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ABSTRACT

The Method of Moments is applied to the solution of integral
equations for the current induced on conducting cylinders immersed in an
arbitrary two-dimensional field. The solution is outlined and such
scattering parameters as the induced-field ratio and the extinction cross
section are defined, Numerical solutions are obtained for several
geometries which are relevant to the problem of large reflector antenna

analysis.
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I, INTRODUCTION

A, Reflector-Antenna Analysis

Performance analysis of large-aperture reflector antennas has reached a
highly developed state, Twenty years ago calculations were based on scalar
aperture theory and a few degenerate vector formulations that could be inte-
grated in closed form. With the advent of high-speed computing machines, the
complex integrals of physical optics including experimental illumination func-
tions could be evaluated numerically, yielding even more accurate results,
Consequently, the analysis of these large antennas has generally kept pace with
the development of superb electronic systems used to process the signals from

the antenna terminals,

The two most significant problems remaining in the analysis of reflector

antennas are:

(1) Aperture blocking and shadowing by struts, supports, or sub-

reflectors within the geometrical shadow of the aperture;
(2) Back radiation into the rear hemisphere,

Various attempts have been made to approximate these effects, However, no
genuinely accurate methods have been developed for their quantitative evalua-
tion, particularly with respect to their influence on the antenna sidelobes,
While these problems are generally considered to be ""higher order effects’',
more and more systems have come to depend upon the correct evaluation of
such effects, For example, the spurious radiation arising from aperture
blocking is important in deep-space trackingl, and will become equally impor-
tant in tracking synchronous satellites when several are parked close together
in orbit, Furthermore, millions of dollars are spent to construct large ground
antennas with the highest possible gain, but no really accurate techniques are
available to design feed support structures which invariably degrade overall

gain,

JPIL, Technical Memorandum 33-478 1




B. The Integral Equation for the Induced Current Density

The electric field at a point P due to currents on a metallic body can be
expressed as an integral of the surface-current density over the surface of the
body, In the general formulation of an electromagnetic scattering problem,
these currents are induced by a "known' incident field Einc' The resulting
scattered electrical field is subject to the primary boundary condition that its
tangential component at the surface of the metallic body is equal to the negative

of the tangential component of the incident field, Consequently:

T E _ bx - N 1
“ EinePs) = “Jebg Vg 55

- [_J—S . v} v+ dS (I-1)

where P _ is on S,

5
Equation (1) is an integral equation for the surface-current density, FS’
on the scatterer, This integral equation provides a computational technique to
calculate the induced currents., Having determined the currents, it is then
straightforward to obtain the scattered field. In the case of a reflector-antenna,
fmc is the electric field of the feed system. Determination of the resulting
scattered field yields the directivity, radiation pattern, and polarization of the

antenna,

Analytic solutions to equation (I-1) are generally not possible. However,
numerical solutions have been reported in the literature for both two-
dimensiona12—4 and three—dimensiona15—7 geometries, These numerical solu-
tions have produced information on the induced currents which had not previously
been obtainable using techniques based on geometrical or physical optics,
Examples of such new information are the currents flowing in penumbral or
completely shadowed regions, and currents flowing in the vicinity of relatively
sharp edges, Furthermore, two-dimensional studies have yielded new insights
and better quantitative approximations for the difficult problem of aperture

blocking by feed-support struc’cures8 and members of space-frame radomesg.
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The material in this report describes the application of two-dimensional
integral-equation theory to the problem of aperture blocking of an idealized two-
dimensional parabola, The theory is described in Section II, Alternative
descriptions of the scattering characteristics of a conducting cylinder are pre-
sented in Section III, These descriptions include "extinction cross-section'/,
which is useful in describing the effects of blocking on sidelobe deterioration,
and 'induced field ratio' (IFR), which is used advantageously in describing gain
loss due to blockage., I Section IV numerical studies are presented for several
useful cylinder cross-sections, The double blocking problem is examined in
some detail. Finally, in order to evaluate the usefulness of these simple con-
cepts, the entire problem of a parabolic antenna with circular blocking objects
is solved, Some of these results can be extrapolated to three-dimensions for a

better evaluation of the problem of the blocked and shadowed paraboloid,
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II, TWO-DIMENSIONAL INTEGRAL-EQUATION THEORY

The theory of two-dimensional electromagnetic integral equations has
received considerable attention during the past decade.z—qt Large computers
have enabled solutions to be obtained for many different sizes and shapes of
scatterers. The theory itself, being scalar in nature, is considerably less
complex than the more general three-dimensional vector integral theory., The

basic two-dimensional integral equation is derived in Appendix Al,

The geometry of the two-dimensional scattering problem is shown in
cross-section in Figure II-1., The axis of the scattering cylinder is parallel to
the Z-axis, The coordinates of the field point P are (p, ¢); the coordinates of
a point on the scatterer are (po, d)o). The distance between the two points is r.
It is convenient to define a localized coordinate system at each point on the
scatterer, In the xy plane the coordinates are defined by the outward unit

normal vector, En, and the unit tangent vector, a defined such that

t?
a xa, = a (II-1)

n t z

A Plane-Wave at Oblique Incidence

In the event that a plane electromagnetic wave is incident upon the scat-
terer, it is necessary to describe the polarization of the wave and its direction
of propagation with respect to the cylinder, The directional relationships are

shown in Figure II-2, A propagation vector is defined

k = kn (II-2)

where

ko= w [pge, = 2m/2 (II-3)

N

n = cos o (cosp a_*sinp ay) tsine a, (11-4)
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The plane of incidence is the plane containing both the z -axis and the wave

normal —r;. This plane is defined without ambiguity unless n = .E—L_Z . However,

this special case shall be excluded from consideration in this report,

It is convenient to define ;xy’ a unit vector in the x-y plane that also lies

in the plane of incidence:

a inp a 11-5)
c:osﬁaxi-smﬁay (I1-5)

so that

n = cosaa _+sinaa (I1-6)
Xy Z

It is also convenient to define a

L @ qnit vector in the x-y plane that is perpen-

dicular to the plane of incidence. Then gz’ ;J_, axy constitute a right-handed

set of orthogonal unit vectors:

= T_.7
a xa = aXY (Il-7a)
a, x axy =a, (I11-7b)
a2 xa =a (II-7c)
Xy Z L

From (II-5) and (II-7c) it may be shown that

a, = sinf a_-cosp Zy (II-8)

Finally, a unit vector _aT” will be defined such that it lies in both the
plane of incidence and the plane wave front., Consequently, g” is perpendicular
to both n and EL and completes a right-handed triplet of orthogonal unit vectors

aH ,E-L, n:
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| xa =n (II-9a)

a, xn = aH (II-9b)
ExEH =a, (I1- 9c)
From (II-4) and (II-9b)
Z{H = -sin o cosﬁg - sin sinﬁg +cosaa, = -sinaa_ +cosaa
i ® y z Xy Z
(II-10)

The electric field of the incident plane, TEM wave is given by

Ei

-jk - R

= EO e (II-11)
where
R = xa_+ y?;y t za, (I1-12)
The phase may be expanded using (II-2), (II-4), and (II-12):
k- R = kp cosa cos (¢ - B) + kz sin o = kx cosa cosf
+ ky cosa sinp + kz sin« (II-13)

The electric field vector EO lies in the plane of the wavefront, tilted an angle &

with respect to the plane of incidence (Figure II-3)., Consequently

EO = EO(c056 a + sin 6 al) (II-14)

I
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or, in terms of the Cartesian coordinates

—E—)O = EO [(sinB sin & - sin « cos B cos &) ;x - {cos B sin &
+ sin @ sin 3 cos §) ;y + cos o cosd ZZ :l (11~ 15)
Similarly, the magnetic field of the incident wave is given by
ol o= H, e IRTR (II-16)
where
H =i3xE (II-17)
0o~ ¥ %0
Inserting (II-4) and (II-15) into (II-17) yields
— EO —
HO = 'n—{(sin B cosd + sin a cosP sin §) a, - (cos P cos b
- sin o sin 8 sin &) ;y - cos @ sin b EZ} (I1-18)
This can be further simplified using (II-8) and (II-10) to yield
HO = —T—]—-(—smé aH + cosd al) (I1-19)

The vector relationships indicated in eq. (II-19) are verified by the geometrical

relationships in Figure II-3,

-
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The general incident field described by equations (II-11), (II-15), (II-16),
and {II-18) can be decomposed into an incident E-wave and an incident H-wave
(Ref, 10). The incident E-wave has no longitudinal (i. e, z -directed) component

of magnetic field

T - F kR (IT-20)
e e
where
Eex = —EO sin o cos 3 cos d (II-21a)
Eey = —EO sino sinf cos 6 (II-21b)
E = E_ cosa cosé (1I-21c)
ez 0
EO
H = — sin B cos 6 (II-214d)
ex n
EO
H = -— cos PB cosd (II-21e)
ey n
H =0 (I1-21f1)
ez

Similarly, the incident H-wave has no longitudinal component of electric field

EL = ", oik- R (IT-22)
where
Ehx = EO sin P sin & (II-23a)
Ehy = —EO cosf sipd (II-23b)
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E =0 (I1-23c)

EO
H = — gina cosP sin d (II-234d)
hZ n
Eo
H = — sin o sinfP sin 6 (I1-23e)
hy N P
EO
th = _—*]_ cos ¢ sinbd {11-231f)

The general scattering problem can now be separated into two independent
problems: E-wave and H-wave scattering, The total incident field can be seen
to be made of its separated components, e, g. the total x-component of eq, (II-15)

consists of the sum of (II-21a) plus (II-23a), etc.

