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BUCKLING OF CONTINUOUSLY SUPPORTED BEAMS

by

G. K. Narasimha Murthy1

SUMMARY

The buckling of continuously supported infinite beams is investi-

gated. The foundation models used are: the Winkler model, the Pasternak

model, and the elastic continuum. For each foundation model, the burkiing

loads were determined when the beam rests on a two-dimensional foundation

and also when the foundation extends beyond the width of the beam. The

effect of the outside foundation is established by comparing the obtained

buckling loads.

INTRODUCTION

The utilization of reinforced concrete pavements for roads and

airport runways and the use of metal rails for railroad tracks created

interest in continuously supported structures. These structures may

be subjected to a variety of loads. One possibility is the induction

of compressive stresses due to heating. Buckling of pavements and

rails may result when these compressive stresses exceed a certain limit.

In the present paper, the buckling of infinitely long beams sup-

ported by an elastic foundation is studied. It is assumed that the

induced compressive force is axial and uniform throughout the beam.

*) This research was sponsored by the National Aeronautics and Space
Administration under grant NGL-33-016-067. The paper also con-
stitutes part of a dissertation submitted by the author to New York
Unive ,_!'Cy in partial fulfillment of the requirements for the degree
of Doc,. ,, of Philosophy.

1) Research Assistant, Department of Aeronautics and Astronautics, New
York University, New York, N.Y.
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The differential equation for the deflection of a beam w(x) resting on

a foundation and subjected to lateral load q(x) and axial load N is

given by

EI d

a
x + N d7 - q (x) - po (x)

where F0 (x) is pressure at the interface between the foundation and

the beam.

The ictual response at the interface depends on the material of a

foundation and is usually very difficult to determine. In order to

reduce the encountered mathematical difficulties, various foundation

models were proposed to approximate the real foundation behavior. For

a discussion of various models see ref. [1]. The Winkler F2], Pasternak [3],

modified Pasternak [4] foundations, and the elastic continuum are some

examples.

Because of the absence of shear interactions between the spring

elements of the Winkler foundation, the foundation outside the width of

the beam does not contribute to the foundation response. This is not

the case with the real foundation. The above shortcoming is eliminated

by using the Pasternak, modified Pasternak foundations or the semi-infinite

elastic continuum.

The purpose of this paper is to study the effect of the outside

foundation on the buckling load of an infinitely long beam continuously

supported on an elastic foundation. We start with a brief survey of

relevant publications.

The majority of relevant publications deals with the bending of

continuously supported infinite beams. An infinite beam resting on a

two-dimensional elastic continuum and subjected to a concentrated load

was investigated by M. A. Biot [5] and E. Reissner [6]. Biot solved

2



r

0

the above problem using the sine wave distribution of load, while

Reissner used the Fourier integral approach.

An infinite beam resting on a modified Pasternak foundation and

subjected to a concentrated load was treated by W.J. Rhines [7]. An

exact solution in terms of an integral expression was obtained using the

complex Fourier transform. However, no numerical solutions were pre-

sented. The infinite beam resting on a semi-infinite elastic continuum

was studied by V.L. Rvachev [8,9]. He first obtained an exact expression

for the pressure distribution at the interface in the form of an infinite

series of Mathieu functions, then used it to obtain the deflections.

The analysis of beams resting on a semi-infinite elastic continuum

may be simplified if approximations are made regarding the pressure

distribution over the width of the beam. M.A. Biot [51 assumed a uniform

pressure across the width of the beam. Since the deflection of the

elastic continuum due to a uniform pressure is not a constant over the

width of the beam, Biot used an average deflection as the deflection

below the beam. A.B. Vesic [10] extended Biot's solution and evaluated

numerically the integrals appearing in the solution. A.P. Fillippov [ill

assumed that the pressure distribution as well as the deflection under

the beam is uniform. Gorbunov-Posadov [12] also solved the above problem

by assuming that the pressure distribution under the beam is the one that

occurs under a rigid stamp.

A literature survey revealed that not much work has been done on

the buckling of beams on elastic foundations. The few publications

found were limited to two-dimensional foundations.

M. Hetenyi [13] has analyzed the buckling of finite and infinite

beams resting on a Winkler foundation. P. Csonka [14] determined the

r

3



0

buckling load of a simply supported beam assuming the existence of a

rotationally elastic constraint. A method for obtaining the buckling

load for a beam resting on a two-dimensional foundation, using a

kernel function for the foundation response, was discussed by E.

Reissner [61. Recently, T.E. Smith [15] determined the buckling load

for a simply supported beam resting on a two-dimensional foundation by

using the kernel function suggested by K. Wieghardt [16]. As shown in

ref. [1], this kernel represents the response of the two-dimensional

Pasternak foundation.

The present paper deals with the determination of the buckling

loads for infinitely long beams resting on elastic foundations. It is

assumed that the buckling takes place at the onset of neutral equi-

librium. The foundation models that are used to approximate the

behavior of the supporting medium are the Winkler, Pasternak, and

the elastic continuum. The effect of extending the foundation beyond

the width of the beam is determined by comparing the results obtained

for two and three-dimensional foundations.

used in the longitudinal direction and the complex Fourier transform

is used in the transverse direction.

