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SURVEY

In the first contribution to this report, Smith and Johnion continue their

application of the scattered wave method of computing molecular wave functions to

the SO 2 ion. This represents the first time this method, which avoids the calcul-

ation of multicenter integrals has been carried to self consistency.

Professor DeCicco in his contribution discusses computational aspects of

the APW method and in particular proposes the interpolation of the APW determinant

as means of finding surfaces of constant energy and densities of states.

In the remaining two contributions, John Connolly gives corrections and

additions to his article in the last report and Professor Gilmore continues his dis-

cussions of properties of the continuous groups.

As the last item in this report you should find a form to be returned to en-

albe us to update our mailing list. This seems an appropriate time to revise our list

since the character of the investigations reported has widened. Professor Scullyts

work on laser physics and quantum optics, and Professor Stanley's work on statisti-

cal physics and phase transitions have already appeared in some of our earlier re-

ports and will be appearing in future reports.

I
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SCF MOLECULAR-ORBITAL STUDIES OF THE SULFATE ION BY
THE SCATTERED-WAVE MODEL

F. C. Smith, Jr. and K. H. Johnson

Tnfrnrh irnfit-in

In previous publications and reports 112, we have introduced a self-consistent-
field scattered-wave (SCF-SW) model for the electronic structures of polyatomic mole-
cules. In the present report, we discuss the results of molecular-orbital calculations
for the dinegative sulfate ion (SO 2 ) on the basis of this approach.

A determination of the molecular orbitals of a polyatomic cluster such as SO
is complicated, first of all, by its ionicity, by the presence of several "inner" electron
shells, and, when conventional SCF-LCAO methods of quantum chemistry are used, the
necessity of having to compute many multicenter integrals or equivalent Hartree-Fock
matrix elements. Furthermore, the sulfate complex is not stable in free space, i.e., the
gaseous phase, but typically exists as the anion in an ionic crystal, (e.g., K LSO4). Ex-
perimental information on the sulfate ion can be extracted from the results of measure-
ments on such crystals (e.g., 	 4y	 ( g., ESR and chemical shift data). Thus in order to calcui ^.te

sulfate molecular orbitals which are potentially relevant to observed chemical and phys-
ical properties, it is essential for one to include, explicitly or implicitly, the stabilizing
effects of the crystal environment.

Ab i.nitio Hartree-Fock SCF-LCAO molecular-orbital calculations of the sul-
fate ion have recently been published 5 . Also available in the literature are the results

approximate SCF-LCAO 6 , SCCEI-LCAO ^, CNDO 8 , and	 9of aPP	 Wolf 	 (WH) type
calculations on SO4	Because of the differences among such LCAO methods, e.g., the
choices of atomic orbital basis functions and the approximations to multicenter integrals,
the results of these calculations are not in close agreement with each other. This incon-
sistency is evident in the comparison of LCAO orbital energies and electronic charge dis-

I	 ,
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tributions of SOS shown in Tables VIII and IX, respectively.
The ab initio SCF-LCAO work is reported to have required a total of 7. 5 hours

of computational time on a large-scale computer, most of it involved in the evaluation
of multicenter integrals over the component atomic orbitals (a small Gaussian basis
set including sulfur 3d orbitals). There are no multicenter integrals in the SCF-SV' ap-
roach. As we shall demonstrate, stable molecular orbitals can be calculated for SOS
by the latter technique with relatively little computational effort to few minutes c a n an
IBM 360 Mod. 65 computer), including sulfur-s, p, d, oxygen-s, p, and higher partial-
wave components in the SW bi sis set. It will be shown that the SCF-SW results are sim-
ilar to these calculated with the ab initio SCF-LCAO method  with respect to the ordering
of the occupied valence and core orbitals and with respect to the magnitudes of the core-
orbital energies. An analysis of the electronic charge distribution in the sulfate ion on
thy; basis cf the SCF-SW model is also described in this report, followed by a discussion
of the dependence cf the results on the choices of local exchange potential and stabilizing
charge.

The SCF-SW Model 1,2

Consider the sulfate ion in its equilibrium tetrahedral configuration, as illus-
trated schematically in Fig. 1. In the SCF-SW model, we partition the space of the mol-
ecule into three contiguous regions:

I. Intraatomic: the region within nonoverlapning spheres centered on the con-
stituent sulfur and oxygen atoms.

II. Interatomic: the region between the inner atomic spheres and an outer
sphere (the "Watson sphere") centered on the sulfur atom and surrounding
the entire cluster.

III. Outeratomic: the region outside the Watson sphere.

These artificial spherical boundaries are rr ,st generally assumed to be touching. The
atomic spheres are pictured as being relatively small in Fig. 1 for the purpose of illus-
tration only. The actual sphere radii depend on the nature of the model Hartree-Fock
potential chosen to initiate the SCF-SW calculation.

y
At an arbitrary point r of the molecule, the initial model potential is repre-

sefited as a superposition

_	 4
V( r ) = VS (Ir-R 0 p+E VO (I r -IR 	 (1)

j=1

of spherically symmetric Hartree-Fock-Slater free-atom and f-ee-ion potentials centered
at R j (j= 0, ... 4 ; R0 = center of cluster), including the Slater Xa 10 statistical approxi-
mation	

V Xa (r) _ -6a [(3/8n ) p (r) ]	 (L)

o
t



4.	 SCF MOLECULAR-ORBITAL STUDIES OF THE SULFATh: ION

to exchange correlat i on. The latter depends only c.n the local electronic charge density r(P)

and on the choice of exchange coefficient a. Particular values of a = 1 and . = 2/3 have.

been tested (see below). The superposition (1) is then spherically averaged within each

atomic sphere j and in the outeratomic region (III). In region (II), the starting potential

is that bas--L or a constant charge density equal to the ^verage value of the true charge

density over the interatomic volume.

To stabilize the orbitals of SO L we have added a contribution to the potential
4	 11

similar to that originally adopted by Watson 	 for the calculation of free-ion Hartree•
Fock wavefunctions. We distribute a positive charge uniformly around the outer spherical
boundary separating the interatomic and outeratomic regions. This "Watson sphere" is
therefore a crude appro.^imation to the stabilizing effects of a crystal environment.
Charges of +2 (as indicated in Fig. 1) and +1 have both been tested.

In Tables I through III we have listed (in Rydbergs and at every fourth radial
mesh point) the respective intraatomic and outeratomic potentials used to start the SCF-
SW calculation. These p otentials are based en a choice of Xa parameter a= 1 and stabil-
izing charge of +2. Included for comparison in the same Tables are the final SCF poten-
tials. The sulfur and oxygen spheres are assumed to be touching at respective radii where
the corresponding starting potentials are equal. The Watson sphere is then assumed to
be tangent to the oxygen spheres. The equilibrium S-O bond length in SOS is 1. 44 A 12

The sphere radii based on this bond length and on the starting potentials in Tables I through
III are listed in Table IV, along with the initial and SCF average interatomic potentials.
It is important to note that discontinuities of the potential across the boundaries separa-
ting the intea- , and inter-, and outeratomic regions do not imply discontinuities in the
molecular-orbital wavefunctions. Continuity of the wavefunctions and their first deriva-
tives is ensured through the scattered-wave formalism (described below).

The partitioning of the spv.ce of the molecule into bounded regions cf spheri-
cally averaged potential allows one to introduce a rapidly convergent, composite partial-

wave representation cf the molecular orbitals. Within each atomic sphere j of radius b.
(sulfur: j= 0; oxygen: j= 1,2,3,41, we expand the orbital wavefunctions in the single-center
form

1
4 (r) = E CLR p(E; r) Y L(r) (U< r 5 bj)

L

where L =	 ex;.(1, m) is the partial-wave (angular-momentum) index:;., C ,1  are partial-wave
coefficients (to be determined) and Y L (r) are real spherical harmonics. The functions
R I(E;r) are solutions of the radial Schrodinger equation

rZ dr r2 dr + 
1(1+2r1) 

+ V
i ( r) - EJ R p ( E: r) = 0
	

(4)

(3)



SCF MOLECULAR-ORBITAL STUDIES OF THE SULFATE ION	 5.

for the spherical average Vi (r) of the superposition (1) with r • eF. nect to the j th atomic site
(e.g., the potentials in Tables I through III). The radial functions must be finite at the
origin r = 0 of each atomic sphere. the solutions are generated by outward numerical
integration of Eq. (4), using the Noumerov technique 13 , for each trial energy parameter
E and partial-wave component 1•

In the outeratomir region the orbitals are expanded with respect to the center

of the cluster in the representation

III (r) = E Do  Rout (F; r)Y l (r 1 (bW s r r ^)
L

where b 	 is the radius of the Watson sphere. The functions R out (E; r) are solutions of
a radial Schrodinger equation similar to ;4) for the spherical average of the potential in
the outeratomir region. For localized molecular orbitals, these radial functions must
decay exponentially at large distances from the molecule. The solutions are generated
by inward Nournerov integration of the radial equation for trial values of E and 1.

