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A B S T R A C T  

This memorandum describes the geometric relation- 
ships that arise in carrying out atmospheric calculations for 
a spherical planet. These relationships were developed for 
the specific case of light scattering from a planetary atrnos- 
phere or haze, as a part of Bellcomm's participation in the 
Mariner Mars '71 mission. However, the geometrical relation- 
ships are of general use in a wide range of problems that 
involve a spherical surface. 

In order to obtain the apparent brightness in a 
scattering atmosphere, one must solve an integro-differential 
equation (the equation of radiative transfer). This can be 
accomplished by an iterative process using a digital computer. 
The brightness in the atmosphere is represented by its value 
for a set of directions at each one of an array of points in 
the atmosphere. Cylindrical symmetry about the sun-planet 
axis reduces significantly the number of points necessary to 
provide an adequate description of the brightness function. 

A point in the atmosphere is described by two 
variables: its height above the surface of the (spherical) 
planet, and the angle between the local vertical through 
the point and the sun-planet axis. The direction of a 
line of sight from the local point is described by its 
polar angle to the local vertical and its azimuthal angle 
measured about the local vertical. Geometric relationships 
have been developed which give the coordinates of a new 

- * 
local point located a specified distance along the line of 

Y sight, as well as the directions of the line of sight at 
a, - the new point. 
rl 



Part of the atmosphere is shielded from the incident 
solar radiation by the planet itself. The equation of radia- 
tive transfer has a discontinuity if the line of sight passes 
into the shadow region. Geometric relationships that yield 
the distances, if any, at which the line of sight enters or 
leaves the shadow region have been developed. A computer 
subroutine, written in the FORTRAN V language, carries out 
the necessary shadow calculations. 
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Case 235 FROM: E. N. Skipley 

TECHNICAL MEMORANDUM 

1. Introduction 

A computer program has recently been developed to 
carry out multiple scattering calculations for a spherical 
atmosphere illuminated by the sun, (l) The computer progrm 
and its subsequent modifications, which calculate with high 
accuracy the intensity of light scattered from Martian hazes 
and atmosphere, were developed as part of Bellcommk partici- 
pation in the Mariner Mars '71 mission. 

One of the problems that arises in carrying out such 
calculations is the definition of a convenient coordinate system 
and the determination of the relationships among the variables, 
These topics form the subject matter for this memorandum, In 
addition, the calculations themselves have been described 
(Section 2) in order to provide a basis for understanding 
the relevance of the quantities that are studied. 

The purpose of this memorandum is twofold. First, 
it is desired to document the computational procedures that 
have been developed. Second, the geometric definitions are 
sufficiently broad that the coordinate systems and the 
relationships among the variables will find use in other 
contexts. Thus it was desired to make them readily available, 
The calculations are somewhat tedious, but they are presented 
in sufficient detail to make the results accessible for further 
development. Significant equations have been enclosed in boxes 
to make them more obvious. 

Section 2 of this memorandum contains a description 
of the multiple scattering problem and the approximation pro- 
cedure that has been used to solve the problem. Section 3 
describes the coordinate system and symmetries that are used, 
and Section 4 describes the relationships among the variables, 
Section 5 contains an analysis of the shadow region. A sub- 
routine for carrying out the shadow calculations is given in 
Appendix B. 



2 .  Description of the Multiple Scattering Problem 

The apparent brightness due to multiple scattering 
in an atmosphere obeys the relation 

(R,@) w(R,O,$) sin 8dOd$ 

where w(R,O,$) is the luminous intensity incident on a volume 
element from a direction whose polar coordinates are €I,$ (see 
Figure 1). The direction @=0 corresponds to light travelling 
toward the observer. The quantity R measures distance along 
the line of sight from the observer to the volume element, TTF 
is the flux in the incident solar radiation, 0, is the polar  
angle to the direction of the incident sunlight, and r, is the 
optical thickness along the path from the volume element to the 
source of incident radiation. The negative sign on the left- 
hand side of Equation (1) arises because R increases in a 
direction opposite to the motion of light toward the observer, 

B(R,@) is the fraction of the incident light in a 
unit solid angle that is scattered into a unit solid angle 
centered at an angle 8 to the initial direction, per unit 
length travelled by the light. The function B describes corn.- 
pletely the scattering properties of the atmosphere or haze, 
The function a ( & )  represents the extinction coefficient for the 
atmosphere. Both f3 and a are linearly proportional to the 
density of the atmosphere, and thus they are functions of height 
above the surface. Their dependence on R arises from the rela- 
tionship between R and the height above the surface. 

In Equation (I), the first term on the right-hand side 
accounts for the attenuation of light already travelling along 
the line of sight toward the observer; the attenuation arises 
from absorption and scattering in the atmosphere at the point R ,  

 he second term, f3 (&  ,0 s)n~e-Ts (" , represents the contribution 
of the incident sunlight that is scattered toward the observer, 

At the point R the sunlight has an intensity n ~ e - ~ s ,  its intensity 

having been reduced by the factor e-TS due to absorption and 
scattering in the atmosphere. 

The third term on the right-hand side, the integral in 
Equation (I), gives rise to the multiple scattering effects, At 
any point in the atmosphere, light that has been previously 



scattered and/or reflected from the surface is incident from 
all directions. At the point R, some of this light is scattered 
toward the observer. This contribution is represented by the 
integral, which is just an integration of the product of the 
scattering coefficient and the incident intensity over the com- 
plete solid angle surrounding the point. 

The solution to Equation (1) may be obtained as 
follows. Suppose we have an approximate solution to the luminous 
intensity, wj (2, e, 4 )  , where the subscript j indicates the order 
of the approximation. The vector has been used to indicate that 
the function is known for all points in the atmosphere. This 
approximate solution may be used in the integral of Equation (I&, 
giving 

The subscript j+l has been used to indicate that the solution of 
Equation (2) is an improved approximation to the solution of the 
original equation. 

Since o is assumed to be known, the second and third 
terms in ~~uationj (2) are known functions depending only on J?, 
(for a given line of sight). Then Equation (2) may be written 
in the form 

where G (a) has replaced the second and third terms of Equation (2) , 
Now Equation (3) can be solved by numerical integration for a set 
of local points and lines of sight to obtain a new function, 
w j+l (3,e , $ I  

-+ 
The zeroth approximation function, wo(r,Or$)r may be 

taken quite simply as zero everywhere. Sufficient iterations, 
using Equatizn (2), are then carried out to insure that the 
function wn(r,8,$) is an adequate approximation according to 
the needs of the problem." 

"Formal questions relative to the convergence of the iterative 
procedure are deferred for the present. 



3. Coordinate System 

In carrying out the calculations, we must represent 
the function 0 ( $ , 8 , @ )  by its value at a finite set of points 
and directions. Such a set of values for w will be referred to 
as a data base. The number of points that are selected depends -- 
on the accuracy required of the solution and on the calculation 
speed and storage capability of the computer that carries out 
the computations. 