BUCKLING OF AN INFINITE BEAM RESTING ON A WINKLER FOUNDATION

The differential equation for the deflection w(x) of a beam of width 2b

subjected to an axial load N and supported by a Winkler foundation is

4

,F

It is well known that the buckling mode for an infinitely long

M.
beam supported by a uniform Winkler foundation is periodic. Therefore,

for the buckling analysis of the infinite beam, the Fourier series is

i
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EI dT + N d7 + (2bk )w e 0	 (1)

where k is the spring constant. The buckling load is according to [131

Ncr = 2 EI (2bk)
	

(2)

BUCKLING OF AN INFINITE BEAM RESTING ON A PASTERNAK FOUNDATION

Two types of problems are considered, depending on the continuity

of the foundation in the lateral direction of the beam: 1) when the

foundation is only under the beam and 2) when the foundation extends

beyond the width of the beam.

1. Beam resting on a two-dimensional foundation

Consider a beam resting on a deep wall whose behavior may be

approximated by a Pasternak foundation as shown in Fig. 1. The differ-

ential equation for the beam is

4
EI+N^ = - 2b p(x)	 (3)

where p(x) is a uniform interface pressure. The differential equation

for the foundation is

2
kw- GW =p (x)	 (4)

Substituting for p(x) the expression (4) into (3) it follows that

EI
d4
 T + (N-2bG) -7 + (2bk)w = 0 	 (5)

The regularity conditions are

ll im w(x), dx ,...} = finite	 (6)

Substituting

W(X) _ wn cos 04 x)	 (7)

n=O

5
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in (5) we get

co

[EI	 - (N-2bG) an + 2bk]wncos (C nx) a 0	 (8)

n=0

Since {cos(ax )j is a linearly independent set, the coefficient of each

term should vanish separately [ 17]. Therefore, from (8) it follows

that

N = ?.bG + EI G? + ^	 (9)
n	 n

The value of an which makes N a minimum is obtained from

dN = 0	 (10)
da

n

The equation (10) yields

^ _ R2^	 (11)

Substituting (11) into (9), the buckling load is obtained as

N
cr 

= 2bG + 2 , EI(2bk)	 (12)
Y

-	 As pointed out in the introduction, after redefining the constants

the equation (12) becomes identical to the result obtained by T. E.

Smith [15].

2. Beam resting on athree-dimensional Pasternak foundation

A beam resting on a three-dimensional Pasternak foundation and

subjected to an axial load is shown in Fig. 2. The shear layer and the

springs are assumed to extend to infinity beyond the beam in the y direction.

It is again assumed that the beam is infinitely long in the x direction and

has a width 2b. The differential equation governing the deflection of

the beam is

EI 
dx

+N=- po(x)
	 (13)

y
R

I,

6
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where po (x) is the contact pressure per unit length of beam axis. The

differential equations for the foundation are, under the beam

G (^ .̂..,wi. + -- ^ _ kwl 	- P, (x y )	 - b	 y	 b	 (14)

and outside the beam

G	 + _	 - ku,2 = 0	 1 y ;• b	 (15)

where % (x,y) is the deflection of the foundation below the beam,

w2 (x, y) is the deflection of the foundation outside the beam and p l (x, y)

is the Contact pressure at the interface. The corresponding regularity

conditions are

lim rwi (x), 61 ,...^ = finite

lim (w2, v
	 , ...^ - finite	 (16 jX—LA

lim f^ Nn NO ,...} = 0y-^1 ax ay

The method of solution to be used iu the following is;

CO

1. First, the Fourier series :or w(x, y) = I w  (y) cos ( nx) in
n=0

x direction and the complex Fourier transform in y direction

are applied to the differential equation for the foundation and

an algebraic relationship between the pressure p and the corre-

sponding deflection w of the foundation under the beam is

determined.

CO

2. Next, the Fourier series for wj (x) _	 i n cos ( nx) and

n=0

po(x) _	
Pon cos( ax) are applied to the differential

n=0

equation for the beam. Noting the derived relationship

between the pressure and the deflection of the foundation

t

^'	 t

i

7
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U'2 Oc t Y) = L 2 n (Y) cos ( nx)

n-0

(17)

under the beam obtained above, an expressirn for the axial

load N in terms of U is obtained.n

3. The minimum value of N which corresponds to the buckling

load follows from the plot of the axial load N against %.

For complicated foundation models, the relationship between the

pressure and the corresponding deflection of the foundation under the

beam may be very involved. As pointed out in the introduction, to

simplify the analysis it is often assumed that the pressure distri-

bution below the beam is uniform. To study also the effect of 'wiis

assumption, in the following, two cases are considered; i) exact

analysis and ii) an approximate solution under the ass umption of

uniform pressure over the width of the beam.

i) Exact analysis

Consider a beam which is flexible in the longitudinal direction,

rigid across the width, and supported by a three-dimensional Pasternak

foundation. For this case the deflection of the foundation below the

beam in the lateral direction is constant. The pressure distribution

below the beam is not known.

The differential equationb for the beam and for the foundation

are given in (13), (14) and (15). Let

wi (x, Y) 	 win(y)  cos ( nx)
n-0

i

Y

Pi (x, Y)_	 pin cos ( nx)

n=0

s
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Substituting (17) into (14) and (15) we get

m	
p

w  - (cn + k /G)wi 	 cos (n + -^	 (ax) 0	 (18)
^.