For the interatomic region we expand the molecular orbitals in the multicenter
partial-wave representation

ll(r)	 130Lj1(K (r-A 0 1) YL(r-R O ) ( b0 s 1r- NO s b W; )

4
+ E E A jL f1 (K 17-- -A j 1) Y IJ(r-A i ) (b j < IrA j ^)
j = 0 L

or-fl0l < bW )

in which
K e (E-VO ) i

and

h (l)1 (Kr) (E<V 0 <0; K imaginary)

f1 (K r) _
21 (Kr)(VO <E<0; K real)

In the above expressions, VO is the average interatomic potential, 31 is a spherical
Bessel function, 1(1)1 its a spherical Hankel function of the first kind, and r,1 is a spher-
ical Neumann function.

The composite molecular-orbital wavefunctions (1),(5) and (6) and their re-
spective first derivatives are required to be continuous acvoss the adjacent spherical
boundaries. This is accomplished via the scattered-wave formalism described in

I

if
r,

k

,i
k

Ci
ni

(5)

(6)

(7)

(8)

l^i	 ,



6.	 SCF MOLECULAR-ORBITAL STUDIES OF THE SULFATE ION

3efs. 1 and 1. and leads to the following relations an tang the multicenter and single-center

partial-wave coefficients,

AJL` - iK b [JI(K b^) , Hi  (E; b^) ] C j	 (9)

B0 =_ iK b 2 [1;p out (E; 1)W) , fQ ( K b W) ] D0
	

(10)

where

fi(x), R(x) ] - J( x ) [d R( x)/dxj -R(x) [dJ(x)/dx]
	

(11)

The secular equations which lead, in turn, to the molecular-orbital energies
and independent partial-wave coefficients can be written in the linear, homogeneous form -

4
[ ,I,- 1 (E) 	 jjL 'A J'L'	 - 

L	
SJLI_.' (E)B0	 0^0 

L'	

L -

4

SOJ LL' (E) AJ'L'	 L' [g
- '(E)	 0 0 LL' B L'

 =0 L)
j	 0	 L'

in which

[1-1(E) JJ,LL'	 6	 bLL'	 [ tJ^, E)) -1 - (1-6	 )GJJ'LL' (E) (13)

^] (Kb 	 R j(E; b^)
t I(E) (14)

[f (K b
i

) 	 R I(E; bi)

G jjLL , (E) ° - 47r i .Qt-'	
E	 i -tv , I	 ^^ (L; L' )

LL"
H

X f f 01 ( K R^^,) YL^^(13 (15)

t 00	 [f1 (Kb W) , Rou t (E:bW)^(E) _ b
g	 LL'	 LL'	 [Jp(K`.,W)^ R°fut (E;bW))

(
1
6)

z

SJ LL' (E) - - 41r i 	 E	 i 	 I	 ^^ (L: L')L.„L
xjl,,(K R HO ) YL" (R j0) (17)

The vectors
R..' 	

R ' - R
(18)

JJ'	 J 	 J ^«

rsx

r.

w	 nr

41G.
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connect any two atoms < f the nic'ecule, arid the vectors
r.

13j0 - Ii 0 -R j 	(19)

*connect each atom with the center of the cluster. The Gaunt integrals 14

1 1"
, (L: I,' ) - J 

Y I," (r) Yl.(r) YL, ( r ) cf2(r)	 (L(J)

occur in expressions (1 ^;) and (17). They are nonzero only if

11-1 , I ' 1" `1+1 ,	(21)

V'+ 1+1 1 = even integer	 (LL)

The Ga .nt integrals can also be written as products of Clebsch-Gordon coefficients.

For the pur poses of computation and compact exposition, the matrix elements

as written above diffi r somwhat from the original form in which they were presented in

Refs. 1 and Z. Real spherical harmonics are used throughout, so that under conditions

(21) and (22), the matrix elements turn out to be real and symmetric, i. e.

G il iL , L (E) = GJJ'LL' (E)	 (23)

SOjL , L ( E ) = SjoLLI ( E )	 (24)

It should also be noted from expression (17) that

j0
S LL, (E) =_'LLB ( j =0)	 (ZS)

For the purpose of computation, it is also useful to recall that the Bessel and Hankel func-

tions of imaginary argument (which occur ta the above formulae for the energy range

E< V 0 <0 ) can be written in the real, modified form

i I (x) = i - I j p (ix)	 (26)

t-lh(l)I(ix)	
(27)

A s it stands, the matrix of the secular , equations (12) is a 6 x 6 array for each

partial-wave component L = (1, m), because the atomic index j = 0,1, .. 4. However, this

matrix can be factorized considerably by exploiting the equilibrium tetrahedral symmetry

of the sulfate ion. Instead of expanding the wavefunctions (3), (5) and (6) around each cen-

ter j in ordinary spherical harmonics, we can expand them in linear combinations



r
K r (r) - E C'	 Yfn. m Inn (r )M

(L8)	 -

8.	 SC'F MOI.ECUT,AiI-ON13ITAL, STUUIP;^ OF 1"II1: SUI.T'A'I'l; ION

a!Id

4K I ()In ( r ) = E E C JIn, m YIm(I')	 (29)
j=1 m

of s pherical harmonicas which are a basis for the various irreducible representations

of the Td (tetrahedral) point group. The summations are o.er allowed n,-values and over

equivalent oxygen atoms. The index n indicates that a particular value of Q may occur

more than once in a given irreducible representation. The symmetry coefficients in (28)

and (29) lead to compact symmetrized versions ,A the matrix elements in (12). For ex-

ample, for the symmetrized version of the elements (15) which connect oxygen atoms,

we can write	
^jj`	 T` J	 _ 4	 4	 F.

 JJ'
«1......777	 in, P' n'	 j L1 j1=1 m m' C fn.mG 1m: f'm' C J P'n i , m'	 (30)

Symmetrized secular arrays of only 3 x 3, 4 x4, and 5 x 5 dimensions are thereby obtained

for the sulfate ion, if we include allowed pantial wave components up to Imax 3 for

the sulfur atom and outeratomic region and up to Amax = 1 for the equivalent oxygen atoms.

We also have the option of partitioning 	 contracting the original set of
secular equations (12) prior to symmetrization. This reduces the secular matrices even
further and leads to a very interesting interpretation of the SCF-SW model. The con-

s::-
tracted secular equations can be written in the form

x	
4

E	 E{ b . `L: ' [tJp(E)^ -1 - WJJILL' (E) 1 A JtL , = 0	 (31)
jl=0 L'	 JJ

where

WJJ'LL' (E) _ (1- bjj,) GJJ'LL' (E)

+ E1; SJ	 "LL.(E) g Lli L,( E) SOJ Lm L' (E)	 (32)

Expression (31) is just the partial-wave representation of the inverse of the "T-matrix" 16
for a single electron multiply scattered among a system of nonoverlapping spherical
potentials j (j = 0,1, ... 4). The fact that this expression is set equal to zero is just the
condition for the existence o_ 'Lound single-particle states (the "T-matrix" itself has
"poles" at these states). The "amplitude of scattering" at each potential for each par-
tial—wave component I of energy E is described by the individual If 	 t-matrix " tJp(E)
as defined in expression (14). The "propagation" of the partial waves between any two
atoms j and j' is described by the matrix elements W JJ LL , (E) as defined in Eq. (32).