The number of points required to define the function 
o also depends on the symmetry properties of the problem, since 
symmetry can significantly reduce the number of points necessary 
to achieve the desired accuracy. 

In all of the calculations, the incident sunlight is 
represented by plane parallel rays. In addition, the following 
three assumptions are made about the structure of the surface 
and the atmosphere. 

A. The surface of the planet is spherical and homogeneous, 

B. The atmosphere has spherical symmetry, that is, the 
density of the atmosphere is a function only of height 
above the surface. 

C. The scattering law for the surface of the planet is 
symmetric under reflection in the plane containingr 
the local vertical and the sun. 

It is worth noting that these assumptions are not essential to 
the technique. However, the coordinate systems and the georrletry 
that are developed in this and subsequent sections depend, in 
some circumstances, on the symmetries that arise from these 
assumptions. Such occasions are pointed out in the text, 

A point in space, where values of the function w are 
stored for various directions, is defined to be a local point, 
The various directions for which the values are stored are 
called local directions. 

A local point may be defined in terms of the varialbles 
h, height above the surface; A ,  the angle between the radius 
vector to the local point and the sun direction; and $ ,  an azi- 
muthal angle measured about the sun-planet axis. This is shown 
in Figure 2. Because of Assumptions A, B and C, there is 
cylindrical symmetry about the sun-planet axis,* and no results 
from the calculation depend on the angle +. Thus we may think 

*Cylindrical symmetry can be maintained with somewhat less 
restrictive assumptions. 



of the local points as being confined to a plane; each point is 
defined by two numbers, h and h (see Figure 3). We will denote 
the sun-planet axis by the term symmetry axis. 

The local directions are defined by the angles 0 and 
4 in a local coordinate system as shown in Figure 3. The value 
of the function w(h,X,B,+) is the intensity of the light 
incident on the local point h, X from the direction 8, 4 .  

There is a further symmetry property. The luminous 
intensity is invariant to reflection in the plane in which the 
angle h is measured. This follows from the cylindrical s y m e t r y  
of the incident light, the atmosphere and the surface and from 
the fact that light scattering is invariant to such reflections,* 
Rayleigh scattering is invariant under reflection in any plane 
containing the incident ray, and Assumption C requires that 
scattering at the surface of the planet does not violate the 
symmetry. The reflection invariance is explicitly demonstrated 
for Equation (1) in Appendix A. In the coordinate system shown 
in Figure 3, reflection in the X plane corresponds to the 
transformation 

and the symmetry relationship requires 

As a consequence, the local directions may be chosen in the 
hemisphere defined by 

Brightness values in the other hemisphere may be obtained by 
invoking Equation (4) . 

*Another way of stating the reflection invariance for light 
is that for light travelling toward the observer, as much is 
scattered to the right as to the left, This invariance property 
holds for all electromagnetic effects, but is violated by certain 
processes such as beta decay. In order to observe the violation 
of reflection invariance, it is necessary to use polarized 
initial states. 
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In the technique that has been developed to carry 
out multiple scattering calculations, the local points can be 
chosen with great generality, so that, for example, the density 
of local points can be made greater than the average in reg ions  
where the value of w is changing more rapidly. Similarly, it 
is possible to choose a different set of local directions for 
each local point, the directions being chosen to minimize the 
computational error. However, such stratagems have not been 
found necessary for achieving adequate computational accuracy, 
and simpler methods have been used. 

The local points have been chosen to be the inter- 
section of lines of constant height and lines of constant sun 
angle (A). Further, the same set of local directions is used 
for each local point. The geometric relations that are 
developed in subsequent sections do not depend on the choice 
of local points or directions, but are quite general. 

4. Geometric Relationships 

Suppose we wish to calculate the luminous intensity 
incident on a local point hl,Xl from the direction 81r$1. In 
order to carry out the calculation, we must solve Equation (1) 
along a line of sight in the direction 81,@1 from the local 
point. At various distances X along the line of sight, 
Equation (1) must be evaluated, and it is necessary to know 
the location and orientation of the coordinate system at the 
new point. 

The situation is depicted in Figure 4, After moving 
a distance X, which may be taken positive or negative, we are 
at a new local point h2,A2, moving in a directian 82r42e The 
angle I/J measures the rotation about the symmetry axis, but just 
because of the symmetry this angle has no essential siynificanee, 
What are required are the values of the quantities h2,X~r02 and 
+2sas a function of hlrhl,81,+l and X. 

The distance rl is defined to be hl+R, the distance 
from the center of the planet to the lozal poiqt. A similar 
definition applies to r2. The vectors rl and r2 denote the 
vectors from the cenler of the planet to the respective local 
points. The vector X extends to the second local coordinate 
system from the first. 

Some of the required relationships may be obtained 
from the law of cosines. The quantity h2 may be obtained 
through the relation (compare Figure 4) 
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whence 

Similarly, we have the relationship 

and 

In order to obtain the remaining quantities, it is 
convenient to use vector relationships. We need the components, 

3 
in the E,n,< coordinate system, of the vectors ?l, r2, and 2 .  
E r n r <  is the planet-centered system shown in Figure 4. We have 

and similarly 

-+ -f 

r2 = (h2 + R )  (sinh2cos$) 6 + (sinh sin$): + cosh $ 
2 2 

3 3 -+ 
where E r n  and are unit vectors along the respective axes, 

3 

The components of the vector X may be obtained by 
first obtaining the coordinates in a local coordinate system and 
then projecting these components onto the cn< coordinate system, 

z coordinate system as an intermediary, we Using the xl, ylr 
find 



3 

X1 
= x (case ls inhl  - s ine  lcos+lcoshl) 

-+ 
-X ( s ine  s i n + l )  II 1 

3 
+X ( C O S ~  l c o ~ h  + s ine  cos+ lsinh l )  5 

1 

where t h e  s u b s c r i p t  on 2 i n d i c a t e s  t h a t  t h e  r educ t ion  occurred 
through t h e  f i r s t  l o c a l  coo rd ina t e  system. S i m i l a r l y  

3 

X2 = X ( s inh2cose cos$ - cosh s ine  2cos+2cos$ 2 2 

3 + s ine  2 s i n +  2sin$ ) 

+x (s inh 2cose 2s in$ - cosh s ine  2cos$ 2sin$ 2  

3 - s ine  2 s in+  2cos$ II 

Now, w e  have t h e  v e c t o r  r e l a t i o n s h i p  

Taking t h e  5 component, w e  have 

(hl + R)  coshl + X (cose cosh + s ine  cos+ s inh ) = (h2 + R) cosA 
1 1 1 1 

Whence w e  f i n d  



Finally, we have 

and by equating the 5 components we obtain 

coselcosXl + sine c o ~ ~ ~ s i n X ~  = c0s0~cos X~ + sinQ cos4 sinX 
1 2 2 2 

giving the result 

1 
C O S ~ ~  = cos6 cosX +sine cos4 sinh -cos@ cusX (~in@~sinh~) 1 1 1 1 1 2 2 

In Equations 8, 14 and 16, angles have been defined by 
a cosine. In each of the cases, the result is unambiguous, since 
the angle is restricted to the range between 0 and IT. 