L. Incident E-wave, It shall be assumed that a perfectly conducting,

infinitely long, z-directed cylinder (Fig, II-1) is immersed in the field of an

incident E-wave. The z-component of the incident field is [from eq (II-2lc)]

Ei _ Ei e—jkzsinoz

. = E, (II-25)
Xy
where
Bl - Eo cos o cosé e—J(kxcosacosﬁ+kycosasmﬁ) (II-26)
Xy
In terms of the quantities defined in the Appendix A
i i
U = E (I1-27)
Xy Xy

JPL Technical Memorandum 33-478 9




Similarly

ES = g8 o Jkzsina (IT-28)
z z
Xy
S s
q"xy = B (II-29)
Xy
and
b = +E° (11- 30)
Xy Z Z
Xy Xy
Since E is zero on 5, eq. (A-32) becomes
oE
. j zZ
E (P)=E (P)+- G —¥gs (II-31)
Z Z 4 Xy on
xy xy S
1
However
oE
Z 2
—ﬁ = jkn cos@ Jg, (I1-32)
Xy
where the surface current density is defined by
T.=7 o Jkzsina g (I1- 33)
S Sz pa
Xy
Then the scattered field becomes
g® - .kKncosa 7 ds (II- 34)
4 Xy Sz
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and eq. (II-31) is

The final integral equation is generated by letting P be a point PS on the

perfectly conducting cylinder so that E_ (PS) is zero and

Xy
kn cos « i _
i nySz as = E_ (PS) (II-36)
Xy Xy
S
1
a. Piecewise constant current approximation, The integral equation

(II-36) for the surface current distribution has been solved by dividing the
periphery of the cylinder into N segments (Fig. II-4). Generally, each segment
is significantly shorter than a wavelength. The current density on each segment
is assumed to be a (complex) constant. Thus (II-36) is transformed into N linear

equations in the N unknown current densities

N

Z .
k o 2 k
E -——T]———————CZS f Hg )(k cosa r., [) dSi {Ji} = E; (PM) (I1-37)
i=1 Si

where Ji is the (complex) current density on the ith segment; PM is a point

(fixed) on the Mth segment; T is the distance from PM to the integration peint
on the ith segment; and the integration is carried out along the ith segment,

The coefficients of each current density are evaluated numerically, N equations
may be generated by allowing PM to be on each of the N segments, Special
attention must be given to the coefficient of JM since the argument of the

Hankel function vanishes. However, the singularity is integrable and yields

oot
-y

JPL Technical Memorandum 33-478




kn cos @ {2)
§ 2 Hy' (k cose ;) ) dS, {Jl}
i=1 S;
i#M
knAS.  cos (kAS, )° KAS
RS failaned Vi 1 - — M2l \—(————M)—l
M 4 48 OB\ 4
(kaS )2 vkAS
Y M M L I S
+ ] N V— l:log(—-———4 >— 3]}— EZ (PM) (I1- 38)
Xy
where log y = 0,5772. These equations are generally solved using matrix

technigues. If the geometry of the scatterer exhibits such symmetries as
planes of symmetry, the matrices may be considerably simplified (Appendix B).

These symmetries are only functions of the scatterer geometry and not the

incident field,

b, The Scattered E-wave. From eq (1I-34) the scattered E-Wave is
given by
N
5 k cosza (2)
E° = -JT— E I, Hy ' (k cos o 1) dS, (I1-39)
=y i=l S

i

At great distances the Hankel function can be approximated by

(2),, ) 2 e—jkcosip jcosozpocos(d)o—(b)
H 7 (k cos ar) = e
0 Tk cosa Jp (11-40)
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in terms of the geometrical parameters defined in Figures (II-1) and (1I-4).

Consequently, at great distances the scattered field is

. ok Coszoz 23 e-chosap chosapocos{¢o~¢)
E = - J. e das. |
z 4 Tk cosa i i
xy G i=1 S
i
(I1-41)
2, Incident H-wave., The scattering cylinder is now assumed to be
immersed in an incident H-wave described in eqs. (II-22) and (II-23), From
(II-23f) the z -component of the incident field is
o= o e—sz sino (I1-42)
Xy
where
i EO -ilk o +k ing)
H = -—cosc sinb e j{kxcosacosptkycosasing (II-43)
Xy
Then, in terms of the quantities defined in Appendix A
R ,
oy = H, (I1-44)
Xy
Similarly
S = s e—sz sina (I 45)
z z
Xy
S = .S
pry‘ = HZ (II-46)
Xy
JPL Technical Memorandum 33-478 13




and

= H  +E° (11-47)
Xy z zZ
Xy Xy
But
oH
Zx k 2
_BTX- = -jT cos @ Etan (11-48)
Xy

and Etan is zero on S1 so that eq. (A-32) becomes

- S L _ 2y -
H (P) = Hz (P) 4 Hz o as (II-49)
Xy Xy Sl Xy
The scattered field is then given by
oG
H® = -1 H — =Y gs (II-50)
z 4 4 on
Xy S1 Xy

which can be simplified by taking the normal derivative of the Hankel function

s _ _jkcosa = .7y () -
HZ = - (a.r n) Hl (k cos o 1) Hz ds (II-51)

where gr is a unit vector from the integration point S to the field point P,
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If P becomes a point PS on the cylinder, the final equation is

jk cos = = 4(2) _ __
HZ (PS) + —_— (ar n) Hl (k cos & r) Hz dS = H {.LS}
xy S xy Xy

This is an integral equation for Hzxy at the surface of the cylinder, 5ince
Hz xy is tangent to the cylinder, it is proportional to the circumferential surface

current density,

a. Piecewise constant field/current approximation, The integral

equation for Hz has been solved by again dividing the periphery of the

Xy
cylinder into N segments (Fig. II-4) and approximating the field/current on
each segment by a complex constant, H;. Equation (II-52) is transformed into

N linear equations in the N unknown current densities:

i=N
jk 04050! (‘;; . H)H( )(k cosa r., . dS {H }
E ; o i M
i=1 S !
i#M ’
1 1
+'2HM = HZ (PM) (I-53)

where Hiis the unit outward normal on the ith segment and the unit vector a.
M

i
is directed from the integration point on S.1 to P, on the Mth segment, The

M
term involving H, A has been separated from the summation (as for for E-wave)

because of the necessity for evaluation of an integrable singularity.

JPL Technical Memorandum 33-478 1
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b, The Scattered H-wave, From eq (II-51) the scattered H-Wave is
given by

N
S _ jkcosa E : - - (2)
Hz i e Hi (ar ni) Hl (k cos o r) dSi (II-54)
=y i=1 S

At great distances the Hankel function can be approximated by

: -jkcosap jkcosap.cos(g¢,-¢)
ng} (k cosar)= j / 2] © e 0 0 (I1-55)
Tk cosa \fp

Consequently at great distances the scattered H-wave is

. N .
s kcos o 2] e-JkCOsap _ — JkCOSOPOCOS(SDO“‘P)
H = H. {a_ « n.)e as.
z 4 mk cosc Np 1 r i 1
| S
i

i=1

(I1-56)

B. General Field at Normal Incidence

A general two-dimensional electromagnetic field that does not vary in the
direction of the cylinder axis (z-direction) can be expanded in terms of one or

more E-waves and one-or more H-waves (Ref, 10).

L. Incident E-wave, The basic field components are
E' = E! (x,y) (II-57a)
z z Y
‘1 Cloy
- - 1 Z -—
Hn = (-1/jwp) ot (II-57b)
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U1
-
O

where the normal, tangential, and axial (z) directions are defined in Figure II-1
and eq (II-1), The basic integral equation, derived in a manner analogous to

eq (II-31) is

fad

i j (2) ok,
E_(P) = EL(P)+3 | Hy (k) ds (11-58)
S

4 0 on
1

The integral equation for the z -directed surface-current density is

kn 2) _ ol
= HO (kr) JSz ds = EZ(PS) {I1-59)
S1
The scattered field is
s . _kn [ (2 :
Ez = -3 HO (kr) JSZ ds (1I-60)

These integrals can be evaluated using the techniques outlined in previous

sections,

2. Incident H-wave, The basic field components are
H]z = H (x,v) (II-6la)
i oH,
= i TT-61
En (l/_]g)e) 3t (II-61b)
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i 8H,

E, = (-1/jwe) ™ (II-61c)
H =g =E' =0 (II-61d)

n t Z

The basic integral equation is
. il 2 [4(2) J

HZ(P) = H_(P) -3 H 5= [HO (kr)| dS (II-62)

Sy

and the integral equation for the total H, at the surface of the scatterer is:

ik = . mut? - -
HZ(PS) g (ar n) H1 (kr) H ds = H) (PS) (11-63)
Sl
The scattered field is
jk
s o IS 7 - mutd) .
Hz = -7 (a.r n)Hl (kr) Hz ds (II-64)
Sl
3. Examples. A useful example of such a two dimensional incident
field is
",
= A e Jkpcos(9-f) (I1- 65)
gl
z
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which is a normally incident plane wave in the p-direction,

case of the previously derived plane-wave formulas for o = 0.

example is that of a cylindrical wave of the form

Hy oikp
= f(¢)
E! Ve
Z

which is the field of a directional line feed,

JPL Technical Memorandum 33-478

This is a special

A second



Fig., II-1., Geometry of Scattering Cylinder (Transverse Plane)
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III. SCATTERING PARAMETERS

A. Extinction Cross-Section

The extinction cross-section is a measure of the total power extracted
from the incident wave per unit length of the cylinder. As described in Sec-
tion 1I, the field of an incident plane, TEM wave may be decomposed into E-wave

and H-wave components. The incident, scattered, and total fields are then:

Bl - gl lkZsine (III-1a)
z Z
Xy
Es . S e-)kzsina (III-1b)
Z Z
Xy
B -jkz sin o 1
E, = E, e (III-1c)
Xy
where
E; _ Eo cosa cos & e-J(kxcosa cos B +kycos o sin B) (111-2)
Xy

