General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

John E. Walsh and Grace J. Kelieher

Technical Report No. 94 Department of Statistics ONR Contract

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.

DEPARTMENT OF STATISTICS
Southern Methodist University Dallas, Texas 75222

by

John E. Walsh and Grace J. Kelleher

Technical Report No. 94 Department of Statistics ONR Contract

January 4, 1971

Research sponsored by the Office of Naval Research Contract N00014-68-A-0515

Project NR 042-260

Reproduction in whole or in part is permitted for: any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

John E. Waish
Southern Methodist University**

Grace J. Kelleher
University of Texas at Arlington

ABSTRACT?

Consider solution of a two-person game in which the players use percentile criteria. For player i, the stepwise prosedure is to mark positions of the game outcomes (pairs of payoffs, one to each player) in his payoff matrix according to decreasing desirability level (i $=1,2$). To be determined is the smallest marked set such that, for percentile $100 \alpha_{i}$ used by player $i_{\text {, }}$ an outcome of this set cān be assured with probability at least α_{i}. Also, an optimum mixeá strategy is to be determinea (for accomplishing this assurance). In general, the probability with which a marked set can be assured is evaluated by solution of a specialized zero-sum gaue with an expected-value basis. However, easily evalu-ated upper and lower bounds for this probability can be obtained from the matrix locations of the markings. Use of these bounds can substantially reduce the effort in the stepwise solution of a game. Moreover, equality of the bounds can occur. Then, the probability is determined without solution of a zero-sum game, and a corresponding optimum strategy is readily identified. The probability value is approximately determined when the bounds are nearly equal, and an approximately optimum strategy is easily identified. Indications are that many percentile games can be solved, exactly or approximately, by this simplified method.
*Part of the results given here were independently discovered by Dr. Robert E. Hiller of the Operations Analysis Office, Pacific Air Forces, Hawaii.
**Research partially supported by Mobil Research and Development Corporation. Also associated with ONR Contract N00014-68-A-0515 and NASA Grant NGR 44-007-028.

Considered is the case of two players with finite numbers of strategies, where each player selects his strategy separately ard independently of the strategy choice by the other player. Mixed strategies are used. That is, a player assigns probabilities to his strategies (sum to unity, with a unit probability possible) and randomly selects the strategy used according to these probabilities.

The possible game outcomes are the pairs of payoffs, one to each player, that occur for the possible combinations of strategy selection by the two players. The payoffs can be of a very general nature but are such that the outcomes can be ranked according to desirability level separately by each player. Use of a matrix form is convenient for considering the possible payoffs to a player, where rows rep resent his strategies and columns represent the other player's strategies.

For percentile game theory, player i specifies a probability α_{i} which represents the assurance with which he wants to obtain an outcome with reasonably high desirability ($i=1,2$). A largest level of desirability occurs among the outcomes such that player i can assure, with probability at least α_{i}, that an outcome having at least this desirability level occurs. The symbol o_{i} designates the outcome (s) having this largest desirability level.

Given α_{i}, a game solution for player i consists in determining o_{i} and an optimum strategy for the combination ${\underset{\sim}{i}}$ and O_{i}. This determination can $b \in$ made by a stepwise procedure in which, for player i, positions of
outromes are marked in his payoff matrix according to decreasing desi,ability level (outcomes with the same level are marked simultaneously). O_{i} is determined as the outcome (s) having the smallest desirability level in the smallest set of marked outcomes that player i can assure with probability at least α_{i}. In general, the probability with which a stated marked set of outcomes can be assured is evaluated as the value of a zero-sum game with an expected-value basis. The payoff matrix for player i in this game has ones at the marked positions and zeroes at the unmarked positions. An optimum strategy for player 1 in the zero-sum game corresponding to the smallest marked set containing O_{1} is an optimum strategy for the combination α_{i} and O_{i}. Ref. 1 contains a detailed statement of this general method for solution of two-person percentile games.

A couple of one-sided bounds on the pyobability with which a marked set can be assured (one bound used for $\alpha_{1} \leq 1 / 2$, the other for $\alpha_{i}>1 / 2$) are given in ref. 1. These bounsis are helpful in reducing the effort needed for solving a game.