[-dyjl-n
	 J

nuo

dP w
[d7-8n - (a

n
 + k/G)ws n] cos (ax) - 0	 (19)

n=0

Using the same argument that led to the equation (9) it follows from

(18) and (19) that

ds w	 P
1 (Y )

^- (OF +k/G)w M	 - bsy e- b	 (20)

da w

	

2n - (^ + k/G) a n = 0	 y ( > b	 (21)

Since the deflection of the foundation under the beam is equal to the

deflection of the beam, wI (x, y) is independent of y in - b < y < b. It is

also known that pI (x,y) is independent of y in -bsysb. Therefore, (20) yields

	

px n 0 G(CP + k./G) i n	
(22)

The solution of (21), satisfying the regularity condition at

y = cc and the continuity condition at y = b, namely

war(') 
= 

w	 (23)

is given by

w (y') = w e µ(y-b) /b
an	 In

where

µa = (a b)P +G	
(25)

The discontinuity in slope along y = fb will result in concentrated

line reactions N (x) along the edges y = fb. As shown in the Ref. [11,

this concentrated reaction is given by

pa (x) _ - G

	

	 (26)
y ly=b

9
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po (x) _	 (2b pin + 2 
pa n) cos ( nx)(31)

n-0

Using the values for pin and pan in (31) from (22) and (29) respectively,

it follows that

0

po (x) -
	 2^G b(l+g win cos (4 

x)	 (32)

n=0

The equation (32) is the desired relationship between the total

pressure and the corresponding deflection of the foundation below the

beam.

Consider the differential equation governing the deflection of

the beam given in (13). Substituting for wl (x) as

W, (x) -
	 w n 

cos (C4 x)(33)

n=0

<'s

N,

k

Substituting

ao

Pa (x )	
7 pan 

cos (a lx )
n-0

and wa (x, y) as given in (17) into (26) we get

dw_.^
P2 n ' G dy I Y-b

Using (24) in (28) it follows that

pan b in

The total pressure po (x) acting on any section of the beam is

po (x) v 2b pi (x) + 2 pa (x)

Substituting for pi (x) and p$ (x) from (17) and (27) respectively we

obtain

(27)

(28)

(29)

(30)

10
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and for p  (x) from (32) into (13) it follows that

CO

L I EI Ct - N d + 2
bl+uJ 

win cos (cxnx) - 0

n=0

Following the same argument that led to the equation (9), the above

equation yields

(34)

i

EI^ - NCP+ 2	=0	 (35)

The equation (35) yields

N = EI c? + 2uG 1+
	 (36)

n

The minimum value of N which corresponds to the buckling load is obtained

by plotting the equation (36) as shown in Fig. 3. The final results

are shown in Figs. 5, 6 and 7.

ii) Uniform reaction across the width of the beam

To determine the effect of an assumption usually made in the

literature, in the following, the pressure distribution across the

width of the beam is absumed to be uniform.

First, the relationship Between the pressure distribution and the

corresponding deflection of the foundation below the beam is determined.

Fig. 4 shows a load p (x, y) of arbitrary variation in x direction and

uniform over the width 2b and acting on a Pasternak foundation. The

differential equation for the deflection of the foundation is

r

G^	 +oY^ kw=- p(x,y)

Let

5 x s +
- s y5 0 	(37)



i

ac

w (x ► Y) "	 w  (Y) cos ( ax)

na0
(38)

P (x ► Y)	 Pn (Y) cos (a X)

n-0

Substituting (38) into (37) we obtain

w	 Pn (y)
d	 o	 (^ + k/G) wn °- ..	 - m s y s (39)

In the present case, since the deflection of the foundation and its

derivatives are continuous and tend 	 to zero as y -- ao, we use the

Fourier transform in y direction.	 Defining the Fourier transforms [18]

of wn (y) and pn (y) in y direction as

CO
wn (^)	 ^ wn (Y) a i13Y dY (40)

_0,

CO

Pn (0)	 1 Pn (Y) e i0Y dY (41)

_oo

the transform of (39) in the y direction becomes

(t^" + ^ + k/ G) wn (8)	 Pn (13	 G (42)

Since p (x, y) is uniform in - b s y s b and zero for (yl > h, it is a

function of x only. 	 Hence the equation (41) yields

b

Pn ^)	 Pn
a il3Y dy	 2 s inn	 b	

Pn`` (43)
-b

Substituting for pn(0) from (43) into (42) we obtain

-	 2 sin	 b	 Pnwn (^) 	 + cF+ k/G)	
G (44)

n

h	 „

t

,p

A

1

y-,

12
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Noting the inverse transform of wn (0) as

wn (Y)	 2r^r T wn (f3) e
- i' y dd
	

(45)

and substituting for w  0) from (44) into (45) it follows that

w (y)	 2p  r sin Pb) cos, (p	 dO	 (46)n	 nG	 13[f^'+c+

0	 n

Performing the indicated integration in (46) we obtain for jyj c b

p ba

wn (y) = PnbF ^ 1 - e µ cosh{b'^'` ^j	 (47)

where µ is defined in (25).

