General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Contract NAS 5-11295

PLANETARY EXPLORER LIQUID PROPULSION STUDY

FINAL REPORT

February ,1971

	N71-	26420
08M 602	(ACCESSION NUMBER)	(CODE)
CILITY FO	(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)
FA		

PREPARED FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GODDARD SPACE FLIGHT CENTER

Familion Standard

Contract NAS 5-11295

PLANETARY EXPLORER LIQUID PROPULSION STUDY

FINAL REPORT, SJUL. 1970#-# SJAN, 1971

February ,1971

5. MC Cabe

Approved:

McCabe udy Program Manager

PREPARED FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION **GODDARD SPACE FLIGHT CENTER**

Hamilton Standard DIVISION OF UNITED ALECTAN

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.	
SP 07R70- F	}	and the second sec	
4. Title and Subtitle		5. Report Date	
PLANETARY EXPLOR	ER LIQUID	February 1971	
PROPULSION STUDY		6. Performing Organization Code	
7. Author(s) John E. McC Vincent J. S	Cabe and ansevero	8. Performing Organization Report No. SP 07R70- F	
9. Performing Organization Name and Hamilton Standard	Address	10. Work Unit No.	
Division of United Airc	eraft Corporation	11. Contract or Grant No. NAS 5-11295	
windsor Locks, Conne	CIICUI 06096	13. Type of Report and Period Covered	
12. Sponsoring Agency Name and Addr	ess.	Propulsion System	
National Aeronautics a	nd Space Administration	Study	
Goddard Space Flight C	Center	July 1970 to January 1971	
Technical Monitor: Do	nald Miller	14. Sponsoring Agency Code	
15. Supplementary Notes		· · · · · · · · · · · · · · · · · · ·	

16. Abstract

The primary objectives of this study were to concept, evaluate and compare a number of candidate spacecraft propulsion systems of the monopropellant hydrazine type relative to two Venus missions of an Explorer class satellite. The propulsion system of this Planetary Explorer satellite will be utilized to accomplish mid-course trajectory corrections, attitude control, spin control and orbit maneuvers of the spacecraft. The candidate systems evaluated utilized existing flight proven hardware and no new technology is required to accomplish mission objectives. A single 5 lb_f engine was used to accomplish all required functions. Production engine test data was used in all performance analysis of the spacecraft. A computer program was generated as part of the study program to evaluate candidate system performance under simulated mission conditions.

17. Key Words (Selected by Author(s))		18. Distribution St	atement		
"Monopropellant hydra:	zine system",				
"Maneuvering and controlling a spin					
stabilized spacecraft",					
"reaction control syste	m''.				
19. Security Classif. (of this report)	20. Security Classif.	(of this page)	21. No. of Pages	22. Price*	
Unclassified	Unclassifie	¢	289		

Hamilton UNITED AIRCRAFT CORPORATION

PREFACE

This report describes the effort accomplished under Contract NAS 5-11295. The primary objective of this effort was to concept, evaluate and compare a number of candidate spacecraft propulsion systems, of the monopropellant hydrazine type, relative to two Venus missions of an Explorer class satellite. In addition, effort was expended in conducting parametric and design studies to develop information useful to GSFC in conducting spacecraft level trade-offs beyond the scope of this propulsion study. This study demonstrated that the mission requirements can be satisfied using existing equipment and that no new technology is required.

U A• Hamilton Standard T CORPORATION

SP07R70-F

Section		Page
1.0	INTRODUCTION	1.0-1
2.0	SUMMARY	2.0-1
3.0	STUDY PROGRAM SCOPE AND LOGIC	3.0-1
4.0	CANDIDATE SYSTEMS	4.0-1
	4.1 The Process of Selecting Candidate Systems	4.1-1
	4.2 Description of Candidate Systems Selected	4.2-1
	4.3 Evaluation of Candidate Systems	4.3-1
	4.4 Comparison of Candidate Systems	4.4-1
	4.4.1 Reliability	4.4-6
	4.4.2 Weight	4.4-8
	4.4.3 Performance Margin	4.4-16
	4.4.4 Power	4.4-43
	4.4.5 Cost	4.4-61
	4.4.6 Operations	4.4-63
	4.4.7 Components	4.4-72
	4.4.8 Structural/Physical Considerations	4.4-74
5.0	PARAMETRIC AND DESIGN STUDIES	5.0-1
	5.1 Mission Analysis	5.1-2
	5.2 Reliability	5-2-1
	5.3 Pre-Flight Operations	5.3-1
	5.4 Flight Operations	5.4-1
	5.5 Components	5.5 - 1
	5.6 Test Plans	5.6-1
	5.7 Thermal Analysis	5.7-1
	5.8 Plume Study	5.8-1
	5.9 Leakage/Feed System Dynamics	5.9-1
	5.10 Environmental Effects	5.10-1
	5.11 Contamination Control	5.11-1
	5.12 CG Tolerances	5.12-1
APPEND	X A. RATE, RESOLUTION AND ENGINE MODULATION	A-1

CONTENTS

v/vi

SP 07R70-F

Hamilton DIVISION OF UNITED AIRCRAFT CORPORATION Standard A®

ILLUSTRATIONS

Figure

3.0-1	Logic Diagram - Planetary Explorer Liquid Propulsion Study	3.0-3
4.1-1	Logic Diagram - Candidate System Selection	4.1-3
4.1-2	Engine Placement Concepts	4.1-5
4.1-3	Propulsion Subsystem Schematic Concepts	4.1-7
4.1-4	Recommended Engine Placements and Upstream Systems for	
	Study	4.1-9
4.1-5	Selected Engine Placements and Upstream System Study	4.1-11
4.2-1a		4.2-3
4.2-1b		4.2-5
4.2-1c		4.2-7
4.2-1d		4.2-9
4.2-1e		4.2-11
4.2-2	Typical Installation of a Candidate Propulsion System into	
	the Spacecraft	4.2-13
4.4.4-1	Electrical Energy vs Mission Event - Probe Mission	4.4-47
4.4.4-2	Electrical Energy vs Mission Event - Orbit Mission	4.4-49
4.4.4-3	Power Conditioning Circuits	4.4-51
4.4.4-4	Power Conditioning - Current vs Time	4.4-53
4.4.4-5	Electrical Energy Expended vs Event - Orbiter Mission	
	(P-5 Configuration Systems I, II and III)	4,4-55
4.4.4-6	Electrical Energy Expended vs Cruise Spin Speed	4.4-57
4.4.4-7	Power Conditioning - Weight Savings vs Weight/Electrical	
	Energy	4.4-59
5.1.0-1	Computer Printout Nomenclature	5,1-3
5.1.1-1		5.1-23
5.1.2-1		5.1-23
5.2.3-1	Reliability of Feed System FS-2	5.2-19
5.2.3-2	Reliability of Feed System FS-4	5.2-21
5.2.3-3	Reliability of Feed System FS-8	5.2-23
5.2.3-4	Reliability of Engine Placement Concept P-5	5.2-25
5.2.3-5	Reliability of Engine Placement Concept P-7	5.2-27
5.2.3-6	Reliability of Engine Placement Concept P-10	5.2-29
5.2.3-7	Reliability of Engine Placement Concept P-12M	5.2-31
5.2.3-8	Reliability of Engine Placement Concept P-13	5, 2-33
5.3.0-1	Propulsion Subsystem Operational Sequence-Preflight	5,3-7
5.3.1-1	Internal Leakage Test Schematic - Propellant Valve	5.3-9
5.3.4-1	승규는 것은 것은 물건에 가지 않는 것을 물건을 가지 않는 것을 하는 것을 했다.	5.8-11
5.5.1-1		5.5-35
5.6.1-1		5,6-5
5.6.1-2		5.6-7

Hamilton U UNITED AIRCRAFT CORPORATION Standard A@

ILLUSTRATIONS (Cont)

Figure

5.6.2-1			5 .6 -9
5.6.3-1		- 1	5.6-11
5.6.3-2			5.6-19
5.8.0-1	Exhaust Plume Density		5.8-5
5.8.0-2	Exhaust Plume Heat Transfer Estimate		5.8-7
A-1			A-7

SP 07R70-F

TABLES

OPPORATION

Table

Hamilton Standard

4.1-I	Evaluation Criteria for Engine Placement Concepts	4.1-13
4.1- Ⅲ	Evaluation Criteria for Feed System Concept	4.1-13
4.1-III	Relative Rating of Selected Engine Placement Concepts	4.1-13
4.1-IV	Propulsion Subsystem Concepts Selected as Candidates	4.1-13
4.4.0-I		4.4-3
4.4.0-II		4.4-5
4.4.1-I	Numerical Reliability Assessment for Candidate	
	Subsystems	4.4-7
4.4.1-II	Weight vs Reliability Summary - Planetary Orbiter	4.4-7
4.4.2-I	Weight Summary - Orbiter and Probe	4.4-9
4.4.2-II	Weight Summary – Orbiter	4.4-11
4.4.2-III	Weight Summary - Probe	4.4-13
4.4.2-IV	Max. Weight Variation Between Susbsystems	4.4-15
4.4.2-V	Max. Weight Variation Between Systems with Same	
	Number of Engines	4.4-15
4.4.2-VI	Max. Weight Variation Between Subsystems with Same	
	Number of Engines	4.4-15
4.4.3(a)-I	Maneuvering Rate Margin - Orbiter Mission	4.4-17
4.4.3(a)-II	Maneuvering Rate Margin - Probe Mission	4.4-17
4.4.3(a)-III	Maneuvering Resolution - Orbiter Mission	4.4-19
4.4.3(a)-IV	Maneuvering Resolution - Probe Mission	4.4-19
4.4.3(a)-V	Maneuvering Accuracy - Orbiter Mission	4.4-21
4.4.3(a)-VI	Maneuvering Accuracy - Probe Mission	4.4-21
4.4.3(a)-VII	Error Limits for Maneuvers	4.4-23
4.4.3(a)-VIII	Error Equation Nomenclature	4.4-31
4.4.3(a)-IX	Maneuvering Error Equation	4.4-33
4.4.3(a)-Xa	Error Matrix - Probe Mission	4.4-39
4.4.3(a)-Xb	Error Matrix - Orbiter Mission	4.4-39
4.4.3(b)-I	Engine Operating Life Margin	4.4-41
4.4.4-I	Power Summary	4.4-45
4.4.6.2-I	Flight Operations Ratings of Candidate Systems	4.4-65
4.4.6.2-II	Flight Operations – ΔV Maneuvers	4.4-67
4.4.6.2-III	Flight Operations - X Maneuvers	4.4-69
4.4.6.2-IV	Flight Operations - ΔN Maneuvers	4.4-71
4.4.7-I		4.4-73
5.1.0-I	Computer Printout Nomenclature	5.1-3
5.1.0-II		5.1-5
5.1.0-III	Orbiter Mission Profile-System-I, II, III, VI, VIII	
	and IX	5,1-7
5.1.0-IV	Orbiter Mission Profile-Systems IV, V and VI	5.1-9

Hamilton Division of UNITED AIRCRAFT CORPORATION Standard Ae

SP 07R70-F

TABLES (Cont)

Table

5.1.0-V	Orbiter Mission Profile-Systems X, XI and XII	5,1-11
5.1.0-VI	XIV and XV	5.1-13
5.1.0-VII	Probe Mission Profile-Systems I. II. III. VII. VIII	
• ····•	and IX	5.1-15
5.1.0-VIII	Probe Mission Profile-Systems IV, V and VI	5.1-17
5.1.0-IX	Probe Mission Profile-Systems X, XI and XII	5.1-19
5.1.0-X	Probe Mission Profile-Systems VII, VIII, IX, XIII,	
	XIV and XV	5.1-21
5.2.1-I	Estimated Failure Rates	5,2-9
5.2.2-I	Failure Modes and Effects	5.2-11
5.5.0-I	Development Status and Weight Summary of Selected	
	Components	5.5-7
5.5.0-II		5.5-9
5.5.0-III	Engineering Evaluation of Candidate Latching Solenoid	
	Valve	5.5-11
5.5.0-IV	Engineering Evaluation of Candidate Ordnance Valves	5.5-13
5.5.0-V	Engineering Evaluation of Candidate Fill and Drain Valves	5, 5-15
5.5.0-VI	Engineering Evaluation of Candidate Propellant Tanks	5.5-17
5.5.0-VII	Engineering Evaluation of Candidate Filter	5.5-19
5.5.1-I	Propellant Tank Characteristics	5.5-21
5.5.2-I	Filter Characteristics	5.5-23
5.5.3-I	Fill & Drain Valve Characteristics	5.5-25
5.5.4-I	Ordnance Valve Characteristics	5.5-27
5.5.5-I		5.5-29
5.5.6-I		5.5-31
5.5.7-I		5.5-33
5.6.0-I		5.6-3
5.6.2-I		5.6-17
5.7-I		5.7-3
5.9.0-I	Propellant Leakage Rates - Orbiter and Probe Missions	5.9-3
5.9.0-II	Pressurant Leakage Rates - Orbiter and Probe	
	Missions	5.9-2
5.10.0-I		5.10-3
5.12-I		5.12-3
A-1		A-6

Hamilton UNITED AIRCRAFT CORPORATION

SP 07R70-F

SECTION 1.0 INTRODUCTION Hamilton UNITED AIRCHAFT CORPORATION

SP 07R70-F

INTRODUCTION

0

This is the final report for the Plantetary Explorer Liquid Propulsion Study which was conducted by the Hamilton Standard Division of United Aircraft Corporation for the Goddard Space Flight Center (GSFC) of the National Aeronautics and Space Administration with Mr. Donald Miller as Technical Monitor.

The primary objectives of this study were to concept, evaluate and compare a number of candidate spacecraft propulsion systems, of the monopropellant hydrazine type, relative to two Venus missions of an Explorer class satellite. The propulsion system of this Planetary Explorer satellite will be utilized to accomplish mid-course trajectory corrections, attitude control, spin control and orbit maneuvers of the spacecraft.

Technical Contributions to this study effort were provided by the following individuals at Hamilton Standard and at the United Aircraft Research Laboratories.

John McCabe	(Program Manager)
Vincent Sansevero	(Study Technical Manager)
Carl Arvidson	(Design Engineering)
David Jackson	(System Analysis)
Paul Falk	(System Analysis)
Joseph Genovese	(System Analysis)
Richard Toelken	(Reliability)
Dr. Aldo Peracchio -	UARL (Plume Analysis - Consultant)

This study effort, which was funded under NASA Contract NAS 5-11295, was initiated 29 June 1970, and completed with the submittal of this final report.

Hamilton Standard

SP 07R70-F

SECTION 2.0 SUMMARY

Hamilton U DIVISION OF UNITED AIRCRAFT LORPORATIO

SP07R70-F

SUMMARY

0

The study program conducted for the Planetary Explorer Program is discussed in the following three sections of this report.

- <u>Section 3.0</u> STUDY PROGRAM SCOPE AND LOGIC
- Section 4.0 CANDIDATE SYSTEMS
- Section 5.0 PARAMETRIC AND DESIGN STUDIES

<u>Study Program Scope and Logic (Section 3.0)</u> - This section describes the scope of the study program -- areas covered, types of studies and analysis performed. Also included is a discussion of the logic implemented -- the technical approach and the time phasing, or sequencing, of the various engineering tasks as well as the major program milestones.

<u>Candidate Systems (Section 4.0)</u> - This section describes the process used to select candidate systems, and then describes the systems selected as candidates. This section also describes the criteria used to evaluate the selected candidate systems, and then presents a comparative evaluation of each of the selected candidates.

<u>Parametric and Design Studies (Section 5.0)</u> - This section describes studies conducted as part of the study program and presents the results of these studies. In some cases, these studies were conducted to develop the data necessary for the evaluation and comparison of the candidate systems, but in general these studies generated information that was either applicable to all candidates, or was in a parametric form such that GSFC could use the information in spacecraft level tradeoffs beyond the scope of this propulsion system study.

2.0 - 3/2.0 - 4

Hamilton UNITED AIRCRAFT CORPORATION

SP 07R70-F

SECTION 3.0 STUDY PROGRAM SCOPE AND LOGIC

Hamilton U UNITED AIRCRAFT CORPORATION

3.0 STUDY PROGRAM SCOPE AND LOGIC

The scope of this study, as defined in the GSFC Statement of Work, is to select, evaluate and compare a number of candidate propulsion systems which are capable of performing the maneuvers defined in GSFC Specification Number S-723-P-10, Revision A. These maneuvers include trajectory corrections, attitude control, spin control and orbital changes. The evaluation and comparison of the selected propulsion systems covers the following major areas

- Reliability
- Weight
- Performance Margin
- Power
- Cost
- Operations
- Components
- Structural/Physical Considerations

The logic diagram of Figure 3.0-1 provides an overview of the study program. The program defined in the logic diagram is conducted in three successive phases where the technical approach can be described as one which is directed at examining a large sample of potential system approaches in a manner that eliminates those that are unacceptable, or less desirable, with a minimum amount of effort expended, so that the major effort can be applied in the evaluation and comparison of the more promising concepts. This approach is implemented in the three successive phases where the program progresses from a relatively wide scope and shallow depth look at concepts to an in-depth evaluation of a narrow scope of concepts. As part of the study program logic, technical activities were conducted in parallel to the iterative process of "narrowing in" on the preferred system concepts. These parallel technical activities, which included basic design studies, parametric studies, and basic performance analysis, in some cases supported the evaluation and comparison of the various system concepts; but in general, they developed data common to all concepts which is in a form that may be used by GSFC for program level and spacecraft level trade-offs in their final selection of a propulsion system concept.

.

....

RELIABILITY
SPACECRAFT INTEGRATION AND

[·] OPERATIONAL COMPLEXITY

Hamilton UNITED AIRCRAFT CORPORATION Standard A®

SP 07R70-F

SECTION 4.0 CANDIDATE SYSTEMS

Hamilton U Standard A®

SP07R70-F

4.0 CANDIDATE SYSTEMS

The selection of candidate systems, from among those originally considered, was accomplished during Phase I of the study program. Subsequent to this selection, the candidate systems were evaluated and compared. The evaluation and comparison activities were accomplished during Phase II and Phase III of the program. The following aspects of the candidate systems are discussed below.

- The Process of Selecting Candidate Systems
- Description of Candidate Systems Selected
- Evaluation of Candidate Systems
- Comparison of Candidate Systems

4.1 <u>The Process of Selecting Candidate Systems</u>

Propulsion systems of the type required for the Planetary Explorer application can be characterized and evaluated on the basis of the particular approach taken in implementing each of the basic system functions which are listed below. In almost all cases which can be postulated, the evaluation and selection of the optimum method for any one function can be accomplished independently of the methods selected for the functions.

- Propellant orientation
- Propellant pressurization
- Propellant feed system (to the engines)
- Quantity, location and thrust level of rocket engine assemblies (REA's)

The applicable propulsion subsystem specification for the Planetary Explorer spacecraft stipulates the use of bladderless tanks since orientation will be accomplished by the acceleration forces exerted due to the spin stabilized mode the spacecraft will operate in. Also stipulated was the use of a "gas blowdown" method for propellant pressurization and a 5 lb thrust rated engine assembly. This left the following two system characteristics to be concepted and evaluated.

- Propellant feed system (to the engines)
- Quantity and location of 5 lb thrust rocket engine assemblies

The process of selecting candidate propulsion systems on the basis of evaluating the two basic system characteristics mentioned above is illustrated in the logic diagram of Figure 4.1-1. The various engine placement concepts and engine feed system concepts, combinations of which constitute a propulsion subsystem, considered as part of the selection process, are illustrated in Figures 4.1-2 and 4.1-3, respectively, and referenced in the logic diagram.

Hamilton U Standard AIRCRAFT CORPORA

4.1 (Continued)

The evolutionary process of developing feed system concepts is illustrated in Figure 4.1-3, along with a "Fundamental System" design concept which is used as a reference. The fundamental system is used to define the simplest system concept which will provide all required capabilities. This baseline system excludes from consideration the possibility of any equipment malfunctions, or error in judgement. The fundamental system then becomes the basic building block which has to be augmented to arrive at the system which most effectively supports the Planetary Explorer mission objectives.

As shown in the logic diagram of Figure 4.1-1, engine placement concepts and feed system concepts were evaluated and concepts recommended for further evaluation were selected using the criteria in Tables 4.1-I and 4.1-II. The recommended concepts, which are illustrated in Figure 4.1-4, were submitted to GSFC. After review and evaluation by GSFC, the final selection of candidate system concepts was made (Reference Figure 4.1-5) and with minor modification were those concepts recommended by Hamilton Standard.

A relative rating of the selected candidate engine placement concepts, based on the evaluation criteria established, is presented in Table 4.1-III. The candidate subsystem concepts identified in Table 4.1-IV were established by combining the selected engine placement concepts with the selected feed system concepts.

FIGURE 4.1-1. LOGIC DIAGRAM-PROCESS OF SELECTING CANDIDATE SYSTEMS

4.1-3/4.1-4

. . . .

2

94

2 S O

MANEUVER	NORMAL MODE	DEGRADIND MODE	REMARKS
DEPENDINA	1, 3, 4	2,6,8	
ACS	30R4	5,7,08	
+ SPIN	6,7	GOR7	
- SPIN	5,8	SOR8	

χ

03

0

10 ENGINES FEATURES FEATURES PERFORM NORMAL MODE * A V WITH ANY SINGLE REA FAILURE NO TRANSLATION DURING ATTITUDE AND SPIN MANEUVERS

MANEUVER	NORMAL MODE	DEGRADED MODE	REMARKS
OP BETAL	1,5,7	2,6,8	
ACS	4,9 OR 3,10	30R4 90R10	
+ SPIN	6,7	GOR7	
- SPIN	5,8	JOR8	

6 ENGINES

		<u> </u>	AT UKED	
	•SENSI	TIVE TO	RANDO	OM REA
MANCE	FAILUI	<u>7</u> E		
]	MANEUVER	NORMAL	DEURADED MODE	REMARK
	OBBITAL	2,4,6	1,3,5	

ENGINE PLACEMENT

6 X .3 1.2

FEATURES

NORMAL DEGRADED

1,2,9,10 1,2,3,10 30R4 5,7,08 6,7 60R7

5,8

MANEUVER

1.10.0.01 ACE + SPIK -

.

PERFORM NORMAL MODE*AV WITH ANY SINGLE REA FAILURE GOOD RESOLUTION FOR AV CONCEPT PACKAGES WITHIN SPACECRAFT RESTRAINTS

SORB

э,4 CONCEPT P7

6 ENGINES FEATURES • MINIMUM NUMBER OF REA'S FO NORMAL MODE AV WITH ANY SINGLE REA FAILURE FOR

MANEOVER	MORMAL	MODE	REMARKS
CONTAL	1,3,5	2,4,6	
ACI	2, 3, 5 OR	1.3.5 OF	
* 5721	4,5	40R5	
- 67101	3,6	30R6	

		ti. Pasta ana	
CANEUVER 4	NORMAL	DEGRADED MODE	REMARKS
DECOURSE/	1,2,3,4	1,4 28	
ACS	1,308	1,3 OR	
+ 874	3,4	30R4	
- 5171	1,2	IOR2	

ACS 2 + SPIN - SPIN

* HIGH PROPELLANT EFFICIENCY

0 5,6

REMARKS

CONCEPT P8 4 ENGINES

FEATURES

ST CONCEPT REA FAILURE CAUSES Y DEGRADED AV PERFOR

EOLDUUT FRAME

SP 07R70-F

IL ENGINES FEATURES PERFORM YORMAL MODE *AV WITH ANY SINGLE REA FAILURE GOOD AV RESOLUTION CG WITHIN SINGLE REA FAILED POLYGON

MANEUVER	NORMAL MODE	DEGRADED MODE	REMARKS
ORBEPAT	1,2,3,4,5	1,2,3,4	
AC5	10 OR 11	6, 8 0R 7, 9	
+ SPIN	7,8	70R8	
- SPIN	6,9	GOR9	

8 ENGINES FEATURES PERFORM NORMAL MODE AV PERFORM

MANEUVER	NORMAL	DEGRADED MODE	REMARKS
MIDCOURSE/	42,	3,4	
ACS	1,4,0P	1,207	
+ SPIN	6.7	60R7	
- SPIN	5.8	50R8	

PLACEMENT CONCEPTS

V
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 • 00
CONCEPT P6

ENGINES

SIMPLE OMMON MODULES

MANEUVER	NORMAL MODE	DEGRADED MODE	REMARKS
ORBITAL	1,3,5,7	2,4,6,8	
ACS	1,6 23	4,6,6R	
+ SPIN	2,3	26	
- SPI-	1,4	4,8	

MANEUVER	NORMAL MODE	DEGRADED	MENGANNES
OR BETAL	3,5	4,6	
ACI	IOR 2	IORZ	
+ SPIN	4,5	40R5	
- SPIN	3,6	3 ORG	

CONCEPT PIL

5 ENGINES

EGRADED MODE WITH ANY SINGLE.

REA FAILURE MINIMUM REA'S • CG WITHIN SINGLE REA FAILED POLYGON

MANEUVER	NORMAL MODE	DEGRADE	REMARKS
MIDCOURSE?	1,2,3,4,5	1,2,3,4	
ACS	1	2,307	
+ SPIN	3	5	
- SPIN	2	4	

CONCEPT PIZ

6 ENGINES FEATURES PERFORM NORMAL MODE * AV WITH ANY SINGLE REA FAILURE GOOD AV RESOLUTION

MANEUVER	NORMAL MODE	DEGRADE MODE	REMARKS
DOCUU. 7	. / .	2	
ACS	3,5 08	3,5 82	
+ SPIN	4,5	4085	
- SPIN	3,6	3056	

PLANETARY EXPLORER CONTRACT NO. NASS 11295

FIGURE 4.1-2 4.1-5/4.1-6

<u>23</u>

AV ATLURE G ATTITUDE

MARKS

2

ĒΑ

ARKS _____

SP 07R70-F(D)

.

4.1-7/4.1-8

X.

1

RECOMMENDED ENGINE PLACEMENTS SYSTEMS FOR ST

ENGINE PLACEMENT CONCEPT

.

이 문제에 가지 않는 것 같아. 한 것 같아. 이 것 같아.

UPSTREAM FEED SYSTEMS

)

EMENTS AND UPSTREAM FOR STUDY

SP 07R70-F(D)

CONCEPTS

TCA A R S

) | | | | | | | | | | | | | | | | |

.....

FIGURE 4.1-4

PLANETARY EXPLORER

CONTRACT NO. NASS-11295

Å

A

SYSTEM FS-8

-Se Se

RS

Hamilton Standord

Ä.

Hamilton U Standard **A**®

SELECTED ENGINE PLACEMENTS AND UP

٠.

FOLDOUT FRAME

ENGINE PLACEMEN

s S S S

CONCEPT P5

CONCEPT PT

8

CONCEPT P 10

UPSTREAM FEED

FIGURE 4.1-5 4.1-11/4.1-12

Hamilton Standard U Â

FOLDOUT FRAME

			No. of Engines Required for Type of Maneuver		No. of Engines Required for Type of Maneuver		∆V Propellant Efficiency	Adaptability of Functional Engine Grouping
Concept	No. of Engines	No. of Modules	ΔV	Attitude	Spin	Per ∆V Firing Maneuver	with Any Single Engine Failure	to Perform Maneuvers with 50% of Engines
P1	10	3	4(3)	1	2 ⁽¹⁾	High	Good	Good
P2	8	4	3	1	2(1)	Moderately High	Good	Good
P3	10	3	3	2(1)	2(1)	Moderately High	Good	Good
P4	11	3	5	1	2(1)	High	Good	Good
P5	8	4	4	2 ⁽¹⁾	2(1)	High	Good ⁽²⁾	Excellent
P 6	6	2	2	1	2 ⁽¹⁾	Moderate	Low	Poor
P7	6	4	3	2(1)	2(1)	Moderately High	Good	Medium
P 8	4	4	4	2(1)	2(1)	High	Poor	
P 9	6	4	3	2 ⁽¹⁾	2(1)	Moderate	Low	Poor
P10	. 8	6	2	2(1)	2(1)	Moderate	Good	Excellent
P11	5	5	5	1	1	High	Low	Poor
P12	6	4	1(3)	2	2(1)	Low	Good	Medium

TABLE 4.1-I EVALUATION CRITERIA FOR ENGINE PLACEMENT CONCEPTS

......

....

Pure couple
(2) Can perform all mission maneuvers with any two engines failed closed
(3) Good resolution

TABLE 4.1-III

RELATIVE RATING OF SELECTED ENGINE PLACEMENT CONCEPTS

	No. of Engines Rec for Type of Mane		equired euver	Peak Power Req'd	ΔV Propellant Efficiency	Adaptability of Functional Engine Grouping		
Concept	No. of Engines	No. of Modules	ΔV	Attitude	Spin	Per ΔV Firing Maneuver	with Any Single Engine Failure	to Perform Maneuvers with 50% of Engines
P5	8	4	4	2(1)	2(1)	High	Good(2)	Excellent
P7	6	4	3	3 ⁽¹⁾	2(1)	Moderately High	Good	Good
P10	8	6	2	2(1)	2(1)	Moderate	Good	Excellent
P12 Modified	6	4	1	2(1)	1 or 2	Low	Good	Excellent
P13	8	6	2	2(1)	1 or 2	Moderate	Good	Excellent

(1) Pure couple

(2) Can perform all maneuvers with any two engines failed

FOLDOUT FRAME 7_

TABLE 4.1-II

EVALUATION CRITERIA FOR FEED SYSTEM CONCEPTS

	Positive Propellant Isolation From Engines During	Isolation of Engine Functional	Multiple Operational Capability of Propellant Isolation	Series Redundant	Number of	Diagnostic ^{tt}	Operational
Concepts	Launch & Test	Groups	Device	Isolation Valves	Isolation Valves	Capability	Complexity
FS-1	No	No	Yes	No	2	No	Low
FS-2	No	Yes	Yes	No	2	Yes	Low
FS-3	Yes	No	No	No	1	No	Low
FS-4	No	Yes	Yes	Yes	-4	Yes	Moderate
FS-5	No	Yes*	Yes	Yes	s ^t	No	High
FS-6	Yes	Yes**	No	No	4	No	Moderate
FS-7	Yes	Yes**	No	No	8t	No	High
FS-8	Yes	Yes	Yes	No	4	Yes	Moderate

For a six engine placement concept Downstream pressure sensing Notes: t

tt

Isolation valve back-up to each engine control valve

** Determination of which ordnance valve to close difficult

TABLE 4.1-IV

PROPULSION SUBSYSTEM CONCEPTS SELECTED AS CANDIDATES

Candidate Subsystem	Engine Placement Concept	Feed System Concept
I	P-5	FS-2
n n u d haran dharan	P-5	FS-4
III	P-5	FS-8
IV	P-7	FS-2
V	P-7	FS-4
VI	P-7	FS-8
VII	P-10	FS-2
VIII	P-10	FS-4
IX	P-10	FS-8
x	P-12M	FS- 2
XI	P-12 M	FS-4
XII	P-12M	FS-8
xm	P-13	FS-2
XIV	P-13	FS-4
xv	P-13	FS-8
	and the second	

4.1-13/4.1-14

Hamilton UNITED AIRCRAFT CORPORATION

4.2 Description of Candidate Systems Selected

The 15 candidate systems selected consist of combinations of 5 different engine placement concepts and 3 different feed system concepts. Table 4.1-IV identifies the combination of engine placement concept and feed system concept which distinguishes each candidate system.

The propulsion subsystem layout drawings illustrated in Figures 4.2-1a through 4.2-1e represent the 5 different engine placement concepts and each layout drawing shows schematically each of the 3 feed system concepts. The only difference in systems with the same feed system concept being in the line routing to the engines. The component layout for each of the selected feed systems is shown in the auxiliary views of the component panel, and the propellant tank arrangement for both the Orbiter and Probe configurations are illustrated, with the Probe tank arrangement in the reduced scale alternate view. The actual difference between the Orbiter and the Probe engine module locations is dependent upon the physical configuration of the spacecraft, and the location of the vehicle center of gravity.

In all of the propulsion subsystems, the bladderless propellant tanks are installed in the spacecraft tankage bay and manifolded together on both the pressurant and propellant outlet ports. The tanks represented in the layouts are the Fansteel Inc. three port tanks used on the IDCSP/A spin stabilized satellite which are suitable for the Planetary Explorer application with respect to both the volumetric capacity and the porting requirements. The pressurant manifold provides pressure equalization between the tanks during operation, and is connected to the pressurant fill and vent valve located on the component panel to perform the fill and vent operations. This portion remains the same for all candidate systems. The tank dual propellant outlet port provides the capability to drain propellant during ground testing of the propulsion subsystem and during flight when the spacecraft is spinning. The port arrangement also permits draining the system for off loading and provides the capability to flow flushing fluids through the system by flowing into the pressurant fill and vent port and out the propellant fill and drain port. The tank outlet ports are connected to a circumferential propellant manifold with a line going to the component panel where the propellant fill and drain valve, pressure transducer, filter and isolation valves are located. The number and type of isolation valves is represented by the three component panel arrangements illustrated in the auxiliary views. Propellant lines are then routed to the respective engines and are manifolded into two basic subsystems controlled by latching valves permitting isolation of one or both of the subsystems from the propellant supply. Each of the candidate subsystems has the engines necessary to perform the velocity correction, attitude control and spin control maneuvers required.

The engine locations conform to the positions represented in Figure 4.1-5 for each of the layouts. Engines required at the ends of the vehicle, either radial or tangential, are located such that they are mounted to brackets or supports on the ends of the spacecraft with no penetration through the solar arrays. Positioning the engines in this manner permits ease of installation and maintenance. There should be no interference with the spacecraft antenna since the engines shown have a low profile. In subsystem concepts where radial and tangential engines are located

SP07R70-F

4.2 (continued)

within the spacecraft, these engines are presently shown not protruding through or interfering with the solar arrays. Where engines protrude through the spacecraft, the engines are shown semi-buried where the valve and mounting structure are internal and, in the case of the gimballed engine, the gimbal actuator is internal.

Since all the candidate subsystems are similar except for the number of engine modules, the number of components on the component panel and the propellant line routing to the engine modules, the basic installation method for each of the subsystems into the spacecraft is considered the same. The engine modules being removable from the subsystem facilitates the installation of a completely fabricated subsystem, less the engines, into the spacecraft. The subsystem components are assembled and positioned on a fixture representing the vehicle mechanical interface mounts. This fixture may be either removable, with the support of the subassembly transferred to a handling fixture, or the handling fixture utilized both for assembly and handling. The integrated subassembly, consisting of the tanks, component panel with components mounted, and the propellant lines which mate with the engines attached to the handling fixture can be "dropped" into the vehicle frame and mounted at the subsystem/vehicle interfaces. During installation of the subsystem into the spacecraft, propellant lines required for any aft mounted engines can be routed through clearance holes in lateral bulkheads of the vehicle. The engine modules are installed after the integrated system has been mounted to the spacecraft and mechanical joints are provided for the tubing connections. Figure 4.2-2 illustrates a typical installation of a propulsion subsystem into the spacecraft. Candidate system Number I has been shown as a typical example in this illustration.

4.2 - 2

4.2-5/4.2-6

٩

×.

SP 07R70-F

**° é

4.2-7/4.2-8

4.2-9/4.2-10

FOLDOUT FRAME S

SP 07R70-F

ALTERNATE-PROBE ARRANGEMENT 6 TANKS SCALE: 1/8

> FIGURE 4.2-1E. CANDIDATE PROPULSION SUBSYSTEM P-13

> > 4.2 - 11/4.2 - 12

Hamilton	DIVISION DE		
Standard	(111)	A®	

SP07R70-F

4.3 Evaluation of Candidate Systems

E.

The following section (4.4) presents a comparative evaluation of the candidate systems. The criteria which were used to evaluate and compare these candidate systems, and the manner in which these criteria were applied, are described below.

The criteria used to evaluate the candidate systems were organized into the following major categories:

- Absolute Criteria
- Quantitative Criteria
- Qualitative Criteria

Initially each candidate had to satisfy an absolute criterion, which is essentially the requirements of GSFC Subsystem Specification No. S-723-P-10. After this was achieved, the remaining candidates were studied both quantitatively and qualitatively to yield visibility into how they compared to each other in satisfying the Planetary Explorer technical and programmatic requirements.

In the quantitative evaluation five parameters were considered, each of which is broken down into end items which are either graphical relationships, finite quantities, or considerations which each system can easily be numerically ranked against.

In the qualitative evaluation three parameters are considered, each of which is broken down into end items which are discussed for each candidate system. Comparative items which are common to each candidate concept (such as component vendor choice, preflight operations, etc.) were not discussed as part of the qualitative evaluation, but are presented as separate studies in Section 5.0 of this report.

Considerations and tasks which were included in each criteria category are listed below. Where one of these items was specified in the GSFC Statement of Work (SOW), the applicable paragraph number of the Statement of Work is referenced.

• ABSOLUTE CRITERIA

All candidate systems must meet NASA subsystem specification No. S-723-P-10 Rev. "A" as modified by NASA correspondence.

QUANTITATIVE CRITERIA

The following parameters which can be compared quantitatively will be evaluated for each candidate system. Hamilton U Standard A®

SP07R70-F

4.3 (continued)

Α.	Rel	iability		
	1.	Weight vs reliability	SOW	(2.1.1)
	2.	FMEA and redundancy analysis	SOW	(2.4)
	3.	Design complexity	SOW	(2.7.3)
	4.	Numerical reliability	SOW	(2.7.2) (3.6)
в.	We	ight_		
	1.	Propellant weight vs spin rates	SOW	(2.1.2)
	2.	Engine performance curves	SOW	(2.1.5)
	3.	System Weight	SOW	(2.7.1)
	4.	Mission propellant weights	SOW	(3.1)
с.	Per	rformance Margin		
	1.	Accuracy analysis	SOW	(2.1.6)
	2.	Fuel Dump	SOW	(3.8)
	3.	Maneuver time margin		
	4.	Accuracy margin		
	5.	Life margin		
D.	Po	wer_		
	1.	Power profile vs spin rate	SOW	(2.1.3)
	2.	Power conditioning	SOW	(2.3)
	3.	Power vs time	SOW	(3.3)
	4.	Peak and ave power (normal and degraded)		and a second second Second second

E. Cost

- 1. Design/analysis cost
- 2. Development test cost
- 3. Qual test cost
- 4. Acceptance test cost
- 5. Fabrication costs

QUALITATIVE

The following parameters which cannot be readily compared quantitatively will be discussed in general, and for specific candidate systems, if differences exist between systems.

Hamilton	U ·	SP07R70- F
Standard		
<i></i> .		
(continued)		
Α.	Operations	
	1. Pre-flight operations	SOW (2.8) (3.7)
	2. Flight operations	SOW (2.8) (3.7)
	3. Operational complexity	SOW (3.9)
	4. Failure identification	
	5. Safety	
		··· · · ·
В.	Components	
•	1. Tankage weight vs total impulse	SOW (2.14)
	2. Valve data	SOW (2.5)
	3. Component weight data	SOW (3.1)
	4. Component development status	SOW (3.4)
	5. Component requirements	
C.	Structural/Physical Considerations	
	1. Thermal analysis	SOW (2,2)
	2. Plume study	SOW (2.6)
	3. Layouts	SOW (2.9)
	4. Thermal requirements	SOW (2.5)
	5. Leakage paths	• •
	6. Magnetic effects	
	7. Environmental (vibration/shock ACCel	eration)
	8. Feed system dynamics	

Contamination control 9.

10. C.G. tolerances

1 1

4.3

Hamilton Standard **A**_®

SP07R70-F

4.4 Comparison of Candidate Systems

The following sections, 4.4.1 through 4.4.8, present a comparison of the 15 candidate systems against the evaluation criteria outlined in the preceding section (4.3). A summary of the comparison data developed in these sections is shown in Tables 4.4.0-I and 4.4.0-U for the Orbiter and Probe missions, respectively.

The numerical reliability assessment of each of the candidate systems satisfies the GSFC specification requirement. However, the values are so close to each other that it is meaningless to attempt to draw a significant conclusion from these numbers alone. The trends do indicate a slight advantage for candidates using feed system FS-8 (the system with two latching values and one squib value), and a more significant disadvantage for engine placement concept P-12 -- the gimballed engine system.

In comparing system weights, the total spread is less than 6 pounds between any two propulsion system candidates. Those candidate systems which utilize feed system concepts FS-2 and FS-8 are at approximately the same weight, and there is about a 2 pound penalty for feed system candidates that utilize concepts FS-4 -- the system with four latching solenoid valves. Systems utilizing engine placement concept P7 (6 engine system) realize a 2 to 3 pound weight advantage over the candidate systems utilizing 8 engines.

All systems for both missions meet the requirements for maneuver rate and resolution. However, candidate systems which utilize engine placement concept P-5 (the system with 8 engines in four two-engine clusters firing alongside the vehicle) have a very significant flight operational advantage. In the performance of ΔV maneuvers, this is the only engine placement concept that provides a one-for-one correspondence between random engine thrust vector angular tolerances and spacecraft thrust vector tolerance. In all other systems, these errors cause a change in vehicle spin rate. The change in vehicle spin rate magnifies the spacecraft thrust vector error. As a result, in order to maintain the spin rate tolerance and minimize the vehicle thrust vector error, all candidate systems using engine placement concepts other than P-5 require breaking the large ΔV maneuvers into many small maneuvers. Tables 4.4.0-I and 4.4.0-II list the maximum number of maneuvers required to perform ΔV maneuvers under the title of " ΔV complexity."

The question may arise as to the effect that engine thrust magnitude changes have on spin rate changes in system P-5. The answer to this question is that the major source of this error is engine-to-engine repeatability and this error is calibrated out during the flight calibration firing.

The relative program costs of the candidate propulsion systems, and their evaluation against the qualitative criteria, are shown in the summary tables using a ranking technique. The lowest numbers are applied to the systems which rank the highest qualitatively, or have the lowest program cost.

Hamilton U Standard A®

SP07R70-F

4.4 (continued)

Without the benefit of weighting factors which can be applied to the various evaluation criteria, it is difficult to make a propulsion system selection based upon the preceding summary of the comparison study. However, some trends are indicated by the data. First, engine placement concept P-5 offers a significant operational advantage. Second, feed system FS-8 offers a slight reliability advantage with a negligible cost and weight penalty. As a result, Hamilton Standard recommends that candidate system III be selected for the Planetary Explorer application based upon our present understanding of the Planetary Explorer mission requirements. This system consists of engine placement concept P-5 combined with feed system concept FS-8.

Hamilton Standard U **A**®

FOLDOUT FRAME

TABLE 4.4.0-I. SUMMARY COMPARISON OF CANDIDATE SYSTEMS - ORBITER MISSION

Candidate	<u> </u>	II	III	IV	V	VI	VI
Characteristic Subsystem	FS-2	P-5 FS-4	FS-8	FS-2	P-7 FS-4	fs-8	FS-2
Reliability	•995696	•995697	•995697	•995879	.995880	.995880	•995
System Weight (wet) lbs	134.84	136.27	135.65	131.42	132.84	133.23	135.
$ \begin{array}{ccc} \underline{Maneuvering} \\ \hline Rate: & \Delta \ V \ (m/sec^2) \\ & \Delta \propto \ (^{\circ}/min) \\ & \Delta \ N \ (rpm/min) \\ \hline Resolution: & \Delta \ V \ (m/sec) \\ & \star \ \Delta \propto \ (^{\circ}) \\ & \Delta \ N \ (rpm) \end{array} $.0181 50.1 121 .0049 .133 .11	.0181 50.1 121 .0049 .133 .11	.0181 50.1 121 .0049 .133 .11	.0091 50.1 122 .0018 .134 .11	.0091 50.1 122 .0018 .134 .11	.0091 50.1 122 .0018 .134 .11	.0091 50,2 122 .0030 .133 .11
Δ V Complexity	3	3	3	29	29	29	29
Power (Watts) Max (Without Conditioning) Mission Ave. Peak (With Conditioning) Mission Ave.	.001814 44.64 .000925	.001814 44.64	.001814 44.64 .000925	.001820 33.58 .000928	.001820 33.58 .000925	.001820 33.58 .000928	.001 44.6
Peak	22.32	22.32	22.32	16.79	16.79	16.79	22.3
Program Cost	2	3	2	1	3	1	3
Relative Rating Against Qualitative Criteria	1	3	1	1	3	2	2

#Resolution for $\Delta \alpha$ is obtained by firing one engine .025 seconds for orbital mission only

SP 07R70-F

OLDOUT FRAME	
2	

L	VII	VIII	IX	X	XI	XII	XIII	XIV	XV
<u>B</u>	FS-2	P-10 FS-4	FS-8	FS-2	P-12 FS-4	FS-8	FS-2	P-13 FS-4	FS-8
5880	•995696	•995696	.995697	.993015	•993016	.993016	.995696	.995697	.995697
.23	135.04	136.46	135,85	133.65	135.07	134.46	133.52	134.94	134.34
3	.0091 50,2 122 .0030 .133 .11	.0091 50.2 122 .0030 .133 .11	.0091 50.2 122 .0030 .133 .11	.0060 50.3 122 .0020 .133 .11	.0060 50.3 122 .0020 .133 .11	.0060 50.3 122 .0020 .133 .11	.0076 50.2 122 .0025 .133 .11	.0076 50.2 122 .0025 .133 .11	.0076 50.2 122 .0025 .133 .11
,	29	29	29	29	29	29	29	29	29
820 8	.001815 44.64	.001815 44.64	.001815 44.64	.001813 22,32	.001813 22.32	.001813 22.32	.001815 22.32	.001815 22.32	.001815 22.32
928 9	.000927 22.32	.000927 22.32	.000927 22.32	.000924 11.16	.000924 11.16	.000924 11.16	.000927 11.16	.000927 11.16	.000927 11.16
	3	5	3	4	6	4	3	5	3
	2	4	3	3	5	4	2	4	3
				يرجيها والمحافظ فيتحج والمحاور المحاف		a de la caractería de la c		:	and the second

ission only

Hamilton UNITED AIRCRAFT CORPORA

FOLDOUT FRAME

TABLE 4.4.0-II. SUMMARY COMPARISON OF CANDIDATE SYSTEMS - PROBE MISSION

Candid	ate I	II	III	IV	V	VI	VII
Subs Characteristic	FS-2	P-5 FS-4	FS-8	FS-2	P-7 FS-4	fs-8	FS-2
Reliability	•995696	.995697	.995697	.995879	•995880	.995880	•99569
System Weight (wet) lbs	101.84	103.26	102.67	98.17	99.59	98.98	102.03
$\begin{array}{ccc} \underline{Maneuvering} \\ \hline Rate: & \Delta & V & (m/s) \\ & \Delta & \propto & (^{\circ}/m) \\ & \Delta & N & (rpm) \\ \hline Resolution: & \Delta & V & (m/s) \\ & \Lambda & Q & (^{\circ}) \\ & \Delta & N & (rpm) \end{array}$	ec ²) .0094 lin) 11.5 n/min) 46 sec) .0055 .128 .08	.0094 11.5 46 .0055 .128 .08	.0094 11.5 46 .0055 .128 .08	.0050 11.5 46 .0029 .128 .08	.0050 11.5 46 .0029 .128 .08	.0050 11.5 46 .0029 .128 .08	.005 11.5 46 .0029 .128 .08
∆ V Complexity	3	3	3	13	13	1.3	13
Power (Watts) Max Without Conditioning Mission Ave. Peak	.002810 44.64	.002810 44.64	.002810 44.64	.002673 33.58	.002673 33.58	.002673 33.58	.00281 44.64
With Conditioning Mission Ave. Peak	.001433 22.32	.001433 22.32	.001433 22.32	.001363 16.79	.001363 16.79	.001363 16.79	.00143 22.32
Program Cost	2	3	2	1	3	1	3
Relative Rating Against Qualitative Criteria	1	3	1	1	3	2	2

SP 07R70-F

EOLDOUT FRAME

777	7	ر منه البي منه ماهن منه برور المراجع				۰,			
V		<u>VIII</u>	IX	X	XI	XII	XIII	XIV	XV
's-8	FS-2	FS-4	FS-8	FS-2	P-12 FS-4	fs-8	FS-2	P-13 FS-4	FS-8
995880	•995696	•995696	•995697	.993015	.993016	.993016	.995696	.005697	.995697
98.98	102.03	103.45	102.84	100.60	102.02	101.41	100.48	101.90	101.29
0050 1.5 6 0029 128 08	.005 11.5 46 .0029 .128 .08	.005 11.5 46 .0029 .128 .08	.005 11.5 46 .0029 .128 .08	.004 11.5 46 .002 3 .128 .08	.004 11.5 46 .002 3 .128 .08	.004 11.5 46 .0023 .128 .08	.007 11.5 46 .0039 .128 .08	.007 11.5 46 .0039 .128 .08	.007 11.5 46 .0039 .128 .08
3	13	13	13	_3	13	L3	13	13	13
002673 3.58	.002810 44.64	.002810 44.64	.002810 44.64	.002691 22.32	.002691 22.32	.002691 22.32	.002692 22.32	.002692 22.32	.002692 22.32
001363 5.79	.001433 22.32	.001433 22.32	.001433 22.32	.001372 11.16	.001372 11.16	.001372 11.16	.001373 11.16	.001373 11.16	.001373 11.16
	3	5	3	4	6	4	3	5	3
	2	4	3	3	5	4	2	4	3
		a second seco	l		<u>ana aka na a</u> fatisi da	an parte la secta di structura d		<u>e da ser de la ser</u>	en for la servició de

Hamilton U Standard A.

