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GENERALLY APPLICABLE N-PERSON PERCENTILE GAME THEORY

FOR CASE OF INDEPENDENTLY CHOSEN STRATEGIES

John E. Walsh	 Grace J. Kelleher
Southern Methodist university* 	 University of Texas at Arlington

ABSTRACT

Considered is discrete N-person game theory where the players choose

their strategies separately and independently. Payoff "values" can be

of a very general nature and need not be numbers. However, the totality

of payoff outcomes (N-dimensional), corresponding to the possible combina-	 4

tions of strategies, can be ranked by each player according to their desir-

ability to ti:at player. A largest level of desirability (associated with

one or more outcomes Oi ) occurs for the i-th player such that he can assure,

with probability at least a given value cxi, that an outcome with at least

this desirability level is obtained, and this can be done simultaneously
3

ror all the players. This game theory is of a median nature when all the

a  are chosen to the 1/2. A method is given for determining 
0  

and an

optimum (mixed) strategy for every player. Practical aspects of applying

this percentile game theory are examined. Application effort can be

substantially reduced when the players have relative desirability functions

for ranking the outcomes. Some elementary types of relative desirability

functions are introduced.

*Research partially supported by Mobil Research and Development Corpora-
tion. Also associated with ONR Contract N00014-68-A-0515 and NASA Grant
NGR 44-007-028.
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INTRODUCTION AND DISCUSSION

The case of N players with finite numbers of strategie:, is considered.

Each player se'-lcts his strategy separately and independently of the

strategies selected by the other players. Mixed strategies are used.

That is, a player specifies selection probabilities (sum to unity, with

a unit probability possible) for his strategies and randomly chooses the

strategy used according to these probabilities.

An N-tuple of payoffs, one to each player, occurs for every possible

combination of strategy choice by the N players. These N-tuples are the

possible outcomes for the game. The number of possible strategy com-

binations is

N
ff r (i)

i=1

where r(i) a 2 is the number of strategies for player i. The payoffs can

be of an exceedingly general nature. Some payoffs may not even be

numerical (could identify categories, etc.). However, the outcomes are

such that they can be ordered, according to relative desirability,

separately by each player. Also, all players know the correspondence

between outcomes and strategy combinations.

Ordering of outcomes should nearly always be achievable by use of

paired comparisons. That is, for each two outcomes, a k:?,,,yer expresses

his preference (with equal desirability a possibility). An ordering

occurs when there is no circularity of definite preference. Frequently,

acceptable rules can be imposed that prevent circularity of definite

preference. A suitable numerical function of the N payoffs might be used
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for ordering the outcomes. The amount of application effort can be reduced

substantially when each player has a realtive desirability (preference)

function for ranking the outcomes. Some methods for developing elementary

•	 kinds of preference functions are introduced for the case of numerical

payoffs.

It is to be emphasized that an ordering of outcomes not only take-

into consideration the payoff to the player doing the ordering but also

the corresponding payoffs to the other players. Thus, to each player,

his ordering provides the relative desirability of what can occur for

the game, including what happens for the other players.

Expression of the payoffs t-) player i in matrix form is convenient

(called the payoff matrix for player i). Here, the rows correspond to the

strategies for player i and the columns to the combinations of the stra-

tegies for the other players. Let the strategies for player j be denoted

as 1, ..., r(j), where j = 1, ..., N. For definiteness, the rows of the

matrix for player i are numbered 1, 	 r(i). Also, in the combinations,

the strategies for the other player with lowest designation number occur

first (listed according to increasing strategy number), those for the other

player with the next to lowest designation number occur second, ..., the

strategies for the other player with highest designation number occur last.

The material of this paper is rn extension of that given in ref. 1

for two players and arbitrary percentiles. The basis for percentile game

theory is that each player should want the occurrence of an outcome that

has a high level of desirability to him. However, a player only

partially controls the out:-ome choice and needs some meaningful criterion

(to guide him in the choice of a mixed strategy) that incorporates his

interests and is usable. The class of percentile criteria considered

-3-
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in this paper is virtually always usable and, for each player, should

frequently include a criterion that reflects the player's interests.

For player i, let the outcomes be ordered according to increasing

desirability to him (i = 1, ..., N). Also, player i specifies a

probability a  that represents the assurance with which he wants to

obtain an outcome that has a reasonably high desirability. A largest

level of desirability occurs among the outcomes such that player i can

assure, with probability at least ai , that an outcome with at least this

desirability occurs. This can be done simultaneously for all players.

