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A STUDY OF METAL-INSULATOR-SEMICONDUCTOR MAGNETORESISTANCE, 
BULK, AND SURFACE PROPERTIES OF I N D I U M  ANTIMONGDE 

1 , O  I n t r o d u c t i o n  

This  r e p o r t  p r e s e n t s  a d i s c u s s i o n  of  t h e  me ta l - i n su l a to r -  

magnetores i s tance ,  bu lk ,  and s u r f a c e  p r o p e r t i e s  o f  t h e  indium 

antimonide compound semiconductor m a t e r i a l .  

The vacuum system modified by The Un ive r s i t y  of N e w  

Mexico r e sea rch  team (Reference 1) has made t h e  r e sea rch  of 

t h e  compound semiconductor m a t e r i a l s  p o s s i b l e .  Furthermore,  

t h e  vacuum system i s  under modi f ica t ion  t o  improve t h e  capa- 

b i l i t y  f o r  vacuum depos i t i on  o f  t h e  compound m a t e r i a l s ,  The 

e l e c t r o n  beam source  and i t s  c o n t r o l  system w i l l  be adapted 

t o  t h e  vacuum system. 

I n  o r d e r  t o  o b t a i n  t h e  b e s t  metal - insula tor-semiconduetor  

magnetores i s tance  dev ices ,  t h e  maximum t h e o r e t i c a l  l i m i t s  

and expected exper imenta l  r e s u l t s  should be  known be fo re  fab- 

r i c a t i o n  and measurement. C a l c u l a t i o n s  from t h e  given data 

i nvo lve  t h e  corb ino  d i s k  magnetores is tance MIS t h i n - f i l m  

t r a n s i s t o r ,  magnetores is tance of t h e  MIS t h i n - f i l m  dev ice ,  

and MIS corb ino  d i s k  magnetores i s tance .  The i n d i v i d u a l  char-  

a c t e r i s t i c  cu rves ,  i . e . ,  magnetores is tance versus  magnetf c 

f i e l d ,  w i l l  b e  drawn t o  compare t h e  t h e o r e t i c a l  r e s u l t s  t o  

t h e  exper imental  ones.  



2.0 Theory and Expected Resu l t s  from t h e  Experiments 

2 . 1  Equations f o r  t h e  Magnetores is tance Devices 

2 . 1 . 1  Corbino Disk 

The express ion  f o r  t h e  corb ino  d i s k  (Reference 2 )  i s  

where 

r = i n n e r  r a d i u s  of t h e  corb ino  d i s k  1 

r2 = o u t e r  r a d i u s  o f  t h e  corb ino  d i s k  

d  = t h i ckness  

Po 
= r e s i s t i v i t y  of t h e  m a t e r i a l  when B = 0 

Ro = r e s i s t a n c e  when B = 0 

2 . 1 . 2  The Corbino Disk Magnetores is tance f o r  a  S i n g l e  Con- 
duc t ion  Band and a  S p h e r i c a l  Energy Sur face  of 
E l e c t r o n s  

2  
= t a n  0 

I n  p r a c t i c e  a  number o f  f a c t o r s  may cause  a  d e p a r t u r e  of 

t h i s  c h a r a c t e r i s t i c  from a  B~ dependence, p a r t i c u l a r l y  i n  

h igh  magnetic f i e l d s .  Such f a c t o r s  a r e  mani fes t  i n  the form 

of  p h y s i c a l  magnetores is tance (Ap/p ) such t h a t  t h e  res i s t iv-  
0 

i t y  i s  no longe r  independent o f  t h e  magnetic f i e l d .  Wieder 



(Reference 3 )  has shown t h a t  t h e  corb ino  magnetores is tance i s  

then expressed by 

2  PB 2  
t a n  8 = - ( l + t a n  8 )  - 1 

p.c* Po 

2 , 1 , 3  Corbino Disk Magnetores is tance f o r  Two D i f f e r e n t  
Conduction Bands 