SP07R70-F(D)

4.4.1 Reliability:

All of the candidate subsystems were analyzed and each of them meet the reliability requirement, using the failure rates and analytical methods described in paragraphs 5.2.2. and 5.2.4. The several feed systems have the same reliability, out to the sixth significant place after the decimal. The engine placement concepts are very close to each other, to the third significant place. Thus, it is evident that the engine placement is the stronger influence on the subsystem reliability as determined by the referenced methods.

It should be recognized that the precision of the failure rates does not, of itself, justify calculating subsystem reliabilities to six significant places. Each of the calculations applies the same failure rates consistently, so that their value lies in the comparison of the candidate subsystems, regardless of the unknown inaccuracies which may exist in the failure rates.

The quantitative analyses of reliability have not considered any electrical control components or equipment except the electrical portions of those items shown on the failure rate listing in paragraph 5.2.2. It is recommended that all signal sources providing commands for the candidate subsystem be redundant.

The principal sources of potential unreliability are, in order of their importance:

- a. Closing and reopening of manifold valves between engine firings
- b. The engine gimballing actuation on engine placement concept P12
- c. Propellant-line connections of the individual engines to the feed system
- d. Engine values (if it were not for the many redundancies, and the manifold values, this would be the greatest single influence on subsystem reliability)

Diagnosis and correction of troubles will be facilitated if temperature sensors are provided on each of the engines, to provide a clear indication of whether the engines are responding to command. It is also recommended that the manifold valves be kept closed except for the periods in which thrust will be required. This will minimize navigational error which would result if an engine operated inadvertently for the time of communication to-and-from a ground station. It may also enable normal operations with an engine valve having a minor internal leak failure.

The numerical reliability assessments for each of the candidate systems are shown in Table 4.4.1-I. As the listed values indicate, there is no significant numerical difference between the candidates, but feed system concept FS-8 indicates a preferential trend.

A summary comparison of candidate system launch weight and numerical reliability assessments is presented in Table 4.4.1-II.

	FOLDOUT FRAME
Hamilton	DIVISION OF UNITED AIRCRAFT CORPORATION
Standard	A®

TABLE 4.4.1-1.	NUMERICAL	RELIABILITY	ASSESSMENT	FOR	CANDIDATE	SUBSYSTEMS

	Candidate	Engine	Feed System	Engine	Feed System	Subsystem	Relial
	Subsystem	Arrangement	Arrangement	Reliability	Reliability	Reliability	Ranl
	I	P5	FS-2	.995 764	.999 912	.995 690	8
	II	P5	FS-4	.995 784	.999 912	.995 697	6
	III	P5	FS- 8	•995 784	,999 912	.995 697	4
	IV	P7	FS- 2	.995 967	•999 912	.995 888	3
	V	P7	FS-4	•995 967	•999 912	.995 888	2
	VI	P7	FS- 8	•995 967	·999 912	.995 880	l
	TIT	PlO	F S- 2	•995 783	•999 912	.995 696	9
	VIII	Plo	FS-4	•995 783	•999 912	.995 696	7
	IX	PlO	F S- 8	•995 783	•999 912	.995 697	5
	X	P12	F S- 2	•993 103	.999 912	.993 015	12
	XI	P12	F Š- 4	•993 1.03	•999 912	•993 016	11
	XII	P12	FS-8	.993 103	•999 912	.993 016	10
	XIII	P13	FS-2	.995 784	•999 912	.995 696	8
	XIV	P13	FS- ¹	.995 784	.999 912	.995 697	6
	XV	P13	F S- 8	•995 784	.999 912	.995 697	4
بد ز.			A second s				

FOLDOUT FRAME

SP 07R70 - F

4.4-7

UBSYSTEMS

TABLE 4.4.1-II. WEIGHT VS RELIABILITY SUMMARY - PLANETARY ORBITER

•

1 L

	 8
em ity	Reliability Ranking
بر ک	8
7	6
7	4
8	3
8	2
0	1
D	9
5	7
7	5
	12

11

10

8

6

4

ty	Candidate	Total Weight (Ibs)	Estimated Reliability
	I	134.04	.99% 390
	II	136.27	.995 697
	III	134.43	.995 697
	IV	131.42	.995 879
	n V	133.64	.995 880
	VI	131.81	.995 880
	VII	135.04	.995 696
	VIII	1.37.26	.995 696
and a second sec	IX	135.43	.995 697
	X	133.65	.993 015
	IX	135.87	.993 016
	XII	134.04	.993 016
	XIII	133.52	.995 696
	XIV	135.74	•995 697
	XV	133.92	.99 ^{r.} :97

Hamilton U Standard A:

SP07R70-F

4.4.2 Weight

A weight summary for the Planetary Explorer Orbiter and Probe candidate propulsion subsystems is presented in Table 4.4.2-I. This table summarizes the dry weight, propellant and pressurant weight, and the total charged weight for the candidate subsystems. A breakdown of the dry weight, and of the propellant weight allocation by maneuver, is presented in Tables 4.4.2-II and 4.4.2-III for the Orbiter and Probe missions, respectively. The candidate subsystems are very similar with the significant differences being in the number and physical location of engines for each subsystem, and in the number and type of isolation valves in the upstream feed system. The number of engines obviously affects the subsystem weight, but the location of the engines on the spacecraft also influences the weight because of the following factors:

- Engine mounting structure
- Propellant feed tube length
- Electrical wiring harness and connectors

The upstream feed system component arrangement selection influences the subsystem weight for the following reasons:

- Number of isolation valves, pressure transducers and test ports
- Type of isolation values ordnance vs latching solenoids
- Component panel size dependent upon component arrangement

The weight variation between all candidate subsystems and between subsystems with the same number of engines and similar feed systems is presented in Tables. 4.4.2-IV through 4.4.2-VI.

Comparison of subsystems with the same number of engines and similar feed systems as listed in Table 4.4.2-VI shows weight variations of approximately 1.1% and 1.5% for the eight engine concepts and 1.7% and 2.5% for the six engine concepts, for the Orbiter and Probe, respectively. The weight variation influence in these cases is in the propellant tubing length, mounting brackets and electrical wiring harness. The two six engine candidate subsystems have more significant differences because of the gimbal actuators required for the one system.

The variation in the propellant required for performing the spacecraft maneuvers between the various candidate subsystems is insignificant, and is less than 0.4% of the launch weight of the systems. In other words, the mission average specific impulse for the candidate systems is approximately the same for all candidates.

			ORBITER		PROBE					
Candidate Subsystem		Dry Wt (lbs)	N2H4 & N2 (1.46 lbs Wt.(lbs)) Total Wt(lbs)	Dry	N2H4 + N2(.88 lbs Wt.(lbs)	Tot a l Wt (lbs)			
I	(P-5/FS-2)	44.3	90.54	134.84	37.3	64.54	:101.84			
II	(P-5/FS-4)	45.72	90.54	136.27	38.72	64 . 54	:103.26			
III	(P-5/FS- 8)	45.11	90 . 54	135.65	38.1 3	64.54	:102.67			
IV	(P-7/FS-2)	40.42	91.0	1 31. 42	33.42	64.75	98.17			
v	(P-7/FS-4)	41.84	91. 0	1 3 2.89	34.84	64.75	: 99•59			
VI	(P-7/FS-8)	41.23	91.0	132.23	34.23	64.75	98.98			
VII	(P-10/FS-2)	44 •3 5	90.69	1 35. 04	37.35	64.68	102.03			
VIII	(P-10/FS-4)	45 .77	90.69	136.46	38.77	64.68	103.45			
IX	(P-10/FS-8)	45.16	90.69	135.85	38.16	64.68	102.84			
х	(P-12M/FS-2)	43.07	90.58	1336.5	36.07	64.53	100.6			
XI	(P-12M/FS-4)	44.49	90.58	135.07	37.49	64.53	102.02			
XII	(P-12M/FS-8)	44.88	90.58	134.46	36.88	64.53	101.41			
XIII	(P-1 3/ FS- 2)	43.0	90.52	1 33.5 2	36.0	64.48	100.48			
XIV	(P-13/FS-4)	44.42	90.52	134.94	37.42	64.48	101.90			
XV	(P-13/FS-8)	43.81	90.52	134.34	36.81	64.48	101.29			
				an an a' she An an						

TABLE 4.4.2-I. WEIGHT SUMMARY - ORBITER AND PROBE

4.4-9

SP07R70-F

4.4.2 (continued)

Propulsion subsystem balancing weight has not been included in the weight analysis. Factors which have the greatest impact on subsystem unbalance are the unsymmetrical location of the engines on some of the candidate systems, and the modularized component panel located near the vehicle skin panels. The "dead weight" required to compensate for this unbalance would be prohibitive, approximately 5 and 10 lbs for engine placement concepts P-12 and P-13, respectively; and the unbalance in these cases could be better accomplished by judiciously locating the spacecraft packages to offset the unbalance. Unbalance caused by the tank location and weight tolerances is discussed in Section 5.12 (C.G. Tolerances). EOLDOUT FRAME

TABLE 4.4.2-II

WEIGHT

		545TEMB I, II & III (P-5)				SYSTEMS IV, V & VI (P-7)							
			FEE	D	5457272	7		·	FEE	D	5 45737	n	
			5-2	F	5-4	Ē	5-8	F	5-2	F	5-4	F	5-8
COMPONENT	WT	<i>φ</i> τγ	WT	QTY	WT	\$TY	WT	QT"4	WT	QT'Y	WT	arr	wr
TANK (9.83 ID)	1.6	9	14.4	9	14.4	9	14.4	9	14.4	9	14.4	9	14.4
ROCKET ENGINE ASS'Y	,88	8	7.04	8	7.04	8	7.04	6	5728	6	5,28	6	5,28
FILL & DRAIN VALVE	.28	2	,56	S	,56	2	156	2	,56	2	,56	Z	156
FILTER	.42	/	.42	11	.42	1	,42		,42	1	. 42	/	. 42
PRESSURE TRANSPUCER	.32	1	.32	. / .	.32	1	,32	/	,32	/	,32	1	137
150LATION VALVE - SQUIB	.42	-	-	~		2	.84	-			-	2	.84
ISULATION VALVE-LATCH.	.6	2	1.2	4	2,4	2	1.2	2	1.2	4	2,4	2	1.2
REA STRUCTURE - ZREA	.75	4	3.0	4	3.0	4	3.0	2	1.5	2	1,5	2	1.5
- I REA	.40	-		-		-	-	2	.80	2	,80	2	.80
- IREA	.70	-	_	1	-	-				-		-	
TUBING \$ FITTINGS	AR		2.1	-	2.1		2.1		2.6	-	2.6		2.6
MISC. BKTS, SCREWS, ETC.	AR	1	1.2	·	1.2	—	1.2	-	1.2	-	1.2	-	1,2
COMPONENT PANEL	AR		,50	1	.75	I	.50	7.	,50		,75	/	,50
TANK LATTY STRUTS	.70	9	6.3	9	6.3	9	6.3	9	6.3	9	6.3	9	6.3
WIRING HARNESS	202. CONN .7LB. WIRE	8	1.7	10	1.95	10	1.95	В	1.7	10	1.95	70	1.95
TEMP. SENSORS	.06	10	.6	10	16	10	.6	8	,48	8	,48	Ð	.48
REA THERMAL - 2REA	1.10	4	4.4	4	4.4	4	2.2	2	2.2	2	2.2	2	2,2
INSUL SHIELD - I REA	.35	-		-		-		-		-		6 67	
-IREA	.20			-		-	_	2	4	2	,4	2	.4
TEST POET VALUE	.28	2	-56	-1-	.28	1	.28	2	.56		,28	1	.28
ACTUATOR- SININGZ	1.05					-		-		•		-	
BALANCING WT.		-	-	-				-		-	-		
TOTAL DRY WT.			44,3		45.72		45.11.		40.42		41.84		41.23
PROPELLANT													
MIDCOURSE CORRECTION			41.23		41.23		41.23		41.22		41.22		41.22
ATTITUDE CONSTROL			1.99		1.99		1.99		2.06		2.06		2.06
SPIN CONTROL			1,52		1.52		1.52		1.53		1.53		1.53
ORBIT MANGUNER			42.86		42.86		42.86		43.12		43.12		43.12
RESIDUALS - LINES			.73		.73		.73		.86		,86		,86
LOADING TOL. (=,75%)			.66		.66		. lolo		.66		.66		.66
EXPULSION EFF. (99.9%			.09		.09		. 09		,09		,09		.09
PEOPERLANT (NZH4) TOT.			89.08		89.08		89.08		89.54		89.54		89.54
RESSURANT (N2)			1.46	1	1.46		1.46		1,46		1.46		1.46
TOTAL CHARGED WT.		1	134,84		136.27	1	135.65	1	131.42		132.84		132,23

IEIGHT SUMMARY - ORBITER

FOLDOUT FRAME SP 07R70-F

, UDUL

4. 4-11/4. 4-12

é	<u>VI</u>	(P-7)	7) SYSTEMS VII, VIII & IX (P.						SYSTEMIS X, XI & XII (P-12M)					SYSTEMS XIII, XIV & XV (P-13)						
TE	M			FEED)	SYSTER	7		FEED SYSTEM							FEED SYSTEM				
	F	5-8	F	5-2	ſ-	5-4	F	5-8	F	5-2	ſ	=5-4	ſ	-5-8	[=	3-2	ſ-	3-4	ſ	5-8
	ary	wr	QT'4	INT	QTY	WT	ϕT^{γ}	wr	<i>рт′Y</i>	WT	Q7'Y	WT	<i>Q</i> T'Y	WT	<i>φ</i> τΫ	WT	<i>q</i> 7'4	WT	<i>Υ</i>	$\psi \tau$
1	9	14.4	9	14,4	9	14.4	9	14.4	9	14.4	9	14.4	9	14.4	9	14.4	9	14.4	9	14.4
8	6	5.28	8	7.04	8	7.04	8	7,04	6	5,28	6	5.28	6	5.28	8	7.04	8	7,04	8	7.04
6	2	,56	2	,56	2	,56	2	,56	2	,56	2	,56	2	, 56	2	,56	2	,56	2	,56
2	1	. 42	1	.42	1	.42	1	.42	1	.42	11	.42	1	. 42	1	.42	1	. 42	1	.42
2	1	,32	1	,32	1	.32	1	,32	1	, 32	11	, 32	1	,32	1	.32	1.	, 32	1.	.32
	2	.84	-	-		-	2	.84	-		-	-	2	.84	-		-	•	2	. 8 4
1	2	1.2	2	1.2	4	2.4	2	1.2	2	1.2	4	2.4	2	1.2	2	1.2	4	2.4	2	1,2
	2	1.5	2	1.5	2	1.5	2	1.5	2	1.5	2	1.5	2	1.5	2	1.5	2	1.5	2	1.5
0	S	.80	4	1.6	4	1.6	4	1.6	-		-		-		4	1,6	4	1.6	4	1.6
	÷		-						2	1.4	2	1.4	2	1,4	-		-	ана на селото на село При селото на селото н	I	
ř		2.6	-	2.6		2.6	-	2.6		2.3		2,3		2.3	-	Z.1	-	Z. [-	2.1
		1,2	-	1.2	-	1.2		1.2	1	1.2	_	1.2	_	1.2	-	1.2	-	1.2	-	1.2
	1	.50	1	,50	1	,75	1	,50	1	,50	1	,75	1	,50	1	.50	1	.75	1	.50
	9	6.3	9	6.3	9	6.3	9	6.3	9	6.3	9	6.3	9	6.3	9	6.3	9	6.3	9	6.3
5	10	1.95	10	1.95	12	2.2	12	2.2	10	1.95	12	2.2	12	2.2	8	1.7	10	1.95	10	1.95
B	Ð	.48	10	.6	10	.6	10	.6	8	,48	8	,48	8	.48	10	.6	10	.6	10	16
2	2	2,2	2	2.2	2	2.2	2	2.2	2	2.2	2	2.2	2	2,2	2	2,2	2	2.2	2	2.2
	_		4	1.4	4	1.4	4	1.4	1		-		-						-	
	2	.4	5	-	-		-		2	4	2	,4	2	,4	4	• 8	4	, 9	4	8
	1	.28	2	.56	1	,28	1	.28	2	,56	1	,28	1	.28	2	. 56	1	.28	1.	, 28
		-	+		-		-		2	2.1	2	2.1	2	2.1	-	-	-		•	
			-		-		-		÷		-		-		-		-		-	
*		41.23		4435		45.77		45.16		43.07		44.49		44.88		43.0		44.42		43.81
		41.22		41.23		41.23		41.23		41.21		41.21		41.21		41,21		4/,21		41,21
		2.06		1.99		1.99		1.99		1.99		1,99		1.99		1.98		1.98		1.70
		1,53		1.52		1.52		1.52		1.52	-	1,52		1,52		1.53		1.5 3.	•	1.53
:		43.12		42.86		42,86		42,86		42.86		42,86		42.86		42.86		42.86		42.86
		.86		,88		.88		.88		.79		,79		.79		,73		،73		.73
States - States		.66		.66		.66		.66		.66		.66		.66		.bb		.66		.66
ineresta de la como		.09		.09		.09		,09		.09		,09		.09		.09		.09		.09
		07:54		89,23		89,23		89,23		89.12		89.12		87,12		89.06		89.06		89.06
		1.46		1.46		1.46		1.46		1.46		1.46		1.46		1.46		1.46		1.40
	Ī	132,23		135,04		136.46		135,85		133,65		135.07		134,46		135.52		134,94		134,34

EOLDOUT FRAME

TABLE 4.4.2 -III WEIGHT SUMM

		SYBTEMS I, II AIII (P-5)				P-5)	SYSTEMS IV, Y & VI (P-7).					54	5		
			FEG	205	SYSTE	NN			FEEC	> :	SYSTER	n			
		F	5-2	F	5-4	ſ	5-8	F	5-2	F	5-4	ſ	-3-8	F٢	-
	UNIT WT	QT'4	Wr	<i></i> \$7'Y	Wr	<i>φ</i> τ'Υ	wr	9T'4	wr	<i>\$7</i> 4	wr	<i>፞፞፞፞ዋ෦</i> ፟፟፟፟ጘ	wr	ar'y	
TANK (9.83 ID)	1.6	6	9.6	6	9.6	6	9.6	6	9.6	6	9.6	6	9.6	6	ļ
ROCKET ENGINE ASS'Y	, 88	8	7.04	8	7,04	8	7.04	6	5,28	6	5,28	6	5,28	8	
FILL & DEAIN VALUE	.28	Ζ	,56	2	,56	2	,56	Ζ	,56	2	,56	2	156	2	-
FILTER	.42	1	.42	1	.42	1	.42	1	.42	1	.42	1	.42	1	
PRESSURG TRANSDUCER	.32	11	.32	·/:	. 32	1	.32	-ŧ	.32	T	.32	1	. 32	1	
150LATION VALUE - SQUIB	.42	-		•		Ζ	·84	+-	an a	-	-	2	,84	-	
ISULATION VALUE - LATEH	.6	2	1.2	4	2,4	2	1.2	2	1.2	4	2,4	2	1.2	2	
REA STRUCTURE - 2REA	.75	4	3,0	4	3.0	4	3.0	Z	1.5	2	1.5	2	1.5	2	
-IREA	.40			-		-		2	.80	2	,80	2	. 80	4	
-IREA	.70	-		-	—	-		-					_	-	
TUBING + FITTINGS	AR	_	20	-	2.0	1 <u>-</u> 1	2.0	-	2.5	-	2.5	-	2,5	-	
KAISC. BILTS, SCIEBWS, ETE.	AR	-	1.2		1.2		1,2	-	1,2	-	1.2		1,2		
COMPONENT PANEZ	AR	1	,50	1	.75	1	.50		.50	1	.75		.50	/	
TANK M'T'L STRUTS	.70	6	4.Z	6	4.2	6	42	6	4.2	6	4,2	6	4.2	6	
WIRING HARNESS	TLB WIRE	D	1.7		1.95	10	1,95		1.7		1.95		1.95		
TENDP SENSORS	. 06	10	,6	10	.6	10	.6	8	.48	8	,48	8	,48	10	
REA THERMAL - 2 REA	1.10	4	4,4	4	4.4	4	9.4	2	2.2	2	2,2	2	2.2	2	
INSUL,/ISHIERD - IREA	,35			-		-		-		-	-	-		4	
IREA	.20	-		-				Z	, 4	2	.4	2	.4	-	
TEST PORT VALVE	•28	2	.56	1	.28		.28	2	,56		,28		,28	2	
ALTUATOR - SWIVEL	1.05	-	 	-		-				-		-	- 19 19	-	
BALANCING WT.								-				-			
TOTAL DRY WT.			37.3		38.72		38.13	ļ	33,42		34,84	.	34.23		
PROPELIANT															
MIDCOUPSE CORRECTION			49.38		49,38		49,38		49.37		49.37		49.37		4
ATTITUDE CONTROL			6.82		6.82		6.82		6574		6.94		6.94		
SPIN CONTROL			3,44		3.44		3,44		3.43		3,43		3,43		
OFBIT MANEUVER			2.79		2.19		2,19		2.18		2.10		6.10		
RESIDUALS - LINES			טקי		.70		,70		,82		, 82		.82	,	
- LOADING TOL(1.75%)			.47		.47		.47		-47		.47		.47		ini Filipini
- EXPULSION EFF. (99.9%)	1		. 06		106		00,	-	, 06	-	106		106		
POPEZCANT (N2144) TOT.			63.66		63.66		63,66		63.87		63.87		63.87		
HZESSURANT (HZ)			,88		.88		00,	-	100		,88		100	<u></u>	
TOTAL CHARGED WT.	1		101.84		103.26		102.67	1	98.17	1	199.57	1	178.98		1

GHT SUMMARY - PROBE

FOLDOUT FRAME 4.4-13/4.4-14

•

SP 07R70-F

-	(0 -1	~				1		1	· · · · · · · · · · · · · · · · · · ·		······			+					
-	(12-1)	5	YSTEM:	s I	4, VII \$		(P-10)	5	YSTEM	s X	<u>, XI \$ X</u>	Π(P-12NN)	5	YSTEM	<u>s</u> X	III, XIV	¢Z	W(P-13)
_			Fe	250	54572	M			FE	25 D	54370	EM			FEZ	ΞD	545 125,	м	
	F3-8	F	5-2	F	5-4	F	3-8	F	=3-2	ŀ	-5-4	F	=5-8	F	-3-2	r-	-5-4	<i>[-</i>	=5-8
7	7 44 7	ar ¹	WT.	qr	r wr	474	- <u>vv r</u> -	974		QT	+ wr	QT!	η ωΓ	974	wr	arr	WT	φT'	1~~~
0	9.6	6	9.6	6	9.6	6	9.6	6	9.6	6	9:6	6	9.6	6	9.6	6	9.6	6	9.6
6	5.28	8	7.04	8	7.04	8	7.04	6	5.28	6	5,28	6	5,28	8	7,04	8	7.04	8	7,04
2	,56	2	,56	2	,56	2	.56	2	,56	2	,56	2	,56	2	,56	2	.56	2	.56
1	.42	1	.42	1	. 42	1	. 42	1	.42	1	.42	1	.42	1	. 42	1	. 42	1	. 42
7	• 32	1	, 32	1	.32	\mathbf{L}	.32	1	.32	1	.32	1	.32	1	.32	1	.32	1/1	.32
N	,84	-		-	-	2	.84	-	-	-		2	,84	-	-	-	-	2	.84.
2	1.2	2	1.2	4	2,4	2	1.2	2	1.2	4	2.4	2	1.2	2	1.2	4	2.4	2	1.2
P	1,5	2	1.5	2	1.5	2	1.5	2	1.5	2	1.5	2	1,5	2	1.5	2	1.5	2	1,5
P	.80	4	1.6	4	1.6	4	1.6	-		-		-		4	1.6	4	1.6	4	1.6
	-	-	-			-		2	1.4	2	1.4	2	1.4	-	-	-		-	-
	2,5	-	2.5	-	2.5	-	2.5	-	2.2	-	2.2		2.2	-	2.0	-	2.0		2.0
Ē.	1.2		1.2	_	1.2	-	1.2	-	1.2	_	1.2	-	1.2	-	1.2	-	1.2		1.2
	.50	1	.50	1	.75	1	.50	1	.50	1	.75	1	.50	1	.50	1	.75	1	.50
0	4.2	6	4.2	6	4.2	6	4,2	6	42	6	4.2	6	4.2	6	4.2	6	4.2	6	4.2
	1.95	10	1.95	12	2.2	/2	2.2	10	1.95	12	2.2	12	2.2	8	1.7	10	1.95	10	1.95
B	,48	10	.6	10	6،	10	.6	8	.48	8	,48	8	.48	10	.6	10	.6	10	.6
2	2.2	2	Z.Z	2	2.2	2	2.2	2	2.2	2	2.2	2	2.2	2	2.2	2	Z.2	2	2,2
		4	1.4	4	1.4	4	1.4	1	-	-	-			i j÷	-	1		+	a a - aan a na
-	.4	-		-		-		Z	.4	2	,4	2	,4	4	, 8	4	. 8	4	.8
	,28	2	,56	1	,28	1	.28	2	.56	1	.28	1	.28	2	.56		.28	1	.28
-	-	-		-		-		2	2.1	2	2.1	2	2.1	-	-	1	-	10 10 10 10 10	
-		-		-		-		•				•		-	ana ang ang ang ang ang ang ang ang ang	•		-	
_	34.23		37.35		38.77		38.14		36.07		37.49		36.88		360		37.42		36.81
													an a						
	49.37		49,38		49.38		49.38		49.37		49.37		49,37		49.37		49.37		49.37
	6.94		6,82		6,82		6.82		6.79		6.79		6.79		6.79	an A Briand Daoine	6,79		6,79
	3,43		3,44		3.44		3,44		3,44		3.44		3.44		3,44		3,44		3,44
	6.18		2.79		2.79		2.79		2.77		2.77		2.77	arian Etrasi	2.77		2,77		2,77
	.82		,84		-84		- 84		.75		-75		•75		07-		.70		170
	.47		.47		.47		.47		.47		-47		.47		.47		.47		.47
_	106		.06		.06		. 06		.06		.06		. 06		.06		,06		.06
	65.81		63.80		63.80	1	63.80		63.65		63,65		63.65		63,60		63,60		63.60
╞	100		,88		.88		.88		.88		.88		.88		.88		. 88		.88
l	78.78	: · ·]	102.03		103,45		102.84		100,6	Π	102.02		101.41		100.48		101,9		101.29

. . . .

SP 07R70 - F

IVISION OF UNITED AIRCRAFT CORPORATION

Hamilton

Standard

TABLE 4.4.2-IV

MAX. WEIGHT VARIATION BETWEEN SUBSYSTEMS

Candidate		
Subsystem	Subsystem Charged	Weight
	Orbiter	Probe
VIII (P-10/FS-4) IV (P-7/FS-2)	136.46 131.42	103.45 98.17
Weight Variation	5.04	5.28

TABLE 4.4.2-V MAX. WEIGHT VARIATION BETWEEN SUBSYSTEMS WITH SAME NUMBER OF ENGINES

	Subsyst	Subsystem Charged Wt									
C an didate	Orbiter	Probe									
Subsystem	8 REA's 6 REA's	8 REA's 6 REA's									
VIII (P-10/FS-4)	136.46	103.45									
XIII (P-13/FS-2)	133.52	100.48									
XI (P-12M/FS-4)	135.07	102.2									
IV (P-7/FS-2)	131.42	98.17									
Weight Variation	2.94 3.65	2.97 3. 85									

TABLE 4.4.2-VI

MAX. WEIGHT VARIATION BETWEEN SUBSYSTEMS

OF SIMILAR FEED SYSTEMS AND SAME NUMBER OF ENGINES

	Subsystem Charged Wt						
Candidate Subsystem	Orb: 8 REA's	iter 6 REA's	Pro 8 REA's	be 6 REA's			
VII (P-10/FS-2) XIII (P-13/FS-2) X (P-12M/FS-2) IV (P-7/FS-2)	135.04 133.52	133.65 131.42	102.03 100.48	100.6 98.17			
Weight Variation	1.52	2.23	1.55	2.43			

Hamilton U UNITED AIRGRAFT CORPORATION Standard A®

SP07R70-F

4.4.3 <u>Performance Margin</u>

The performance margin for the candidate propulsion systems has been considered from the following two aspects which are discussed in detail in the subsequent sections.

- a. The margin available for performing all required maneuvers within rates, accuracy and resolution required.
- b. The operating life margin available in the Rocket Engine Assemblies (REA's) selected for each candidate system. Operating life margin is the difference between the operating life required for the Planetary Explorer Orbiter and Probe missions, and the operating life capability which has previously been demonstrated.

4.4.3(a) MANEUVERING RATES, RESOLUTION AND ACCURACY:

A performance analysis of the five candidate systems has been conducted for the purposes of comparing the relative suitability of each in performing maneuvers required for the Planetary Explorer Probe and Orbiter Missions. The results of this study indicate that all candidate systems are capable of meeting the maneuvering rate, accuracy and resolution requirements defined in the subsystem specification (S-723=0-10 Rev. A). There are, however, significant differences in performance margin and operational complexity which allow the candidate systems to be ranked. Performance parameters typical of the Hamilton Standard IDCSP/A 5 lb thrust engine were used as a basis for the study.

4.4.3(a)1 Maneuvering Rate

Minimum maneuvering rates for the candidate subsystems were calculated and are presented in Table 4.4.3(a)-I (Orbiter) and Table 4.4.3(a)-II (Probe) along with the mission requirements and the mission event at which the minimum rate occurs.

With regard to the rate of velocity change, the distinguishing factor between candidates is the number of ΔV engines firing; hence systems with engine placement configurations P5 and P10 (four ΔV engines) exhibit the highest ΔV maneuvering rates, while systems with engine placement configuration P12 (one ΔV engine) exhibit the lowest rate for both Probe and Orbiter missions. All of the ΔV rates for both Probe and Orbiter missions are within specified limits.

The precession ($\Delta \alpha$) maneuver rates are equal for four of the five candidates, with candidate systems utilizing engine placement configuration P7 having a lower rate of change due to the smaller moment arm between engines.

EOLDOUT FEAME Hamilton Division of United Alegraft Corporation Standard A®

Candidate Systems	Maneu- ver	Minimum Rate	Mission Event	Specification Requirement
I, II & III (P-5)	Δ V Δ α Δ N	1.81 x 10 ⁻² m/sec ² 50.1°/min 121 rpm/min	21, 2 m/sec V 28, 6° Precession 13.14 ± 2.5 rpm	3.74 x 10 ⁻³ m/sec ² * 3°/min 20 rpm/min
IV, V & VI (P-7)	Δ V Δ α Δ N	.91 x 10 ⁻² m/sec ² 50.1°/min 121 rpm/min	21 28 13, 14	3.74 x 10-3 m/sec ² 3°/min 20 rpm/min
VII, VIII & IX (P-10)	Δ V Δ α Δ N	.91 x 10 ⁻² m/sec ² 50.2 °/min 122 rpm/min	21 28 13, 14	3.74 x 10 ³ m/sec ² 3°/min 20 rpm/min
X, XI & XII (P-12)	Δ V Δ α Δ N	.60 x 10 ⁻² m/sec ² 50.3 °/min 122 rpm/min	21 28 13, 14	3.74 x 10 ⁻³ m/sec ² 3°/min 20 rpm/min
XIII, XIV & XV (P-13)	$ \begin{array}{c} \Delta & \mathbf{V} \\ \Delta & \mathbf{a} \\ \Delta & \mathbf{N} \end{array} $.76 x 10 ⁻² m/sec ² 50.2 °/min 122 rpm/min	21 28 13, 14	3.74 x 10-3 m/sec ² 3°/min 20 rpm/min

TABLE 4.4.3.1-I. MANEUVERING RATE MARGIN - ORBITER MISSION

V

C B H(

FOLDOUT FRAME

TABLE 4.4.3.1-II MANEUVERING RATE MARGIN - PROBE MISSION

Panáfáste	Maneu-	1		Specification
STATEZ	ver	Minimum Rate	Mission Event	Requirement
(p-5)	ΔV $\Delta \alpha$ ΔN	9.9 x 10 ⁻³ m/sec ² 11.5 °/min 46 rpm/min	15, 2.0 m/sec V 28, Final Prece- ssion (85 rpm) 23, spin up mini- probes	3.74 x 10 ⁻³ m/sec ² (midcourse) 5.74 x 10 ⁻³ m/sec ² bus retarget 3°/min 20 rpm/min
IV, V & VI (P-7)	$\Delta \mathbb{V}$ Δa $\Delta \mathbb{N}$	5 x 10 ⁻³ m/sec ² 11.5 °/min 46 rpm/min	15 28 23	3.74 x 10-3 m/sec 5.74 x 10 ⁻³ m/sec 3°/min 20 rpm/min
VII, VIII & IX (P-10)	$\Delta \mathbb{V}$ Δa $\Delta \mathbb{N}$	x 10-3 m/sec ² °/min rpm/min	15 28 23	3.74 x 10 ⁻³ m/sec ² 5.74 x 10 ⁻³ m/sec ² 3°/min 20 rpm/min
VII, VIII & IX (P-10)	ΔV Δa ΔN	5.0 x 10 ⁻³ m/sec ² 11.5 °/min 46 rpm/min	15 28 23	3.74 x 10 ⁻³ m/sec ² 5.74 x 10 ⁻³ m/sec ² 3°/min 20 rpm/min
X, XI & XII (P-12)	ΔV Δ <i>a</i> ΔN	4.0 x 10-3 m/sec ² 11.5 °/min 46 rpm/min	15 26, Bus retarget 28 23	3.74 x 10 ⁻³ m/sec ² 5.74 x 10 ⁻³ m/sec ² 3°/min 20 rpm/min
XIII, XIV & XV (P-13)	ΔV Δα ΔN	7 x 10-3 m/sec ² 11.5 °/min 46 rpm/min	15 28 23	3.74 x 10 ⁻³ m/sec ² 5.74 x 10 ⁻³ m/sec ² 3°/min 20 rpm/min

÷

¥.

Hamilton U AIRCRAFT CURRENT Standard AR

SP07R70-F

4, 4, 3(a)1 (continued)

There is no difference in spin speed rate of change among the candidate systems due to their geometrical similarity (all have two active spin engines and virtually identical moment arms).

In general, the maneuvering rates for the Probe mission are characteristically slower than those for the Orbiter due to the greater mass, moment of inertia, and lower propellant tank pressure (thrust) which exist over most of the mission.

4.4.3(a)2 Resolution

Orbiter:

Worst case resolution values, corresponding mission events, and specification requirements for the Orbiter mission are presented in Table 4.4.3(a)-III for the nominal and single engine firing cases. Nominal velocity resolution values are below the specified maximum 0.1 m/sec for all candidates. As would be expected, systems with engine configurations such as P5 with four ΔV engines exhibit coarser resolutions than those with engine configuration P12 (one ΔV engine), and there is also no difference between the resolutions obtainable with the various candidates when only one engine is fired.

In order to satisfy the $\Delta \alpha$ resolution requirement of .2°, it is necessary to utilize pulse widths of shorter duration than the nominal .050 sec, and to fire the $\Delta \alpha$ engines singly for all Orbiter missions. The values quoted in Table 4.4.3(a)-III or for $\Delta \alpha$ resolution are based on a pulse width of .025 sec and are all within the specified maximum. The ΔV produced by firing a single $\Delta \alpha$ thrustor for .025 sec will be negligible (.0020 m/sec).

There are no differences in spin rate resolution among the candidate systems and the nominal resolution (.11 rpm) is well below the specification value of .25 rpm.

Probe:

Maneuver resolution values for the Probe mission are given in Table 4.4.3(a)-IV. The resolution characteristics of the Probe candidate systems are inter-related in the same manner as those for the Orbiter Mission except that the greater mass and moment of inertia of the Probe vehicle result in more favorable (smaller) resolution values. Single engine firings are not required to achieve the specified .2° precession resolution.

FOLDOUT FRAME

Hamilton Standard TABLE 4.4.3.1-III. MANEUVERING RESOLUTION - ORBITER MISSION

Ce S

I, (P

IV (P

VI (F

X, (F

XI (F

N

Candidate Systems	Maneu- ver	Worst Case Nominal	e Resolution Single Engine	Mission Event	Specification Requirement
I, II & III (P-5)	ΔV	.0050 m/sec	.0025 m/sec	32, Periapsis reduction	.l m/sec
×	Δα	.266°	.133°	9, Orient for cruise	.2°
	Δ N	.ll rpm	.055 rpm	l, initial spin control	.25 rpm
					+
IV, V & VI	ΔV	.0018 m/sec	.0009 m/sec	32	.1 m/sec
(F- ()	$\Delta \alpha$ Δ N	.267° .ll řpm	.134° .055 rpm	9 1	.2° .25 rpm
VII, VIII & IX	ΛV	.0030 m/sec	.0015 m/sec	32	.l m/sec
(P-10) *	Δ α Δ Ν	.266° .ll rpm	.133° .055`rpm	9 1	.2° .25 rpm
X, XI & XII (P-12)	Δν	.0080 m/sec	.0030 m/sec	32	.l m/sec
*	$ \begin{array}{c} \Delta \alpha \\ \Delta N \end{array} $.266° .11 rpm	.133° .055`rpm	91	.2° .25 rpm
XIII, XIV & XV (P-13) *	$ \begin{array}{c} \Delta \ \mathbf{V} \\ \Delta \ \mathbf{a} \\ \Delta \ \mathbf{N} \end{array} $.0076 .266° .ll rpm	.0038 m/sec .133° .055`rpm	32 9 1	.] m/sec .2° .25 rpm

NOTE: UNLESS OTHERWISE SPECIFIED, VALUES ABOVE ARE BASED ON .050 SEC PULSE WIDTH

* .025 sec pulse width

Candidate Systems	Maneu- ver	Worst Cas Nominal	e Resclution Single Engine	Mission Event	Specification Requirement
I, II & ÍII (P-5)	ΔV	.0029 m/sec	.0015 m/sec	25, Retarget bus	.l m/sec
	$\Delta \alpha$ ΔN	.256° .08 rpm	.128° .04 rpm	7, Orient for cruise 1, initial spin control	.2° .25 rpm
IV, V & VI (P-7)	$egin{array}{c} \Delta & \mathbb{V} \\ \Delta & \alpha \\ \Delta & \mathbb{N} \end{array}$.0029 m/sec .128° .08 rpm	.0015 m/sec .06 ^{1,°} .04 rpm	26 7 1	.1 m/sec .2° .25 rpm
VII, VIII & IX (P-10)	$\begin{array}{c} \Delta V \\ \Delta a \\ \Delta N \end{array}$.0029 m/sec .128° .08 rpm	.0015 m/sec .064° .04 rpm	26 7 1	.l m/sec .2° .25 rpm
X, XI & XII (P-12)	$\begin{array}{c} \Delta \ \mathbb{V} \\ \Delta \ \alpha \\ \Delta \ \mathbb{N} \end{array}$.0023 m/sec .128° .08 rpm	.0012 m/sec .064° .04 rpm	26 7 1	.1 m/sec .2° .25 rpm
XIII, XIV & XV (P-13)	$ \begin{array}{c} \Lambda \\ \nu \\ \Lambda \\ a \\ \Lambda \\ N \end{array} $.0039 m/sec .128° .08 rpm	.0020 m/sec .064° .04 rpm	26 7 1	.1 m/sec .2° .25 rpm
	Candidate SystemsI, II & III (P-5)IV, V & VI (P-7)VII, VIII & IX (P-10)VII, VIII & IX (P-12)X, XI & XII (P-12)XIII, XIV & XV (P-13)	Candidate SystemsManeu- verI, II & III ΔV (P-5) Δa ΔN IV, V & VI (P-7) Δv ΔN VII, VIII & IX (P-10) ΔV Δa X, XI & XII (P-12) ΔV X, XI & XII (P-13) ΔV XIII, XIV & XV (P-13) ΔV	Sandidate SystemsManeu- verWorst Cas NominalI, II & III ΔV .0029 m/sec $A a$ $(P-5)$ Δa Δa ΔN .256° $.08$ rpmIV, V & VI ΔV Δa $.08$ rpm.0029 m/sec $.128°$ $.08$ rpmIV, V & VI ΔV Δa $.08$ rpm.0029 m/sec $.128°$ $.08$ rpmVII, VIII & IX (P-10) ΔV Δa ΔN .0029 m/sec $.128°$ $.08$ rpmX, XI & XII (P-12) ΔV ΔN .0023 m/sec $.128°$ $.08$ rpmXIII, XIV & XV (P-13) ΔV ΔN .0039 m/sec $.128°$ $.08$ rpm	Janidate JystemzManeu- verWorst Case Resclution Single Engine7, II & III (P-5) ΔV .0029 m/sec Δa .0015 m sec Δa ΔN .256° ΔB rpm.128° $.04$ rpmIV, V & VI (P-7) ΔV Δa ΔN .0029 m/sec $.128°$ $.08$ rpm.0015 m/sec $.04$ rpmIV, V & VI (P-7) ΔV 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 4.4.3.1-IV MANEUVERING RESOLUTION - PROBE MISSION

ec

ЭC

m

93

ec

m

1) TE: .050 second pulse width used to generate this table.

Hamilton U AIRCRAFT CORPORAT

SP07R70-F

4.4.3(a)2 (Continued)

Velocity and spin rate resolution values for all candidate systems are well within the specification minumums for nominal operation.

4.4.3(a)3 Maneuvering Accuracy

Candidate system accuracies for Probe and Orbiter missions are shown in Tables. 4.4.3(a)-V and 4.4.3(a)-VI. These accuracy values were derived from the mission operations analysis (Section 5.4) and the maneuver error analysis (Section 4.4.3(a)4) and are, therefore, representative of the maneuver accuracy likely to occur during a real mission rather than the ultimate values obtainable in a given candidate system without regard to the attendant complexity of the maneuver. The specification requirements for accuracy were used as constraints in the Flight Operations Study, with the result that all of the accuracy values in Tables 4.4.3(a)-V and 4.4.3(a)-VI are within specification limits. The relative merits of the candidate system, therefore, must be based on the complexity (number of steps necessary to accomplish) required in execution of the maneuver within the accuracy constraints. For instance, in executing the first mid-course correction (Event #11, Orbiter Mission), the accuracy associated with candidate systems with engine configuration P5 appears to be inferior to that available with other candidate systems. It should be noted, however, that for configuration P5, only three increments are required to execute the maneuver, whereas 29 steps are required for the other systems in order to keep the large spin disturbance error common to all systems except P5 within specification limits (±.3 rpm). The extra maneuver increments required for candidate systems with engine placement configuration P7, P10, P12 and P13 are responsible for their superior accuracy in this maneuver, but these systems are obviously inferior to those using P5 on the basis of maneuver complexity. A general comparison of the accuracies and disturbance errors is presented in the error matrix, Table 4.4.3(a)-IX. The systems are ranked on a performance basis in the Flight Operations Analysis, Section 4.4.6, Tables 4.4.6-I, 4.4.6-II and 4.4.6-III.
	<u>TA</u> I	<u>SLE 4.4.3.1-VI</u>	MANEUVERING	ACCURACY -	PROBE MISSION	-
Candidate System	Maneuver	Mission Worst Case Accuracy	Number of Maneuver Increments	Mission Event	Spec Value	Remarks
I, II & III (P-5)	V >2 m/sec	•44%	س	9	2 1/2%	Spin control needed
(+ -∠)	V≤2 m/sec	3%	2	15	5%	Geodesia de la companya de la
	$\Delta \alpha$ ΔN	.11 .049 rpm	5	23	± .20 ± .10 rpm	Spin control needed
IV, V & VI (P-7)	V>2 m/sec	•236%	13	9	2 1/2%	Spin control needed
() (V≦2 m/sec	2.65%	2	15	5%	
	$\Delta \alpha$.066°	3	7	± .20°	
	ΔN	.049 rpm	3	23	± .10 rpm	
VII, VIII & IX (P-10)	V > 2 m/sec ΔV	.202%	13	9	2 1/2%	Spin control needed
	V≦2 m/sec	2.3%	2	15	5%	· · · · · · · · · · · · · · · · · · ·
	$\frac{\Delta \alpha}{\Delta N}$.096° .049 rpm	2 3	23	± .20° ± .10 rpm	
X, XI & XII (P-12)	V > 2 m/sec ΔV	.174%	13	9	2 1/2%	Spin control needed
	V≦2 m/sec	3.62%	1	15	5%	
	$\Delta \alpha$.11°	5	7	± .20	Spin control needed
		.049 rpm	3	23	± .10 rpm	
XIII, XIV & XV (P-13)	V>2 m/sec ΔV	.202%	13	9	2 1/2%	Spin control needed
	V≦2 m/sec ∆α	2.3% .11°	2	15 7	2% ±.20°	Spin control needed
	ΔN	.049 rpm	3	23	± .10 rpm	

. . . .

÷.,

. k. .

FOLDOUT FRAME

ATION

Hamilton Standard

. .

