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SIMPLIFIED SOLUT ONS FOR 'IWO-PERSON PERCENTILE GAMF;S*

John E. Walsh	 Grace J. Kelleher
Southern Methodist University** 	 University of Texas at Arl:.ngtori

ABSTRACT

Consider solution of a two-person game in which the players use

percentile criteria. For player i, the stepwise pr: ycedure is to mark

positions of the game outcomes (pairs of payoffs, one to each player) in

his payoff matrix according to decreasing desirability level (i = 1,2).

To be determined is the smallest marked set such that, for percentile

100cxi used by player i, an outcome of this set can be assured with prob-

ability at least cyi . Also, an optimum mixed strategy is to be determined

(for accomplishing this assurance). In general, the probability with

which a marked set can be assured is evaluated by solo*ion of a special-

ized zero-sum game with an expected-value basis. However, easily evalu-

ated upper and lower bounds for this probability can be obtained from the

matrix locations of the markings. Use of these bounds r.-an substantially

reduce the effort in the stepwise solution of a game. Moreover, equality

of the bounds can occur. Then, the probability is determined without

solution of a zero-sum game, and a corresponding optimum strategy is

readily identified. The probability value is approximately determined

when the bounds are nearly equal, and an approximately optimum strategy

is easily identified. Indications are that many percentile games can be

solved, exactly or approximately, by this simplified method.

*Part of the results given here were independently discovered by fir.
Robert E. Hiller of the Operations Analysis Office, Pacific Air Forces,
Hawaii.
**Research partially supported by Mobil Research and Development corpora-
tion. Also associated with ONR Contract N00014-68-A-0515 and NASA Grant
NGR 44-007-028.



INTRODWTION AND SOME RESULTS

Considered is the case of two players with finite numbers of strat-

egies, where each player selects his strategy separately and independently

of the strategy choice by the other player. Mixed strategies are used.

That is, a player assigns probabilities to his strategies (sum to unity,

with a unit probability possible) and randomly selects the strategy used

according to these probabilities.

The possible game outcomes are the pairs of payoffs, one to each

player, that occur for the possible combinations of strategy selection

by the two players. The payoffs can be of a very general nature but are

such that the outcomes can be ranked according to desirability level

separately by each player. Use of a matrix form is convenient for con-

sidering the possible payoffs to a player, where rows rep-esent his strat-

egies and columns represent the other player's strategies.

For percentile game theory, player i specifies a probability cxi which

represents the assurance with which he wants to obtain an outcome with

reasonably high desirability (i = 1 0,2). A largest level of desirability

occurs among the outcomes such that player i can assure, with probability

at least ai , that an outcome having at least this desirability level occurs.

The symbol 
0  

designates the outcome(s) having this largest desirability

level.

Given cxi , a game solution for player i consists in determining Oi

and an optimum strategy for the combination ^,i and O
i . This determination

can be made by a stepwise procedure in which, for player i, positions of
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oui_%,onws are marked in his payoff matrix according to decreasing desi..-

ability level (outcomes with the same level are marked simultaneously).

0  is determined as the outcome(s) having the smallest desirability level
in the smallest set of marked outcomes that player i can assure with

probability at least cri . In general, the probability with which a stated

marked set of outcomes can be assured is evaluated as the value of a

zero-sum game with an expected-value basis. The payoff matri n for player

i in this game has ones at the marked positions and zeroes at the un-

marked positions. An optimum strategy for player i in the zero-sum game

corresponding to the smallest marked set containing 
0  

is an optimum

strategy for the combination of  and Oi . Ref. 1 contains a detailed state-

ment of this general method for solution of two-person percentile games.

A couple of one-sided bounds on the probability with which a marked

set can be assured (one bound used for on A 1/2, the other for 01 > 1/2)

are given in ref. 1. These bounds are helpful in reducing the effort

needed for solving a game.

This paper develops a class of upper and lower bounds such that both

an upper and lover bound is available for the probability with which a

marked set can be assured by player i (a lower bound may have the trivial

value zero, or an upper bound the trivial value vini ty , in some cases) .

Equality of the upper and lower bounds occurs in a number of cases, with

the probability being directly determined without solution of a zero-sum

game. At least approximate equality of upper and lower bounds occurs in

many cases. Then the probability with which a marked set can be assured

3
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is at least approximately determined without solution of a zero-sum gaine.