The e^^.come, or outcomes, with this largest desirability level is desig-

nated by of for player i.

A method, which is oriented toward minimum application effort, is

given for identifying 
0  

when CV i is given and for determining an optimum

mixed strategy for player i. Given a desirability level for O il this

method tends to maximize the value of Cxi.

A desirability level, represented by Oil corresponds to each

possible value of 
ai 

(0 < (Yi 5 1). However, only a finite number of

values are achievable for cxi . A value is achievable for a  when, for

the 0  corresponding to cx
i, use of a strategy that is optimum for this

combination (CI i and Oi ) cannot assure an outcome at least as desirable as

of with probability exceeding ai . For player i (and the method of

solution used), the achievable values of ai are determined by his ordering

for the outcomes and the location of the outcomes in the payoff matrix

for player i. Restriction of 
CV  to achievable values would seem to be

advisable. For example, the nearest achievable 
ai 

value that exceeds the

stated ai should be an acceptable choice in many cases.

-4-



The application effort for using the method of this paper can be

very great. First, N payoffs need to be evaluated for every possible

combination of strategies, and the number of ccmbinations can be huge,

even when all of N, r(1), ...^ r(N) are of moderate size. For example,

•	 let N = 10 and r (1) _ ... = r(N) = 10. Then, the number of strategy

combinations is 10 10 and the number of payoffs to be evaluated is 1011.

Of course, this application difficulty occurs for virtually all possible

methods of solution (not just for the percentile method). Second,

ordering of the outcomes can require huge effort, although this is

substantially reduced when preference functions are available. Third,

the solution can require appreciable effort, due to the huge sizes of the

payoff matrices for the players. In summary, great application effort

can be needed but this is principally dins to the massiveness of the number

of outcomes (at least for the case where the players have preference

functions for ordering the outcomes).

Some material is given for helping to reduce the effort in identify-

ing 
0  and determining an optimum mixed strategy for player i. More

t

specifically, for player i, consider all outcomes that are at least as

desirable as a given outcome. The locations of these outcomes are

marked in the payoff matrix for player i. Depending on the locations, a

bound is obtained for the probability with which player i can assure

the occurrence of an outcome with at least the desirability level of the

given outcome.

It is to be noted that, for given cxi, assuring at least the desira-

bility level of the corresponding 0  is the best that can be "forced"
by player i with probability at least n'..

-5-
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The next section contains a statement of the method nor identifying
the of that corresponds to a given Q!i and of determining an optimum

mixed strategy. Some elementary types of preference functions are given

in the next to last section. The final section contains some proposi-

•	 tions that provide a basis for the method of solution.

METHOD OF SOLUTION

The method used applies to each player and is stated for player i.

Results are first stated for the case where the value specified for ai

can be anywhere in the interval 0 < CYi 1. Then, modifications for the

case of achievable cxi are considered. Matkings of the outcome locations

in the payoff matrix for player i are used in the method of solution.

The r(i) rows correspond to the strategies of player i and the

N

c 	 = 11 r(j)
j=1
jtl

columns correspond to the combinations of strategies for the other players.

The case where the specified a!i is at most 1/2 is considered first.

For the initial step, mark the position(s) in the payoff matrix of player

"	 i for the outcome(s) with the highest level of desirability to player i.

Next, also mark the position(s) of the outcome(s) with the next to highest

desirability level. Continue this marking ., according to decreasing desir-

ability level, until the first time that marks in all columns can be

obtained from a .yet of rows whose number does not exceed 11cYi . If

r (i) - s (i) is the smallest number of rows for such a set, player i can

assure a marked outcome with probability at least [r (i) - s (i) ] -1,

-6-



removed at this step.

-7-

which is at least ;xi , with a probability exceeding [r (i) - s (i) ] -1 being

possible. Next, remove the mark(s) for the outcome(s) that have the

smallest desirability level (among the outcomes that received marks).

Then, by the following procedure, determine whether some one of the

remaining marked outcomes can be assured with probability at least o, i*

The procedure is to replace the marked positions by unity and all others
i

by zero.. The resulting matrix of ones and zeroes is considered to be the

payoff matrix for player i in a zero-sum game with an expected-value

basis. Some one of the outcomes corresponding to the marked positions

can be assured with probability at least a  by player i if and only if

the value of this game to player i is at least u►i.