It may be shown that the total power extracted from the incident wave per

unit length of the cylinder is

~ 1 1
Pextr -7 Re i 2
jwpcos @
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By expanding the incident wave using (III-2), the expression for the extracted

power becomes

[E, cosa cosb s . jprCOSaCOS(¢O-B)
= B Re 4 j E (jkcos oz)(a ©a ) e
extr > oL 2 z n xy
Wi, CoS « S Xy
1
s
oK .
z ~-jkp,cosa cos(d,-p)
. xy .0 0 as (II1-4)
on
From eq. (A-23) the scattered field is given by
S
s j aEny S any
E (pd) = 3 nyT -E 5= | S (I1I-5)
Xy - Xy

where the Green's function ny = H(OZ)(k cos ar). Using the large-argument

approximation for the Hankel function at great distances yields

s . [ 2 -jkpcosa
EZ Tkp cosa e EO cosa cosbd f(d) (I1I-6)

xy
where
s
oE .
: z jkp.cosacos(d,-d)
(o) = 1 | |—a=e ° °
E_ cosao cosd 4 on
0 s

_ _ s +jkpocosacos(¢0—¢)
- jkeosa (7 ar>EZ e ds (I1I-7)
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The angular function, f(¢), is normalized by the magnitude of the incident field

so that it is the pattern for a unit-amplitude normally incident E-wave. Com-

bination of eqs. (III-4) and (III-7) yields the power extracted from the K-wave
to be:

2 22 B
extr ~ " op o ¢08 0 Re {£(p)} (III-8)

Consequently it is only necessary to determine the real part of the pattern factor
of the scattered field in the direction of the incident field to determine the total

power extracted.

A similar analysis of the power extracted from the H-wave component of

the incident field yields

-2 ES sin%6 Re {gp)} (III-9)

extr W

where g(¢) is the pattern function obtained for a unit-amplitude normally

incident H-wave:

9H"
. z +jkp cosacos(d , ~d)
g(é) = 1 il XY 0 0

EO 4 on
- ~—— Ccos & sin § S
n 1

_ _ s +jkp0cosacos(¢0-¢)
-jkcos« <an . ar) HZ e ds {IXI-10)

Xy

and, at great distances

H® (p,¢) = /——-——ZJ—— e“jkpcos"‘ ( Eocosa s'n6> g(b) (ITI-11)
z ’ mkpcos o T ' & -

Xy
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Since the two mode types are orthogonal, the total power extracted from

the incident wave is the sum of (1II-8) and (III-9)

2 2 2 . 2
st~ "o Eo [Cos 5 Re{f(p)} + sin%s Re{g(ﬁ)}:l (I1I-12)
The extinction cross-section, o is then defined as the ratio of Pextr and the
incident power density, ES/ZT]:
4 2 .2
o, = - -E[cos 6 Re{f(p)} + sin6 Re{g(@)}] (II1-13)

The derivation has been sufficiently general to include lossy cylinders
for which the extracted power includes dissipative losses as well as the scattered
power. In the case of a perfectly conducting cylinder, however, the extracted
power includes only the scattered power. Consequently, the extinction cross-
section in the material to follow is effectively a "total scattering cross-section'

and provides a useful measure of the total scattered energy in all directions.

B. Differential Scattering Cross-Section

It may be shown that at great distances the power density of the scattered

field in the {¢, ¢) direction is

2
E .2 2 2 2
S(e, &) = 0 [mn e} [g(q))l + cos & If(q;)( :l (III-14)

TP cos «

The differential scattering cross-section in the (o ,¢) direction is

2mp cosa Sla, d) _
> =
EO/Zr]

oo, d) = % [sinzé Ig(cp)lz + coszé lf((p)lz] (III-15)
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This quantity provides a measure of the power density of the scattered field in
a particular direction. It is conventionally used to describe the scattered field

for a purely E- or purely H-wave at normal incidence. In this case

4 2 T
(Te(cj>) = E-lf(q))l (III-16a)
4 2 .
o {d) = ¢ ‘g(¢)' (III-16Db)
If & =B, o(B) is the "forward scattering cross-section.! If ¢ = + 8,
o(m + p) is the 'backscattering cross-section' or two-dimensional 'radar
cross-section.
C. Equivalent Aperture Radiation
1. Radiation from a One-dimensional Aperture. A one-dimensional

aperture is defined as a segment of the §-axis in Figure III-1. The figure shows
the £ and n coordinate axes in the z = 0 plane of an £-n-2z coordinate system.
{(Consequently, the one-dimensional aperture may also be interpreted as an
infinitely long slit in the z-direction provided that there is no variation of the
fields in the z -direction.) If u is one of the six rectangular electric or
magnetic field components subject to the wave equation and the radiation con-
dition, and if u is zero everywhere on the £-axis except between il and §

2?
then it may be shown that

gZ
wging) = -3 | ue, 0 #{P (k) ag (111-17)
§1

~

where

P = \/ng + (& - éo)z (IIL-18)
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If u represents a rectangular component of the electric field, both sides of
eq. {III-17) may be multiplied by a constant unit vector e which represents the

polarization

wEgimge = -edy u(§, 0) H(lz)(kp) dg (I11-19)

Let P be a distant field point in the go = 0 direction so that

ng > l gll (II1-20a)
g > ] §2| (I11-20b)
p = T (III-20¢)
H = j "FZEJ‘E e ikp (I11-204)

Furthermore, assume u(§, 0) = EO. Then
w(0 5 ) e = E—REF (I1I-21)

where

'}T:REF = REj e (I11-22a)

(k& - kE ) . “jkn
R = —% L i 0 (IT1-22b)
2 Trkno
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2, E-wave induced field ratio, IFRE. The aperture concepts of the

previous section will now be applied to the two-dimensional scattering geometry
shown in Figure III-2. A plane wave travels in the ¢ = f direction relative to
the x -axis. The E-field of the wave is polarized in the z-direction. The
coordinate system (£, 1, z) is defined such that the n-axis is coincident with

the direction of propagation. The fields may then be written as

E' = E, E{z e~ JkN (I11-23a)
. E :
gt= lzg e ~Jkn (I11-23b)
0

A perfectly conducting cylindrical scatterer of arbitrary cross-section lies
in the path of the wave. The axis of the cylinder is parallel to the z-axis and

the cylinder lies in the vicinity of the origin. A z-directed surface current J

Sz

is induced on the cylinder, which, in turn, generates a scattered field

E; -a_:z . At a field point P{0, n O) on the n-axis the forward-~scattered field is
[cf. eq. (II-34)]:

kn
s _ 0 (2) ‘
Ez = -7 JSz HO (kp) dS (I11-24)
Sl

For a distant field point ng)(kp) may be approximated by its asymptotic value.

A reference aperture is now defined by the projection of the scatterer
onto the n = 0 plane from § = §1 to § = gz.' A reference field EREF is now
defined as the field radiated to P by the portion of the incident field in the

reference aperture. With e = Ez in eq (III-22) the reference field is:

i} - 6p - K 2] e-JknO B (IT1-25)
REF z wkng z
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The Induced Field Ratio (IFR is defined so that

o

-—.—S/ et

EZ\P) = (IFRE) EREF (I11-26)
or
E,
IFRE = RE, (III-27)
In general, ET&E is a complex quantity. In the limit of very high frequencies
IFR  approaches -1. As a result, the field at P is equal to the field of the
wave with the portion of the wavefront in the geometrical shadow of the cylinder

cancelled. This is known as the "optical blocking” approximation.

3. H.wave induced field ratio, IFRH. The incident plane wave and

the (£, =, z ) coordinate system are again defined in Fig. III-2. However the

H-field is polarized in the z ~direction so that

!
E .
gl g 3 eikn L 05 -ikm
H™ = I—IO a, 5= 2, © (III-28a)
0
=i — -jkn _ PR —-jkn
E° = ZO HO(-ag) e = EO(-a{;) e (III-28D)

A circumferential surface-current density distribution HZ(S) is induced on the
cylinder (i.e., the current flows in planes of constant z). This current gives

rise to a scattered field H® which is also z-directed. At a distant field point

P{0, ‘qo} the forward scattered field is
7S N 9 | (2)
H°(P) = -7a, H_(S)3- [HO (kp)| as (I11-29a)
Sl
ES(p) = noﬁs(p) xia‘n (III-29b)
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A reference aperture is again defined as before. Reference fields may

be defined, alternatively, for the E- or H-fields

tl

] —_—
REF - X Eo('ag)

or

HREF R HO a'z

and the H-Wave Induced Field Ratio, IFRH, is defined so that

ke - TT.31
ET(P) = (IFRH) EREF (III-21a)
or
S = 2
H (P) = (IFRH) HREF (III-31b)
Consequently
= = - 11-3
IFRH RH RET (I1I-32)
0 0
4, IFR for arbitrary linear polarization. Assume the incident field

vectors to be rotated an angle § with respect to the coordinate axes as shown in

Figure III-3. Then

where

e = cosbd a + sind 2
z 3
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Similarly

E .
gt - 03 ik (I1I-34a)
c
0
where
e = -sind a_ +cosd a (I1I-34b)
c Z ¢
From eqs (III-26) and (III-31a)
5 = P . — )
E{P) (IFRE) REO cos & a, + (IFRH) REO sin & ag (II11-35)
Expanding gz and gg yields
E°(P) = RE [ %5 IFR.. + sin’6 IFR ]_
(P) = olcos g T sin e
+RE, [IFRH - IFRE} sind cos & e. (I11-36)

Hence the scattered field has both normally-polarized and cross-polarized

components. If the scattered field is defined in terms of these components:

E (P) = REO IFRN e + REO IFRCeC (II1-37)

then, by comparison with (III-36)

IFRN

H

2 . 2
cos & IFRE + sin & IFRH (II1-382)

IFRg = (IFRy - IFRg) siné cos 6 (III-38h)
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5. IFR for circular polarization. In terms of the coordinates of