	

However, the latter is not equal solely to the partial-wave representation G JJ LL , (E) of	 t
i

I
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'	 the "free-space" single-1),.rticle Green's function, as it would be for simple truncated

"rruffin-tin" type potentials	 Through the partitioning and contraction ,f the original

secular equations (12), the second term on the right side of (32) effectively "renorma-
%izes" the free-space propagator GJ' LL ^I •.) to t he original boundary condition placed
on the cluster orbitals, in the ca; e of SO S the solution of the Schrodinger equation in

the c uteratomic region.

Although the matrix elements (13) Through (16) look quite complicated, they

are relatively straightforward to compute efficiently. This is due, in part, to the cle-

pendence of these quantities only on radia l functions (e.g. R Jf (E:b
i
), f I (Kb

i
), etc. ) and

their first derivatives at appropriate sphere radii b., and on structure factors (e. g.
J

fI(KRj
i
,) YL(Rji, )) which lepend on the interatomic vectors R  j, . The zeros of the de-

terminant of the secular equations (12) or their symmetrized contracted version, corres-

pond to the bound molecular-orbital energies. Because the energy E is a parameter

occurring in all matrix elements, the latter must be computed over a range of energies

bracketing each eigenvalue and the determinant interpolated to zero. In our applications

to SOS we have started with trial symmetrized wavefunctions consisting cf only one or

two allowed partial waves per atom, adding higher allowed partial waves until an increase

in the size of the determinant produced no significant change in the molecular-orbital

energies. One or two partial waves per atom is sufficient for convergence of the energies

to f 0. 005 Hartree in the case of SO4 . Accuracy greater than this is unwarranted, in

view of the uncertainties in the SCF-SW potential for polyatomic molecules as complex

as SO2

The generation of a set of occupied molecular orbitals and energies for a model

potential of the type de6cribed above is the starting point for a full SCF-SW calculation

within the framework c f the statistical X  10 exchange approximation. The initial set of

orbitals leads to an electronic charge density which is used as the basis for generating a

new potential. This potential is spherically averaged in the int eaatomic and outeratomic

regions of the molecule, and is volume averaged in the interatomic region. This result,

in turn, serves as the model potential for the first iteration. A new set of orbitals and

energies is computed and the paocess is repeated until self consistency in the potential

is attained. Five to ten iterations have been sufficient in most applications of the SCF-

SW method, thus far, to yield convergence of the molecular-orbital energies to ± 0. 005

Hartree. The total computation time per iteration for the case of SOS is approximately

r,ne minute on an IBM 360 Mod. 65 computer.

Calculated Results

It is possible to treat the nrore tighly bound "core" electrons separately

from the more loosely bound "valence" electrons when one adopts the Xa approximation

to exchange correlation in a polyatomic molecule or solid 10 . While values of the exchange

parameter a generally have to be optimized to yield valence one-electron energies which
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are most consistent with experiment, it appears that the original Slater value of a = 1 is

most appropriate forthe inner-electron levels 
10 

Therefore, in our present work on

SC  , we have calculated the SCF valence and core molecular energies in two stages. For

the determination of the valence orbitals, the sulfur Is 
2 

2s 
2 

2P 6  
and oxygen Is 

2  
core charge

densities used to generate the starting molecular potential have been maintained through

all SCF iterations (a "frozen core" approximation.). The valence orbitals were calcula-

ted for two arbitrary choices of exchange parameter, namely a = 1 and a = 2/3, and for a

Watson charge of +2. The resulting valence-orbital energies are listed in Table V. The

core orbitals were then recomputed self consistencW for a choice of 6= 1 on the basis of

the calculated value of the electronic charge transfer between sulfur and oxygen atoms

in the molecule (see Table VII). The resulting core-orbital energies are included in Table

V. The quantities in parenthesis are the corresponding Hartree-Fork-Slater free-atom 17

energy levels.

It is clear from Table V that the SCF-SW model leads to bound occupied mole-

cular ork i^al s cf negative energy, as anticipated for a sulfate anion stabilized by the el-

ectrostatic field of surrounding positive ions in a crystal such as K 2 SO4 or Na 2SO4' The

effect of using a statistical exchange parameter a = 2/3 for the valence electrons in place

of the original Slater value a = 1 is merely the reduction of the orbital eigenvalues byar,

approximately constant value of 0 . 2 Hartree. This too is not a surprising result, in view

of previous applications of the Xa statistical exchange approximation to atoms and cry-

stals 10

We have also investigated the consequences of adopting a smaller value of pos-

itive stabilizing charge on the Watson sphere. In Table VI is a comparison of occupied

valence-orbital energies obtained for respective stabilizing charges of + Z and +1. Only

the initial non- self- consistent (NSCF) results are compared in this case, because the

highest occupied orbital T 1 w4s "lost", i.e. it became effectively unbound, when we

attempted to iterate the calculation to self consistency for the +1 charge. Thus the ab-

solute magnitudes of the valence-orbital eigenvalues of SOS are rather critically c'.epend-

ent on the amount of charge we place on the Watson sphere. However, the relative spac-

ing and orde: • i n a, c energies are essentially unchanged.

It is als evident from Table V that the ordering of orbital energies is unaltered

by adopting an exchange parameter a= 2/3 in place of a= I. With this sequence, the high-

est occupied valence orbital is one having symmetry T 1 • ESR 3 data on K2 SO4suggest

that the symmetry of the SO4 ion in the sulfate or persulfaie matrix is no greater than

C 2v• This deviation from full tetrahedral symmetry Td can be explained by the occur-

rence of a Jahn-Teller distortion of the ion. While the ordering of molecular orbitals

which we have calculated for the tetrahedral sulfate ion is not absolutely certain, it is one

for which a Jahn-Teller distortion to C 
2 symmetry is allowed. To this extent, there-

fore, our theoretical results for SO4	3are consistent with ESR measurements. The
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core-o&,cal energies in Table V, when compared with the free-atom core levels in par-

ent p sis, are also in semiquantitative agreement with chemical shift data 4.

In Table VII we have listed our calculated results for the distribution of el-

ectronic charge in the sulfate molecule. A comparison of initial and final SCF charge

distributions for both choices of Xa exchange parameter suggests a net transfer of approx-

imately one unit of electronic charge from the sulfur atom to the four oxygen atoms. A

net charge of betwee.i + 0. 4 and + 0. 5 is found in the sulfur sphere.

As we mentioned earlier, a number of molecular-orbital calculations, by ab

initio, approximate, and semiempirical LCAO techniques, have already been published

for the sulfate ions' 9. These results are summarized in Tables VIII and IX. It is diffi-

cult for us to assess the significance of the latter work, because the results of the var-

ious LCAO applications are inconsistent with one another, both with respect to magnitudes

and orderings of orbital energies, and with respect to the net charge on the sulfur atom.

Our calcubations by the SCF-SW method (see Table V) lead to an ordering of occupied or-

bital energies which is consistent with the ordering obtained by the ab initio SCF-LCAO

method 5 for a limited Gaussian basis set which included sulfur d-orbitals (see column.

3 of Table VIII). Our calculation also effectively included sulfur d-orbitals, but through

the 1= 2 component of the partial-wave expansion [ see Eq. (3)] of the sulfur wavefunction.

The core orbitals which we have calculated and listed in Table. V also agree fairly well

with those listed for the ab initio SCF-LCAO inethod 5 in Table	 I. Core orbitals have

not been determined in the other LCAO vork. It is obvious from a comparison of Tables

V and VIII that the SCF-SW model leads to more stable Valence orbitals for SO4 than

do any cf the LCAO calculations. The positive occupied orbital energies resulting from

both the ab initio ' and approximate  SCF-LCAO applications seem to be a peculiar fea-

ture of adopting limited atomic-orbital basis sets. It is doubtful that such energies have

much physical significance, since one expects the orbitals to be stabilized by the crystal

environment, Although the semiempirical, WH-LCAO method  leads to occupied orbitals

which all have negative energy, the ordering of these orbitals is inconsistent with the ord-

ering obtained in our calculations and in the SCF-LCAO 5,6 work.