It is observed from (47) that the deflection of the foundation in

the region - b s y r b is not uniform. But for a beam, the deflection

over its width is constant. In order to overcome this difficulty two

procedures are used here ; a) assume that an average value of the de-

flection of the foundation across the width of the beam stay be used as

the deflection of the beam [5], or b) assume that the deflection of the foun-

dation at y = 0 may be considered as the deflection of the beam [111.

a) Assuming that the average value of w(x,y Is

b

wav (x) = 2b j w(x,y)  dY	 (48)
-b

and substituting for w (x,y) from (38) into (48) it follows that

b
j 

co
,v (x) 2b  LL wn (Y) cos ( Rx) dy 	 (49)

-b n=0

Substituting for wn (y) from (47) into (49) and after interchanging

the integral sign with the summation sign, the integration of (49) yields

13
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wav (x) = G	 1 [ µ - e µ s inh (µ)] pn cos ( ^x)	 (50)
tP

n=0

'	 Since

^llf

V1,

p  _	 pn cos(a X) 	 (51)

n=0

the equation (50) is the required relationship between the pressure

and the deflection of the foundation.

The differential equation governing the deflection of the beam is

given in (13). Noting that wj (x) = wav (x) and po (x) - 2b p (x) we get

from (13)

d4 w	 d  w
EI av + N d _ - 2b p (x)	 (52)

Introducing (50) and (51) into (52) the resulting equation is satisfied if

EI ^ - N CP +	 2W _.^. = 0	 (53)
b[µ - e—µ sinh(µ)]

From (53) it follows that

N = EI CP +	 2GIP	 (54)
[ µ e sinh (µ)] bcP

a
The buckling load which corresponds to the minimum value of EI is ob-

twined by plotting the equation (54) and the numerical results are shown

in Fig. 6.

b) Consider the case for which the deflection of the foundation at y = 0

is the deflection of the beam. Setting y = 0 in (47) and noting the first

equation in (38) we get

°Dp V
wl (x) = w(x, o) =	 Gnw {1 - e_ µ}	 (55)

µ
n=0

el

s

i

i	 x

14
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Substituting the above expression in the differential equation for

the beam given in (13), noting that p  (x) - 2b r. (x) and that p (x) is

expressed -in (51), it follows that

a

EI OF - N CP +
-2Gu 

- 0
b[1-e ]

The above equation yields

2
N - EI ^ + Ĝ^'^ 2	 (57)

b (1-e )an

The minimum value of N is obtained using the same procedure as used

earlier. The numerical results are shown in Fig. 6.

BUCKLING OF AN INFINITE BEAM SUPPORTED BY A
SEMI-INFINITE ELASTIC CONTINUUM

The effect of extending the foundation beyond the width of the

beam is studied by considering an infinite beam resting on a two, as

well as on a three-dimensional elastic continuum.

1. Beam resting on a two-dimensional elastic continuum

Consider an infinitely long compressed beam supported by an elastic

continuum. It is assumed that the foundation extends to infinity in the

x direction. In the y direction it coincides with the width of the beam.

The differential equation for the beam is, as before

EI ddx' + N	 - - po (x)	 (58)

The differential equation for the foundation in terms of the stress

function F (plane stress) is

a+ 2 aa--4 +a-'=o 	 (59))e aip
r

The regularity conditions are

15
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1 imf	 dwL	 1 a
x-i	 dx ''••J	

finite

Cxx' zz' Cxz} =finitelim
x-•^{ 

1 im f
t	 =Z_: Cxx' `̂ zz' Crxz

and the boundary conditions at z = 0 are

C	 _ZZ	 - p (x)

xz
= 0

Following the procedure used before, the buckling load is ob-

tained as

NcrV	 Efb4 2/3

	

EI = [FEI ]	
(62)

where E  is the Young's modulus of the elastic continuum. For more

details, the reader is referred to [13].

The equation (62) is also obtained by E. Reissner who assumed that

the infinite beam is supported by a two-dimensional elastic continuum

and on an infinity of equidistant supports [61.

2. Beam resting on a three-dimensional elastic continuum

Consider an infinite beam of width 2b lying on an elastic con-

tinuum and subjected to an axial load as shown in Fig. 8. The foundation

is assumed to extend beyond the beam to infinity in y direction. The

differential equation for the beam is, as before

EI dw3- + N	 _ - po (x)	 (63)

The regularity conditions are

1 imj	 dw,,	 1	 (64)x^ wi (x), dx	 = finite

(60)

(61)

i^

t
i

16
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We shall first determine the relationship between the surface

deflection of the elastic continuum and the distribution of pressure

acting on the surface. The differential equationsgoverning the

displacements of the continuum are [201

72 u + 1 1 Zv ae = 0	 (65)

72 v + 1	 de = 0	 (66)
1 - 2v ay

V,2 w +	 ae = 0	 (67)1 - 2v az

where u, v and w are displacements in x, y and z directions respectively

and

I

s,

e =6u+dV+ aw
ax ay az

V 3-3F

The boundary conditions at z = 0 are

Czz
^- pi (x, Y)	 - b	 ys b

0	 jyj > b

Cxz _

Cr	 = 0
yz

The regularity conditions are

x-V } = finiteL1, V, W, .. •

lim

Y,;; u, v, w,.••}	 0
z-++W

The volumetric expansion a satisfies

2Pe at e Ye _
67 + a +^-0

with the corresponding conditions at infinity, namely

(68)