This paper develops a class of upper and lower bounds such that both an upper and lower bound is available for the probability with which a marked set can be assured by player 1 (a lower bound may have the trivial value zero, or an upper bound the trivial value unity, in some cases). Equality of the upper and lower bounds occurs in a muber of cases, with the probability being directly determined without solution of a zero-sum game. At least approximate equality of upper and lower bounds occurs in many cases. Then the probability with which a marked set can be assured
is at least approximately determined without solution of a zers-sum game. Moreover, when equality of bounds occurs, an optimam (mixed) strategy for accomplishing this probability is readily determined. Also, an approximately optimum (mixed) strategy is easily determined when the bounds are approximately equal. These results, which apply to any marked set in the payoff matrix for player i, can be exceedingly helpful in reducing the effort for solving a rame.

Specifically, for a given marked set, suppose that at least M marks in every column are obtainable from R rows, and that at least u unmarked positions in every row are obtainable from C columns. Then, player i can assure an outcome of the marked set with probability at least M / R and at most $1-U / C$. If R rows and U columns with these properties satisfy

$$
M / R=1-U / C
$$

then an optimum mixed strategy for player i is to choose one of the R rows with probability $1 / R$ for each row (and probability zero for the other rows). If M/R approximately equals 1 - U/C, this mixed strategy is approximately optimum and the assurance probability with this strategy is at least M / R.

Use of these results to obtain simplified solutions for two-person percentile games is considered in the next section. An example of determ mination of upper and lower bounds on assurance probabilities is given in the next to last section. The final section contains the basic theorems and their verification.

The same solution method applies to each player and is stated for player i. A preferred assurance probability $\alpha_{i}, 0<\alpha_{i} \leq 1$, is specified by player i. First, the solution method is stated for this given value of α_{i}. Then, advantages of making small changes in preferred values for α_{i} are discussed.

The method is stated in terms of a marking of outcome positions in the payoff matrix for player i. The r rows of this matrix correspond to the r strategies for player i, and the c columns are the strategies for the other player ($x, c \geq 2$).

As the initial step, mark the position(s) in the payoff natrix for player i of the outcome(s) with the highest level of desirability to player i. Determine the smallest value of 1 - U/C for this marking, where U and C arp such that at least U unmarked positions in every row are obtainable from C columns.

Next, also mark the position(s) of the cutcome(s) with the next to highest desirability level and determine the smallest value of $1-U / C$ for the overall marking. Continue this marking, according to decreasing desirability level, until the first time that α_{i} is at most equal to the smallest value of 1 - U/C (for the overall marking). Also determine the largest value of M / R for this marking, where M and R are such that at least M marks in every column are obtainable from R rows. If

$$
\begin{equation*}
\text { largest } M / R \leq \alpha_{i} \leq \text { smallest }(1-U / C) \tag{1}
\end{equation*}
$$

and the largest M / R equals, or approximately equals, the smallest $(1-U / C)$,
a usable solution is obtained (exact or approximate). Then, O_{i} is determined as the outcome(s) with smallest desirability level in this marked set. An optimum (or approximately optimum) strategy consists of randomly selecting one of the R rows for which largest M / R occurs so that n?ch row has probability $1 / 5$ of being chosen.

If (1) holds but the bounds are not approximately equal, continue the marking until (1) holds with the bounds equal or approximately equal, or until α_{i} is at most equal to the largest M / R. When the situation is that (1) holds with the bounds equal or nearly equal, a usable solution is obtained (as described in the preceding paragraph). However, this solution can be approximate even when the bounds are equal, since the marked set may not be the smallest set that can be assured with probability at least α_{i}. This possible difference in set size is usually unimportant but the method of ref. 1 could be used to determine whether a smaller set satisfies the requirements.

Finally, suppose that a marking has been reached (without first citaining a usable solution) where α_{i} is at most equal to the largest M / R. Then, remove the mark(s) for the outcome(s) with lowest desirability level among the outcomes that have received marks. Then, by the following procedure, determine whether some one of the remaining marked outcomes can be assured with probability at least α_{i}. The procedure (used in ref. 1) is to replace every marked position in the matrix of player i by unity and all other positions by zero. The resulting matrix of ones and zeroes is considered to be the payoff matrix to player i for a zero-sum game with an expected-value basis, and is solved for the value of the game to player
i. If the game value is less than α_{i}, then O_{i} consists of the outcome(s) with mark(s) removed.

Otherwise, remove the mark(s) for the outcone(s) with least desirable level among the outcomes still having marks and, using the same procedure, determine the probability with which player i can assure a marked outcome. If this probability is less than α_{i}, then O_{i} consists of the outcrme (s) with mark(s) removed last. If not, continue until the first time that some one of the remaining marked outcomes sannot be assured with probability at least α_{i}. Then, o_{i} consists of the outcome (s) with mark(s) removed last.

