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BUCKLING OF CONTINUOUSLY SUPPORTED BEAMSJ)

by

G.K. Narasimha Murthyl)

SUMMARY
The buckling of continuously supported infinite bears is investi-
gated, The foundation models used are: the winkler model, the Pasternak
model, and the elastic continuum. For each foundation model, the buckiing
loads were determined when the beam rests on a two-dimensional foundation
and also when the foundation extends beyond the width of the beam. The
effect of the outside foundation is established by comparing the obtained

buckling loads.

INTRODUCTION

The utilization of reinforced concrete pavements for roads and
airport runways and the use of metal rails for railroad tracks created
interest in continuously supported structures. These structures may
be subjected to a variety of loads. One possibility is the induction
of compressive stresses due to heating. Buckling of pavements and
rails may result when these compressive stresses exceed a certain limit,

In the present paper, the buckling of infinitely long beams sup-
ported by an elastic foundation is studied. It is assumed that the

induced compressive force is axial and uniform throughout the beam,

*) This research was sponsored by the National Aeronautics and Space
Administration under grant NGL-33-016-067. The paper also con-
stitutes part of a dissertation submitted by the author to New York
Unive--3iy in partial fulfillment of the requirements for the degree
of Doc. +'0of Philosophy.

1) Research Assistant, Department of Aeronautics and Astronautics, New
York University, New York, N.Y.




The differential equation for the deflection of a beam w(x) resting on
a foundation and subjected to lateral load q(x) and axial load N is
given by

d*w

eSS -0 - b0

where po(x) is pressure at the interface between the foundation and
the beam,

The ictual response at the interface depends on the material of a
foundation and is usually very difficult to determine. In order to
reduce the encountered mathematical difficulties, various foundation
models were proposed to approximate the real foundation behavior. For
a discussion of various models see ref, [1]. The Winkler [2], Pasternak [ 3],
modified Pasternak (4] foundations and the elastic continuum are some
examples.

Because of the absence of shear interactions between the spring
elements of the Winkler foundation, the foundation outside the width of
the beam does not contribute to the toundation response. This is not i
the case with the real foundation. The above shortcoming is eliminated g
by using the Pasternak, modified Pas*ernak foundations or the semi-infinite ;
elastic continuum,

The purpose of this paper is to study the effect of the outside
foundation on the buckling load of an infinitely long beam continuously
supported on an elastic foundation. We start with a brief survey of ﬂ
relevant publications.

The majority of relevant publications deals with the bending of
continuously supported infinite beams. An infinite beam resting on a
two-dimensional elastic continuum and subjected to a concentrated load

was investigated by M.A. Biot [5] and E. Reissner [6]. Biot solved




the above problem using the sine wave distribution of load, while
Reissner used the Fourier integral approach.

An infinite beam resting on a modified Pasternak foundation and
subjected to a concentrated load was treated by W.J. Rhines [7]. An
exact solution in terms of an integral expression was obtained using the
complex Fourier transform, However, no numerical solutions were pre-
sented., The infinite beam resting on a semi-infinite elastic continuum
was studied by V.L. Rvachev {8,9]. He first obtained an exact expression
for the pressure distribution at the interface in the form of an infinite
series of Mathieu functions, then used it to obtain the deflections.

The analysis of beams resting on a semi-infinite elastic continuum
may be simplified if approximations are made regarding the pressure
distribution over the width of the beam, M.A. Biot [5] assumed a uniform
pressure across the width of the beam. Since the deflection of the
elastic continuum due to 8 uniform pressure is not a constant over the
width of the beam, Biot used an average deflection as the deflection
below the beam. A.B, Vesic [10] extended Biot's solution and evaluated
numerically the integrals appearing in the solution. A.P. Fillippov [11]
assumed that the pressure distribution as well as the deflection under
the beam is uniform, Gorbunov-Posadov [12] also solved the above problem
by assuming that the pressure distribution under the beam is the one that
occurs under a rigid stamp.

A lite;ature sﬁrvey revealed that not much work has been done on
the buckling of beams on elastic foundations. The few publications
found were limited to two-dimensional foundations.

M. Hetényi [13] has analyzed the buckling of finite and infinite

beams resting on a Winkler foundation. P, Csonka [14] determined the




buckling load of a8 simply supported beam assuming the existence of a
rotationally elastic constraint. A method for obtaining the buckling
load for a beam resting on a two-dimensional foundation, using a
kernel function for the foundation response, was discussed by E.
Reissner [6]. Recently, T.E. Smith [15] determined the buckling load
for a simply supported beam resting on a two-dimensional foundation by
using the kernel function suggested by K. Wieghardt [16]. As shown in
ref. [1]., this kernel represents the response of the two-dimensional
Pasternak foundation,

The present paper deals with the determination of the buckling
loads for infinitely long beams resting on elastic foundations. It is
assumed that the buckling takes place at the onset of neutral equi-
librium, The foundation models that are used to approximate the
behavior of the supporting medium are the Winkler, Pasternak, and
the elastic continuum, The effect of extending the foundation beyond
the width of the beam is determined by comparing the results obtained
for two and three-dimensional foundations.