In carrying out the multiple scattering calculation, 
it is also necessary in certain circumstances to calculate the 
distance from a local point hlrhlr in the direction Oln$i. to 
another local point having a specified height h2, or a specified 
sun angle, X2. The distance to a point of height h2 can be 
obtained from Equation 6. 

1/2 
2 2 2 x = - (hl+~)cosel (hl+~) cos 8 (hl+~) + (h2+~) 2 

Care must be exercised to obtain the desired solution f r o m  the 
two in Equation (17). 

It may be seen that in Equation (17), if h2>hlr there 
is always one positive and one negative solution. The positive 
answer for the distance is the desired one in our case, For 
positive x we have 

112 
x = -  2 2 2 (hl + R) cos8 + h2 + R) - (hl + R) sin e l  

for h2 > hl 



When h2<hlr there exists the possibility that an 
answer does not exist. This occurs when the closest approach 
of the line of sight to the surface is at a height greater 
than ha. An examination of Equation (17) reveals that, for 
h2<hl, there are two positive solutions, two negative solutions, 
or two complex solutions. The complex solutions correspond to 
the case mentioned above. Our interest is restricted to the 
smaller positive solution. The requirement that the solutions 
be positive is that the term -(R + hl)cosel be positive; this 
necessitates el > r/2. The desired result is 

1 / 2  
2 2 x = -(hl + ~ ) c o s e ~  - (h2 + R ) ~  - (hl + R) sin 

for h2 < hl 

Now, suppose A2 is given in addition to the Poeal 
point hl, A 1  and the local direction 01r41. We can obtain the 
distance to the second local point by using Equations (7) and (14) 
simultaneously to eliminate h2. We obtain a quadratic equation 
with solutions of the form 

where 

2 a = cos A - (c0s0~cosA + sin0 cosglsinh ) 
2 

2 1 1 1 

- - - (hl + R) 2 2 
2 osel (COS A - cos A1) - sin8 c0s4~sinA cosX 2 1 1 621) 

2 2 2 c = (hl + R) (cos A 2  - cos "1) 

One of the solutions in Equation (20) is extraneous. The 
correct solution must be determined by seeing which of the 
distances provides the correct angle A2 in  quat ti on 14, 
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5. Shadow Region 

The planet shields a region of space from the sun's 
rays; this region is called the shadow region. A line of sight 
may begin in the shadow region, pass through the shadow region, 
or terminate there by intersecting the surface. For the portion 
of the path where the line of sight is in the shadow region, the 
second term on the right-hand side of Equation (1) is zero, Mere 
important, the boundary of the shadow region represents a dis- 
continuity in the differential equation because of the change in 
the term representing the incident sunlight. Consequently, it 
is essential to the calculations that the distance to the 
boundaries of the shadow zone be known for a given local 
direction at a given local point. 

The shadow zone is shown in Figure 5. Since the sun 
is considered to be a source of plane parallel rays, the shadow 
zone is contained in a cylinder of radius R, situated along the 
symmetry axis of the problem. The cylinder is divided by the 
terminator on the planet's surface; the portion of the cylinder 
away from the sun represents the shadow zone. 

Consider a local point h , ~  and a line of sight from 
that point in the direction 0 , @ .  We first ask at what distances, 
if any, from the local point does the line of sight intersect 
the surface of the cylinder. Subsequently, we will determine 
if those points are located in the shadow portion of the cylinder. 

It is convenient to carry out the shadow calculations 
relative to the point at which the line of sight is closest to 
the center of the planet. The point of closest approach, which 
we call P, is a distance Lg from the local point (LC may be 
positive or negative), and at the point of closest approach the 
line of sight is a distance 5 from the center of the planet, 
Straightforward geometric relationships give the results 
(see Figure 6) 

At the point P we establish a coordinate system with 
the z axis along the local vertical and the x axis along the 
line of sight (see Figure 6). In this coordinate system, 



the angles A' and @ ' ,  which define the direction of the sun, 
can be obtained through Equations (14) and (16) respectFveEy,* 

The first task is to establish where the axis through 
the center of the planet toward the sun (the symmetry axis) 
penetrates the x,y plane. For A' = ~ / 2 ,  the axis is parallel 
to the x,y plane; this special situation will be treated 
separately later in this section. 

The point x,,yo, where the symmetry axis penetrates 
the x,y plane, is a dlstance 5 tan A' from the point P (see 
Figure 6). Resolving this into components, we find 

The Cylinder of radius R cuts the x-y plane in an 
ellipse centered on the point xQ,yo. To find the equation of 
the ellipse, we carry out a serles of transformations as 
illustrated in Figure 7. The xl,yl,zl coordinate system has 
its origin at xo,yo, the zl axis is parallel to the z axis (at 
the point P ) ,  and the xl axis is an extension of the line from 
P to xo,yo. The yl axis is chosen to complete a right-banded 
orthogonal coordinate system; the yl axis lies in the x,y p l a n e  
defined by the coordinate system at the point P. The x2,y2,z2 
coordinate system is defined so that its origin is at x,,y,, the 
22 axis points parallel to the symmetry axis, and y2 is cornci-  
dent with yl. The x2 axis is chosen to complete a right-handed 
orthogonal coordinate system. 

The equation for the cylinder about the symmetry axis is 

in the x2,y2,z2 coordinate system. In xl,yl,zZ1 coordinate system, 
Equation (25) is transformed to 

*There is a difference between the coordinate system in 
which A' and @ '  are defined, and the coordinate system used in 
Section 4. However, a close comparison will reveal that h Y s  
the same angle as h 2  in Equation (14). $ 2  in Equation ( 1 6 )  is 
the angle, measured about the local vertical, from the sun 
direction to the line of sight. In this section, @ '  is the 
angle, measured about the local vertical, from the line of 
sight to the sun direction. Hence $ 2  and $ '  differ by a sign, 
which, however, does not affect the calculation. 