For the cases sta:ting with a marking such that α_{i} is at most equal to the largest M / R, the same way is used to determine an optimum mixed strategy for player i. Mark the matrix positions of all outcomes whose desirability level is at least that of O_{i} and replace marked positions by unity and unmarked positions by zero. Treat the resulting matrix of ones and zeroes as the payoff matrix for player i in a zero-sum game with an expected-value basis. An optimum strategy for player i in this zero-sum game is α_{i}-optimum for him.

Now, consider some advantages of making small changes in the value preferred for α_{i}. Markings sometimes occur such that the smallest (1-U/C) equals the largest M / R. If this occurs for γ value near α_{i}, substantial solution effort can be avoided by letting α_{i} equal this common value for the bounds. At least approximate equality of the bounds can happen in many cases, especially when r and c are of at least moderate size. Change
of the value for α_{i} to a nearby value which is between two approximately equal bounds also can result in substantially less solution effort (when approximate solutions are accoptable). Often, use of the arithmetic average of two approximately equal bounds provides a suitable value for α_{i}

EXAMPLE OF BOUNDS DETERMINATION

To illustrate how largest M / R and smallest (1-U/C) change as marking contimes, a payoff matrix with $r=10$ and $c-8$ is considered. No ties in desirability level occur for this example and the numbers 1 , 2,.... 80 in the matrix show the locations of the most desirable outcome, the next to most desirable outcome,...., the least desirahle outcome, respectively. The first mark occurs at the location of 3 . the second at the location of 2, etc. Thus, a total of t marks have occurred at the time the t-th most desirable outcome is marked $(t=1, \ldots, 80)$. The values of largest M / K and of smallest ($1-U / C$) are listed as functions of t. The matrix for player i, with the position numbers 1,..., 80 entered, is provided by Figure 1. The values of the largest M / R and of the smallest (1 - U/C) are stated in paixs for $t=1, \ldots, 80$, with the largest M / R listed first:

$$
\begin{aligned}
& (0,1 / 8), \text { for } t=1, \ldots, 7 ; \quad(0,1 / 7), \text { for } t=8,9 ; \\
& (1 / 7,1 / 7), \text { for } t=10,11,12 ; \quad(1 / 6,1 / 6), \text { for } t=13,14,15 ;
\end{aligned}
$$

Figute 1. Matrix for the Example

	1	2	3	1	5	6	7	8
1	63	38	15	77	35	11	$5 i$	55
2	1	75	33	43	21	36	52	67
3	57	42	2	76	28	14	70	17
4	27	31	73	48	68	6	8	44
5	69	13	20	3	37	62	30	53
6	50	78	19	29	59	66	26	7
7	23	12	61	47	71	9	49	32
8	79	41	54	18	10	34	46	80
9	45	4	39	65	24	72	22	58
10	5	64	60	25	40	74	56	16

$(1 / 5,1 / 5)$, for $t=16,17 ;$	$(1 / 5,1 / 4)$, for $t=18,19 ;$
$(1 / 4,1 / 4)$, for $t=20,21 ;$	$(1 / 4,2 / 7 ;$, for $t=22 ;$
$(1 / 4,1 / 3)$, for $t=23 ;$	$(2 / 7,1 / 3)$, for $t=24 ;$
$(1 / 3,1 / 3)$, for $t=25,26 ;$	$(1 / 3,3 / 8)$, for $t=27 ;$
$(3 / 8,3 / 7)$, for $t=28,29 ;$	$(2 / 5,3 / 7)$, for $t=30 ;$
$(2 / 5,1 / 2)$, for $t=31 ;$	$(1 / 2,1 / 2)$, for $t=32, \ldots, 39 ;$
$(1 / 2,4 / 7)$, for $t=40, \ldots, 43 ;$	$(1 / 2,3 / 5)$, for $t=44,4 ;$
$(5 / 9,5 / 8)$, for $t=46 ;$	$(4 / 7,5 / 8)$, for $t=47 ;$
$(4 / 7,2 / 3)$, for $t=48 ;$	$(3 / 5,2 / 3)$, for $t=49,51 ;$
$(5 / 8,2 / 3)$, for $t=51 ;$	$(2 / 3,2 / 3)$, for $t=52 ;$
$(2 / 3,5 / 7)$, for $t=53, \ldots, 56 ;$	$(3 / 4,3 / 4)$, for $t=57, \ldots, 61 ;$
$(3 / 4,4 / 5)$, for $t=62,63 ;$	$(4 / 5,4 / 5)$, for $t=64, \ldots, 67 ;$
$(5 / 6,5 / 6)$, for $t=68 ;$	$(1,1)$, for $t=69, \ldots, 80$.

