the external inviscid stream into the original hori-
zontal flow direction and it is believed that any shear stress acting along the
centerline may be again ignored.	 From Eqs. (2) and (12a), it may be observed
that relaxation of the pressure difference, across the viscous layer provides the
main balancing factor, at least in the early part of the flow rehabilitation. The
final equilibrium state is reached only when the main flow is in the horizontal
direction.

Finally, it is worthwhile to point out that the suggested flow model may be em-
ployed to study flow problems in many other flow regimes. Upon combining with the

"conformal mapping technique, it is hoped that many of the incompressible flow prob-
lems may be studied.
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NOMENCLATURE

C V/Vmax , Crocco number Y	 ratio of specific heat

cls Crocco number for back flow of t	 shear stress
maximum velocity

eddy diffusivity
H step height

8	 angle or momentum thickness
bb height for back flow

n	 QY/x 
length of the constant pressure
region along the wake boundary, v.	 similar parameters for constant
measured from separation corner pressure jet mixing regions

1 H/sin 6.., length of the wake Subscripts
boundary measured from the
separation corner to the point

,	 viscous layer above the divid-0.R
of reattachment ing streamline

N Mach number b	 viscous layer below the divid-
ing streamline or back flow

p pressure
d	 dividing streamline

U x-velocity component 0	 external inviscid stream
V magnitude of velocity W	 wall or centerline state
v y-velocity component p	 stagnation state
x coordinate in main flow direction

1	 approaching flow state
y coordinate normal to x 2	 flow state after the Prandtl-
P density Meyer expansion

B streamline angle co	 station at the beginning of

d thickness of viscous layer recompression

u/ e, dimensionless velocity

y16  or y16
W(c )N/(Y+l)/(Y-1) tan-

2

- tan-1	C (Y+1)/(Y-1) c - 1^

1 - c3

Prandtl-Meyer function.
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Figure 3b The Lower Viscous Layer	 Figure 4a Elementary Control Volume for
Lower Viscous Flow Region
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