where 

pn = e l e c t r o n  m o b i l i t y  

'-'P 
= h o l e  m o b i l i t y  

v1'v2 = m o b i l i t i e s  of each band 

al,02 = zero  f i e l d  c o n d u c t i v i t i e s  of  each band 

o = e f f e c t i v e  ze ro  f i e l d  c o n d u c t i v i t y  
0 

I n  t h e  low-f ie ld  reg ion  (Reference 4 ) ,  pnB << 1 and w e  have 

I n  a  s t r o n g e r  r eg ion ,  ynB ) 1 

where b  E p /p and b >> 1 f o r  InSb. 
n P 

I n  t h e  very s t r o n g  f i e l d  r eg ion ,  p B >> 1 
P 



2.1.4 Magne tores i s tance  of  Two-Layer Corbino Disks 

A co rb ino  d i s k  i s  d i v i d e d  i n t o  two-layer d i s k s  (Refer-  

ence  51 ,  and t h e  magne tores i s tance  o f  t h e  d i s k  i s  

where 

Vb = t h i c k e r  l a y e r  m o b i l i t y  

K 5 
s u r f a c e - l i k e  s h e e t  r e s i s t i v i t y  

b u l k - l i k e  s h e e t  r e s i s t i v i t y  

OS 
= t h i n  l a y e r  c o n d u c t i v i t y  

ds = t h i n  l a y e r  t h i c k n e s s  

ob = t h i c k e r  l a y e r  c o n d u c t i v i t y  

db = t h i c k e r  l a y e r  t h i c k n e s s  

2.1.5 M I S  Thin-Film T r a n s i s t o r  

The equa t i ons  f o r  t h e  MIS t h i n - f i l m  t r a n s i s t o r  i n t r s -  

duce t h e  M I S  magne tores i s tance  dev i ce s .  I n  g e n e r a l ,  t h e  

sou rce  c u r r e n t  i n  t h e  s i m p l i f i e d  MIS t r a n s i s t o r  i s  expressed 



where 

i = source  c u r r e n t  
S 

m = mutual conductance 

Ei = i n p u t  v o l t a g e  

RS = source  r e s i s t a n c e  

The t ransconduc tance ,  gm" i s  expressed  a s  

where 

ID = d r a i n  c u r r e n t  

VGS = v o l t a g e  between d r a i n  and source  

E = d i e l e c t r i c  c o n s t a n t  of  t h e  i n s u l a t o r  

W = width of t h e  d i e l e c t r i c  material 

L = l e n g t h  of t h e  d i e l e c t r i c  m a t e r i a l  

hI = h e i g h t  of t h e  d i e l e c t r i c  m a t e r i a l  ( i n s u l a t o r )  

e f f e c t i v e  d r i f t  mob i l i t y  t h e  e l e c t r o n s  

The dra in-source  r e s i s t a n c e  of  t h e  M I S  f i e l d - e f f e c t  transis- 

t o r  RDS i s  expressed  a s  

I f  VDS - - VGS, we o b t a i n  



2 . 1 . 6  Magnetoresistance of t h e  Rectangular SJab and M I S  
Device 

where 

RS (B )  = s l a b  r e s i s t a n c e  wi th  magnetic f i e l d ,  B 

pSB = s l a b  r e s i s t i v i t y  wi th  magnetic f i e l d ,  B 

pSO = s l a b  r e s i s t i v i t y  wi thout  magnetic f i e l d  

p~ 
= H a l l  mobi l i ty  

B = app l i ed  magnetic f i e l d  

R s ~  = r e s i s t a n c e  of  t h e  s l a b  when B = 0 

For t h e  M I S  f i e l d - e f f e c t  t r a n s i s t o r ,  

s i n c e  



where 

1-10 
= mobi l i t y  when B = 0 

pB = m o b i l i t y  when B f 0 

2.1.7 MIS Corbino Disk 

The z e r o - f i e l d  dra in-source  r e s i s t a n c e ,  RDSOf i s  ex- 

pres sed  a s  

The dra in-source  r e s i s t a n c e  of t h e  MIS corb ino  d i s k  i s  

S ince  

hence-, 

where 

hI = h e i g h t  of  i n s u l a t o r  ( t h i c k n e s s )  

hS = h e i g h t  o f  semiconductor ( t h i c k n e s s )  