(69)

(70)

(71)

(72)

17
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lim e(x,y,z) - finite
x-rtco

lim e(x,y,z) - 0
Y-6*0
z--+W

Since u, v and w are assumed to be periodic in x direction, a also

should Ne periodic in x, Let

W

e(x,y,z) 	 7- en (y , z) cos (
nx )

n-0

Substituting the value for e(x,y,z) from (74) into (72), we obtain

^e ^e
6z-- +	 - ^ en - 0

Defining the transform of en (y, z) in y direction as

CO

en (0,z) - J en (y , z ) eij3y dy
-00

the transforms of equations (75) and (73) become

ds e
n- (CP + 1? en - 0

lim en (B, z) - 0
Z"-=

The solution of (77) satisfying (78) is

en (f3,z) - in(n,P) e-az

(73)

(74)

(75)

(76)

(77)

(78)

(79)

where

as = of + OP
	

(80)

Let

18
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x,

u (x ► Y, z ) _	 un(Y ► z) sin((^xnx)

n=0
k'

j

' Ord

v (x ► Y, z) _	
v 	 (Y, x) cos (anx)

n=0

aD
t

w (x, Y ► z ) _	 wn 
(Y, x) cos (txnx )

n ►-0

'A Substituting (81) and	 (74) into (65), (66) and (67) and noting that

cos (Ce x) } and {sin(cc x)} are linearly independent sets, it follows
w n n 
f that

d^ u	 dz u cc et n+d_7	
1- ^ nun

n n	 0
- 2v =

d2 v	 v ben
d z^-- + ;^- - ^ vn + 1

1	 n
- 2v d y	 0

C? 
wnd2 wn

aen
d"x "- + d?— - nwn + 1 1	 -— 2 6z	 0

Let the Fourier transforms of u n , vn and wn in the y direction be

1 un ( ► x)	 un (Y, z ) e i0y dY

00
vn(13,z)	 vn(y ► z) e ij3y dyt

r

wn (8, z ) _	 wn (y, z) ei3y
dY

k

t

yy
_W

The transforms of (82),	 (83) and (84) in y direction and noting (79)

become

(81)

(82)

(83)

(84)

(85)
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_.. n - 8s u s ^n._^ n e-
 
&Z	 (86)dz"	 n	 1-2v^

Ce^
n 1 - 2v

- a  v	
i^^1 tt_ a-ez	

(87)dz 

c3s wn - 

a` w = --- i n e- az	 (88)
d7— 	It1-2v

where ao is defined in (80).

The solutions of (86), (87) and (88) satisfying the regularity con-

ditions at z	 are	 '

u 0" z) [C- nCi in z e- az	 (89)n	 Zn 2a 0 -2v)

v  (M, z ) - C	 - i--b i n 	 z e-az	 (90)n	 3n	 2a (1- 2v)

aC
wn (t3 ' z ) - L Cn-	 2a (ln2v) z. le-az	(91)

respectively.

The cc _,stants i n , Cs n, 3 n an d an aref unctions of Q and 0 and

are to be determined from the boundary conditions at the surface of

the elastic continuum.

From the boundary conditions (69) and (70) it follows that at

z - 0

au + aw - 0	 (92)
az ax

av + N a 0	 (93)
aZ ay

According to the definition of the volumetric expansion, we have

au + av + aw - e	 (94)
ax ay 6z

Substituting (81) into (92), (93) and (94) and then using the transform

in y direction on the resulting equations, it follows that

r
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1a

r

du
- un	 rxw^	 0^.dz	 n n (95)

z=0

du [^zn
z =0

dw
`  +dz	 pun	 i^vn = ^n (97)

Substituting the expressions foru n , vn , wn and en from (89),	 (90),

(91) and (79) in the above equations it follows that

--nin—=
82 n + n o n + 2a (1- 2v)	

0

r
r iJ3C

A

i n (98)

- cc C	 + ir3 C	 + a C	 +[I + 	 1n an	 3n	 4 n 	 L	 2(1-2v) 0^Cin

Solving for	 and 
an 

in teams of Ci	 we3 obtain
a 

n,	 n,	 n

C1
a	 n

2	 in	 2a	 n

3
a i

inn2a (99)

a _	 1-v
Con	 a (1-2v) i n

Substituting the above obtained constants in (89), (90) and	 (91),	 it

follows that

u (13, z )	 a—=n	 j1 = - z e-az
] 100(100)

`	 a

v	 z)	 i--i n— ^ - z le-az(
L

(101)n	 2a (1-2v)	 a

wn (B, z ) = -	
L

2 lw	 t z^e-az
2 (1—=°- (102)

ft

J

21



s

In the above equations,	 the constant Cin is stW an unknown

quantity.	 It is determined by using the r^!maining boundary condition

given in (68).