Figure III-2, assume the polarization of the incident field to be right handed

circular polarization

€=t (m ) |
e = e = —\la_ +3]a I11-39
R - 05 \%2 T3 ( )
Then,
ORI R L (I1I-40)
0 R~

RE

—5, N or - . - T
E{P) = N3 [IFRE a, +JIFRH ag] (111-41)

If a unit vector describing left handed circular polarization is defined by

e =

. —\%(ZZ - ?a‘g) (ITI-42)

in terms of @, and a_. yields

then, by expanding a, and ag R L

IFR_ + IFR_ IFR. - IFR |
=5 _ E H )= E H> — | ,
E (P) = REO[( > )eR + ( > eCE (1I1-43)
Consequently unless IFRE and IFRH are equal the scattered field has
both right-handed and left-handed circular polarization. It is then possible to
define
I}E‘RE + IFRH

= T1I -
IFR o 5 (I1I-44a)

(O8]
(&)
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IFR~. - IFR
B E H
IFRRL = > (I11-44Db)
so that the incident field can be defined as
— — _—
E(p) = REO [IFRRR eR + IFRRL eL] {I11-45)
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IV. NUMERICAL STUDIES

Al Right-Circular Cylinder

The right-circular cylinder presents a useful cross-sectional geometry
with which to begin a numerical study of cylindrical scattering because (1)
classical results are available for the right-circular cylinder and can be used
to check the numerical accuracy of the numerical process, and (2) the right-
circular cylinder is a base-line configuration that can be used to check the

"reasonableness' of other configurations.

The current induced on a right-circular cylinder by an incident plane
wave may be tabulated in terms of an infinite series of Hankel functions il
These classical results are plotted in Figure IV-1 (dashed curves) for E- and
H-waves incident on a right-circular cylinder of diameter equal to one wave-
length., The current distributions were also computed using eqs. (II-38) and
(II-53). These "integral-equation' results are plotted as the solid curves in
the figure. The surface of the cylinder was divided into 20 equal segments on
which the current density was assumed piecewise constant. The two different
processes yield results which are very nearly equal, with slight differences
which are most noticeable in regions where the current changes more rapidly

than the non-vanishing segment size can detect.

The induced field ratios for a right-circular cylinder are given by

1 e Jn(ka)
[FR_ = - — —n_ (IV-1)
E a 1@ )
n=-w n
. e 7 (ka)
IFR,, = - — : (IV-2)
H a 1 )
n=-w n
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Similarly, the total scattering cross-section of a right-circular cylinder

[cf. eq. (1II-13)] is given by

5= = (-2) x Re {IFR} (1V-3)

These results are plotted in Figure IV-2. The magnitude of IFR approaches
unity as the radius/wavelength ratio increases, with IFRHapprOaching monotoni-
cally from below, and IFRE approaching monotonically from above. Similarly,
the total scattering cross-section approaches 4a with increasing radius/
wavelength ratio, with the H-wave result approaching monotonically from below

and the E-wave result approaching monotonically from above.

The induced field ratio was also computed using integral-equation tech-
niques for a one-wavelength-diameter cylinder with 20 equal segments. The

results are indicated below:

-1.229 +30. 407 = 1. 294]| 161. 7 deg (Classical)

IFR_ = (IV-4)
-1.234 +j0. 413 = 1.302| 161. 5 deg (Int. Eq.)
-0.765 - j0. 268 = 0.811] -160. 7 deg (Classical)

IFRy; = { (IV-5)
-0.773 - j0. 288 = 0.825| -159. 5 deg (Int. Eq.)

The accuracy of the integral-equation result reflects the corresponding accur-
acy with which the integral-equation technique is capable of determining the
current distribution induced on a right-circular cylinder. Although it should
not be inferred that corresponding accuracy can be achieved for other cross-
sectional shapes, these are the accuracies which one might expect providing
(a) the density of segments per wavelength of arc length is comparable or
higher; (b) the density of segments per angle of curvature is comparable or
higher; (c) roundoff errors from the matrix inversion process may be

neglected.
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If a plane wave is incident on a right circular cylinder from directions

other than at right angles to the cylinder axis, the induced field ratios are

+

1 Jn(ka cos )
IFR_ (@) = - ———— E (IV-6)
E ka cos a H(Z)(ka cos a)
n=-w n
) e T '(ka cos @)
IFR_. (@) = - ———— E (IvV-17)
H ka cos « I_1(2)'(ka cos a)
n=-o n

where o is the angle between the wave normal and the normal to the cylinder
axis {cf. Figure II-2). Consequently, in the determination of the induced field
ratio, the effective radius of the cylinder is simply reduced by the factor

cos «. Although this result is derived for a right-circular cylinder, similar
results are valid for scattering cylinders with other cross-sections: dimensions

in the transverse plane are effectively reduced by the factor cosa.

Figure IV-3 is a plot of IIFRElversus o for diameter/wavelength ratios of
0.1, 1.0, and 10. 0. These curves increase with « because the reduction in
effective radius causes IFREi to increase (cf. Figure IV-2). As o increases
from zero, the IFRE remains initially constant before beginning to increase
monotonically. The range over which IFRE remains essentially constant is
only a few degrees for D/N = 0.1, but is as much as 30-40 degrees for larger
D/x. Consequently, for waves that are almost normally incident, a good first-
order approximation can be made by assuming IFR to be independent of a.
However, this approximation is not valid at large a%gles for which the exact

value of IFR_ must be computed.

E
Figure IV-4 is a plot of SIFRH\Versus o for the same three diameter/
wavelength ratios. These curves decrease monotonically as the effective
radius decreases. However, the values of IFRH are essentially constant for
angles not far from normal incidence, similar to the behavior described in

the previous paragraph.
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B. Two Coupled Right-Circular Cylinders

Calculations were made for the problem of plane-wave scattering from
two coupled right-circular cylinders, each of which is one wavelength in
diameter. Integral-equation techniques were used to compute the current
distributions and the IFR's for E- and H-wave scattering. KFach cylinder was

subdivided into twenty segments for the analysis.

The resulting IFR magnitudes are plotted as functions of the separation,
D, in Figure IV-5, for separations lateral to the wave direction, and in
Figure IV-6, for separations in the wave direction. When the two cylinders

are separated laterally:

(1) For small or moderate separations the IFR exhibits coupling
effects in the form of a series of resonances and anti-resonances
oscillating about the value of 1. 294 for the E-wave and 0. 811 for
the H-wave (cf. eqs. IV-4 and IV-5).

(2) As the separation continues to increase the oscillations decay and
the IFR approaches the value expected from each obstacle con-

sidered separately.

However, when the two cylinders are separated in the direction of the

wave normal:

(1) For small or moderate separations the IFR's again exhibit coupling
effects;
(2) For large separations the IFR's approach twice the value expected

from a single obstacle, although continuing to oscillate about the
asymptotic value due to the differential phasing of the contribu-

tions from the two cylinders.

It appears from the results of Figure IV-6, that when two scatterers are
separated by a great distance relative to their transverse dimensions, even
though one scatterer lies within the shadow of the second (as cast by the
incident wave) the wave ""fills in'' behind the first scatterer so that essentially
free-space scattering occurs at each scatterer. This principle is illustrated
b;} the current density distributions plotted in Figure IV-7. Two right-circular

cylinders are separated by a distance of 15 wavelengths in the direction of
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the incident wave. The dashed curves are the classical, free-space,
single~-cylinder current distributions. For both incident E- and H-waves the
current on the forward cylinder closely resembles the free-space value with
the exception of slight oscillations in the H-wave current and a moderate low-
level enhancement in the E-wave current. The H-wave current on the rear
cylinder closely follows the free-space value. However, the E-wave current
on the rear cylinder closely resembles the free-space current but is uniformly
reduced by 10-20%. To first order, then, for both E- and H-waves incident,
the currents induced on these widely separated cylinders closely resemble the
free-space value., Consequently, the effect on the forward-scattered field is

a superposition of each scatterer considered separately. The implications of
this result in estimating reflector antenna aperture blocking by complex
support structures are significant. It is insufficient to take the projected area
of the entire blocking structure when different members of the structures are
separated by great distances compared to their transverse dimensions. Instead,
one must account for all of the widely separated members without eliminating

overlapping.

When the separation between the two one-wavelength-diameter cylinders

ig 15 wavelengths in the direction of propagation;

IFR,, = -1.48 - j0.44= 1.54|-163.4 deg (IV-8a)

IFRE -2. 05+ j0.83 = 2.21 [ 158. 0 deg (IV-8b)

These values are almost double the free-space values of eqs. (IV-4) and (IV-5),
suggesting the '"filling in'"' mechanism by which essentially free-space scatter-
ing occurs at both cylinders. It appears possible to exclude the incident wave
from the shadow region behind the first cylinder to prevent it from scattering
from the second. Such a geometry is shown in Figure IV-8b; it is simply an
elongated cross-section with parallel sides 15 wavelengths long, one wave-
length apart, and capped by semicircular ends. For this geometry, with the

wave incideni from the same direction as before:

IFRpy = -0.79 - j0. 27 = 0.83|-161. 2 deg (IV-9)
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This remarkable result indicates that the H-wave blocking by the
elongated structure in nearly identical to the blocking by a single cylinder
(Eq. IV-5) and only about half the value for two separated cylinders (Eq. IV-8a).
Addition of the conducting sides has indeed prevented the wave from 'filling in"

behind the first cylinder.