Suppose that the resulting game value-is less than ai . Then, of

consists of the outcome(s) with marking(s) removed at this ,step. Other-

w.se (game value 2 Of	 remove the mark(s) for the outcome(s) with the

smallest desirability level among those still having marks. Then, by the

procedure just described, determine whether some one of the remaining

marked outcomes can be assured with probability at least ai . if not

(game value < ai ), the maximum desirability level that can be assured

with probability at least oli is the level corresponding to the outcome(s)

with marking(s) removed at this step. If a probability of at least ai

can be assured, continue in the same way until the first time some one

of the remaining marked outcomes cannot be assured with probability at

least gt Then, the maximum desirability level that can be assured with

probability at least W  is the level for the outcome(s) with marking(s)



Now, consider the case where CV i > 1/2. Mark the matrix positions

of the outcomes according to decreasing desirability until the first

tire that no less than (1 - a i )
-1 

columns are needed to obtain unmarked

outcomes in all rows. Then, player i can assure some one of the marked

outcomes with probability at most a i , but ordinarily near ai . When the

smallest number of columns needed equals (1 - ^.! -1, the possibilityi
exists '--hat a marked outcome can be assured with probability cYi . If

this equality occurs, determine the probability with which a marked outcome

can be assured by player i. otherwise, where the smallest number of

columns exceeds (1 - ai ) -1, also mark the position(s) of the outcome(s)

with the highest desirability level among the remaining unmarked pc :E:;:ions

and determine the probability with which a marked outcome can be assured.

To make the probability determination, for both possibilities,

replace the marked positions by unity and the unmarked positions by zero.

Consider the resulting matrix of ones and zeroes to be for player i in

a zero-sum game with an expected-value basks. Player i can assure an

outcome of the marked set with probability ai or greater if and only if

the game value (to him) is at least a.. When the resulting game value
3.

is at least a,, for either possibility, 
0  

consists of the marked out-

comes) with the smallest desirability level.

When the game value is less than a i, also mark the position(s) of

the outcome(s) with the highest desirability level amont the outcomes

not yet marked. Determine, by the procedure just given, whether an out-

come of the ma-ked set can be assured with probability at least ai. If

SOY 
0  

consists o° the outcome(s) *_narked last. Otherwise, continue

marking the positions of outcomes according to decreasing desirability

-e-



level until the first time that an outcome of the marked set can be

assured with probability at least 01 . Then, 0  
consists of the outcome(s)

marked last. A simplification occurs when a i > 1 - 1/'c(i). Then, the

marking continues until the first time that a pure strategy occurs that

consists of all positions in a row being marked.

Now, consider determination of an optimum strategy for player i.

Use the matrix marking of all outcomes whose desirability level is as

least as great as that of o i . Replace the marked positions by unity and

the other positions by zero. Treat the resulting matrix as the payoff

matrix for player i in a zero-sum game with an expected-value basis. An

optimum strategy for player 	 in this zero-sum game is a i-optimum for

him. Also, the value of this game to player i is an achievable ox,i that

is the nearest achievable value at least equal to the stated value for ai.

Next, consider cases where the value warted form is stated but the

requirement of an achievable eyi is imposed. The nearest achievable value

at least equal to cxi is determined by the method given for the case of

general aI . When the stated Cl i is not achievable, the nearest smaller

achievable value is determined by first removing the mark(s) for 0  
in

the marking that consists of all outcomes at least as desirable as Oi.

Then, the remaining marked positions are replaced by unity and the other

positions by zero. The value of the resulting zero-sum game to player i

is the nearest achievable value that is less than the stated a,..	 1
The solution method used requires that the positions of all outcomes

with equal desirability to player i be simultaneously marked in his

payoff matrix. This tends to maximize the probability of assuring at

least a given level of desirability for the outcome that occurs and to

-9-
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reduce the amount of application effort. other ways could be used,

however, in which not all outcomes of equal desirability are marked at

the same time. In fact, an approach like the preferred sequence method

of ref. 2 could be used to mark each outcome separately. These special

methods could possibly be useful in some cases but are not considered

in this paper.

ELEMENTARY PREFERENCE FUNCTIONS

Almost complete freedom is available to a player in his ordering

of the possible outcomes for the game. This does not imply, however,

that any way chosen for doing this ordering is necessarily satisfactory.

In fact, great care c"n be needed in determining a suitable ordering.