Similar SCF-SW calculations are in progress on other polyatomic molecules,

e. g.r transition-metal complexes such as Mn0 4 and Fe (CN) 46	Work on these systems

as well as further studies of f ifur and chlorine oxy-anions will be discussed in later re-

ports and publications. The results of the present investigation suggest that the scatter-

ed — wa,.ve model is indeed a practical and reliable new approach to calculating the theoret-

ical dwtronic structures of complex molecules where more conventional methods of quan-

tum chemistry are difficult and costly to implement.

1	 ,
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Table I. Initial and SCF molecular potentials around sulfur

atom in SO 2 for Xa exchange parameter a = 1 and for Watson
sphere of charge + 2

•

k^.

Mesh Radius Initial SCF
Point (au) Potential Potential

(Rydbergs) ( Rydbergs)

1 0.175674 CO-C2 -0.1813537D 05 -0918136910 05
0.8183699_Q-O2 - 0 . ,3 5 60 7310 04_ -0.3562274D 04

9 0.15810660-01 -0.1940319D 04 _:Q,19418420__2A_
13 0.22+331F2U-(1 -0.13170040 04	 -091318547D 04
7 0.2946459D-01 -0.9872496D 03 -0998879390 03

0,3_644E21Q-_C1 -0.7456e55D 03
25 0,5270219D-01 -0.524693SU 03 -095262409D 03
2.9 0,66756119 - 01 - 009663231) .41_ -0.4001804D 03
13 0.80810030-C1 -0.317182CO 03 _-0,3133U20_0_
37 0.94863951)-C1 -0.2604566D 03 -0.26200430 03
41 0.11243130 00 -0.21014060 03 -092116867D 03

1405192p cc .-0. 15693a8n 03 -0. 1584816D 03
49 0.16864700 00 -0.1225757D 03 -0912411561) 03

_ 53 04-196754 8D CO =x_33-4-U q__Q.2_ -0.1003810D 03
57 0.22486770 CO -0.81604890 02 -Q,811ItOAM..Q2_
51 0.259„j,gy75n	 c0 - 0=65x315 n Q -0.673E 3S8D 02
65 0.3162132D 00 - 0.4870080D 02 -0.50227380 02

_-_69__D_,37242_i an_5L0-9^37A5376D__Q2_ -0 .3897399D 02
73 0.4286445D OJ -0.2966518D 02 -0, ?1179^4D 02

_-_7 1 __D_4a4a6_Q2Il_s1Il__- Il,_2404Il42R_ 02 _ -092554 E14D 02
81 0.55512S8D CC -091894640D 02 -0L24i4.6Q6D__Q2_.
85 0.66756110 00 -0,1342295D 02 -0.1498?12D 02
89 0.77999240 00 -0.9996809G 01 -0, 11474620 02

892.421$Il_ _S1G_ _n_gA_L6d4 j 940 01 - C. 91409 810 01
97 0.10046550	 Cl -0.6110215D 01 -097534110D 01

-19L_^1145334D_QL-9_^4I5$45.41?___Ill_ -0.6125307D 01
105 0. 1370257D Cl -0.3398186D 01 - -9, 46322590 n_

___109 0.15951200	 C1 -0,2643414D 01 -0.36709720 01

Jwl
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Table II. Initial and SCF molecular potentials around oxygen
atom in SOS for Xa exchange paratneter a = 1 and for Watson
sphere of charge + 2

Mesh
Point

Radius
(au)

Initial
Potential
(Rydbergs)

SCF
Potential
(Rydbergs)

1 0.2211 its 30-C2 -C, 1203131D 04 -C.7203020D 04
5 0.110x6770-01 -0914192740 04 -0.14191630 04
9 0.1992C190-01 -0.776135HD 03 -0.77602°.20 03

13 0.2d77359D-C1_-"5295 4 0ZU 03__ -C.52847970 03
It 0.37627010-01 -0.39748470 03 -0939737430 C3
21 0.486937ZD-C1 -0.3006669Q 03 -093005567D 03
25 0.66400600-C1 -0.2130376D 03 -0.21292790 03
29_ 0.$410743D-C1 -0.16253340 03 -0.1624248D 03
33 0.17181430 00 -0.1'-40181D 03 -0.1297112D 03
37 0.11952113	 CO -091C-_:4894D 03 -0.10688530 03
41 0.1416546D	 CC -0.86696320 02 -0,8659699D 02
45 0.1170683D CO -0.6513222D 02 -0.6504465D 02
49 0.21248190 00 -0.5105745D 02 -0.5CS87300 1)2
53 0.24789560 CO -0.41221140 02_.-0.4117443D 02
57 0.28330920 OC -0.34017750 02 -C.3399S91D 02
61 0932757630 CC -0927412230 02 -0.2743532D 02
65 0.39840360 CO -0.20284470 02 -0.20-37225D 02
69 0.46923C90	 CC -0.1564731D 02 -C.1578S88D 02
73 0.54005820 00 -0.12427430 02 -0.12618850 (N2

_ _7T_ _0,6108655Q CC - 1).10074960 OZ -0.1031444D C2
81 0.69941970	 CC -0.7918274[) 01 -0.8219119D 01

0, 84107430	 CO -0.56005330 01 -0.5997790D 01
89 0.98272890 CO -0.4129217D 01 -0.4611382D 01
93 0.11243830	 C1 -0.31661080 U1 -0.371215ED Cl
97 0.1266038D	 C1 -0.2525044D 01 -0931070910 01

sfM

tl

f

I
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Table III. Initial and SCF molecular potentials in outeratomic
region of SO 2 for Xa exchange parameter a =1 and for Watson
sphere of charge + 2

Mesh Radius Initial SCF
Point (au) Potential Potential

(Rydbergs) (Rydbergs)

_	 IQ13-k5Z@3.11? C1 -Qa1467515D	 01 -0.9335C69D 00
5 0.40194500 Cl -0.89434340 CC -C.6C7S959D 00

0.4586C690 O1 n.5211762D	 OU -0.3627367D 00
13 0.51526E70 C1 -0.3240421D	 CC -092224C97n	 00
17 0.5860960D 01 -Q.1897295i) 00 -0.12352660	 CO
21 0.6994197D C1 -0,8643887D-Cl -0.5003405D-01

_Z5_ _Q1=0t422"3,4Q-Ol_ -C.2101E86D-01
29 0.92606710 C1 -0.2159452D-01 -0.9144771D-02

_ 33 0:10393910 C2 -0.113U434D-01 -C.41455890-02
37 0.11910450 C2 -0.51381010-02 -C.1675052D-C2

---41 _-0-a14Q769.30 02 .-Q.1499t)06D -Q2L_ -0.537186OD-03
45 0.1634340D 02 -0.44252510-03 -0.281PE750-C3

-0,_3772898U-Q4 -0.205415CD-C3
53 0.2087635D 02 -0.5390446D-04 -0.17733C7D-03
57 0.2370944[) C2 -0.5298415p-04 -0.154EC?8D-03
61 0.2824239D 02 0.716197-D-05 -0.1281751D-03

0,32775340 _Q2 40-_Q4 -C.1102 g 3l.)	 03
69 0.37308290 C2 0.97884330-05 -C.968S26CD-04

_	 730,418412 . 30 D? 0.8730805D-05 -0.8639547D-04
77 0.47507420 02 0.2 8 54 88 30-05 _-0.7624Z21D-04
81 0.5657331D 02 0.18975100-05 -0.64039940-04
85 0.65635210 02 0.1225556D-05 -C.5520778D-04
89_ 0.74705300 . 02 0.4489045D-05_ -0.4838E870-04
93 0.83771COD C2 0.4369909D-05 -0.43152080-04

_	 97 _ 0.95103.37D _C2_ Col 1I .5561D_05_ -C.38CS345D-04
101 0.11323520 C3 0.98783620 -06 _-0,2199271D-04
105 001313669D 03 0985108530-06 -0.2757783D-04
109 0.1494987[) C3 0.74765450-06 -0.24233CSD-04
U3-_j-1676305D_03 0.6662530-06 -0.2161193n-04



Equilibrium sulfur-oxygen distance 	 = 2.72 au (1.44 A)

Sulfur sphere radius	 = 1. 51 au

Oxygen sphere radius	 = 1. 21 au

Watson sphere radius	 = 3. 93 au

Initial average interatomic potential 	 =-1. 203 Rydberg

SCF average interatomic potential	 =-1. 350 Rydberg

a See Ref. 12.