Unfortunately, the E-wave blocking deteriorates even further for the
elongated structure because the boundary condition of zero-tangential-electric
field on the long sides of the structure is not inherently satisfied by the

incident field. For the E-wave

IFR, = -2.93 +j1. 96 = 3. 53 |146. 3 deg (IV-10)

Furthermore, for circular polarization

) IFRE+IFRH

IFRCP = > (IV-11)

In which case, for the single cylinder

IFRCP =-0.99+40.07 = 1.0 l 176. 0 deg (Iv-12)

For the two cylinder combination

IFR.p = -1. 77 +j0. 19 = 1. 78 [173. 9 deg (IV-13)

For the elongated cylinder

IFRCP = -1. 86 +3j0. 85 = 2. 04 |155. 4 deg

Consequently, the aperture blocking of a circularly polarized wave increases
by adding sides to the two cylinders. Furthermore, a significant cross-

polarized component is excited.

A second structure proposed to reduce ''filling in" without violating the

electric boundary condition is illustrated in Figure IV-8c. This corrugated
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surface has quarter-wavelength grooves to present an ''opencircuited! surface
to the incident E-wave. The absolute accuracy of the results is questionable,

because of the extremely large peripheral length. These results were

i

[FRp = -2.75 +j2. 15 = 3. 49 [ 142. 0 deg (IV-14a)

IFRy = -2.67 +51.39 = 3.00 |152. 5 deg (IV - 14b)

This type of a surface appears to increase both IFR's, with the corresponding

H

enhancement of the effective aperture blocking cross-section. The preceding

analysis was repeated for structures 7.5 wavelength long, leading to essentially

the same conclusions.

C. Square Cylinders

1. One cylinder. Mei and Van Bladel12 first analyzed the problem of

plane-wave scattering from rectangular cylinders using integral equations. The
basic structural member on the AAS* feed system configuration is a square
cylinder, 8,9 cm (3.50 in.) on a side with an 0,48-cm (0.19-in.) radius on the
corners (Figs.IV-9 and IV-10). These slightly modified square cylinders were
analyzed using eqgs. (II-38) and (II-52). At a frequency of 2295 MHz, the dimen-
sion of the straight side, S, was 0. 606 wavelength, and the dimension of the radius,
R, was 0. 0369 wavelength (cf. Fig. IV-11). The analysis was carried out with
eight segments per side and four segments per corner. The incident plane
wave was first normally incident against the face of the square (incident

wave # 1) and then normally incident against one of the rounded corners
(incident wave #2). The analysis was then repeated at an angle of 62. 5 degrees
from normal incidence. This direction corresponds to the actual oblique angle
at which the "aperture' wave strikes the support members of the AAS feed

system {Figure IV-9).

The current densities induced by a normally incident E-wave are plotted
in Figure IV-12(a). The most noticeable feature of these current distributions

is the current density peaks at the four corners. These peaks, although

#Advanced Antenna System located at Goldstone, California

44 JPI, Technical Memorandum 33-478



pronounced, are not nearly as sharp as those reported by Mei and Van Bladel
for the rectangular cylinders with abrupt corners. In the case of incident
wave #1 there is symmetry about the x-axis so that two large current peaks
exist on the two leading corners A and D, while the peaks on the trailing
corners B and C are much smaller. For incident wave #2 the symmetry exists
about the diagonal so that there is only a single large peak on leading corner A,
with intermediate peaks on corners B and D, and a very small peak on the trail-
ing corner C. For reference, the current density on a right-circular cylinder
with equal circumference (2. 657 wavelength) is plotted in the figures. The
current densities induced by a plane wave incident at 62. 5 deg from normal
incidence are plotted in Figures IV-12(b). The results are very similar to those
in (a), although the densities are somewhat higher (as expected, because the

effective physical cross-section is reduced by a factor of cos 62.5 =0. 462).

The current densities induced by an incident H-wave are plotted in
Figure IV-13, first for normal incidence (a) and then for 62. 5 deg from normal
incidence (b). The edge peaks are not found for the H-wave, and the results
are quite similar to those for the right-circular cylinders with equal

circumferences.

The IFR's of the square cylinder for normal incidence are tabulated in
Table IV-1 together with corresponding IFR's for four reference cylinders of

circular cross-section. The reference cylinders are

(a) equal diameter as ""seen'' by incident wave #1, i.e., 0.680
wavelength. This right-circular cylinder can be inscribed

within the square cylinder;

(b) equal cross-sectional area, i.e., 0.461 square wavelengths.

The diameter is 0. 766 wavelength;

(c) equal circumference, i.e., 2.657 wavelength. The diameter

is 0. 846 wavelength;

(d) equal diameter as '"seen' by incident wave #2, i.e., 0. 931
wavelength. This right-circular cylinder can be circum-

scribed around the square cylinder.
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The IFR magnitudes for electric, magnetic, and circular polarization
are tabulated. From eq. (III-43) it will be recalled that the IFR for circular
polarization is equal to the algebraic mean of the E- and H-wave IFR's. In
order to compare the different geometries the quantity (width)x(IFR)is also
plotted. This quantity yields the effective blocking contribution on the forward-
scattered field since the IFR alone is normalized by the width (cf. eqgs. III-22b,
1I1-27). From observing the first two rows of the Table it may be seen that
the blocking by the square cylinder of incident wave #1 is slightly greater than
the blocking of incident wave #2. In the case of the E-wave, this result can be
interpreted in terms of the edge peaks of the current distribution described
previously: at 45 degrees only one major edge peak is excited, whereas at
zero degrees two edge peaks are excited. In the case of the H-wave the inter-
pretation is more obscure. The most intrinsically significant number in the
first two rows of the table is the value of 1. 099 for the H-wave IFR magnitude
for the square cylinder (incident wave #1). It will be called from Figure I1V-2
that for a right-circular cylinder the IFR magnitude of an H-wave is always
less than unity., Consequently, the H-wave scattering of the square cylinder
is relatively enhanced. Although intermediate directions for the incident
wave were not considered, it will be assumed that the IFR's for the two
incident waves will effectively bound the range of values for arbitrary
directions. Consequently, the wIFR product seen by a circularly polarized

wave normally incident on the square cylinder ranges from 0. 797 to 0. 893.

The blocking parameters of the four reference cylinders are plotted in
the four bottom rows of Table IV-1. The electric IFR magnitudes decrease
toward unity as the diameter increases while the magnetic IFR magnitudes
increase toward unity. The circular polarization magnitudes are close to
unity over the range. The wIFR product for the two smaller circular
cylinders is less than that of the square cylinder for the E-wave and circular
polarization. Because the magnetic scattering appears enhanced for the
square cylinder, three of the circular cylinders have smaller wIFR products
than the square cylinder. It appears to be most useful to compare the square
cylinder with the circular cylinder of equal cross-sectional area because these
two geometries have the same support strength. In this case the circular
cylinder has 1-5% less E-wave blocking, 19-20% less H-wave blocking, and

4-15% less blocking for circular polarization.
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Table IV-2 presents the extinction cross-sections for the square and
reference cylinders at normal incidence. The extinction cross-section (Section
III-A) yields the total energy extracted from the incident wave. For circular
polarization the extinction cross-section is the algebraic mean of the electric
and magnetic values. In all cases the circular cylinder of equal cross-

sectional area scatters significantly less energy than the square cylinder.

The parameters described in the preceding paragraphs are tabulated in
Tables IV-3 and IV-4 for square and reference circular cylinders with the two
incident waves tilted 62.5 degrees from normal incidence. Virtually all of
the previous comments concerning the relative blocking and scattering proper-
ties of the square and circular cylinders are again applicable, For circular
polarization the circular cylinder with equal cross-sectional area causes 4%

less blocking and 5% less scattering.

The actual structural member on the AAS feed system support is a seam-
less tube of 8.9 x 8,9 crnZ (3.5x 3.5 in.z) square cross-section, The wall
thickness is 0.6 cm (1/4 in.). The total cross-sectional area of the metal tube
is 21 <:1'nZ (3. 25 in.z). The radius of gyration (r = \]—I_/—A), an important mech-
anical property of the member, is 1,3307. The 0. 6-cm wall thickness has no
effect on the rf scattering properties of the structure since the skin depth in

steel at S-band is 0.5 x 10™° cm (0.2 mil).

A practical comparison of the AAS square support members with equiva-
lent circular tubes requires that only commercially available circular tubes be
considered, since a special machine run for non-standard sizes would be pro-
hibitively expensive. The two available seamless round tubes that most nearly

matched the cross-sectional area and radius of gyration of the square tube were:

Seamless Tube #1: 10.2 cm (4 in.) outer diameter; 0.7 cm (9/32-in.)

wall thickness; 21. 2 cm2(3, 29 in, 2') cross-section; 1. 3185 radius of gyration

Seamless Tube #2: 10.5 cm (4-1/8 in.) outer diameter; 0.7 cm (9/32-in.)

wall thickness; 21.9 cm2(3. 40 in.z) cross-section; 1. 3626 radius of gyration

The scattering properties of these two seamless round tubes were
calculated and are also included in Tables IV-1 to IV-4. These two commer-
cially available round tubes most nearly match the two important mechanical

properties of the square tubes actually used in the AAS supports. It may be
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seen that for the case of 62. 5 deg incidence, the blocking afforded by the
circular cross-section is of the order of 1-2% less than for the square tube,

and the scattering decrease is less than a percent.