2 2 
( X  cash' - z s i n h ' )  + yl = R 

2 
1 1 

We a r e  i n t e r e s t e d  i n  t h e  e l l i p s e  genera ted  by t h e  i n t e r s e c t i o n  
of t h e  c y l i n d e r  and t h e  x ,y  p l ane ,  where z l  = 0 ;  t h e  xl  and yk 
axes l i e  i n  t h e  x ,y  p lane .  The equa t ion  of t h e  e l l i p s e  i s  

I n  o rde r  t o  make t h e  xl a x i s  p a r a l l e l  t o  t h e  x a x i s ,  t h e  xp,yl,zl 
coord ina t e  system must be r o t a t e d  by an ang le  - + '  about  t h e  z l  
a x i s .  Remembering t h a t  t h e  c e n t e r  of t h e  e l l i p s e  i s  a t  t h e  
p o i n t  xo,y, i n  t h e  x , y , z  coo rd ina t e  system, w e  have t h e  equation 
of t h e  e l l ~ p s e  a s  

Our i n t e r e s t  i s  i n  t h e  p o i n t s  A and B where t h e  e l l i p s e  i n t e r s e c t s  
t h e  l i n e  of s i g h t .  The l i n e  of  s i g h t  has  y=O i n  t h e  x,y plane  (the 
geometry i s  shown i n  F igure  8 f o r  t h e  s p e c i a l  c a s e  h 1 = v / 2 ) .  There- 
f o r e ,  t h e  p o i n t s  of i n t e r s e c t i o n  of  l i n e  of s i g h t  w i t h  t h e  cylinder 
about t h e  symmetrv a x i s  a r e  t h e  s o l u t i o n s  t o  t h e  equa t ion  

2 2 2 2 
(x-xO) (COS + ' cos h ' + s i n  + ' ) 

2 + 2 (x-xo) yo (cos+ ' s i n +  "sin h ' ) 
2 2 2 

(COS + + s i n  + cos A I )  = R 2 
+ Yo 

I n  Equation ( 2 9 ) ,  d i s t a n c e s  a r e  measured r e l a t i v e  t o  t h e  p o i n t  P, 
The d i s t a n c e  LC must be added s o  t h a t  t h e  d i s t a n c e s  a r e  relative 
t o  t h e  l o c a l  p o i n t .  F i n a l l y ,  t hen ,  we f i n d  t h e  i n t e r s e c t i o n s  
of t h e  l i n e  of s i g h t  w i th  t h e  c y l i n d e r  t o  be 

The symbols A and B have been used t o  denote  bo th  t h e  points of 
i n t e r s e c t i o n  and t h e  d i s t a n c e s  from t h e  l o c a l  p o i n t  t o  t h e  
i n t e r s e c t i o n s .  



where 

2 2 2 
a = cos @'cos A' + sin 4 '  

b 2 2 2 2 - = yo(cos@'sin@'sin A') - x0(cos @'COS A ' +  sin $ 1 ~ 1  2 

2 2 2 2 2 c = yo(cos @ '  + sin @'COS A') - 2xoyo(cos@'sin@'sin A') 

2 2 2 2 + x (COS $!COS A s  + sin 4 ' )  - R 2 
0 

We note that A and B must both be complex or both be 
real. If they are complex, it indicates that the line of sight 
does not intersect the cylinder. If A and B are real and equal, 
then the line of sight is tangent to the surface of the cylinder, 
If A and B are real but not equal, then because of the definition 
in Equation ( 3 0 ) ,  

All the following comments refer to the case when A and B are 
real and distinct. 

It must be remembered thatA and B give the points 
at which the line of sight (taken to mean a line. extending in 
both positive and negative directions along the local direction 
from the local point) intersects the cylinder about the s 
axis. In order to determine if the points refer to the shadow 
portion of the cylinder (see Figure 5), one may calculate the 
sun angles h~ and hB at the points A and B ,  respectively (using 
Equation 14). The points refer to the shadow zone if their sun 
angle, AA or AB, is greater than ~ / 2 .  However, this requires a 
relatively long calculation, and a quicker algorithm is available 
in certain circumstances (see Case I below). 

The values of the quantities Lr,<,A and B carry 
implications about the geometry of the shadow zone relative to 
the line of sight. This can be organized into three distinct 
cases. 



Case I r; 2 R 

The line of sight lies in a plane that is perpendicular 
to a radius vector at the point of closest approach. For 
X I  = ~ / 2 ,  a special case to be discussed later, the radius 
vector is at the terminator (see Figure 5) and the plane does 
not intersect the cylinder except if 5 5  R. If A '  e 1~12, the 
plane intersects the cylinder above the terminator, and eon- 
sequently any intersections between the line of sight and the 
cylinder occur in the sunlit region. Conversely, if A '  > ~ / 2 ,  
any intersections between the line of sight and the cylinder 
occur in the shadow zone. 

Case I1 r < R ,  L > 0 
5- 

The point of closest approach lies inside the planet 
and hence inside the cylinder. Because of this and Equation (321, 
there is the relationship 

The line of sight penetrates the planet; we may confine our 
interest to that portion of the line of sight on the near side 
of the planet, that is, between the local point and the point 
where the line of sight enters the surface. The point I3 lie; 
beyond the surface of the planet and is not of interest, The 
implication of Ly > 0 is that the local direction points toward 
the planet's surface. If A < 0, then the local point is in t h e  
shadow zone, as is the entire region between the local point and 
the surface. If A > 0, then the local point is outside the 
shadow zone, and the line of sight enters the shadow zone at a 
distance A from the local point. 

Case 111 5 < R, L 
5 

This case differs from Case I1 in that the line of 
sight looks away from the planet; and the point B is of concern, 
If B < 0, then the local point is outside the shadow zone 2nd 
the line of sight does not enter the shadow zone for positive 
displacements from the local point. If B > 0, then the IoeaL 
point is in the shadow, and the line of sight emerges from the 
shadow zone at a distance B from the local point. 
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It remains to consider the situation when X q  = n n / *  
The geometry is shown in Figure 8. If 5 > R, then the line of 
sight does not intersect the cylinder. If 5 = R, the line of 
sight is either tangent to the cylinder at a point, or, for 
@ '  = 0 or IT, imbedded in the surface of the cylinder. For bath 
these cases it is convenient to assign the line of sight to 
being outside the shadow zone.* 

If 5 < R, then the x,y plane intersects the shadow 
cylinder along two lines, since A '  = ~ / 2 .  The perpendicalar 
distance between the lines is (see Figure 8) 

and the line of siqht intersects the lines at distances - 
+ v 
- 2 sin@' . Thus the points A and B have the values 

These equations fail at @ '  = 0 or @ '  = IT. In that circumstance 
the line of sight is parallel to the symmetry axis and does not 
intersect the cylinder. For 5 < R, the relevant portion of the 
line of sight is within the shadow zone if the local point has 
A >  IT/^; for X < ~ / 2 ,  the relevant portion of the line of sight 
is in the unshadowed portion of the cylinder. If X = v / 2 ,  the 
entire line of sight must lie in the plane of the terminator, 
since A ' =  1~12. In this case, no portion of the line of sight 
outside the surface of the planet can be shadowed. 