P o  
= semiconductor r e s i s t i v i t y  when B = 0 

VGS = vol tage  between g a t e  and source 

2.1.8 M I S  Corbino Disk Magnetoresistance 

a. For VGS = 0 and B = 0 

b. For VGS # 0 and B = 0 

where 

c. For VGS # 0 and B $ 0 

where R ( B )  = magnetic f ield-dependent r e s i s t a n c e  o f  t w o -  

l a y e r  corbino d i sk .  

and 



Hence, 

and 

F i n a l l y ,  t h e  magnetoresis tance of t h e  M I S  corbino d i s k  i s  ex- 

pressed  a s  

where 

'-'b = t h i c k e r  l a y e r  mobil i ty  

Pb = t h i c k e r  l a y e r  r e s i s t i v i t y  

hb = t h i ckness  of  t h i c k e r  l a y e r  

hI = t h i ckness  of  i n s u l a t o r  

hS = t h i ckness  of semiconductor 



2.2 

2.2.1 Ma te r i a l  P r o p e r t i e s  (References  4 and 5) 

M a t e r i a l  InSb-8n, Ohio Semicon,,  Ene, 

Type o f  semiconductor n-type 

Maximum e l e c t r o n  concen- 
t r a t i o n  a t  80°K 5 x 1014 atoms/cm 3 

Minimum m o b i l i t y  a t  80 O K  300,000 cmvv-sec 

Energy gap a t  300°K 0.16 e V  

R e s i s t i v i t y  a t  80°K - I po - - = 0.041 ohm-cm 
qClen 

R e s i s t i v i t y  a t  300 O K  0.003-0.005 ohm-em 

Mobi l i ty  a t  300°K 78,000 cm2/v-sec for t h e  
concen t r a t i on  o f  5 x 1014 
cm-3 

l01J 1 0 ' ~  1015 id7 loie 

IMPURITY CONCENTRATION ( ~ 6 ~ )  

Figure  1. Dependence o f  e l e c t r o n  mob i l i t y  on impur i ty  con- 
c e n t r a t i o n  f o r  n-type InSb a t  room temperature  (Reference 6) 



Figure 2. Temperature vs. mobility, Hall coefficient and 
conductivity for InSb thin films (Reference 7) 



2 . 2 . 2  R e s i s t a n c e  of t h e  C o r b i n o  D i s k  

F r o m  E q u a t i o n  1 we  ob ta in  

- - 0 . 0 0 4  
2Tr * 0 . 1  Rn - 0 ' 4  ( o h m s )  0 . 1  

= 8.8  x ohm 

s ince 

Po  = 0 . 0 0 4  ohm-cm 

2 . 2 . 3  T h e  C o r b i n o  Disk Magnetoresistance f o r  a S i n g l e  Con- 
d u c t i o n  B a n d  and a S p h e r i c a l  E n e r g y  S u r f a c e  of 
E l e c t r o n s  

F r o m  E q u a t i o n  3 we have 



2 S u b s t i t u t i n g  pn = 78,000 cm /V-sec and p l o t t i n g  [ A ~ / p , l  
p e e ,  

with r e spec t  t o  f i e l d  B ,  we have a curve as  shown i n  Figure 

3.  

2.2.4 The Corbino Disk Magnetoresistance f o r  Two Different 
Conduction Bands 

a .  pnB << 1 (low-field region)  

For t h i s  reg ion ,  B << 1000 gauss 

2 2 = 1 0  8 8  where pn = 7.8 m /V-sec. 

The curve is  p l o t t e d  i n  Figure 4 .  