		Mission	Number of			
Candidate		Worst Case	Maneuver	Mission	Spec	
Systems	Maneuver	Accuracy	Increments	Event	Value	Remarks
I, II & III	V > 2 m/sec	1.3%	3	11	2 1/2%	Spin control needed
(エーノ)	V ≤ 2 m/sec	3%	2	21	5%	
	Δα	.17°	2	31	± .20	One engine, spin con- trol needed
	ΔN	.041 rpm	2	7	± .10 rpm	
IV, V & VI (P-7)	V > 2 m/sec ΔV	.085%	29	11	2 1/2%	Spin and orientation control needed
	V ≤2 m/sec	2.65%	2	21	5%	
	$\Delta \alpha$.14°	2	31	± .20°	
	Δ N	.041 rpm	2	7	± .10 rpm	
VII, VIII & IX (P-10)	V > 2 m/sec ΔV V < 2 m/sec	.068%	29	11	2 1/2% 5%	Spin and orientation control needed
	$\Lambda \alpha$	<u> </u>	2	21	<u> </u>	One engine
		.041 rpm	2	7	± .10 rpm	
X, XI, & XII (P-12)	V > 2 m/sec	.058%	29	11	2 1/2%	Spin and orientation control needed
	$V \leq 2 \text{ m/sec}$	3.62%	1	21	5%	
		• <i>L'(</i>	2	3⊥	± .20*	one engine, spin control needed
	ΔN	.041 rpm	2	7	± .10 rpm	
XIII, XIV & XV (P-13)	$\overline{V} > 2 \text{ m/sec}$.068%	29	11	2 1/2%	Spin and orientation control needed
ハー ーイ	$v \leq 2 \text{ m/sec}$	2.3%	2	21	5%	
	$\Delta \alpha$	•17 ⁸	2	31	± .20°	One engine, spin control needed
		.041 rpm	2	7	± .10 rpm	

4

-

TABLE 4.4.3.1-V. MANEUVERING ACCURACY - ORBITER MISSION

4.4-21

j. ₽

1

FOLDOUT FRAME

SP 07R70 - F

· .

Hamilton UNITED AIRCRAFT CORPORATION Standard A®

4.4.3(a)4 Maneuvering Error Study

The error analysis presented in the following paragraphs is the basis for determining the maneuvering accuracy associated with the candidate systems and, in particular, the five candidate engine placement concepts. The results of the error study were also used to determine the operational procedures necessary to perform the mission maneuvers within the allowable accuracy and disturbance limits (such as velocity perturbation during spin rate change). The origins of the various maneuver errors are described in this section and the error equations are presented in summary form by Table 4.4.3(a)-IX. Specification allowable errors are presented in Table 4.4.3(a)-VII.

PLANETARY EXPLORER ERROR ANALYSIS:

There are nine basic errors associated with the three propulsion system maneuvers $(\Delta V, \Delta N, \Delta \boldsymbol{\alpha})$. These errors may be represented as follows:

	Error in 🕇		RESULT		
	Caused by	V	α	N 1	
	ΔV	$\frac{\mathrm{d} \mathrm{V}}{\Delta \mathrm{V}}$	d a ΔV	$dN_{\Delta V}$	Error Matrix
Intended Maneuver	Δα	dV∆α	<u>dα</u> ∆α	^{dN} ∆α	$=\begin{pmatrix} E_{11} & E_{12} & E_{13} \\ E_{21} & E_{22} & E_{23} \\ E_{21} & E_{22} & E_{23} \end{pmatrix}$
	$\Delta \mathbf{N}$	$\text{d} v_{\Delta N}$	$d \boldsymbol{\alpha}_{\Delta N}$	$\frac{\mathrm{dN}}{\Delta\mathrm{N}}$	$\sqrt{-31}$ 232 233/

 $\frac{dV}{\Delta V}$, $\frac{d\alpha}{\Delta \alpha}$ and $\frac{dN}{\Delta N}$ are the direct errors in ΔV , $\Delta \alpha$ and ΔN expressed as

fractions of the magnitudes of the intended maneuvers.

d $\alpha_{\Delta V}$ (typically) is the subsidiary error or disturbance in α caused by a ΔV maneuver.

The following pages present equations for the nine errors expressed in terms of engine and vehicle parameters for which values can be obtained from test data and/or judicious estimates. The symbols used in the equations are defined in Table 4.4.3(a)-VII

Hamilton Standard

U

A

SP07R70-F

	TABLE 4.4.3.1-VII ERROR EQUATION NOMENCLATURE	
Symbol	Nomenclature	Units
v	Spacecraft velocity	Ft/Sec
a l	Angle of spin axis to ecliptic plane	Radians
N	Spacecraft spin rate - RPM	RPM
ΔV	Maneuver magnitude - velocity change	Ft/Sec
Δα	Maneuver Magnitude - Precession	Radians
ΔN	Maneuver Magnitude - Spin Rate Change	RPM
dV	Error Magnitude - velocity	Ft/Sec
d a	Error Magnitude - Spin axis angle	Radians
dN	Error Magnitude - Spin rate	RPM
ω	Angular velocity about spin axis ($\omega \frac{60}{2\pi}$) = N	Rad/Sec
. M _v	Vehicle mass	LBM
go	32.16 lbm/slug or ft/sec ²	
Izz	Vehicle moment of inertia about spin axis	Slug-Ft ²
n	Impulse Effectiveness	
^I Е, П	Engine impulse produced by ΔN engine(s) firing for a time equivalent to 180° rotation of the vehicle about the spin axis	LBF-SEC
ra	Moment arm or de thrustors	
Δη	Deviation from nominal of impulse effectiveness for a Δ V engine.	
IE	Raw impulse produced by an engine	
ć	$\epsilon = \frac{dI_E}{I_E}$ = Fraction deviation of raw engine impulse from nominal	
r _{ea} , r _{eN}	Axial and radial components of the C.G. displace- ment from its presumed location relative to the planes of the Λ N and $\Delta \alpha$ couples.	
arr: a c	Portion of $r_{\epsilon \alpha}$ caused by calibration errors	FT
drE <i>s</i> F	Portion of $r_{\boldsymbol{\epsilon} \boldsymbol{\alpha}}$ resulting during flight	FT
drenc	Portion of $\mathbf{r}_{\boldsymbol{\epsilon}N}$ caused by calibration errors	FT
dRENC	Portion of $r_{\boldsymbol{\epsilon}N}$ resulting during flight	FT
\$	IEI - IE2 = Engine to engine impulse repeatability IE NOM.	
r a N	Distance from plane or $\Delta \alpha$ couple to spin axis	FT
r Na	Axial distance between C.G. and plane of \varDelta N couple (or single engine)	
d⊖G	Thrust vector angular perturbation due to gas flow direction	
d0N	Thrust vector angular perturbation due to nozzle characteristics	
đX	Uncertainty in geometrical location of thrust vector line of action	
dIne	Test to test end ne immilse uncertainty	

Hamilton Standard A®

 $\frac{\mathrm{dV}}{\Delta \mathrm{V}} = \sqrt{\epsilon^2 + \Delta \eta^2}$

Source of Error: '

The raw engine impulse and/or the impulse effectiveness deviate from the values upon which the firing time for the maneuver was based.

Source of Error:

Line of action of effective impulse vector from ΔV engines is displaced by $r_{E^{\infty}}$ from the CG, causing an unwanted precession torque.

$$r_{\mathbf{E}\boldsymbol{a}} = \sqrt{dr_{\mathbf{E}}\boldsymbol{a}_{\mathbf{C}}^{2} + dr_{\mathbf{E}}\boldsymbol{a}_{\mathbf{f}}^{2}}$$

The uncertainty in CG location, rEQ, is the statistical sum of the calibration error dr_EQ c and the flight uncertainty dr_EQ F.

A description of the factors comprising drEac, drEaF are given in Table 4.4.3(a)-VIII.

Source of Error:

Line of action of effective ΔV engine impulse vector is displaced radially from the spin axis (CG), thus producing a spin torque.

$$rEN = \sqrt{(drENC)^2 + (drENF)^2}$$

The reasoning here is identical to that used for r_{E2} in E_{12} (page).

Source of Error:

Variation in impulse delivered by members of Δa couple produce a net impulse imbalance and hence an unwanted ΔV .

4.4.3(a)4 (continued)

0

$$\frac{\mathrm{d}a}{\Delta a} = \frac{\boldsymbol{\eta}\mathbf{r}_a \ \mathbf{I}_{\mathrm{bit min}}}{\omega \ \mathbf{I}_{\mathrm{ZZ}} \ \Delta a}$$

For this maneuver, it is assumed that one or more refirings will be conducted to trim residual errors left by previous firings. The final residual error, therefore, will be no larger than the Δa associated with the minimum impulse bit of the Δa system.

E22

Source of Error:

Imbalance in Δa couple produces spin error torque.

$$E_{31}$$

 $dV_{\Delta N} = (max)$ 1. = $\frac{2 \text{ go IE}\pi\xi}{\pi MV}$ (pure couple) ξ reflects impulse imbalance of couple 2. = $\frac{2 \text{ go IE}\pi}{\pi MV}$ (single engine)

Source of Error:

The maximum error shown here is of a residual nature and is caused by either an unbalanced ΔN couple or (even worse) a single ΔN unit being fired for an odd number of 1/2 revolutions.

4.4.3(a)4 (continued)

E_{32}

Source of Error:

An imbalance in impulse between the two spin engines or the use of a single engine or two engines thrusting in the same direction for spin rate change causes a precession impulse if the firing period occurs over an uneven number of 1/2 revolutions.

Source of Error:

Impulse of $\Delta \omega$ thrusters differs from nominal.

Hamilton U Standard AIRCRAFT CORPORATION

4.4.3(a)4 (continued)

(appears in E_{12})

It is assumed that a calibration maneuver will be performed to determine $r_{E\alpha c}$

$$\mathbf{FE} \mathbf{C} = \frac{\Delta \mathbf{\alpha}_{\mathbf{C}} \quad \omega \mathbf{I}_{\mathbf{ZZ}}}{\eta \mathbf{I}_{\mathbf{ET}}} \qquad \Delta \mathbf{\alpha}_{\mathbf{C}} \quad \text{observed attitude} \\ \text{change}$$

which is the vertical offset of the ΔV cluster thrust vector - spin axis intersected from the CG. Future firings will be modulated to displace the thrust vector this amount to trim out the error.

The term $dr_E \ll C$ is the second order error introduced by uncertainties encountered during the calibration itself.

$$\frac{d\mathbf{r}_{E}}{\mathbf{r}_{ET}} \mathbf{a} \mathbf{C} = \frac{\boldsymbol{\omega} \mathbf{I}_{ZZ}}{\boldsymbol{\eta}_{I_{ET}}} d\Delta \mathbf{a} \mathbf{C} + \frac{\Delta \mathbf{a} \mathbf{C} \boldsymbol{\omega} \mathbf{I}_{ZZ}}{\boldsymbol{\eta}^{2} \mathbf{I_{ET}}} d\boldsymbol{\eta} \mathbf{C} + \frac{\Delta \mathbf{a} \mathbf{C} \boldsymbol{\omega}}{\boldsymbol{\eta}_{I_{ET}}} d\mathbf{I}_{ZZ}$$
$$+ \frac{\Delta \mathbf{a} \mathbf{C} \mathbf{I}_{ZZ}}{\boldsymbol{\eta}_{I_{ET}}} d\boldsymbol{\omega} \mathbf{C} + \frac{\Delta \mathbf{a} \mathbf{C} \boldsymbol{\omega} \mathbf{I}_{ZZ}}{\boldsymbol{\eta}_{I_{ET}}^{2}} d\mathbf{I}_{ET}$$

(all + signs indicate statistical addition)

or

$$\frac{\mathrm{d}\mathbf{r}_{\mathrm{E}} \alpha \mathrm{C}}{\mathbf{r}_{\mathrm{E}} \alpha \mathrm{C}} = \sqrt{\left(\frac{\mathrm{d}\Delta \alpha \mathrm{C}}{\Delta \alpha \mathrm{C}}\right)^{2}} + \left(\frac{\mathrm{d}\eta \mathrm{C}}{\eta}\right)^{2} + \left(\frac{\mathrm{d}\mathrm{I}_{\mathrm{ZZ}}}{\mathrm{I}_{\mathrm{ZZ}}}\right)^{2} + \left(\frac{\mathrm{d}\omega \mathrm{C}}{\omega \mathrm{C}}\right)^{2} + \left(\frac{\mathrm{d}\omega \mathrm{C}}{\mathrm{I}_{\mathrm{E}}\alpha \mathrm{F}}\right)^{2}$$

The terms $\frac{d\Delta a}{\Delta a} \frac{C}{C}$ etc. represent the fractional uncertainties in the parameters

supposedly known or measured during the calibration.

dr_{ENC}

(appears in E_{13})

During the same calibration used to measure $r_{E \alpha C}$, the spin rate perturbation $\Delta \omega$ will be measured and r_{ENC} will be determined.

$$\mathbf{r}_{\mathbf{ENC}} = \frac{\Delta \boldsymbol{\omega} \mathbf{I}_{\mathbf{ZZ}}}{\mathbf{I}_{\mathbf{ET}}}$$

4.4-29

Hamilton PORATION Standard **A**®

SP07R70-F

4.4.3(a)4 (continued)

rENC is the "off axis" displacement of the ΔV resultant thrust vector. This calibration will allow renc to be trimmed out by ΔV cluster pulse modulation. An error, caused by inaccuracies in the calibration, is given by:

$$\frac{\mathrm{dr}_{\mathrm{ENC}}}{\mathrm{r}_{\mathrm{ENC}}} = \sqrt{\left(\frac{\mathrm{d}\Delta \,\boldsymbol{\omega}}{\Delta \,\boldsymbol{\omega}}\right)^2} + \left(\frac{\mathrm{d}\mathbf{I}_{\mathrm{ZZ}}}{\mathbf{I}_{\mathrm{ZZ}}}\right)^2 + \left(\mathbf{d}_{\mathrm{r}_{\mathrm{E}}\alpha\mathrm{F}}\right)^2$$

Flight Uncertainty

 $dr_E \propto F$

(appears in E_{12})

The flight uncertainty in r_{Ea} results from the thrust vector location uncertainty d x and the angular uncertainty d $\boldsymbol{\theta}$.

$$d\mathbf{r}_{\mathbf{E} \ \alpha \ \mathbf{F}} = \sqrt{\left(\frac{\partial \mathbf{r}_{\mathbf{E} \ \alpha}}{\partial \theta} \ d\theta_{\mathbf{E}}\right)^{2} + \left(\frac{\partial \mathbf{r}_{\mathbf{E} \ \alpha}}{\partial \theta} \ d\theta_{\mathbf{E} \ \mathbf{E} \ \mathbf{$$

Sim

$$d\mathbf{r}_{ENF} = \sqrt{\left(\frac{\partial \mathbf{r}_{EN}}{\partial \theta} \ d \theta \ G\right)^2 + \left(\frac{\partial \mathbf{r}_{EN}}{\partial \theta} \ d \theta \ N\right)^2 + \left(\frac{\partial \mathbf{r}_{EN}}{\partial X} \ d X\right)^2 + \left(\frac{d \mathbf{I}_{ET}}{\mathbf{I}_{ET}}\right)^2}$$

TABLE 4.4.3.A-VIII. ERROR LIMITS FOR MANEUVERS

Error In- Caused By	Δν	Δα	A N
۸v	2 1/2% ΔV > 2 5% (.1≤ΔV≤2) m/sec .5° direction	± 6° (Normal) ± 7° (Degraded)	0.3 rpm (Normal) 0 - 6 rpm (Degraded)
Δα	N. R.	.2° Resolution ± 10% Accuracy	0.3 rpm (N) 0.6 RPM (Deg)
AN	N. R.	± 6° (Normal) ± 7° (Degraded)	± .1 rpm

NOTE: The above error limits are those maximum allowable errors specified in GSFC Specification Number S-723-P-10, Rev. A.

1. N. 1.

÷,

4.4-31/4.4-32

Hamilton Standard

D

NON

TABLE	4.4.3(a) - IX.	MANEUVERING	ERROR	EQUATIONS	

Error In Caused By	V	α	N
Δ V	$\frac{\mathrm{d}\mathbf{V}}{\Delta\mathbf{V}} = \sqrt{\boldsymbol{\epsilon}^2 + \Delta\eta^2}$	$\mathbf{d}\boldsymbol{\alpha} \ \Delta \mathbf{V} = \frac{\mathbf{M}\mathbf{V} \ \mathbf{r}_{\mathbf{E}\boldsymbol{\alpha}} \ \Delta \mathbf{V}}{\boldsymbol{\omega} \ \mathbf{I}_{\mathbf{Z}\mathbf{Z}} \ \mathbf{g}_{\mathbf{O}}}$	$dN_{\Delta V} = \frac{M_V r_{EN} \Delta V 30}{\eta I_{ZZ} \text{ go } \pi}$
ک ی	$dV_{\Delta \alpha} = \frac{g_0 \boldsymbol{\ell}_{\boldsymbol{\omega} \boldsymbol{I}_{\boldsymbol{Z} \boldsymbol{Z}} \Delta \boldsymbol{\alpha}}}{2 \mathbf{r} \boldsymbol{\alpha} \boldsymbol{M} \mathbf{V}}$	$\frac{\mathrm{d}\boldsymbol{\alpha}}{\Delta\boldsymbol{\alpha}} = \frac{\boldsymbol{\eta}\mathbf{r}\boldsymbol{\alpha}\mathrm{I}_{\mathrm{Bitmin}}}{\boldsymbol{\omega}\mathrm{I}_{\mathrm{ZZ}}\Delta\boldsymbol{\alpha}}$	$dN\Delta \alpha = (\frac{\underline{r} \alpha N}{2 \eta r}) \frac{\omega \Delta \alpha 30}{2 \eta r}$
ΔN	* $dV_{\Delta N} = (max)$ 1) = $\frac{2 g_0 (I_E \pi) \xi}{\pi M_V}$ (pure) 2) = $\frac{2 g_0 (I_E \pi)}{\pi M_V}$ (one engine)	$d \boldsymbol{\alpha} \Delta N = $ (max) $1) = \frac{2(I_E \pi)\boldsymbol{\xi} \cdot \mathbf{r}_N \boldsymbol{\alpha}}{\pi \omega I_{ZZ}} (pure)$ $2) = \frac{2(I_E \pi) \cdot \mathbf{r}_N \boldsymbol{\alpha}}{\pi \omega I_{ZZ}} (one engine)$	$\frac{\mathrm{dN}}{\Delta \mathrm{N}} = \epsilon \sqrt{\mathrm{No. of engines}}$

* Corresponds to steady state firing of an odd number of 1/2 revolutions

4.4-33

Hamilton UNITED ALECRAFT CORPORA

4.4.3(a)5 Error Matrix

The error matrix Table 4.4.3(a)-X presents the magnitudes of the significant errors, and also the resulting perturbations produced by maneuvers. Since the purpose of the matrix is to compare the candidate systems, the matrix is not presented for one mass configuration, but each error is presented for the worst part of each mission. The spin speed is assumed to be constant for each mission, even though it varies considerably at the beginning of both missions and the end of the probe mission.

VELOCITY ERROR MAGNITUDE (dV/DV):

The velocity error magnitude is a function of the fractional deviation of raw engine impulse from the nominal, and the deviation of the impulse effectiveness from the nominal, both added statistically. For candidate systems with one to four ΔV engines, the fractional deviation of raw engine impulse (ϵ) varies from .0362 to .0597, while the deviation of impulse effectiveness ranges from only .0011 to .0022. It is apparent from this that the predominant influence on the velocity error magnitude is the fractional deviation of the raw engine impulse. For candidate systems with engine placement configuration P5, which has four ΔV engines, the magnitude of the velocity error is 5.98%. This necessitates trim maneuvers for all ΔV maneuvers since the maximum allowable error is 2 1/2% on ΔV maneuvers greater than 2 meters/ sec and 5% on ΔV maneuvers equal to or less than 2 meters/sec. The P10, P12 and P13 engine placement configurations have errors lower than 5%, while P7 is slightly higher (5.31%).

PRECESSION ERROR MAGNITUDE (d α / $\Delta \alpha$):

The magnitude of this error is also a function of the fractional deviation of the raw engine impulse from the nominal statistically added to the deviation of the impulse effectiveness from the nominal. However, the accuracy requirement of $\Delta \alpha$ maneuvers is such that one or more trim maneuvers will be required which will give a final error which is a function of the minimum impulse of the $\Delta \alpha$ engines. The latter error magnitude is the one presented in the error matrix and is shown assuming all of the $\Delta \alpha$ engines are fired. This error can be reduced to approximately one-half the values shown in the error matrix for all configurations except P7 by using only one $\Delta \alpha$ engine for the final fine trim maneuver. The minimum impulse used was based upon a 39 millisecond electrical pulse width which results from the 128 sector device in the spacecraft logic circuit and a spin speed of 12 rpm. Since this error is inversely proportional to spin speed, the matrix presents the worst case errors. These errors for all the $\Delta \alpha$ engines firing range from .17 degrees for the P7 configuration during the Orbiter Mission up to .36 degrees for P5, P10, P12 and P13 configurations for the Probe Mission. As previously mentioned, these errors can be reduced to approximately one-half by using only one $\Delta \alpha$ engine for the final fine trim maneuver. The only exception to this is the P7 configuration, which has three $\Delta \alpha$ engines and, depending upon the center of gravity location of the spacecraft, firing one engine could reduce the residual error to less than one-third the value in the matrix.

Hamilton U Standard A®

SP07R70-F

4.4.3(a)5 (continued)

SPIN SPEED ERROR ($dN/\Delta N$):

The only significant contributor to spin speed error is the fractional deviation of the raw engine impulse from the nominal value used in determining engine on-time. Since each candidate system has two ΔN engines, the resulting statistical sum of the deviation of raw engine impulse is the same (6.4%).

PRECESSION PERTURBATION DUE TO VELOCITY CHANGES ($D \sim / \Delta V$)

A precession perturbation results from any maneuver where the thrust vector is displaced from the instantaneous location of the spacecraft's center of gravity. In this error analysis, it was assumed that at any instant in time the location of the spacecraft's center of gravity can be calculated to within \pm .10 inch parallel to the spin axis and .050 inch radially from the spin axis. Knowing the center of gravity location, the ΔV engines would be modulated in order to place the final resulting impulse line of action through the calculated center of gravity location. Therefore, the precession perturbation becomes a function of the uncertainty in the spacecraft's center of $({\rm dr}_{\rm E} \alpha_{\rm C})$ and the flight uncertainty (${\rm dr}_{\rm E} \alpha_{\rm F}$). Before the first mid-course correction in both the Probe and Orbiter missions, a calibration will be performed where the ΔV engines are fired and the resulting perturbations measured. This will make it possible to determine the spacecraft's center of gravity location and form a reference point for future calculations.

For all candidate system engine placement configurations, except P5, the major contributor to the uncertainty in center of gravity location ($r_{E} \ll$) is the flight uncertainty ($dr_{E} \ll F$). In these candidate systems, the ΔV engine locations are such that small angular movements of the line of action of the effective impulse cause significant displacements where the vector passes the center of gravity.

Hamilton U Standard A®

4.4.3(a)5 (continued)

For example, a d β of only .20 degrees would give a displacement, dS, of .084 inch, which is sufficient to give the size errors presented for candidate systems with engine configurations P7 to P13. Candidate systems with engine configuration P5 have the engines on the sides of the spacecraft arranged such that R, as defined above, equals zero. As a result, this configuration only produces a 2.75-4.6 degree perturbation for a 100 meter/second maneuver, while perturbations as high as 28.7 degrees would be produced for systems with configurations P7 to P13 if this maneuver were made in one step.

SPIN PERTURBATION DUE TO VELOCITY CHANGES ($dN/\Delta V$):

A spin perturbation results from any maneuver where the thrust vector is displaced from the instantaneous location of the spacecraft's center of gravity. This perturbation is similar to the $d\sigma/\Delta V$. In this case, the resulting moment about the spacecraft's center of gravity is about the spin axis, while for the $d\alpha/\Delta V$ perturbation, the moment was about an axis normal to the spin axis.

The spin perturbation is a function of the uncertainty in the spacecraft's center of gravity location (r_{EN}) which, in turn, is largely dependent upon the flight uncertainty (dr_{ENF}) in all cases except candidate systems with engine configuration P5. The geometric locations of the ΔV thrusters have the same effect on the displacement of the line of action of the effective ΔV impulse as was described for the precession perturbation.

For the P5 engine configuration, this perturbation amounts to .34 to .71 rpm for a 100 meters/second maneuver. The other candidate systems produce perturbations in the range of 3.77 to 7.9 rpm for a 100 meter/second maneuver. In view of the fact that the spacecraft's spin speeds during ΔV maneuvers are only 12 rpm for the Probe Mission and 15 rpm for the Orbiter Mission, these perturbations will necessitate complex operational procedures.

VELOCITY PERTURBATIONS DUE TO PRECESSION MANEUVERS ($dV/\Delta \alpha$):

Under ideal conditions, the engines performing a precession maneuver produce an identical total impulse. However, variations in impulse represented by the engineto-engine impulse repeatability factor (ξ) are inherent in engines, and this results in an impulse imbalance between the $\Delta \alpha$ engines which imparts a velocity change to the spacecraft. For all the two engine configurations (P5, P10, P12, and P13) this disturbance amounts to only .053 meters/second per radian precession for the Orbiter Mission. For the P7 configuration, this error is only as high as .077 meters/second per radian precession. Since the smallest mid-course corrections in both missions are 2 meters/second, this error should not be a major determining factor in selecting a candidate system. Hamilton U Standard A®

SP07R70-F

4.4.3(a)5 (continued)

SPIN PERTURBATION DUE TO PRECESSION MANEUVERS ($dN/\Delta \alpha$):

The impulse unbalance resulting from the engine-to-engine impulse repeatability also produces spin error torque in addition to the velocity change earlier described. This torque is produced for engine configurations P5, P12 and P13 only because their $\Delta \alpha$ engines are displaced a distance $r_{\alpha N}$ from the spin axis. Candidate systems P7 and P10 have their $\Delta \alpha$ thrusters arranged such that $r_{\alpha N} = 0$. Any angular motions or displacements of their engines would only produce equivalent $r_{\alpha N}$'s two to three orders of magnitude lower than those of configurations P5, P12 and P13, which would therefore be negligible. For a typical 90° precession maneuver, these errors are as high as 1.22 rpm, which for the P5, P12 and P13 configurations, does represent a significant factor in the comparative evaluation of the systems.

VELOCITY PERTURBATIONS DUE TO SPIN MANEUVERS ($dV/\Delta N$):

There are two basic engine configurations used in performing spin rate maneuvers: P5, P7 and P10 have thrusters which fire in opposite directions, while in configurations P12 and P13, the two ΔN engines fire in the same direction. In both of these arrangements, if all ΔN maneuvers resulted in the ΔN engines being fired an even number of one-half revolutions, the resulting velocity vector caused by the impulse in P12 and P13, and the impulse unbalance in P5, P7 and P13, would sum to zero. Therefore, the maximum error for any size maneuver results from the ΔN engines being fired an odd number of one-half revolutions. For configurations P12 and P13, this perturbation amounts to a maximum of only .12 meter/second for the Orbiter Mission. Configurations P5, P7 and P10 have perturbations nearly two orders of magnitude lower because the thrust unbalance in these systems is producing the change in velocity, rather than the full thrust from two engines.

PRECESSION PERTURBATION DUE TO SPIN MANEUVERS (d α / Δ N):

Performing a spin maneuver with anything but an even number of one-half revolutions will also produce a precession change in addition to the velocity change already described in the previous perturbation description. In configurations P5, P7 and P10, the impulse giving the precession perturbation is caused by the engine-toengine impulse repeatability (ξ). In configurations P12 and P13, where the ΔN engines point in the same direction, the impulse giving the precession perturbation is the raw impulse of both engines. In these two cases, $r_N \approx$ is the distance from the center of the two engines to the spacecraft's center of gravity. For configurations P5, P17 and P10, this perturbation is relatively small, .197 degrees maximum for the Probe Mission. However, for configurations P12 and P13, this perturbation is as high as 2.32 degrees for the Probe Mission. In view of the accuracy required for precession maneuvers (.20 degrees), which frequently precede spin control maneuvers, this size error would present serious operational restraints.

4.4-37/4.4-38

EOLDOUT FRAME

Hamilton Standard

TABLE 4.4.3(a) - Xa. ERROR

Cand.								
System	I, II, III	(P-5)		IV, V and V	I (P-7)		VII, VIII and	IX (I
Error to	2 A N	I, $4\Delta V$, $2\Delta V$	X	27	AN, 3 AV, 34	7 X	2ΔN	$1, 2\Delta V$
Caused by	V	X	Ν	V	X	N	V	X
ΔV	.0598 ΔV	.0275 ΔV	.0034 ΔV	.0531 ΔV	. 17 ΔV	.0377 ΔV	.0454 Δ V	. 17 🛆
	F	E	Ε	F	E	Ε	F	E
Δα	.00093 ∆¤	*.36	.0109 ∆ ∝	.00134 ∆ ∝	* .25		.00093 ∆X	* .36
	D	E	F	D	E	Negative	D	E
ΔN	.0023	. 197	$.064$ Δ	.0023	. 197	$.064 \Delta N$.0023	.036
	D	Α	F	D	A	F	D	A

NOTES:

N = 12 RPM

MASS CONFIGURATIONS:

- A. Launch
- B. Booms Extended
- C. Cruise
- D. Only Main Probe Separated
- E. All Probes Separated
- F. All

TABLE 4. 4. 3(a) - Xb. ERROR M

and the first state of a second state and an and a second s		Carlo and a second s			and the state of the second second second			
Cand. System	I, II, III	(P-5)		IV, V and V	I (P-7̇́)	VII, VIII and IX (P		
EFFOF IS	2ΔN, 4ΔV, 2Δ ズ			2Δ	N, 3ΔV, 3Δ	$2\Delta N, 2\Delta V,$		
Error Caused by	v	X	N	V	X	Ν	v	α
ΔV	.0598 ΔV F	. 046 ΔV C	. 0071 ΔV C	.0531 ΔV F	.287 ΔV C	. 079 ΔV C	. 0454 ΔV F	.287 Z
∆ ∝	. 00048 ∆ ∝ E	*.25 E	. 0135 Δ α F	. 00072 Δ 🗭 E	*.170 E	Negative	. 00048 ∆ ∝ E	*.25 E
ΔN	. 0029 D	. 125 A	.064 ΔN F	. 0029 D	. 125 A	.064 ΔN F	. 0029 D	. 032 A
		L			L			

NOTES:

N = 15 RPM

MASS CONFIGURATION:

- A. LaunchD. OrbB. Booms ErectedE. Fue
- B. Booms ErectedE. FueC. CruiseF. All

This error is actually a resolution based u engines normally used to perform a Δa m

FOLDOUT FRAME	JT FRAME
---------------	----------

ζa.	ERROR	MATRIX -	PROBE	MISSION

III and	d IX (P-10)		X, XI and X	II (P-12)		XIII, XIV and XV (P-13)		
$2\Delta N$, $2\Delta V$, $2\Delta \mathcal{A}$			2ΔN	Ι, 1ΔV, 2Δ C	X	2 Δ N, 2 Δ V, 2 Δ α		
	α	N	V	X	N	V	α	Ν
ΔV	.17 ΔV Ε	.0377 ΔV Ε	.0362 ΔV F	$.17 \Delta V$ E	. 0377 ΔV E	.0454 ΔV F	. 17 ΔV Ε	.0377 ΔV E
Δď	* .36 E	Negative	.00093 Δα D	* .36 E	.0109 ∆≪ F	.00093 ∆∝ D	.36 E	.0109 ∆ 🗙 F
	.036	$.064 \Delta N$.099	2.32	$.064 \Delta N$. 099	2.25	.064 ΔN
	A	F'	D	A	F	D	<u>A</u>	Ľ,

UNITS: ΔV - Meters/second $\Delta \mathbf{\alpha}$ - Degrees ΔN - RPM

ERROR MATRIX - ORBITER MISSION

	the second se								
II and IX (P-10)			X, XI and I	XII (P-12)		XIII, XIV and XV $(P-13)$			
2 AN, 2 AV, 2 A 🛛			2 Δ1	N, $1\Delta V$, $2\Delta C$	X	$2\Delta N$, $2\Delta V$, $2\Delta \boldsymbol{\varkappa}$			
	X	Ν	V	X	N	V	X	Ν	
١V	. 287 ΔV C	. 079 ΔV C	.0362 ΔV F	.287 ΔV C	. 079 ΔV C	. 0454 ΔV F	.287 ΔV C	. 079 ΔV C	
Δα	*.25 E	Negative	. 00048 ∆¤ E	* .25 E	. 0135 Δ α F	.00048 Δ α Ε	.25 E	. 0135 Δ φ F	
	. 032 A	.064 ΔN F	. 12 D	. 58 A	.064 ΔN F	, 12 D	. 577 A	.064 ΔN F	

D. Orbit

E. Fuel Expended

F. All

ion based upon a .039 second firing of all the $\Delta \alpha$ m a $\Delta \alpha$ maneuver.

4.4.3(b) ENGINE OPERATING LIFE MARGIN

Ω.

Hamilton

Standard

The performance analysis studies conducted for the Planetary Explorer Study utilized the performance data of the IDCSP/A 5 lb_f engine manufactured by Hamilton Standard. This engine was originally qualified at 20,000 pulses with a total of 36 minutes on time. For subsequent applications the IDCSP/A engine has demonstrated 70,000 pulses with a total of 101.5 minutes on time. The results of the performance analysis study relative to the total number of engine pulses and "on" times required for each engine, for each placement concept studied, are presented in Tables 4.4.3(b)-I. This table illustrates the life margin for each candidate subsystem from the standpoint of both number of pulses and total "on" time. Each of the engine numbers in the table is related to the engine identification numbers on Figure 4.1-5 and 4.2-1a through 4.2-1e. Each of the engines has the life margin identified for two operating modes primary and back-up. The primary mode assumes all engines operational for the entire Planetary Explorer mission where the spacecraft maneuvers are equally divided between the functional groups of engines, with approximately 50 percent of the operations performed by each. The back-up mode assumes all spacecraft maneuvers throughout the mission are performed with one functional group of engines only. As can be seen from the two tables the life performance margin in the primary operational mode is high for all of the engines.

This is true also for the engines operating in the back-up mode, with a few exceptions where the total "on" time exceeds the IDCSP/A engine qualification status (blocks marked with asterisk). In these cases the performance margin for "on" time is compared to demonstrated test of 101.5 minutes.

There is no significant difference between the life margin for the engines for all the candidate subsystems except in the cases where either one or two engines are used to perform the mid-course correction maneuvers. During these events, the greater number of engines used the greater will be the individual engine life margin. In all cases the IDCSP/A engine has sufficient life margin to perform the Planetary Explorer requirements.

FOLDOUT FRAME

an a		7126 4.4.3(, <i>b) - 1</i> T		GINE	OPEI	<u>KAI IN</u>		
MISSION	ENGINE		$\begin{bmatrix} \Pi \\ \Pi \end{bmatrix} (P-5) OR$		$\sum_{\mathbf{X}} \left\{ (P-10) \right\}$				
••••			PULSES		TIME		PULSES		
	NO.	OPERATION MODE	NO.	MARGIN (%)	TOTAL (MIN.)	MARGIN (%)	NO,	MARGIN (%)	Т. (!
		PRIMARY	1623	92.	13,88	61.	1601	92.	1.
		BACK UP	2824	86.	23,00	36.	3202	84,	2
		PR.	1207	94,	9,32	74,	1940	90,	73
		810	6	100.	0.19	100,	339	98,	
		PR.	1207	94.	10.62	77,	1946	90,	/ 5
	3	BIU	2408	88.	19.75	45.	3547	82.	2
		PR.	1207	94.	9,50	74.	1607	92.	/3
	4	B/U	6	100.	0,38	99,	6	100.	(
ORRITER		PR.	1201	94,	10,43	71.	1946	90,	15
ONDITEN	3	B/U	2402	88.	19,55	42.	3547	82.	28
		PR.	1617	92,	12,19	67.	1607	92,	13
	0	BIU	416	98,	3,07	92.	6	100.	
	-7	PR.	1201	94,	10,43	71,			
		B/U	2402	88.	19.55	46.			
	0	PR,	1201	94,	9,13	75,			-
	0	BIU	0	100,	0	100.			
	,	PRIMARY	2460	88.	12,09	67.	1080	94.	
		BACK UP	3282	84,	19.16	67. 1080 47. 2159	90.		
		PR.	824	96.	9.12	75.	2158	90,	
	6	BIU	2	100.	2.05	95.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	94.	
		PR.	823	96.	9.12	75,	2/58	90,	1
	3	BIU.	1645	92,	16.20	55.	3238	84,	2
		PR.	823	96.	7.31	80.	1082	94.	
0000-	4	BIU	1 1	100.	0,23	99,	2	100,	
PHOBE		PR.	821	96.	7.08	81.	2159	90.	
	5	BIU	1643	92,	14,15	61.	3239	84,	
		PR.	2460	88.	11.85	67.	1081	94.	
	0	BIU	1638	92,	4,78	87.	1	100.	
		PR	821	96.	7.08	81.			
		BIU	1643	92,	14.15	61,			
	- a	PR.	822	96.	7.0A	81.			
		BIU	0	100.	0	100.			

NOTES: 1) LIFE MARGINS BASED ON IDCSP/A QUALIFICATION OF 20,0

* 2) LIFE MARGINS BASED ON IDCSP/A DEMONSTRATION TEST OF 3) ENGINE PLACEMENT CONCEPT P-10 CAN BE OPERATED EIT 4) ENGINE NUMBERS RELATE TO ENGINE IDENTIFICATION A 5) PRIMARY OPERATION MODE ASSUMES OPERATION SPLIT OF ENGINES., BACK-UP MODE ASSUMES OPERATION PER GROUP OF ENGINES ATING LIFE MARGIN

SP 07R70-F

EOLDOUT FRAME

<i>C</i>	CANDIDATE SUBSYSTEM											
	NA NA NA	{ }(P-7))	XI } (P-12M) XII } (P-B) OR VII } (P						(P-10)		
PULS	ES	TIM	E	PULS	ES	TIM	E	PULSES TIA		TIM	ИE	
10.	MARGIN (%)	TOTAL (MIN)	MARGIH (%)	NO.	MARGIN (%)	TOTAL (MIN)	MARGIN (670)	NO.	MARGIN (%)	TOTAL (MINi)	MARGIN 70	
601	92.	13.04	64.	2906	86.	23.09	36.	2404	88.	19.58	46,	
202	84,	26.09	28.	5813	71.	46.18	54.*	4808	76.	39.17	61, *	
940	90,	15.21	58.	2906	86.	23.09	36.	2820	86.	27.96	22.	
339	98,	2,16	95,	0	100.	0	100.	5254	74,	42.24	58.*	
46	90,	15,70	58.	422	98,	3,45	90.	2820	86,	27.95	22,	
547	82.	28.63	21.	422	98.	3,45	90	416	98,	3,07	9 <i>2</i> ,	
507	92.	/3,24	64.	6	100.	0,19	100.	2404	88,	19,58	46.	
6	100.	0.19	100,	6	100.	0.19	100,	0	100.	0	100.	
946	90,	15.39	58.	6	100.	0,38	99.	6	100.	0.38	99,	
547	82.	28.44	21.	6	100.	0,38	99.	6	100.	0,38	<i>99</i> .	
507	92,	13.42	64.	422	98,	3,26	91.	6	100,	0.19	100,	
6	100.	0,38	99.	422	98,	3,26	91.	6	100.	0.19	100.	
								6	100.	0,38	99.	
								6	100.	0,38	99.	
								6	100,	0.19	100.	
								6	100.	0.19	100.	
80	94.	5.16	86,	2805	86,	26,20	28.	1620	92,	13.60	64,	
59	90.	10,31	71,	5610	72.	52,39	48, *	3239	84,	27,20	24.	
58	90.	8,14	78.	2805	86,	26,20	27.	3818	81,	23,58	36.	
78	94.	2,97	92.	0	100,	0	100.	5438	73.	37,18	63,*	
58	90,	16.18	55.	1629	92.	4.72	87,	3769	81,	23.58	36.	
238	84,	21,33	41,	1629	92,	4,72	87,	2147	90.	9,98	72.	
82	94,	7.09	81,	2	100,	1,93	95.	1620	92,	13.60	64.	
2	100,	1,92	95,	2	100.	1,93	95,	0	100.	10	100,	
59	90,	17.88	50.	/	100,	0,73	99.	1	100.	0.23	99 .	
239	84,	23,03	36,	<u> </u>	100,	0,23	99,	1	100.	0.23	99,	
B/	94.	5,39	85,	1630	92.	6,42	8Z.	2	100,	1,93	95.	
1	100,	0,23	99,	1630	92.	6,42	82.	2	100,	1,98	95.	
								1	100.	0.23	99.	
						a a a a a a a a a a a a a a a a a a a		1	100.	0.23	99.	
								2	100.	1.93	95.	
								2	100.	1,93	95.	

ON OF 20,000 PULSES AND 36 MINUTES TOTAL "ON"TIME TION TEST OF 70,000 PULSES AND 102 MINUTES"ON"TIME PERATED EITHER AS P-5 OR P-B IFICATION NUMBERS ON FIGURES 4.2-LATHRU 4.2-LE

TION SPLIT APPROX. 50% BETWEEN FUNCTIONAL GROUPS TRATION PERFORMED WITH ONE FUNCTIONAL

Hamilton UNITED AIRCRAFT CORPORATION

SP07R70-F

4.4.4 <u>Power</u>

A summary of the power requirements, including total mission power consumption for each of the candidate systems, is shown in Table 4.4.4-I. A comparison of total energy expended for each system shows that for a given mission, the levels are approximately equal, and the same is true for the mission average power. The energy expended versus the mission event for each of the candidate systems, where power conditioning is not used, is shown in Figure 4.4.4-1 for the Orbiter mission, and in Figure 4.4.4-2 for the Probe mission. The use of power conditioning for each of the systems was considered and these results are included in the summary table 4.4.4-I. Power conditioning, as used here, refers to a process whereby the voltage initially supplied to an engine propellant valve is reduced after the valve has opened in order to conserve power. Power conditioning makes use of the fact that it takes significantly less power to maintain a valve in the open position, once it has been opened, than it takes to actuate it from the closed to the open position.

Data from the IDCSP/A engine propellant valve (Hydraulic Research and Manufacturing valve Part No. 48000680) has shown as little as 2.0 VDC may maintain the valve open once the valve has been energized open with the normal operating voltage. A review of the IDCSP/A valve test results has shown that the maximum dropout voltage is 8.0 VDC, which could provide considerable power savings even when allowing a significant margin of safety on the voltage.

In order to provide opening force margin and fast opening response, the operating voltage range of these valves substantially exceeds the pull-in voltage (voltage required to open valve). The HR&M 48000680 valve has an actual pull-in voltage of only 8.8 VDC maximum as compared with the normal operating voltage of 18 to 30 VDC. Therefore, in addition to power conditioning, power savings can also be realized by operating at voltages across the valve coil of less than the 28 VDC supplied to the valve itself.

Several basic power saving techniques exist for pulsed rocket engine valves without steady state performance degradation. Addition of a series resistance (Figure 4.4.4-3b) is the simplest method of power reduction. This method offers modest transient degradation while reducing the power to 50%, and maintaining 14 VDC minimum across the valve coil which is substanially above the pull-in and dropout voltages. Transient performance can be restored by wave shaping the drive pulse. A full power transient "on" pulse that is dropped to save current and to sustain hold-in can be accomplished by the circuit shown in Figure 4.4.4-3c. This circuit allows the current versus time characteristics to be almost identical to the valve without the power conditioning to a point well past the opening when it will then drop the voltage across the valve coil. This is the only true power conditioning circuit where there is no compromise in opening force margin. To attain the maximum power savings with no transient performance degradation, both the transient and steady state portion of the valve drive signal can be interrupted using a solid state chopper as shown in Figure 4.4.4-3d.

4.4-43

Juilton U Standard ARCRAFT CORPORATIO

4.4.4 (Continued)

However, the dynamic force for this circuit is substantially reduced. Figure 4.4.4-3a shows the standard control circuit for the torque motor. The circuit in Figure 4.4.4-3c would be recommended if power conditioning were used. This circuit offers no compromise in initial current characteristics which means dynamic opening response and opening force margins will be essentially unchanged from the qualification test results. Figure 4.4.4-4 shows the current versus time characteristics of the various power conditioning concepts.

All of the circuits are substantially the same with respect to "on" times, and the reliability of the electronic components are relatively equal especially since the steady state current is reduced in the coil, thereby reducing internal heating effects.

Figure 4. 4. 4-5 shows the results of power conditioning for the orbiter mission with the P-5 engine placement configuration. As the total values of Table 4. 4. 4-I indicate, there will be a savings of about 49% in energy expended during the mission. Figure 4. 4. 4-6 is a typical plot of mission (both orbital and probe) energy as a function of cruise spin rate. This figure shows that savings in energy will be realized over the full range of RPM values by power conditioning the system. The decreasing savings at higher spin rates occurs since the average "on" time of the engines during pulse firing is smaller thus the valve voltage reduction after the first 30 msec firing has less of an effect on power savings.

Power conditioning of the Planetary Explorer candidate systems was also evaluated to determine if a spacecraft weight reduction could be realized. Figure 4. 4. 4-7 represents a plot of weight savings corresponding to a given electrical energy savings for a typical system. This plot enables a direct reading of what the weight savings will be for a given system (which has a certain energy savings associated with it) when used in conjunction with an energy source which has a certain weight/energy rating. For example, if the configuration described per Figure 4. 4. 4-7 (P-5 or P-10) were to be used with a silver zinc battery (which has a weight/energy rating in the range of 10-20 lb/kw-hr) the maximum weight savings is read from the figure to be 0.16 lb. In this manner, a trade-off relating to energy source may also be included in the analysis. The figure shows that regardless of whether the energy source is solar cells or silver zinc batteries, there will be a net weight increase if power conditioning is used. This occurs because the weights of the added electronic components and associated packaging exceeds the energy weight savings.

In summary, the results of the power conditioning analysis show that there is a substantial power and energy savings, but, that other factors such as weight and added system complexity (thus decreased system reliability) offset this advantage to a degree that it is not an approach recommended.

		Total Expe (watt	Energy nded -sec)	P e Po (wa	ak w er tt s)	Maneuver A ver age Power (watts)		
Mission	Candidate System	Without Power Conditioning	With Power Conditioning	Without Power Conditioning	With Power Conditioning	Without Power Conditioning	With Power Conditioning	
	I, II, III, VII, VIII & IX (P-5 & P-10)	57215	29180	44.64	22.32	5.29	2.65	
ORBIT	IV, V & VI (P-7)	57383	29265	33.58	16.79	3.98	1.99	
	X, XI & XII (P-12)	57182	29163	22.32	11.16	2.65	1.32	
	VII, VIII, IX, XIII, XIV & XV (P-13 & P-10)	57226	29185	22.32	11.16	2.65	1.32	
	I, II, III, VII, VIII & IX (P-5 & P-10)	47352	24150	44.64	22.32	5.29	2.65	
	IV, V & VI (P-7)	45041	22970	33.58	16.79	3.98	1.99	
PROBE	X, XI & XII (P-12)	45343	23125	22.32	11.16	2.65	1.32	
	VII, VIII, IX, XIII, XIV & XV (P-13 & P-10)	45354	23130	22.32	11.16	2.65	1.32	

TABLE 4.4.4-I. POWER SUMMARY

NOTES: (1) Peak power based on maximum number of simultaneous engine firings with max steady state power requirements per engine as follows:

• Without power conditioning - 11.16 watts at 28 VDC

4.4-45/4.4-46

- With power conditioning 5.60 watts after 30 msec.
- (2) Power conditioning values based on active transistor circuit (Ref. Figure 4.4.4-3C with a 50% reduction in power after 30 msec.
- (3) Maneuver average power is equal to peak power for spin maneuvers since the engine is fired in the continous rather than the pulse mode.