According to Hooke's law,

Czz	 (2µf+1f) 3z + x f Cc^x + ,)v)
(103)

where X 	 and µf are Lame constants. 	 From (68) and (103) it follows

u,

that

r"-bs "	 P	 (,Y)
1

x Y s b

(2µf+^f) ^z + ^. f Cox + ^y^^	
a: ^ (104)

e
=0	 0 j y j > b

i^

f Substituting u, v and w from (81) into (104) we obtain

awn 	avn^	 P1 (x , Y)
cos (nx)^ (2µf ++ x X+ ), f ) ^z	 nun	 ay )^

- b s y s b

n-0	 z°0	 0 j YI	 > b

(105)

The transform of (105) in y direction becomes r.

dw
(2µf+X f ) az	 +	 f ( nun- ij3vn j]	 cos (anx)	 - P (x , P) (106)

1.	 z-0nip

S-A Substituting un , vn and wn from (100),	 (101) and (102) into (106) it

follows that

CO

L,	 Cin ( n, 13) cos (a ^x) 	 (
1

(107)
n=p

Since the pressure distribution below the beam is not known, it is not

possible to determine C	 (a	 from (107).in	 n
} Consider the pressure distribution below the beam

*	 The pressure distribution under a rigid stamp resting on a semi-
infinite elastic continuum has infinite discontinuities along the
edges of the stamp. 	 Nevertheless, the application of the Fourier
transform is valid because of theorem 47 of referen: .• t " ?i,j.

i
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Pi (x , Y)	 - b !̂  y	 b

P (x , Y) _ {	 (108)

0	 j YI > b

The inverse transform of p(x,(3) in y direction is defined

^^	 r

P (x , Y) = 2rT	 p (x, O) e
- "3y d13	 (109)

4
}

Substituting the expression for p (x,13) given in (107) into (109) and

noting (108) it follows that

r	 OD
0 f+µf )	 ^	 "Ii 	 P1 	 Y)	 - b '' Y	 b

^---- H- 
J	

Cl 
n 

(a ^, ^) cos (anx) e- ^Y dd13_ ^	 i

_CO n=0	
0	 Y) > b

(110)

r

4«

-t	 T

i

4+ 1

i

Substituting z = 0 in (102) cue get

C (a ,1}
w

n
(0, 0 ) - _ 11 - 2vv 	 1^^	

(111)

The inverse transform ofwn ({3, o) in y direction is 	 r-

OD

w  (Y, o) =	 ` wn , o) e
- i3y dO
	 (112)

_0

Introducing the value of wn (P,o) given in (111) into (112) it follows

that

CO
C (a ,^)

w (Y, o) _ - (-- V r n n f

^	

e- iDY dO	 (113)n	 r,

_ (^ + )

Multiplying both sides of (113) by cos( nx ) and summing over n = 0 to

n =	 and noting that

i

w (x, y, o) _	 wn (Y, o) cos (Cnx)
	

(114)

n=0

it follows that
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a,

,^,	 o0

i
w(x,y,o) _ - 2^(1-2v)	 cos (c O	 n	 a -#Gy dts	 (115)

n=0
(C? + )

The surface deflection of the foundation below the beam is equal

to the deflection of the beam but is not known away from the beam.

Since the deflection of the foundation across tie width of the beam is not a

	

s	 function of y, we have

wi (x)	 - b_ y 
w (x ,Y, o )	 {	 (116)

w (x , Y)	 Yj > b

where	 w(x,y,o) is the surface deflection of the foundation,

wl (x) is the deflection of the foundation under the beam, and

w (x,y) is the deflection of the foundation outside the beam.

From (115) and (116) it follows that

1 - v	

00

	
r in (n, 13) _ ij3Y	

-wi (x)	 - b	 y	 b
(	 ) cos ( nx) J	 ^ _ {	 (117)

0	 _^ ( n a )	 'wa (x , Y)	 Yj > b

Combining the equations (110) and (117) results in the following pair

of integral equations for the determination of the constant Cin ( n'13)

c

J C^ CI n(n,^) cos (nx)]e-iOY d130	 1 y) %' b	 (118)
-m n=0

i	
S

CO
` 00 i n ( n'^) cos ( nx) -icy	 _ _ 2rr 1-20
J [ ^.	 2

n=0	
^e,
	

d^ r	 (1 -v)	 wI (x) - b	 y s b	 (119)
(an+o )

CO

where	 wi (x) 	 i n cos 04 X)	 (120)

n=0

The solution of the above pair of integral equations yields Cin ( n'')

in terms wi n. Substituting this value of CL  ( R,13) into (107), we

obtain the relationship between the pressure g(x,13) and the surface

deflection of the foundation below the beam.
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The solution of the above pair of integral equations is not avail-

able in the literature and was not obtained by the author.	 Therefore,

the exact relationship between ^ (x,O and w1 (x) remains unknown.

From the results of the buckling loads for a beam resting on a

Pasternak foundation, 	 it may be concluded that if the pressure distri-

bution across the width of the beam is assumed to be uniform, 	 then the

obtained buckling loads for a beam on a three-dimensional elastic con-

tinuum differs very little from the exact ones 	 (See Fig. 6).	 Therefore,

the following two cases are considered here; i) at each point along the

length of the beam the contact pressure is uniform across the width of

the beam [5 , 11] and ii) at each point along the length of the beam the
A

pressure distribution is the one that occurs under a rigid stamp [121.

i)	 Uniform reaction force over the width of the beam

It is assumed that

p W	 b oc^ y 15 b
1

P(X ,Y) - f	
(121)

7 0	 jyj	 > b

The transform of p(x,y) in y direction is

kx ' o)	 p(x,y) e i0y dy	 (122)
- 00

Substituting the expression for p(x,y) given in (120) into (121) and

performing the integration, we obtain

2 sign (Obj
P, W	 (123)

Using the above value of j(x,13) in (107) it follows that

2	 sin(i3b)
C
	 (aa, )

cos 04 X )	 P W	 (124)
in	 n	 n	 OL +^L

f	 f
n=O
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f;

{

Tl► i

i

t

Multiplying both sides of (123) bye ley and integrating with respect

to f3 between the limits -w and +x we get

m	 as

J	 n
L , C (Cl It, f3 ) cos ((Ux) je-'Oy df3 _ _ 2 	x	 (^ s i^ b

i n	
e- i13y d^	 (125)

(a. f+la f ) J
n-0

Performing the integration, it can be shown that the right hand

side vanishes for y > b .