2. Array of four square cylinders. Each quadripod leg shown in

Figures IV-9 and IV-10 consists of four single square tubes, each of which is
the size considered in the previous section, arranged in the form of a rec-
tangular parallelepiped. Cross-members are also arranged for additional
structural support but these cross-members are not considered in the following
analysis. The fields scattered from this array of four square cylinders were
calculated for an incident plane wave coming from the direction shown in
Figure IV-14, both for normal incidence, and for 62. 5 deg from normal inci-
dence, To first order, the plane wave may be interpreted as the {ield reflected
from the paraboloidal surface and radiated into space. The 62.5 degree angle
of incidence corresponds to the actual angle at which the reflected wave strikes

the quadripod legs. -

The currents induced on each of the four cylinders by a normally incident
plane wave are plotted in Figures IV-15 (E-wave) and IV-16 (H-wave). Sym-
metry is evident about the midplane. With the exception of moderate assymetry
due to proximity effects, the currents induced on all four cylinders are the
same as those induced on a square cylinder alone in free space (Figs. IV-12

and IV-13), The total effective blocking area (w IIFR for the E-wave is

o)l
4,18 versus four times the value of a single square cylinder (1.096) equalling
4,384, Similarly, for the H-wave w ‘IFR is 2. 92 compared with four times the
CP‘ is 6. 62

and four times the single cylinder value is 7.06. Similarly, for all three

H
single-cylinder value of 2. 99; for circular polarization w ‘IFR

polarizations, the extinction cross-section of the four-cylinder array is
slightly less than four times the cross-section of a single cylinder.

The currents induced by a plane wave at 62. 5 deg incidence are shown

in Figures IV-17 and IV-18. These are similar to the currents induced on the
single cylinder in free space. Similarly, the effective blocking and extinction
cross-sections of the array are slightly less than four times the values for

free space (Cf. Table IV-5). Consequently, the above evidence indicates that,
similar to the results in Section IV-B, when the separation is as large as 10-20

wavelengths, the blocking and scattering properties of several scatterers are
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simply the sum of the blocking and scattering of the individual components,

whether or not the members of the array lie in each other's shadow.

D. Scattering from a Parabolic Cylinder
1. Line feed. A useful application of two-dimensional scattering
8

theory has been suggested by Ruze® and Kay9 for those members of a feed
support structure that are sufficiently long and thin to approximate the equiva-
lent infinite structure. One may assume, in addition, that the fields emerging
from the reflector* are sufficiently planar to enable the induced-field-ratio
(IFR) parameters to be used in calculating gain loss due to blocking by these
members. Ruze has additionally applied the same concept to '"shadowing'' of
the reflector caused by feed-support members interposed between the reflector
and direct illumination from the feed. One may further suppose that the

extinction cross-sections of the equivalent infinite structures may be used to

determine effects on average sidelobe levels, etc.

Unfortunately, this method for blocking calculation lacks analytical or
experimental confirmation, although it appears intuitively to be reasonable.
A possible analytical confirmation of the method would be a complete solution
of the finite circular aperture with a finite feed support structure using integral-
equation techniques. Until such a solution becomes feasible numerically, the
next best piece of analytical evidence might be provided by an integral-equation
solution of the two-dimensional version of the problem. Such a solution has
been undertaken below. The geometry is illustrated in Figure IV-19, Because
the problem has a plane of symmetry, only half of the reflector is shown. The
front of the reflector consists of 90 linear segments, each about 0. 175\ in
length, the endpoints of which lie on a parabolic cylinder defined by the polar

equation

6. 27\

Po = 7o\ 2<¢0)
cOSs -
2

(IV-15)

*The transmit mode is conceptually simpler than the receive mode in the
derivation. By reciprocity, the conclusions reached are equally applicable
in either transmit or receive.
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Consequently, the front of the reflector approximates a parabolic cylinder

with a focal length of 6. 27 wavelength. The geometrical aperture diameter is
15 wavelengths. The reflector is 0. 1 wavelength thick, and the back is sub-
divided into 90 similar segments. The edges of the reflector are semicircular,
of radius 0. 05 wavelength, and add an additional 0. 148 wavelength to the
geometrical diameter of the aperture. FEach semi-circular edge is divided into

five segments 0. 031 wavelength long.

The incident field illuminating the reflector consists of a line source
located at the origin (which is also the focus of the parabola.) The incident

field intensity is given by

E, (%) -ikpg
secC _2 e
= (IV-16)
ot J Po/™
z

in the direction of the reflector and zero in other directions. Consequently,
the field incident on the front of the reflector is uniform in magnitude, pro-

ducing (in geometrical terms) a uniformly illuminated aperture.

Calculations were carried out for the parabola alone, and the parabola
in the presence of two symmetrically placed one-wavelength-diameter circular
cylinders. In one case (blocking) the cylinders are placed in the focal plane
so as not to intercept direct radiation from the line source but to affect (block)
the scattered fields due to the currents induced on the parabola. In the other
case (blocking and shadowing) the cylinders are placed closer to the reflector
so as to intercept direct radiation from the feed before it illuminates portions
df the reflector (shown with dotted lines in the figure) while at the same time

blocking scattered radiation from the parabola.

a. E-wave illumination. The field of equation IV-16, with the electric

vector parallel to the z-axis, was used to illuminate the parabolic reflector
(in the absence of the blocking cylinders). The current density induced on

each reflector segment was computed and is plotted in Figure IV-20. Only
the current density induced on the symmetric half of the reflector shown in

Figure IV-20 is plotted. The abscissa is the linear path length (in wavelengths)
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along the front and back of the reflector. The current density varies uniformly
along the illuminated front of the reflector, has a moderate peak at the edge
(light-shadow boundary), and drops by two orders of magnitude to a rapidly
damped oscillation on the back. For comparison, the physical-optics approxi-
mation to the induced current density is also shown on the figure. The two
currents are virtually the same on the illuminated front, except for a slight
perturbation in the integral-equation result near the edge of the reflector.

The physical-optics current drops to zero at the edge and remains zero on the
back of the reflector. The current density on the shadowed back of the reflec-
tor rapidly decays 40 dB below its value on the front. It is not known whether
the damped oscillations are computational or physical in nature. (The oscilla-
tions appear to be damped in the wrong direction to be explained by the
standard interpretation of interference between two damped surface waves
from each of the two edges. ) These oscillations were calculated for other
diameter/wavelength ratios and other illumination tapers with E-vector

polarization.

The scattered field of the unblocked reflector has been calculated from
the induced currents. In this and other calculations of the scattered field,
only the field on antenna boresight (i. e., radiated in the negative x-direction)
has been computed. The phase of the scattered field on boresight is -14. 4 deg.
(physical optics) and -15. 7 deg. (integral-equation). The amplitude of the
boresight field is 19. 01 or 18. 82 (depending upon whether the rounded cor-
ners are included in the calculation or not) from physical optics and 19. 01

using the integral equation. *

Placing the pair of cylinders in the blocking position in the focal plane
causes a modification of the currents on the parabola, as shown in Figure IV-21.
The current variation on the front of the reflector has changed from monotonic
to a significant oscillation. Similarly, the oscillatory pattern on the back has
been modified significantly, although the magnitude of these currents is still
down by approximately 40 dB. For reference, the currents on the unblocked

reflector are also plotted in the figure.

*The field amplitudes given are in arbitrary units. Only relative differences
are significant.
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The density of the current induced on one of the blocking cylinders is
plotted in Figure IV-22. Near-zone fields of the reflector may be approximated
using the geometrical interpretation that a plane wave is initially scattered
from the reflector. Consequently, to provide a reference, the current induced
on a free-space right-circular cylinder by an incident planar E-wave of a
magnitude given by the plane wave scattered geometrically from the parabola
is also plotted in Figure IV-22, as computed both by the classical normal-mode
solution and as computed by the integral-equation method. Except for low
magnitudes, these two are indistinguishable. It may be seen that the currents
induced on the blocking cylinders closely resemble those induced on a cylinder
in free space by a plane wave of comparable magnitude, although the amplitude

of the currents on the blocking cylinders averages 10-20% higher.

Evaluation of the boresight field in the presence of the blocking cylinders
was based on both the "optical’ blocking approximation, i.e., IFRE = -1, and
the presumably more accurate use of the IFR for this particular cylinder, i.e.,
a right-circular cylinder one wavelength in diameter, This value is
IFRE: 1. 29]161. 7 deg. Furthermore, it was possible to compute the scattered
field with the integral-equation method using the complete set of scattering
surfaces as the integration surface. This result will be used to evaluate the
accuracy of the approximation techniques. The calculations are presented and

discussed below.

(1 Computed Field

15. 22 - j3.38 = 15.59[-12. 51 deg.

(2) Field estimated
optically:

Unblocked field
(computed)

1

18. 31 - j5. 14

Optical blocking
correction

-2.43 - j0.62

Net field

15. 88 - j4.51 = 16. 50| -15. 87 deg.

Consequently, the optical estimate of the field (16.50) is significantly
larger than the computed field (15. 59). The effects of the right-circular

cylinder on the incident E-wave are underestimated by the optical approximation.
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(3) Field estimate
using IFR:

Unblocked field
(computed)

18.31 - j5. 14

IFR blocking
correction

i

-2.73 +j1. 76
Net field = 15.57 - j3.38 = 15. 94| -12. 25 deg.

Use of the E-wave IFR for the blocking cylinder has significantly
improved the estimate of the boresight field. It is possible to obtain even
better agreement if use is made of the fact that the current induced on the
blocking cylinder is 10-20% higher than expected from the geometrical field.

If a blocking correction is generated using 1. 1 x IFR, the boresight field is
estimated to be 15. 63| -11. 84 deg. compared to the computed value of

15.59} -12. 51 deg. The ultimate goal is use of the IFR as a universal "weight-
ing factor' to calculate blocking. The observation that the actual current is
10-20% higher does not facilitate such calculations. However, it does serve
to provide a plausible physical explanation as to the source of the remaining

(small) discrepancy.

Finally, the problem was again solved with the two cylinders shifted
forward so as to intercept radiation from the feed. The currents induced on
the parabola are plotted in Figure IV-23, in addition to the reference currents
of the unblocked parabola. Strong oscillations are evident in both the illumina-
ted and shadowed regions. Furthermore, the current in the shadowed regions

of the reflector is significantly reduced although not eliminated.