Further development of the equations, including a 
computer program that caries out the shadow calculations, is 
given in Appendix B. I-- ' t  

.52 , 

Attachments 
Reference 
Appendices A and B 
Figures 1-8 

/ E. N. Shipley 
2 

*Since the cylinder represents a discontinuity, a point on 
the surface can reasonably be chosen to have either the charac- 
teristics of the inside or the outside of the cylinder. 
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APPENDIX A 

R e f l e c t i o n  Symmetry 

The purpose of t h i s  appendix i s  t o  g i v e  a  formal 
d e r i v a t i o n  of t h e  r e f l e c t i o n  symmetry t h a t  has  been used i n  t h e  
m u l t i p l e  s c a t t e r i n g  c a l c u l a t i o n s .  While t h e  arguments given i n  
Sec t ion  3.0 a r e  adequate ,  f u r t h e r  i n s i g h t  (and g r e a t e r  conf idence)  
can be ob ta ined  from a  more formal d e r i v a t i o n .  The appendix i s  
d iv ided  i n t o  two p a r t s .  Sec t ion  A 1 . O  con ta ins  t h e  d e r i v a t i o n  of 
t h e  s c a t t e r i n g  ang le ,  which i s  r equ i r ed  f o r  t h e  symmetry argument, 
The symmetry argument i t s e l f  i s  contained i n  Sec t ion  A 2 , 0 -  

A1.O The S c a t t e r i n g  Angle 

The s c a t t e r i n g  ang le  i s  t h e  ang le  between t h e  i n c i d e n t  
l i g h t  r a y  and t h e  s c a t t e r e d  l i g h t  r a y .  I t  i s  shown i n  Figure A-1,  
I t  can be determined e a s i l y  by f i r s t  9 o n s t r u c t i n g  u n i t  v e c t o r s  i n  
t$e d i r e c t i o n  of t h e  i n c i d e n t  l i g h t  ( I )  and t h e  s c a t t e r e d  l i g h t  
( S )  . W e  have 

3 
- 

s = -  s ine  cos$ i - s ine  s i n ) s  j - cases k 
S S S 

A A A  

where i, j ,  k a r e  u n i t  v e c t o r s  a long t h e  x ,y , z  axes ,  r e s p e c t i v e l y  
and 8 $ .  and 0 , + a r e  t h e  p o l a r  and azimuthal  ang le s  for t h e  i ' x  s s 
i n c i d e n t  and s c a t t e r e d  l i g h t  r a y s .  

Now 

s o  t h a t  

cos 6 = c o ~ e ~ c o s e ~  + 

+ ( s ine  s s ine  1 . ) (cosm 1 . cos+ + s in4 i s in+  s ) 



A2.0 Reflection Summarv 

It is necessary to express the integro-differsntial 
equation of transfer (Equation 1) in the coordinate system 
described in Section 3. 

We have 

In this equation 6 (8 ir mi; 
@ S f @ S  

) is the scattering coefficient for 

for light incident from a direction 0 $ .  being scattered in the i' 1 

direction Os,+s (see Figure A-1). The minus sign on the left-hand 

side arises because distance is measured away from the observer 
instead of toward him as in Equation (1). The directions A,.@,@ and 
O f , $ '  are measured in the coordinate system at the local point 
located a distance X from the observer. 

As we noted in Section 3, reflection is accomplished by 
the transformation ++-$. In carrying out this transformation on 
Equation (A4), care must be exercised with respect to the integral, 
The angles 8 \ $ '  are variables of integration. Changing 4 '  to -4)' 
does not alter the value of the integral, but it does change the 
sequence in which the directions are summed. In making the trans- 
formation $ to -$ ,  it is convenient also to change 

w(x,el,$') to w ( x , B 1 , - 4 ' )  and B(0\+',8,$) to B(e\-$'; o r - $ ) ;  

then the sequence of integration will remain the same, r e l a t i v e  
to the direction - 4 ,  as it was for the untransformed case relative 
to the direction +$. 

The transformed equation is 



For Rayleigh scattering, and most other processes, B 
is a function only of the angle 6, or equivalently cos 6 .  
First, consider the second term on the right-hand side of 
Equation A5. It is straightforward, that 

since in the two cases the scattering angle is the same. This 
may be seen from Equation (A3), by substituting the transformed 
and untransformed directions. 

coshcos~ + sinh sine cos$ = coshcos0 + sinhsin0 cos ( - 4 )  

It may be noted that this equality depends on the fact that the 
azimuthal angle for the sun ($i in Equation A3) is zero. This 

in turn results since the sun lies in the reflection plane. 

Second, consider the integral in Equation (A51 . The 
scattering angles corresponding to the direction (8 \ $ I ;  B,+) 
and (8 ,-$ ' ; 8 ,-$1 are equal since, from Equation (A3) 

cos0 'cose + sine 'sine (cos@ kos$ + sin$sin$) = 

cose ' case + sin8 'sin8 cos ( - $  ' ) cos ( -4 ) + sin ( -@ V sin (-0 $ 

Because of the equality of the scattering angles, we 
may rewrite Equations (A4) and (A5) in the forms 



Comparison of these two equations reveals that w(x,8,+) sa t i s f i e s  
the same equation as wCx,O,-@). The only remaining question is 
that of boundary conditions on Equations (A6) and (AT) . If the 
line of sight does not intersect the surface, the integration of 
the integro-differential equation may begin a very great distance 
from the observer, such that the density of the atmosphere is 
negligible, and the intensity of light travelling along the line 
of sight toward the observer is zero. This boundary condition is 
the same for Equations (A6) and (A7). 

In cases where the line of sight intersects the surface, 
Assumption C (Section 3) guarantees that the boundary condition 
is the same for the transformed and untransformed equations, 

Hence we may conclude that the Equation (1) is 
invariant under reflections in the plane containing the s u n  
and the local vertical. That is 



INCIDENT 
LIGHT 

SCATTERED 
LIGHT 

FIGURE A- I  - DEFINITION OF THE SCATTERING ANGLE 6. NOTE THAT THE POLAR AND 
AZIMUTHAL ANGLES FOR BOTH LIGHT RAYS ARE DEFINED FOR LIGHT 
MOVING TOWARD THE ORIGIN. 



APPENDIX B 

Shadow Calculations 

A computer program subroutine was written to carry out 
the shadow calculations described in Section 5. In this appendix, 
some further development and simplification of the mathematical 
relations are described;and the computer program itself is 
presented. 