Moreover, when equality of bound3 occurs, an optimum (mixed) strategy for

accomplishing this probability is readily determined. Also, an approxi-

mately optimum (mixed) strategy is easily determined when the bounds are

approximately equal. These results, which apply to any marked set in the

payoff matrix for player i., can be exceedingly helpful in reducingnq the

Effort for solving a game.

Specifically, for a given marked set, suppose that at least M marks

in every column ark obtainable from R rows, and that at least U unmarked

positions in every raw are obtainable from C columns. Then, player i can

assure an outcome of the marked set with probability at least M/R and at

most 1 - U/C. If R rows and t1 columns with these properties satisfy

M/R = 1 - U/C,

then an optimum mixed strategy for player i is to choose one of the:. , R

rows with probability 1/R for each row (and probability zero for the other

rows). If M/R approximately equals 1 - U/C, this mixed strategy is

approximately optimum and the assurance probability with this strategy is

at least M/R.

Use of these results to obtain simplified solutions for two-person

percentile games is considered in the next section. An example of deter-

mination of upper and lower bounds on assurance probabilities is given in

the next to last section. The final section contains the basic theorems

and their verification.

4
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SIMPLIFIED SOLUTION METHOD

The same solution method applies to each player and is stated for

player i. A preferred assurance probability nyi , 0 < on s 1, is specified

by player i. First, the solution method is stated for this given value

of ari . Then, advantages of making small changes in preferred values for

oti are discussed.

The method is stated in terms of a marking of outcome positions in

the payoff matrix for player i. The r rows of this matrix correspond to

the r strategies for player i, and the c columns are the strategies for

the other player (r, c Z 2) .

As the initial step, mark the position(s) in the payoff n$trix for

player i of the outcome(s) with the highest level of desirability to

player i. Determine the smallest value of 1 - U/C for this marking, where

U and C arP such that at least U unmarked positions in every row are

obtainable from C columns.

Next, also mark the position(s) of the outcome(s) with the next to

highest desirability level and determine the smallest value of 1 - U/C

for the overall marking. Continue this marking, according to decreasing

desirability level, until the first time that 
01  

is at most equal to the

smallest value of 1 - U/C (for the overall marking). Also determine the

largest value of M/R for this marking, where M and R are such that at

least M marks in every column are obtainable from R rows. If

largest M/R S o!i s smallest (l - U/C)	 (1)

•	 and the largest M/R equals, or approximately equals, the smallest (1 - U/C),
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a usable solution is obtained (exact or approximate) . Then, 0 1 is

determined as the outcome (s) with smallest desirability level in this

marked set.	 An optimum (or approximately optimum) strategy consists of

randomly selecting one of the R rows for which largest M/R. occurs so

- that iv.ch row has probability 1/11 of being chosen.

i1	 k I f (1) holds but	 e bounds are	 ot th	 bd	 not a pproximately equal, continue

the marking until (1) holds wi'h the bounds equal or approximately equal,

or until a 	 is at most equal to the largest M/R. 	 When tlx: situation is

that (1) holds with the bounds equal or nearly equal, a usable solution

is obtained (ds described in the preceding paragraph) .	 However, this

solution can be approximate even when the bounds are equal, since the

marked set may not Ix, the smallest set that can be assured with probability

at least ai .	 This possible difference in set size is usually unimportanta

but the method of ref. 1 could be used to determine whether a smaller set

satisfies the requirements.

Finally, suppose that a marking has been reached (without first

C--raining a usable solution) where a i is at most equal to the largest

M/R.	 Then, remove the mark (s) for the outcome (s) with lowest desirability
4

' level among the outcomes Coat have received marks. 	 Then, by the following

procedure, determine whether some one of the remaining marked outcomes can

be assured with probability at least ai .	 The procedure (used in ref. 1)

is to replace every marked position in the matrix of player i by unity

a-d all other positions by zero.	 The resulting matrix of ones and zeroes

- is considered to be the payoff matrix to player i for a zero-sum game with

an expected-value basis, and is solved for the value of the game to player

6



i. if the game value is less than or i , then 
0  

consists of the outcumc (s)

with mark(s) removed.

Otherwise, remove the mark (s) for the outcome (s) with least desirable

level among the outcomes still having marks and, using the same procedure,

determine the probability with which player i can assure a marked outcome.