From (124) and (125) it follows that the first of the pair of

integral equations, namely (118), is satisfied.

- icy
Again multiplying both sides of (123) by - e	 and integrating

(^ 41?)

with respect to p between -w and +w and noting (119) it follows that

cc

wl (x , Y) _ 2,(
1-U2) 

pi (x)	
sin b	 e- icy dP
	 (126)

rr E	 J	 2
f	 -CO	 ] P

In obtaining the above equation, the following relationship c=tween
w

the Lame constants and E
f 

and v has been used [20]

Ef
^f + µf = 2(14v)(1- 2v) 	 (127)

It should be noted that in (119) wl is a function of x only, ,i

whereas in (126) it is a function of x and y. This is due ,to the as-'

sumption that the pressure distribution acorns the width of the beam

i
is uniform.

Because of the assumption that the contact pressure is uniform

across the width, the deflection of the surface of the foundation below
i

the beam is not constant. To overcome this difficulty, as before, one

x
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can proceed in two ways.	 One method is to use an average value of the

deflection of the surface of the foundation below the beam as the de-

flection of the beam [5]. 	 Another method is to consider the surface

deflection of the foundation at y a 0 as the deflection below the

beam [11].

Consider the average value of the deflection of the surface of

the foundation below the beam as the deflection of the beam. 	 The

average deflection of the foundation is

b

w	 W	 2b	 Wl (X, Y) d y	 (128)
av	 J

-b

Substituting w (x,y) given in (126) into (128) and integrating between

the limits shown we obtain

co

4(1-%?	 P,	 s in2 (0)
w	 d13(129}Wav	 TTE 

f	
2b	

Cd 0 _f,32

n

Rearranging (129) we get

W TTE 
f	

w
av

P, (x	 (130)
4b (1-\?	 (a b)

where

00

Sir? (P)b)	 dp	 (131)
n

0	
(a 

h 
b)P + pF

The equation (130) is the sought relationship between the pressure

vy distribution at the interface and the surface deflection of the foun-

dation below the beam.

The differential equation governing the deflection of the beam,

noting w, (x) - w 
av 

(x) and p0 (x) = 2b p 
I 

(X) is
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d'4 w	 d`' w
EIv

dx	
+ N -^ 	 - 2b pl (x) (132)

Substituting the value for p  (x) given in (130) into (132) and noting

that

wav(x) _	 ^^	 [w	 I	 cos 0 x) (133)av n	 n
n=0

we obtain

1	
^EI n - N

nE	
11+	 2	 an	 [wav]n cos (cl x) 	 0 WA)

n=0

Using the same argument that led to the equation (9),	 from (134) it

follows that

TTEfN = EI C? + 	 1
n	 2 (1-V 	 t (cc b)T

135)

NbPUsing the equation (135), a plot of	 against (tx b)EI	 n,is obtained.
X

The buckling load which corresponds to the minimum value of - is ob-

twined from the graph.	 The results are presented in Fig. 9. s

-	 Consider the case in which the surface deflection of the foun-

dation at y = 0 is used as the corresponding deflection of the beam.

From	 126	 it follows that

rrEf	
x o)

P (x) =i	 4b (1-	 )	 ( nb) (1)

where

4i ( ab) _
sin(a)---	

a	
dp (137)

o p[ ( nb )2 + p

A. P.	 Fillippov [111 obtained the equation (136) by using a different k
approach.

^ Y
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a

i

a

From (132) and (136) and noting wl (x) is

W

wl (x) 
_ I 

win cos (n x)	 (138)

n=0

it follows that

N - E  n + 2 (1 -	 (f )	 Z	 (139)
n

The results obtained from (139) are shown in Fig. 9 .

ii) Pressure distribution that occurs below a rigid stamp

The pressure distribution that occurs below a rigid stamp

resting on an elastic half-space was obtained by M. Sadowski r22J

0. POW

	

- b	 b

P (x, Y) _ rr (b2 -? )^	 (140)
0	 (y, > b

where po (x) is the reactive pressure per unit leggbh acting on

the beam. Recalling the definition of the Fourier transform of p(x,y)

in the y direction

P (x , P) _	 P (x. Y) e ipy dY	 (141)
-oo

and substitution of p(x,y) from (140) into (141) yields

b
P (x,13) = 2p—°-- cos (P-,y)_ dy	 (142)TT	 f	 a -o (b y' )

performing the integration in (142) we obtain

P(x,	 Jo(6b)-po(x)	 (143)

From the equations (107) and (143) it follows that

«	 Jo (Bb )
Cl n ( n,13) cos ( nx) _ -—	 • po

n=0

(x)	 (144)
f f
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Multiplying both sides of (144) by 
a-it3y 

and integrating with respect

to 13 between -w and += we get

m ^

L	 Oi n ( n't3) cos (C nx)1e i13Y d
-^ n=0

_ 
P O (X )

+ µ ^ Jo (fib) a- ipy dp	 (145)
f	 f

Referring to Tables [231, page 730, we find

W

	

41 Jo (6b) cos (By) dO = 0	 y > b	 0")
0

From (145) and (146) it follows that (118) is satisfied.