The cylinder current distribution for this location of the cylinder is
plotted in Figure IV-24., The current was computed directly using the integral
equation for the complete cylinder-parabola geometry. In addition, a current
distribution was constructed by superimposing the current induced by the line
feed in free space and the current induced by a plane wave equal in magnitude
and phase to the quasi-planar wave reflected from the reflector. The super-
position solution is a relatively good approximation to the integral-equation
current, indicating again that superposition concepts, such as those suggested
by Ruze and Kay, appear to be applicable to the blocking and shadowing

problem.
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Evaluation of the boresight field in the presence of the cylinders (which
now both block and shadow the reflector) has been carried out using the IFR to
estimate the blocking, and both the optical approximation and additional IFR

correction to estimate the shadowing. The calculations are presented below,

(1) Computed field = 11.55 - jl.95 = 11.71 | -9. 58 deg.

(2) Field with IFR estimate of blocking and optical estimate of

shadowing:

Unblocked field
(computed)

18.31 - j5. 14

IFR blocking

correction = -2.73 +j1. 76
Optical shadow-
ing correct. = -4.22 + j1.09

Net field 11.35 - j2.30 = 11. 58| -11. 44 deg.

!

This estimate has simply applied a factor of -1 to the radiation from the
shadowed portions of the front of the reflector. The agreement between the
estimated and computed fields is satisfactory, in spite of the fact that the
currents in the shadowed regions are not completely negligible (cf. Fig-

ure [V-23).

(3) Field with IFR estimate of blocking and IFR estimate of

shadowing:

Unblocked field
(computed)

18.31 - j5. 14

IFR blocking

correction = -2.73 +j1. 76

IFR shadow-

ing correction = -4,75 +33. 05

Net field = 10.82 - j0.33 = 10. 83| -1.75 deg.

Consequently, it appears that for the electric polarization, application
of the IF'R to the shadowed region overcompensates for the shadowing and

produces a significant difference between the estimated and computed results.
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This provides at least one piece of evidence in favor of using an optical
correction to the shadowed region, rather than using the IFR. Mathematically,
this seems justifiable since the IFR was originally derived for far-zone scat-

tered fields.

b. H-wave illumination. The previous set of calculations was

repeated with the field from the source at the focus of the parabola polarized
with its magnetic vector parallel to the axis of the reflector. The illumination
is again tapered inversely to produce a uniform aperture illumination. The
current density induced on the reflector is plotted in Figure IV-25. This fig-
ure is similar to Figure IV-20 except that now the induced currents flow in
planes perpendicular to the reflector axis. The physical-optics current density
is plotted on the figure for reference. The agreement between the physical-
optics and computed currents on the front of the reflector is again excellent,
although the computed current exhibits a significant oscillation. Unlike the
electric polarization, an edge-diffracted surface wave is predicted for an
incident H-wave, and the oscillations superimposed on the physical-optics
results may be attributed to interferences between these two surface waves.
The computed currents on the rear of the reflector do not decay as fast as they
did for the incident E-wave, and the oscillations in the back region may be

interpreted in terms of decaying surface waves interacting.

Again, there is excellent agreement between the fields computed using
physical optics and computed using the integral-equation technique. The com-
puted phase is 165. 9 deg. vs. 165.6 deg. (physical optics) and the computed
amplitude is 19. 07 vs. 19. 01 (physical optics).

The presence of the pair of cylinders in the focal plane has only a minor
influence on the parabola surface currents. The induced current density is
plotted in Figure IV-26 and compared with the unblocked currents. The currents
on the front of the reflector are more modified than those on the back, where

only the depths of the nulls seem affected.

The currents induced on one of the blocking cylinders are plotted in
Figure IV-27. Also plotted are the currents induced on on a free-space

right-circular of the same size with an incident plane wave of comparable
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magnitude. Agreement is again generally good, although the computed currents

seem to average slightly above the expected free-space values.

Evaluation of the effects of blocking on the boresight field have been
estimated both geometrically and using the IFR estimate. For an H-wave,
the IFR of a right-circular cylinder of one wavelength diameter is

IFR,, =0. 815 ~-160. 68 deg. Results of the calculations are presented below.

51
~15.65 +j5.33 = 16. 54| 161. 19 deg.

(1) Computed field

{2) Field estimated
optically:

Unblocked field
(computed)

1

~18.50 +j4. 65

Optical blocking
correction

1]

+2. 43 - j0. 62

Net field

i

-16. 06 +3j4. 02 = 16.56] 165. 94 deg.

The optical correction thus provides an excellent estimate of the bore-

sight field in the presence of blocking.

(3) Field estimated
using IFR:

Unblocked field
(computed)

-18.50 +j4. 65

IFR blocking
correction

2.03 40, 17

Net field = 16,47 +j4. 82 = 17. 16| 163. 68 deg.

Estimating the effects of blocking using the H-wave IFR produces a value
that is 4% high. Again, this may be due to the fact that the actual currents on
the cylinders are higher than that due to the equivalent plane wave from which
the IFR value was originally computed. If a blocking correction is generated

using 1. 3 x IFR, the boresight field is estimated to be 16. 59| 162. 91 deg. ,

which is very close to the computed result.

The currents induced on the parabola when the blocking cylinders are
shifted forward into the path of the feed energy are plotted in Figure IV-28.
The deviations from the unblocked currents are severe, both on the front

and back of the reflector. There is a noticeable decrease in the current

56 JPL Technical Memorandum 33-478



amplitude shifted slightly from the region of geometrical shadowing. However,

the magnitude of the current in this region is far from being negligible.

The cylinder current distribution for the cylinder located in the position
which both blocks and shadows the reflector is plotted in Figure IV-29. The
complete integral equation result is plotted as well as a reference current
using superposition of the cylinder currents induced by the line feed alone and

the reflected plane wave alone. The agreement is again relatively good.

Evaluation of the boresight field under the influence of the blocking and
shadowing of the cylinders was carried out in a manner similar to the E-wave
calculations. Again, two different methods were used to estimate the

shadowing.

(1) Computed field = -11.98 +j5.58 = 13,21 |155. 03 deg.

(2) Field with IFR estimate of blocking and optical estimate

of shadowing:

Unblocked field

(computed) = -18.50 +j4. 65
IFR blocking

correction = 2. 03 +3;0. 17
Optical shadow-

ing correction =4.23 - jl. 09

Net field -12. 24 +33.74 = 12.80 1163. 02 deg.

(3) Field with IFR estimate of blocking and IFR estimate of

shadowing:

Unblocked field
(computed)

il

~18. 50 + j4. 65

IFR blocking

correction = 2. 03 +30. 17
IFR shadowing

correction = 3.52 +j0. 30
Net field =

-12. 94 +j5. 13 = 13. 92 [158. 39 deg.

Consequently, use of the optical shadowing correction produces a
slightly better approximation to the boresight field than the IFR shadowing

correction. The case in favor of optical shadowing is not nearly as strong
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as it was for the E-wave, however, because the IFR blocking approximation
appears to be less accurate than the optical correction. Since the current in
the shadowed region is not as small as optically predicted, it is clear that use
of the IFR to approximate H-wave shadowing may be a reasonable thing to do.
However, under no circumstances does it appear reasonable to use the E-wave
IFR to estimate shadowing since the magnitudes of E-wave IFR's are typically

greater than unity.

c. Radiation pattern. The pattern of the field radiated from the

15-wavelength-diameter, line-fed, uniformly illuminated parabolic cylinder

is plotted in Figure IV-30 for both polarizations. The field is normalized to
unity in the boresight direction. In this case no blocking obstacles are present,
and the feed is assumed to radiate no direct energy in the boresight direction.
The patterns show a well-behaved sidelobe envelope decay. Aperture theory
predicts that the first sidelobe of a uniformly illuminated rectangular aperture
iz 13. 2 dB below the peak of the main beam, whereas the integral-equation
results yielded first sidelobe levels of -13. 76 dB and -13. 75 dB for the E-wave

and H-wave, respectively.

2. Radar cross-section. The radar cross-section (backscattering

cross-section) for the 15-wavelength-diameter parabolic cylinder with an
incident plane wave is plotted in Figure IV-3l (E-wave) and IV-32 (H-wave).
It has been assumed that no feed is present in the focal region. In a less-
idealized case the presence of a feed would significantly affect the energy
directed toward the focal region. The figures presént the back-scattered
patterns for the bare reflector alone. It is seen that virtually all of the
backscattered energy is confined to a wedge with a half-angle of about

23 degrees from boresight, in both the forward and rearward directions.
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‘Table IV-2. Comparison of Extinction Cross-Sections for Square
Cylinder and Equivalent Circular Cylinders —
Normal Incidence

E “H ‘cp
Square, Incident Wave #1 2. 047 1. 480 1. 764
Square, Incident Wave #2 1. 885 1. 197 1. 591
Circular, inscribed 1. 760 0. 940 1. 350
Circular, equal cross-sect 1. 950 1. 087 1. 519
Circular, equal circum. 2. 123 1. 247 1. 685
Circular, circumscribed 2. 309 1. 406 1. 858
Seamless Tube #1 1. 973 1. 116 1. 545
Seamless Tube #2 2. 027 1. 163 1. 595
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Table IV-4. Comparison of Extinction Cross-Sections for Square
Cylinder and Equivalent Circular Cylinders —
62.5 deg Incidence

’E °H ‘cp
Square, Incident Wave #1 1. 061 0. 430 0. 746
Square, Incident Wave #2 1. 049 0.418 0. 734
Circular, inscribed 0. 930 0.312 0.621
Circular, equal cross-sect. 1. 024 0.372 0. 698
Circular, equal circum. 1. 109 0. 427 0.768
Circular, circumscribed 1. 199 0. 490 0. 844
Seamless Tube #1 1, 035 0. 380 0. 707
Seamless Tube #2 1. 061 0.396 0. 729
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Fig. IVv-1, Comparison of Induced Current Density on 1-Wavelength-diameter,
Right-Circular Cylinder from Integral Equation with Classical Solution
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V. CONCLUSIONS

Integral-equation techniques can be used to extend two-dimensional
scattering theory to cylindrical scatterers of arbitrary cross-section. These
resuits can be applied to many problems of practical interest in antenna design.
For example, the problem of an aperture blocked by long, thin feed-support
members is solved more accurately when the concepts of two-dimensional
scattering theory are used in place of classical geometrical techniques. The
problem of optimum member cross-section can be analyzed. It is also possible
to analyze the problem of '"double blocking', i.e., the situation when one or
more blocking members lies in the shadow of another. It can be shown that when
the separation is large it is necessary to consider that each member constitutes
an independent blockage. This result is in direct contradiction to geometrical

analysis.