If this probability is less than ori , then Oi consists of the outcrme (s)

with mark(s) removed last. If not, cont 4.nue until the first time that

some one of the remaining marked outcomes nannot be assured with proba-

bility at least ai . Then, 
0  

consists of the outcomes) with marks)

removed last.

For the cases sta.-! i.ng with a marking such that 01i is 
at most equal

to the largest M/R, the same way is used to determine an optimum mixed

strategy for player i. Mark the matrix positions of all outcomes whose

desirability level is at least that of 
0  

and replace marked positions by

unity and unmarked positions by zero. Treat the resulting matrix of ones

and zeroes as the payoff matrix for player i in a zero-sum game with an

expected-value basis. An optimum strategy for player i in this zero-sum

game is ai-optimum for him.

Now, consider some advantages of making small changes in the value

preferred for cxi . Markings sometimes occur such that the smallest (1 - U/C)

equals the largest M/R. If this occurs for Z value near cxi , substantial

solution effort can be avoided by letting a  equal this common value for

the bounds. At least approximate equality of the bounds can happen in

many cases, especially when r and c are of at least moderate size. Change
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of the value for a  to a nearby value which is between two approximately

equal bounds also can result in substantially les3 solution effort (when

approximate solutions are acceptable) . Often, use of the arithmetic

average of two approximately equal bounds provides a suitable value for

Clio

EXAMPLE OF HOUNDS DETERMINATION

To illustrate how largest M/R and smallest (1 - U/C) change as

marking continues, a payoff matrix with r • 10 and c • 8 is considered.

No ties in desirability level occur for this example +knd the numbers 1,

2,...,80 in the matrix show the locations of the most desirable outcome,

the next to most desirable outcome,...., the least desirable outcome,

respectively. The first mark occurs at the location of 3 the second at

the location of 2, etc. Thus, a total of t marks have occurred at the

time the t-th most desirable outcome is marked (t a lr ...,80) . The values

of largest M/R and of smallest (1 - U/C) are listed as functions of to

The matrix for player i, with the position numbers 1,.. . 0,80 entered,

is provided by Figure 1. The values of the largest M/R and of the smallest

(1 - U/C) are stated in pairs for t " 1, ...,80, with the largest M/R listed

first:

(0,,1/8),, for t s 1,...,7;	 (0,1/7) , for t . 8,9f

(1/7,1/7) , for t a 10,11,12; (1/6,1/6) , for t " 13,19,15;

8



Fi mrc- 1, Mati--x for r}.:: Example

2 3 11 5 6 7 R	 l

38 15 77 35 11 5L 55

75 33 43 21 36 5` 67

42 2 76 28 14 70 17

31 73 48 68 6 8 44

13 20 3 37 62 30 53

78 19 29 59 66 26 7

12 61 47 71 9 49 32

41 54 18 10 34 46

22

80	 I
584 39 65 24 72

64 60 25 40 74 56 16

9



(1/5,1/5) , for t = iii, 1'7;

(1/4,1/4) , for t = 20,21;

(1/4,1/3) , for t = 23;

(1/3,1/3) , for t = 25,26;

(3/8,3/7) , for t = 28,29;

(2/5,1/2) , for t = 31;

(1/2,4/7) , for t = 40,...,43;

(5/9,5/8), for t = 46;

'4/7,2/31, for t = 48;

'5/8,"/3)2 	 , for t = 51;

(2/3,5/7), for t = 53,...,56;

(3/4,4/5) , for t = 62,63;

(5/6,5/6) , for t = 68;

(1/5,1.,'4) , for t = 18,19;

(1/4,2/7) , for t = 22;

(2/7,1/3), for t - 24;

(1/3,3/8), for t = 27;

(2/5,3/7), for t = 30;

(1/2,1/2) , for t = :32,...,39;

(1/2,3/5) , for t 	 44, ,!' ;

(4/7,5/F) , for t = 47;

(3/5,2/3) , fcr t = 49,5(j;

(2/3,2/3), for t = 52;

(3/4,3/4), for t = 57,...,61;

(4/5,4/5), for t = 64,...,67;

(1,1) , for t = 69,...,80.

The uF,?er and lower bounds are seen to be near each other in almost all

cases and to be equal in some cases. Equality of bounds occurs for

probability values 1/7, 1/6, 1/5 0 1/4, 1/3, 1/2, 2/3, 3/4, 4/5, 5/6.