It is well known that the buckling mode for an infinitely long
beam supported by a uniform Winkler foundation is periodic. Therefore,
for the buckling analysis of the infinite beam, the Fourier series is
used in the longitudinal direction and the}complex Fourier transform

is used in the transverse direction,

BUCKLING OF AN INFINITE BEAM RESTING ON A WINKLER FOUNDATION
The differential equation for the deflection w(x) of a beam of width 2b

subjected to an axial load N and suppofted by a Winkler foundation is
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where k is the spring constant. The buckling load is according to [131

N, ~ 2 ,[EI(2bk)

BUCKLING OF AN INFINITE BEAM RESTING ON A PASTERNAK FOUNDATION

Two types of problems are considered, depending on the continuity
of the foundation in the lateral direction of the beam: 1) when the
foundation is only under the beam and 2) when the foundation extends

beyond the width of the beam,

1, Beam resting on a two-dimensional foundation

Cons ider a beam resting on a deep wall whose behavior may be

approximated by a Pasternak foundation as shown in Fig. 1, The differ-

ential equation for the beam is

EI-&?+N%=-2bp(x) (3)

where p(x) is a uniform interface pressure. The differential equation

for the foundation is
d2
kw - 6 5F = p(x) )

Substituting for p(x) the expression (4) into (3) it follows that

El %if + (N-ZbG)%E? + (2bk)w = 0 (5)

The regularity conditions are

lim dw =
w(x), dx,...} finite ©)

Substituting

w(x) = Z W cos (anx) | 7)
n=0 '

1)

(2)
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in (5) we get

x

Z[m of - (N-2b6) of + 2bk]w_cos(a x) = 0 (8)
n=0

Since {cos(ahx)} is & linearly independent set, the coefficient of each
term should vanish separately [17]., Therefore, from (8) it follows
that

- 2bk
N ?.bG+EIai+3— (9)

n

The value of ah which makes N a minimum is obtained from

dN
i 0 (10)
n
The equation (10) yields
- 2bk
O; El L

Substituting (11) into (9), the buckling load is obtained as

Ncr = 2bG + 2«] EI(2bk) (12)

As pointed out in the introduction, after redefining the constants

the equation (12) becomes identical to the result obtained by T.E.

smith [15].

2, Beam resting on a three-dimensional Pasternak foundation
A beam resting on a three-dimensional Pasternak foundation and g

sub jected to an axial load is shown in Fig. 2. The shear layer and the

springs are assumed to extend to infinity beyond the beam in the y direction. 3
It is again assumed that the beam is infinitely long in the x direction and %f
has a width 2b, The differential equation governing the deflection of

the beam is

El

P

+ N —;;f-”-f = - p,(x) (13)




where po(x) is the contact pressure per unit length of beam axis. The

differential equations for the foundation are, under the beam

G [%i;L +'%;¥L1 - kw, = - p(x,y) -b-y«b (14)

and outside the beam

c[-g—j;‘i’w%‘*‘—}-k%-o ly| > b as)

where w (x,y) is the deflection of the foundation below the beam,
W, (x,y) is the deflection of the foundation outside the beam and p (x,y)
is the contact pressure at the interface, The corresponding regularity

conditions are

lim d _
x-gt&{wl (X), gx& s e o} finite

-

lim (o Qi Jwp o0} = Einice 16}

x~o"2’ Jx ' dy
lim (0 W Qwy =
y=tol 2’ J3x ' Oy } 0

The method of solution to be used in the following is;

-]

1, First, the Fourier series _or w(x,y) =z wn(y) cos (anx) in

R N e R AT e T e R

n=0

Focr T o

X direction and the complex Fourier transform in y direction

EREE et

s B

are applied to the differential equation for the foundation and
1 an algebraic relationship between the pressure p and the corre-
sponding deflection w of the foundation under the beam is

determined,

@
2. Next, the Fourier series for w (x) = X W, cos (anx) and

n=0
-]

po(x) = E: Pon cosﬁahx) are applied to the differential

n=0
equation for the beam. Notihg the derived relationship

between the pressure and the deflection of the foundation

7




under the beam obtained above, an expressicn for the axial
load N in terms of & is obtained.
3. The minimum value of N which corresponds to the buckling
load follows from the plot of the axial load N against &
For complicated foundation models, the relationship between the
pressure and the corresponding deflection of the foundation under the
beam may be very involved. As pointed out in the introduction, to
simplify the analysis it is often assumed that the pressure distri-
bution below the beam is uniform, To study also rhe effect of "ais
agsumption, in the following, two cases are considered; i) exact
analysis and ii) an approximate solution under the assrmption of
uniform pressure over the width of the beam,

i) Exact analysis

Consider a beam which is flexible in the longitudinal direction,
rigid across the width, and supported by a three-dimensional Pasternak
foundation, For this case the deflection of the foundation below tﬁe
beam in the laternl direction is consiant, The pressure distribution
below the beam is not known.