B (gauss) 



MAGNETIC FLUX DENSITY, B ( K G A U S )  

Figure 3. Corbino disk magnetoresistance vs. magnetic 
induction B 



b. pnB - > 1 ( a  s t ronger  region)  

where 

( )  f o r  p n ~  - > 1 



MAGNETIC FLUX DENSITY, B (KGAUSS) 



MAGNETIC FLUX DENSITY, B ( G A U S )  



c. u B >>  1 (very strong field region) 
P 

B (kilogauss) (2) for p P B >> 1 

2.2.5 Magnetoresistance of Two-Layer Corbino Disks 

Let 

Os 
= surface conductivity 

ab = bulk conductivity 

d = surface thickness 
S 

d, = bulk thickness 





B (kilogauss) 

2 2 
If we let pb = 60,000 c m  / V - s e c  (= 6 m /v-sec) 

B (kilogauss) [%] when pb = 60,000 

2.2.6 M I S  Thin-Film Transistor 

L e t  



I n  wide bandgap m a t e r i a l s ,  we assume t h a t  t h e  d r i f t  mobility 

pd i s  a c o n s t a n t  independent of  v a r i a t i o n s  i n  g a t e  v o l t a g e  

VG. When t h e  semiconductor c o n t a i n s  many t r a p s  o r  s u r f a c e  

s t a t e s ,  t h e  l a r g e  f r a c t i o n  o f  t rapped  e l e c t r o n s  may cause the 

e f f e c t i v e  d r i f t  mob i l i t y  t o  be  much s m a l l e r  than  t h e  micro- 

s c o p i c  o r  Ha l l  mob i l i t y  by t h e  f a c t o r  8 (Reference 8)  

where 

pd = e f f e c t i v e  d r i f t  m o b i l i t y  i n  t h e  presence of  traps 

pD = t r u e  d r i f t  m o b i l i t y ,  assumed e q u a l  t o  the H a l l  
mob i l i t y  

n = f r e e  carrier d e n s i t y  F 

n = d e n s i t y  of t r apped  c a r r i e r s  T 

A s  t h e  g a t e  b i a s  i s  f u r t h e r  i n c r e a s e d ,  most of  t h e  a v a i l a b l e  

t r a p s  are f i l l e d ,  r e s u l t i n g  i n  much l a r g e r  i n c r e a s e s  i n  con- 

d u c t i v i t y  of  t h e  semiconductor.  Under t h e s e  c o n d i t i o n s ,  t h e  

d r i f t  m o b i l i t y  pd should approach a c o n s t a n t  va lue  equal t o  

t h e  H a l l  mob i l i t y  ( 9  = 0) and gm should  become a c o n s t a n t  

independent of g a t e  b i a s .  Therefore ,  w e  l e t  pd = pH. Then 

w e  have 



DRAIN- SOURCE VOLTAGE, VDS (VOLTS)  

Figure 7. Mutual conductances and drain-source resistance 
vs. drain-source voltage 



For 8 = 0.5 ,  

9m = 7. 80VDS ohm1 

For 8 = 0 . 1 ,  

The dra in-source  r e s i s t a n c e ,  RDS, i s  a s  fo l lows:  

For 8 = 1, 

For  8 = 0 . 5 ,  

For 8 = 0 . 1 ,  

- - -  0 * 6 4  ohm 
R~~ VDS 

2.2.7 Magnetores is tance o f  t h e  Rectangular  S l a b  and M I S  
Device 

From Equation 1 3  and l e t t i n g  

Po = r e f e r  t o  Table  I 

pB = r e f e r  t o  Table  I 



2  2  
'-'d 

= 7 8 , 0 0 0  cm /V-sec  = 7 . 8  m /V-sec  

~ = 9 x 1 0  -lo farad/m 

VDS = var iable  

F r o m  t h e  t ab le  ( R e f e r e n c e  9 )  

TABLE I 

C o m p a r i s o n  of u /yB v e r s u s  B 
0 

B (KG) 2  - 4  - 6 - 8  
P 

18 

po/pB (Weiss & W a l k e r )  1 . 0 5  1 . 1 4  1 . 2 5  1,36 1.48 

~ , / 1 - 1 ~  (S immons  1 . 0 4  1.10 1 . 2 0  1 . 3 4  1,453 

F o r  8 = 1, 

B  ( K g a u s s )  