SP 07R70-F

4.4-47/4.4-48

1. A

- 4 C.

6)

25 α .

4.4-49/4.4-50

FIGURE 4.4.4-3. POWER CONDITIONING CIRCUITS

 $4 - 51/4 \cdot 4 - 52$

H

FIGURE 4.4.4-4. POWER CONDITIONING - CURRENT VS TIME

SP 07R70-F

1.4-53/4.4-54

FIGURE 4.4.4-5. ELECTRICAL ENERGY EXPENDED VS EVENT-ORBITER MISSION (P5 CONFIGURATION - SYSTEMS I, II, & III)

SP 07R70-F

NUL VERSERE

. .

- 24 Sec. 12 +

÷ 4-55/4.4-56

^{4.4-57/4.4-58}

4.4-59/4.4-60

.

•••

Hamilton Standard

Hamilton U Standard A

SP07R70-F

4.4.5 <u>Cost</u>

The candidate propulsion systems are ranked in order of their relative overall program cost in Tables 4.4.0-I and 4.4.0-II. The lowest cost systems are candidates IV and VI. Both of these candidates use engine placement concept P-7 (6 engine configuration), with candidate IV using feed system concept FS-2, and candidate VI using feed system concept FS-8.

The ranking presented in the referenced tables defines only the relative position of the candidate systems, without quantifying the differences between them in terms of dollars. To do this would have required a detailed definition of the type of program GSFC would want, as well as a much more detailed cost analysis. On the basis of cost histories of previous programs of a similar type, an estimate can be made that the cost spread between the lowest cost candidate system and the highest cost system will be approximately 8%. The rationale that went into the program cost ranking of the candidate systems included the following items, or judgments.

- The "types" of equipment required for the various candidate systems are almost identical, with the ordnance valve and the gimbal actuator the only items of equipment not common to all. As a result, the differences in equipment development/qualification costs can be considered insignificant.
- A judgment was made that lower program costs would be realized in designing the system to use the same single engine configuration as was originally qualified than it would be to cluster engines in modules. The rationale here was that even a low level design and development effort and a small development risk, associated with the thermal and dynamic aspects of a new structural package (engine module), will more than offset the cost advantages gained by packaging engines in modules.

Hamilton U Standard A®

4.4.6 <u>Operations</u>

Propulsion subsystem operational evaluations were divided into two major phases during the study to facilitate the engineering effort, and are presented herein in the same manner. Pre-Flight Operations are presented in Section 4.4.6.1, below, followed by a presentation of Flight Operations in Section 4.4.6.2.

4.4.6.1 PREFLIGHT OPERATIONS:

The scope and complexity of the preflight operations associated with each of the candidate subsystems are dependent upon the number of engines used in each of the systems, as well as the number of propellant feed lines, and the feed system components. These factors affect the complexity of each subsystem relative to installation and checkout procedures. All candidate subsystems utilize the same tankage arrangement and feed system to the component panel. The comparative differences exist at the component panel, and in the downstream portions of the subsystems. Candidate subsystems with the least number of components, particularly in the number of engines, propellant lines, and connections, are obviously the easiest to install into the spacecraft. Likewise, thrust alignment becomes an easier task where less engines are used.

Additional installation complexity exists where gimbal actuators are used to position the engines. Actuators give rise to complexity in the control circuits, flexible lines, and special electrical and mechanical interfaces which result in relatively complex installation, alignment and checkout procedures.

Subsystem checkout procedures, such as leakage testing, electrical checks, and proof pressure tests vary slightly between subsystems. Subsystems utilizing an ordnance valve require pressurization of two ports to perform leakage and proof pressure tests whereas a system with latching valves can be pressurized through one port with actuation of the latching valve to the open position. The servicing procedures (propellant conditioning, loading and unloading, vacuum drying, etc.) are also very similar for the candidate subsystem **S**. However, those subsystems which require additional plumbing to accommodate the extra feed system components and engines, require extra time for draining the propellant and vacuum drying. Those systems utilizing an ordnance type propellant isolation have an advantage here in that they limit the portions of the system exposed to propellant.

In general, it may be concluded that the predominant factors which affect subsystem installation and checkout procedures are the number of engines used (and associated plumbing), and the presence of gimbal actuated engines. Although there are some varying checkout procedures with each of the feed system concepts, there are no significant advantages or disadvantages associated with any of them.

4.4.6.2 Flight Operations

Flight operations, presented in Tables 4.4.6.2-II, -III and -IV, describe the procedures for performing velocity change (ΔV) , attitude control (Δa) and spin control (ΔN) maneuvers, and the constraints imposed in performing these maneuvers. Information in these tables was prepared to provide a means for rating the various candidate systems in regard to flight operations, and for this reason, they are presented for only one mass configuration (cruise). However, where another condition would bring to light significant advantages or disadvantages, these conditions are also considered, and are noted. Table 4.4.6.2-I presents the Flight Operations rating of the various candidate systems.

In performing ΔV maneuvers, the major constraint is the spin perturbation, which is limited to .30 rpm. Because of the flight uncertainty (drENF), there is an error in locating the spacecraft CG. Part of the radial component of the spacecraft's CG from where it is calculated to be (rEN) results in a perturbation which necessitates dividing up ΔV maneuvers the size of the midcourse correction into many parts for candidate systems P-7, P-10, P-12 and P-13. The worst case is the Orbiter Mission, where the 108 meters/second midcourse correction would have to be done in 29 steps because of this perturbation. The P-5 candidate system is superior in this regard because of the location of its engines, and for this reason, is rated best with a Rank = I. In all systems, a calibration maneuver is required, and ΔV trim maneuvers are required when the maneuver ΔV is greater than 2. meters per second. In candidate systems using engine placement concepts, P-10, P-12 and P-13, no ΔV trim maneuver is needed for ΔV maneuvers less than 2 meters/second.

In performing Δa maneuvers with candidate systems using engine placement configurations P-5, P-12 and P-13, the major constraint is the spin perturbation which is limited to .30 rpm. In candidate systems using engine placement concepts P-7 and P-10, the spin perturbation is negligible because of the location of the Δa engines. This results in an ability to perform most Δa maneuvers in one step plus a Δa trim maneuver in order to attain the required accuracy of .20 degrees. A Δa trim maneuver is also required for candidate systems using engine placement concepts P-5, P-12 and P-13. The velocity perturbation is small compared to the size of the third midcourse correction of 2 meters/second. For all candidate systems, except those using concept P-7, it will be required to perform part of the final Δa trim maneuver with only one engine in order to meet the accuracy requirement of .20 degrees.

Performing ΔN maneuvers greater than 1.6 rpm will require a ΔN trim maneuver for all candidate systems in order to meet the accuracy requirements of \pm .10 rpm. All maneuvers greater than 25 rpm will be required to be performed in three steps, including the trim maneuver, in order to meet the accuracy requirements. The velocity and precession perturbations for all the candidate systems are small; however, systems using concepts P-12 and P-13 do have precession perturbations
Hamilton UNITED AIRCRAFT CORPORAT

SP07R70-F

4.4.6.2 (continued)

considerably higher than the other systems and for this reason are rated last, with a Rank = III.

Flight Operations Rating Summary

Individual ratings for the three maneuvers are assigned the candidate systems in Table 4.4.6.2-I. An overall rating is also given on the table which shows system concept P-5 rated highest. No particular set of weighting factors was applied to draw this conclusion, but it was felt that the undesirable aspects of the other candidates with respect to spin perturbation errors during ΔV maneuvers was sufficient reason to rate the candidates in this manner.

TABLE 4.4.6.2-I. FLIGHT OPERATIONS RATINGS OF CANDIDATE SYSTEMS

Candidate System	ΔV Maneuvers	$\Delta \alpha$ Maneuvers	ΔN Maneuvers	Overall Rating
I, II & III (P-5)	I	ш	Π	Ι
IV, V & VI (P-7)	Π	П	Π	III
VII, VIII & IX (P-10)	II	Ι	I	II
X, XI & XII (P-12M)	11	111	Ш	IV
XIII, XIV & XV (P-13)	n	ш	Ш	IV

EOLDOUT FRAME

0

4

TABLE 4.4.6.2-II. FLIGHT OPERATIONS

System	Procedure	Maneuver Increment	Error
I, II & III (P-5)	Calibrate prior to first maneuver in order to determine $r_E \alpha$ and r_{EN} .	Probe: Max. $\Delta V = 95$ m/sec Cal $\Delta V = 1$ m/sec	Probe: dV = 5.7 m/sec d¤ = 2.4° dN = .30 RPM
	Fire: 1, 3, 5, 7 or 2, 4, 6, 8 Modulate: 1,3 or 2,4	Orbiter: Max. $\Delta V = 42 \text{ m/sec}$ Cal $\Delta V = 1 \text{ m/sec}$	Orbiter: dV = 2.5 m/sec da = 1.9° dN = .3 RPM
IV, V & VI (P-7)	Calibrate prior to first maneuver in order to determine $r_E \alpha$ and r_{EN} .	Probe: Max. $\Delta V = 8.6$ m/sec. Cal $\Delta V = 1$ m/sec	Probe: dV = .46 m/sec dX = 1.350 dN = .30 RPM
	Fire: 1, 3, 5 or 2, 4, 6 Modulate: 3,5 or 4,6	Orbiter: Max. $\Delta V = 3.8 \text{ m/sec.}$ Cal $\Delta V = 1 \text{ m/sec}$	Orbiter: dV = .21 m/sec dx = 1.1° dN = .3 RPM
VII, VIII & IV (P-10)	Calibrate prior to first maneuver in order to determine $r_E \alpha$ and $r_{EN} \cdot$	Probe: Max. $\Delta V = 8.6 \text{ m/sec}$ Cal $\Delta V = 1 \text{ m/sec}$	Probe: dV = .39 m/sec da = 1.35° dN = .30 RPM
	Fire: 1 & 2 or 3 & 4 Modulate: 2 or 4	Orbiter: Max. $\Delta V = 3.8$ m/sec Cal $\Delta V = 1$ m/sec	Orbiter: dV = .17 m/sec dX = 1.35° dN = .30 RPM
X, XI & XVI (P-12M)	Calibrate prior to first maneuver in order to determine $r_E \alpha$ and r_{EN} .	Probe: Max. $\Delta V = 8.6$ m/sec Cal $\Delta V = 1$ m/sec	Probe: dV = .31 m/sec dQ = 1.35° dN = .30 RPM
	Fire: 1 or 2 Track C, G with swivel	Orbiter: Max. $\Delta V = 3.8$ m/sec Cal $\Delta V = 1$ m/sec	Orbiter: dV = .14 m/sec dØ = 1.1° dN = .30 RPM
XIII, XIV & XV (P-13)	Calibrate prior to first maneuver in order to determine $r_E \alpha$ and r_{EN} . Fire: 1 & 2 or 3 & 4 Modulate: 2 or 4	Probe: Max. $\Delta V = 8.6$ m/sec Cal $\Delta V = 1$ m/sec Orbiter: Max. $\Delta V = 3.8$ m/sec Cal $\Delta V = 1$ m/sec	Probe: dV = .39 m/sec dα = 1.35° dN = .30 RPM Orbiter: dV = .17 m/sec dα = 1.10

NOTE: Spacecraft is in cruise mode unless otherwise noted.

ERATIONS - ΔV MANEUVERS

SP 07R70-F FOLDOUT FRAME

or	Remarks	Ranł
sec	ΔV trim needed to reduce error $\leq 2 \frac{1}{2}$ for $\Delta V > 2$ m/sec and error $\leq 5\%$ for $\Delta V < 2$ m/sec.	
M	For probe ΔN trim needed if maneuver total $\Delta V > 95$ m/sec.	I
sec	For orbiter $\triangle N$ trim needed if maneuver total $\triangle V > 42$ m/sec.	
sec	ΔV trim needed to reduce error $\leq 2\%$ for $\Delta V > 2$ m/sec and error $\leq 5\%$ for $\Delta V < 2$ m/sec.	
M	For probe ΔN trim needed if maneuver total $\Delta V > 8.6$ m/sec.	II
sec	For orbiter ΔN trim needed if maneuver total $\Delta V > 3.8$ n/sec.	
Sec	ΔV trim needed to reduce error $\leq 2 \frac{1}{2}$ for $\Delta V > 2$ m/sec.	
N	For probe ΔN trim needed if maneuver total $\Delta V > 8.6$ m/sec.	II
sec	For orbiter ΔN trim needed if maneuver total $\Delta V > 3.8$ m/sec.	
sec	ΔV trim needed to reduce error $\leq 21/2\%$ for $\Delta V > 2$ m/sec.	
M	For probe Δ N trim needed if maneuver total $\Delta V > 8.6$ m/sec.	II
sec	For orbiter ΔN trim needed if maneuver total $\Delta V > 3.8$ m/sec.	
M		
sec	Δ V trim needed to reduce error $\leq 2 \frac{1}{2}$ for Δ V > 2 m/sec.	
M	For probe ΔN trim needed if maneuver total $\Delta V > 8.6$ m/sec.	II
5ec	For orbitor AN thim needed if management total	

4-67/4.4-68

FLIGHT OPERATIONS

: **.** .

Table 4.4.

EOLDOUT FRAME

.

.

- e - C

and sold in

Procedure	Maneuver Increment	Error
Fire: 1&6 or 3 & 8 or 2&5 or 4&7 A Trim maneuver re- quired after all maneuvers in order to meet .20° accuracy	Probe: Max. $\Delta \alpha = 27.5^{\circ}$ Max. $\Delta \alpha = 3.9^{\circ}$ for N=85 RPM for events 27 & 28 Orbiter: Max. $\Delta \alpha = 22^{\circ}$	Probe: dv=.015 m/sec $d\alpha (Max.)=.096^{\circ} \text{ f}$ maneuvers=2.1 dN=.30 RPM Orbiter: $dv=.0061$ $*d\alpha (Max.)=.22^{\circ} \text{ f}$ maneuvers = 4.8° dN=.30 RPM
Fire: 1, 4, 6 or 2, 3, 5 A Trim maneuver re- quired after all maneuvers in order to meet .20° accuracy Modulate: 4,6 or 3,5	Probe: Max. $\Delta \alpha = 71^{\circ}$ (For events 27 and 28 also) Orbiter: Max. $\Delta \alpha = 71^{\circ}$	Probe: dv=.055 m/sec dα (Max.)=.066° for maneuvers ≤ 1.25° dN=Negligible Orbiter: dv=.031 m/sec dα (Max.)=14° for maneuvers ≤ 2.6° dN=Negligible
Fire: 1&4 or 2&3 ACTrim maneuver re- quired after all maneuvers in order to meet .20° accuracy	Probe: Max. $\Delta \alpha = 96^{\circ}$ (For events 27 and 28 also) Orbiter: Max. $\Delta \alpha = 96^{\circ}$	Probe: dv=.05 m/sec d\alpha (Max.)=.096° f maneuvers $\leq 2.1^{\circ}$ dN=Negligible Orbiter: dv=.028 m/sec *d\alpha (Max.)=.22° f maneuvers $\leq 4.8^{\circ}$ dN=Negligible
Fire: 3&6 or 4&5 △ a Trim maneuver re- quired after all maneuvers in order to meet .20° accuracy	Probe: Max. $\Delta x=27.5^{\circ}$ Max. $\Delta x=3.9^{\circ}$ for N=85 RPM for events 27&28 Orbiter: Max. $\Delta \alpha=22^{\circ}$	Probe: dv=.015 m/sec d∝ (Max.)=.096° for maneuvers≤2.1° dN30 RPM Orbiter: dv=.0064 m/sec *d∝ (Max)=.22° for maneuvers≤4.8° dN=.30 RPM
Fire: 6&7 or 5&8 $\Delta \alpha$ Trim maneuver re- quired after all maneuvers in order to meet .20° accuracy	Probe: Mex. $\Delta \alpha = 27.60$ Max. $\Delta \alpha = 3.90$ for N=85 RFM for events 27&28 Orbiter: Max. $\Delta \alpha = 220$	Probe: dv=.015 m/sec $d\alpha (Max.=.096^{\circ} f\alpha)$ maneuvers $\leq 2.1^{\circ}$ dN=.30 RPM Orbiter: $dv=.006\mu \text{ m/sec}$
	Procedure Fire: 1&6 or 3 & 8 or 2&5 or 4&7 A Trim maneuver required after all maneuvers in order to meet .20° accuracy Fire: 1, 4, 6 or 2, 3, 5 A Trim maneuver required after all maneuvers in order to meet .20° accuracy Modulate: 4,6 or 3,5 Fire: 1&4 or 2&3 A Trim maneuver required after all maneuvers in order to meet .20° accuracy Modulate: 4,6 or 3,5 Fire: 1&4 or 2&3 A Trim maneuver required after all maneuvers in order to meet .20° accuracy Fire: 3&6 or 4&5 A Trim maneuver required after all maneuvers in order to meet .20° accuracy Fire: 3&6 or 4&5 A Trim maneuver required after all maneuvers in order to meet .20° accuracy Fire: 3&6 or 4&5 A Trim maneuver required after all maneuvers in order to meet .20° accuracy Fire: 6&7 or 5&8 A Trim maneuver required after all maneuvers in order to meet .20° accuracy	ProcedureManeuver IncrementFire:1&6 or 3 & 8Frobe:or 2&5 or 1&7 $\Delta \alpha$ Trim maneuver required after all maneuvers in order to meet .20° accuracyFrobe:Fire:1, 4, 6 or 2, 3, 5Frobe: $\Delta \alpha$ Trim maneuver required after all maneuvers in order to meet .20° accuracyProbe: Max. $\Delta \alpha = 22^\circ$ Fire:1, 4, 6 or 2, 3, 5Probe: Max. $\Delta \alpha = 22^\circ$ Fire:1, 4, 6 or 2, 3, 5Probe: Max. $\Delta \alpha = 71^\circ$ (For events 27 and 28 also) Orbiter: Max. $\Delta \alpha = 71^\circ$ Fire:1&4 or 2&3 A cfTrim maneuver required after all maneuvers in order to meet .20° accuracyProbe: Max. $\Delta \alpha = 96^\circ$ (For events 27 and 28 also) Orbiter: Max. $\Delta \alpha = 96^\circ$ Fire:3&6 or 1&5 A cfTrim maneuver required after all maneuvers in order to meet .20° accuracyProbe: Max. $\Delta \alpha = 96^\circ$ Fire:3&6 or 1&65 RPM for events 27&28 Orbiter: Max. $\Delta \alpha = 3.9^\circ$ for N=85 RPM for events 27&28 Orbiter: Max. $\Delta \alpha = 3.9^\circ$ for N=85 RPM for events 27&28 Orbiter: Max. $\Delta \alpha = 3.9^\circ$ for N=85 RPM for events 27&28 Orbiter: Max. $\Delta \alpha = 3.9^\circ$ for N=85 RPM for events 27&28 Orbiter: Max. $\Delta \alpha = 3.9^\circ$ for N=85 RPM for events 27&28 Orbiter: Max. $\Delta \alpha = 3.9^\circ$ for N=85 RPM for events 27&28 Orbiter: Max. $\Delta \alpha = 3.9^\circ$ for N=85 RPM for events 27&28 Orbiter: Max. $\Delta \alpha = 3.9^\circ$ for N=85 RPM for events 27&28 Orbiter: Max. $\Delta \alpha = 22^\circ$

dN= .30 RPM

1

ERATIONS - DOMANEUVERS

SP 07R70-F

1

cle 4.4.6.2-III	FOLDOUT FRAM	7
Irror	Remarks	Rank
/sec •.096° for trim 52.1 4 dv=.0064 m/sec)=.22° for trim ≤4.8° 4	\triangle N Trim maneuver needed if maneuver total>27.5° for probe, and $\triangle \propto > 22°$ for orbiter (cruise condition). During events 27&28 in probe mission \triangle N trim is needed for each $\triangle \propto = 3.9°$ increment because of high spin speed. *d \propto (Max.) is $\frac{1}{2}$ this value for single engine operation.	III
/sec 2.066° for trim $\leq 1.25^{\circ}$.ble /sec 14° for trim $\leq 2.6^{\circ}$.ble	Max. ∆∝increment based upon performing only one trim maneuver	II
<pre>/sec •.096⁰ for trim £ 2.1⁰ ble /sec =.22⁰ for trim £4.8⁰ ble</pre>	Max. $\Delta \alpha$ increment based upon performing only one trim maneuver. *d α (Max.) is $\frac{1}{2}$ this value for single engine operation.	
<pre>'sec •096° for trim 2.1° 1 1/sec =.22° for trim 4.8° 1</pre>	Δ N Trim maneuver needed if maneuver total>27.5° for probe, and $\Delta \approx >22^{\circ}$ for orbiter (cruise condition). During events 27&28 in probe mission N trim is needed for each $\Delta \approx =3.9^{\circ}$ increment because of high spin speed. * d α (Max.) is $\frac{1}{2}$ this value for single engine operation.	
/sec .096° for trim ∉2.1° 1 1/sec	$ \Delta N Trim maneuver needed if maneuver total>27.5° for probe, and \Delta \alpha > 22° for orbiter (cruise condition).During events 27 & 28 in probe mission \Delta N trim is needed for each \Delta \alpha = 3.9° increment because of high spin speed.* d\alpha (Max.) is \frac{1}{2} this value for single engine operation$	
)=.22° for trim =4.80 M		

4.4-69/4.4-70

EOLDOUT FRAME

FLIGHT OPERATION - $\Delta N M$

TABLE 4.4.6.2-IV

System	Procedure	Maneuver Increment	Error
I, II & III (P-5)	Fire: 2&3 or 6&7 or 5&8 or 1&4 △N trim≤1.6 RPM needed after all maneuvers in order to meet +.10 RPM accuracy	Probe: Max.∆N=25 RPM Orbiter: Max.∆N=25 RPM	Probe: dv (Max.)=.0011 m/sec d (Max.)=.040° @ Nav.=5 dN=1.60 RPM Orbiter: dv (Max.)=.0015 m/sec d (Max.)=.125° @ N=15 R dN=1.6 RPM
IV, V & VI (P-7)	Fire: 3&6 or 4&5 △N trim≤1.6 RPM needed after all maneuvers in order to meet <u>+</u> .10 RPM accuracy	Probe: Max.△N=25 RPM Orbiter: Max.△N=25 RPM	Probe: dv (Max.)=.0011 m/sec dα (Max.)=:040° @ Navg=5 dN=1.60 RPM Orbiter: dv (Max.)=.0015 m/sec dα (Max.)=.125° @ N=15 R dN=1.6 RPM
VII, VIII & IX (P-10)	Fire: 5&8 or 6&7 △N trim ≤ 1.6 RPM needed after all maneuvers in order to meet + .10 RPM accuracy	Probe: Max. △N=25 RPM Orbiter: Max. △N=25 RPM	Probe: dv (Max)=.0011 m/sec dα (Max)=.017 @ NAVG= 50 dN=1.6 RPM Orbiter: dv (Max.)=.0015 m/sec dα (Max.)=.032° @ NI= 15 RPM dN=1.6 RPM
X, XI & XII (P-12)	Fire: $4\&6 \text{ or } 5\&3$ $\Delta N \text{ tr} = 1.6 \text{ RPM}$ needed after all maneuvers in order to meet \pm .10 RPM accuracy	Probe: Max.△N=25 RPM Orbiter: Max.△N=25 RPM	Probe: dv (Max.)=.045 m/sec dα (Max.)=.320° @ Navg= 50 RPM Orbiter: dv (Max.)=.060 m/sec dα (Max.)=.58° @ N=15 RF dN=1.6 RPM
XIII, XIV & XV (F-13)	Fire: 527 or 6&8 △N trim ≤ 1.6 RPM needed after all maneuvers in order to meet + .10 RPM accuracy	Probe: Max.△N=25 RPM Orbiter: Max.△N=25 RPM	Probe: dv (Max.)=.045 m/sec dα (Max.=.31°@Navg= 50 RPM dN=1.6 RPM Orbiter: dv (Max.)=.06 m/sec dα (Max.)=5.8° dα (max.) 58° @ N= 15 RPM

Note: Probe is in launch condition and orbiter in cruise mode for above errors.

FEITTER -AN MANELYER

SP 07R70-F

EOLDOUT FRAME

	Remarks	Rank
*.1011 m/sec *.110° 3 Nav.=50	Probe mission errors are for despin maneuver conditions	II
=.3015 t/sec ,=.125° § N=15 RPM 74		
.=.0011 n/sec ,=.010° 3 Navg=50 =PM)=.0015 n/sec)=.125° & N=15 RPM PM	Probe Mission errors are for despin maneuver conditions.	11
=.0011 m/sec =.017 © NAVG= 50 RPM PM)=.0015 m/sec)=.032° @ N.=	Probe mission errors are for despin maneuver conditions.	I
M		
)=.045 m/sec)=.320° @ Navg=)=.060 m/sec)=.58° @ N=15 RPM PM	Probe mission errors are for despin maneuver conditions.	
)=.045 m/sec =.31° @Navg= M)=.06 m/sec)=5.8° dα (max.) =	Probe mission errors are for despin maneuver conditions.	
15 RPM		

Hamilton Standard

 $\mathbf{A}_{\mathbf{w}}$

SP07R70-F

4 4.7 Components

The degree of complexity of the candidate subsystems is a function of the types and quantities of components used in the subsystems and thus provides a basis for performing a technical evaluation and comparison. Table 4.4.7-I is a list of the types of components, and the quantities of each type, used for each subsystem; and a summary of the relative complexity of each of the subsystems. Because of the complexity (logic circuitry, position accuracy control, moving and sliding fits) associated with gimbal actuators for engine positioning, the systems utilizing this component are more complex than systems utilizing a fixed position engine. Likewise, the number of engines used in a system, and the use of latching valves represent more complexity, in terms of operation and checkout, than any of the other types of components (squib valves, test parts, etc.) that may be used on a candidate subsystem. Thus, using relative component complexity as a criteria, the subsystems are evaluated and categorized. The candidate subsystems utilizing gimbal actuators (X, XI, XII) represent the most complex configurations with candidate XI having the highest degree of complexity because, in addition to the actuators, the system also utilizes 4 latching solenoid valves. The systems having only 6 engines, and no gimbal actuator (IV, V, VI), represent the least complex of all the candidates with subsystem VI being the simplest since it utilizes a squib valve for isolation as opposed to the latching valves. The remaining candidates, representing the medium complexity range, use 8 engines and are rated in this category according to the type of isolation valve used. The subsystems utilizing squib valves (candidates III, IX, XV) are the simplest in this category with the remaining subsystems in this range considered more complex because of the use of latching valves.

TABLE 4.4.7-I

1

-

ORBITER SUBSYSTEM COMPONENT COMPLEXITY

	QUANTITY OF COMPONENTS														
Candidate	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV
Subsystem		P- 5			P-7	••••••••••••••••••••••••••••••••••••••		P-1 0			P-12			2-13	1
Component	FS- 2	FS 4	FS8	FS-2	FS-4	FS- 8	FS- 2	FS- 4	FS-8	FS-2	FS- 4	FS- 8	FS-2	FS-4	FS- 8
							(1)				(2)				
Tank	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Engine	8	8	8	6	6	6	8	8	8	6	6	6	8	8	8
Fill & Drain	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Filter	1	1	1	1	1	1	1	1	1	1, 1	l	1	1	1	l
Transducer	1	1	1	1	l	1	1	1	1	1 1	l	1	1	1	l
Squib Valve	-		1	-	-	l	-	-	l			1	-	-	1
Latching Valve	2	4	-	2	4		2	4	-	2	4	-	2	4	-
Actuator					-	-	-		-	2	2	2	-	-	-
Test Port	2	1	1	2	l	1.	2	l	1	2	1	1	2	1	1
Relative Complexity		MEDIUI	M		LOWESI		MEDIUM		MEDIUM HIGHEST			Т	MEDIUM		
Range															

Least complex of all candidate subsystems Most complex of all candidate subsystems

(1) (2)

4.4-73

SP 07R70-F

DIVISION OF UNITED ARCHAFT

PORATION

Hamilton Standard

Hamilton UNITED AIRCRAFT CORPORATION Standard A®

SP07R70-F

4.4.8. Structural/Physical Considerations

Since each of the candidate subsystems are similar except for the number of engine modules, and the number of components on the component panel, there are no significant structural or physical aspects that can be used to rank the candidate subsystems. The structural (vibration and shock) characteristics for each of systems vary slightly only because there are differences in engine locations and quantity as well as plumbing and feed system components. Subsystem interfaces, with the exception of plumbing and engine quantity and locations are also similar for all of the candidates. The component panel, although containing different components according to the feed system utilized, is designed to minimize spacecraft interfaces.

The subsystem using gimbal actuators to position engines, presents the most outstanding difference in installation and interface because of the added complexity associated with alignment and checkout. However, other considerations related to the candidate subsystems, such as thermal effects, plumbing effects, contamination control and center of mass tolerances, do not provide any significant physical advantages or disadvantages that can be used as a basis for ranking the subsystems. The inability to rank the candidate with respect to these considerations is due to the basic similarities present in the subsystems.

Hamilton	DIVISION OF L		CORPORATION
Standard		A®	

ł

.

SP 07R70-F

1

SECTION 5.0 PARAMETRIC AND DESIGN STUDIES Hamilton U Standard A®

5.0 PARAMETRIC AND DESIGN STUDIES

During the course of the Study Program, a series of analytical and design studies was conducted. In some cases, these studies developed data that supported the effort concerned with establishing a comparative evaluation of the individual propulsion system candidates, but, in most cases, the information developed was general in nature, and applied to all candidates. In addition, some of the information was developed in parametric form so as to be useful to GSFC at some later date in their conduct of trade-offs at the spacecraft level. These studies are outlined below and are discussed in detail in the subsequent sections. Each of the studies is common to all candidate systems, with the exception of the section on "Flight Operations" (Section 5.4), which used candidate system I (P-5/FS-2) for both the Orbiter and Probe missions,

- Mission Analysis
- Reliability
- Pre-Flight Operations
- Flight Operations
- Components
- Test Plans
- Thermal Analysis
- Plume Study
- Leakage/Feed System Dynamics
- Environmental Effects
- Contamination Control
- CG Tolerances

SP07R70-F

Hamilton UNITED AIRCRAFT CORPORATION Standard A®

5.1 <u>Mission Analysis</u>

To facilitate the determination of propellant weight allocations for the candidate propulsion systems under consideration and the two different missions, a computer program was written. This program uses an engine model to determine values of specific impulse and rotational efficiency for each maneuver. It also calculates weight of propellant consumed, the resultant tank pressure, the optimum electrical on time, the pulse train length, and updates the vehicle weight, spin inertia and spin rate. The computer program logic is illustrated in Figure 5.1.0-1.

The program requires the following inputs:

- a) The number of tanks used, their diameter and initial pressure, the distance between the vehicle and tank center of mass, and the initial weight of propellant loaded.
- b) The number of spin, velocity and attitude control engines, and their respective distances from the nozzle centerline to the vehicle center of mass.
- c) The initial vehicle weight, initial vehicle spin inertia (including propellant) and the initial vehicle spin rate.
- d) The engine minimum allowable on-time and the initial rotational efficiency for calculations.
- e) The maneuver type and magnitude and any update on vehicle weight or spin inertia

For each maneuver, the program prints out the values of the parameters listed in Table 5.1.0-I.

In analyzing each system for the required propellant weight allocations, the program assumes that the engines used for each type of maneuver are equally distant from the vehicle center of mass, although different "types" of engines may be located at different distances. This permits the use of the same electrical on-time and pulse train length for all engines performing a particular maneuver.

Final tank pressures for each maneuver are computed assuming an isothermal blowdown. The thrust level used for the maneuver is that value of thrust corresponding to the pressure at the start of the maneuver.

There are certain maneuvers in each mission for which the number of engines, and the number of steps used to perform the maneuver, was changed. This was done for two reasons:

Hamilton Standard

1

EOLDOUT FRAME

TABLE 5.1.0-I. COMPUTER PRINTOUT NOMENCLATURE

Units	Symbol	Nomenclature
lb-sec	IVEC	the value of the impulse required to perform the maneuver
lb-sec	IENG	the impulse each engine must deliver
lbf	\mathbf{F} and \mathbf{F}	the thrust level during the maneuver
	RATE	the rate at which the maneuver is performed using a single engine
	RES	the magnitude of the maneuver corresponding to the shortest on-time
	EF	the rotational efficiency of the maneuver
sec	ISP	the specific impulse for the maneuver
sec	TON	pulse electrical on time (optimum)
	PTL	pulse train length required for the maneuver
Sec	TM	time required to perform the maneuver with one engine
lbs	DELM	the weight of propellant consumed during the maneuver
lb-in ²	IZZ	the vehicle spin moment of inertia after the maneuver
lb-in ²	DIZ	the change in vehicle spin moment
lbs	WTVEC	the vehicle weight after the maneuver
psia	PT	tank pressure after the maneuver
lbs	PROP	weight of propellant remaining in tanks after the maneuver
rpm	SPIN RATE	vehicle spin rate after maneuver

SP07R70-F

FIGURE 5.1.0-1. MISSION ANALYSIS -FLOW CHART X

Hamilton U Standard A

5.1 (continued)

1) To include the effect of tank pressure blow-down during a maneuver, and

2) To allow the coalescing of repeated maneuvers of smaller magnitude.

The logic used in making changes is that the fraction of the total impulse that each engine must deliver should be kept constant so that a large one-step maneuver utilizing four engines may be divided into four small maneuvers utilizing one engine so that one engine is still required to deliver only one-quarter of the total required impulse, or ten small maneuvers utilizing two engines each may be calculated effectively as one large maneuver using twenty engines.

The candidate systems can be represented by four different configurations based only on the number of each type of engine (Table 5.1.0-II). These four configurations were run for the two different missions, Orbiter and Probe. The results have been compiled and are presented in Tables 5.1.0-III through Table 5.1.0-X.

5.1.1 EFFECT OF CRUISE SPIN RATE ON PROPELLANT LOAD:

The variation in the total mission propellant requirements due to changes in the cruise spin rate may be determined by ratio-ing the total mass consumed by precession changes during cruise to the new cruise spin rates, and adding any additional spin-up mass consumption. This was done for the case of 48 rpm cruise spin rate and the value obtained was compared to a computer run for the same case. The difference between the computer run and the calculated value was less than .3% indicating that the propellant loading required for different spin rates could be confidently calculated and is shown here in Figure 5.1.1-1. The slope differences between the curve for the Probe mission and the one for the Orbiter mission is due to the difference in the number of precession maneuvers performed during cruise. The final cruise spin rate will have to be determined from an analysis of the maneuver errors.

5.1.2 EFFECT OF CONSTANT PULSE ELECTRICAL "ON -TIME" ON PROPELLANT LOADING:

The propellant loading for each mission and placement configuration was determined using the "optimum" electrical on-time for each maneuver; that is, the on-time for which the product of the rotational efficiency and specific impulse is maximum. In order to determine the impact of a fixed electrical on-time, the Probe mission was run using an initial propellant load of 74 lbs and fixed on-times which varied from 0.100 to 0.500 sec. The resultant propellant consumption was then plotted against on-time and the results are presented in Figure 5.1.2-1.

Hamilton U Standard A®

5.1.2 (continued)

This analysis shows that for the considered mission, with a fixed electrical on-time of approximately 0.310 sec, a propellant load of 64.2 lbs is required. This represents an increase of 1.8 lbs of propellant over a variable optimum on-time case. This margin may be reduced if the Probe mission sequence were altered to de-spin the vehicle after the release of the mini-probes. The high spin rate (85 rpm) results in an optimum on-time of approximately 0.100 sec, whereas the majority of the mission uses an on-time of between 0.500 and 0.600 sec, so that a spin-down after release should shift the minimum fixed on-time to a higher value, and the decreased on-time variance would result in a lower mission propellant load penalty for the fixed on-time case.

PRECEDING PAGE BLANK NOT FILMED

EOLDOUT FRAME

TABLE 5.1.0-III

ORBITER MISSION PROFILE

SYSTEMS I, II, III, VII, VIII, IX (Configurations P5 & P10)

•			ſ			SATELL	ITE	· · · · · · · · · · · · · · · · · · ·	
						Spin		Tank	–
						Rate	Spin	Pressure	l
			No. of	Equivalent	Mass	After	Inertia	After	
4. 		Event	Steps	No. of	After	Event	Izz After	Event	F
	Event	Magnitude	Used	Engines	Event	(RPM)	$(1b-in^2)$	(psia)	
terip tillingen							<u></u>		-
1.	Lift Off								t
2.	3rd Stage Burnout					70			
3.	De-Spin by Hydrazine System	-49 rpm	1	2	915.5	20.98	234833	248.5	
4.	Erect Booms			the second					
5.	Spin-Up to Cruise Value	+l rpm	1 1	2	915.44	14.98	345415	248.4	ľ
5.	S/C Separation from 3rd Stage	n a shekarar ta							
7.	Spin Control	+10 rpm	1	2	744.26	24.95	313102	247.88	
8.	Spin Control	-9.7 mm	1 1	2	744.09	15.33	313046	247.40	ŀ
9.	Orient for Cruise	90 deg	1	2	743.71	15.32	312918	246.29	
0.	Orient for 1st M/C	10 deg	1	2	743.65	15.32	312899	246.13	L
1.	1st Midcourse Correction	27 m/sec		1	734.27	15.21	309799	222.27	
		27 m/sec		1	724.96	15.09	306721	202.73	
		27 m/sec		1	715.69	14.98	303664	186.43	
• •		27 m/sec		1	706.50	14.87	300616	172.67	
2	Re-Orient to Cruise	10 deg	1	2	706.11	14.87	300598	172.59	
3	Spin Control	+2.5 rpm	lī	2	706.38	17.37	300578	172.51	1
J.	Spin Control	-2.5 rom	lī	$\overline{2}$	706.33	14.87	300559	172.43	
5	Orient for 2nd M/C	10 deg	Īī	2	706.27	14.87	300540	172.35	
6.	2nd Midcourse Correction	10 m/sec	ī	$\mathbf{\tilde{h}}$ and $\mathbf{\tilde{h}}$ and $\mathbf{\tilde{h}}$	702.88	14.83	299424	167.79	
7.	Re-Orient to Cruise	10 deg	1 T	2	702.83	14.83	299406	167.72	
8	Spin Control	5 rom	1	2	702.73	19.83	299373	167.59	
9.	Spin Control	-h.7 rom	Ī	2	702.63	15.12	299342	167.46	
0.0	rient for 3rd M/C	10 deg	1 1	$\overline{2}$	702.58	15.12	299324	167.39	
'n.	3rd Midcourse Correction	2 m/sec	1	$\left[\frac{1}{2} \right] = \left[\frac{1}{2} \right]$	701 .88	15.11	299086	166.49	
2.	Re-Orient to Cruise	10 deg	Ī	2	701.83	15.11	299067	166.42	
3	Orient for Retrofire	90 deg	1 7	2	701 .).5	15.11	298910	165.93	
The la	Retrofire for Orbit Transfer	90 deg		2	1.21.08	15.10	281,996	165.17	
5	Spin Control	+ 5 mm	1	2	123.99	20.09	281,965	165.3/1	
6.	Spin Control	-5 mm	17	2	123.89	15.09	28/1933	165.22	ľ
,7	Attitude Control Maintenance	120 deg	Î	2	123.11	15.09	28/1773	164.62	
8.	Orientation Trim	6 deg	1	2	1,23.38	15.09	28/1762	164.57	
9	Spin Control	*2.5 mom	1 7	2	123.32	17.59	281,71,2	164.50	
10.	Spin Control	-2.5 mm	1 7	2	1,23.26	15.08	28/172/1	164.13	
11	Orient for Periansis Reduction	1050 deg	7	100	1.18.21	11.99	283058	158.34	
12	Periansis Reduction	211-3 m/se	8	9	113.36	1/1.93	281/133	152.84	
	· · ·	2)1 3 m/00	A A	Ó	1.08.52	1). 86	279827	1.7.76	
	이 같은 것은 것이 있는 것이 같은 것은 것이 있는 것이 같은 것이 없는 것이 없다.	2)1.3 m/co	ได้	6	103.71	T), 81	278221	113.05	
	에 가지 않는 것은 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 같은 것이 같은 것이 있는 것이 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 없는 것이 없다. 것이 같은 것이 없는 것이 있는	21 3 m/co		0	309-00	1).75	276635	138.68	
		24. J m/se	A R	0	301.21	11.60	275061	131.60	
	말 물건 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 있다.	24.3 m/se		0	389.66	11.62	2731.97	130-80	
	에는 것은 것은 이번 방법을 하는 것이 있는 것이 가지 않는 것이 있는 것이 같이 있는 것이 가지 않는 것이다. 같이 아니는 것은 것은 것이 같이 있는 것이 같이 것이 같이 같이 아이지 않는 것이 가지 않는 것이다.	24. 3 m/30		0	385.07	1).57	2719/18	127.24	
		2), 0 m/co		9	380-10		270362	123-82	
		2407 111 50	۲ V		1000040	<u>→</u> ↓		/ = V L	
				<u>I</u>			Bandelar and Sand Tableta		1

Initial Press.250 psiNo. of Tanks10Tank Dia..832Initial Prop.95 lbs

				ENGINE							
1 er)	Tank Pressure After Event (psia)	Total Impulse Required (lbf-sec)	Mode	Engine On-Time (sec)	Total No. of Pulses	Correction Elapsed Time (sec)	Engine Rotational Efficiency	Engine Impulse Required (1bf-sec)	Engine ISP (seç)	Propellant Used For Event (lbf)	Remaining Propellant (lbf)
	(ps1a) $(ps1a)$ $($	(10^{-5ec}) 120.3 4.94 35.59 34.49 82.77 9.18 2033 2007 1982 1956 8.62 9.94 9.94 8.62 717.96 8.57 18.25 17.4 8.74 143.12 8.73 78.59 74.90 17.45 17.45 99.74 5.08 9.47 9.745 17.45 99.74 5.08 9.47 9.47 9.47 870.35 1029.58 1017.55 1005.6 993.8 982.2 970.6 959.2 971.1	SS SS PPPPPPPSSSPPPPPPPPPPPPPPPPPPPPPP	$ \begin{array}{r} (sec) \\ 12.01 \\ .495 \\ 3.569 \\ 3.459 \\ .489 \\ .306 \\ .426 \\ .432 \\ .497 \\ .501 \\ .376 \\ 1.296 \\ 1.296 \\ 1.296 \\ .376 \\ .501 \\ .501 \\ .511 \\$	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$ \begin{array}{c} 12.01 \\ .49 \\ 3.57 \\ 3.46 \\ 70.50 \\ 11.75 \\ 3751 \\ 3981 \\ 3677 \\ 3861 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.84 \\ 375.8 \\ 12 \\ 2.4 \\ 2.3 \\ 12.25 \\ 76.6 \\ 12.3 \\ 83.4 \\ 79.3 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.2 \\ 255.2 \\ 259.0 \\ 262.6 \\ 266.1 \\ 269.2 \\ 272.2 \\ 274.8 \\ 284.2 \\ \end{array} $	 	59.8 1.80 16.38 15.80 43.73 4.12 2133 2112 2094 2071 3.86 3.91 3.91 3.86 190.3 3.87 7.75 7.35 4.06 37.74 4.06 40.5 39.03 7.37 7.37 52.59 2.20 3.70 3.70 7.94 120.4 120.08 118 117 115 115 114 115	226.4 153.7 205.5 204.6 223.3 170.4 227.3 226.3 225.6 224.9 166.0 166.8 166.0 224.3 165.9 183.3 181.9 166.9 218.2 166.9 218.2 166.9 218.2 165.3 181.9 181.9 181.9 181.9 181.9 181.9 181.9 181.9 181.9 181.9 218.2 165.3 183.3 181.9 165.3 183.3 181.9 218.2 223.1 223.1 223.1 223.1 223.1 222.1 222.1 222.1 222.1 222.1 222.1 222.1 222.1 222.1 222.1 223.1 223.1 223.1 222.1 2	.53 .03 .17 .17 .17 .39 .06 9.38 9.32 9.27 9.19 .06 .055 .695 .055 .695 .055 .695 .055 .380 .363 .096 .077 .036 .057 .	94.47 94.44 94.26 94.09 93.71 93.65 84.27 74.96 65.69 56.50 56.44 56.38 56.27 52.88 52.83 52.73 52.63 52.73 52.63 51.88 51.83 51.45 51.08 50.99 50.89 50.32 50.26 45.24 40.36 35.52 30.74 26.0 21.31 16.66 12.07 7.40

5.1-7/5.1-8

FOLDOUT FRAMESP 07R70 - F

EOLDOUT FRAME

TABLE 5.1.0-IV ORBITER MISSION PROFILE SYSTEMS IV, V, & VI (Configuration P7)

		inananggalita,				SATEL	LITE	
21						Spin		Tank
ار : ۱۰۰۰ میں ۱۰۰۰ میں						Rate	Spin	Pressur
.			No. of	Equivalent	Mass	After	Inertia	After
		Event	Steps	No. of	After	Event	Izz After	Event
-	Event	Magnitude	Used	Engines	Event	(RPM)	$(\tilde{l}\tilde{b}-in^2)$	(psia)
Э	T + P+ OPP				WEVEC	Snin	Tee	Pm
; ⊥ ●					10 T A TYCA	Rate	-22	
0	and Stage Bunnout					70		
12	Do-Spin by Hydrogine System		<u>л</u> .	2	015.17	20.98	231,833	21.8.1.6
	Freet Booms	-40 1 pm			7-2-41	20.90	2,40,0	
4• 5	Spin-Up to Cruice Value	+] mom	1	2	975.1.1	1), 98	3),5),75	21.8.37
-6	S/C Separation from 3rd Stage	· T T Dair		G	/4/044	140/0	545425	
.7	Spin Control	+10 mm	1	2	71.1.26	21,98	31 31 02	217.88
R N	Spin Control	-0.7 nrm	1	2	7111 00	15 33	313016	217.10
.0	Opient for Chuice			2	71.3 60	15 32	312015	216.26
	Orient for lat M/C	JO deg		2	81.3 63	15 32	31 2801	216.08
	Jet Midesungs Composition	10 deg			721.06	1 5 .01	300701	220.00
• 1	1st Midcourse correction	2/ m/sec		ngan sag <mark>ila</mark> si sa sa Sasa sa g a na sa sa sa	794•20		206716	202 70
		2/ m/sec	4		イベム・ブン マコピ 67	11.08	202658	186 11
		2/ m/sec			704 1.9	11 97	200610	1 172 61
		2/ m/sec			706 10	11. 87	300010	170 26
2.	Re-Orient to Gruise	LU deg		5	700.42	17.27	300590	172.1.8
3.	Spin Control	+2.5 rpm		2	700.30	1/05/	300571	172.40
4.	Spin Control	-2.5 rpm		2	700.30	14.01	300552	172.40
5.	Orient for 2nd M/C	10 deg	1 1	3	706.24	14.07	300532	1/2.31
6.	2nd Midcourse Correction	LO m/sec		3	702.86	14.03	299410	10/ 0
.7•	Re-Orient to Cruise	10 deg	1	3	702.80	14.03	299396	10/.00
8.	Spin Control	+5 rpm	1	2	702.70	19.82	299363	107.55
.9∙	Spin Control	-4.7 rpm	1	2	702.60	15.12	299332	167.42
<u></u> 0	Orient for 3rd M/C	10 deg	1	3	702.54	15.12	299312	167.34
21.	3rd Midcourse Correction	2 m/sec	1	3	701.86	15.13	299077	166.46
2	Re-Orient to Cruise	10 deg	1	3	701.80	15.11	299057	166.38
23.	Orient for Retrofire	90 deg	1	3	701.40	15.11	298925	165.87
24.	Retro Fire for Orbit Transfer	90 deg	1	3	424.03	15.10	284978	165.39
25.	Spin Control	+5 rpm	1	2	423.93	20.10	284946	165.27
26.	Spin Control	-5 rpm	1 1	2	423.83	15.10	284914	165.15
27.	Attitude Control Maintenance	120 deg	1	3	423.35	15.09	284752	164.54
28.	Orientation Trim	6 deg	1	3	423.31	15.09	284739	164.49
29.	Spin Control	+2.5 rpm	11	2	423.25	17.58	284720	164.42
30.	Spin Control	-2.5 rpm	1	2	423.20	15.08	284702	164.34
31.	Orient for Periapsis Reduction	1050 deg	11	150	417.85	14.99	282931	157.89
32.	Periapsis Reduction	24.3 m/se	a 8	6	412.98	14.92	281305	152.43
	에는 것이 모두 가지 않는 것이 가지 않는 것을 알려 있다. 것은 것이 가지를 가지 않는 것이 가지 않는 것이 있는 것이 있다. 가지 않는 것이 가지 않는 것이 있는 것이 있는 것이 있는 것이 있다. 같은 것이 같은 것이 있다.	24.3 m/se	d 8	6	408.15	14.86	279703	147.38
33.	Periapsis Reduction	24.3 m/se	d	6	403.36	14.80	278099	142.70
34.		24.3 m/se		6	398.63	70	276513	138.35
35.	승규는 눈 에는 곳 한 글 도 안 물 일을 만들었다.	24.3 m/se	d	6	393.94	14.68	274939	134.30
36.	에는 그는 것은	24.3 m/se	d	6	398.30	14.62	273377	130.52
37.		24.3 m/se	d	6	384.71	14.56	271832	126.98
38		24.9 m/se	d	6	380.06	14.50	270247	123.58
- <u>-</u>	는 것은 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 하는 것을 가지 않는 것을 하는 것을 하는 것을 가지 않 이 가지 않는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 수 있는 것을 것을 것을 수 있는 것을 하는 것을 하는 것을 하는 것을 하는 것을 수 있는 것을 하는 것을 하는 것 			less entrice de la company		1	L	

FOLDOUT FRAME

e. •

SP 07R70 - F

Initial Pressure	250 psia
Initial Propellant	95#
No. of Tanks	10
Tank Dia.	.823 ft.