THEOREMS AND PROOFS

The results stated in the previous sections are based on two theorems.

THEOREM 1. For a given set of markings of outcomes in the payoff

matrix for player i, at least M marks in every column are obtainable from

R rows and also at least U unmarked positions in every raw are obtainable

from C columns, Then, player i can assure an outcome of thu marked set

with probability at least M/R and at most 1 - U/C .

Proof. First, it is shown that a probability of at least M/R can

10



be assured. Let E^ , ... ,p I- and X41 , - .. ,qe be the mixed strategies used.

Then, the probability of obtaining a marked outcome is

r

i=1piQi'

where Q  is t},e sum of the q' s for the columns that Lave marked positions

in the i-th row. The largest value of this probability that player i

can assure, by choice of pl , ..., pr , is

G =	 min (max..Qi)

Let i ( 1) , ... ,i (R) be R rows that together contain marked positions in all

columns. For any minimizing choice of the values for g l ,... ,gc , all of

Qi (1) , • ..' Qi (R) are at most G. Hence,

RG Z Qi (1) + ... + Q i (,,) ? M,

so that a probability of at least M/R carp be assured by play-r i.

Similarly, considering columns and unmarked positions, the other

player can assure an unmarked outcome with probability at least U/C. Thus,

player i can assure a marked outcome with probability at most 1 - U/C.

Theorem 2. Under the circumstances stated in Theorem 1, use of a

mixed strategy where each of the R rows is randomly selected with proba-

bility 1/R (and the other rows have zero probability) assures player i

that an outcome of the marked set occurs with probs • llity at least M/R.

Proof. Let pi (1) = "' = pi (R) = 1/R while the other p ' s are zero.

Then, for any given gl ,...,gc , the probability of obtaining a marked

outcome is

;i

Yt

i
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In particular, this inequality holds for any uiii:intizing set of values for

q^ ► ... ► qc



--------

NT	 r

UNCLASSIFIED
J	 REPORT TITLE

"Simplified solutions for two-person percentile games"

Technical Report

5	 A U THOR (3) (First name, middle initial, last name)

John E. Walsh

Grace J. Kelleher

iS	 REPORT DATE ?a. TOTAL NO. OF PAGES 7b. NO. OF nEFS

8d, CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPCRT NUMBER(S)

b. PROjEC T NO.

NR 042-260 94
C. 9b. OTHER REPORT NO,' 51 (Any other niarnbers that may be a., sign ed

this report)

10. CISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited.	 Reproduction in whole or in part is permitted for any purpose of the
United States Goverment.

11	 SU P PLEMENTARY NOTES	 12. SPONSORING MILITARY ACTIVITY

Offi ce of Naval Research

13. ABSTPACT

Consider solution of a two-person game in which the players use percentile
criteria.	 For player i, the stepwise procedure is to mark positions of the game
outcomes (pairs of payoffs, one to each player) in his payoff matrix according to
decreasing desirability level (i = 1,2).	 To be determined is the smallest marked set
such that, for percentile 100ai used by player i, an outcomo of this set can be as-
sured with probability at least ai. 	 Also, an optimum mixed strategy is to be deter-
mined (for accomplishing this as gurance).	 In general, the probability with which a
marked set can be assured is evaluated by solution of a specialized zero-sum game
with an expected-value basis.	 However, easily evaluated upper and lower bounds for
this probability can be obtained from the matrix locations of the markings. 	 Use
of these bounds can substantially reduce the effort in the stepwise solution of a
game.	 moreover, equality of the bounds can occur.	 Then, the probability is deter-
mined without solution of a zero-sum game, and a corresponding optimum strategy is
readily identified.	 The )robability value is approximately determined when the
bounds are nearly equal, and an approximately optimum strategy is easily identified.
Indications are that many percentile games can be solved, exactly 	 or approximately,
by this simplified method.

DD I NOV 651 4 _
S/w 0101-807-6811	 '

` A/,^^

/


	GeneralDisclaimer.pdf
	0043A01.pdf
	0043A02.pdf
	0043A03.pdf
	0043A04.pdf
	0043A05.pdf
	0043A06.pdf
	0043A07.pdf
	0043A08.pdf
	0043A09.pdf
	0043A10.pdf
	0043A11.pdf
	0043B01.pdf
	0043B02.pdf
	0043B03.pdf
	0043B04.pdf