- icy
Again, multiplying both sides of (144) by	 and integrating

(CP 4f?
 )

with respect to j3 between -,c and +co acid noting (119) we get for

- b s y s b

^ J (fib )
wi (x, Y) - po(x) I - f "0'-"- a-ij3Y d13	 (147)

As before, the surface deflection of the foundation in the region

- b s y s b depends on y, whereas the deflection of the beam is conr^ '-.

Therefore, we consider the average of the deflection of the surface ;.,

the foundation in - b s y s b as the deflection of the beam. Integrating

(147) with respect to y between the limits - b s y s b and dividing by

2b, it follows that

p0 (x) 2 1 -v2	 Jo(^b) sin(Sb)
wav (x) = 2b	 5--^^--^	 d13	 (148)

f _m 	 13 (an+e )

Rearranging (148) we get

	

TTEf wav (x)	
(149)

po (x) = 2(1-	 nb)
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where

J^^(^)
_	 V (a b) n

J 	
do	 (150)n f +

c^ 
o[ ( ^b	 O

Equation (149) is the required relationship between the total

pressure acting on any section of the beta and the surface deflection

of the foundation below the beam.
j.?

The differential equation for a beam in terms of the average

deflection is given in (132).	 Noting that po (x)	 2b pi (x) and that

wav	 [ wav] cos ( nx)
n=0

the equations (132) and (149) yield

rrEf 	1
N	 EI	 +	 (151n 2(1^^ cp(^	 )

NbF
The equation (151) is used to obtain a plot of 

EI	
against (ab).

The buckling load which corresponds to the minimum value of 	 is ob-
EI

i	

n

tained from the above plot. 	 Final results are shown in Fig. 9.
r$

Discussion of results l

The buckling loads for a beam supported by a Pasternak foundation 3,

are computed for different values of spring parameter and shear parameter,

using the equations (36) and (57). 	 The results are shown in Figs.	 j, 6 and 7.

The effect of extending the foundation beyond the width of the beam

is shown in Figs. 	 5 and 7.	 As expected,	 the buckling loads for beams sup-

ported by a three-dimensional foundation are larger. than the corresponding
1.-

buckling loads of a beam on a two-dimensional foundation. 	 It is observed

that for constant foundation parameter k, the buckling load increases

with increasing G.	 For example, for k ° —b x 10 e , the buckling load

i
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r

is about twice as large as when G = -1 x lU	 compared to the buckling

EI
load when C	 x 10 $ .

From Fig.	 5,	 it is also observed that in the case when the foundation

is two-dimensional,	 the different values of G do not very much effect the

buckling load.	 This becomes evert more obvious when the buckling loads

for the two-dimensional foundation are compared with the buckling loads

of the Winkler foundation, which is also shown in Fig.	 5.

In order to show the effect of used approximations, 	 the buckling
r„

loads obtained from the exact and approximate analyses for a beam

r a , resting on a Pasternak foundation are shown in Fig. 6. 	 It is found that

the introduced approximations have a very small effect on the determined

buckling loads.	 For example, when G s	x 10 
e3 

and k	 x 10
-s 

,	 the

buckling load obtained from the exact analysis is 4.0x10 a and from

the approximate analysis,	 in which the average deflection of the foun-

dation below the beam is used as the deflection of the beam is 3.8x10 s

The difference for the above case is 6% . 	 It is also seen from Fig. 6

i
z:

F

that, of the two approximate analyses used, the one which assumes

that the average deflection of the foundation below the beam is the

deflection of the beam gives the better approximation.

The buckling loads for a beam resting on the semi-infinite elastic

continuum are obtained for different values of the foundation parameter

easing the equations (62), (135), (139) and (151). The results are pre-

sented in Fig. 9. As expected the buckling loads for a beam on a semi-

infinite elastic continuum are larger than the corresponding buckling

loads of a beam on a two-dimensional elastic continuum. It is found that the

difference in the buckling load between the semi-infinite elastic con-

tinuum and the two-dimensional foundation increases with the foundation

parameter E1 , i.e. for a given v, as the modulus of the foundation
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i
1

increases the above difference in the buckling load increases.

The buckling loads obtained from	 .ng the different approximate

analyses are also sh:)wn in Fig. 9. The difference in the buckling

loads obtained from the va rioux approximate analyses are very small

for assumed values of the foundation parameters.

On the basis of the results obtained for the case of the Pasternak

foundation, it is expected that the buckling load for a beam on a semi-

infinite elastic continuum obtained by using the assumption of uniform

reaction together with the average deflectijn of the foundation will

be close to the exact solution.
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Fig. l Beam on a two-dimensional Pasternak foundation
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Fig. 2 Beam on a three-dimen s ional Pasternak foundation
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