This great freedom is a valuable asset, but only if used carefully and	 '

wisely. Several examples of elementary preference functions are given

1"'I
to illustrate considerations in the development of satisfactory preference

fun:.,tions .

Let the preference function used by player i be denoted by

Di (p
1" '''" pN)" where (p 1 , ..., pN) is a general outcome. The

possible values of Di(pl, ..., pN) are real numbers and increasing value

represents increasing desirablity to player i (equal value represents

equal desirability).

For simplicity, but without great loss of generality, values of

pi are expressed as real numbers, in the same unit, which are such that

increasing values of p i represent nondecreasing (usually increasing)

desirability to player i. Also, as a standardization, Dl U)1' *'*'	 pN)

is considered for all the examples. The forms used for
D1 (pl' ­ ' pN)

-10-
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are always such that, in their use, any differences in the kinds of

units used for pl, ­ -9 	
do not cause difficulties in ::he statement

of Dl (pl , ..., pN ) .

The first example involves additive changes in the p i and the

situation is such that an addition of A to p1 has the same desirability

to player 1 as the combination of an addition of e 7..w 1. ].
a,	

1
to p, for

i = 2 P ..., N. Here, a  is positive, e  is 1 or -1 (depending on

whether an increase or decrease is to occur), w 2 + ... + wN = 1 with all

W.	 0, and A can be positive or negative. The preference function
r	 1

N

Dla)(plY ..., pN) = P1 + A 1:eipi/ai
i=2

should be suitable, since D 1 (p1 + A, P2 	 pN
) equals

N	 N

pl + A + A 1:eipi/ai = pi	 ,^+ A	 ei (Fi + eiwia i ) /ai
i=2	 i=2

equals D1 (p1 , p2 + e2w2a2 , • • •, p  + ee e.) for all possible values

Of p1, ..., pN.

The second example involves multiplicative changes in the p, and

requires that they all have positive values. The situation is such

that multiplication of p 1 by the positive factor (1 + B) has the same

desirability to player 1 as the combination of multiplying p,
1 
by the

W.
factor (1 + e i 

v 
i ) 

1 for i = 2, ..., N. Here, 0 < vi < 1, the value of B

can be positive or negative, e  = 1 or -1 (depending on whether an

increase or decrease is to occur), and w2 +	 + w  = 1, with all

W. Z 0.
1

t
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The preference function

NN
Dim)(plY ..., pN ) = loglOpl + L, {[ 1og10 (1 + B)] /  [log 10 

(1 + eivi)))log10pi
i=2

should be suitable, since Dim)[(1 + B) pl, p2^ ..., pry ] equals
N

log (1. + B)p + F ( [log (1 + B)]/[log (1 + e.v. )] ) log p.
10	 1	 10	 10	 i 1	 10 i

i=2

N
W.

log 10p1 +	 { [log10 (1 + B)]/[log 
10 

(1 + e ivi ) ] )log le(1 + eivi1 pii==2

w	 w
equals Dim "{p l , (1 + e 2 v2 ) 2p2 , ..., (1 + eNvN) pN] for all positive vai-^;,-s

of pl , ..., pN.

The third example involves both addition and multiplication, where

changes in p l , ...,p
j
 are by addition and changes in pJ+l' ...I pN are by

multiplication (with pJ+1' " " PN all positive). The situation is such

that an addition of A to p  has the same desirability to player 1 as the

combination of an addition of e jwja j to p' for j = 2, ..., J, and multi-

W.
placation of p

i
 by (1 + e.v.)	 for j = J + 1 1 ..., N. Here,

w2 + ... + wN = 1 with all w, a 0, the value of A can be positive or
7

negative, and the c,,	 , v. have the same properties as for the first
7	 ]	 J

and second examples. The preference function

•	 N	 N

D(am)(pl^ ..., pN ) = pl + A	 e jpj/aj + A	 [log10 (1 + e .v j )] llog10pj
j=2	 j=J+l	 7

should be suitable, since 
D�

a 
am) (pl + A, p

2 ,O. jl pN) equals

-12-
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I

N

p  + A + A L. e jp j/a j + A	 Clog 10 (1 + e;vj )111oglOpj
j-1	 j=J+1

N	 N
w.

p
l 

+A E- e 
i (p i  + e .wja j )/ a j + A	 [log10 (1 +e 

i 
v  j )j 11og10 (1 +e jvj ) 7pj

j=2	 j=J+l

w
equals Diam) (pl) P2 + e2w2a21 ... p

J + e Jw Ja J , ( 1 + e J+1vJ+1) 
J+1p 

J+1'
w

(1 + e N v 
N ) pN) for all permissible values of p 	 pN

The final example also involves both addition and multiplication,

but p  changes by multplication. Again, as a standardization, the changes

in p2 , ..., p  are by addition and the changes in pJ+1' .. " pN are by

multiplication (with pl, pJ+1' " '^ pN all positive for this case). The

situation is such that multiplication of p  by the posit r factor (1 + B)

has the same desirablity to player 1 as the combination of an addition of
W.

e 
7 7 7
.w .a . 	