				ENGINE							
tia $fter$	Tank Pressure After Event (psia)	Total Impulse Required (lbf-sec)	Mode	Engine On-Time (sec)	Fotal No. of Pulses	Correction Elapsed Time (sec)	Engine Rotational Efficiency	Engine Impulse Required (lbf-sec)	Engine ISP (sec)	Propellant Used For Event (lbf)	Remaining Propellant (lb _f)
	Рт	IVEC		TON	PTL	TM	Eff	IENG	ISP	DELM	PROP
33	248.146	120.33	SS	12.01	1	12.01		59.82	226.4	•531	94.47
5	248.37	4.94	SS	•495	1	•49		1.80	153.7	.032	94.44
265446800122663227758642902153939727	247.88 247.40 246.26 246.08 222.23 202.70 186.41 172.64 172.64 172.48 172.40 172.31 167.68 167.68 167.55 167.68 167.55 167.42 166.46 165.39 165.27 165.15 164.54 165.49 165.49 165.49 164.42 164.42 164.42 164.42 164.42 164.42 164.34 157.89 152.43 142.70 138.35 134.30 130.52 126.98 123.58	35.59 34.45 82.64 9.23 2033 2007 1982 1956 8.79 9.94 9.94 8.78 717.9 8.74 18.25 17.40 8.91 143.11 8.9 78.71 74.89 17.45 17.45 17.45 99.73 5.08 9.47 9.47 870.82 1026.63 1016.61 1004.71 992.93 981.26 969.72 958.29 970.22	SS SPPPPPPSSPPPSSPPPSSPPPPSSPPPPPPPPPP	3.569 3.459 .459 .459 .428 .432 .497 .501 .221 1.299 .221 .501 .221 .283 .373 .500 .502 .505 .507 .509 .513 .515	$ \begin{array}{c} 1\\1\\1\\3\\1007\\1063\\979\\1023\\4\\1\\32\\4\\1\\32\\4\\1\\32\\4\\1\\32\\4\\1\\32\\10\\10\\103\\104\\105\\106\\108\\10\end{array} $	3.57 3.46 46.91 9.79 3752 3982 3677 3861 13.66 1 1.3 13.5 2.44 2.32 14.0 102 14.1 52.1 52.8 2.35 2.35 2.36 70.9 8.01 1.28	 .953 .947 .954 .952 .948 .946 .928 .946 .928 .945 .927 .927 .927 .927 .927 .924 .926 .942 .944 .926 .942 .944 .926 .945 .944 .945 .944 .946 .945 .947 .944 .926 .944 .946 .946 .947 .944 .946 .947 .944 .946 .947 .944 .946 .947 .944 .946 .947 .944 .946 .947 .944 .946 .946 .947 .944 .946 .946 .947 .944 .946 .944 .946 .946 .947 .944 .946 .947 .944 .946 .944 .946 .947 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .944 .946 .947 .944 .946 .947 .944 .946 .947 .944 .947 .944 .947 .944 .947 .944 .947 .947	16.38 15.80 27.51 2.32 2133 2110 2094 2072 2.71 3.91 2.71 $2.53.7$ 2.71 7.75 7.35 2.83 50.26 2.38 26.64 25.36 7.37 7.37 35.1 1.61 3.7 3.7 5.2 180.58 180.09 177.70 175.23 174.31 171.65 170.51 171.61	205.5 204.6 216.4 157.9 227.3 226.3 225.6 224.9 157.9 166.8 166.8 157.9 224.3 157.7 183.3 181.9 158.6 221.3 158.6 212.4 211.4 181.9 165.3 223.5 2		94.26 94.09 93.69 93.63 84.26 74.94 65.67 56.48 56.42 56.36 56.30 56.24 52.80 52.70 52.60 52.54 51.80 51.40 51.03 50.93 50.93 50.93 50.93 50.31 50.25 50.31 50.25 50.31 50.25 50.31 50.25 50.31 50.25 50.31 50.25 50.31 50.25 50.31 50.25 50.31 50.25 50.31 50.25 50.31 50.25 50.31 50.25 50.31 50.25 50.31 50.25 50.31 50.25 50.30 11.71 7.06

EOLDOUT FRAME

and the second second

- Fe -

د تختد.

1.0

TABLE 5.1.0-V ORBITER MISSION PROFILE SYSTEMS X, XI, & XII (Configuration P-12M)

					1	-		SATELL	ITE
	· .			t i	1		Spin	Gnin	Tank
				1			Rate	Thomas	Press
	Γ.			No. of	Equivalent	Mass	After	THE TOLE	After
			Event	Steps	No. of	After	Event	zz AL Cer	Event
		Event	Magnitude	Used	Engines	Event	(RPM)	$(lb-in^2)$	(psia
		THEN OPE							
	1.	Lulit VII and Stand Dummant	1	1				Į	1
	2.	Jru Stage Burnout	1.0	1 · . · · ·		01 - 1 -	20 00	001.800	21.8 1
	• د ا	De-Spin by Hydrazine System	-47 rpm	t *	C	727.41	20.90	254055	۰۱، ۲۲۰ ۲
	4.	Arect DOOMS	+ 7 mmm			01 - 1.1.	71. 08	21, 21.12	21.8
	D •	S/C Separation from 3rd Store	- T Lbu	1 -	ć	7-7-44	-4.40	545415	240.
	7	Shin Control Iroll Jrd Stage	+10		2	71.1. 94	21, 02	212102	21.7 5
	A .	Spin Control	_0.7			7).). 00	12 20	21301.6	241.0
	ю. О	Orient for Cruise	-7.1 rpm		2	71.2 77	12.20	RIDELE	241+6
	7.	Oright for let M/O	70 deg			71.2 6	12.20	2120000	240.2
• . • . • .	*U+	let Mideouver Connection	27 m/200	↓ *		721. 27	14 21	300700	222
		TO A LITACOULDE COLLER OT OIL	27 m/000	1	7	721 06	15,00	306721	202
	 		27 m/sec	4	7	715 60	1), 08	303661	186
•			27 m/sec		1 1	706 50	11. 87	300616	172 4
	12	Re-orient to Cruise	10 deg	linen e	2	706 111	11.87	300598	172
	12	Spin Control	+2.5 mm		2	706.38	17.37	300578	172
		Spin Control	-2.5 mm	1 1	2	706 33	11.87	300559	172.1
	15	Orient for 2nd M/C	10 deg	1 1	2	706.27	11.87	300540	172.
	16	2nd Midcourse Correction	10 m/con	1	i i	702 88	11.82	299/12/1	167
	17	Re-orient to Cruise	10 deg	1 1	2	702-83	11.83	2994.06	167.
	18	Spin Control	+ 5 mm	1 ī	2	702.73	19.82	299374	167.
32	19	Spin Control	+4.7 rom	ī	2	702.63	15.12	299342	167.1
- 5 1	20.	Orient for 3rd M/C	10 deg	1 ī	2	702.58	15.12	299324	167.
	21.	3rd Midcourse Correction	2 m/sec	1 i	la ser a T arati da l	701.90	15.11	299092	166.
r 1	22.	Re-orient to Cruise	10 deg	1	2	701.85	15.11	299074	166.1
	23.	Orient for Retrofire	90 deg	1	2	701.46	15.11	298946	165.9
	24.	Retrofire for Orbit Transfer	90 deg	1	2	424.10	15.10	285002	165.1
	25.	Spin Control	+ 5 rpm	1	2	424.01	20.10	284971	165.
	26.	Spin Control	- 5 rpm	11	2	423.91	15.10	284939	165.2
	27.	Attitude Control Maintenance	120 deg	1	2	423.43	15.09	284780	164.0
	28.	Orientation Trim	6 deg	1	2	423.40	15.09	284768	164.0
	29.	Spin Control	+2.5 rpm	1 1	2	423.34	17.59	284749	164.
	30.	Spin Control	-2.5 rpm	1	2	423.28	15.08	284730	164.1
	31.	Orient for Periapsis Reduction	1050 deg	1	100	418.26	114.99	283064	158.
	32.	Periapsis Reduction	24.3 m/sec	8	2	413.38	14.93	281139	152.0
-			24.3 m/sec		2	408.54	114.87	279834	147.
			24.3 m/sec		2	403.76	114.81	278228	143.0
		· 2019년 1월 2017년 2019년 1월 1997년 1월 199 1월 1997년 1월 1997년 1월 1월 1997년 1월 1	24.3 m/sec		2	399.02	170	276641	138.
			24.3 m/sec		2	394.33	114.75	275067	134.0
		동물 동물 방법에 가장되는 것을 받았다. 가장 가지가 가장 가지 않는 것이다. 가지 않는 것이다. 같은 것은 사람 제품을 다 가지 않는 것은 것은 것을 알았다. 것은	24.3 m/sec		2	389.68	14.69	273504	130.
			24.3 m/sec		2	305.09	14.63	2/1955	127.
		이들은 것 같은 것은 것은 것이 같이 같이 있는 것 같은 것이 가지 않는 것은 것이 같이 같은 것이다. 같은 것은 것은 것은 것은 것은 것은 것은 것이 같이 있는 것은 것이 같이	24.9 m/sec		4	300.43	14.57	270309	123.
								1	1 Contraction

FOLDOUT FRAME

Initial Pressure Initial Propellant No. of Tanks Tank Dia.

Total Impulse						Des ant man	i	Descaling	
Required (1b _f -sec)	Mode	Engine On-Time (sec)	Total No. of Pulses	Event Elapsed Time (sec)	Engine dotational Efficiency	Impulse Required (1b _f -sec)	Eng ine ISP (sec)	Used For Event (1b _f)	Remaining Propellant (lb _f)
120.33	SS	12.01	1	12.01	-	59.82	226.4	.531	94.47
4.94	SS	•495	1	.49		1.80	153.7	.032	94.44
35.59 34.45 82.77 9.18 2033.08 2007.36 1981.80 1956.41 8.62 9.94 9.94 8.62 717.96 8.57 18.57 18.57 18.57 18.57 18.57 18.57 17.49 8.73 78.60 74.90 17.45 99.75 5.08 9.47 9.47 870.38 1029.62 1017.59 1005.38 993.89 982.21 970.66 959.22 971.16	SS SPPPPPPPPPSSPPPSSPPPPPPPPPPPPPPPPPP	3.569 3.459 .489 .306 .428 .432 .497 .501 .378 1.298 1.299 .378 .504 .379 2.436 2.324 .379 2.436 2.324 .379 2.436 2.353 2.354 .496 .496 2.353 2.354 .497 .217 1.282 1.283 .435 .500 .502 .504 .506 .509 .511 .513 .515	$ \begin{array}{c} 1\\ 1\\ 18\\ 3\\ 1006\\ 1064\\ 979\\ 1023\\ 3\\ 1\\ 3396\\ 4\\ 1\\ 4\\ 81\\ 4\\ 22\\ 22\\ 1\\ 1\\ 29\\ 4\\ 1\\ 6\\ 76\\ 77\\ 78\\ 79\\ 79\\ 80\\ 80\\ 83 \end{array} $	3.57 3.46 65.9 11.7 3751.2 3981.5 36.76.9 3861.2 1.8 1.3 1.2 2.35 2.35 105.9 12.1 1.28 1.28 21.2e 11.46.3 1.55.6 1181.4 1197.2 1211.4 1224.6 1237.0 1279.0	- .951. .953. .954. .952. .948. .946. .946. .946. .945. .945. .945. .944. .945. .947	$16.38 \\ 15.80 \\ 43.73 \\ 4.12 \\ 2132.81 \\ 2132.81 \\ 2132.04 \\ 2093.73 \\ 2071.47 \\ 3.86 \\ 3.91 \\ 3.91 \\ 3.86 \\ 761.04 \\ 3.91 \\ 3.91 \\ 3.86 \\ 761.04 \\ 3.91 \\ 3.91 \\ 3.86 \\ 761.04 \\ 3.91 \\ 3.92$	205.5 204.6 223.3 170.4 227.3 226.3 225.6 224.9 166.0 166.8 166.0 224.3 165.9 183.3 181.9 224.1 166.9 224.1 166.9 224.1 166.9 224.1 166.9 224.1 166.9 224.1 166.9 224.1 165.3 183.3 181.9 221.6 153.4 165.3 183.3 223.7 223.5 223.0 222.8 223.0 222.8 222.7 222.5 222.3	$ \begin{array}{c} .173\\.168\\.390\\.057\\9.375\\9.316\\9.267\\9.375\\9.316\\9.267\\9.192\\.055\\.060\\.055\\.060\\.055\\.060\\.055\\.388\\.055\\.100\\.096\\.055\\.380\\.055\\.380\\.055\\.676\\.055\\.380\\.055\\.380\\.055\\.380\\.055\\.380\\.055\\.477\\.057\\.057\\.057\\.057\\.057\\.057\\.057\\.0$	94.26 94.09 93.71 93.65 84.27 74.96 65.69 56.50 56.55 56.38 56.33 56.27 52.88 52.73 52.63 52.73 52.63 52.58 51.90 51.85 51.46 51.01 50.91 50.43 50.43 50.40 50.34 50.28 45.26 40.38 35.54 30.76 26.02 21.33 16.68 12.09 7.43
	Required $(1b_{f}-sec)$ 120.33 4.94 35.59 34.45 82.77 9.18 203.08 2007.36 1981.80 1956.41 8.62 9.94 9.94 8.62 717.96 8.57 18.62 17.45 17.45 17.45 17.45 17.45 99.75 5.08 9.47 9.17 8.70 17.45 17.45 99.75 5.08 9.47 9.17 8.70 17.45 17.45 99.75 5.08 9.47 9.17 9.18 1029.62 1017.59 1005.38 993.89 982.21 970.66 959.22 971.16	Required $(1b_{f}-sec)$ Mode120.33SS4.94SS35.59SS34.45SS82.77P9.18P203.08P2007.36P1981.80P1956.41P8.62P9.94SS8.62P9.94SS8.62P1956.41P8.62P9.94SS8.62P17.96P8.57P18.67P18.67P18.67P17.40SS8.74P143.12P8.73P78.60P74.90P17.45SS99.75P5.08P9.47SS9.47SS870.38P993.89P982.21P970.66P959.22P971.16P	Required $(1b_{f}-sec)$ On-Time (sec) 120.33SS12.01 4.94 SS.49535.59SS3.56934.45SS3.45982.77P.4899.18P.3062033.08P.4282007.36P.4282007.36P.4289.94SS1.2989.94SS1.2989.94SS1.2989.94SS1.2989.94SS1.2989.94SS1.2998.62P.378717.96P.5048.77P.37918.57SS2.13617.40SS2.3248.71P.496717.96P.496717.96P.5048.73P.37278.60P.49674.90P.49674.90P.49674.90P.49674.90P.49675.08P.2179.47SS1.283870.38P.4351029.62P.5001017.59P.5021005.38P.50493.89P.506982.21P.509970.66P.511959.22P.513971.16P.515	Required (1b_f-sec)ModeCn-Time (sec)No. of Pulses120.33SS12.011 4.94 SS.4951 35.59 SS3.5691 35.59 SS3.4591 82.77 P.48918 9.18 P.3063 203.08 P.4281006 2007.36 P.4321064 1981.80 P.497979 1956.41 P.5011023 8.62 P.3783 9.94 SS1.2981 9.94 SS1.2991 8.62 P.3783 717.96 P.504396 8.57 P.3794 18.75 SS2.1361 17.49 P.3724 9.94 SS2.3531 17.45 SS2.3531 17.45 SS2.3531 17.45 SS2.3531 9.75 P.49729 5.08 P.2174 9.47 SS1.2831 9.75 P.49729 5.08 P.2174 9.47 SS1.2831 9.47 SS1.2831 870.38 P.50277 1005.38 P.50178 993.89 P.50679 982.21 P <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

SP 07R70 - F

250 psia 95 # 10 .823

FOLDOUT FRAME

a the second

TABLE 5.1.0-VI

ORBITER MISSION PROFILE

SYSTEMS VII, VIII, IX, XIII, XIV & XV (Configurations P-10 & P-13)

SATELLITE Tan Spin Spin Rate Press Inertia After No. of Equivalent Mass After Event Izz After No. of After Event Event Steps $(lb-in^2)$ (RPM) Magnitude Used Engines Event (psia Event 1. Lift Off 3rd Stage Burnout 2. 248.44 20.98 234833 3. De-Spin by Hydrazine System - 49 rpm 2 915.47 1 L. Erect Booms 248.31 5. Spin-Up to Cruse Value + 1 rpm 1 2 915.44 14.98 345415 6. S/C Separation from 3rd State 247.8 7. Spin Control 2 744.26 24.98 313102 + 10 rpm 1 15.32 15.32 15.32 8. Spin Control 2 744.09 313046 247.40 -9.7 rpm 1 246.29 312918 Orient for Cruise 90 deg 1 2 743.71 9. 246.1 2 743.65 312900 10. Orient for 1st M/C 10 deg 1 1 15.21 309799 222.21 11. 1st Midcourse Correction 27 m/sed 734.27 724.96 15.09 306721 202.7 27 m/sec 4 1 715.69 706.50 14.98 27 m/sed 1 303664 186.4 14.87 300616 172.61 27 m/sec 1 2 300598 172.59 706.44 14.87 12. Re-orient to Cruise 10 deg 1 172.51 +2.5 rpm 2 706.38 17.37 300578 13. Spin Control 1. -2.5 rpm 2 706.33 14.87 300559 172.41 14. Spin Control 1 14.87 300540 15. Orient for 2nd M/C 1 2 706.27 172.39 10 deg 14.83 299424 167.79 10 m/sec 2 702.88 16. 2nd Midcourse Correction 1 299406 167.72 2 14.83 17. Re-Orient to Cruise 10 deg 1 702.83 167.59 + 5 rpm -4.7 rpm 18. Spin Control 2 702.73 19.83 299374 1. 15.12 299342 2 19. Spin Control 1 702.63 2 15.12 299324 167.39 20. Orient for 3rd M/C1 702.58 10 deg 166.51 1 2 15.11 299091 21. 3rd Midcourse Correction 2 m/sed 701.90 22. Re-Orient to Cruise 166.41 10 deg 1 2 701.84 15.11 299073 15.11 15.10 165.99 165.49 298945 23. Orient for Retrofire 2 90 deg 1 701.46 285002 24. Retrofire for Orbit Transfer 1 2 424.10 90 deg 284970 25. Spin Control +5 rpm 1 2 424.00 20.10 165.3 15.10 284938 165.21 26. Spin Control -5 rpm 1 2 423.91 15.09 284779 27. Attitude Control Maintenance 2 423.43 164.61 1 120 deg 15.09 284767 164.59 28. Orientation Trim 1 2 423.40 6 deg 284748 164.52 29. Spin Control +2.5 rpm 1 2 423.34 17.59 15.08 284729 164.4 30. Spin Control 1 423.28 -2.5 rpm 2 31. Orient for Periapsis Reduction 1050 deg 418.26 14.99 283063 1 100 158.30 8 281438 152.80 32. Periapsis Reduction 24.3 m/sec 413.37 14.93 4 14.87 279833 408.54 147.78 24.3 m/sec 4 14.81 278227 24.3 m/sec 4 403.75 143.0 24.3 m/sec 399.02 14.75 276641 138.70 4 394.33 275068 24.3 m/sec 14.69 4 134.6 389:68 14.63 273504 24.3 m/sec 130.8 L 24.3 m/sec 385.09 Ц.57 271955 127.20 4 24.9 m/sec 4 380.43 123.81 14.51 270370

Ini Ini No.

Tan

Initial Pressure Initial Propellant No. of Tanks Tank Dia.

250 p**sia** 95 # 10 .823

	EN CINE									
Tank	Maka 1	atura star							Dwanaliant	
Pressure	106a1				Event		Ingine		rroperrant,	Demointer
After			Engine		Elapsed	Engine	Impuise	Engine	Used For	nemaining
Event	nequired	·	On-Time	No. of	Time	Rotational	Required	ISP	Livent	ropellant
(psia)	(1bf-sec)	Mode	(sec)	Pulses	(sec)	Efficiency	(1bf-sec)	(sec)		$(1\mathbf{b}_{\mathbf{f}})$
	and the second									
248.46	120.33	SS	12.010	1	12.01	-	59.82	226.4	•531	94.47
248.37	4.94	SS	.495	1	.495	-	1.80	153.7	.032	94.44
247.88	35.59	SS 1	3.569	1	3.57		16.38	205.5	.173	94.26
247.40	34.45	SS	3.459	1	3.46	-	15.80	204.6	.168	94.07
246.29	82.77	Р	.489	18	65.9	.951	43.73	223.3	•390	93.71
246.13	9.18	P	.306	3	11.7	.953	4.12	170.4	.057	93.65
222.27	2033.08	P	1,28	1006	3751 2	.951	2132.81	227.3	9.375	84.27
202.73	2007.36	Р	132	1061	2087 E	.952	2112.04	226.3	9.316	74.96
186.13	1981.80	P	1.97	979	3676.9	918	2093.73	225.6	9.267	65.69
172.67	1056 1.7	P	501	1023		91.6	2071.1.7	221.9	9,192	56.50
172 50	8.62	P	378	1025	11 9	01.6	3.86	166.0	.055	56.44
	0.02	22	1 208			•740	3,91	166.8	.060	56.38
170 13	0 01	00	1 200	1 . 1	1 0 0		3.01	166.8	.060	56.33
	8.62	00	278	2	2)	01.6	3.86	166.0	-055	56-27
-167 70	717.06		•570 EQ.	108		• 740 01.5	380 52	221. 3	3,388	52.88
167 70	9 77	T T		190	151-2	015	3 87	165 0	055	52.83
167 50	18 25	00	0.1.36	4		• 74.7	7 75	183 3	100	52.73
101.59	10.25	00	2.430		- 2.44				006	52.63
	1.7.40	55	2.324	1 I	2.32	01.5	1.05	166 0	.090	52.05
101.39	0.74		•312	4.1	12.2	•945	75 01	100.7	.055	52.50
100.51	143.12		.490	41	153.0	• 944	15.04	263.5	•070	51.50 C1 81
100.11	8.73	P P	•3/2	4	12.3	•945	4.00	100.9	•055	51.04
105.95	78.60	P	-490	22	83.0	•944	40.49	219.0	• 300	51.40
165.49	74.90	P	.496	22	79.3	•944	39.03	210.5	.303	51.10
165.37	17.45	SS	2.353		2.35		1.31	101.9	.096	51.00
165.24	17.45	SS	2.354	1	2.35	-	7.37	181.9	•096	50.91
164.64	99.75	P	•497	29	105.9	•944	52.59	221.6	•477	50.43
164.59	5.08	Р	.217	4	12.1	•926	2.20	153.4	.036	50.40
164.52	9.47	SS	1.282	1	.1.28	•	3.70	165.3	.057	50.34
164.45	9.47	SS	1.283	1	1.28	•	3.70	165.3	•057	50.28
158.36	870.37	P	.435	6	21.2 e	• 945	7.94	183.3	5.025	45.26
152.86	1029.62	Р	.500	152	574.1	.943	272.73	223.7	4.881	40.37
147.78	1017.59	P	.502	154	582.8	.942	270.23	223.5	4.834	35.54
143.07	1005.68	P	.504	156	590.9	•941	267.53	223.3	4.786	30.75
138.70	933.89	P	.506	158	598.6	•940	264.65	223.0	4.738	26.02
134.62	982.21	P	.509	159	605.7	.940	261.62	222.9	4.691	21.33
130.82	970.66	P	.511	160	612-3	•939	258.44	222.7	4.643	16.68
127.26	959.22	P	.513	161	618.6	•938	255.15	222.5	4.595	12.09
123.84	971.16	P	.515	166	639.5	•937	259.16	222.4	4.660	7.43
يتشاري والتقارب والمراجع والمراجع والمراجع والمراجع	and the second secon					and the second	· · · · · · · · · · · · · · · · · · ·		and the second	

5.1-13/5.1-14

FOLDOUT FRAME .

EOLDOUT FRAME

TABLE 5.1.0-VII PROBE MISSION PROFILE

SYSTEMS I, II, III, VII, VIII, & IX (Configurations P-5 & P-10)

Initial No. of Tank Di Initial

			1			•	SATELL	LTE
						Spin		Tank
						Rate	Spin	Pressure
:			No. of	Equivalent	Mass	After	Inertia	After
		Event	Steps	No. of	After	Event	I After	Event
		Magnitude	lised	Engines	Event	(RPM)	$(16 - in^2)$	(naia)
والمراجع المراجع المراجع	Event	magnin bado		Linganou				(Pora/
_					1			
1.	Lift off					-		
2.	3rd Stage Burnout		_			70	005000	
3.	De-spin - Hydrazine	-40 rpm	1 1	2	µ051.4	29.90	335790	245.01
4•	Erect Booms	•				8.0	0.0	
วี่ะ	Spin Up to Cruise Valve	+ 4 rpm	l	2	µ 051.2	11.98	898292	244.27
5.	S/C Separation from 3rd Stage							
7.	Orient for Cruise	90 deg	1 1	2	879.4	11.97	833513	238.9
3.	Orient for 1st M/C	10 deg	1	2	879.3	11.97	P33478	238.2
9.	lst Midcourse Correction	27 m/sec	1	1	868.2	11.94	029802	182.3
	Total 108 m/sec	27 m/sec	4	1	857.0	11.89	826121	147.6
		27 m/sec		1	845.8	11.16	822437	123.9
		27 m/sec		1	834.7	11.12	818748	106.9
10.	Re-orient to Cruise	50 deg	1	2	834.3	11.82	818594	106.3
17.	Orient for 2nd M/C	20 deg	1 i	2	834.0	11.82	818528	106.1
12.	2nd Midcourse Correction	10 m/sec	1	l a sin a sin a si	829.9	11.80	817159	100.9
13.	Re-orient to Cruise	li0 deg	Ī	.2	829.6	11.79	817034	100.5
11.	Orient for 3rd M/C	20 deg	1	2	829.1	11.79	816968	100.3
15	and Middownse Connection	2 m/sec		i.	828 5	11.79	816691	99.3
16	Attitude Control Maintenance	20 deg	1	4	828 1	11 70	816625	99.1
17	Autorit Chin Avia Panallel to Falintia	20 deg		2	827 5	11 70	87631	98.2
18	Patence Mart Drobe	JO deg		2	807 1	11 78	816210	07 7
10.	Re-barget Maxi Probe	to aeg	↓ ↓	۲.	02/01	11.10	010217	21.01
17.	Separate Maxi Probe			•	1.07 0	11 78	765.05	07 6
2 ∪ ∎ 37	AULIDUCE CONTROL Maintenance	TO deg		2	127.0	11 78	765130	97.0 06 E
21.	He-target Mini Probe	5 m/sec		4	427.7		765075	06.2
220	Attitude Control Maintenance	20 deg		2	425.0	01 60	761.105	90.5
230	Spin up Mini rrobes	+(3 rpm	1	2	423.2	04.00	104175	73.5
24.	Separate Mini Probe				1202 01		003000	
25.	Attitude Control Maintenance	20 deg	1 1	2	100 1	104.03	201950	92.4
26.	Re-target S/C Bus	18 m/sec	1	1	LYCOL	104.50	201333	90.7
27•	Correct Sun Angle Drift	20 deg	1	2	1777.1	84.54	201221	09.0
28.	Orient Spin to Velocity Vector	12 deg	1	2	TAT 9	84.51	201152	08.9
k								
	이 물건은 방법을 통하는 것을 하는 것을 통하는 것을 것 같아요. 문서를 통하							
							the second se	

Initial Press. 250 psia No. of Tanks 6 Tank Dia. .823 ft. Initial Drop 74 lbs.

FELL	ETE		†	ENGINE						,	1
n tia Ster n ²)	Tank Pressure After Event (psia)	Total Impulse Required (lbr-sec)	Mode	Engine On-Time (sec)	Total No. of Pulses	Correction Elapsed Time (sec)	Engine Rotational Efficiency	Engine Impulse Required (lbf-sec)	Engine ISP (sec)_	Propellant Used For Event (lbf)	Remaining Propellant (1bf)
2) -6 -2 -3 -8 -1 -7 -8 -4 -8 -4 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	Event (psia) 245.61 244.27 238.9 238.2 182.3 147.6 123.9 106.9 106.3 106.1	nequired (1bf-sec) 140.4 40.3 172.1 19.1 2404 2373 2343 2312 94.72 37.8	Mode SS SS P P P P P P P P P P P P P P	Un-Time (sec) 14.02 4.08 .587 .509 .587 .589 .670 .672 .674 .595	No. or <u>Pulses</u> 1 1 3 4 890 1071 1099 1242 28 13	11me (sec) 14 4 19.5 4236 5079 5187 5846 130 59	efficiency .953 .954 .952 .947 .940 .936 .932 .932	70 19 89 8.3 2526 2509 2498 2478 49.7 18.9	(sec) 227.1 208.7 227 187.4 227 225 223 222 219 203	.62 .19 .79 .11 11.11 11.15 11.16 11.12 .47 .20	$(1b_{f})$ 73.38 73.19 72.39 72.29 61.17 50.02 38.85 27.74 27.27 27.07
9481549	100.9	847.8	P	.674	128	604	.931	227	222	4.11	22.96
	100.5	75.7	P	.675	24	108,5	.930	40.6	216	.38	22.58
	100.3	37.8	P	.596	14	61.5	.930	19.5	203	.20	22.38
	99.3	168.9	P	.755	24	112	.927	45.8	218	.84	21.55
	99.1	37.8	P	.596	14	62	.930	19.6	203	.20	21.35
	98.2	170.1	P	.676	54	247.	.929	90.4	221	.83	20.52
	97.7	75.6	P	.676	24	110.5	.929	39.5	216	.38	20.14
5955	97.6	17.7	P	.517	8	34	.928	8.4	182	.11	20.04
	96.5	217.3	P	.756	31	147.5	.926	57.4	219	1.10	18.97
	96.3	35.4	P	.636	13	55.5	.929	18.4	202	.19	18.78
	93.5	583.6	SS	118.8	1	119	.929	291.8	222	2.63	16.15
0	92.4	67.45	P	.094	152.7	108.2	.924	36.6	221	•339	15.51
3	90.7	352.72	P	.105	385	273.1	.921	96	221	1•73	14.08
1	89.6	67.25	P	.105	154.7	109.7	.920	36.66	221	•337	13.74
2	88.9	40.26	P	.105	92.9	65.9	.920	21.9	220	•211	13.53

TABLE 5.1.0-VIII PROBE MISSION PROFILE. SYSTEMS IV, V & VI (Configuration P-7)

SATELLITE Spin Tank Spin Rate Pressure Inertia In After No. of Equivalent Mass After Izz After Red No. of After Event Event Event Steps $(\overline{lb}-in^2)$ (11 Event Magnitude Used Engines Event (RPM) (psia) 1. Lift Off 70 3rd Stage Burnout 2. 246.15 -40 rpm 29.98 335796 3. De-spin - Hydrazine 1 2 1051.4 4. Erect Booms 244.9 11.98 898291 1 1051.2 Spin-Up to Cruise Valve + 4 rpm 2 5. S/C Separation from 3rd Stage 6. 240.2 1 833516 Orient for Cruise 879.4 11.98 7. 90 deg 1 3 239.56 833479 11.98 Orient for 1st M/C 879.3 8. 10 deg 1 3 188.8 21 868.2 11.94 829811 9. 1st Midcourse Correction 27 m/sec1 Г 23 155.7 11.90 826132 Total 108 m/sec 1 857.0 27 m/sec132.5 23 11.86 822451 1 845.9 27 m/sec115.4 23 11.82 81,8771 27 m/sec1 834.8 11.82 114.7 818613 834.4 10. Re-orient to Cruise 3 50 deg 1 114.5 11.82 818543 11. Orient for 2nd M/C 1 834.1 20 deg 3 8 109.3 12. 2nd Midcourse Correction 3 830.0 11.80 817176 10 m/sec1 108.8 817048 13. Re-orient to Cruise 40 deg 1 3 829.6 11.80 108.6 816979 3 829.4 11.80 14. Orient for 3rd M/C 1 20 deg 1 107.6 828.6 11.80 816707 15. 3rd Midcourse Correction 2 m/sec 1 3 107.4 3 1 828.4 11.79 816629 16. Attitude Control Maintenance 20 deg 106.4 816351 17. Orient Spin Axis Parallel to Exliptic 90 deg 1 3 827.6 11.79 11.79 105.9 816222 3 40 deg 1 827.2 18. Re-target Maxi Probe 19. Separate Maxi Probe 105.8 765497 20. Attitude Control Maintenance 3 427.1 11.79 10 deg 1 104.7 765146 21. Re-target Mini Probe 5 m/sed 1 3 426.0 11.78 765080 104.4 22. Attitude Control Maintenance 20 deg 3 425.8 11.78 1 101.6 23. Spin Up Mini Probes 2 84.69 764196 +73 rpm 1 423.2 24. Separate Mini Probes 100.4 25. Attitude Control Maintenance 84.64 201957 20 deg 1 3 193.9 98.7 3 26. Re-target S/C 'Bus 84.59 18 m/sed1 201370 192.2 97.6 27. Correct Sun Angle drift 201258 1 3 84.54 20 deg 191.9 96.9 28. Orient Spin to Velocity Vector 84.52 201189 1 3 12 deg 191.7

No. e Tank. Initi

Init:

SP 07R70 - F

Initial Press.	250	psia
No. of Tanks	6	tanks
Tank Dia.	.832	ft.
Initial Prop	69	lbs.

E			ENGINE					T			
Tank ressure After Event (psia)	Total Impulse Required (1bf-sec)	Mode	Engine On-Time (sec)	Total No. of Pulses	Correction Elapsed Time (sec)	Engine Rotational Efficiency	Engine Impulse Required 1bf-sec)	Engine ISP (sec)	Propellent Used For Event (1b _f)	Remaining Propellant (1b _f)	
246.15 244.9	140.4 40.3	SS SS	14.02 4.07	1	14.02		7 0.0	227.1	•62	68 . 38	
240.2 239.56 188.8 155.7 132.5 115.4 114.7 114.5 109.3 108.8 108.6 107.6 107.4 106.4 105.9	172 19.1 2403.8 2373 2343 2312 94.8 37.8 848 75.4 37.7 168.9 37.7 168.9 37.7 169.7 75.3	P P P P P P P P P P P P P P P P P P P	.587 .431 .587 .589 .670 .672 .754 .674 .674 .675 .675 .675 .676 .676 .596	$\begin{array}{c} 20 \\ 3 \\ 887 \\ 1043 \\ 1054 \\ 1178 \\ 16 \\ 7 \\ 160 \\ 16 \\ 8 \\ 34 \\ 8 \\ 33 \\ 17 \end{array}$	98.3 15 4219 4950 4981 5558 73.2 32.9 759.7 72.3 34 157.7 34.3 155 78.3	.953 .953 .952 .948 .941 .937 .931 .933 .934 .933 .934 .933 .932 .932 .932 .932 .932 .932 .932	58.2 5.96 2527 2507 2494 2473 33.04 11.99 302.2 25.71 12.3 60.4 12.4 59.3 25.6	225.6 179 227 225 224 223 214 192 222 209 192 220 192 220 209	.80 .11 11.11 11.13 11.13 11.13 11.08 .48 .21 4.10 .39 .21 .82 .21 .82 .21 .83 .39	67.40 67.28 56.16 45.03 33.90 22.82 22.4 22.1 18.04 17.65 17.44 16.62 16.41 15.58 15.20	
05.8 04.7 04.4 01.6 00.4 98.7 97.6 96.9	17.7 217.3 35.3 583.6 67.4 352.5 67.13 40.2	P P SS P P P P P	.517 .676 .676 111.7 .094 .094 .094	5 43 7 1 101.3 534 102.2 61.4	21.3 206.7 33 112 71.8 378 72.5 43.6	.931 .931 .931 .926 .926 .925 .925	5.5 76.4 11.2 291.8 24.8 127.2 24.2 14.48	171 221 190 222 221 221 221 221 218	.11 1.06 .20 2.62 .339 1.72 .337 .211	15.08 14.03 13.83 11.20 10.86 9.14 8.80 8.59	
	Del magnutura de magnutura de la companya de la comp										1

FOLDOUT FRAME

TABLE 5.1.0-IX PROBE MISSION PROFILE SYSTEMS X, XI & XII (Configurations P-12M)

					1	SATELI	LITE	
			No. of	Equivalent	Mass	Spin Rate After	Spin Inertia T After	Tan) Press After
l		Event	Steps	No. of	After	Event	ZZ 2.	Even
	Event	Magnitude	Used	Engines	Event	(RPM)	(1b-in ⁻)	(psi
1.	Lift Off							
2.	3rd Stage Burnout				t i t	70		
3.	De-spin - Hydrazine	-40 rpm		2	1051.4	29.98	335796	246.
14.	Erect Booms	(*						
5.	Spin Up to Cruise Valve	+ 4 rpm	1 . 1	2	1051.2	11.98	898291	245.
6.	S/C Separation from 3rd Stage	(La de la				1. 1. 1. 1	
7.	Orient for Cruise	90 deg	1 1	2	879.4	11.98	833518	240.
8.	Orient for 1st M/C	10 deg	1 1	2.	879.3	11.98	833483	239.0
9.	lst Midcourse Correction	27 m/sec	1.1.1	1	868.2	11.94	829815	188.
	Total 108 M/SEC	27 m/sec		1	857.0	11.90	826136	155.
		27 m/sec		1 1	846.0	11.86	822454	132.
l starte		27 m/sec			834.8	11.82	818774	115.
10.	Re-orient to Cruise	50 deg] 1	2	834.4	11.82	818621	114.
11.	Orient for 2nd M/C	20 deg	11	2	834.2	11.82	818555	114.
12.	2nd Midcourse Correction	10 m/sec	1 1	2	830.1	11.80	817188	109.
13.	Re-orient to Cruise	40 deg	1. 1	2	829.7	11.80	817065	108.
11.	Orient for 3rd M/C	20 deg	11	2	829.5	11.80	816998	108.
15.	3rd Midcourse Correction	2 m/sec	1	1	828.7	11.80	816728	107.
16.	Attitude Control Maintenance	20 deg	1 1	2	828.5	11.80	816655	107.
17.	Orient Spin Axis Parallel to Ecliptic	90 der	1.1	2	827.71	11.79	816378	106.
18.	Retarget Maxi Probe	40 deg	11	2	827.31	11.79	816253	106.
19	Separate Maxi Probe	D	te de la su					
20.	Attitude Control Maintenance	10 deg	1 1	2	427.21	11.79	765530	105.
21.	Retarget Mini Probe	5 m/sec	1 1	1 1	426.1	11.79	765181	104.
22.	Attitude Control Maintenance	20 deg	1 1	2	425.91	11.79	765119	104.
23.	Spin Up Mini Probes	+73 rom	1	2	423.31	84.69	764234	101.
24.	Separate Mini Probes							
25	Attitude Control Maintenance	20 deg	1 1	2	19/1	84.64	201957	100.
26.	Retarget S/C Bus	18 m/sec	1 1	1 a	192.21	84.59	201370	98.
27	Correct Sun Angle Drift	20 deg	1 1	2	197.9	84.55	201258	97.
28.	Orient Spin to Velocity Vector	12 deg	1	2	191.7	84.52	201189	97.

Wate

FOLLOUT FRAME

SP 07R70 - F

Initial Press.	250 psia
No. of Tanks	6
Tank Dia.	.823 ft.
Initial Prop.	69 lbs.

••••••••••••••••••••••••••••••••••••••				ENGINE	}						
n •tia fter n ²)	Tank Pressure After Event (psia)	Total Impulse Required (1b _f -sec)	Mode	Engine On-Time (sec)	Total No. of <u>Pulses</u>	Correction Elapsed Time (sec)	Engine Rotational Efficiency	Engine Impulse Required (lb _f -sec)	Engine ISP (sec)	Propellant Used For Event (lb _f)	Remaining Propellant (1b _f)
'96	246.2	140.4	S3	14.02	1	14.02	-	70.0	227.1	.62	68.38
91	245.0	40.34	SS	4.07	1	4.07		18.8	208.7	.19	68.19
18 83 156 157 258 58 58 58 58 58 58 58 58 58 58 58 58 5	240.2 239.6 188.8 155.7 132.5 115.4 114.8 114.8 114.5 109.3 108.9 108.6 107.7 107.4 106.5 106.1	172.07 19.08 2403 2373 2343 2318 94.4 37.8 847.9 75.5 37.7 168.9 37.7 169.7 75.3	P P P P P P P P P P P P P P P P P P P	.587 .509 .587 .589 .670 .672 .635 .555 .674 .675 .516 .675 .636 .676 .557	31 4 887 1042 1054 1178 28 13 483 23 15 99 12 51 28	147.6 17.2 4218 4949 4981 5558 130.5 59.9 11.39 102 67 473 55 232 126	.953 .954 .952 .948 .941 .937 .935 .935 .935 .934 .932 .932 .932 .932 .932 .932 .932	89.2 8.2 2527 2507 2494 2473 49.6 18.9 455 40.5 19.1 90.0 19.4 91.1 39.8	227 187.3 227.1 225 223.6 227.6 218.9 203 222 217 203 221 203 221 203 221 203	$ \begin{array}{c} .79\\.11\\11.11\\11.13\\11.13\\11.08\\.46\\.19\\4.1\\.37\\.20\\.82\\.20\\.82\\.37\end{array} $	67.39 67.29 56.17 45.04 33.91 22.83 22.37 22.17 18.08 17.70 17.5 16.7 16.5 15.7 15.3
30 81 19 34	105.9 104.8 104.6 101.7	17.7 217.ц 35.3 58ц	P P P SS	.596 .676 .597 111.6	6 65 13 1	27.7 620 56 112	.932 .931 .932 -	8.4 115.7 18.3 292	182 221 202 222	.10 1.05 .19 2.63	15.19 14.13 13.94 11.32
57 70 58 39	100.5 98.81 97.7 97.02	67.4 352.7 67.2 40.2	P P P P	.094 .094 .094 .094	154.4 802 154 92.8	109 568.8 109.2 65.8	.926 .926 .925 .925	36.5 191 36.49 21.9	221 221 221 221 221	.339 1.73 .33 .211	2 10.89 9.25 8.91 8.70

5.1-19/5.1-20

TABLE 5.1.0-X PROBE MISSION PROFILE SYSTEMS VII, VIII, IX, XIII, XIV & XV (Configurations P-10 & P-13)

			i			LITE		
				2 4 5 4		Spin Rate	Spin Inertia	Tank Pressur
			No. of	Equivalent	Mass	After	T After	After
		Event	Steps	No. of	After	Event	IZZ ALCOL	Event
	Event	Magnitude	Used	Engines	Event	<u>(RPM)</u>	$\left(\frac{(lb-in^{-})}{(lb-in^{-})}\right)$	(ps1a)
1.	Lift Off							
2.	3rd Stage Burnout		[]					
3.	De-spin - Hydrazine	-40 rpm	1	2	1051.4	29.98	335796	246.1
4.	Erect Booms					{		
5.	Spin-Up to Cruise Valve	+4 rpm	1	2	1051.2	11.98	898291	244.9
6.	S/C Separation from 3rd Stage					la serie de la ser		
7.	Orient for Cruise	90 deg	1	2	879.4	11.98	833518	240.2
8.	Orient for 1st M/C	10 deg	1	2	879.3	11.98	833483	239.6
9.	1st Midcourse Correction	27 m/sec	4 4	1	868.2	11.94	829815	188.8
	Total 108 m/sec	27 m/sec		1	857.0	11.90	826136	155.7
		27 m/sec		1	845.9	11.86	822454	132.5
		27 m/sec	1	1	834.8	11.82	818775	115.4
10.	Re-orient to Cruise	50 deg	1	2	834.4	11.82	818621	114.8
11.	Orient for 2nd M/C	20 deg	1	2	834.2	11.82	818555	114.5
12.	2nd Midcourse Correction	10 m/sec	1	2	830.1	11.81	817188	109.3
13.	Re-orient to Cruise	40 deg	1	2	829.7	11.80	817065	108.9
14.	Orient for 3rd M/C	20 deg	11	2	829.5	11.80	816728	108.6
15.	3rd Midcourse Correction	2 m/sec	1	2	828.7	11.80	816655	107.7
16.	Attitude Control Maintenance	20 deg	1	2	828.5	11.80	816378	107.4
17.	Orient Spin Axis Parallel	90 deg	1	2	827.7	11.79	816378	106.5
	to Ecliptic							
18.	Re-target Maxi Probe	40 deg	1	2	827.3	11.79	816253	106.1
19.	Separate Maxi Probe							
20.	Attitude Control Maintenance	10 deg	1	2	427.2	11.79	765530	105.9
21.	Retarget Mini Probe	5 m/sec	1	2	426.1	11.78	765180	104.8
22.	Attitude Control Maintenance	20 deg	1	2	425.9	11.78	765118	104.6
23.	Spin Up Mini Probes	+73 rpm	1	2	423.3	84.69	764235	101.7
24.	Separate Mini Probes							
25.	Attitude Control Maintenance	20 deg	1 1	2	194.0	84.64	201957	100.5
26.	Retarget S/C Bus	18 m/sec	3 1	2	192.2	84.59	201370	98.81
27.	Correct Sun Angle Drift	20 deg	1	2	191.9	84.55	201258	97.7
28.	Orient Spin to Velocity Vector	12 deg	1	2	191.7	84.52	201189	97.02
	가는 것 같은 것이 있는 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 그는 것은 것은 것은 것은 것이 같은 것은 것을 통하는 것은 것이 같은 것이 많은 것이 같이 많이 같이 없다. 것이 같이 많이 많이 많이 없이 있는 것							

Initial Press.	250	psia
No. of Tanks	6	
Tank Dia.	.823	ft.
Initial Prop	69	lbs.