Table V. Occupied molecular-orbital energies for SOS	 calculated by the

SCF-SW method for two choices of Xa	 exchange parameter and for a Watson

sphere of charge + 2.	 Quantities in parenthesis are Hartree-Fock-Slater

free-atom energy levels a	 Energies are in Hartrees.

Orbital Valence	 Core Orbitals	 Valence Orbitals
Symmetry Orbitals

ce	 a = 1	 a = 2/3
r

IT 1 -0.490	 -0-292

5T 2 -0.510	 - 0. 317

lE -0.556	 -0. 169

4T 2 -0.690	 -0. 502

5A 1 -0.804	 -0. 596

3T 2 -1-106	 -0. 890

4A 1 -1.254	 -1.0.16

2T2 (S P) -6.748 ( - 6.274)

3A 	 (S2s) -8. 688 (	 8.215)

1T 2  (O l s) -19. 511(-19. 657}

2A 1 (Ols) -19.511(-19.657)

1A 1 (Sls) -90. 389(-89. 904)

a See Ref. 17. No Latter correction used.

SCF MCIA-CUI.AR-01313ITAI, STUUIFS OF THF SULFATE ION 	 17.

Table IV. Various physical parameters used in SCF-SW calculation on SO4

for Xa exchange parameter a = 1 and for a Watson sphere of charge+ 2.
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Table VT. Comparison of occupied valence molecular-orbital energies of

SO4 calculated by the NSCF-SW method for a Watson sphere of charge +2
with those determined for a Watson sphere of c! arge +1. Xa exchange para-
meter a= I. Energies are in Hartrees.

Orbital Charge Charge
Symmetry +2 + 1

T 1 -0. 359 -0. 122

T 2 -0. 371 -0. 136

E -0.427 -0. 192

T 2 -0.518 -0.290

A 1 -0.574 -0. 348

T 2 -0-938 -0.700

A l -1.027 -0.7)6

Table VII.	 Distribution of electronic charg - in SO4 for initial and final

SCF-SW potentials. A Watson sphere of charge +2 is used. Two values of

Xa exchange parameter are considered.

Region of initial Charge SCF Charge
Molecule a=1	 a=2/3 a=1 a=2/3

Sulfur r	 °re -12. 9	 -12. 6 -1 ?. 4 -12. 2

Oxygen	 re -	 6.0	 -	 5.7 -	 6.4 -	 6.1

Interatom .^	 • Z ion -10. 6	 -12. 5 -11. 3 -12.3

Outereto:n,c, region -	 2. 5	 -	 3. 2 -	 0.8 -	 1. 2

ItAYf'
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calculated by various

Charge

+1.42
-0. 55

+1.79

+2-16
+1.18

+1.15
+0. 51

-0. 09

i

,
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COMPUTATIONAL ASPECTS OF THE APW METHOD

Peter D. DeCicco

Now that we have reached the end of the first eighth of a century of calculation
of energy bands on large scale computers by the APW (augmented plane wave) method,

`	 and find ourselves in a period of diminished financial support for computation, it i; well
to consider the efficiency with which we apply this method. Since the majority of past
and current calculaticnc- involve crystals with cubic lattices, special consideration of
this case is worth while. The reason for giving some special consideration to this case
is found in the fact that the APW matrix elements depend strongly on the magnitudes of

 numerous wave vectors and it is only in the cubic lattices that the square magnitudes of
reciprocal lattice vectors and the dot products of pairs of wave vectors are gquill to a
constant times an integer.

In the APW met;iod one computes the determinant of a matrix Mij and finds

the zeros of this determinant. The matrix element M ij of (H-E) between APW's with
wave vectors k 

i 
and k 

j 
is given by

	

N	 L	 j l ( ski- kj JRsn)	 i(kj - k i) rn
S2 M ij _ [k. • k. - E) [S2 t ..- E 4n R	 et^	 t	 t^ n=1	 sn	 I ki- kj

r

°	 x 47T RZsn u1 ni, E (R snVU ni, E (Rsn)

+v(k -k}j.	 j
where 0 is the volume of the unit cell 	 which contains N atoms at positions r n . The

function U
n.F, E 

(r) is the r-dependent part of the 1 1 th partial wave of the Bloch function

(1)

^I

I
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and v(K) is the Fourier coefficient of the "non-muffin tin" potential corresponding to the
reciprocal lattice vector K. (For Eq. (1) to be rigorous, one must require the "non-

muffin tin" potential to be zero inside the APW spheres).

In most A pW calculations one finds the zeros of the secular equation at a fixed

point in the Brillouin zone (BZ) by calculating the determinant of (H-E) as a function of
E and then employing an inverse interpolation scheme. The most repeated computational
operations are therefore the setting up of the APW matrix and the calculations of its de-
terminant using the technique of triangularization. The amount of computational effort
involved in the evaluation of the determinant given the matrix is fairly ^k ell represented

by the number ui multiplication operatirns involved which is approximately K 3 /3 for a

K xK matrix. To see the computation involved in setting up the matrix M ij ; let

N	 2	
J1(Iki- k  

IRsn)	 i(k.- k i1 r 

ij	 ij n=1	 sn	 ki - kj

Pnd

	

'	 i(k. - k.) r	 k k.
G..	 = e J	 1	 n (2f+ 1) P i	 --^ j ( k R ) j ( k .R )	 (3)

1J p n	 Q Ikll^k.^	 P	 i sn f J sn
J

Then

SZ M ij = (k i k  ) F ij - E x Fij

N m

	r	 + E	 E G..	 X[4-rr R 2	u'	 (R ) / u	 (R )]
n=1 1=0	 tJ111	 sn	 ni, E sn	 ni, E sn

+v(k i -kj )	 (4)

where the (x) signs indicate the multiplication which must be performed for each value
of E. Since M.. is hermitian, the number of distinct mat *x elements is approximately

tJ
K 2 /2 and the number of multiplications required to set up the matrix is then approxi-

mately (K2 12)[N( Ima.x +1)] where I s Amax. Thus the amount of computation involved
in setting up the APW matrix should be greated than that involved in triangularization

for K s 3 N(jmax+ 1) /2. Thus for one atom/ unit cell and	 .1-values the set-up time is

greater than the triangularization time until K °` 18. (This res, : lt also applies when the

basis functions are symmetrized APW's rather than single APW's. ) A closer examin-
ation would probably show that the comparative set-up time is even greater because it

involves the 3 or 4 dimensional array Gijtn.

[It has been shown that a considerable amount of the set-up time  as well as computf:r
storage can be saved by an approach based on the nearly linear character of the logar-

ithmic derivatives for the larger 1-values. 2'3]
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Suppose that we evaluate the secular determinant 100 times in the course of
finding 10 energy levels at a general point in the BZ with K = 50 and t max = 9. The follow-
ing numbers represent estimates of the numbers of multiplications involved in various
parts of the calculation:

r

F ij i 4 x 104	u' /u : 2 x 105

Pt : 2. 5x10 4 	 SETUP M 	 1. 3 x 106

0. 5x10 4 	 Triangularize A,: 4 x 106

Of the logarithmic derivatives u'/u it is assumed that 80 were previously tabulated on
a fixed mesh in energy good for all points in the BZ so that 2 x 10 5 is the estimated
number of multiplications needed to obtain u l /u at 20 additional energies chosen so
as to "zero in" on the eigen energies. The reason why the quantities F ij , Pt and it
require relatively little computation is that they are ck1culated only once and are reused
100 times being stored in the arrays F ij and Gijtn'

As long as the secular determinant is evaluated many times at each point in
Wt BZ, it is clear from the above numbers that the computational effort involved for
the quantities F i ,, Pt and 71 is of little importance. If, however, one wishes to search
for zeros of the secular deteriminant at fixed E ( say E F.) then it would appear that the
computational effort required for each value of the secular determent will more than
double. Let us therefore see how this computational effort can be reduced.