For 8 = 0-5 

B (Kgauss) 

For 8 = 0.1 

0.64 'o 2 1/2 RS (B) = -. * -(1+61xB ) 
'DS I - ~ B  

B (Kgauss) 



MGNETIC FLUX DENSITY, B (KGAUSS) 

Figure 8. MIS slab resistance vs. magnetic flux density 
when e = 1.0 



MAGNETIC PUIX DENSITY, B (KGAUSS) 

Figure 9. MIS slab resistance vs. magnetic flux density 
when 8 = 0.5 



MAGNETIC FLUX DENSITY, B (I(GAUSS1 

Figure 10. MIS slab resistance vs. magnetic flux density 
when 8 = 0.1 



2.2.8 MIS Corbino Disk 

From Equation 16 and letting 

Po = 4 x ohm-m 

= 1.763 (ohms) 

2.2.9 MIS Corbino Disk Magnetoresistance 

From Equations 19, 20, and 24 and letting 



DRAIN-SOURCE VOLTAGE. VDS (VOLTS) 

Figure 11, MIS corbino disk drain-source resistance vs, 
drain-source voltage 



-5 
Po = 4 x 1 0  ohm-m 

I 

& = 9 x 1 0  -lo (for T i )  

VGS = var iab le  

- - 4 4 Rn - = 1.763 ohms 
(RDs)vo,Bo ~ T X ~ X I O - ~  1 



O N E -  SOURCE VOLTAGE, VGS ( V O L T S )  

Figure 12. Drain-source resistance vs. gate-source voltage 
as a function of 8 



L e t t i n g  

~ = 9 x 1 0  -lo farad 

2 
lid = OpH = 7.80 m / V - s e c  

-a  hI = 1 0  m 

hS = 5 x m 

Po = 4 x ohm-rn 

Pb = Po = 4 x ohm-m 

B (Kgauss) 



MAGsVEllC FLUX DENSITY, 8 (%GAUSS) 

Figure 13. MIS corbino disk magnetoresistance vs. magnetic- 
flux density when 8 = 1.0 



MAGNETIC FLUX DENSITY, B (KGAUSSB 

Figure 14. MIS corbino disk magnetoresistance vs. magnetic- 
flux density when 8 = 0.1 



B (Kgauss) MR = 
6 1B2 MR = 

61B2 MR = SIB 2 

7.644-405~~ 1,469+28.6B2 .- 

B (Kgauss) MR= 61B2 MR = 61B2 Q L B ~  MR =- 
2.0861-l-66.3B2 2.1523+70.4B2 - 2 . 3 ~ 7 9 . 9 ~ ~  

B (Kgauss) MR = 7 MR = 
61~' 6 lEiL 

1 

3.0 Electron Beam Source and Proposed Experimental Work 

The CVC Vacuum System, CVI-18, is under modification, 

The electron beam source, Model TIH-270, Air Reduction 



Company, Berkeley, California 94710, is installed in the 

vacuum chamber of the CVC system. The electron-beam-heated 

vapor source with 270' magnetic deflection requires a water- 

cooling system and a high voltage power supply with the con- 

trols. 

3.1 Basic Principles 

The electron beam source operates on principles not 

greatly different from those of a cathode-ray-tube. The 

cathode (filament) is operated at a negative high-voltage 

potential; the electrons are accelerated to the crucible 

which is at ground potential. The tungsten filament is 

heated to incandescence, causing electrons to be emitted in 

random directions. Thus, emission current is controlled by 

varying filament current. The filament is set in a cavity 

bounded by cathode blocks and a beam former, all at cathode 

potential. Space charges are formed by the emitted electrons 

at the back, bottom, and top of the cavity, forcing electrons 

emitted in these directions to return to the filament, Only 

electrons emitted at the front of the cavity escape, These 

are accelerated by the anode potential through a hole in the 

anode plate. During acceleration they are also focused, the 

plate operating somewhat as a single aperture lens. Beyond 

the anode plate, the electron beam is both deflected and 

further focused by a magnetic field onto a small spot on the 

evaporant metal in the crucible. The beam position controls 

vary the position of the electron beam on the crucible, and 

the dither controls allow the beam to be swept baclc and forth 



longitudinally across the crucible. The sawtoogh dither 

waveform is superimposed on the quiescent DC beam position 

setting. 