It is also possible to extend similar techniques to dielectric and lossy

cylinders, although these problems do not appear to be of immediate interest.

Apertures as large as 15 wavelengths or more in transverse dimension
can be handled on a two-dimensional basis. It is expected that rotationally
symmetric scatterers of comparable size can also be handled with similar
technigues (although with different algorithms). Such analyses should be the

next step in continuing studies.
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APPENDIX A
DERIVATION OF THE BASIC TWO-DIMENSIONAL
INTEGRAL EQUATION

Consider the "incident" or "exciting' field to be of the form

\I/i _ \I/i e—jk sin az

(A-1)
Xy
where \If; is a function of x and y (cf. Figure A-1)and 0 = sin « < 1. Then,

if the incident field satisfies the scalar Helmholtz equation
viel 1 kel - o (A-2)

the transverse part will be subject to an equivalent equation
VZ v +k2 cos2 al’ =0 (A-3)

Xy Xy Xy

where V}Z{Y is the Laplacian operator in the x-y plane, and may be chosen in any
convenient separable coordinate system. The sources of the incident field will
be located outside S3. Consequently, equation (A-3) will be valid in regions

Vl’ VZ’ and V of Figure A-1.

Similarly, it is convenient to define a two-dimensional Green's Function

-jk sin az
e

G =G (A -4
Xy
where
_ (2)
ny = HO {(k cos ar) (A-5)

and H(Oz>(x) is the Hankel function of the second kind and r is the distance
measured from P, the field point. The transverse Green's function is also

subject to a scalar Helmholtz equation:
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vZ G +k costaG. =0 (A-6)
xy Xy xy

where equation (A-6) is valid in V V3, and V but not in VZ since ny is singular

l,
at P.
Multiplying (A-3) by ny and (A-6) by \y;y’ and subtracting yields
i2

(G v2 o - edlv? g ):o (A-7)
xy " Xy xy xy " xy

which is valid in V., V, and V3. Integrating over Vl yvields

1’

2 i i _2
<nyvxy\ljxy - wxyvxnyy> dv = 0 (A-8)

Vi

where this "volume' integral is taken over the cross-section of the cylindrical

volume defined by V1 and multiplied by a unit length (parallel to the z-axis).

But a simple vector manipulation shows that

) ' i i B 2 i 2 i
VXY <GXVVXY\I(XY \IJXYVXVGXY> ) GXYVXY\I'XY XYVXYGXY (&-9)

which, when inserted into (A-8) yields

v '<G vt -\Iflvc>dv:o (A-10)
xy Xy Xy Xy Xy Xy Xy

Vi

Application of a two-dimensional divergence theorem yields

axp; . G,
G —F _ g _Egs = 0 (A-11)
Xy on Xy On

Sy

e}
o0

JPL Technical Memorandum 33-478



where this '"'surface'' integral is carried out over the contour S1 and multiplied

by a unit length, and n is out of Vl into V.

The above manipulations can be repeated for the region defined by V, + V,

yielding surface integrals over the enclosing surfaces SZ + 53:

b
i
o

[

on Xy  on on Xy  on

SZ S3

out e 8\11; . 9G_
G Y _ v XY Jds + G —2Y ¥ Y)as = 0o
Xy xy

where the positive normal at each surface is directed into V. If the circle

around P (which defines SZ) is allowed to shrink, then

G = 8%k cos a/r)——————x»-j-z— 1ogy—k—c—°—s—31 (A-13a)
Xy 0 b 2
r —=0
BGX BHg)Z)(k cos ar) 2)
Y - = -k cos aH '(k cos ar) —2j/mr  (A-13b)
on or 1 - 0
Then, if ¥ and —=XL remain finite as r—=0,
Xy on
GW;X i Xy i
Cxy “n " Yxy on /%S =450, (P) (A-14)
S r—=0
2
Inserting this result into (A-12) yields
9 i i any i
G =T - ¥ dS = -43¥_ (P) (A-15)
Xy on Xy Xy On Xy !
S3

JPL Technical Memorandum 33-478 99




The presence of the incident field will induce currents within Sl'

The currents, in turn, will radiate a scattered field of the form

v - ¢° e—jk sin oz (A-16)
Xy
where
v% ¢° + k% cos® ol =0 (A-17)
Xy Xy Xy
in VZ’ VB’ and V. Also, \Ifiy is subject to a radiation condition such that
ov> . 9G_
G — . ¢® _ZVlgs =0 (A-18)
Xy on Xy 0on
SCD
Manipulations similar to those leading to equation (A-10) yield
V'<G v. v -3¢’ v G >dv =0 (A-19)
Xy Xy Xy Xy Xy Xy
v

Converting this to an integration over S3 and S_ which enclose V3 yields

S S
Oy s an ' 8‘ley s 8Gx
G Y _ g Elas + G - v —Xds = o (A-20)
xy 9n Xy On Xy 0On Xy 9n
S

But from (A-18) the second term in (A-20) is zero. Hence

A . 9G_
G —Y .y Yjds = 0 (A-21)
Xy 9dn Xy  0n
S
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The volume integral of equation (A-19) could also be carried out over V,

and the 1 converted into an integral over the surface S1 + S‘2 + 53 enclosing V.

The resulting equation is

av® 9G_ aqfi . 9G_
G ) A Y)ds + G Y _ g% XEgs
Xy Xy

on Xy on on Xy 0On
Sy Sy
aw; 9G
+ G Y . 3® *Y)d4s = o (A-22)
xy 9n xy on .
S3

The third term of equation (A-22) has previously been shown to be zero.
The second term, using the analysis leading to equation (A-15) is +4j \Ifiy(?).
Consequently

8\II}S;Y S aGXy S
ny o~ Yy —on) 45 = -4j¥ (P) (A-23)

!

Finally, the total field will be defined as the sum of the incident and the

reflected field, i.e.,

v - o+ ed =y ik sinoz (A-24)
xy
where
o1 s .
LA A (A-25)
and
VZ 7 +k2 cos'2 ol =0 (A-26)
xy XYy Xy
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From the volume integral

(G v v -w via >dV -0 (A-27)
xy xy Xy = Xy Xy Xy
.

it follows that

v 9G_ BY_ G
ny-———y_\y —2Y)ds + ny——'i-\p Y )4s

on Xy On on Xy on
51 52
B\IIX oG
+ G Y _ v XV1ds = 0 (A-28)
Xy on Xy dn
53

From the analysis leading to equation (A-14)

0w 8G_
G, ——5355 - v Bny dS — =~ 4jT__ (P) (A-29)
S Y y r —=0 ¥
2

Also, the field in the third term of equation (A-28) can be expanded into its

component parts

[/ ev 9
X XV ld4s =
xy On Xy On
3
8\1/; i 9 Xy ov y s Xy
Xy on xy 0 ds + ny 9n  xy 0n ds
S3 3

(A-30)
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From equation (A-15) the first term on the right of equation (A-30)1is
—4j\p; (P); from equation (A-21) the second term on the right is zero. Hence

equation (A-28) becomes

Gy ilj—xl- T "y dS + 457 (P) - 4jv- (P) = 0 (A-31)
S Y Ton Xy on J Xy Xy :
1
or, rearranging
: ow
R i x xy 30
\Ifxy(P) = \Ifxy(P) 7 <ny 5 xy 95 )dS (A-32)
S

Equation (A-32) provides the starting point for two-dimensional integral equa-

tion theory.
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Fig, A-1. Geometry
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APFPENDIX B

SIMPLIFICATION OF THE MATRIX EQUATIONS IF THE
GEOMETRY HAS A MIDPLANE OF SYMMETRY

If the xz plane is a symmetrical midplane for the scattering geometry,
the matrix inversion process can be simplified considerably (Ref. 13). The
basic equation to be inverted is the form

Zx = b (B-1)

in which the matrix Z is square, 2k x 2k, and, because of the symmetrical

midplane has

245 7 Z2k41-1, 2kl -] (B-2)

This symmetry permits Z to be partitioned

C D

PDP PCPR

where C and D are k x k matrices and P is the k x k permutation matrix

1 0 (B-4)

Let I denote the k x k identity matrix and define

r—- —
i P
R =
I -P (B-5)
L. ]
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It mavy then be verified that

I I
R =172
P -P (B-6)
and
— -
C+DP 0
rRZR™! =
0 C-DP (B-7)
. —
Making the linear change of variables
-1
x = R "u (B-8)
and premultiplying equation (B-1) by R gives
RZR 1w = Rb (B-9)

In view of the partitioned form of RZR_I, equation {B-9) has effectively

decoupled the original set of 2k equations into two separate sets of k equations.

To display these k x k systems more explicitly, partition x, u, and

b in the form

Yy
X =
| Z ] (B-10a)
o]
u =
W (B-10b)
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b = (B-10c¢)

Then, by using equations (B-5) and (B-7), equation (B-9) can be written as

a pair of k x k systems.

(C +DP)v = e + P£ (B-1la)

(C - DP)w = e - Pf (B-11b)

Inverting these equations for v and w to yield u; this result, in turn yields y and

z, the partitioned components of x:

(v +w)/2 (B-122)

«
1

z = P(v - w)/2 (B-12b)
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