B1.O Detailed Geometry for the Shadow Calculations 

Bl.1 Geometry at the Point of Closest Approach 

In order to carry out the shadow calculations, it is 
necessary to have the angles X P  and 4 '  at the point of closest 
approach (compare Section 5 and Figure 6). These may be obtained 
from Equations (14) and (16), respectively. However, the specific 
geometry at the point of closest approach permits some sirnplifiea- 
tion of the equations. Specifically, at the point of closest 
approach, the line of sight is perpendicular to the l oca l  vertical; 
that is, 8' = n/2. 

Let 5 be the distance from the center of the planet: 
(see Figure 6 ) .  Then, since sin (n-8) = sin 8, 

where R+h is the height of the local point, and 8 is the polar 
angle to the line of sight, and 

We wish to show that 

cosh coshsin8 -sinXcos~cos8 

for 8' = n/2 

We start with Equation (14) and recognize that 

(R+h2) = 5 

and x = L  
5 



and we use Equation (Bl) and (B2) to obtain values of 5 and E c -  

We find 

COS~' = 
1 

(R+h) sine (~+hj cosh- (~+h) cose (cosecosh+sin~cos~sin~ ) 

which immediately simplifies to the desired result (Equation B31. 

A simplified equation for + '  can be obtained from 
Equation (16) by the straightforward substitution. 

sin 0 ' = 1 

giving 

cos 4 ' = (cosh cose + sinh cos+ sine ) /sinh ' 

It may also be shown, through the straightforward use sf 
trigonometric relations in Equation ( B 5 ) ,  that 

sin + ' = (sinh sin4    sin^ ' GBQ 1 

B1.2 Simplification of the Equations for the Ellipse 

2 Consider Equations (30) and (31) . The term (b /4 - sc) 
can be simplified as follows: 

Let 

2 2 2 
a = a = cos 4 '  cos A' + sin 
X 

2 a = sin h ' sin+ ' cos+' 
XY 

2 2 2 
av 

= cos A' sin + '  + cos + ' 

so that 



Let Q be the discriminant divided by four 

so that 

2 
~ = a  y:-2aa x y  + a x  - a a  x x y o o  X 0 

' + 2 a a  x y  
XY x y Yo x x y o o  

This yields 

B1.3 Shadow Free Conditions 

The shadow subroutine is called many times in the 
course of a single multiple scattering calculation. In order 
to reduce the computation time as much as possible, it is 
desirable to recognize as soon as possible in the subroutine 
geometric conditions for which the line of sight cannot pass 
through the shadow zone. By this procedure, a great many 
needless calculations may be avoided. As an ancillary benefit, 
certain conditions that give rise to inaccurate results, 
because of rounding errors, are avoided. 

Condition I: If the local point is inside the shadow 
cylinder and has h' 5 112, the line of siqht cannot pass khroush 
the shadow zone. This is illustrated in Figure ~-l(a), 

.. 

The shadow cylinder is a cylinder of radius R whose 
axis lies along the symmetry axis, which is the line from the 
sun through the planet center. The perpendicular distance 
from the local point to the sun-planet axis is 

(R+h) sinh 
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So the condition that the local point be inside the shadow 
cylinder is 

(R+h) sinh 5 R gB8 1 

Condition 11: If the local point is outside the shadow 
cylinder, and the angle y, defined in Figure B-l(b), is less than 
or equal to n/2, no shadow is possible. The angle y may be 
obtained through a simple rotation of the coordinate system, 
giving 

cosy = cos0 sinX -sin0 cos+ cosX (B9, 

B2.0 The Com~uter Subroutine 

The computer subroutine, SHASCC, is listed in Table B-1, 
This program has evolved over a period of time, during which the 
terminology has changed. Consequently, the terminology used in 
the computer program differs from that used in the derivations 
given in the text. Table B-2 gives the correspondence between 
the two sets of variables. 

The program.itself follows directly the logic described 
in Section 5. The following comments, which refer to the speleif'Sc 
lines in Table B-1, are intended to clarify the procedures 
employed in the subroutine. 

Line 024 This includes a common statement in the 
subroutine. The common statement is the source of the variable 
HMX . 

Line 030 to 031 The functions CH ( 2 )  and CLP (Y) are 
used to calculate the angle A '  at points other than the point 
of closest approach. These correspond to Equation (7) and 6141 , 
respectively. 

Line 053 Rounding errors can create computational 
difficulties when CSSG is near zero. This statement indicates 
that there can be no shadow if the point of closest approach is 
outside of the planet and has a sun angle less than or equal to 
n/2 (CSSG 2 0). To avoid the rounding errors for CSSG near zero, 
the calculations are taken as giving no shadow if 

CSSG 2- - .003 



This  corresponds t o  A '  I 90.2'. 

Line 054 I f  CSSG i s  near  +1 o r  -1, s e t  CSSG = 1 4  
( A '  = 0 o r  'rr) and 4 '  = 0 .  See Lines  119 f f .  

Line 084-085 The maximum h e i g h t  of t h e  atmosphere i s  
R + HMX. For a  l i n e  of s i g h t  f o r  which t h e  p o i n t  of c l o s e s t  
approach is  a d i s t a n c e  5 from t h e  c e n t e r  of t h e  p l a n e t ,  one can 
go a  d i s t a n c e  XMX, g iven  by 

i n  e i t h e r  d i r e c t i o n  from t h e  p o i n t  of c l o s e s t  approach and s t i l l  
remain i n  t h e  atmosphere. U s e  i s  made of t h e  r e l a t i o n s h i p  
AA < BB (Equation 3 2 ) .  I f  BB < -XMX, both  AA and BB a r e  less 
t han  -XMX, and t h e  l i n e  of s i g h t  w i th in  t h e  atmosphere i s  f r ee  
of shadow. The same conclusion r e s u l t s  i f  AA > CXMX. I f  
AA < -XMX and BB > +XMX, t h e  e n t i r e  l i n e  of s i g h t  i s  shadowed, 

Line 087 t o  090 The d i s t a n c e s  AA and BB, h e r e t o f o r e  
c a l c u l a t e d  wi th  r e s p e c t  t o  t h e  p o i n t  of c l o s e s t  approach,  a re  
conver ted s o  a s  t o  be g iven  r e l a t i v e  t o  t h e  l o c a l  p o i n t .  

Line 093 t o  094 Sta tement  number 560 is  used i f  t h e r e  

i s  no shadow. Sta tement  number 550, which sets TL t o  .TRUE,, i s  
used i f  some p a r t  of t h e  shadowed r eg ion  of t h e  l i n e  of sight 
e x i s t s  w i t h i n  t h e  atmosphere. 

Line 109 t o  111 For 5 < R ,  A '  = 7r /2  and $ "  0 or r r ,  
t h e  l i n e  of s i g h t  i s  p a r a l l e l  t o  t h e  symmetry a x i s ,  and t h e  Line 
of s i g h t  does  n o t  p e n e t r a t e  t h e  shadow c y l i n d e r .  However, t h e  
e n t i r e  l i n e  of s i g h t  is  w i t h i n  t h e  shadow c y l i n d e r .  Two arti-- 
f i c i a l  shadow p o i n t s ,  chosen t o  be  w e l l  o u t s i d e  t h e  atmosphere, 
a r e  used t o  i n d i c a t e  t o  t h e  c a l l i n g  program t h a t  t h e  l i n e  of 
s i g h t  i s  shadowed. 