.596

.676

.597

.094

.094

.094

.094

111.6

6

65

13

152.4

154.00

93.26

802

1

5530 5180 5118

1235

1957

1370

1258

1189

105.9

104.8

104.6

101.7

100.5

98.81

97.7

97.02

17.7

217.4

35.3 583.6

67.4

67.2

40.2

352.7

Ρ

P

Ρ

SS

Ρ

Ρ

P

P

SATEL	LITÉ	ENGINE				y niewszanie wykrawy powodzie nie w stał w stał W 2 2	E .				
Spin nertia _z After <u>b-in²)</u>	Tank Pressure After Event (psia)	Total Impulse Required (lbf-sec)	Mode	Engine On-Time (sec)	Total No. of Pulses	Correction Elapsed Time (sec)	Engine Rotational Efficiency	Engine Impulse Required (lb _f -sec)	Engine ISP (sec)	Propellant Used For Event (1b _f)	Remaining Propellant (1b _f)
5796	246.1	140.4	SS	14.02	1	14.02		70	22 7	.62	68.38
98291	244.9	40.3	SS	4.07	1	4.07	-	18.8	209	.19	68.19
3518 3483 9815 6136 2454 8775 8621 8555 7188 7065 6728 6655 6378 6378	240.2 239.6 188.8 155.7 132.5 115.4 114.8 114.5 109.3 108.9 108.6 107.7 107.4 106.5	172.1 19.1 2404 2373 2343 2312 94.42 37.8 847.9 75.5 37.7 168.9 37.7 168.9 37.7	P P P P P P P P P P P P P P P P P P P	.587 .509 .587 .589 .670 .672 .635 .555 .674 .675 .516 .675 .636 .676	31 4 887 1042 1053 1178 261 120 242 204 15 50 12 51	147.5 19.2 4218 4949 4981 5558 130.5 60 1139 102 67 236.5 55 232.5	953 954 952 948 941 937 935 935 935 934 932 932 932 932 932 932	89.2 8.2 2527 2507 2494 2473 49.6 18.9 455 40.5 19.1 90.0 19.4 91.1	227 187 227 225 224 223 219 203 222 217 203 221 203 221 203 221	.79 .11 11.11 11.13 11.13 11.08 .46 .19 4.10 .374 .20 .82 .20 .82	67.39 67.29 56.17 45.04 33.91 22.83 22.37 22.17 18.08 17.7 17.5 16.68 16.49 15.66
6253	106.1	75.3	Р	•557	28	126	.932	39.8	216	•37	15.29

27.5

310

56

112

108

109

66

568.8

.932

.931

.932

.926

.926

.925

.925

•

SP 07R70 - F

8.4 115**.7**

18.3

36.54

36.49

21.79

292

191

182

202

222

221

221

221

220.5

221.4

5.1-21/5.1-22

15.19

14.13

13.94

11.32

10.89

9.25

8.91

8.70

.10

.19

.339

,337

.211

1.73

2.63

1.05

FIGURE 5.1.1-1. REQUIRED PROPELLANT LOAD VS CRUISE SPIN SPEED

FOLDOUT, FRAME

SP 07R70 - F

Hamilton U DIVISION OF UNITED AIRCRAFT CORPORATION Standard A®

SP07R70-F

Reliability

5.2

The Feed System concepts and Engine Placement concepts selected in the previous phases of the study have been analyzed for their reliability characteristics. The results of the analysis, presented in this section, include a tabulation of failure rates and their sources, a Failure Mode and Effects Analysis, a description of the methods used for calculating reliability of the candidate subsystems, and the results of the calculation. The ground rules used in the analysis are listed below.

- a. The mission will be a success with respect to a candidate subsystem if it does not fail before or between uses and if it accomplishes the following:
 - 1. Non-operating flight. 1 year
 - 2. Spin or de-spin, delta velocity, and attitude control.

Maximum of 6000 pulses/60 minutes usage per engine.

- b. No single failure having any significant probability of occurrence shall abort the mission.
- c. Force couples are not required for spin or de-spin.
- d. The vehicle is always spinning.
- e. Force couples are required for attitude adjustment (this is accomplished by precession).
- f. If an engine control valve fails open, a manifold valve will be closed, to prevent unwanted thrust.
- g. Manifold valves are closed during any period when thrust is not needed.
- h. Propellant is not admitted to the engine system until one hour after launch. This first hour is considered a "start" mode. Analysis is based on a oneyear operating requirement, in "mission" mode.
- i. In primary operating configurations, the required engines will be fired simultaneously once for each 360° of spin. A 180° firing interval will be used when necessary to achieve the required function in secondary configuration.

5.2 - 1
SP07R70-F

Hamilton U Standard A®

5.2.1 ESTIMATED FAILURE RATES:

The failure rates used in the study are tabulated in this section. In each case, the basis of selection of the rate is stated. The Bureau of Naval Weapons Failure Rate Data Handbook (FARADA) is the principal reference. Hamilton Standard product and test experience, customer-generated data, and supplier data are used if appropriate.

The principal usefulness of numerical reliability analysis is in making comparisons between concepts and subsystems. When the part and component failure rates have been carefully chosen and consistently applied, the comparative reliability values of the candidate subsystems provide a valid base for subsystem selection. The accuracy of the failure rates does not, of itself, justify the number of significant places retained in the reliability calculations. However, when the same failure rates are used for all concepts under consideration, a reliability computation carried to six or more significant places will facilitate ranking of the concepts.

Table 5.2-1-I presents the failure rates used in this study.

5.2.2 FAILURE MODE AND EFFECTS ANALYSIS:

A failure mode and effects analysis which identifies the probable failure modes of the candidate subsystems and the probable effects of such failures is presented in Table 5.2.2-I. The single analysis covers all of the candidate subsystems, because of similarity of functions of the same components in each system. Where distinctions arise because of the subsystem configuration, the effects are noted. This analysis is made within the ground rules listed above. In the event of failures beyond the scope of the established ground rules, there are two other types of remedial action possible with the candidate subsystems. These additional actions have been examined as a part of the preparatory studies, but they have not been used in the preparation of the reliability estimates of this report. They are:

- a. If the "fail open" of an engine valve is a small internal leak, operation of the "failed" engine may be continued by opening its corresponding manifold valve a short interval before the thruster is needed and reclosing the manifold valve upon completion of the scheduled engine operation. Similarly, the manifold valve may be opened temporarily to operate other engines which are fed by the same manifold.
- b. If the "fail open" of an engine valve results in delivery of propellant to the engine in sufficient quantity to produce thrust, operation may be obtained only when all other engines connected to the same manifold are non-operating. Individual operation of the other engines from the same

Hamilton U Standard AIRCRAFT CORPORATION

5.2.2 (Continued)

manifold may not be obtained. Operation of the "failed" engine may then be by opening and closing the manifold valve. This degraded mode of operation is of limited potential usefulness.

In the FMEA, the principal failure modes of each component have been identified, together with the probable causes of each failure mode. Failure modes which have a negligible probability of occurrence have not been considered, except as they appear in the failure rate list. The probable effect of each failure mode during the mission is noted, together with the methods of preventing each failure mode. The relative probability of occurrence of each failure mode is a qualitative indication of the unreliability of each component, and is entered as a non-dimensional number. For each failure mode, the symptoms of failure available to earth-based controllers and the corrective actions are suggested.

5.2.3 **RELIABILITY ESTIMATES:**

The reliability values of the fifteen candidate subsystems have been estimated, and are presented in Tables 4.4.0-I and 4.4.0-II. This section describes the methods used for numerical evaluation and presents outlines of the detailed calculations. The fundamental relationships used are:

$\mathbf{R} = 1 - \mathbf{Q}$	where:	R = Reliability, or probability of successful operation
		Q = Unreliability, or probability of unsuccessful operation
$\mathbf{R} = \mathbf{e}^{-\lambda t}$	where:	e = 2.71828
		 λ = Failure rate, usually in failures per million hours - may be in failures per million cycles
		t = Time, in hours
$R_t = 1 - Q_c Q_0$	where:	Rt = Reliability of a redundant pair of dissimilar items, one of which must perform for success
		Q _c = Unreliability of item ''c''
		Qo = Unreliability of item "o"

5.2.3.1 Feed System Concepts

The three feed system analyses are summarized in Figures 5.2.3-1 through 5.2.3-3. For each concept, the reliability block diagram appears vertically for easy correlation with the failure modes considered, and failure rates for those modes. The first hour of the mission is taken as the period between launch and the first required operation of any engine. The failure rates applicable to that period are listed in the "Start" column. The "Mission" column lists the failure rates applicable for the remainder of the mission. For conservatism, all calculations are based upon the Orbiter mission and its longer duration. In each feed system, the latching solenoid valves which feed the fuel manifolds (for example, items 9 and 10 in FS-4) are considered only for failure modes which can inadvertently cut off fuel flow.

The pressure transducer failure modes which degrade its output signal have not been included in computing overall subsystem reliability. Tank pressure can be predicted accurately on the basis of both vehicle response to maneuvers or vehicle maneuver and thermal history. If a failure or apparent failure occurs in a tank pressure reading a simple spin or attitude maneuver can be used to check the value of tank pressure and determine whether a transducer or leakage failure has occurred.

5.2.3.2 Engine Placement Concepts

The five engine placement concepts are summarized in Figures 5.2.3-4 through 5.2.3-8. Each figure presents a schematic of the engine placement, a schematic of the manifolding arrangement, a table to establish which engines may be used to accomplish each required function, a reliability schematic, and mathematical models.

In the manifolding arrangement, the valves marked "M" are latching solenoid valves. Either valve may be closed if one of the engines under its control fails in such manner that it produces unwanted thrust or leakage. For convenience of illustration, there is an overlapping between the manifolding arrangement schematic and the fuel system functional schematic. In FS-4, for example, items 9 and 10 on the functional schematic are the manifold valves.

The functional arrangement table indicates those combinations of engines which can be used to perform the necessary functions, in the normal mode of operation, and in the available degraded modes. In every function, some of the degraded modes may be operated with one or the other of the manifold valves closed. This table is the basis for developing the equation for reliability of the engine array, taking advantage of all available redundancies, including the allowable degraded modes.

For each engine array, a tabulation of possible failed engines and their failure modes was prepared. The following possibilities were included:

- a. All engines operate properly and both manifold valves remain open. There can be one such case for each array.
- b. Any one engine fails closed (no thrust) and manifold valves remain open. In a six engine array, there can be six such cases.

Hamilton UNITED AIRCRAFT CORPORATION

5.2.3.2 (Continued)

- c. Any one engine fails open (leakage or unwanted thrust) and the corresponding manifold value is closed. In a six engine array, there can be six such cases.
- d. Any two engines fail closed and both manifold values remain open. In a six engine array, there can be fifteen such cases.
- e. Any two engines fail open and one or both of the manifold valves have to be closed. In a six engine array, there can be fifteen such cases. For purposes of the present analysis, every case in which both of the manifold valves are closed is considered a failure of the system.
- f. One engine fails open and one engine fails closed, and one manifold valve is closed. In a six engine array, there are thirty possible combinations.

The cases for three engines failed were examined briefly. So few of them would be successes that they were judged to have an insignificant effect upon the probability of success of the system.

From the tables of failure and failure mode combinations equations were prepared to represent the success cases. As a check, system "no-success" euqations were also prepared and added to the "success" equations to obtain a binominal expansion. The "success" equation for each engine array was then used to calculate the reliability of each array. The "success" equation for a six engine array (concept P7, for example) is obtained as follows:

The first term of the equation represents the probability that all engines will operate correctly for the entire mission. That probability is:

 $\mathbf{R}_{\mathbf{x}} = \mathbf{R}_1 \mathbf{x} \mathbf{R}_2 \mathbf{x} \mathbf{R}_3 \mathbf{x} \mathbf{R}_4 \mathbf{x} \mathbf{R}_5 \mathbf{x} \mathbf{R}_6$

Since all of these are equal

$$R_x = R^6$$

For the second term of the equation, we take the probability that five engines will operate correctly for the entire mission and one will fail closed some time during the mission. That probability is:

 $R_y = R_1 \times R_2 \times R_3 \times R_4 \times R_5 \times Q_{c6}$

Hamilton UNITED AIRCRAFT LORPORATIC Standard A®

5.2.3.2 (Continued)

where it is assumed that engine No. 6 has failed closed. Since each engine has an equal probability of failing closed and there are six such cases possible,

$$R_v = 6 R^5 Q_c$$

The third term, which represents all cases in which one engine fails open, is obtained the same way.

The fourth term of the equation describes the probability of having two engines fail open and one or both of the manifold valves moved to the closed position. There are fifteen possible combinations of failures which meet this description. One possibility is:

$$R_z = R_1 \times R_2 \times R_3 \times R_4 \times Q_0^5 \times Q_0^6$$

If all fifteen combinations result in mission success, the term becomes:

$$R_z = 15 R^4 Q_0^2$$

However, inspection of the table shows that only six of the cases with two engines failed open can be successes for the P-7 concept, so the term is

$$6 R^4 Q_0^2$$

The probability of having two engines fail closed is obtained in the same way. Inspection of the table shows that six of the fifteen cases can be successes, so the fourth term of the equation becomes:

$$R_u = 6 R^4 Q_c^2$$

Inspection of the table shows that there are twelve successful cases in which one engine fails closed and another fails open. Therefore the "success" equation becomes:

$$R_{E} = R^{6} + 6 R^{5} Q_{C} + 6 R^{5} Q_{C} + 6 R^{4} Q_{C}^{2} + 6 R^{4} Q_{O}^{2} + 12 R^{4} Q_{C} Q_{O}$$

The exact "success" equation obtained varies with the definition of success. This equation meets the following:

. SP07R70-F

Hamilton U Standard A®

5.2.3.2 (Continued)

Success will be achieved if each required function can be obtained with either one, but not both, of the manifold valves closed.

This definition and equation correspond to the ground rules stated above.

5.2.3.3 Engine Fuel Connections

Each system has one connection in the feed system for each engine, which can be disassembled for engine removal. With a six engine system (for example, FS-7) there are six such connections and all other discontinuities in the fuel system are welded except for the transducer connection. For simplicity of analysis, it has been assumed that all of these connections are under pressure for the majority of the mission, starting one hour after launch. Thus for a six engine system:

 $R_F = e^{-.01} \times 10^{-6} \times 8760 \times 6 = .9994745381$

and for an eight engine system

 $R_F = e - .01 \times 10^{-6} \times .01 \times .00^{-6} \times$

5.2.3.4 Engine Manifold Valve

, K

Those failure modes of the manifold valve which are associated with opening and remaining open after the first hour of the mission are handled as part of the feed system reliability calculations. The failure modes associated with failure to close when signaled are handled as part of the engine concept calculation. The probability of successful closing of either one of the manifold valves during the mission is:

 $R_M = e^{-.2 \times 10^{-6} \times 8760 \times 2} = .99650 21318$

For simplicity of analysis, this probability of success has been associated with the entire mission (after the first hour) rather than being limited to degraded-mode operations. This simplification is in the conservative direction.

5.2.3.5 Engine Gimbal Actuator (Concept P-12 only)

In engine placement concept P12, two actuators are used, to adjust the position of two engines in accordance with shifts in center of gravity of the vehicle. The actuators move through one stroke only, during the first 150 hours of the mission. Thus the probability that both actuators will perform properly is:

 $R_{A} = e^{-2. \times .4 \times 10^{-6} \times 150 \times 24} = .99712 41432$

SP07R70-F

Hamilton U Standard A®

5.2.3.6 Summary

The reliabilities for the individual feed systems and engine placement concepts are presented in Figures 5.2.3-1 through 5.2.3-8. They are also presented in Tables 4.4.0-I and 4.4.0-II, together with the subsystem reliabilities obtained from all available combinations of fuel system and engine placement. All of the candidate subsystems exceed the reliability required of the subsystem.

Engine placement concept P-7, with six engines is shown to be more reliable than concepts P-5 and P-13, which have eight engines each. The principal reason for this is that the reliability associated with the connections of individual engines to the fuel system, R_F , is higher for the six engine concept. The reliabilities for the two cases are given in Para. 5.2.4.3 above.

The second reason is that R_E is slightly higher for concept P-7, by the nature of the controlling equations, where

 $R_{E5} = R^8 + 8R^7Q_0 + 8R^7Q_c + 12R^6Q_0^2 + 20R^6Q_c^2 + 24R^6Q_0Q_c$

and

 $\begin{array}{rcl} R_{E7} &=& R^6 \ + \ 6R^5 \, Q_0 \ + \ 6R^5 \, Q_c \ + \ 6R^4 \, Q_0^2 \ + \ 6R^4 \, Q_c^2 \ + \ 12 \ R^4 \, Q_0 \, Q_c \\ \\ \text{Using} & R &=& .99880 \ 07197 \\ Q_0 &=& .00089 \ 95951 \\ Q_c &=& .00000 \ 00900 \end{array} \\ \begin{array}{rcl} R^6 &=& .99282 \ 58579 \\ R^8 &=& .99044 \ 59329 \\ Q_c &=& .00000 \ 00900 \end{array}$

the results are

 $R_{E5} = .99997 99193$ $R_{E7} = .99998 86957$

It will be noted that the probability of all engines working properly for the entire mission, R^6 , is substantially higher for the six engine concept than R^8 in the eight engine concept. In each case, this is the first term of the equation and the overlapping influence upon the numerical reliability of the concept.

Concept P-7 as presented in the preceding analysis makes considerable use of ground rule "i" as stated in Para. 5.2. Fabove. The second, fourth, and sixth terms of the equation are completely dependent upon a capability for firing selected engines at 180° intervals of vehicle spin. If this capability did not exist, the controlling equation would be

 $R_{E7a} = R^6 + 6R^5_c + 6R^4Q^2_c$

This would degrade the numerical reliability of concept P-7 to be lower then any of the others, and would suggest that alternate modes of operation or alternate mani-folding arrangements might be investigated.

TABLE 5.2. 1-I. ESTIMATED FAILURE RATES

U

Â

OPATION

Hamilton Standard

Component or Part	Failure Rate	Remarks and Sources
N_2 Fill and Drain Valve	Negligible	Valve fill ports are capped; Leak checks after fill verify readiness.
Propellant Tankage	Negligible	Structural design has generous margins of strength. The material and processing is closely specified and controlled. Rigorous testing and quality control verify integrity of product.
Piping and Connections	Negligible	All piping and connections are welded, except as specifically noted below. Non- destructive testing verifies integrity of individual units.
Pressure TransducerSignal Error	2.6 x $10^{-6}/hr$	Subsystem Specification No. S-723-P-10 for MICOMACS Subsystem - Appendix C, Table 2.
• Connection Leak	.01 x 10 ⁻⁶ /hr	Flared fittings, subject to careful assembly, quality control, and leakage test before launch.
N ₂ H ₄ Fill and Drain Valve	Negligible	Same as N_2 Fill and Drain Valve.
Filter	Negligible	Based on FARADA plus experience with Hamilton Standard JFC-60 Fuel Control Filters.
 Latching Solenoid Valve Fail to open Fail to close - major opening remaining Fail to close - result is internal leak Fail to hold "latched" position 	. 10 x 10 ⁻⁶ /hr . 01 x 10 ⁻⁶ /hr . 09 x 10 ⁻⁶ /hr Negligible	Derived from FARADA data plus in-house data on the individual piece parts plus estimate of probability of failure modes.
Normally Closed Ordnance Valve including One SBASI (two SBASI to be incorporated) - • Fail to fire	10 x 10 ⁻⁶ /cycle	Derived from FARADA data plus Hamilton Standard experience plus NASA reported experience with Single Bridgewire Apollo Standard Initiator (SBASI).
• Fall to open • Internal leak	Negligible Negligible	
Engine-to-System Connection - Leak	.01 x 10 ⁻⁶ /hr	Flared fittings, subject to careful assembly, quality control, and leakage test before launch.
Tost Port	Negligible	Same as N ₂ Fill and Drain Valve.
Engine Valve • Fail to open • Fail to close - major opening remaining • Fail to close - result is internal leak • External Leak	.05 x 10 ⁻⁶ /cycle .01 x 10 ⁻⁶ /cycle .09 x 10 ⁻⁶ /cycle Neglígible	Derived from In-House data on piece parts plus estimate of probability of failure modes.
Engine		
 Incorrect Thrust Explosion 	.05 x 10 ⁻⁶ /cycle Negligible	Derived from In-House data.
Actuator	,4 x 10 ⁻⁶ /cycle	Derived from FARADA.
Flex Line to Thruster	Negligible	Solid line, coiled to accept movement of thruster through arc of less than 10° for 200 cycles.

SP 07R70-F

Hamilton U Standar DUJUSION OF UNITED AIRCRAFT CORPORATION

2

Com Failt	poner ire N	nt and Iode	Pro	bable Cause of Failure Mode	Pr	obable Effect of Failure Mode	Me	thod of Prevention of Failure Mode	Probabil of Occur	ity renc
1.	N2 Val	Fill & Drain ve							• .	
	a.	Internal leak	á.	Dirt or other contaminant. Valve spring weakens or breaks. Seal degradation.	a.	Loss of propellant press- ure. Loss will probably be gradual. Eventual per- formance degradation in engines, for lack of the required fuel pressure	a.	Cap to be installed over connector at all times when not in use, for redundant sealing. Maintain cleanliness of entire system and of propellant supply. All structural parts are designed to conversative strength-stress margins.	a. 1	
	b.	External leak	b.	Same as 1.a above	b.	Same as 1.a above	b.	All connections to the system and external case of item are welded to seal against external leakage,	b. 1	
2.	N ₂ I Val	I4 Fill & Drain ve								
	a ,	Internal leak	a .	Dirt or other contaminant. Valve spring weakens or breaks. Seal degradation.	a.	Loss of propellant. Loss will probably be gradual. Contamination of vehicle and equipment.	a.	Cap to be installed over connector at all times when not in use, for redundant sealing. Maintain cleanliness of entire system and of propellant supply All structural parts are designed to conservative strength-stress margins.	a. 1	
	b.	External leak	b.	Same as 2.a above	b.	Same as 2, a above	b.	All connections to the system and external case of item are welded, to seal against external leakage.	b. 1	
3.	Pre	opellant Tank								
	a.	Leak at Fit- tings or Welds	a.	Cracking or other break- age	a.	Loss of propellant press- ure. Loss will probably be gradual. Leakage of propellant may contam- inate vehicle or equipment. Possible abort of mission.	a.	All connections are welded. All are verified by non-destructive test. System is pressurized before launch, and may be leak tested. Structural support is provided for all items to ensure conserva- tive strength-stress margins.	a. 1	
	ð.	Rupture of Tank	b.	Structural overload or mechanical damage	b.	Loss of propellant. Leak will contaminate vehicle and equipment. Abort mission.	b.	Provide thorough testing of tank and fitting design, demonstration of strength-stress margins, careful in-process and final inspection, and careful handling.	b. 1	
4.	Pro duc	essure Trans- er								
	a.	Error in Signal Output	a.	Electrical elements or connections change their characteristics. Failure of sensing diaphragm	a,	Inconvenience in deter- mining status of system in flight.	а.	Pressure indication is advisory only. Opportunity for check is during propellant fill and pressurization before flight.	a. 200	

SP 07R70-F

	,				FOLDOUT FRAME
Probability of Occurrence	Symptoms Co of Failure Ac	orrective ction			Remarks
a. 1 a. Ab	normal loss of pressure a.	None		a.	Probable slow decay of pressure
b. 1 b. Ab	normal loss of pressure b.	None		b.	Probable slow decay of pressure
a. 1 a. Ab	normal loss of pressure a.	None		а.	Probable slow decay of pressure, propellant leak, and contamination
b. 1 b. Ab	normal loss of pressure b.	None		b.	Probable slow decay of pressure propellant leak, and contamination
a. 1 a. Ab	normal loss of pressure a.	None		a.	Probable slow decay of pressure propellant leak, and contamination
b. 1 b. Ab	onormal loss of pressure b.	None		b.	Rapid loss of pressure
a, 200 a. Pro- res usz	essure signal does not cor- a. spond to status of propellant age and tank temperature	Estima quantit gramm ing per	te remaining propellant v by analysis of pro- ed maneuver and result- formance		
	manual 2013년 77일, 이는 상태가 전에 있었다. 2019년 - 1919년 - 1919년 - 1919년 191				

5.2-11/5.2-12

EOLDOUT FRAME

101

Hamilton Standard

TABLE 5,2,2-I. FAILURE MODES AND EFFECTS (continued)

Com Fail	ponent and ure Mode	Pr	obable Cause of Failure <u>Mode</u>	Pr	obable Effect of Failure Mode	Me	thod of Prevention of Failure Mode		Probal of Occ	oility urrence		
4.	(continued)						•					
	b. Leakage	b.	Seal or diaphragm degrada- tion. Degradation of mechanical connection of sensing element to fuel system.	b.	Loss of propellant press- ure. Possible abort of the mission.	b.	Design includes redundant dia- phragms. Welded case prevents external leak from transducer. System is press- urized before launch and may be inspected for leaks, including the connection to the fuel system.	b.	5		b.	- A
5.	Filter											
	a. Clogging	a.	Contamination collected.	а,	High pressure drop across filter, causing low pressure at engines, and loss of performance.	a.	Control fuel and system cleanliness and size filter volume with margin.	а.	1		a.	r r t
	b. Pass contami- nants	b.	Crack or other failure of filter element. Deteriora- tion of filter element, making contamination for downstream items.	þ.	Possibility of clogging downstream screens, with degradation of latching valves, thruster valves, etc. Probably will cause internal leaks in valves.	b.	Screens in downstream values should stop major contaminants. Filter will be subject to rigor- ous development testing and close quality control.	b.	1		b.	I s li d
ß	Latching Valve											
	a. Failure to open on signal	а.	Electrical discontinuity	а.	System cannot be ener- gized and no propellant will be delivered to thrusters. Abort mission.	а.	Latching valves are redundant partially in FS-2 and fully in FS-4.	a.	50		a.	ע s י v
	b. Internal leak	b.	Contamination, seal degradation, or exces- sive vibration or shock loads	b,	Gradual pressurization of downstream items, including thruster valves	b.	Test during pre-launch will indicate any serious leakage.	b,	50		b.	t t
	c. Fail to latch open	C.	Spring weakening or breakage	C.	Inadvertent opening of valve, with pressuriza- tion of downstream items before schedule	с.	Spring is Belleville type, and very unlikely to sustain this failure mode when in a fixed position.	с.	1		C.	S
7.	Latching Valve											
	a. Failure to close on signal	а.	Electrical discontinuity. Sticking, Contamination,	a.	System cannot be shut down partially in order to cut off malfunctioning valve or thruster. Abort may result from this unlikely double failure.	a.	"Closing" signal will not be given unless there is an initial failure in a thruster or its valve. The latching valve can be tested for continuity and opera- tion during prelaunch. Valve is screened, in addition to up- stream filter.	a.	50		2.	2

FOLDOUT FRAME

SP 07R70-F

•						
ility ırrence		Symptoms of Failure	Co: Ac	rrective tion		Remarks
	b. Abno	ormal loss of pressure	b.	None	b.	Probable slow decay of pressure, propellant leak, and contamination
•						
	a. Obse man	erve low thrust for all euvers. Detected by the	a.	Plan maneuvers based upon a new estimated tank pressure		
	magi tive	to tank pressure		thrust relationship accounting for restriction in line.		
- L						
•	b. Failu strea	ares of one or more down-	b.	None		
•	Intër down	mittent failures of stream components				
	•					
1	a. Valve show	e position indicator 's ''no open''	a.	Perform maneuvors with alter- nate thrusters	а.	Temperature sensors may be provided on thrusters to report operation of
	Thru valve	sters fed by failed e do not operate		Repeat signal to open valve		thrusters. Maneuver performance is secondary report of thruster operation
•						
	b. Symp throu	otom obtainable only Igh diagnostic test	b.	None		
L .						
	c. Same	e as 6.b above	с.	Same as 6.b above	.	Same as 6, b above
1						
						사실 수 있는 것이 있는 것은 것이 있는 것이 있는 것이다. 같은 것은 것이 같은 것은 것이 있는 것이 있는 것이 있는 것이다.
-						
	a. Valv	e position indicator	а.	Repeat signal to close valve	а.	If there is no failure of propellant
	show	'n ''no close''				valve or thruster downstream of the latching valve, the failure has little
				이 가장 있는 것 같은 것 같은 것 같은 것 같은 것 같은 것이다. 같은 것은 것 같은 것은 것 같은 것 같은 것 같은 것 같은 것 같은		effect upon mission.
						요즘 사람이 모님의 아이가 생각하는 것이 같다.

Į

Hamilto OLDOUT DAME Standard A

Com Failu	ponent and ure Mode	Pr	obable Cause of Failure Mode	Pro	bable Effect of Failure Mode	Me	thod of Prevention of Failure Mode	Pro of (obability Occurre
7.	(continued) b. Fail to latch closed	b.	Spring weakening or breakage	b.	Inadvertent closing of valve, which will shut off half of the thrusters before commanded.	b.	Spring maintaining the latched position is Belleville type, and very unlikely to sustain this failure mode when in a fixed position. Back-up thruster can complete mission.	b.	1
8.	Test Port								
	a. Internal Leak	a.	Dirt or other contaminant. Valve spring weakens or breaks. Seal degradation.	a.	Loss of propellant after system is pressurized. The loss will probably be gradual. Eventual performance degrada- tion in thrusters, for lack of required propel- lant pressure.	ä.	Cap to be installed over test port at all times when not in use, for redundant sealing. Maintain cleanliness of entire system and of test gas. All structural parts are designed to conservative strength-stress margins.	a.	1
	b. External Leak	b.	Same as 8.a above	b.	Same as 8.a above	b.	All connections to the system and the external case of the item are welded to seal against external leakage.	b.	1
9.	Ordnance- operated Valve								
	a. Internal Leak	a.	Leak at sealed end of pipe	a.	Gradual pressurization of downstrem items, includ- ing thruster valves	a.	Test during pre-launch will indi- cate any serious leakage. Leak is of consequence only during the first hour of the mission. Probability of leakage negligible, because pipe seal is low- stressed structural part, subject to rigorous inspection before and after assembling into system.	a.	
b.	Failure to Open	b.	Failure of squibs to fire, caused by electrical discontinuity	b.	None since parallel ordnance valve is available.	b.	Redundant valves are used. Redundancy used in electrical firing circuitry. Circuits subject to low-voltage continuity check prior to launch.	b.	10
10.	Thruster Valve		27월 전 1월 24일 - 1월 24일 일종 - 1월 24일 전 1월 24일 일종 - 1월 24일 전 1월 24일 전 1월 24일 1월		a Marana ang Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupat Kabupatèn Kabupatèn K Kabupatèn Kabupatèn K				
	a, External leak at connection to fusl system	a.	Improper assembly and tightening of connection	а.	Loss of propellant after system is pressurized. The loss will probably be gradual. Eventual per- formance degradation in thrusters, for lack of required propellant pressure.	a.	West during prelaunch will indi- date leakage, and verify quality of the connection.	a.	5

TABLE 5.2.2-I. FAILURE MODES AND EFFECTS (continued)

TION

FOLDOUT FRAME

Probability of Occurren ;	Symptoms of Failure	Corrective Action	Remarks
b. 1 b.	Same as 7.a above	b. Same as 7.a above	b. Same as 7.a above
a. 1 a.	No sysptoms unless the latch- ing valve or ordance-oper- ated valve upstream is open. In that case, note abnormally large propellant consumption	a. None on FS-8. On FS-2 or FS-4, keep latching valve closed in all non-operating thruster modes	
b. 1 b.	Same as 8.a above	b. Same as 8. a above	b. Same as 8.a above
a. 1 a.	None after liftoff	a, None	
b. 10 b.	Thrusters inoperative	b. Back-up valve to open.	
a, 5 a.	Abnormally large propellant consumption	a. Close latching valve as appr priate	a. If leakage is gross, confine operation to the unaffected half of the thruster system

fr can

5, 2-15/5, 2-1

FOLDOUT FRAME

Hamilton Standard

TABLE 5.2.2-I. FAILURE MODES AND EFFECTS (continued)

Component and Failure Mode	Probable Cause of Failure Mode	Probable Effect of Failure Mode	Method of Prevention of Failure Mode	Probability of Occurrence
10. (continued)			• • • • • • • • • • • • • • • • • • • •	
b. Fail to Open	b. Electrical discontinuity. Sticking of valve parts. Contamination.	b. No propellant will be delivered to the thruster associated with the failed valve.	b. Alternate thruster or thrusters will perform the function upon command. Maintain cleanli- ness of entire system and propellant supply.	b. 25 b. Ab euv
c. Fail Open (major flow)	c. Sticking of valve parts. Contamination Valve spring weakens or breaks.	c. Thruster associated with the failed valve cannot be shut off. Unscheduled thrust disrupts navigation and positioning of vehicle	c. Maintain cleanliness of entire system and propellant supply. All structural parts, including springs, are designed to convervative strength-stress margins. Manifold propellant supply may be shut off by closing latching valve (Item 6 above for FS-2, Item 7 for FS-4 and FS-8)	c. 5 c. Ab
d. Internal Leak (minor flow)	d. Same as 10.c above	d. Thruster associated with the failed valve may give unscheduled thrust	d. Same as 10.c above. Possible to re-open latching valve temporarily if thruster is required to operate.	d. 45 d. No of pe ch
11. Thruster				
a. Incorrect thrust	a. Improper propellant pres- sure. Incorrect valve opening or closing. Cata- lyst bed degraded.	a. Inability to perform the mission functional require- ments. Disrupt navigation and positioning of vehicle.	a. Use alternate thruster or thrusters to perform the re- quired function.	a. 25 a. Ab ew ma no th

SP 07R70-F

EOLDOUT FRAME

bability occurrence	6	Symptoms of Failure		Corrective Action	Remarks
25	b.	Abnormal performance of man- euver.	b.	Operate with alternate thrus- ters	Temperature sensors may be provided on thrusters to report operation of thrusters
5	C.	Abnormal maneuver and ab-		Close the energy ister let a	
Ū		normal fuel consumption	C.	ing valve	
45	d.	Note abnormal temperature of thruster, loss of pro- pellant, and unscheduled change in vehicle attitude	d.	Close the appropriate latch-d.	Temperature sensors may be provided on the thrusters to report operation of the thrusters
25	а.	Abnormal performance of man- euver. Serious degradation may be detected through ab- normal temperature of the thruster	a.	For minor degradation, perform a. a calibration maneuver. For major degradation, operate with alternate thrusters	Temperature sensors may be provided on the thrusters to report operation of the thrusters

FOLDOUT FRAME

.

್ರೇಕ್ · • •

Hamilton UNITED AIRCRAFT CORPORATION

FUNCTIONAL SCHEMATIC	COMPONENTS	RELIABILITY SCHEMATIC	FAILURE MODE
1	1) N ₂ FILL & DRAIN VALVE		LEAK
	2) TANKS	2	LEAK
	3) N ₂ H ₄ FILL & DRAIN VALVE	3	LEAK
	4) PRESSURE TRANSDUCER		LEAKY CASE
5			CONNECT. LEAR
	5) FILTER	5	LEAK, CLOG
	6) LATCHING VALVE (CLOSED AT LAUNCH)	6	FAIL TO OPEN
8	7) LATCHING	□	FAIL TO OPEN
	AT LAUNCH)	6	FAIL TO LATCH
		回	FAIL TO LATCH
		6	INTERNAL LEAP
		7	INTERNAL LEAP
	8) TEST PORT	8	LEAK
	9) TEST PORT	9	LEAK

FOLDOUT FRAME

SP 07R70-F

	FAILURE RATES			
AILURE MODES	START	MISSION	MATHEMATICAL MODEL	
EAK	NEGLIGIBLE	NEGLIGIBLE	START	
EAK	NEGLIGIBLE NEGLIGIBLE	NEGLIGIBLE NEGLIGIBLE	$R_{S} = e^{-\lambda t}$ t = 1 HR $\lambda = (0.10+0.10+0.09+0.09+0.01)10^{-6}$ $R_{S} = e^{-0.39 \times 10^{-6}}$ = 0.9999996099	
EAKY CASE	NEGLIGIBLE	NEGLIGIBLE	<u>MISSION</u>	
ONNECT. LEAK	0.01 × 10 ⁻⁶	0.01 × 10 ⁻⁶	$R_{M} = e^{-\lambda t}$	
EAK, CLOG	NEGLIGIBLE	NEGLIGIBLE	$\lambda = 0.01 \times 10^{-6}$	
AIL TO OPEN	0.10 × 10 ^{—6}	NOT APPL.	$R_{M} = e^{-0.01 \times 10^{-6} \times 8760}$ = 0.9999124038	
AIL TO OPEN	0.10 × 10 ⁻⁶	NOT APPL.	$\frac{\text{TOTAL FS}-2}{R_{FS}-2} = R_{S}R_{M}$	
AIL TO LATCH	NEGLIGIBLE	NEGLIGIBLE	_ 0.999120100	
TERNAL LEAK	0.09 × 10 ⁻⁶	NOT APPL.		
TERNAL LEAK	0.09 × 10 ⁻⁶	NOT APPL		
EAK	NEGLIGIBLE	NEGLIGIBLE		
ξAK	NEGLIGIBLE	NEGLIGIBLE		

FIGURE 5.2.3-1. RELIABILITY OF FEED SYSTEM FS-2

지난 이 것 같은 것 않는 것이 같이 있다.

FOLDOUT FRAME

بهائهما المراج ا

	FAILURE RATES		
AILURE MODES	START	MISSION	MATHEMATICAL MODEL
EAK	NEGLIGIBLE	NEGLIGIBLE	START
			$R_S = e^{-\lambda t}$
EAK	NEGLIGIBLE	NEGLIGIBLE	t = 1 HR $\lambda = (0.01+0.09+0.09)10^{-6}$
EAK	NEGLIGIBLE	NEGLIGIBLE	NOTE: REDUNDANCY OF
ASE LEAK	NEGLIGIBLE	NEGLIGIBLE	ITEM 6 AND 7 MAKES FOURTH TERM NEGLIGIBLE
DNNECT. LEAK	0.01×10^{-6}	0.01 × 10 ^{—6}	$R_{S} = e^{-0.19 \times 10^{-6}}$ = 0.9999997999
EAK, CLOG	NEGLIGIBLE	NEGLIGIBLE	MISSION
TERNAL LEAK	0.09 × 10 ⁻⁶	N/A	$R_{M} = e^{-\lambda t}$ t = 8760 HR
TERNAL LEAK	0.09 × 10 ⁻⁶	N/A	$\lambda = 0.01 \times 10^{-6}$
AIL TO LATCH	NEGLIGIBLE	NEGLIGIBLE	$\mathbf{R}_{\mathbf{M}} = \mathbf{e}^{-1} \times \mathbf{e}^{-1}$
AIL TO LATCH	NEGLIGIBLE	NEGLIGIBLE	= 0.9999124038
AIL TO OPEN	0.10×10^{-6}	N/A	= BcBM
ΞAK	NEGLIGIBLE	NEGLIGIBLE	RFS4 = 0.9999122139
AIL TO LATCH	NEGLIGIBLE	NEGLIGIBLE	
AIL TO LATCH	NEGLIGIBLE	NEGLIGIBLE	

FIGURE 5.2.3-2 RELIABILITY OF FEED SYSTEM FS-4

EOLOGIT FRAME Hamilton Standard

and services

*

100 A. AND 14 19 19

FUNCTIONAL SCHEMATIC	COMPONENT	RELIABILITY SCHEMATIC	FAILURE MC
1	1) N ₂ FILL & DRAIN VALVE		LEAK
	2) TANKS	2	LEAK
	3) N ₂ H ₄ FILL & DRAIN VALVE	3	LEAK
	4) PRESSURE TRANSDUCER	4	CASE LEAK
		4	CONNECT. L
	5) NORMALLY	5	FAIL TO FIR
	(ORDNANCE)	5	FAIL TO OPP
		5	INTERNAL L
8	6) TEST PORT	6	LEAK
Ý Ý	7) FILTER	7	LEAK, CLO
	8) LATCHING VALVE (OPEN AT LAUNCH)	8	FAIL TO LA
	9) LATCHING VALVE (OPEN AT LAUNCH)	9	FAIL TO LA

EOLDOUT FRAME

.

	FAILURE RATES			
LURE MODES	START	MISSION	MATHEMATICAL MODEL	
к	NEGLIGIBLE	NEGLIGIBLE	START	
K	NEGLIGIBLE NEGLIGIBLE	NEGLIGIBLE NEGLIGIBLE	$R_{S} = e^{-\lambda t}$ t = 1 HR $\lambda = (0.01 + 0.01) 10^{-6}$ NOTE REDUNDANCY OF INITIATORS IN (5) MAKES SECOND TERM NEGLIGIBLE	
E LEAK	NEGLIGIBLE	NEGLIGIBLE	$R_{\rm S} = e^{-0.01 \times 10^{-6}}$	
NECT. LEAK	0.01 × 10 ⁻⁶	0.01 × 10 ⁻⁶	= 0.999999799	
TO FIRE	10 × 10 ^{—6}	N/A	MISSION	
TO OPEN	NEGLIGIBLE	N/A	$R_{M} = e^{-\lambda t}$ t = 8760 HR	
RNAL LEAK	NEGLIGIBLE	N/A	$\lambda = 0.01 \times 10$	
K (1997)	NEGLIGIBLE	NEGLIGIBLE	$R_{M} = e^{-0.01 \times 10^{-6}} \times 8760$ = 0.9999124038	
K, CLOG	NEGLIGIBLE	NEGLIGIBLE	TOTAL FS-8	
. ТО LATCH	NEGLIGIBLE	NEGLIGIBLE	$R_{FS8} = 0.9999123837$	
TOLATCH	NEGLIGIBLE	NEGLIGIBLE		

FIGURE 5.2.3-3. RELIABILITY OF FEED SYSTEM FS-8

5.2-23/5.2-24

X

ENGINE PLACEMENT

MANIFOLDING ARRANGEMENT

MANEUVER	NORMAL MODE	DEGRADED MODE	
MIDCOURSE /ORBITAL	1,3,5,7	2,4,6,8;	f
 ACS	1,6, 2,5	4,6 2,8	
+ SPIN	2,3	2 6	
-SPIN	1,4	4,8	•

FUNCTIONAL ARRANGEMENT

RELIABILITY SCHEMATIC

MATHEMATICAL MODELS

REDUNDANT ENGINES

$$R_{E} = R^{8} + 8R^{7}Q_{C} + 8R^{7}Q_{O} + 20R^{6}Q_{C}^{2} + 12R^{6}Q_{O}^{2} + 24R^{6}Q_{O}Q_{C}$$

TOTAL CONCEPT

 $R_{P5} = R_E R_F R_M$

= 0.99578 40313

FIGURE 5.2.3-4. RELIABILITY OF ENGINE PLACEMENT CONCEPT P5

SP 07R70-F

Hamilton Standard

Di

ENGINE PLACEMENT

FUNCTIONAL ARRANGEMENT

NORMAL DEGRADED MANEUVER MODE MODE 1,3&5 MIDCOURSE 1,3&5 2,4&6 2,4 & 6 /ORBITAL ACS 1,4&6 1,3&5 2,3& 5 2,4 & 6 4 & 5 4 OR 5 + SPIN -SPIN 3 & 6 3 OR 6

RELIABILITY SCHEMATIC

MATHEMATICAL MODELS

REDUNDANT ENGINES

$$R_{E} = R^{6} + 6R^{5}Q_{C} + 6R^{5}Q_{O} + 6R^{4}Q^{2}_{C} + 6R^{4}Q^{2}_{O} + 12R^{4}Q_{O}Q_{C}$$

TOTAL CONCEPT

 $R_{P7} = R_E R_F R_M$

= 0.99596 72491

FIGURE 5.2.3-5. RELIABILITY OF ENGINE PLACEMENT CONCEPT P7

SP 07R70-F

Hamilton Standard

ENGINE PLACEMENT

7,8

0 5.6

сл.

2-29/5.2-30

MANIFOLDING ARRANGEMENT

FUNCTIONAL ARRANGEMENT

RELIABILITY SCHEMATIC

MATHEMATICAL MODELS

REDUNDANT ENGINES

 $R_{E} = R^{8} + 8R^{7}Q_{C} + 8R^{7}Q_{O} + 21R^{6}Q^{2}_{C} + 12R^{6}Q^{2}_{O} + 23R^{6}Q_{O}Q_{C}$

TOTAL CONCEPT

$$R_{P10} = R_E R_F R_M$$

= 0.99578 38534

FIGURE 5.2.3-6. RELIABILITY OF ENGINE PLACEMENT CONCEPT P10

SP 07R70-F

Hamilton Standard

1.000 (1.000) (1.000) (1.000) (1.000) (1.000) waa ana madalah bisa waxaalah oo waxaa ay

FIGURE 5,2,3-7. RELIABILITY OF ENGINE PLACEMENT CONCEPT P12

5. 2-31/5. 2-32

SP 07R70-F

Hamilton Standard

MANIFOLDING ARRANGEMENT

Hamilton Standard

SP 07R70-F

FUNCTIONAL ARRANGEMENT

REDUNDANT ENGINES

 $R_{E} = R^{8} + 8R^{7}Q_{C} + 8R^{7}Q_{O} + 20R^{6}Q^{2}_{C} + 12R^{6}Q^{2}_{O} + 24R^{6}Q_{O}Q_{C}$

TOTAL CONCEPT

All the second starting the

ENGINE PLACEMENT

3,40

10 M 10 10 11 11 11

5. 2-33/5. 2-34

$$R_{P12} = R_E R_F R_M$$

= 0.99578 40313

FIGURE 5.2.3-8. RELIABILITY OF ENGINE PLACEMENT CONCEPT P13

5.3

Preflight Operations

Subsystem preflight operations include all of the inspections, tests and servicing operations which the propulsion subsystem is subjected to from the time the subsystem is source acceptance tested at the Propulsion System Subcontractor's Facility to the launch event. Figure 5.3.0-1 is a flow chart which illustrates the sequence of events during preflight operations. The key events are discussed below.