The differential equations for the beam and for the foundation

are given in (13), (14) and (15). Let

©

W (6y) = ) W () cos(ax)

n=0
w (x,y) = z W, (¥) cos (o x) (17)
n=0

[~ -]
= .
P (x,y) /, Pin ©°8 (anx)
n=0




Substituting (17) into (14) and (15) we get

2 _dPw P .
S‘ [T?-LQ - (a:‘ + k/G)w‘n + -%—] cos (anx) =0 (18)
n=0
v
z [d—f-'l - (& + k/c)w“] cos (a_x) = 0 (19)
n=0

Using the same argument that led to the equation (9) it follows from

(18) and (19) that

o) p, . (¥)

7 1“-(ai+klc)w1n=-—l—g—-— -bsy<hb (20)
dzwan

a-yz-—-- (d:-i-k/G) wan=0 |Y| >b (21)

Since the deflection of the foundation under the beam is equal to the
deflection of the beam, w, (x,y) is independent of y in - b < y < b, It is

8lso known that p, (x,y) is independent of y in -bsysb. Therefore, (20) yields

P

n G(Ct: + k/G) LA (22)

The solution of (21), satisfying the regularity condition at

y = «» and the continuity condition at y = b, namely

wan(b) " "In 23) ’

is given by
-n(y-b)/b
wan(y-) =w,e | (24)

where o '

3 kb -

W o= (o by +=C ) (25) ,
The discontinuity in slope along y = £b will result in concentrated L~

line reactions p; (x) along tlie edges y = +b. As shown in the Ref. [1],

this concentrated reaction is given by

.S =
P = - G5 (26)




3

Substituting

cos (a“x) (27)

dw n
psn =-G dy (28)

Using (24) in (28) it follows that

= T(,;'E w (29)

P i n

an
The total pressure Py (x) acting on any section of the beam is

Po(x) = 2b py (x) + 2 py (x) (30)

Substituting for py (x) and pg (x) from (17) and (27) respectively we
obtain

®

po(x) = 2 (2b Pin + 2 pan) cos (anx) (31)
n=0

Using the values for Prn and Pn in (31) from (22) and (29) respectively,

it follows that
-]
- 2Gp(1+u)
Py (x) Z b w1 n CO8 (anx) (32)
n=0

The equation (32) is the desired relati}onship between the total
pressure and the corresponding defleccikbn of .the foundation below the
beam,

Consider the differential equation governing the deflection of

the beam given in (13). Substituting for w (x) as

W (x) = W _ cos (anx) o (33)

in

A1 e

10
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and for po(x) from (32) into (13) it follows that

}:[31 of - N+ -Z-L*-G—&m] “ , cos(@x) = 0 (34)

n=0
Following the same argument that led to the equation (9), the above

equation yields

~

ek - v+ 2ulltn .o (35)

n

The equation (35) yields

- 2u6(1+
N EIaf‘+-§—é;—“2 (36)

n

The minimum value of N which corresponds to the buckling load is obtained
by plotting the equation (36) as shown in Fig, 3. The final results

are shown in Figs. 5, 6 and 7.

ii) Uniform reaction across the width of the beam

To determine the effect of an assumption usually made in the
liter;ture, in the following, the pressure distribution across the ?
width of the beam is assumed to be uniform,

First, the relationship between the pressure distribution and the i
corresponding deflection of the foundation below the beam is determined.
Fig. 4 shows a load p(x,y) of arbitrary variation in x direction and
uniform over the width 2b and acting on a Pasternak foundation. The

differential equation for the deflection of the foundation is

Fw , F

G-S;-;+-a—)-}]-kw=-p(my) eyt (37)

Let ;o |

11
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¢

w(xy) = ¥ w_(y) cos(a x)

ﬁ:O
(38)
p(x,y) = Z P, () cos (@ x)
n=0
Substituting (38) into (37) we obtain
Fw p_(y)
;;:3-(@+k/c)wn=- = -cosy<w (39)

In the present case, since the deflection of the foundation and its
derivatives are continuous and tend to zero as y - », we use the
Fourier transform in y direction. Defining the Fourier transforms [1€]

of wn(y) and pn(y) in y direction as

@®

W @ = [ v () ® gy (40)
P @) = | b () e ay ay

the transform of (39) in the y direction becomes
& +d +k/6)w @) =p (B)G (42)

Since p(x,y) is uniform in - b< y < b and zero for |y| > h, it is a

function of x only, Hence the equation (41) yields

b
- i
-b

Substituting for BnQB) from (43) iqto (42) we obtain

- 2 sin(pb) P
"W 5+ "+ k/G) T (34)

12




Noting the inverse transform of ;rn(e) as

o ) =5 [ 6) & 45)

and substituting for ;vn(ﬁ) from (44) into (45) it follows that

=<}

n  sin(fb) cos (Ry)
[ BlE + &+ k/G] dp (46)

2p
; “n o) = re
8 0

Performing the indicated integration in (46) we obtain for |y| < b
pnba { s By
w0 = o {1 - e cosh(¥ )} “7)

where u is defined in (25).