7
to p . for j = 2, ..., J,	

7
and multiplication of p .	

7
by (1 + e ,v ,)

7

for j = J + 1, .. . 'P N. Here, w2 + . , . + WS a 1 with all w . Z 0, the
7

value of B can be positive or negative, and the e.
7 , a.7

, v,
7
 have the same

properties as for the first two examples. The preference function

J
Dims )(ply ***.'f pN ) = log 10p1 + (log 10 (1 + B) a ^ e .p ./a .

J=2 7 7

N

+	 L { Rog10 (1 + B) )/ [1og10 (1 + ejvj ) ] } 10,710pj
j= J+1

should be suitable, since pima } (1 + B )p^ p2 , ..., pNI equals

1

-13-
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log10 (1 + B) pl + [log10 (1 + B) ] 
J=2 

e jp j /a j

N

+	 E ([log 10  (1 + -R)]/[log 10 (1 + e jvj ) ] log10p .j-J+1

J
log

10p1 + [10910 (1 + B) ]	 e, (p , + e , 
i

w a , )/a.
J=2 > >	 >	 >	 >

N
VON%	 w

+	 L { [log10 (1 + B) ] / [1og10 (1 + e jvj ) ] } log10 (1 + e jvj ) ^pj
j=J+1

w
equals Dim ipl-' P2 • + e2w2a2 , 	p J + e Jw Ja J, (1 + eJ+lvJ+1 ) J+1pJ+1' ...'

w
(1 + eNvN ) pN] for all permissible values of p 	 '-' pN'

Of course, any strictly increasing function of a preference function

provides an equivalent preference function.

SOME PROPOSITIONS

The statements about the probability inequalities when marks in all

columns can be obtained from r (i) - s(i) rows, and about unmarks in all

rows from no less than (1 - a!1 1 columns, follow from

THEOREM 1. When the math3d positions of outcomes in the matrix for

1p aver i are such that marks in all columns a re obtained from r ( i) - s (i)

I

41

rows, player i can assure occurrence of a marked

-1at 1	 [r (i) - s (i)] , or at least Of . , ahen r (i)
COROLLARY. When the unmarked positions of of

la er i are such that umarked positions in all

outcome with probability

- s (i ) s 1/a1 .
atcomes in the matrix for

rows are obtained from

c(i) - t(i) columns, the combination of other playerswhic^ve the

c (i) columns are strategies, can axn=ee an unmarked outcome with proba-

bility at least [c (i) - t (i) l 1. 
Thus under these circumstances, player

-14-
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i can assure

or at most a 

Proof of

marked ., the p;

a marked outcome with probability at most 1 - [c (i) - t(i) ] 1^
r

when c (i) - t (i) Z (1 - Cxi)1.

Theorem 1. When r(i) - s(i) = 1 ' so that some row is fully

robability is unity that a marked outcome can be assured by

player i.

Now suppose that r (i) - s (i) ^! 2. Let Pl ., ...' Pr (i) and

ql.,
	 q
	
be the mixed strategies used. The probability of the

occurrence of a marked outcome is

rr(i)

L. PkQk
k=1

where Qk is the sum of the q's for the columns that have marked outcomes

in the k-th row. The largest value of this probability that player i can

assure ' through choice of P1' 000.9 Pr(i)' is

G =	 min	 (mV Qk ) .
ql' •••' qc(i)

Let k[1],, ...' k [r ( i) - s (i) ] be r (i) - s (i) rows that together contain

marked positions in all columns. For any minimizing choice of the values

for 
ql' ' ' '' qc (i) _. all of Qk [1]' • • • Qk [r (i) - s (i) ] are at most G.

Hence'

[r (i) - s (i) ] G Z Qk [1] + ... + 'k [r 
(i) - s (1) ]	 1'

so that a probability of at least [r(i) - s(i)]l can be assured by

player i.