The urper and lower bounds are seen to be near each other in almost all cases and to be equal in some cases. Equality of bounds occurs for probability values $1 / 7,1 / 6,1 / 5,1 / 4,1 / 3,1 / 2,2 / 3,3 / 4,4 / 5,5 / 6$.

THEOREMS AND PROOFS

The results stated in the previous sections are based on two theorems.
THEOREM 1. For a given set of markings of outcomes in the payoff matrix for player i, at least M marks in every column are obtainable from R rows and also at least U unmarked positions in every row are obtainable from C columns: Then, player i can assure an outcome of the marked set with probability at least M / R and at most 1 - U/C.

Proof. First, it is shown that a probability of at least M / R can
be assured. Let Er,....b'r and h, ... q_{C} be the mixed strateuies used. Then, the probability of obtaining a marked outcome is

$$
\sum_{i=1}^{r} p_{i} Q_{i}
$$

where Q_{i} is the sum of the q 's for the columns that have marked positions in the i-th row. The largest value of this probability that player i can assure, by choice of p_{1}, \ldots, p_{r}, is

$$
G=\min _{q_{1}, \ldots, q_{c}}\left(\max _{i} Q_{i}\right)
$$

Let $i(1), \ldots, i(R)$ be R rows that together contain marked positions in all columns. For any minimizing choice of the values for q_{1}, \ldots, q_{C}, all of $Q_{i(1)} \ldots Q_{i(R)}$ are at most G. Hence,

$$
R G \geq Q_{i(1)}+\ldots+Q_{i(n)} \geq M_{1}
$$

so that a probability of at least M / R can be assured by playor i.

Similarly, considering columns and unmarked positions, the other player can assure an unmarked outcome with probability at least U/C. Thus, player i can assure a marked outcome with probability at most 1 - U/C.

Theorem 2. Under the circumstances stated in Theorem 1, use of a mixed strategy where each of the R rows is randomly selected with probability $1 / R$ (and the other rows have zero probability) assures player i that an outcome of the marked set occurs with probs ility at least M/R.

Proof. Let $p_{i(1)}=\ldots=p_{i(R)}=1 / R$ while the other $p^{\prime} s$ are zero. Then, for any given q_{1}, \ldots, q_{C}, the probability of obtaining a marked outcome is

$$
\text { (L,k) }{\underset{j=1}{R} \bigcup_{i(j)} \geq M / R . ~ . ~ . ~}_{T}
$$

In particular, this inequality holds for any misimizing set of values for $q_{1}, \ldots . q_{c}$.

REFERENCE

John E. Walsh, Generally Applicable Two-Person Percentile Game Theory. ONR Rept. 59, Statistics Department, Southern Methodist University, March 1970, 13 pp . Submitted to Opsearch.

REPORT TITLE

"Simplified solutions for two-person percentile games"
4. OESCRIP VENOTES (Type ol roport andinclusive dates)

Technical Report
5 AUTHOR(S) (Fifst name, middle initial, lasf name)
John E. Walsh
Grace J. Kelleher

$\begin{aligned} & \text { REPORT OATE } \\ & \text { January } 4,1971 \end{aligned}$	7a. TOTAL NO. OFPAGES $\quad 12$ Tb. NO. OF REFS
84. CONTRACTORGRANTNO. N00014-68-A-0515 b. project no. NR 042-260	9a. ORIGINATOR'S REPORT NUMBER(S)
c. d	96. OTHER REPORT NO:SI (Any other numbers mat may be ansigntid this report)

10. EISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

II SUPPLEMENTARY NOTES
13. Abstanct
decreasing desirability level ($i=1,2$. . To be determined is the smallest marked set
such that, for percentile $100 \alpha_{i}$ used by player i, an outcom? of this set can be assured with probability at least α_{i}. Also, an optimum mixed strategy is to be deter-
marked set can be assured is evaluated by solution of a specialized zero-sum game
this probability can be obtained from the matrix locations of the markings. Use
of these bounds can substantially reduce the effort in the stepwise solution of a
game. Moreover, equality of the bounds can occur. Then, the probability is deter-
mined without solution of a zero-sum game, and a corresponding optimum strategy is
readily identified. The probability value is approximately determined when the bounds are nearly equal, and an approximately optimum strategy is easily identified.
by this simplified