T AR T 3. PP e ol MOEIE =

It is observed from (47) that the deflection >f the foundation in

the region - b< y <« b is not uniform. But for a beam, the deflection

el PRI

over its width is constant., 1In order to overcome this difficulty two
procedures are used here ; a) assume that an average value of the de-

4 flection of the foundation across the width of the beam may be used as

, the deflection of the beam [5], or b) assume that the deflection of the foun-
dation at y = 0 may be considered as the deflection of the beam [11],

a) Assuming that the average value of w(x,y is

b

wav(x) = -1?:1-:' J’. w(x,y) dy (48)
-b '

and substituting for w(x,y) from (38) into (48) it follows that

b o
Vv (x) = -;—5- j [z W (y) cos (oznx)]dy (49) ;
-b n=0 1

Substituting for wn(y) from (47) into (49) and after interchanging

the integral sign with the summation sign, the integration of (49) yields

13




wav(x) = %:' E; ﬁ; (u - e M sinh{u)] Py cosﬁdnx) (50)
n=0
Since
p(x) = 3: P, cos(a x) (51)
n=0

the equation (50) is the required relationship between the pressure
and the deflection of the foundation,
The differential equation governing the deflection of the beam is

given in (13)., Noting that w, (x) = wav(x) and po(x) = 2b p(x) we get

from (13)
d"wav dw v
EI'-E,:;—+N#'=-2b p(x) (52)

Introducing (50) and (51) into (52) the resulting equation is satisfied if

ETof - NP + 2648 =0 (53)
n n blu - e M sinh(u))

From (53) it follows that

N=EL & + 2648 (54)
[p=-e M sinh(p)) bd;
2
The buckling load which corresponds to the minimum value of'g%— is ob-

tained by plotting the equation (54) and the numerical results are shown
in Fig. 6.

b) Consider the case for which the deflection of the foundation at y = 0
is the deflection of the beam. Setting y = 0 in (47) and noting the first

equation in (38) we get

® pnba iy '
w (x) = w(x,0) = y E}?—. {1 - e } (55)
n‘--

14
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Substituting the above expression in the differential equation for
the beam given in (13), noting that po(x) = 2b 1. (x) and that p(x) is

expressed -in (51), it follows that

EIof - NF +..._g.G.H:2__=Q (56)
n n -
b[1-e”M]

The above equation yields

2
N = EL & +—20 (57)
b(l-e M)d

The minimum value of N is obtained using the same procedure as used

earlier. The numerical results are shown in Fig. 6.

BUCKLING OF AN INFINITE BEAM SUPPORTED BY A
SEMI- INFINITE ELASTIC CONTINUUM

The effect of extending the foundation beyond the width of the
beam is studied by considering an infinite beam resting on a two, as
well as on &8 three-dimensional elastic continuum,

1., Beam resting on a two-dimensional elastic continuum

Consider an infinitely long compressed beam supported by an elastic
continuum, It is assumed that the foundation extends to infinity in the
x direction. In the y direction it coincides with the width of the beam,

The differential equation for the beam is, as before

E:%;i‘-‘»+n-§—f§-"l—=- p, (x) | (58)

The differential equation for the foundation in terms of the stress

function F (plane stress) is

s 4 4
S rasenE tSE 0 9)

The regularity conditions are

- 15
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Lim £ 9‘—”-,...} = finite

X0 ' dx
lim - v =
x-.ia{"xx' c,., oxz} finite (60)

lim
Zs 420 cxx' Oz Oxz} =0

and the boundary conditions at z = 0 are

o, = - P(x)
(61)
c. =0
Xz
Following the procedure used before, the buckling load is ob-
tained as
Ncrb2 Efb* 2/3
EI =3[_2EI] ©2)
where Ef is the Young's modulus of the elastic continuum, For more

details, the reader is referred to [13].

The equation (62) is also obtained by E. Reissner who assumed that
the infinite beam is supported by a two-dimensional elastic continuum
and on an infinity of équidistant supports [67.

2, Beam resting on a three-dimensional elastic continuum

Consider an infinite beam of width 2b lying on an elastic con-
tinuum and subjected to an axial load as shown in Fig., 8. The foundation
is assumed to extend beyond the beam to infinity in y direction. The

differential equation for the beam is, as before

d*w Ew _
EL 4% + N 37~ = - p_(x) (63)
The regularity conditions are
lim fo (x) dw } = finite 64)
] *dx ’°°°