The remaining part of the method of solution has as its basis

THEOREM 2.	 A sharp lower bound on the probability with which player

i	 can assure occurrence of an outcome of a specified set whose positions

.	 1

i^
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are marked in his payoff matrix, and identification of one or more

optimum strategies for him in accomplishing this,his, can be obtained from

solution for the value to player i of a zero-sum game with an expected-,

value basis. The payoff matrix for player i in this game has the value

unity at all marked positions (in the original matrix for player i) and

the value zero at all other positions.

Proof. Let arbitrary but specified mixed strategies be used for the

rows and for the columns. With the matrix considered for the zero-sum

game, the expression for the expected payoff to player i is identically

equal to the expression for the probability that a marked outcome occurs.

r

,.X.

-16-



r

REFERENCES

1. John E. Walsh, Generally Applicable Two-person Percentile Game Theor

ONR Rept. 59 1 Statistics Dept. Southern Methodist University,

March, 1970, 13 pp. Submitted to Opsearch.

2. John E Walsh, "Discrete two-person game theory with median payoff
•	

criterion," OPsearch, Vol. 6 1% 1969), pp. 83-97. Also see	 #

"Errata," Opsearch, Vol. 6 (1969) ., p. 216.

11	 -1



UNC:LASSIF1Eb
So urit^ Cla,^si(Iraf:rn

DC•.:.,'MENT CONTROL DATA - R b D
Secur,t,, • clessiliration of title,	 hn,?t • .,! nh, ! .it  ,Ilrl u1d.`xin;; a:,nntation runt be , Overt-d whan the nVer,,N report i. r1.I	 ::,Iir !)

I. ORIGINATING ACTIVITY (CorporateJUlhor, 20.HLOORTS1•:CURIIY CLASSIFICATION

UNCLASSIFIED

SOUTHER14 METHODIST UNIVERSITY
2b. GROUP

UNCLASSIFIED
3	 REPORT TITLE

"Generally applicable N-person percentile game theory for case of independently
chosen strateqies"

4. DESCRIPTIVE NOTES ( 7Typeat report and,incluxivedate&)

Technical Report
S. AU THOR(S) (First name, middle initial, last name)

*John E. Walsh

Grace J. Kelleher

6 REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

December 21, 1970 17 2
Sa. CONTRACT OR GRANT NO.

N00014-68-A-0515
!a. ORIGINATOR'$ REPORT NUMG!:R(S)

b. PROJECT NO.

NR 042-260 92
C.

d.

Ob. OTHJER REPORT NW31 (Any other numbers that may be as+igncd
this roport)

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale= its distribution is
unlimited.	 Reproduction in whole
United States Government.

or in part is permitted for any purpose of the

11, SUPPLEMENTARY NOTES 12• 111PONSCIII IIIING MILITARY ACTIVITY

Office of Naval Research

..
13. ABSTRACT

Considered is discrete N-person game theory where the players choose their
strategies separately and independently. Payoff "yalups" can be of a very general
nature and need not be numbers. However, the totality of payoff outcomes (N-dimen-
sional), corresponding to the possible combinations of strategies, can be ranked by
each player according to their desirability to that player.	 A largest level of
desirability (associated with one or more outcomes Oi ) occurs for the i-th player
such that he can assure, with probability at least agiven value a., that an outcome
with at least this desirability level is obtained, and this can be ldone simultaneously
for all the players.	 This game theory is of a median nature when all the a. are
chosen to the 1/2.	 A method is given foie determining 0, and an optimum (mixed)
strategy for every player.	 Pr ctical aspects of applying 	this percentile game theory
are examined.	 Application effort can be 8ubstantiaily reduced when the players have
relative desirability functions
relative desirability functions

for ranking the outcomes. 	 Some elementary types of
are introftced.

UNCLASSIFIED
cu{ity Classi6cation


	GeneralDisclaimer.pdf
	0042A01.pdf
	0042A02.pdf
	0042A03.pdf
	0042A04.pdf
	0042A05.pdf
	0042A06.pdf
	0042A07.pdf
	0042A08.pdf
	0042A09.pdf
	0042A10.pdf
	0042A11.pdf
	0042B01.pdf
	0042B02.pdf
	0042B03.pdf
	0042B04.pdf
	0042B05.pdf
	0042B06.pdf
	0042B07.pdf
	0042B08.pdf
	0042B09.pdf