3.2 Specifications 

Maximum accelerating voltage 10,000 V DC 

Maximum gun power 10 KW (1 A at 10,000 V DCi 

Minimum water flow at 25' C 1 gpm or 2 gpm for Al 

Maximum water pressure 1000 psig 

Focus coil voltage 18 V DC 

Focus coil current 1.2 A normal, 3.0 A max. 

Lateral sweep (dither) 
Voltage 
Current 

Filament number 

Filament maximum 
Voltage 
Current 

28 V P.P. max. 
2.5 A max. 

The source is compatible with Airco Temescal Model ES-6A-210. 

3.3 Advantages 

The electron beam source and the electron-gun ~nagnetie 

focusing system are shown in Figures 15 and 16. The electron- 

bombardment heated method has some significant advantages 

(Reference 10) . 
1. Upon impinging, most of the kinetic particle energy 

is converted into heat, and temperatures exceeding 3 ,000 '  C 

may be obtained. 

2. Since the energy is imparted by charged particles, 

it can be concentrated on the evaporating surface while other 



8-FIELD /--ELECTRON TRAJECTORY 

SOURCE MAWERIAL 

HIGH VOLTAGE 
Figure 15. Electron beam source 

ELECTRON BEAM /- 
rC 
- - -  - 

/,--- . 

Figure 16. Electron Gun Focusing System 
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portions of the evaporant are maintained at lower tempera- 

tures, Hence, interaction between evaporant and support ma- 

terials is greatly reduced. 

3. Chemical reaction is negligible although the evapo- 

rant is in contact with the support surface. This is because 

a "skull" of solid evaporant is maintained at the interface 

and separates the melt from the support. 

4. Electron beam heating sometimes offers other ad- 

vantages such as greater simplicity of construction, more 

directional heat supply, or less stirring of the melt. 

5. Electron-bombardment heating is used to evaporate 

compounds, provided these do not decompose upon heating, 

The heating is a very versatile and almost universal evapo- 

ration technique. 

3.4 Proposed Experimental Work 

In the previous sections, the expected results are sb- 

tained by calculation and plotted theoretically. Therefore, 

device fabrication and experiments are now needed. 

It is very important in the experiment to study and an- 

ticipate the results so that if possible, curves (result) 

can be plotted before device fabrication and measurement, 

The plotted theoretical curves will be compared to the meas- 

ured curves and analyzed thoroughly afterwards. If required, 

the device will be refabricated and measured according to the 

analyzed data. Through these processes, real and practical 

results are obtained. 



The electron bombardment heating source is proposed to 

fabricate the high mobility thin films of the indium antim- 

onide compound seniconductor because the source involves the 

capability of annealing the evaporated thin film, Further- 

more, the insulator coating is possible using the source, 

As soon as the installation of the beam source and the 

power supply is completed, fabrication of the InSb thin-film 

MIS devices will begin. 

4.0 Conclusions 

The data expected in the experimental work were obtained 

using the related equations. Actually, there are many fae- 

tors to be considered in calculating the magnetoresistance; 

they are the mobility, conductivity, and geometry as well as 

the insulator thickness, gate-source voltage, ratio of effec- 

tive drift mobility to true drift mobility, magnetic flux 

density, etc. As a result, the calculation involving the 

factors requires infinite time; therefore, the calculation is 

restricted to the possible limited values. 

The electron-beam-heated vapor source (called electron 

gun) has many advantages so its installation in the vacuum 

chamber has been proposed and is in process. When the elec- 

tron beam power supply, Model ES-6A-210 is repaired, device 

fabrication will start immediately. 

In this report, practical results are not included be- 

cause of the installation delay, but the calculated result 

will be used in the fabrication process and also be used for 

device analysis. 
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