16 N




We shall first determine the relationship between the surface

deflection of the elastic continuum and the distribution of pressure

: acting on the surface. The differential equatioms governing the
. displacements of the continuum are {20]
i 1 de
Vut T ok = 0 65)
1 e _
AR v Sy = O (66)
2 1__ e,
'. Vw + T30 o>z 0 67)
é where u, v and w are displacements in x, y and z directions respectively
‘? and
H
i du , 9ov , ow
£ emsame + a— —
e "> Tyt
F & F
VTt
% The boundary conditions at z = 0 are
; czz = {'pl (x9Y) - bsg y < b (68)
\ 0 lyl > b
&
{;“é Oxz 0. (69)
& cyz =0 (70)

The regularity conditions are

lim
x_&w{u, v, w,...} finite
lim (1)
rﬁ«»{u. v, W....} =0
Fan o) |
The volumetric expansion e satisfies
gf*%a}s"%}” (72)

with the corresponding conditions at infinity, namely

17
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lim e(x,y,z) = finite

Xt
(73)
lim e(x,y,z) =0
y-i®
Z—t+o
Since u, v and w are assumed to be periodic in x direction, e also
should “e periodic in x. Let
[+ o]
e(x,y,2) = ) e (v,2) cos(ax) (74)
n;0

Substituting the value for e(x,y,z) from (74) into (72), we obtain

Fe Fe

«a—zgﬂ+-a7-ﬂ-a;en=o (75)

Defining the transform of en(y,z) in y direction as

<]

En(B.Z) = _[ en(y.Z) elPY dy (76)

-0

the transforms of equations (75) and (73) become

fe )

7 - £+ e =0 a7)
lim En(ﬁ,z) =0 ' (78)
A

The solution of (77) satisfying (78) is

where

Let

e B.2) = ¢ (a,B) ™" (79)

a® =°‘z"’§ (60)

18




u(x,y,z) = Z un(y,z) sin(anx)

n=0

a

B Sbs: G

v(x,y,z) = Z Vn(Yoz) COS(ClnX) (81)

n=0

BRI * ae - M

we,y,z) = ) v (y,2) cos (o x)
n~0

i Substituting (81) and (74) into (65), (66) and (67) and noting that

{cos (anx)} and {sin(anx)} are linearly independent sets, it follows

that
daun Eu ae
i el AN e Vi (82)
dzvn d‘avﬁ 1 aen
dzzp'*d?“’ -(fhvn*-l-Zv dy =0 (83)
‘ dewn dawn 1 aen
_ dz° + d? B d;wn + 1 - 2v oz =0 (84)

Let the Fourier transforms of uL vy and v in the y direction be

o

e = [ o2 e ay

-0

o

v @2 = [ v r.2) e ay (85)

-0

?on(ﬁ.z) I w (,2) Py dy

-

The transforms of (82), (83) and (84) in y direction and noting (79)

become

19




d”un .- anC n -az
dz* -aun.l-z\.-e (86)
v isc

i n e %Y = in -82

dz* AV "1-2v ¢ (87)
Pw . aC, ...

e O e et b i e

where & is defined in (80).

A TR

The solutions of (86), (87) and (88) satisfying the regularity con-

ditions at z = «» are

. a C
i - . - - nin -8z
5 un(P,z) Cn 2a(l-2v) 21® (89)
1R3¢
‘ - = . 1n ~-82
vn(B.z) Csn 2a(1-2v) i (30)
by i aC“‘ . -az
= | - S -
wn(ﬁ.z) C4n 2a(l-2v) z.le 1)

respectively.
The cc..stants C , C , C _and C _ are functions of @ and B and
in’ 2n’ "an 4n n
are to be determined from the boundary conditions at the surface nf

the elastic continuum,

X From the boundary conditions (69) and (70) it follows that at
z2=0
: du . 2 j
u L 9w 92
; 3z Tox =0 (92)
v, dw .
3 + Sy 0 (93)

According to the definition of the volumetric expansion, we have P

%‘.+?g-‘-y’-+i-g-§=e (94) .

Substituting (81) into (92), (93) and (94) and then using the transform

in y direction on the resulting equations, it follows that
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(___ - a o ] =0 (95)
z=(
[—-—- - gl | =0 (%)
it
z=0
di:n ) ) )
P + anun - 1tﬂVn - en (97)

Substituting the expressions for ﬁn, ;n' v'en and En from (89), (90),

(91) and (79) in the above equations it follows that

aﬂcln
*Cn* %t @y " °
iBCln
aCa + iBC m 0 (98)

- oG +18C  +ac + L1 +

1 9
2(1-2v) Jcln =0

Solving for Can’ Ca n’ and Ccn in tems of C1n we obtain

Q
n
Czn = 2? C1n

c =§%c (99)

an a iln

l-v
Cn =~ 3@-2v) Gn

Substituting the above obtained constants in (89), (90) and (91), it

follows that

1 = 2v 1 _-az
u ®,2) = Za(l Zv) [ a zde (100)
ipC -
- = 1n 1 - 2v _ -az
vn(B.z) 2a(1-2v) a z-e (101)

C -
W @,2) = - 5l 2Q1-v) | z]e°“ (102)

2(1-2v) a
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In the above equations, the constant C1n is stil' an unknown
quantity. It is determined by using the r-maining boundary condition
given in (68).