The quantity Fij does not depend on k i and kj separately but rather it depends
on the reciprocal lattice vector k i - k  whose magnitude is clearly less than or equal
to twice that of the largest APW wave vector. If we assume 50 APW's per atom, K= 50N,
then the number of such reciprocal lattice vectors is approximately 8K = 400 N. Thus
we can calculate and store the 400 N or fewer values of F.. once for the entire calcul-rj
ation since Fij is independent of the point in the BZ at which we are calculating. In
general the reciprocal lattice vector K = k.i- r. is specified by a triplet of integers v 	 'i

J
specify this vector in terms of 3 convenient translations of the reciprocal lattice. These
integers can then serve as the indices of a 3 dimensional array F(K) . In cubic systems
the situation is further simplified by the fact that F(K) is trivially relaUld to a quantity
which dependsonly on the magnitude of K . The square magnitude of K in the appropriate
units is then an integer whch can serve as an index of a one or two dimensional array
containing the quantity 4,rR 2

sn

	

jl( JKIRsnl/ JK	 The number of entries in this array
would then be approximately (400 N)J 	 54 N .

The amount of computational effort required for ft(kiRsn) is relatively small
already because only one wave vector at a time is involved. However, in calculating
these Bessel functions by downward recursion followed by normalization it is customary
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to obtain jemax to 8 figure accuracy or more while j Imax + 1 is assumed in effect to

be zero. If instead we required only 2-figure accuracy for jImax the amount of com-

putation would be roughly cut in half. To reduce the amount of computation further we

could, in cubic systems at least, calculate and store all the j p ' s which would be needed r

given a mesh cif points in the BL. For example, in the Cs Cl structure with 8, 000 points

ir, the first BZ and 62 APW's per atom, the maximum value of (k i ) 2 in the appropriate
units (i.e., (/I Oa) )r 	 is 3600 so that 36, 000 storageSlocation would suffice. Alternatively
one could tabulate the "7200 values j, and j  and then calculate the j  I s for Q z 2 by up-
ward recursion at least for those k  lying outside the 1 stBZ. (In the case of small Ikil,
the downward recursion might be needed to get sufficient accuracy. )

Since the Legendre polynomial P^ is generated by upward recursion requiring two
multiplications per I-value, the computation required is roughly twice that for the setting
up of Mij in the case of one atom /unit cell and relatively less with more atoms since the
argument of PI does not depend on the atomic coordinate_ or sphere radii. Since the
feasibility of the APW method is often space-limited by the size of the array G.- , it

ijin

will sometimes be better not to generate this array at all but rather calculate the Leg-
endre polynomials each time M

iJ
. is set up. If it is necessary to use even less storage

space one might delete the storage of F.. as indicated above as well as the storage of
ij

k i kj • F. noting that in cubic systems, the dot product k i k. can be calculated using
integer arithmetic. Furthermore, in cubic systems for which the potential outside the
APW spheres is a lattice sum of spherical functions, v(k i - kj ) can be a one-dimensional
array indexed by the squares magnitude of (k i - kj ) in the appropriate units. In the case
of minimum storage of arrays, equation (4) becomes

0 m ij = (k i • k j ) x F ij - E x Fij

N	 i(k.- k.)• r	 /(k.• k.)
+ E E e J 1 n x pal—^—jf (kiRsn)

n=1 1=0	 ` k. k.itllJl

X j (k.
J sn
R ) x[4r	 n.2, E(21+1) u'	 (R sn	 nQ, E sn)/u 	 (R )]

+ v(k i - k j )	 (5)

so that the set-up computation is about as long as the triangularization time for 50 x 50

matrix. However, the set-up time can be considered reduced by effectively making the
sum on I shorter as noted above. 2 Let us now consider the principal applications of the
AFW method under two categories:

.f ti.
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I. Calculations involving many energies and relatively few points in the BZ.
II. Calculations involving many points in the BZ and relatively few energies.

Category I

,l. Band calculations along symmetry directions using group theory.
2. Iterative self-consistent field calculations (including approximate determination of

the Fermi energy).

3. Charge, spin and momentum density calculations.
4. Optical properties such as dielectric functions and photoemission (including momen-

turn matrix elements).
Category II

I. Fermi Surface

2. Density of state5at and near the Fermi Surface
3. De Haas - van Alphen and cyclotron resonance periods

In the case of materials with one or two atoms per unit cell, the relatively
few point5in the BZ for Category I calculations typically involves (or should involve) a
mesh of from about 100 to about 1000 or perhaps 4000 points in the entire BZ. A Cat-

egory II calculation involving comparable expense would involve roughly from 4000 to
2 x 10 5 points in the BZ at which the APW secular determinant would be evaluated. Since
however, large regions of the BZ may be free of states in the energy interval of inter-
est in Catogory II, the corresponding meshes in the BZ might well contain 2x10 4 to
2 x 10 6 points in the BZ.

From the above discussion it appears that the computationally most significant

part of an APW calculation is or should be the triangularization of the (H-E) matrix.
This fact supports the following suggestion for future APNV calculations:

Since the secular determinant D(E, k) for a given E, k represents a considerable amount
of computational effort it would be worth-while to store the valuesof D(E, k ). In partic-
ular, one might consider the case of k confined to a plane perpendicular to a symmetry
axis. The solution of the secular equation for various values of E would then give a

family of contours of constant energy h the plane useful for comparison with cyclotron
resonance and de Hans-vanAlphen measurements. For a fixed value of E, the function

D(E,'k) is probably more easily interpolated with respect to k than is the multi-valued
function E(k). Thus in futui a applications of the APW method it would be well to con-
sider the problem of how to interpolate the function D(E, k) onto a fine mesh of points
in the BZ. In order to make D(E, k) meaningful and a smooth function of k, it would
be necessary to hold fixed the set of reciprocal lattice vectors K i which specify the
APW basis functions having wave wave vectors ki= k +Ki . If it is found feasible to
interpolate D(E, k) on k as well as E within. limited ranges of energy as is now done to
find E(k) at fixed k , then the calculations in Category II above should be quite straight
forward.

'
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A NON-SPHERICAL MODIFICATION TO THE AUGMENTED PLANE

WAVE METHOD II.	 Erratum and Addendum

John W. D. Connolly

In the last issue of the Semi-Annual Progress Report  , we set forth a propos-

al for a modification of the A. P. W. method for the case of a non-spherical potential in-

side the muffin-tin spheres. The modified basis function took the form;

f 
e lk' r	 outside

6 k ( r ) =	 l	 1
r E a 1 P1m(r) Yftn(r)	 inside
Im

where the

aim = 4,rRi^ j I (kR) Y^ (k)/Pftn

are chosen such that (b k is continuous at the sphere radius R and the radial functions
Pftn satisfy a set of coupled differential equations;

_ ( plin +_ z
	 E+ 

Vol 
Pfm _ -^ m vfm; f'm' Pf' 'V	 ^ ^	

m

This led to a simple form of the matrix elements ( Eq. (14) of Reference 1). However,
there is a term which was inadvertently omitted from this equation Zdependent on the
coupling potentials v1m;1' m' . Equation ( 14) should have the additional term;

I
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sx

Pm, k' m" { Pmg ^ .Q' m' g' -	 1mg ^ 1mg' 1	 ,

	

1	 R
X P1 (13) P p^ m , (R) .	 Pfm(r) v 1 1 m" (r) P f" m' (r) dr	 r

0

where the f - coefficients were defined as

f; fmg = 4Tri I i f ( lk+g I R) YIM (k +g )

The diagonal terms ( pm = 1?' m' ) in this summation vanish, but in the general (non-spher-
teal) case, the off-diagonal terms do not. The solution of the set of coupled equationsj,

1r E P1mYfm(r)
fm

represents the exact wave function for an electron in an unbounded (non-spherical) pot-

	

ential, i. e. , in that case where R — 	 Therefore, one would expect that these modified
APW's would be an especially suitable basis in the case where the radial functions are
localized well inside the spheres.