5.3.1 SUBSYSTEM ACCEPTANCE TESTING:

Prior to delivery, the subsystem will be subjected to tests to formally verify the satisfactory completion of the manufacturing and assembly phase. The objective here is to verify interface control, and to demonstrate that equipment performance was not degraded between the time it was acceptance tested at the component level, and then integrated into the subsystem. Examination of product includes such checks as visual and dimensional inspections, alignment of the engine thrust chambers, and dry weight measurement. Electrical checks include continuity and polarity checks as well as insulation resistance and circuit resistance checks. The subsystem is then proof pressure tested followed by internal leakage tests of the engine valves and latching solenoid valves, external leak checks on the system, and finally a calibration check of the pressure transducer. The system leakage check is performed by pressurizing the tankage and plumbing through the fill ports and test port with a nitrogen-helium mix. A helium mass spectrometer is then used to detect leakage of lines, components and connections. For an internal leak check of the propellant valves, dry nitrogen is introduced through the system test port and the leakage is measured at the engine nozzle exit by a standard liquid displacement method. A schematic for internal leakage testing of the engine propellant valves is shown in Figure 5.3.1-1. Since the propellant valve on the IDCSP/A engine utilizes dual series seats, it is desirable to verify leakage of each seat separately. The upstream seat leakage can be verified by electrically actuating the value to a pre-determined value of current which will move the torque motor flapper sufficiently to unseat the downstream seat. With nitrogen pressure applied to the test port, leakage at the upstream seat can be measured. To measure leakage of the downstream seat, pressure is trapped between the two seats and leakage of this trapped gas is measured. This technique is presently used to verify individual seat leakage of the valves for the Intelsat IV program which are similar to the IDCSP/A valves. The calibration check of the pressure transducer is performed by pressurizing the system upstream of the isolation valves with dry nitrogen and comparing the transducer output to the monitored supply input. This test is performed at 3 different steady state pressures and the results compared with the transducer component acceptance test data.

The procedures for leakage checks of the latching solenoid values are different for • each of the 3 candidate feed system concepts. For the FS-2 feed system the fill and drain value is used to pressurize the system upstream of the latching values, and the system test port is used to sense leakage downstream of the values. The normally

5.3.1 (Continued)

closed latching values on the FS-4 feed system are tested in this same manner, however, the normally open latching value on the FS-4 system require different procedures. First the values are actuated to the closed position and the test port is used to pressurize the system. With the propellant values open, and plugs inserted in each of the engine nozzles, the leakage is sensed downstream of the thrust chambers. Since the FS-8 feed system is similar to the FS-4 feed system in that they both utilize normally open latching values located downstream of the system test port, the same procedures for testing these latching values apply.

5.3.2 **PROPULSION SUBSYSTEM INSTALLATION AND ALIGNMENT:**

In order to simplify installation, and to minimize potential interface problems, the propulsion subsystem is designed to meet the following objectives:

- Simple accessible mounting features
- Non-interchangeable interface connections
- Ease of engine alignment
- Accessible fill and drain ports for ease of propellant servicing
- Minimization of mechanical interfaces

The propulsion subsystem is designed as an integral self-contained system which is shipped to GSFC as a finished product for installation into the spacecraft with no further fabrication required except for the subsystem/vehicle interface connections, and assembly of the engine modules. Subsystem to vehicle interfaces have been minimized by providing modules and panels for component mounting. All mechanical interfaces are designed to be bolted to a mating bracket cr support on the vehicle.

The subsystem is assembled to a handling fixture at the Propulsion Subcontractor's Facility during the manufacturing/assembly phase. This fixture is designed to provide support at points which do not interfere with the assembly of the subsystem into the vehicle. This fixture provides for inspection of the various interfaces prior to shipment, and serves as a shipping fixture for transport of the subsystem to GSFC.

This method of subsystem support allows for "dropping" the propulsion subsystem into the vehicle, and building up the various vehicle support members if required. In the event a bulkhead or substructure separates the upper and lower areas of the vehicle, and is present prior to propulsion subsystem installation, propellant lines to engines mounted on the lower spacecraft structure can be routed through clearance holes in the bulkhead. The engines are then mounted to the spacecraft and the propellant line mechanically connected. The handling fixture considered consists of a main support column from which are extended removable radial supports to each of the separate interface stations. Each module, tank, or panel is mounted to a radial support through auxiliary mounting points which do not interfere with the vehicle mounting

SP07R70-F(

5.3.2 (Continued)

interfaces. After each module or component is mounted to the appropriate interface, the radial handling fixture support to that item can be removed.

The critical interfaces during installation are the engine locations where it is necessary to align the thrust chamber nozzles relative to the vehicle center of gravity. Engines forming a module, or individually mounted engines, are geometrically aligned to the engine bracket/spacecraft interface during fabrication. Verification of engine alignment relative to the spacecraft can be performed through the utilization of a transit and reticle quadrant type discs attached to each engine nozzle. A fixture can be manufactured which will pick up the nozzle geometric centerline (defined by the throat and exit plane diameters) with the reticle disc mounted perpendicular to the fixture axis.

Alignment verification relative to the spacecraft is then achieved by sighting upon the reticle disc and adjusting the engine as required.

After the propulsion subsystem is installed into the spacecraft, electrical checks are performed to verify continuity and polarity of the electrical power circuitry, and the telemetry circuitry between the spacecraft and the propulsion subsystem. In addition, an external leakage check of the entire system, and an internal leakage test of the engine valves, as well as a calibration check on the pressure transducers, are performed. The procedures for these checks are the same as previously described.

5.3.3 LAUNCH BASE CHECKOUT AND SERVICING:

Checkout at the launch base is required to verify that the subsystem was not degraded during transport. This is performed prior to propellant and pressurant loading and includes subsystem external leakage checks, engine value internal leakage checks and electrical continuity checks.

To load the system with propellant, the pressurant and propellant ground service lines of a propellant servicing cart are connected to the system fill and drain valves and the system is evacuated through the pressurant side. Propellant is then metered through the servicing cart until the required quantity of propellant has been loaded.

Before loading propellant, the propulsion subsystem is purged with N₂ and kept at a low pressure to exclude air and water vapor from the system. The propellant fill valve, which has the capability of being shut off with the fill line, and after the fill line is removed the fill valve inlet port is capped. The tanks are then charged to correct system pressure with gaseous nitrogen with a trace of helium to facilitate leak detection. The ground service line is then removed and the fill valve capped. Once the system has been charged with propellant and pressurant, the wet hold capability is such that minimal functional checks are required.

SP07R70-F

5.3.3, (Continued)

The frequency of these functional checks is dependent on the requirements imposed on the system for wet hold capability and the expected performance levels of the components used. The propulsion subsystem is designed to contain propellant and pressurant for periods greater than the mission flight and normal launch pad time spans, therefore, propellant off loading is unnecessary unless the mission is to be aborted for a significant time period or there is an anomoly with the propulsion subsystem. The locations of the propellant and pressurant fill lines and values have been carefully considered to simplify the draining procedure in case of a mission abort. To drain the system, a bleed line from the ground service equipment is first connected to the pressurant vent valve. A shutoff valve in the ground service bleed system line is then opened and the tank pressure is bled to a low value. The ground service propellant drain system is then connected to the propellant drain valve and the propellant drained by gravity feed with low pressure assist. The subsystem is purged with nitrogen, flushed with water, then isopropyl alcohol, purged with nitrogen and then vacuum dried. The vacuum drying system provides for evacuating the system through a cold trap to remove propellant vapors from the line venting to the launch servicing cart or the vapors exhausting from the propulsion subsystem can be dumped, by way of service line extensions, into the launch pad underground scrubbing facilities, if available, which are normally used to eliminate other vehicle propellant vapors. If the subsystem is not immediately recharged with propellant and pressurant, a low positive pressure of GN_2 should be loaded for the storage period.

5.3.4 Ground Support Equipment

The requirements for the ground support equipment arise from the functions that must be performed on the propulsion subsystem from the point of acceptance testing through to installation into the spacecraft and finally launch base checkout and servicing. A description of these functions is covered in the previous sections of "Preflight Operations" and the requirements are listed as follows:

- Perform pressure transducer calibration
- Perform electrical checks on all electrical components
- Perform subsystem external leakage checks
- Perform internal leakage checks of thrust chamber valves (both seats)
- Propellant loading and off loading
- Pressurant loading and off loading
- GN₂ purging and vacuum drying
- Propellant vapor scrubbing
- System flushing (water and isopropyl alcohol)
- Propellant conditioning

The schematic shown in Figure 5.3.4-1 shows a typical propellant servicer cart used to perform the propellant and pressurant servicing, flushing, drying, and leak check operations. This system, in addition to all the electrical instrumentation needed to

SP07R70-F

5.3.4 (Continued)

carry out transducer calibration, electrical checks, and propellant valve seat leakage checks, will comprise the total ground support system. The servicer features straight manual operation which incorporates simplicity and reliability. The unit is semi-self contained, requiring only a high pressure nitrogen supply and external voltage source. The unit has provisions which permit hoisting the cart up the gantry so that the cart can be used on the same level as the spacecraft. Hoses and cables normally remain attached to the servicer when not in use and are stored at one end of the unit, and the controls which are most frequently used are group ed on a control panel for ease of operation. The cart consists of five tanks, hydrazine, water, alcohol, nitrogen and drain. With the exception of the nitrogen tank, each tank includes a level or weight measurement of contents, GN2 pressurization valve, vent valve, and pressure gages. Fill values and filters for 5 microns nominal/10 microns absolute are provided on each holding tank. The nitrogen distribution system provides GN₂ for load cell use and general pressurization. When loading the propellant, hydrazine is circulated up the spacecraft interface valve until lines are bubble-free (see return line bubble indicator), then the return line is shut off, the weight tank load noted, and the transfer started by opening the spacecraft fill-drain valve. Because of the bottom location of the propellant manifold of the propulsion subsystem, N₂ is vented to the top of the propellant tanks and out the servicing line. This scheme assures bubble free N2H4 loading. The propulsion subsystem can be flow flushed (H2O and alcohol) and propellant conditioned by connecting the ground support equipment (GSE) return line to the subsystem pressurant fill valve and the GSE fill line to the subsystem fuel fill line. This completes a continuous loop into and out of the subsystem. Fuel drainage and flush fluids will be returned to a common drain tank for later disposal. The vacuum system provides for evacuating the tanks and lines through a cold trap to remove vapors and completely dry the subsystem.

ප් මිංගික කරාමාස් කරාම් කර්ජා විසි ඉංදිවි

ゆうし おうごうしょうがくし

3SYSTEM OPERATIONAL SEQUENCE - PRE-FLIGHT

5.3-7/5.3-8

FIGURE 5.3.1-1 INTERNAL LEAKAGE TEST SCHEMATIC - ENGINE VALVE

and and an all and a start of the second start

Hamilton Standard

D

يندو. فيها

FIGURE 5.3.4-1. PROPELLANT SERVICING CART

5.3-11/5.3-12

ş

Hamilton Standard

5.4

FLIGHT OPERATIONS

In order to present a more detailed description of the flight operation procedures, and to describe the consequences of the operational constraints placed upon this system by the interaction of the error analysis and the accuracy requirements, Flight Operations Chartshave been prepared for both the Probe and Orbiter missions. These charts are included here as Table 5.4-I and 5.4-II. The P-5 candidate system with the FS-2 feed system was chosen for illustrative purposes. The basis for this chart is the Flight Operations Sheets which in effect generalize the technique required to perform certain maneuvers.

A®

In preparing this chart it was assumed that each engine would have a bed temperature sensor and the sensor output would be telemetered to the ground station where it would be utilized for determining expected engine performance for each maneuver. In addition, it was assumed that indicators which tell the position of the latching solenoid valves would be part of the spacecraft's instrumentation. Since required thrusting to accomplish desired maneuvers will be determined at the ground command station only the positions in the spacecraft's reference system will be telemetered, therefore, resulting velocity vectors will be determined at the ground station.

During both the Probe and the Orbiter missions there are long periods of time between series of maneuvers. The shortest of these is 5 days which occurs between the event "Orient for Cruise" which occurs less than an hour after Liftoff, and the "Orient for 1st Midcourse Correction". Since the latching valves could protect against a serious gradual loss of propellant due to downstream leakage in any one engine, it is assumed that the latching solenoid valves will be closed during any time lapse equal to or greater than 5 days.

The symbols used in the Flight Operations Charts are defined below.

TABLE OF SYMBOLS

ORPORATION

Hamilton Standard

PT	-	hydrazine tank pressure
TT	<u> </u>	hydrazine temperature
$\mathbf{T}_{\mathbf{B}\mathbf{n}}$		thruster bed temperature of engine "n"
Ton	<u> </u>	thruster on-time
à		angular orientation in reference coordinate system
$\Delta \mathbf{x}$		displacement vector
$\overline{\Delta V}$		velocity vector
an a	L.	
Δα	-	precession angle change
ΔV		magnitude of velocity change
ΔΝ		spin speed change
d ¢		precession angle error or perturbation
dV		magnitude of velocity error or perturbation
dN		spin speed error or perturbation
EPW	_	electrical pulse width

5.4-2

FOLDOUT FRAME

Hamilton Standard

Ī

•

TABLE 5. 4-I FLIGHT OPERATIONS CHART - ORBITER MISSION SYSTEM: 1 (P-5/FS-2)

. .

EVENT	DA TA REQUIRED FROM VEHICLE	GROUND COMPUTATION	DATA (COMMAND) TRANSMITTED TO VEHICLE	ASSUMPTIONS	ERRORS
1) Liftoff	-	-	-		
2) 3rd Stage Burnout					
3) Despin ΔN = -49 RPM	(P _T , T _T , T _B 5, 8, N Latch Valve Status) * *(Needed for Maneuver) Prop. System Checkout	ΔΝ, Τ _{οῦ}	Open Both Latch Valves Fire 5 and 8	All telemetered measurements will be obtained and reviewed in order to determine system's status even though not all data need be known for this maneuver.	dV = .0015 m/sec $d\alpha = .125^{\circ}$ dN = 3.13 RPM
4) Erect Booms	^т в (АЦ), .	-			
5) Spin Up to Cruise a) $\Delta N = +1 \text{ RPM} + \text{Despin}$ Error	P _T , T _T , T _{B2,3} , N	ΔN, T _{on}	Fire: 2 and 3	It is assumed that this will also be used to trim any despin	dN = .265 RPM
b) Spin Trim ΔN = +0~,3 RPM	PT, TT, TB1,2,3,4N	ΔN, T _{on}	Fire:1 and 4 or 2 and 3		dN = .019 RPM
6) Separation from 3rd Stage					
 7) Spin Control a) ΔN = +10 RPM 	PT, T _T , T _{B2,3}	ΔN, T _{on}	Fire: 2 and 3	It is assumed that the separation from the third stage caused a change in spin and the purpose of this maneuver is to trim this out	dN = .64 RPM
b) Spin Trim $\Delta N = \pm 064 RPM$	P _T , T _T , T _{B1,2,3,4} _j N	ΔN, T _{OR}	Fire: 1 and 4 or 2 and 3		dN = .041 RPM
8) Spin Control a) $\Delta N = -9.7 \text{ RPM}$	P _T , T _T , T _{B1,4} , N	ΔN, I _{on}	Fire: 1 and 4		dN = .62 RPM
b) Spin Trim $\Delta N = \pm 0$ 62 RPM	P _T , T _T , T _B 1, 2, 3, 4, N	ΔN, T _{on}	Fire: 1 and 4 or 2 and 3		dŇ = .040 RPM
9) Orient for Cruise a) $\Delta \alpha = 22^{\circ}$	P _T , T _T , T _B 1, 6 N, a , x	$\Delta \alpha$, EPW, Timing, No. Pulses	Fire: 1 and 6	This maneuver will be done in five steps in order to conserve fuel while zeroing in on the desired $\Delta \propto = 90^\circ$ (92) c) c) c)	dV = .0064 m/sec $d\alpha = 1.0^{\circ}$ dN = 30 PDM
b) Spin Control $\Delta N = \pm 030 \text{ RPM}$ Repeat three more times for Events 9c.9d, 9e. Sf. 9c. 9b	P _T , T _T , T _{B1,2,3,4,N}	ΔΝ, T _{on} if Necessary	Fire: 1 and 4 or 2 and 3	Because of spin change due to $\Delta \propto$ maneuver it is necessary to trim the spin rate. (9b), d), f), h).	dN = .019 RPM
i) $\Delta \alpha$ Course Trim $\Delta \alpha = 2^{\circ}$	P _T , T _T , T _B 1, 6 Ν, α	ΔαTrim, EPW, Timing, No. Pulses	Fire: 1 and 6 Close Latching Valves After Firing	Latching valves are closed after maneuver because next maneuver is 5 days away.	$d\alpha = .22^{\circ}$ for Two Thruster Operation $d\alpha = .11^{\circ}$ for Org Thruster Operation
10) Orient for 1st M/C a) ΔVCalibration Engines	P _T , T _T , T _B 1, 3, 5, 7, N	EPW, Timing, No. Pulses	Open Both Latching Valves	Before the orientation both Δv clusters will be fired in order to determine the uncertainty in the	c) $d\alpha = .41^{\circ}$ $dN = .12 R^{3}M$

the state of the second					av = .019 KPM.
Repeat three more					
times for Events 9c,9d,	and the second second second second	and the second second second second	 A second sec second second sec		1
9e, 9f, 9g, 9h					3-1 000 0
i) <u>Aa Course Trim</u>	PT, TT, TB 1, 6 N.a	Δ-α Trim, EPW,	Fire: 1 and 6	Latching valves are closed after maneuver because	$d\alpha = .22^{\circ}$ for Two Thruster Operation
$\Delta \alpha = 2^{\circ}$		Timing, No. Pulses	Close Latching Valves	next maneuver is 5 days away.	da=.11° for One Thruster Operation
10) Orient for 1st M/C	PT, TT, TRI 3 5 7 N	EPW, Timing, No.	Open Both Latching	Before the orientation both Δv clusters will be	c) $d\alpha = .41^{\circ}$
a) AVCalibration Engines	$\vec{\alpha}$. \vec{x} . Latch Valve	Pulses	Valves	fired in order to determine the uncertainty in the	dN = .12 RPM
1,3,5,7	Status		Fire: 1,3,5,7	c.g. location relative to the thrust vector. $(re \propto)$	
	Post Firing	Post Firing		and ren). It is assumed that the c.g. location	d) $d\alpha = .22^{\circ}$ for Two Thruster
	N T	AN A T AV AV	La ser de la testa de la	is known with \pm 10" parallel to the spin axis and	$d\alpha = .11^{\circ}$ for One Thruster
	μ, α, λ	The Free F W		±.05" normal to it for this fuel loading.	d N= .0135 RPM
		$1e\alpha c$, $1e\alpha c$, $1e\alpha c$,		d.	
	D- 7 7	FDW Timing No of	Dimer D A C O		
b) Av Calibration Engines	^P T, ¹ T, ¹ B2, 4, 6, 8, N,	Erw, 11ming, No. of	Fire: 2,4,6,8		
2,4,6,8	ar, X	Pulses			
	Post Firing	HOST FITING			
	$N, \overline{\alpha}, \overline{x}$	$\Delta N, \Delta \propto, \Delta x, \Delta v$			
		reac, renc, rea,			
	1. 网络马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马	ren			
c) $\Delta \propto = 9^\circ$ Orient for 1st	$P_{T}, T_{T}, T_{B2,5}$	$\Delta \propto$, EPW, Timing,	Fire: 2 and 5		
M/C	N, 🛱 , 🛣	No. of Pulses		The form of the state of the st	l i i i i i i i i i i i i i i i i i i i
l) Δα= 1° Trim		$\Delta \propto$, EPW, Timing,	Fire: 2 and 5		l de la companya de l
Orientation for 1st M/C	P _T , T _T , T _{B2,5}	No. of Pulses	here a state of the second	A set of the set of	
	N, $\overline{\alpha}$, \overline{x}	· 영상			
11) 1st Midcourse	PT. TT. TD1 2 5 7 M	EPW, Timing, No.	Fire: 1,3,5,7	Engines 1, 3, 5, 7 will be used for first part of	$dV = 2.5 \mathrm{m/sec}$
a) Correction	B1,3,3,7,N	Pulses		maneuver. Engines 2, 4, 6, 8 used for second	$d \propto = 1.9^{\circ}$
$\Delta v = 42 \text{ m/sec}$	1 4 + X	11 - 김지가 영상 동안이다.		42 m/sec.	dN = .30 RPM
b) Soin Control					dN = .019 RPM
$\Delta N = \pm 03 RPM$	PT. TT. TD1 2 3 4 M	ΔN , Ton if	Fire: 1 and 4 or		
	a	Necessary	2 and 3		
Repeat Once for Events					
11 c), d), Use Engines			🖡 de la Constante		
2.4.6.8 for c).					and the second
$e) \Delta V = 24 \text{ m/sec}$	Pm. Tm. Tn. a c	AV. EPW. Timing.	Fire: 1.3.5.7	Engines 1, 3, 5, 7 used.	dV = 1.43 m/sec
-,	- 1, -1, -B1, 3, 5, 7, N	and No. of Pulses			% Error = 1.3%
	∝, x	Taking into Account			$d \propto = 1, 1^{\circ}$
		Calcu, C.G. Shift			dN = .17 RPM
2) Reprient to Cruise	Por Ton Ton a st	AG. EPW. Timing.	Fire: 2 and 5	It is assumed that the d \propto from event 11 will	$d\alpha = .41^{\circ}$
a) $\Lambda \alpha = 9^{\circ}$	T * T * B2, 5, N	No. of Pulses		be trimmed out here.	dN = .12 RPM
$h \land \mathfrak{A} = 1^\circ$ Trim		A & EPW Timing	Fire 2 and 5		$d \propto = .22^\circ$ for Two Thrusters
wj 🛥 = 1 +11111	PT, TT, TB2, 5, N	No of Pulses	1110, 0 min 0		$d \propto = .11^\circ$ for One Thruster
Orientation for	~ , x	110. 01 - 440 04		and present applies of the first second states and	dN = .0135 RPM
Cruise					
병일부분일, 외전인 경우					
성장을 다 물건을 가 걸었다.					
사람은 눈 전 옷을 받았다.					
建铁电影的复数形式的电影					
			 Device the second s		
	1	Landon M. Contraction States and	1 A state of the state of th		1. Second sec

**

يد. يا

EOLDOUT FRAME SP 70R70-F

Hamilton Standard

TABLE 5. 4-I (CONTINUED) FLIGHT OPERATIONS CHART - ORBITER MISSION SYSTEM: 1 (P-5/FS-2)

EVENTS	DATA REQUIRED FROM VEHICLE	GROUND COMPUTATION	DATA (COMMAND) TRANSMITTED TO VEHICLE	ASSUMPTIONS	ERRORS
13) Spin Control	P _T , T _T , T _{B2.3. N}	$\Delta N, T_{OR}$	Fire: 2 and 3		d∝= .096°
a) $\Delta N = +2.5 \text{ RPM}$ b) Spin Trim $\Delta N = +016 \text{ RPM}$	P _T , T _T , T _{B1,2,3,4,N}	ΔN, T _{ON}	Fire: 1 and 4 or		dN = .16 RPM dN = .01 RPM
14) Spin Control a) $\Delta N = -2.5 \text{ RPM}$	P _T , T _T , T _{B1, 4} , N	ΔN, T _{on}	Fire: 1 and 4		$d\alpha = .096^{\circ}$ $dN = .16 RPM$
b) Spin Control $\Delta N = \pm 016 \text{ RPM}$. P _T , T _T , T _B 1, 2, 3, 4, N x,	ΔΝ, Τ _{οη}	Fire: 2,3 for $+ \Delta N$ 1,4 for $- \Delta N$		dN = .01 RPM
15) Orient for 2nd Midcourse	Dr. T. T.		After Firing		Jat 410
Correction a) $\Delta \propto = 9^{\circ}$	x, X, Latching Valve	No. of Pulses	Valves Fire: 2 and 5		dN= .12 RPM
b) $\Delta \propto = 1^\circ$ Trim for 2nd M/C	$\frac{\mathbf{P_{T}, T_{T}, T}}{\tilde{\alpha}, \tilde{\pi}}^{\mathrm{B2, 5, N}}$	$\Delta \propto$, EPW, Timing, No. of Pulses	Fire: 2 and 5		d∝= .11° For One Thruster dN= .0135 RPM
16) 2nd Midcourse Correction a) $\Delta V = 9 \text{ m/sec}$	$\frac{\mathbf{P}_{\mathrm{T}}, \mathbf{T}_{\mathrm{T}}, \mathbf{T}_{\mathrm{B2}, 4, 6, 8, \mathrm{N}}}{\alpha, \mathbf{x}}$	ΔV , EPW, Timing and No. of Pulses	Fire: 2,4,6,8	C.G. shift from calibration prior to event no. 10 is done with sufficient accuracy to make recalibration unnecessary	dV = .54 m/sec $d\alpha = .41^{\circ}$ dN = .064 RPM
b) $\Delta V = 1 \text{ m/sec}$	$\frac{\mathbf{P}_{\mathrm{T}}, \mathbf{T}_{\mathrm{T}}, \mathbf{T}_{\mathrm{B2}}, 4, 6, 8, \mathrm{N}}{\overline{\alpha}, \overline{\mathbf{x}}}$	$\Delta \overline{V}$, EPW, Timing and No. of Pulses	Fire: 2,4,6,8		dV .092 m/sec % Error = 1.02%
					dN = .0071 RPM
17) Reorient to Cruise a) $\Delta \propto = 9^{\circ}$	$\frac{\mathbf{P}_{\mathrm{T}}, \mathbf{T}_{\mathrm{T}}, \mathbf{T}_{\mathrm{B2}, 5}}{\overline{\alpha}, \overline{\mathbf{x}}}$	$\Delta \propto$, EPW, Timing, No. of Pulses	Fire: 2 and 5		$d\alpha = .41^{\circ}$ dN = .12 RPM
b) $\Delta \alpha = 1^{\circ}$ Trim Orientation for Cruise	$\frac{P_{T}, T_{T}, T_{B2, 5, N}}{\alpha, x}$	$\Delta \propto$, EPW, Timing, No. of Pulses	Fire: 2 and 5	e de la companya de Esta de la companya d	dα= . 11° for One Thruster dN= .0135 RPM
a) $\Delta N = +5 RPM$ b) Spin Trim	$P_{T}, 1_{T}, 1_{B2}, 3, N$ $\overline{\alpha}, \overline{x}$	ΔN, I _{on}	Fire: 1 and 4 or		dN = .32 RPM dN = .021 RPM
$\Delta N = \pm 032 \text{ RPM}$	~ 1' - 1' - B1, Z, 3, 4, N	, Ton It reactionly	2 and 3		
19) Spin Control a) $\Delta N = -4.7 \text{ RPM}$	P _T , T _T , T _{B1,4} , N	ΔN, T _{on}	Fire: 1 and 4		dN= .30 RPM
b) Spin Trim $\Delta N = \pm 03 RPM$	$\frac{\mathbf{P}_{T}, \mathbf{T}_{T}, \mathbf{T}_{B1, 2, 3, 4, N}}{\mathbf{x}, \mathbf{x}}$	ΔΝ, Τ _{οn}	Fire: 1 and 4 or 2 and 3 Close Latching Valves		an= .019 RPM
20) Orient for 3rd M/C	P _T , T _T , T _{B2, 5} , N	$\Delta \propto$, EPW, Timing,	Atter Firing Open Both Latching		$d\alpha = .41^{\circ}$

b)	Spin Trim $\Delta N = \pm 032 RPM$	$P_{T}, T_{T}, T_{B1,2,3,4, N}$	ΔN , T _{on} if Necessary	Fire: 1 and 4 or 2 and 3	-	dN= ,021 RPM
19) a)	Spin Control ΔN = -4,7 RPM	P _T , T _T , T _{B1, 4} , N	ΔN, T _{on}	Fire: 1 and 4	-	dN= .30 RPM
b) (Spin Trim ΔN = ±03 RPM	$\frac{\mathbf{P_{T}},\mathbf{T_{T}},\mathbf{T_{B1,2,3,4,N}}}{\mathbf{x},\mathbf{\alpha}}$	ΔN, T _{on}	Fire: 1 and 4 or 2 and 3 Close Latching Valves After Firing		dN= .019 RPM
20) (a) (Drient for 3rd M/C $\propto = 9^{\circ}$	P _T , T _T , T _{B2, 5} , N	Δα, EPW, Timing, No. of Pulses	Open Both Latching Valves Fire: 2 and 5		dor= .41° dN= .12 RPM
b) /	∆∝= 1° Trim for 3rd M/C	$\frac{\mathbf{P_{T}, T_{T}, T_{B2, 5}, N}}{\overline{\alpha}, \overline{\mathbf{x}}}$	$\Delta \propto$, EPW, Timing, No. of Pulses	Fire: 2 and 5		dα= .11° for One Thruster dN= .0135 RPM
21) : a) /	3rd Midcourse Correction ΔV = 1m/sec	$\stackrel{\mathbf{P_{T}, T_{T}, T}}{\approx}, \frac{\mathbf{T_{T}, T}}{\mathbf{x}}$	$\Delta \vec{V}$, EPW, Timing and No. of Pulses	Fire: 2,4,6,8	If this maneuver were done in one increment a 5.98% error in ΔV could result which is > the 5% allowed. Therefore it will be done in 2 steps. Only 21 pulses (total) are re- quired for 2 m/sec ΔV .	dV= .0598 m/sec dα= .047° dN= .0071 RPM
b) /	$\Delta V = 1 \text{ m/sec}$	$\frac{P_{T}, T_{T}, T_{B2}, 4, 6, 8, N}{\overline{\alpha}, \overline{x}}$	$\Delta \overline{V}$, EPW, Timing and No. of Pulses	Fire: 2,4,6,8	Number of pulses required is a whole number.	dV= .0598 m/sec % Error = 3% dq= .047° dN= .0071 RPM
22)	Reorient to Cruise	$\underline{\mathbf{P}_{\mathrm{T}},\mathbf{T}_{\mathrm{T}},\mathbf{T}_{\mathrm{B2},5},\mathrm{N}}$	$\Delta \propto$, EPW, Timing,	Fire: 2 and 5		$d\alpha = .41^{\circ}$ dN = .12 BPM
a) b)	Δα= 9° Trim Reorientation for Cruise Δα= 1°	$\overrightarrow{\alpha}$, \overrightarrow{x} P_{T} , T_{T} , T_{B2} , 5, N $\overrightarrow{\alpha}$, \overrightarrow{x}	No. of Pulses $\Delta \mathcal{Q}$, EPW, Timing, No. of Pulses	Fire: 2 and 5 Close Latching Valves After Firing		dα= .11° for One Thruster dN= .0135 RPM
23) 1 a)	Reorient for Retrofit ∆ α = 22°	P _T , T _T , T _{B2, 5} , N \$\alpha\$, \$\overline{x}\$	Δα, EPW, Timing, No. of Pulses	Open Both Latching Valves Fire: 2 and 5	This maneuver will be done in five steps in order to conserve fuel while zeroing in on the desired $\Delta \propto = 90^\circ$ and correcting the spin perturbation.	dV= .0064 m/sec dα= 1.0° dN= .30 RPM
b) \$ 	Spin Control ΔN = ±030 RPM	P _T , T _T , T _{B1,2,3,4, N}	ΔN , T _{on} if Necessary	Fire: 1 and 4 or 2 and 3	Because of spin change due to $\Delta \propto$ maneuver it is necessary to trim the spin rate.	dN= .019 RPM
1 6 6	Repeat Three More Times or Events 23 c), d), e),), g), h).					
i) 4	Δ∝ Course Trim Δ∝ = 2°	$\frac{\mathbf{P}_{\mathrm{T}}, \mathbf{T}_{\mathrm{T}}, \mathbf{T}_{\mathrm{B2}, 5}}{\overline{\boldsymbol{\alpha}}, \overline{\mathbf{x}}}$	∆∝Trim, EPW, Timing, No, of Pulses	Fire: 2 and 5		$d\alpha = .11^{\circ}$ for One Thruster
24)	Retrofire for Orbit Trans- fer and Reorient	$\frac{\mathbf{P}_{\mathrm{T}}, \mathbf{T}_{\mathrm{T}}, \mathbf{T}_{\mathrm{B3}, 8, N}}{\overline{\alpha}, \overline{\mathbf{x}}}$	∆∝, EPW, Timing, No. of Pulses	Fire: 3 and 8		dV= .0064 m/se⊂ dα= 1.0° dN= .30 RPM
a) b)	$\Delta \propto = 22^{\circ}$ Spin Control $\Delta N = \pm 03$ RPM d), f), h) Repeat Three More	P _T , T _T , T _{B1,2,3,4,N}	ΔN , T _{ON} if Necessary	Fire: 1 and 4 2 and 3		dN= .019 RPM
1)	almes for Events C, (a) , e), f), g), h). $\Delta \alpha$ Course Trim $\Delta \alpha = 2^{\circ}$	$\frac{\mathbf{P_{T}, T_{T}, T_{B3, 8, N}}}{\overline{\alpha}, \overline{\mathbf{x}}}$	$\Delta \propto \text{Trim}, \text{ EPW},$ Timing, No. of Pulses	Fire: 3 and 8		dα= .11° for One Thruster

FOLDOUT FRAME

SP 07R70-F

Hamilton ECLDOU I FRAME Standard Real A

and a state of the second s

TABLE 5. 4-I (CONTINUED) <u>FLIGHT OPERATIONS CHART - ORBITER MISSION</u> <u>SYSTEM: I (P-5/FS-2)</u>

and a second se

.

1

EVENTS	DATA REQUIRED FROM VEHICLE	GROUND COMPUTATION	DATA (COMMAND) TRANSMITTED TO VEHICLE	ASSUMPTIONS	ERRORS
25) Spin Control a) $\Delta N = +5 RPM$	P _T , T _T , T _{B2} , 3, N	ΔN, T _{on}	Fire: 2 and 3		dN = .32 RPM
b) Spin 171m $\Delta N = \pm 032 \text{ RPM}$	P _T , T _T , T _{B1,2,3,4,N}	ΔN, T _{on} if Necessary	Fire: 1 and 4 or 2 and 3		dN = .02 RPM
26) Spin Control AN = -5 RPM	PT, TT, TB1, 4, N	ΔN, T _{on}	Fire: 1 and 4		dN = .32 RPM
b) Spin Trim $\Delta N = \pm 032$ RPM	P _T , T _T , T _{B1,2,3,4} ,N	ΔN, T _{on} if Necessary	Fire: 1 and 4 or 2 and 3		dN = .02 RPM
27) At ^{**t} ude Control a) Maintenance $\Delta \alpha = 20^{\circ}$	$\frac{P_{T}, T_{T}, T_{B4,7}, N}{\overline{\alpha}, \overline{x}}$	$\Delta \propto$, EPW, Timing, No. of Pulses	Fire: 4 and 7	This maneuver will be done in a total of six even increments.	$dV = .025 \text{ m/sec}$ $d\alpha = .91^{\circ}$ $dN = .27 \text{ RPM}$
b) Spin Control ΔN = ±027 RPM	P _T , T _T , T _{B1,2,3,4,N}	ΔN, T _{on} if Necessary	Fire: 1 and 4 or 2 and 3		dN = .017 RPM
Repeat four more times for a total $\Delta \propto = 120^\circ$. Events 2 c), d), e), f), g), h),	7 7 7				
i), j). k) $\Delta \propto = 20^{\circ}$				d and dN error will be trimmed out during Events 28, 29, 30.	$d \propto = .91^{\circ}$ dN = .27 RPM
28) Orientation Trim $\Delta \alpha = 6^{\circ}$	$\overrightarrow{\mathbf{P}_{\mathrm{T}}}, \mathbf{T}_{\mathrm{T}}, \mathbf{T}_{\mathrm{B4,7}}, \mathbf{N}$	$\Delta \propto$, EPW, Timing, No, of Pulses	Fire: 4 and 7		$d \propto = .11^{\circ}$ for One Thruster
29) Spin Control a) $\Delta N = +2.5$ RPM	P _T , T _T , T _{B2,3} , N	ΔN, T _{on}	Fire: 2 and 3		dN = .16 RPM
b) Spin Trim $\Delta N = \pm 027 \text{ RPM}$	P _T , T _T , T _{B1,2,3,4,N}	∆N, T _{on} if Necessary	Fire: 1 and 4 or 2 and 3	$\left\{\begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	dN = .01 RPM
30) Spin Control a) $\Delta N = -2.5$	P _T , T _T , T _{B1} , 4, N	ΔN, T _{on}	Fire: 1 and 4		dN = .16 RPM
b) Spin Trim $\Delta N = +0 - 27 BDM$	P _T , T _T , T _{B1,2,3,4,N}	ΔN, Ton if	Fire: 1 and 4 or		dN = .01 RPM

	open sources	TTITI AND S N	AN, Ion	Fire: 2 and 3	-	dN = .16 RPM
a)	$\Delta N = +2.5 RPM$	1 1 1 10101				
b)	Spin Trim AN = ±027 RPM	P _T , T _T , T _{B1,2,3,4,N}	ΔN, T _{OR} if Necessary	Fire: 1 and 4 or 2 and 3		dN = .01 RPM
30) a)	Spin Control $\Delta N = -2.5$	P _T , T _T , T _{B1,4} , N	ΔN, T _{on}	Fire: 1 and 4		dN = .16 RPM
bĴ	Spin Trim	P _T , T _T , T _{B1,2,3,4,N}	ΔN , T _{on} if	Fire: 1 and 4 or	- · · · · · · · · · · · · · · · · · · ·	dN = .01 RPM
	$x \to xy = xG HPM$		Necessary	2 and 3 Close Both Latching		
				Values After Firing		
31)	Orient for Periapsis			Open Both Latching		
	Reduction	P _T , T _T , T _{B1,6} , N	$\Delta \propto$, EPW, Timing,	Valves	en e	dV = .0132 m/sec
A)	$\Delta \alpha = 27.5^{\circ}$	$\overline{\alpha}$ • 2	No. of Puises	Fire: 1 and b		$d\alpha = 1.25^{\circ}$
en e	Rule Genteral	T~ 71 M		Finer Land 4 on		dN = .30 RPM
D)	$\Delta N = \pm 03 RPM$	^P T, ¹ T, ¹ B1, 4, 6, 7, N	Necessary	6 and 7	la de la construcción de la constru La construcción de la construcción d	
c)	∆∝Trim	$P_{T}, T_{T}, T_{B1.6}, N$	$\Delta \alpha$, EPW, Timing,	Fire: 1 and 6		d
	$\Delta \alpha = 7.5^{\circ}$	a , x	No. of Pulses			dN = .082 RPM
* 32)	Periansis Reduction	PT. TT. TDI 9 5 7 N	EPW, Timing,	Fire: 1,3,5,7	an an an an Araba an Araba an Araba an Arab	dV = .72 m/sec
a)	100 KM $\Delta V = 12 \text{ m/sec}$	$\overline{\alpha}, \overline{x}$	No. of Pulses			$d\alpha = .2^{\beta \alpha}$
						dN = .025 RPM
b)	$\Delta V = 1 \text{ m/sec}$	PT, TT, TB1, 3, 5, 7, N	EPW, Timing,	Fire: 1,3,5,7	na an a	dV = .102 m/sec
		$\overline{\alpha}, \overline{x}$	No. of Pulses			$\frac{1}{2}$, Error = .85%,
C)	Reorient to Orbit Mode $A \approx -27$	$P_{T}, 1_{T}, 1_{B2,5}, N$	A Q, EPW, 11ming,	Fire: 2 and 5		$d\alpha = 1.25^{\circ}$
	ΔW - 21.9	α, .	NO. Of Fulses			dN = .30 RPM
d)	Spin Control	PT. TT. TDI 4 6 7 N	ΔN_t Top if necessary	Fire: 1 and 4 or	an indexe di su <mark>u</mark> di di substanti di	dN = .019 RPM
	$\Delta N = \pm 03 \text{ RPM}$	D1, 4, 0, 7, 11		6 and 7		
e)	Δα Trim	$P_{T}, T_{T}, T_{B2,5}, \dot{N}$	$\Delta \alpha$, EPW, Timing,	Fire: 2 and 5	· · · · · · · · · · · · · · · · · · ·	$d\alpha = .17^{\circ}$ for One Thruster
	$\Delta \alpha = 7.5^{\circ}$	\$, x	No. of Pulses			dN = .082 RPM

* Events 31 and 32 - This series of events represent a 100 KM Periapsis reduction, for a total of 1500 KM repeat 15 times. Alternate thrusters according to table.

		THRUSTERS		
Δ PERIA PSIS	EVENT 31 a), c)	EVENT 31 b), 32 d)	EVENT 32 a), b)	EVENT 32 c), d)
100	1, 6	1 and 4 or 6 and 7	1, 3, 5, 7	2, 5
200	3,8		2, 4, 6, 8	4, 7
300 400	1, 6 3, 8		1, 3, 5, 7 2, 4, 6, 8	2, 5
500	1,6		1, 3, 5, 7	2, 5
600 700	3, 8 1. 6		2, 4, 6, 8 1. 3. 5. 7	4,72,5
800	3, 8		2, 4, 6, 8	4, 7
900 1000	1,6 38		1, 3, 5, 7	2,5
1100	• 1, 6		1, 3, 5, 7	2, 5
1200	3, 8		2, 4, 6, 8	4, 7
1400	3, 8	an an an Anna a Anna an Anna an	2, 4, 6, 8	4, 7
1500	1, 8	1 and 4 or 6 and 7	1, 3, 5, 7	2, 5

FOLDOUT FRAME

 TABLE 5.4-II

 FLIGHT OPERATIONS CHART - PROBE MISSION

 SYSTEM: I (P-5/FS-2)

Hamilton Standard

DIVISION OF

DOUT FRAME

. Je

		DA TA REQUIRED	GROUND COMPUTATION	DATA (COMMAND) TRANSMITTED TO VEHICLE	ASSUMPTIONS	ERRORS
فيتتبعه	EVENI		COMPUTATION			
1)	Tiffoff					- .
-7	TUIMII					
2)	3rd Stag@ Burnout				$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2}$	-
3)	Despin by Hydrazine System AN = -40 RPM	PT, TT, TB1, 4, N Latch Valve Status (Needed for Maneuver) Propulsion System Checkout: T _B (All) $\overrightarrow{\alpha}$, \overrightarrow{x}	ΔN, T _{on}	Fire: 1 and 4	All telemetered data will be obtained and re- viewed in order to determine system's status even though not all data will be needed for this maneuver. Since the next maneuver is a spin up to cruise error will be trimmed out there and not here.	dV = .011 m/sec da = .040° dN = 2.56 RPM
4)	Erect Booms				$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$	$\frac{1}{2}$
5)	Spin IIn to Cruise	Pro. Tro. Tro. s. N	$\Delta N. T_{on}$	Fire: 2 and 3	Error due to Event 3 will be trimmed out	$d\alpha = .074^{\circ}$
0,	Valve	- 1' - 1' - D 2,3)-	- у ОЦ		here.	dN = .42 RPM
a)	$\Delta N = 4 RPM$					
b)	Spin Trim $\Delta N = \pm .42 \text{ RPM}$	P _T , ^T T, ^T B1,2,3,4 N	ΔN, Ton if Necessary	Fire: 1 and 4 or 2 and 3	In order to meet spin accuracy of a 1) RPM a spin trim is required.	dN = .027 RPM
6)	S/C Separation from 3rd Stage					
7)	Orient for Cruise	P _T , T _T , T _{B1. 6. N}	$\Delta \alpha$, EPW, Timing,	Fire: 1 and 6	This maneuver will be done in four $\Delta \propto$	dV = .015 m/sec
a)	$\Delta \alpha = 27.5^{\circ}$	α, x	No. of Pulses		steps.	$d \propto = 1.25^{\circ}$
ы	Spin Control		Λ N	Fire: 1 and 4 or	Trimming spin error to keen within 30 RPM	dN = .30 RPM dN = 0.19 RPM
57	$\Delta N = \pm 03 \text{ RPM}$	N -1, -1, -B1,2,3,4)	Necessary	2 and 3	requirement.	
	Repeat two times for Events 7c, 7d, 7e, and 7f.					
g)	$\Delta \propto = 5.0^{\circ}$	$\overrightarrow{P}_{T}, T_{T}, T_{B1,6,N}$	$\Delta arphi$, EPW, Timing, No. of Pulses	Fire: 1 and 6	n an	$d\alpha = .23^{\circ}$ dN = .055 RPM
h)	$\Delta lpha$ Course Trim $\Delta \alpha = 2.5^{\circ}$	$\frac{\mathbf{P}_{\mathrm{T}}}{\alpha}, \mathbf{T}_{\mathrm{T}}, \mathbf{T}_{\mathrm{B}1, 6, N}$	$\Delta \propto \text{Trim}, \text{EPW},$ Timing, No. of Pulses	Fire: 1 and 6 Close Latching Valve After Firing		$d\alpha = .11^{\circ}$ dN = .027 RPM
8)	Orient for 1st M/C	P _T , T _T , T _{B1 3 5 7} .	EPW, Timing, No.	Opening Both Latching	Before orientation both ΔV clusters will be	
a)	ΔV Calibration	N, a, X Latcoing	of Pulses	Valves	fired in order to determine the uncertainty	

	and 7f.				•	
g)	$\Delta lpha = 5.0^{\circ}$	$\stackrel{\mathrm{P_{T}, T_{T}, T_{B1, 6, N}}}{\approx}$	$\Delta \propto$, EPW, Timing,	Fire: 1 and 6		dợ = .23° dN = .055 RPM
h)	$\Delta lpha$ Course Trim	$P_{T}, T_{T}, T_{B1, 6, N}$	$\Delta \propto \text{Trim}, \text{ EPW},$	Fire: 1 and 6		$d\alpha = .11^{\circ}$
	$\Delta \alpha = 2.5^{\circ}$	ਕ	Timing, No. of	Close Latching		dN = .027 RPM
			Pulses	Valve After Firing		
8)	Orient for 1st M/C	P _T , T _T , T _{B1,3,5,7} ,	EPW, Timing, No.	Opening Both Latching	Before orientation both ΔV clusters will be	
8)	∆V Calibration	N, a, x Latching	of Pulses	Valves	fired in order to determine the uncertainty	
	Engines 1, 3, 5, 7	Valve Status	Post Firing	Fire: 1,3,5,7	in the C.G. location relative to the thrust	
		Post Firing	$\Delta N, \Delta \overline{\alpha}, \Delta \overline{x}, \Delta \overline{V}$		vector. (r_{ex} and r_{ey}). It is assumed that	
		N, x, x	reac, renc, rea,		the C. G. location is known within $\pm 10^{\circ}$	
			ren		to it for this fuel loading and the thrustons	
					will be modulated to put the thrust vector	
	지방 그는 감독의 소문한 것입				through the calculated C. G.	
11	AT Cellbration	P- Tro Tro C a N	EPW, Timing, No.	Fire: 2.4.6.8		
u)	Engines 2 4 6 8	Post Firing	of Pulses			
	TaiPinco ~, x, o, o	N T	Doct Firing		the state of the s	
	철종 관람과 말한 것	Π, Ο Γ, Δ	AN A C AT AV			
			reac, renc, reac,			
ŝ	$\Lambda \alpha' = 9^{\circ}$ Orient for	Pr. Tr. Tr.o = N	$\Delta \alpha$, EPW, Timing,	Fire: 2 and 5		$d\alpha = .41^{\circ}$
~/	lat M/C	$\overline{\alpha}, \overline{x}$	No. of Pulses			dN = .098 RPM
d)	$\Delta \alpha = 1^{\circ}$ Trim	$P_{T}, T_{T}, T_{B2,5}, N,$	$\Delta \alpha$, EPW, Timing,	Fire: 2 and 5		$d\alpha = .096^{\circ}$
	Orientation for 1st m/c	, x ,	No. of Pulses			dN = .0109 RPM
9)	1st Midcourse Correc-	Pm. Tm. Tm1 2 5 7	EPW, Timing, No.	Fire: 1,3,5,7	Engines 1, 3, 5, 7 will be used for first part	dV = 3.0 m/sec
a)	tion $\Delta V = 50 \text{ m/sec}$	$N, \overline{\alpha}, \overline{x}$	of Pulses		of maneuver.	$d\alpha = 1.26^{\circ}$
						dN = .157 RPM
b)	Spin Control	$P_{T}, T_{T}, T_{B1,2,3,4}$	ΔN, T _{on} if	Fire: 1 and 4 or	In order to keep the spin speed within limits	
	$\Delta N = \pm 0157 \text{ RPM}$	N	Necessary	2 and 3	at the end of the maneuver it will be trimmed	
c)	$\Delta V = 50 \text{ m/sec}$	PT, TT, TB2, 4, 6, 8	$\Delta \overline{V}$, EPW, Timing,	Fire: 2,4,6,8	here.	dV = 3.0 m/sec
		N	No. of Pulses taking		Engines 2, 4, 6, 8 will be used for second part.	$d \mathbf{\alpha} = 1.26^{\circ}$
			into Account C. G.			dN = .157 RPM
	ATT - 0.0 - /		AV FDW Timing	Fire: 2468	- · · · · · · · · · · · · · · · · · · ·	dV = .48 m/sec % Error = .44%
a)	$\Delta V = 0.0 \text{ m/sec}$	$P_{T, 1T, 1B^{2}, 4, 6, 8}$	No of Pulses	THE. 2,4,0,0		$d \propto = .20^{\circ}$
		N, G, A				dN = .025 RPM
			A C FDW Timing	Fire: 2 and 5	This maneuver will be done in three steps.	$d \propto = 1.25^{\circ}$
10)	Reorient for Cruise	PT, T, B2, 5, N	No. of Pulses	THU. Dunu b		dN = .30 RPM
a)	$\Delta \mathbf{w} = 27.5$	α, x	AN Ton if	Fire: 1 and 4 or	Trimming accumulated spin errors.	dN = .019 RPM
DJ	AN - 10 - 2 DDM	P_{T} , 1_{T} , $1_{b1,2,3,4}$	Necessary	2 and 3		
	$\Delta n' = 20^{\circ}$		$\Delta \alpha$ Trim. EPW.	Fire: 2 and 5	-	$d\alpha' = .90^{\circ}$
U)	448 TA 177 HV	T, T, B2,5,N	Timing, No. of			dN = .22 RPM
			Pulses	The Dord F	n an an tha sector and the sector of the sec	$d\alpha = .11^{\circ}$
d)	$\Delta \propto \text{Course Trim}$	P _T , T _T , T _{B2, 5} , N	∆ ¢Trim, EPW,	Fire: 2 and 5		dN = .027 RPM
	$\Delta \alpha = 2.5$	à	Timing, No. 01	After Firing		
	전 경험 주요 알 알		Puises	when humb		
				1		I

FOLDOUT FRAME SP 07R70-F

.