According to Hooke's law,

ow du Bv\
0,, = @) 5T+ (55 + %) (103)

where A . and . are Lamé constants., From (68) and (103) it follows

that
5u - p, (x,¥) -bs<ysbd
[‘2“ S Gts )] - { (104)
Y/ dy=0 0 lyl > b
Substituting u, v and w from (8l) into (104) we obtain
i oW avn\ -pxy) -bsy<hbh
cos (O x)[(Zp,+k ) -2 4 X a u + — = {
n f £ Jz o
n=0 Y l=z=0 0 lyl > b
(105)
The transform of (105) in y direction becomes*
Z [(Zu -8 Al u u_-1iBv )] cos (anx} = - p(x,B) (106)
z=0
n=0
Substituting an, ?;n and x‘an from (100), (101) and (102) into (106) it
follows that
® - |
- - . bP(&x,B)
) Gn@:B) cos(ax) 0. Hiig) (107)
n=0

Since the pressure distribution below the beam is not known, it is not
possible to determine C1n(an’6) from (107).

Consider the pressure distribution below the beam

* The pressure distribution under a rigid stamp resting on a semi-
infinite elastic continuum has infinite discontinuities along the
edges of the stamp. Nevertheless, the application of the Fourier
transform is valid because of theorem 47 of referen:t ' 17,
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Py (x,Y) -bsy<«hb
p(x,y) = { (108)
0 lyl > b
The inverse transform of B(x,B) in y direction is defined
[ o}
1 - 1 - iF
pey) = 2= [ Bep) &Y as (109)

-0

Substituting the expression for f)(x,B) given in (107) into (109) and

noting (108) it follows that

®© ®
0 Au) 1. - p (x,y) =b-vyschb
fznf I[Z c. (o ,B) cos(ax)_le 1By d[3={ !
in"'n n
0 ly] > b
-0 n=0
(110)
Substituting z = 0 in (102) we get
c (x ,B)
- 1 - v inn
w (B,0) = - T . - (111)
n 1 2v (ai,:l_‘_ﬁa );;
The inverse transform of ;Jn(ﬁ,o) in y direction is
[+ <]
= 1 - -ip
W 0,0 =5 [ & (6,0 e Y ap (112)
-eo

Introducing the value of ;Jn(ﬁ,o) given in (111) into (112) it follows

that
T C_(x,B)
1 - v in''n -iBy
w (y,0) = - - e dg (113)
n’ 2t (1-2v) o (Qi"'ﬁa)%

Multiplying both sides of (113) by cos (oznx) and summing over n = 0 to

n =« and noting that

w(x,y,0) = E w (y,0) cos(@x) (114)
n=0

it follows that
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w(x,y,0) = - Zﬂ(l 2\}) Z cos(a X) I e-iij ds (115)

A (P4e @
The surface deflection of the foundation below the beam is equal
to the deflection of the beam but is not known away from the beam,
Since the deflection of the foundation across the width of the beam is not a
function of y, we have
w, (x) -bz-y<b

w(x,y,0) ={ (116)
w, (x,¥) ly] > b

where w(x,y,0) is the surface deflection of the foundation,

w; (x) is the deflection of the foundation under the beam, and

w (x,y) is the deflection of the foundation outside the beam,

From (115) and (L16) it follows that

N ® c (x,B) _ -w, (x) -b=<y-b
waED ) G f"-“—l‘—r A ar7)
ot (@ +6%) -w, (x,y) |yl > b

Combining the equations (110) and (117) results in the following pair

of integral equations for the determination of the constant Cln(an,ﬂ)

.[ [z C, (@ P) cos (anx)]e-my g =0 |yl > b (118)
- n=0

I[E G CP) c02 X)] T1BY g = . AW ) () -

A

y<b  (119)

X (1-v)
- n=0 ((114{3?)
where w (x) = S W, cos (anx) (120)
n=0

The solution of the above pair of integral equations yields Cln(an’s)

in terms w, n Substituting this value of Cln(an,s) into (107), we
obtain the relationship between the pressure p(x,8) and the surface

deflection of the foundation below the beam, B}

24




-
ERr e ST S g B ¥

1z

T R

[

R4

The solution of the above pair of integral equations is not avail-
able in the literature and was not obtained by the author. Therefore,
the exact relationship between p(x,2) and wl(x) remains unknown,

From the results of the buckling loads for a beam resting on a
Pasternak foundation, it may be concluded that if the pressure distri-
bution across the width of the beam is assumed to be uniform, then the
obtained buckling loads for a beam on a8 three-dimensional elastic con-
tinuum differs very little from the exact ones (See Fig. 6). Therefore,
the following two cases are considered here; i) at each point along the
length of the beam the contact pressure is uniform across the width of
the beam [5,11] and ii) at each point along the length of the beam the

pressure distribution is the one that occurs under a rigid stamp [127.