Since the last Progress Report, a paper has appeal ,^d by Kleinman and Shurt-
leff3 in a which a method similar to that proposed here is presented. They also suggest
the use of a set of coupled differential equations to define the radial functions (cf. their
Equation (13)). However, they were appalled by the number of coupled equations invol-
ved, i, e. , if Fmax = 12, then there are (Q max + 1) 2 = 169 equations. They therefore mod-
ified the APW basis to include only those 1-terms to the maximum valence value (Iv_al_ 2
for transition elements). This was accomplished by allowing the plane wave exp (ik• r)
to penetrate into the muffin-tin sphere in the APW basis function, equivalent to making

Pfty1 ( r , E) = j f ( kr)	 for Q>k 1a

in the ordinary APW basis, and leads to additional terms in the secular equation matrix
elements. This complication we believe to be unnecessary for the following reasons;

(1) For satisfactory convergence of the energy eigenvalues, even in a trans-
ition element solid, it is not necessary to include terms up to I = 12. If one takes the
summation up to .Q= 5 (corresponding to convergence of <.005 Ry. ), then the number of
:oupled equations reduces to 36. For a non-transition element this reduction would be
even greater.

(2) Symmetry will reduce the number of coupled equations further. For ex-
ample, in a cubic solid, the first non-zero V LM (cf. Equation (9) of Ref. 1) is for L=4.
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If we make the reasonabel assumption that the 1' im are unperturbed from their spheri-
cal values for 1>2, then the only coupling is among the 1= 2 functions, and this can be
removed by using cubic harmonics as has been noted3.

(3) Since the nor.-spherical perturbations are expected to have a small effect
on%the radial junctions, we can use an iterative technique which essentially decouples

the equations. If P hn ( " ) represents the radial function after the n th iteration, then we
can solve the inhomogeneous equations:

+ 1 "
( P	)) =	

(n+1)
lm (n
	

g	 (r) P	 + E,lm	 pm	
C m	

v#	 in : 1' m' Y 1' rn' (n)

where

gim (r)=1 W 1) -E+VO (r)r2 

If the n = 0 terms are set equal to the spherical solutions, then this set of equations
should converge quickly. The Numerov integration method, currently used in most ver-
sions of the APW program, can also be used on this type of inhomogeneous equation,
thereby taking advantage of the speed of this method and also minimizing the pain of re-
programming. The Numerov method is u: dally applied to equations of the form;

P" (r) = g ( r ) P(r)

but it can also be used on equations of the form

P" (r) = g(r) P(r) +f(r)

In this latter case, the recursion relations for P becomes

P n+1 = (1 -h 2 gn+1 /12)-1[(2+5h2gn/6)Pn-(1-h2gn-1 /12)Pn-1

+ h2(fn+1+ l Ofn +fn-1 ) /12]

where only the last three terms have to be added in modifying the existing programs.
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INVARIANT OPERATORS I. CASIMIR INVARIANTS

Robert Gilmore

I.	 Introduction

There has been a great deal of interest in the invariant operators

associated with a Lie group. These operators may be used to classify states

belonging to an irreducible representation s , to approximate spectra in atomic

+. systems L , and as models for Hamiltonians in nuclear systems ] and systems

possessing phase transitions Although the general properties of these invar-

iant operators have been well-kncwn for a long time s ' 4 and some have been

constructed explicitly3, 5, 6, they have not yet all been explicitly constructed

for the simple classical Lie groups. Because of their widespread use, we

feel that an explicit constructive determination of these operators is approp-

riate.

la the following sections, we construct the Casimir invariants for

the unitary (A n	y), smplectic (C n), and orthogonal (B .. , D 1) groups. We also

construct (some of) the invariants for non-semi-simple groups which may be

constructed from semi-simple groups by Inonu-Wigner contraction.

31.
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H. Construction of Invariants

The Casimir invariants of a Lie algebra are functions of the gener-

ators which commute with all the generators. In short, they form a basis for

the Lie algebras universal enveloping algebra. Their general properties are

well known 1,4 :

I. They are symmetric homogeneous polynomial functions of the generators

which are invariant under the automorphisms induced by the Weyl group of re-

flections.

L.	 The product of the ord rs of the n functionally independent and irreducible

invariants of a simple rank n algebra is equal to the order of the Weyl group of

reflections for that algebra.

3. On a compact algebra, the eigenvalue of the invariant c°^ on an irreducible

representation with highest weight M h is

&i(Mh) = fi (Mh +R) - f  (R)	 (1)

Here f i consists of those terms in the polynomial invariant which contain only

the mutually commuting generators Hi of the Cartan subalgebra, and R is de-

fined as usual-

R = Z E (position roots)
	

(L)

fi (H) are called the associated invariants.

4. The Jacobian J (H) = det 
a 

II is cor-ipletely antisymmetric under the
J

Weyl group.

We will make an explicit constructive determination of the invari-

ants using the proceedure outlined in steps 1 1 -4 1 below, then use observations

1-4 above to prove that the operators so constructed are in fact irreducible

polynomial invariants.
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I t .	 faithful matrix representation of the generators Xa is determined:

X
a	

faithful M
a 	( 3 )

^	 > 

2 1 .	 The secular equation for the L,ie algebra element a s Xs , in this represent-

ation, is determined

det 11 aa Ma - a I ^I =E ^` f  (aa ) = 0	 (4)

3 1 . The symmetrized functions f  (Ma ), with the matrices Ma replacing

arguments aa , obey

[ fi (Ma), MR ] = 0	 (5)

4 1 . The general polynomial invariants are then f  ( a), since they obey a

commutation relation isomorphic to (5)

[ f i (Xa ) , X  ] = 0	 ( 51)

III.	 Invariants of the Unitary Groups U(n) (An-1)

The generators of ti,! group U(n) are

U 	 Hi

i	 ^	 iU 
j	

Eel-ej	 j

[Ut 
j, Ur s ] = UL s 

6  
j - Ur j 6i s	 ( 

3)

A faithful n x n matrix representation of these generators is given by

UL -» M^ : (M^ )	 = d, d.	 (4 )
j	 j	 j rs	 tr is

Zhe faithful matrix representative of the Lie algebra element a 	 is

alj UlI	
i

	

I^ a j 11	 (5)

13.

i	 ,
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'	 The determinant of this matrix is given by
a
it	

a 
1
2 .
	

a in	
jlJ2..-in

e....	 e

det (I al II _	
11 t 2 ... in 	j1	 2	 Jn	 (6)

n!
i

The symbols e ' '	 e ... are the usual Levi-Civita skew tensors

jl

j2

jlj2 ... jn
e	 =

in	 (7)

The secular equation of the matrix (5) is computed using the sub-

=z	 stitution

a 	 a ij -	 6ij	 (8)

The delta function serves to contract indices. The resulting secular equation

is

det ^) aij _ I ^^ _ E ( -X)n-rfr(aiJ)	
(9)

`	 e. • •	 ail . ,, air	 ei i... jr I^r+1 "' In

f (a i ) _ L 1	 • i t 1r+1... In 	 jr
r j r! ( n-r)! ( 91)

The corresponding 1	 -iants (neglecting an unimportant numerical factor) for

the unitary groups U (n) , are

C U(n) 
(UL)	 E:	

t I	 1
 U i I	 U i 

r ej 1 ... j  Ir+1... In

1	 r r+1 "' n	 i 1	 it	 (10)

r	 IV	 Invariants of the Symplectic Groups US p (2n) : (en)

is
The group USp (2n) is a subgroup of U(2n). This suggests the possib-

ility that the invariants of USp(2n) might be I subduced , from those of U(2n). The
t
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g4nerators Z 	 j= ±1, +2,... fn) obey

Z Ir l (r I = H 	 (1)

z 
j	

sign (i) sign (j) Z 
j-i	 (2)

[Z I
j , Z rs )	 = sign ( jr) {Z s b j+ Z-fir bs+ Z1 r 6 j +Z s bT- J

(3)

p SO(2n+1)

(4)

35.