TABLE B-1 

L i s t i n g  of the S u b r o u t i n e  SHASCC 

SUBROUTINE SHASCC(I.1, LBM, THET, PHT, AA, BB,TL) 

T H I S  SUBROUTINE CALCULATES THE POINTS, I F  ANY, A T  I J l { I  CH THE 
L I N E  OF S IGHT INTERSECTS THE REGlON S!iADOWED B Y  A SPHERICAL 
PLAldET l LLUMINATED BY PLANE PARALLEL  L IGHT.  THE L I N E  OF S I G H T  
I S  SPEC1 F I  ED G Y  THE FOLLOlJl  NG VARIABLES 

H I I E I G H T  ABOVE THE SURFACE 
LEI4 ANGLE BETP!EEN SUIJ AtJD REFERENCE PO I FIT, E4EASUKED 

AT THE CENTER OF THE PLANET 
THET POLAR ANGLE FROtl  THE REFERENCE P O I N T  TO THE L I N E  

OF SIGI- IT 
PHT A Z I  f4UTHAL ANGLE IblEASURED TO THE PLANE COIJTAI N I  N G  

THE SUN 

TI iE  Q U A N T I T I E S  AA APJD B B  ARE THE PO I PITS Wf-IERE TI4E L l  NE OF S l  G l l T  
ENTER AND LEAVE THE SHADOW REGION, i4EASUHED l i l T f i  RESPECT TO THE 
REFERENCE POI NT. 

I F  THERE I S  NO INTERSECTION BETWEEN THE L l N E  OF S I G H T  AND THE 
SIiADOl8d REGION, THE LOGICAL  VARIABLE T L  I S  SET TO .FALSE.  
T L  I S  SET .TRUE. ONLY I F  SOME PART OF THE SHADOWED L l N E  OF SBGNT 
I S  k I I  T H I  N THE ATMOSPHERE, THAT IS, A T  A H E I G H T  LESS THAN HMX. 

l NCLUDE PRFLST, L  I S T  
REAL LBPv1 
LOGICAL  TL 
C014MO!.J/GEO/K, ERR, LETA, PS 1, P I  

DEFI idE FUIGCTIONS FOR H E I G H T  ( C H I  AND COS LAMBDA' ( C L P )  
C t i ( Z ) = S Q R T (  ( R + H ) * * Z + Z * * 2 + 2 . * ( R + H ) * Z * C T )  
CLP(Y)=((R+H)*CL+Y*(CL*CT+SL*ST*CP))/CH(Y) 

I N I T I A L I Z E  L O G I C A L  VARIABLE 
T L = .  FALSE. 

CALCULATE T R I  GONO~~IETRI  C QUANTI  T I  ES 
CL=COS ( LBI11 
S L=S I N ( LBl4 ) 

RETURN I F  C O N D l T l O N  I I S  S A T I S F I E D  
I F ( ( R + H ) * S L .  LE.R.ANn.CL.GE. 0.1 GO TO 5 6 0  
CP=COS ( PHT)  
SP=S I N(  PHT) 
CT=COS(THET)  
S T = S I N ( T H E T )  

RETURN I F  CONDIT ION I I  I S  S A T I S F I E D  
CG=CT*SL-ST*CP*CL 
IF((R+H)*SL.GE.R.AND.CG.GE.O.) GO TO 5 6 3  

COMPUTE SUN ANGLE AND I i E I  GHT AT CLOSEST APPROACH P O I N T  
CSSG=CL*ST-S L*CP*CT 
Z T A = ( R + H ) * S T  
I F ( Z T A - R )  200,, 

NO SHADOW FOR ZTA.GE.R AND CSSG GREATER THAN (ABOUT)  ZERO 
I F(CSSG+. 0 0 3 1  ,560 ,560  
I F ( A B S ( C S S G 1 - ( . 9 9 9 9 9 ) )  , 4 0 1 , 4 0 1  @ CHECK V A L I D  COSINE 

S H A S C 0 0 1  
S H A S C J 0 2  
3 1 i A S C 0 3 3  
SHASC ~ 0 4  
S H A S C 0 0 5  
SHASGOOG 
S H A S C S 0 7  
SI-IASC,'08 
S I IASCi209  
SWASCJPI) 
SI - iASCI, ' I l  
S W A S C 0 1 2  
S W A S C 7 1 3  
SHASCJQ 4 
SWASC3E5 
S H A S C 3 1 6  
SHASCO17 
S t f A S C O l 8  
S H A S C O I 9  
S H A S C 0 2 0  
Sl-IASCii2.S 
S H A S C 3 2 2  
S i f A S C C 2 3  
SHASC02cb 
SPASC1125 
Si-iASC3211 
S H A S C O 2 7  
SE-IASCII2S 
SE1ASC029 
S l i A S C 0 3 0  
S M A S C 3 3 1  
S H A S C 3 3 2  
SWASC533 
SiIASC1334 
S H A S G I i 7 5  
S H A S C r l 3 b  
S H A S C 3 3 7  
SWASC038 
SHASCG3'2 
SHASCOriO 
SHASCObE 
S P A S 6 3 4 2  
SEdl\SC3'a3 
SIHASC 3 L 4  
S H d S C 0 4 5  
S H A S C O 4 6  
SHASCO 4 7  
S H A S C b 4 8  
SbiASCu4-3 
SHASCO5C 
S H A S C 3 5 1  
Sl iASGOI j .2  
3 H A S C 3 5 3  
S H A S C d 5 4  





CALCULATE TR I GONOt4ETR I C FUNCTl  ONS FOR CLOSEST PO l NT 
CSG2=CSSG**2 
SNG?=l . -CSG? 
SNSG=SQRT(SNG2) 
TNSG=SNSG/CSSG 
SNPH=SL*SP/SNSG 
SNP2=SNPH**2 
CSPI i= (CL*CT+SL*CP*ST)  / S N S G  
CSP2=CSPI i * *2  

CALULATE THE P O I N T  X0,YO ( X P T  AND YPT)  
XPT=ZTA*TNSG*CSPH 
Y PT=ZTA*TNSG*SNPfl  

CALCULATE E L L I P S E  C O E F F I C I E N T S  
CSG2=CSSG**2 
AX=CSGZ*CS?2+SNP2 
AXY=SNG2*SNPH*CSPH 
AY=CSG2*S:dP2+CSP2 