i) Uniform reaction force over the width of the beam

It is assumed that
Pl(x) -b<cysb

p(x,y) = (121)
{ 0 Iyl > b

The transform of p(x,y) in y direction is

pex,8) = [ pex,y) e ay (122)

Substituting the expression for p(x,y) given in (120) into (121) and

performing the integration, we obtain

plx,p) = 2BER) , ) (123)

Using the above value of p(x,B) in (107) it follows that

2 sin(gb
G oyP) cos @) = - Gy - S 5, (o (124)

o8
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Multiplying both sides of (123) by e Y and integrating with respect

to £ between the limits -= and +» we get

o ] [+ <] [» -}
Y T -iBy - . 2pi (%) | sin(pb) -iBy :
-[LL) Cln(cxu.ﬁ) cos (anx)Je dg ()"f+p‘f)J 5 e dg (125)

-» n=0 -

Performing the integration, it can be shown that the right hand
side vanishes for y > b .

From (124) and (125) it follows that the first of the pair of

integral equations, namely (118), is satisfied.

-1By
Again multiplying both sides of (123) by & 1 and integrating
(f +°)
with respect to B between ~» and +« and noting (119) it follows that
[« o}
2(1- in(Bb -1
w ey = HELD o [ BIRED) 1BV o (126)
£ — BlP45°]

In obtaining the above equation, the following relationship u.tween

the Lamé constants and E_. and v has been used [20]

f

E
£
At Mg = TAR) A-29) (127)

It should be noted that in (119) w, is a function of x only,
whereas in (126) it is a function of x and y. This is dﬁe‘to the as-
sumption that the pressure distribution acorss the width of the beam
is uniform,

Because of the assumption that the contact pressure is uniform
across the width, the deflection of the surface of the foundation below

the beam is not constant, To overcome this difficulty, as before, one
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can proceed in two ways. One method is to use an average value of the
deflection of the surface of the foundation below the beam as the de-
flection of the beam [5]. Another method is to consider the surface
deflection of the foundation at y = 0 as the deflection below the
beam [117,

Consider the average value of the deflection of the surface of
the foundation below the beam as the deflection of the beam, The
average deflection of the foundation is

b

w0 =3 [ w ey dy (128)
-b

Substituting wl(x,y) given in (126) into (128) and integrating between

the limits shown we obtain

N X T sin® (8b
W (x) = 4(A-v) py (x) -sin® (Bb) B (129)

Rearranging (129) we get

nEf | wav(x)
P = G5E-F) o) (130)
where
¥ (oznb) = J' sin® (o) dp (131)

[ by + ¢ 1%

0
The equation (130) is the sought relationship between the pressure
distribution at the interface and the surface deflection of the foun-
dation below the beam,

The differential equation governing the deflection of the beam,

noting w, (x) = wav(x) and po(x) = 2b P, (x) is
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d"wav d:"'wav
EI_HT+NV=- 2b pl(x) (132)

Substituting the value for Px(x) given in (130) into (132) and noting

that
wav(x) = ET [wav]n cos(ahx) (133)
n=0
we obtain
. mE, 1
. - —— = )
) [Erdh - v+ 5ate w(anb)] [Wgy ) cos(ax) = 0 (174)
n=0

Using the same argument that led to the equation (9), from (134) it
follows that

TTE

_ £ 1
N ELE A TaVY T, 439

N
EI

The buckling load which corresponds to the minimum value of %%i is ob-

tained from the graph. The results are presented in Fig. 9.

Using the equation (135), a plot of against (Ohb) is obtained.

Consider the case in which the surface deflection of the foun-
dation at y = 0 is used as the corresponding deflectiQn of the beam,

From (126) it follows tlat

nE |
£ wy, (x,0)
Py ) = Z50-F) 3 (@ b) (136)
where
3 b) = J' sin(p) do (137)

ol (@ by + ¢ ik

o
A.P, Fillippov [11] obtained the equation (136) by using a different

approach.
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?1 From (132) and (136) and noting w (x) is
| % W (x) = 2. LA cos(ahx) (138)
g n=0
“ ~§ it follows that
»g nEf 1 .
N = ELL 4 70V Tla®) (139)
g The results obtained from (139) are shown in Fig. 9 .
. % 11) Pressure distribution that occurs below a rigid stump
<
f The pressure distribution that occurs below a rigid stamp
? resting on an elastic half-space was obtained by M. Sadowski 22]
$ F P ()
& —-—;——-—g -bscy<b
; \ 0 lyl >b

K where po(x) is the reactive pressure per unit length acting on
the beam. Recalling the definition of the Fourier transform of p(x,y)

in the y direction

p(x,B) = J p(x.y) ePY ay (141)

-0

and substitution of p(x,y) from (140) into (l4l) yields

b

- 2po(x) cos

P(x,B) = —2 j——-‘m—(ba_f);, dy (142)
o

performing the integration in (142) we obtain

P(x,B) = J_(Bb) p_(x) (143)

From the equations (107) and (143) it follows that

) '3, 6b)
2 C, o (@ /B) cos(xx) = - W © Py (%) (144)

n=0
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Multiplying both sides of (144) by e-iBy and integrating with respect

to B between - and +x we get

r ) 7 ~iBy .
I Lz Cln(an.rj) cos (anx)Je dp
[ 1.} n-o
p_(x)
B - o - -iBy
o [ 3,60y B g (145)

Referring to Tables [23], page 730, we find

- J

J‘ Jo(ﬁb) cos(By) d8 = 0 y>b (146)
0

From (145) and (146) it follows that (118) is satisfied.