Since i i j i , one of the other values of i is equal to j i • Without loss of

generality, we can choose i 2 = j l . Then the schematic contraction may be

rearranged:

I

s;

r

1r
f

,



Proceeding by induction, we conclude

1) C r vanishes if r is odd

2) The n invariants C r
SO(Zn+l) of SO(2n+I) (r 1, 2,. n) are

SO(2n+l)
C r	 (Xiji I	 I	 xi i	 XZr-I, 2r1*** 2r Zr+l — 2n+1	 1 2

x e if 
-•j2r 12r+1	 '2n+1 X. 	 x

2	 J2r-l'j2r

(6)

36.	 INVARIANT OPERATORS I. CASIMIR INVARIANTS

S0(2n+0
(5)

J4



u

<3
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i2

e
So(2 n+ 1)	 '2
	

12r-

i2r
	

12r

^2r.1
	

12►.

•
•

•	 •

1, i,

12

8
8

i2

•
•

^2r-' 12r.

j 2r 12r

(61)

.-I

VI Invariants of the Orthogonal Groups SO(2n) (Dn)
t

a

The arguments of Sec. V for the algebras B n may be repeated essent-

ially verbatim for the algebras Dn . The only salient point is that C_nS0(tn)(XLJ)

is a perfect square, since there are no lines left to contract the skew tensors.

The invariants C SO(2n)r	 (Xis ), r= 1, 2, ...n-1 are given by (V. 6), replacing l2n+1

by fZn. The invariant C n0(Zn)(XL ) is
J

CSO(2n) (X ) _ eiliZ...i2n-1 LZn X.
	 .. . X.n	 LJ	 1112	 t2n-1 1 2n.	 (1 )
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Tr

pp SO(2 n)
1On	 (Xi d

VII Irreducibility and Functional Independence

We observe that the operators giver by expressions [IIi. 10, IV. 4,

V. 6, VI. 1

1) are symmetric homogeneous polynomials in the group generators

2) which commute with all the group generators

3) and are left invariant under automorphisms induced by the Weyl group.

4) The product of the orders of these inva riants is in each case equal to the

order of the appropriate Weyl group.	 .

5) The number of invariants is equal to the rank of the algebra.

SU(n) ='A n-1 has n-1 invariants, since

C1U(n) (Ul ) = E . H. = 0	 (1 )
i=1	 L
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These invariant operators fulfill observations (1) and (2), section II.

We also observe,	 from [Ill. 1 and III. 101 , that the associated in-

variants * for the unitary groups are given by

k
n-1 (H) = F	 17	 Hi	k= 1,2,...n	 (2)

i r# i s r=1	 r

The associated invariants for the algebras Cn , Bn , D  can easily be determined

from [ IV. 1, IV. 4, V. 1, V. 6 and VI. 1 ]

r

C ,B ,D	 kf n n n(H)=F	 ri	 H 2	 (kJn for D)
k	 ir# is r=1	 i t	 n

f D n (R)	 =	 n nH
n	 t=1	 i

From (2) and (3) the value of the Jacobian J (H) = det 11
OC

 +I on any representation

with highest weight R  may be determined:

J(Mh+R) _dim Mh	(4)
J(O+I7)

The invariants [III. 10, IV. 4, V. 6. Vi. 1 ] or alternatively (2) and (3) therefore

also satisfy observation (4), Sec. II. Therefore these invariants are the func;-

tionally independent irreducible polynomial invariants of the classical Lie groups.

The spectrum of these invariants on the compact real forms of these al-

gebras has been determined  using observation 3 of Sec. II.

VIII Invariants of Subgroups -A Caution

It is often possible to determine the invariants of a group 0' if it is

embedded in a larger group 39 whose invariants are known. Thus we were able

to subduce the invariants of Cn , B  and D  using canonical embeddings. This

technique may be used to suggest the structure of (subduced invariants), but these

* See above, Sec. II, observation 3.

(3)
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operators may not belong to the center of the subgroup's universal enveloping

algebra at all. In each case, the subduced operators must be shown to be in-

variant operators on the subgroups.

For example, SO(3) has generators J 3 ► J+:

(13P i±1 _ }Jf

J+, J, ] = 2J3 	(1 )

C1 O(3)	 = J32+ i(.J+J- + J- J+)	 (2)

The generators J 3 , J+ form a subalgebra of the original algebra. The ' invar-

iant of this algebra subduced from: the well known Casimir invariant (2) is

C'1 (J 3 , J+ ) ' J3 2 	( 3)

This is easily seen not to be an invariant of the subalgebra, for

IC^1 (J3' J+ )' J+ ] = J3 J+ + J } J3	 (4)
u

In f,--,.et, this particular algebra has no invariants at all.

IX Invariants of Contracted Groups
t

It is possible to form new group structures by the process of contracir

tion8'9' 10 If the group 4' is a contraction of the group, then operators

C  (X') may be subduced from the invariant operators C  (X) onll^yl. These op-

erators C'1 (X') may be or may not be invariant operators on	 If the con-

traction process used is the one proposed by Inonu and Wigner 8 , then opera-

tors subduced from invariants will ren.iain invariant operators.

Example 1: The invariants of the groiup SO(4) are

C1S0(4)(X) _ E Xi.t

i<j

C SO(4) (X) = X X +X X +X, X	 (1 )
L	 12 34	 23 14	 -1 24

f	 ^^
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Contracting with respect to the subalgebra X 	 Jk (i, j, k = 1. 2, 3) and de-

fining

Lim	 c X14 = Pi
e.0

Lim	 cX..	 =0	 i,j=1,2,3
^J

(2)
C -•0

we subduce the two invariants

e l (J, P) = Lim	 e2 C1SO(4) (X) —	 P ; p
e-0

0 	 P) = Lim	 e C2SO(4) (X)	 -^	 J • P ( 3)
c ^0

Example 2: Either of the de Sitter groups SO(+++ - +) may be contrac-

ted with respect to the SO(+++-) subgroup. 	 The two invariants of the de Sitter

p-coups are
C 1SO(5)	 2(X)	 = F	 Xij

i<J	 i,j=1,...5 (4)
C 2SO(5) (X)	 = F. Vi 2

iJ klm
V i	 - c 	 XjkX1m

The generators are contracted by the following limiting process

Li.m R X 	 = -8 
R —co	 ^6	 ^L	 11

Lim R X	 µO	 , v = 1. 2, 3, 4 (5)µ

The contracted invariants are

r
 2s	 C 1IHLG(Xµv  P) = Lim 1 2 C1SO(5)(X)-.Pµ

R-,, R

C2IHLG(Xµv P^) = Lim C1SO(5)(X) -• (W )2

a R, 2-•

Wa	= Lim R Va -' eaµ^^`Xµ^P^ (6)
Rim

l

F j
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These are the two well-known invariants of the Inhomogeneous Lorentz Group

(IHLG).

Example 3: The Inhomogeneous Galilean Group (IHLG) may be con-

tracted from the IHLG. It is the contraction of the IHLG with respect to the

subgroup of rotations, and time displacements, with generators J  = X ij = x i a 
j
-xj ai

	

(i, j, k= 1. t, 3) and T= P4 = - a t'	 The contracted generators  are

Lim 1 X i4 = - t e = vi
c ^m

Lim L Pi = - 8 i = P i	 (7 )
c --m

The contracted invariants are then

	

IHGG — — —	 1	 IHLG	 —
p	

—
C l	 (J, ,v, T) =Lim —L C 1	 (X	 ° -^

c-^^	
c	 µv	 ^)	 P' P

C IHGG(J—, — —	 1	 IHGG	 — -- — —
( j"-Lim `L C 	 µ(X v

,P )-•(vxp)•(vxp)
V

C'^m
(8)

It is clear from (7) that d IGG vanishes. The IIiGG does have another invari-

ant, though. It is

C3 IHGG ( J, P, v, T) = J p 	
(9)

These three examples are physically useful cases in which invariants

Cl of the group _'ZI contract to invariants Ci of the contracted group.81 , under

Inonu-Wigner contraction. It is obvious, and apparent from example 3, tha."

the contracted group may have additional invariants.

X Conclusion

The Casimir invariants for the simple classical Lie groups have been

constructed. They are both irred!%: ible and functionally independent. Their

spectrum on any representation of a classical mpact group has been determined.

We have constructed invariants for non- semi- simE ,. groups which maybe con-

structed by Inonu-Wigner 2ontraction of semi-simple groups. Several examples

have been given.
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