Q = ( A X Y * * 2 - A X * A Y ) + Y P T * * 2 + A X * R * * 2  
I F ( Q )  560,563, ij RETURN I F  Q I S  NEGATIVE OR ZERO 

CALCULATE I NTERSECTION PO I NTS 
Q=SQRT ( 4 )  
A A = ( - B E T A - Q ) / ( A L P N A )  
BB=(-BETA+O,) / (ALPHA)  

CHECK THAT SHAD03 POINTS ARE I d l  T I i I  N THE ATMOSPHERE 
XMX=SQRT((R+HMX)**2-ZTA**2) 
1 F(BB.  LT.  (-XMX).OR.AA.GT. Xf4X) GO TO 5 6 0  

S H I F T  TO BOXER COORDINATES 
XSHFT= ( R + H  *CT  
AA=AA-XSHFT 
BB=BB-XSHFT 
I F ( Z T A - R )  300,, 

T L = .  TRUE. 
RETURN 



CALCULATIONS FOR ZTA . LT.  R  
I F ( A U S ( C S S G ) - .  0 0 0 0 1 )  ,, 1 0  

CONTl  NUE FOR LAMBDA' EQUAL P I  / 2  
OSPH=ABS(CL+CT+SL*ST*CP) 
IF (ABS(CSPH) .GE.  1 . 0 0 0 0 1 )  W R I T E ( 6 , 7 0 7 )  CSPH 

F o R b l A T ( ' 7 0 7  INACCURATE COSINE(PH1) .  C s P H = ' F 1 0 . 7 )  
IF (ABS(CSPH) .GE.  (.99999)) GO TO 2 0 0  

USE CSPi i  FOR S I N E (  PHI  
CS PH=SQRT (1. -CS PI4* * 2  ) 
V=SQRT (R**  2 -ZTA**  2 1 
AA=-V/CSPH 
SB=-AA 
GO TO 5 0  

L A M B D A V W A L  P I / ?  AND P H I '  EQUAL o O R  PI 
AA=-2.  * (R+HMX) 
BB=-AA 
GO TO 5 0  

LOGIC FOR ZTA .LT.  R  
I F ( X S H F T 1  ,,3?0 
CLPA=CLP(AA)  
I F ( C L P A 1  550 ,560 ,560  
CLPB=CLP(BB)  
I F ( C L P B 1  ,560 ,560  
I F ( B B )  560,560,550 

ADJUST TRIGONOMETRIC Q U A N T I T I E S  I F  S I N ( L A M B D A ' ) = O .  
SPJPil=O. 
SI?IP2=0. 
CSPH= l .  
CSP2=1. 
SNSG=0. 
SNG2=O. 
TrJSG=O. 
C S S G = S I G N ( l .  ,CSSG) 
CSG2=1. 
GO TO 2 0  

END 

SHASC335 
SIIASCG3 6 
SHASC03 -7 
SHASC093 
SHASC399 
S H A S C l O  ll 
SHASCPOl 
SHASCIO2 
SI-IASCE0 3 
SHASC104 
SHASC105 
SHASCIOS 
SHASCl.07 
SHASGLOR 
SHASGlOCE 
SMASCl.10 
S I M A S C ~ I ~  
SHASGIL2 
SHASGJ.13 
SIIASC1lr-b 
SHASCil5 
SHASC11G 
SHASGP 17 
SHASCLP8 
SHASG119 
SHASC120 
SI-EASC12.l 
SHASC122 
SI-BASC.l.23 
St(ASC124 
SHASClb25 
SHRSGJ25 
SHASClZB 
SilASCL28 
SI-IASG129 
SHASC130 



TABLE B-2 

Correspondence between variables used in the derivations in the 
text and thosed used in the computer program SHASCC. 

SHASCC 

LMB 
H 

THET 
PHT 
AA 
BB 

R 
P I  
CL 
S L  
CP 
S P  
CT 
S T  
CG 

CSSG 
ZTA 

CSG2 
SNSG 
SNG2 
TNSG 
SNPH 
SNP 2 
CSPH 
C S P 2  

XPT 
YPT 
AX 
AXY 
AY 
Q 

XSHFT 
v 

Text - 
X 
h 
8 

cP 
A 
B 
R 
'iT 

COs X 
sin x 
cos qJ 

sin 
cos 0 
sin e 
cos y 
cos A '  ) 

These variables refer 

tan A '  to the point of 
sin + I  closest approach, 
sin2+ ' 
cos $' 
COSQ " 
xo 

i 
Yo 
ax 
 ax^ 
a~ 
Q 

-LC v 



LINE OF 
SIGHT 

SUN 

FIGURE 1 - COORDINATE SYSTEM ALONG THE LINE OF SIGHT. THE X AXIS LIES IN THE PLANE 
DEFINED BY THE SUN AND THE LINE OF SIGHT 



SYMMETRY AXIS 

FIGURE 2 - COORDINATE SYSTEM FOR DEFINING A LOCAL POINT. R IS THE RADlUS OF 
THE PLANET 



INCIDENT 
SOLAR 
RADIATION 

t 

LOCAL 
t DIRECTION 

PLANET SURFACE 

SYMMETRY AXIS 

FIGURE 3 - GEOMETRY OF A LOCAL POINT AND A LOCAL COORDINATE SYSTEM. THE % 
AXIS IS IN THE DIRECTION OF THE LOCAL VERTICAL, AND THE X AXIS LIES 
IN THE PLANE DEFINED BY Z AND THE SYMMETRY AXIS. THE Y AXIS IS 
CHOSEN TO COMPLETE A RIGHT-HANDED ORTHOGONAL COORDINATE 
SYSTEM. THE LINE MARKED S LIES IN THE X-Y PLANE 



LOCAL COORDINATE 
SYSTEM 1 

FIGURE 4 - LOCATION OF ONE LOCAL COORDINATE SYSTEM WITH RESPECT TO ANOTHER 
THE ORIGIN OF THE tq{ COORDINATE SYSTEM IS AT THE CENTER OF THE 
PLANET; THE { AXIS POINTS TOWARD THE SUN. BOTH 4, AND 4, ARE S H O W  
AS NEGATIVE ANGLES. THE LINES MARKED S ARE IN THE RESPECTIVE X-Y 
PLANES. 
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SYMMETRY AXIS 

FIGURE 5 - THE SHADOW ZONE 



CENTER OF 
PLANET 

SYMMETRY AXIS 

FIGURE 6 - THE POINT OF CLOSEST APPROACH, P, AND ASSOCIATED GEOMETRY 



LINE 
OF 
SIGHT 

F1GUR.E 7 - COORDINATE TRANSFORMATIONS FOR CALCULATION OF THE EQUATION OF 
THE ELLIPSE 



OBSERVER 

SYMMETRY AXIS 

FIGURE 8 - SHADOW GEOMETRY FOR A' = n/2. 
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