-iBy
Again, multiplying both sides of (144) by £
(oF +6°

n
with respect to B between -» and +« and noting (119) we get for

% and integrating
)

-bsgsy<b

S p 6D
W 3 = p () lnEf"a [ === 1Y g (147)

As before, the surface deflection of the foundation in the region
- b< y< b depends on y, whereas the deflection of the beam is conr n= ",
Therefore, we consider the average of the deflection of the surfaée ve
the foundation in - b < y < b as the deflection of the beam, Integrating

(147) with respect to y between the limits - b < y < b and dividing by
2b, it follows that |

Po(X) 2 (117) ? J_(8b) sin(gb)

R R o (148)
-t n
Rearranging (148) we get
nE W (x)
£ a
Po () = TUFY 560 (149
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where

(-} ]

. J () sin(p)
®(@pb) = | 2 do (150)

[}

o[ @by +d 1¥
Equation (149) is the required relationship between the total
pressure acting on any section of the bedwn and the surface defizaction
of the foundation below the beam,

The differential equation for a beam in terms of the average
deflection is given in (132). Noting that po(x) = 2b pl(x) and that

-2

ey ™ z [wg,] cos(x x) g

n=0

the equations (132) and (149) yield

nE
£ 1 ,
N=Eerd + AV 56T, (151)
2 : W
The equation (151) is used to obtain a plot of %%— against oanb). i%
The buckling load which corresponds to the minimum value of g%i is ob-

tained from the above plot. Final results are shown in Fig. 9. by

Discussion of results

The buckling loads for a beam supported by a Pasternak foundation
are computed for different values of spring parameter and shear parameter,
using the equatidnsw(36) and (57). The results are shown in Figs. 5, 6 and 7.
The effect of extending the foundation beyond the width of the beam
is shown in Figs. 5 and 7. As expected, the buckling loads for beams sup-
ported by a three-dimensional foundation are larger than the corresponding
buckling loads of a beam on a two-dimensional foundation., It is observed
that for constant foundation parameter k, the buckling load increases

with increasing G. For example, for k = % x 10°°, the buckling load i
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is about twice as large as when G = %} x 107" compared to the buckling
load when C = %} x 107°,

From Fig. 5, it is also observed that in the case when the foundation
is two-dimensional, the different values of G do not very much effect the
buckling load. This becomes even more obvious when the buckling loads
for the two-dimensional foundation are compared with the buckling loads
of the Winkler foundation, which is also shown in Fig. 5.

In order to show the effect of used approximations, the buckling
loads obtained from the exact and approximate analyses for a beam
resting on a Pasternak foundation are shown in Fig, 6. It is found that
the introduced approximations have a very small effect on the determined
buckling loads. For example, when G = é} X 10-3 and k = %} X IO-G, the
buckling load obtained from the exact anaiysis is 4.0x10"® and from
the approximate analysis, in which the average deflection of the foun-
dation below the beam is used as the deflection of the beam is 3.8x10™°
The difference for the above case is 67 . It is also seen from Fig, 6
that, of the two approximate analyses used, the one which assumes
that the average deflection of the foundation below the beam is the
deflection of the beam gives the better approximation,

The buckling loads 1or a8 beam resting on the semi-infinite elastic
continuum are obtained for different values of the foundation parameter
using the equations (62), (135), (139) and (151). The results are pre-
sented in Fig. 9. As expected the buckling loads for a beam on a semi-
infinite elastic continuum are larger than the corresponding buckling
loads of a beam on a two-dimensional elastic continuum, It is found that the
difference in the buckling load between the semi-infinite elastic con-
tinuum and the two-dimensional foundation increases with the foundation

*
parameter E1’ i.e., for a given v, as the modulus of the foundation
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increases the above difference in the buckling load increases.,

The buckling loads obtained from .ng the different approximate
analyses are also shuwn in Fig. 9. The difference in the buckling
loads obtained from the various approximate analyses are very snall

for assumed values of the foundation parameters,

On the basis of the results obtained for the case of the Pasternak
foundation, it is expected that the buckling load for a beam on a semi-
infinite elastic continuum obtained by using the assumption of uniform
reaction together with the average deflection of the foundation will

be close to the exact solution,
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Fig. 1 Beam on a two-dimensional Pasternak forndation

Fig. 2 Beam on a three-dimen=ional Pasternak foundation
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Fig. 5 The effect of extending the foundation beyond the
width of the beam
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