F

TABLE 5.4-II (CONTINUED) <u>FLIGHT OPERATIONS CHART - PROBE MISSION</u> <u>SYSTEM: I (P-5/FS-2)</u>

Hamilton Standard

FOLDOUT FRAME

1.

.

EVENT	DATA REQUIRED FROM VEHICLE	GROUND COMPUTATION	DA TA (COMMAND) TRANSMITTED TO VEHICLE	ASSUMPTION	ERRORS
11) Orient for 2nd M/C a) $\Delta \alpha = 18^{\circ}$	$\begin{array}{c} P_{T}, T_{T}, T_{B2, 5, N} \\ \overline{\alpha}, \overline{x}, \text{ Latching} \\ \end{array}$	Δα, EPW, Timing, No. of Pulses	Open Latching Valves Fire: 2 and 5	This maneuver will be done in two steps.	d∝ .82° dN = .20 RPM
b) $\Delta \alpha$ Course Trim $\Delta \alpha = 2^{\circ}$	$\begin{bmatrix} \mathbf{P}_{T}, \ \mathbf{T}_{T}, \ \mathbf{T}_{B2, 5}, \ \mathbf{N} \\ \overline{\alpha}, \ \overline{\mathbf{x}} \end{bmatrix}$	$\Delta \propto$ Trim, EPW, Timing, No. of Pulses	Fire: 2 and 5		$d\alpha = .098^{\circ}$ dN = .022 RPM
12) 2nd Midcourse Correc- tion a) $\Delta V = 9 \text{ m/sec}$	PT, T _T , T _{B2} , 4, 6, 8, N, A , x	$\Delta \overline{V}$, EPW, Timing, No. of Pulses	Fire: 2,4,6,8		$dV = .54 \text{ m/sec}$ $d\alpha = .23^{\circ}$ $dN = .028 \text{ RPM}$ $dV = .022 \text{ m/case}$
b) $\Delta \mathbf{V} = 1 \text{ m/sec}$	$P_{T}, T_{T}, T_{B2}, 4, 6, 8, N, \vec{\alpha}, \vec{x}$	ΔV, EPW, liming, No. of Pulses	F1re: 2, 4, 6, 8		$dv = .092 \text{ m/sec} \\ \% \text{ Error} = .92\% \\ d\alpha = .026^{\circ} \\ dN = .0031 \text{ RPM}$
13) Reorient for Cruise a) $\Delta \propto = 27.5^{\circ}$	$\begin{bmatrix} \mathbf{P}_{\mathrm{T}}, \ \mathbf{T}_{\mathrm{T}}, \ \mathbf{T}_{\mathrm{B3}}, \ 8, \mathbf{N} \\ \overline{\mathbf{\alpha}}, \ \overline{\mathbf{X}} \end{bmatrix}$	$\Delta \alpha$, EPW, Timing, No. of Pulses	Fire: 3 and 8		$dV = .031 \text{ m/sec} d\alpha = 1.25^{\circ} dN = .30 \text{ RPM}$
b) Spin Control $\Delta N = \pm 03 \text{ RPM}$ c) $\Delta \alpha' = 10^{\circ}$	$\begin{array}{c} \mathbf{P_{T}, T_{T}, T_{B1,2,3,4}}\\ \mathbf{N, \widehat{\alpha}}\\ \mathbf{P_{T}, T_{T}, T_{B3, 8}} \end{array} N$	ΔN , T _{on} if Necessary $\Delta lpha$, EPW, Timing,	Fire: 1 and 4 or 2 and 3 Fire: 3 and 8	n an an Arthree an Arthree an Arthree and Arthree and Arthree and Arthree and Arthree and Arthree and Arthree a Arthree and Arthree and Arthr Arthree and Arthree and Arth	$dN = .019 RPM$ $d\alpha = .45^{\circ}$
d) $\Delta \propto$ Course Trim $\Delta \propto = 2.5^{\circ}$	ळ, ऱ P _T , T _T , T _{B3,8} , N ळ, ऱ	No. of Pulses $\Delta \alpha$, EPW, Timing, No. of Pulses	Fire: 3 and 8 Close Latching Valves After Firing	Since the next maneuver is E-10 days off the latching valves will be closed after this maneuver.	dN = .11 RPM $d\alpha = .11^{\circ}$ dN = .027 RPM
14) Orient for 3rd M/C a) $\Delta \alpha = 1 \delta^{\circ}$	$P_{T}, T_{T}, T_{B3,8}, N$ $\overline{\alpha}, \overline{x}, Latching$	$\Delta \propto$, EPW, Timing, No. of Pulses	Open Both Latching Valves Fire: 3 and 8		$d\sigma = .82^{\circ}$ dN = .027 RPM
b) ∆⊄ Course Trim ∆⊄=2°	$\stackrel{P_{T}, T_{T}, T_{B3,8}, N}{\overline{\alpha}, \overline{x}}$	$\Delta \propto \text{Trim}$, EPW, Timing, No. of Pulses	Fire: 3 and 8		$d\alpha = .098^{\circ}$ $dN = .022 RPM$
15) 3rd Midcourse Correc- tion a) ΔV = 1 m/sec	$\begin{array}{c} \mathbf{P}_{\mathrm{T}}, \ \mathbf{T}_{\mathrm{T}}, \ \mathbf{T}_{\mathrm{B2}}, 4, 6, 8\\ \mathbf{N}, \ \overline{\boldsymbol{\alpha}}, \ \overline{\mathbf{x}} \end{array}$	$\Delta \vec{V}$, EPW, Timing, No. of Pulses taking into Account C.G. shift	Fire: 2,4,6,8		dV = .060 m/sec $d\alpha = .028$ dN = .0034 RPM
b) ΔV = 1 m/sec	$P_{T}, T_{T}, T_{B2, 4, 6, 8}$ N, $\overline{\alpha}$, \overline{x}	$\Delta \overline{V}$, EPW, Timing, No. of Pulses taking into Account C. G. Shift	Fire: 2,4,6,8		dV = .0598 m/sec $d\sigma = .028 \% \text{ Error} = 3\%$ dN = .0034 RPM

tion $M = M$, $M \in X$ [In fact and $M = M$ [In $M \in X$ [In $M \in X [In X] [In M \in X [In M \in X] [In M \in X] X] [In M \in X [In M \in X] [In M \in X] X] [In M \in X [In M \in X] X] [In M \in X] [In M \in X] X] [In M \in X] X] [In M \in X] [In M \in X] X] [In M \in X] X] [In M \in X] [In M \in X] X] [In M \in X] X] [In M \in X$		acourse correc-	PT, T' B2, 4, 6, 8	AV, EPW, Timing,	Fire;	2,4,6,8	-	av =	.060 m/sec
a) $\Delta V = 1 m/se^{2}$ b) $\Delta V = 1 m/se^{2}$ c) $\Delta V = 1 m/se^{2}$ b) $\Delta V = 1 m/se^{2}$ c) $\Delta V = 1 m/se^{2}$	tion		Ν, α, χ	No. of Pulses taking				$d\alpha =$.028
b) $\Delta Y = 1.n/secPr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. T$	a) ∆V =	1 m/sec	a an an ann an ann an an an an an an an	into Account C. G.		a an ang sana sa sa		dN =	.0034 RPM
IsN, \overline{x} , \overline{x} No. of Palses taking indo AccountsNo. \overline{x} , \overline{x} No. of Palses \overline{y} 16) Antitude Control Maintenance $\Delta x \in 19^{\circ}$ $\Delta x \in 19^{\circ}$ \overline{x} , \overline{x} No. of Palses- $\overline{dx} = .028$ $dx = .28^{\circ}$ $dx = .28^{\circ}$ 11) Oriest 30 Axis $2 Ax = 5^{\circ}$ p_1 , T_1 , $T_{25, 5, 5}$ p_2 , T_1 , $T_{25, 5, 5, 5}$ p_3 , T_1 , $T_{25, 5, 5, 5}$ p_4 , T_1 , T_1 , $T_{25, 5, 5, 5}$ $Ax , EPW, Timing,No of PalsesAx , EPW, Timing, No ofTiming, No ofAx , EPW, Timing, No ofAx , EPW, Timing, No ofTiming, No ofAx , EPW, Timing, No of PalsesAx , EPW, Timing, No of PalsesAx , EPW, Tim$	b)ΔV=_	_1_m/sec	P _T , T _T , T _{B2,4,6,8}	$\Delta \overline{V}$, EPW, Timing,	Fire:	2, 4, 6, 8		dV =	.0598 m/sec
16)Attitude Costrol Maintanae Maintanae A $\alpha = 32^{\alpha}$ Adv.FUW. Maintanae 			N, $\overline{\alpha}$, \overline{x}	No. of Pulses taking				$d\alpha = dN =$.028 % Error = 3%
16)Attitude Costral Maintonnoc $\Delta \propto r$, FT, T _{BS, B} , N $\Delta \propto r$, EW, Timing, $\Delta \propto r$, Turn, PNFire: 3 and 8-dd $\alpha = .87$ of $\alpha = .005^{\circ}$ of $\alpha = .005^{\circ}$ 				Shift					
10)10)11011011011011011011010) $\Delta v = 1^{\circ}$ P_{T} T_{T} T_{BS} P_{T} P_{T} T_{T} T_{BS} P_{T} P_{T} T_{T} T_{BS} P_{T} P_{T} T_{T} P_{T} P_{T} T_{T} P_{T} T_{T} P_{T} <	101 1011	. Contuct	10. (T	A & FDW Timing	Fire	3 and 8		dø =	. 82°
$0)$ $\Delta A \ll 18^{\circ}$ $b)$ $\Delta \Delta \ll 2^{\circ}$ T_{T} , T_{T} , T_{155m} , T_{N} \overline{C} $\Delta \alpha$, $Trim, EPW$, T_{ming} , N_{N} , of Pulses $\Delta \alpha$, $Trim, EPW$, T_{ming} , N_{N} , of Pulses $\Delta \alpha$, $Trim, EPW$, T_{ming} , N_{N} , of Pulses $\Delta \alpha$, $Trim, EPW$, T_{ming} , N_{N} , of P_{ming} , N_{N} , T_{N}	Mainte	mance	T, 1T, 1B3, 811	No. of Pulses	1	U and U		dN =	.2 RPM
b) $\Delta x \in 2^{r}$ $\Delta x = 2^{r}$ Δ	a) ∆9⁄=	18°	이 물건을 통하는 것					105	00.00
IndicationPulsesPulsesThis maneuver will be done in four $\Delta < \infty$ Z 17) Orient Spin Axis Parallelo Relighted $\mathcal{P}_{T}, T_{T}, T_{B4, 7}, N$ $\Delta < \Sigma$ $\Delta < \Sigma^{W}, Timing, No. of Pulses$	b) $\Delta \alpha' Co$	ourse Trim	P_{T}, T_{T}, T_{B3m}, N	$\Delta \alpha$, Irim, EPW, Timing, No. of	Fire:	3 and 8		dM = dN =	.022 RPM
17)Ordent Spin Axis Parallel to Ecliptic and $X = 7.5^{\circ}$ (b) Spin Control AN = 40 - 3 RPM $\Delta \alpha < r, T_{12}, T_{13}, T_{13}$	4~ -	"		Pulses					
17)17)17:17:19:17:17:19:17:1	1m Out-at	Outo Arria	р_ — Т. Т. N	AC FDW Timing	Fire	4 and 7	This maneuver will be done in four $\Delta \propto$	dV =	.015 m/sec
a) $\Delta \approx 27, 5^{\circ}$ $\Delta N, T_{0n}$ if NecessaryFire: 2 and 5 or 3 and 8 $dN = .03 \text{ RPM}$ b)Spin Control $\Delta N = 403 \text{ RPM}$ $P_T, T_T, T_{B2}, 5, 8$ $\Delta R = 5^{\circ}$ $\Delta N, T_{0n}$ if NecessaryFire: 4 and 7-c) $\Delta \propto = 5^{\circ}$ $P_T, T_T, T_{B4}, 7, N$ $\Delta \propto = 2, 5^{\circ}$ $\Delta \propto, EPW, Timing, No. ofTiming, No. of PalaesFire: 4 and 7-d)\Delta \approx 27.5^{\circ}\Delta_{\pi}, T_T, T_{B4}, 7, N\Delta \propto, EPW, Timing, No. ofPulses\Delta \alpha = 27.5^{\circ}\Delta \alpha = 27.5^{\circ}d)\Delta \approx 27.5^{\circ}\Delta_{\pi}, T_T, T_{B1}, 6, N\Lambda, \overline{\alpha} \in 27.5^{\circ}\Delta \alpha, FPW, Timing, No. ofPulsesFire: 4 and 7-d)\Delta = 27.5^{\circ}\Delta_{\pi}, T_T, T_{B1}, 6, N\Lambda, \overline{\alpha} \in PD, T_T, T_{B1}, 6, N\Lambda \propto \in FPW, Timing, No. ofPulsesFire: 6 and 7 orTiming, No. of Pulses-d)\Delta = 2.5^{\circ}\Delta_{\pi}, T_{TT}, T_{B1}, 6, N\Lambda, \overline{\alpha} \in PD, T_T, T_{B1}, 6, N\Lambda, \overline{\alpha} \in FPW, Timing, No. ofPulsesFire: 1 and 6-d)\Delta = 2.5^{\circ}\Delta_{\pi}, FPW, Timing, N, \overline{\alpha}Fire: 1 and 6d)\Delta = 2.5^{\circ}\Delta \sim, FPW, Timing, N, \overline{\alpha}Fire: 1 and 6d)\Delta \ll = 2.5^{\circ}\Delta \sim, FPW, Timing, No. of Pulsesd)Separate Maxi Probed)\Delta \ll = 2.5^{\circ}\Delta \sim, FPW, Timing, No. of Pulsesd)\Delta \ll = 2.5^{\circ}\Delta \sim, EPW, Timing, No. of Pulsesd)\Delta \ll = 2.5^{\circ}\Delta \sim, FPW, Timing, No. of Pul$	Paralle	el to Ecliptic	\vec{x} , \vec{x} B4, 7, \vec{x}	No. of Pulses	1.110,	Tund	steps.	do(=	1.25°
b) Spin Control $\Delta N = 40 - 3 RPM$ Repeat two times for Events 176), 176), and 170, $(g) \Delta \alpha = 5^{\circ}$ $P_{T}, T_{T}, T_{B4}, 7, N$ $\Delta \alpha, EPW, Timing, No. of Parts 2, 5^{\circ}$ $P_{T}, T_{T}, T_{B4}, 7, N$ $\Delta \alpha, EPW, Timing, PES, Tries 4 and 7$ $\Delta \alpha = 2, 5^{\circ}$ $A \propto 2, 5^{\circ}$ $P_{T}, T_{T}, T_{B4}, 7, N$ $\Delta \alpha, EPW, Timing, No. of Palses No$	a) ∆∝ =	27.5°		A 37 m 14	-			dN =	.30 RPM
Repeat two limes for Perents 1r(s), 170), (179), and 171). P_{T} , T_{T} , T_{B4} , τ_{1} , N $\overrightarrow{\alpha}$, $\overrightarrow{\alpha}$ $\Delta \alpha'$, EPW , $Timing$, No. of PulsesFire: 4 and 7- $d\alpha' = .055$ RPM $d\alpha' = .12"$ h) $\Delta \alpha'$ Course Trim $\Delta \alpha' = 2, 5"$ $\overrightarrow{\alpha}$, \overrightarrow{x} $\overrightarrow{\alpha}$, T_{TT} , T_{B4} , τ_{1} , N $\overrightarrow{\alpha}$, \overrightarrow{x} $\Delta \alpha'$, EPW , $Timing$, No. of PulsesFire: 4 and 7- $d\alpha' = .12"$ 18) Retarget Maxi Probe $0 \Delta = -2, 5"$ $\overrightarrow{\alpha}$, T_{T} , $T_{B1}, 6, N$ $\overrightarrow{\alpha}$, \overrightarrow{x} $\Delta \alpha'$, EPW , $Timing$, No. of PulsesFire: 1 and 6- $d\alpha' = .12"$ 19) Spin Control $\Delta \alpha' = 2, 5"$ $\overrightarrow{\alpha}'$, T_{T} , $T_{B1}, 6, N$ $\overrightarrow{\alpha}'$, \overrightarrow{x}' $\Delta \alpha''$, EPW , $Timing$, No. of PulsesFire: 1 and 6- $d\alpha'' = .09$ RPM19) Separate Maxi Probe (10) $\Delta \alpha''$ Course Trim $\Delta \alpha'' = 2, 5"$ $\Delta \alpha''$, EPW , $Timing$, N, α'' Fire: 1 and 6- $d\alpha'' = .41"$ 10) Separate Maxi Probe20) Attitude Control $\Delta \alpha'' = 2, 5"$ $\Delta \alpha''$, EPW , $Timing$, N'' , α'' , \overline{x}'''' $\Delta \alpha''$, EPW , $Timing$, No. of PulsesFire: 2 and 5-21) Retarget Mini-Probe $\Delta \alpha'' = 4''$ $\Delta \alpha''$, EPW , $Timing$, No. of PulsesFire: 1,3,5,7- $d\alpha'' = .00^{*}$ 21) Metarget Mini-Probe $\Delta \alpha'' = 1M/8$ $\nabla_{\alpha'}$, \overline{x}'' $\Delta n''$, EPW , $Timing,No. of PulsesFire: 1,3,5,7-d\alpha'' = .0074 RPM21) Hetarget Mini-ProbeA'' = 1M/8\nabla_{\alpha'}, \overline{x}''\Delta n'', EPW, Timing,No. of PulsesFire: 1,3,5,7-d\alpha'' = .0074 RPMb) \Delta V =$	b) Spin Co ∧N ≕	+0 - 3 RPM	$P_{T}, T_{T}, T_{B2,3,5,8}$	Δ N, T_{on} II Necessary	Fire:	2 and 5 or 3 and 8		un	. ULS RPM
Repeat two times for Events 170, 170, 170, and 170, 19, and 170, 19, $\Delta \propto = 5^{\circ}$ Pr. Tr. TB4, 7, N $\Delta \propto = 2, 5^{\circ}$ $\Delta \propto , EPW, Timing, No. of PulsesFire: 4 and 7-d\alpha = .055 RPMb) \Delta \propto Course Trim\Delta \propto = 2, 5^{\circ}Pr. Tr. TB4, 7, N\propto , \pi\Delta \propto , EPW, Timing, Pire: 4 and 7-d\alpha = .11^{\circ}18) Retarget Maxi Probe3) \Delta = 27, 5^{\circ}Pr. Tr. TB1, 6, N\Delta \propto , 5PW, Timing, No. of PulsesNo. of Pulses-d\alpha = .15^{\circ}18) Retarget Maxi Probe3) A = 27, 5^{\circ}Pr. Tr. TB5, 6, 7, 8N, \alpha \propto + 20No. of Pulses-d\alpha = .15^{\circ}18) Retarget Maxi Probe\Delta N = 40 - 3 RPMPr. Tr. TB5, 6, 7, 8N, \alpha \propto + 20^{\circ}No. of Pulses-d\alpha = .15^{\circ}19) Spin Contol\Delta \alpha < , = 10^{\circ}Pr. Tr. TB1, 6, N\alpha \propto + 25^{\circ}No. of Pulses19) Separate Maxi Probe\Delta \Delta \propto = 9^{\circ}19) Separate Maxi Probe\Delta \Delta \propto = 9^{\circ}Pr. Tr. Tg2, 5, N\alpha \propto \pi \propto + 25^{\circ}\Delta \alpha , EPW, Timing, No. of Pulses10) \Delta \alpha < = 9^{\circ}Pr. Tr. Tg3, 5, N\alpha \propto \pi \propto + 25^{\circ}\Delta \alpha , EPW, Timing, No. of Pulses10) Separate Maxi Probe\Delta \Delta \propto = 9^{\circ}10) \Delta \alpha < = 9^{\circ}10) \Delta \alpha = 9^{\circ}10) \Delta \alpha = 9^{\circ}-$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Repeat	two times for			gan di Barri Kanalar				
g) $\Delta \alpha' = 5^{\circ}$ Pr. Tr. T. B4, 7, N $\Delta \alpha', EPW$, Timing, No. of PlacesFire: 4 and 7-d $\alpha' = .055 RPM$ b) $\Delta \alpha' Course Trim\Delta \alpha' = 2.5^{\circ}Pr. Tr. T. B4, 7, N\overline{\alpha'}, \overline{\overline{\alpha'}}\Delta \alpha' Trim, EPS,Timing, No. ofPlacesFire: 4 and 7-d\alpha' = .11^{\circ}18) Retarget Maxi Probe\Delta \alpha =3 RPMPr. Tr. T. B1, 6, N\overline{\alpha'}, \overline{\alpha'}\Delta \alpha', EPW, Timing,No. of PlacesFire: 1 and 6-d\alpha' = .12^{\circ}19) Spin Control\Delta \alpha =3 RPMPr. Tr. T. B5, 6, 7, 8\overline{\alpha'}, \overline{\alpha'}\Delta \alpha', EPW, Timing,No. of PlacesFire: 6 and 7 or5 and 8d\alpha' = .018 RPM19) Separate Maxi Probe\alpha' = 2.5^{\circ}Pr. Tr. T. B1, 6, N\overline{\alpha'}, \overline{x'}\Delta \alpha', EPW, Timing,No. of PlacesFire: 2 and 520) Attitude ControlManeaverPr. Tr. T. B2, 5, N\overline{\alpha'}, \overline{x'}\Delta \alpha', EPW, Timing,No. of PlacesFire: 2 and 521) Retarget Mini-2robea) \Delta \alpha' = 1M/SPr. Tr. T. B1, 3, 5, 7\Delta \alpha', EPW, Timing,No. of PlacesFire: 1, 3, 5, 7-d\alpha' = .10^{\circ}b) \Delta V = 1 M/SPr. Tr. T. B1, 3, 5, 7\Delta \alpha', EPW, Timing,No. of PlacesFire: 1, 3, 5, 7-d\alpha' = .019 RPMb) \Delta V = 1 M/SPr. Tr. T. B1, 3, 5, 7\Delta \alpha', EPW, Timing,No. of Places takinginto Account C. G.Fire: 1, 3, 5, 7-d\alpha' = .10^{\circ}b) \Delta V = 1 M/SPr. Tr. T. B1, 3, 5, 7\Delta \alpha', EPW, Timing,No. of Places takinginto Account C. G.Fire: 1, 3, 5, 7-d\alpha' = .0108 RPMPr$	Lvents 17e), a	ind 17f).							
b) $\Delta \propto \operatorname{Course Trim}_{\Delta \propto} = 2.5^{\circ}$ b) $\Delta \propto \operatorname{Toir}_{11}$ Tr. TB4, 7, N $\alpha \propto \operatorname{Trim}_{11}$ Res. a) $\Delta = 27.5^{\circ}$ b) Spin Control $\Delta \propto = 2.5^{\circ}$ c) $\Delta \alpha = 2.5^{\circ}$ b) Spin Control $\Delta \propto = 2.5^{\circ}$ c) $\Delta \alpha = 2.5^{$	g) ∆∝ =	5°	P_{T} , T_{T} , T_{B4} , 7, N	$\Delta \propto$, EPW, Timing,	Fire:	4 and 7		$d \propto d N =$.23° 055 RPM
$ \Delta \propto = 2.5^{\circ} \qquad \begin{bmatrix} 1 & 2 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	h) Δ∝ Coι	urse Trim	α Ρ _T . T _T . T _{B4} 7 N	AC Trim FPS	Fire	4 and 7	n an	d¢ =	. 11°
16)Retarget Maxi Probe (a) $\Delta = 27.5^{\circ}$ $P_{T}, T_{T}, T_{B1, 6, 1N}$ $\Delta \alpha$, EPW, Timing, No. of PulsesFire: 1 and 6 $ d\alpha = 1.25^{\circ}$ 16)Spin Control $\Delta \alpha , = 10^{\circ}$ $P_{T}, T_{T}, T_{B5, 6, 7, 8}$ $N, \overline{\alpha}$ No. of PulsesFire: 6 and 7 or $5 and 8$ $ d\alpha = .019 RPM$ 16) $\Delta \alpha , = 10^{\circ}$ $P_{T}, T_{T}, T_{B1, 6, N}$ $\Delta \alpha , = 10^{\circ}$ $\Delta \alpha , Tim, EPW$, $Timing, No. of PulsesFire: 1 and 6 d\alpha = .45^{\circ}d\alpha = .109 RPM17)\Delta \alpha , Course Trim\Delta \alpha ' = 2.5^{\circ}P_{T}, T_{T}, T_{B1, 6, N}\alpha ', \overline{x}\Delta \alpha'', Tim, FPW,Timing, No. of PulsesFire: 1 and 6 d\alpha = .45^{\circ}d\alpha = .109 RPM19)Separate Maxi Probe -20)Attitude ControlMaintenancea \ \Delta \alpha = 9^{\circ}P_{T}, T_{T}, T_{B2, 5, N}\Delta (\alpha , EPW, Timing,No. of PulsesFire: 2 and 5 d\alpha = .10^{\circ}d\alpha = .10^{\circ}dn = .010 RPM21)Retarget Mini-2robea \ \Delta \alpha = 9^{\circ}P_{T}, T_{T}, T_{B1, 3, 5, 7}\Delta \alpha', EPW, Timing,No. of PulsesFire: 1,3, 5, 7 dx = .00^{\circ}dn = .0109 RPM21)Retarget Mini-2robea \ \Delta V = 4 m/secP_{T}, T_{T}, T_{B1, 3, 5, 7}\Delta \overline{\alpha}, EPW, Timing,No. of Pulses takinginto Account C. G.ShiftFire: 1,3, 5, 7 dv = .007 RPMb)\Delta V = 1 M/SP_{T}, T_{T}, T_{B1, 3, 5, 7}\Delta \overline{\alpha}, \overline{\Sigma}PW, Timing,No. of Pulses takinginto Account C. G.ShiftFire: 1,3, 5, 7 dv = .007 RPMb)\Delta$	$\Delta \alpha = 2$	2.5°		Timing, No. of Pulses	1	T und		dN =	.027 RPM
b) Spin Control $\Delta N = \pm 0.3 \text{ RPM}$ $\alpha N = -0.19 \text{ RPM}$ $\alpha Z = -45^{\circ}$ $\alpha N = -0.19 \text{ RPM}$ $\alpha Z = -45^{\circ}$ $\alpha N = -0.19 \text{ RPM}$ $\alpha Z = -45^{\circ}$ $\alpha Z = -10^{\circ}$ $\alpha Z = 2.5^{\circ}$ $\alpha Z = 2.5^{\circ}$ $\alpha Z = 2.5^{\circ}$ $\alpha Z = 2.5^{\circ}$ $\alpha Z = -25^{\circ}$ $\alpha Z = -25^{\circ$	18) Retargentiation (Retargentiation) (A) Δ =	et Maxi Probe 27.5°	$\frac{\mathbf{P_{T}}}{\boldsymbol{\alpha}}, \mathbf{T_{T}}, \mathbf{T_{B1}}, \boldsymbol{6}, \mathbf{N}$	$\Delta \alpha$, EPW, Timing, No. of Pulses	Fire:	1 and 6	landa - Elizabethi and anna anna anna anna anna anna anna	$d\alpha = dN =$	1.25° .30 RPM
c) $\Delta \alpha$, = 10° p_T^{-} , T _T , T _{B1,6} , N $\Delta \alpha$, EPW, Timing, No. of Pulses' d) $\Delta \alpha$ Course Trim $\Delta \alpha = 2.5^{\circ}$ 19) Separate Maxi Probe 19) Separate Maxi Probe 19) Separate Maxi Probe 19) p_T , T _T , T _{B2,5} , N $\Delta \alpha$, EPW, Timing, No. of Pulses 19) $\Delta \alpha = 9^{\circ}$ b) $\Delta \alpha = 9^{\circ}$ b) $\Delta \alpha = 1^{\circ}$ Trim Maneuver 21) Retarget Mini-Probe a) $\Delta \alpha = 4$ b) $\Delta V = 1$ M/S PT, T _T , T _{B1,3,5,7} No. of Pulses taking into Account C. G. Shift $\Delta \alpha$, EPW, Timing, No. of Pulses taking into Account C. G. Shift $\Delta \alpha$, EPW, Timing, No. of Pulses taking into Account C. G. Shift $\Delta \alpha$, \overline{x} PT, T _T , T _{B1,3,5,7} $\Delta \alpha$, \overline{x} $\Delta \alpha$, \overline{x}	b) Spin Co $\Delta N =$	entrol ±03 RPM	$P_{T, T_{T}, T_{B5, 6, 7, 8}}$	Δ N , T _{on} if Necessary	Fire:	6 and 7 or 5 and 8	요즘 이는 문제에서 물건을	dN =	.019 RPM
α	c) ∆α,	= 10°	P _T , T _T , T _{B1,6} , N	$\Delta \propto$, EPW, Timing,	Fire:	1 and 6		$d\alpha = dN =$. 45° 109 RPM
$\Delta \alpha = 2, 5^{\circ}$ $\overrightarrow{\alpha}, \overrightarrow{x}$ Timing, No. of PulsesTiming, No. of Pulses $dN = .027 \text{ RPM}$ 19) Separate Maxi Probe20) Attitude Control Maintenance a) $\Delta \alpha = 9^{\circ}$ PT, TT, TB2, 5, N $\overrightarrow{\alpha}, \overrightarrow{x}$ $\Delta \alpha$, EPW, Timing, No. of PulsesFire: 2 and 5- $d\alpha = .41^{\circ}$ $dN = .10 \text{ RPM}$ 20) Attitude Control Maintenance a) $\Delta \alpha = 9^{\circ}$ PT, TT, TB2, 5, N $\overrightarrow{\alpha}, \overrightarrow{x}$ $\Delta \alpha$, EPW, Timing, No. of PulsesFire: 2 and 5- $d\alpha = .10^{\circ}$ $dN = .0109 RPM21) Retarget Mini-Probea) \Delta V = 4 \text{ m/sec}PT, TT, TB1, 3, 5, 7N \overrightarrow{\alpha}, \overrightarrow{x}\Delta \overrightarrow{V}, EPW, Timing,No. of Pulses takinginto Account C. G.ShiftFire: 1, 3, 5, 7-dV = .24 \text{ m/sec}dN = .0074 \text{ RPM}b) \Delta V = 1 \text{ M/S}PT, TT, TB1, 3, 5, 7N, \overrightarrow{\alpha}, \overrightarrow{x}No. of Pulses takinginto Account C. G.ShiftFire: 1, 3, 5, 7-dV = .074 m/sec \% Error = 1.4 M/S^{\circ} M^{\circ} M$	d) ∆∝Co	urse Trim	α Ρτ. Ττ. Τ _{Β1 6} Ν	$\Delta \propto \text{Trim}, \text{ EPW},$	Fire:	1 and 6	$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2}$	døx =	, 11°
19) Separate Maxi Probe-Puises20) Attitude Control Maintenance a) $\Delta \alpha = 9^{\circ}$ b) $\Delta \alpha = 1^{\circ}$ Trim ManeuverPT, TT, TB2,5, N $\overline{\alpha}, \overline{x}$ $\Delta \alpha$, EPW, Timing, No. of PulsesFire: 2 and 5- $d\alpha = .41^{\circ}$ dN = .10 RPM21) Retarget Mini-Probe a) $\Delta V = 4$ m/secPT, TT, TB1,3,5,7 N $\overline{\alpha}, \overline{x}$ $\Delta \overline{V}$, EPW, Timing, No. of PulsesFire: 1,3,5,7- $d\alpha = .10^{\circ}$ dN = .0109 RPM21) Retarget Mini-Probe b) $\Delta V = 4$ m/secPT, TT, TB1,3,5,7 N $\overline{\alpha}, \overline{x}$ $\Delta \overline{V}$, EPW, Timing, No. of Pulses taking into Account C. G. ShiftFire: 1,3,5,7 No. of Pulses taking into Account C. G $dV = .24$ m/sec dX = .0074 RPMb) $\Delta V = 1$ M/SPT, TT, TB1,3,5,7 N, $\overline{\alpha}, \overline{x}$ $\Delta \overline{V}$, EPW, Timing, No. of Pulses taking into Account C. G. ShiftFire: 1,3,5,7 No. of Pulses taking into Account C. G. Shift- $dV = .074$ m/sec % Error = 1.4 dX = .0148° dN = .00184 RPM	Δα =	2.5°	$\overline{\alpha}, \overline{\mathbf{x}}$	Timing, No. of				dN =	.027 RPM
20) Attitude Control Maintenance a) $\Delta \alpha = 9^{\circ}$ b) $\Delta \alpha = 1^{\circ}$ Trim ManeuverPr. Tr. TB2.5. N $\overline{\alpha}, \overline{x}$ $\Delta \alpha$, EPW, Timing, No. of PulsesFire: 2 and 5- $d\alpha = .41^{\circ}$ dN = .10 RPM21) Retarget Mini-Probe a) $\Delta V = 4$ m/secPr. Tr. TB1.3.5.7 N $\overline{\alpha}, \overline{x}$ $\Delta \alpha', EPW, Timing,No. of PulsesFire: 2 and 5-d\alpha = .10^{\circ}dN = .0109 RPM21) Retarget Mini-Probea) \Delta V = 4 m/secPr. Tr. TB1.3.5.7N \overline{\alpha}, \overline{x}\Delta \overline{V}, EPW, Timing,No. of Pulses takinginto Account C. G.ShiftFire: 1,3.5.7No. of Pulses takinginto Account C. G.$	19) Separat	te Maxi Probe		Puises		_			-
20) Attitude Control Maintenance a) $\Delta \alpha = 9^{\circ}$ b) $\Delta \alpha = 1^{\circ}$ Trim Maneuver $\Delta \alpha$, EPW, Timing, No. of PulsesFire: 2 and 5-a) $\Delta \alpha = 9^{\circ}$ b) $\Delta \alpha = 1^{\circ}$ Trim Maneuver $\overline{\alpha}, \overline{\overline{x}}$ No. of Pulses- $d\alpha = .10^{\circ}$ dN = .0109 RPM21) Retarget Mini-Probe a) $\Delta V = 4 \text{ m/sec}$ PT, TT, TB1,3,5,7 N $\overline{\alpha}, \overline{\overline{x}}$ $\Delta \overline{\nabla}, EPW, Timing,No. of PulsesFire: 1,3,5,7No. of Pulsesd\alpha = .10^{\circ}dN = .0109 RPM21) Retarget Mini-Probea) \Delta V = 4 \text{ m/sec}PT, TT, TB1,3,5,7N, \overline{\alpha}, \overline{\overline{x}}\Delta \overline{V}, EPW, Timing,No. of Pulses takinginto Account C. G.ShiftFire: 1,3,5,7No. of Pulses takinginto Account C. G.ShiftFire: 1,3,5,7No. of Pulses takinginto Account C. G.Shift-dV = .074 \text{ m/sec} \% \text{ Error } = 1.4id\alpha = .0148^{\circ}dN = .00184 RPM$					· · · · · · · · ·			- 46	<i>4</i> 10
a) $\Delta \alpha = 1^{\circ}$ Trim ManeuverPT, TT, TB2,5, N $\overline{\alpha}, \overline{x}$ $\Delta \alpha'$, EPW, Timing, No. of PulsesFire: 2 and 5-21) Retarget Mini-Probe a) $\Delta V = 4 \text{ m/sec}$ PT, TT, TB1,3,5,7 N $\overline{\alpha}, \overline{x}$ $\Delta \overline{V}, EPW, Timing,No. of Pulses takinginto Account C. G.ShiftFire: 1,3,5,7-d\alpha = .10^{\circ}dN = .0109 RPMb) \Delta V = 1 \text{ M/S}PT, TT, TB1,3,5,7N, \overline{\alpha}, \overline{x}\Delta \overline{V}, EPW, Timing,No. of Pulses takinginto Account C. G.ShiftFire: 1,3,5,7Fire: 1,3,5,7-d\alpha = .10^{\circ}dN = .0109 RPMb) \Delta V = 1 \text{ M/S}PT, TT, TB1,3,5,7N, \overline{\alpha}, \overline{x}\Delta \overline{V}, EPW, Timing,No. of Pulses takinginto Account C. G.No. of Pulses takinginto Account C. G.Fire: 1,3,5,7Fire: 1,3,5,7-dV = .074 m/sec % Error = 1.44d\alpha = .0148^{\circ}dN = .00184 RPMNo. 0184 RPM$	20) Attitude Mainter	e Control nance oº	$\frac{\mathbf{P}_{\mathrm{T}}, \ \mathbf{T}_{\mathrm{T}}, \ \mathbf{T}_{\mathrm{B2}, 5}, \ \mathrm{N}}{\overline{\alpha}, \overline{\mathbf{x}}}$	$\Delta \propto$, EPW, Timing, No. of Pulses	Fire:	2 and 5	n an tha ann an Albert a <mark>Theannan an an an an ann an an an an an an </mark>	dN =	. 10 RPM
Maneuver $\overrightarrow{\alpha}$, \overrightarrow{x} No. of Pulses $dN = .0109 \text{ RPM}$ 21) Retarget Mini-Probe a) $\Delta V = 4 \text{ m/sec}$ PT, TT, TB1,3,5,7 N $\overrightarrow{\alpha}$, \overrightarrow{x} No. of Pulses $\overrightarrow{\Delta V}$, EPW, Timing, No. of Pulses taking into Account C, G. ShiftFire: 1,3,5,7 Fire: 1,3,5,7- $dN = .0109 \text{ RPM}$ b) $\Delta V = 1 \text{ M/S}$ PT, TT, TB1,3,5,7 N, $\overrightarrow{\alpha}$, \overrightarrow{x} Fire: 1,3,5,7 A \overrightarrow{V} , EPW, Timing, No. of Pulses taking into Account C, G. ShiftFire: 1,3,5,7 Fire: 1,3,5,7- $dN = .0109 \text{ RPM}$ b) $\Delta V = 1 \text{ M/S}$ PT, TT, TB1,3,5,7 N, $\overrightarrow{\alpha}$, \overrightarrow{x} No. of Pulses taking into Account C, G. No. of Pulses taking into Account C, G.Fire: 1,3,5,7 Fire: 1,3,5,7-dV = .074 m/sec % Error = 1.44 d $\alpha = .0148^{\circ}$ dN = .00184 RPMNo. 0184 RPM	b) $\Delta \alpha = 1$	s l° Trim	P _T , T _T , T _{B2.5} , N	$\Delta lpha$, EPW, Timing,	Fire:	2 and 5	na Rhanna an <mark>F</mark> hlan an Anna Anna	dø. =	. 10°
21) Retarget Mini-Probe a) $\Delta V = 4 \text{ m/sec}$ PT, TT, TB1,3,5,7 N $\overrightarrow{\alpha}$, \overrightarrow{x} $\Delta \overrightarrow{V}$, EPW, Timing, No. of Pulses taking into Account C. G. Shift $\Delta \overrightarrow{V}$, EPW, Timing, N, $\overrightarrow{\alpha}$, \overrightarrow{x} Fire: 1,3,5,7 Fire: 1,3,5,7- $dV = .24 \text{ m/sec}$ $d\alpha = .059°dN = .0074 RPMb) \Delta V = 1 \text{ M/S}PT, TT, TB1,3,5,7N, \overrightarrow{\alpha}, \overrightarrow{x}\Delta \overrightarrow{V}, EPW, Timing,No. of Pulses takinginto Account C. G.No. of Pulses takinginto Account C. G.Fire: 1,3,5,7Fire: 1,3,5,7-dV = .074 m/sec % Error = 1.44d \alpha = .0148°into Account C. G.Fire: 1,3,5,7No. of Pulses takinginto Account C. G$	Maneuv	ver	₹, x	No. of Pulses				dN =	.0109 RPM
a) $\Delta V = 4 \text{ m/sec}$ b) $\Delta V = 1 \text{ M/S}$ N $\overline{\alpha}$, \overline{x} No. of Pulses taking into Account C. G. Shift $\Delta \overline{V}$, EPW, Timing, N, $\overline{\alpha}$, \overline{x} No. of Pulses taking into Account C. G. Shift $\Delta \overline{V}$, EPW, Timing, No. of Pulses taking into Account C. G. No. of Pulses taking into Account C. G.	21) Retarg	et Mini-Probe	P _T , T _T , T _{B1.3.5.7}	$\Delta \overline{V}$, EPW, Timing,	Fire:	1,3,5,7	사람이 가지 수가 하는 것이 하는 것이다.	dV =	.24 m/sec
b) $\Delta V = 1 \text{ M/S}$ $V = 1 \text{ M/S}$ $P_T, T_T, T_{B1,3,5,7}$ $N, \overline{\alpha}, \overline{x}$ V $P_T, T_T, T_{B1,3,5,7}$ $\overline{\Delta V}, EPW, Timing, Fire: 1,3,5,7$ V $\Delta V = .074 \text{ m/sec \% Error = 1.4}$ $d\alpha = .0148^{\circ}$ $d\alpha = .0148^{\circ}$ $dN = .00184 \text{ RPM}$	a) ΔV =	4 m/sec	N & , X	No. of Pulses taking into Account C, G.				$d\alpha = dN =$.059 ⁵ .0074 RPM
$\frac{d\alpha}{N, \alpha} = \frac{0.0148^{\circ}}{N, \alpha}$ No. of Pulses taking into Account C. G. $\frac{d\alpha}{N} = \frac{0.0148^{\circ}}{0.00184 \text{ RPM}}$	b) ΔV =	1 M/S		Shift $\Delta \overline{V}$, EPW, Timing.	Fire:	1.3.5.7	en al de la companya de la companya Esta de la companya d	dV =	.074 m/sec % Error = 1.48
and a set and a set of the set of			$N, \overline{\alpha}, \overline{X}$	No. of Pulses taking into Account C.G. Shift				d∝= dN=	.0148° .00184 RPM
가슴해 있는 것 같은 사람들에 있는 것 같은 것 같은 것은 것은 것을 하는 것을 하는 것을 가지 않는 것이다. 것은	an anns an 1943 An Stainne Al An								

Ŷ.

FOLDOUT FRAME

SP 07R70-F

TABLE 5. 4-II (CONTINUED)FLIGHT OPERATIONS CHART - PROBE MISSIONSYSTEM: I (P-5/FS-2)

1

.

EVENTS	DATA REQUIRED FROM VEHICLE	GROUND COMPUTATION	DATA (COMMAND) TRANSMITTED TO VEHICLE	ASSUMPTIONS	ERRORS
22) Attitude Control Maintenance a) $\Delta \alpha = 18^{\circ}$	$\begin{array}{c} \mathbf{P_{T}, T_{T}, T-2,5}\\ \mathbf{N, \overrightarrow{\alpha}, \overrightarrow{x}} \end{array}$	ム ベ, EPS, Timing, No. of Pulses	Fire: 2 and 5		dV = .017 m/sec $d\alpha = .82^{\circ}$ dN = .196 RPM
b) ∆ ∝ = 2° Trim Control	$\frac{\mathbf{P}_{\mathrm{T}}, \mathbf{T}_{\mathrm{T}}, \mathbf{T}_{\mathrm{B2,5,N}}}{\overline{\mathbf{x}}},$	$\Delta \propto$ Trim, EPW, Timing, No. of Pulses	Fire: 2 and 5		$d\alpha = .11^{\circ}$ dN = .022 RPM
23) Spin Up Mini Probes a) ΔN = 65 RPM	$\begin{bmatrix} \mathbf{P}_{\mathrm{T}}, \ \mathbf{T}_{\mathrm{T}}, \ \mathbf{T}_{\mathrm{B}^{2},3}, \ \mathrm{N}, \\ \mathbf{\widehat{\alpha}}, \ \mathbf{\widehat{x}} \end{bmatrix}$	ΔN, T _{on}	Fire: 2 and 3		dV = .0023 m/sec $d\alpha = .085^{\circ}$ dN = 4.2 RPM
b) Spin Up Trim ΔN = 4 - 12 RPM	$\frac{P_{T}, T_{T}, T_{B2,3}, N}{\overline{\alpha}, \overline{x}},$	ΔN, T _{on}	Fire: 2 and 3		$d\alpha = .085^{\circ}$ dN = .77 RPM
c) Spin Up Trim $\Delta N = \pm 077 \text{ RPM}$	$\begin{array}{c} \mathbf{P_{T}, T_{T}, T_{B5}, 6, 7, 8} \\ \mathbf{N, \overline{\alpha}, \overline{x}} \end{array}$	ΔN, T _{on}	Fire: 6 and 7 or 5 and 8		dN = .049 RPM
24) Separate Mini Probes					
25) Attitude Control Maintenance a) Δα ≠ 3.9°	$\stackrel{P_{T}, T_{T}, T_{B3}, s_{jN},}{\overline{\alpha}, \overline{x}}$	$\Delta \alpha$, EPW, Timing, No. of Pulses	Fire: 3 and 8	This maneuver of $\Delta \propto = 20^\circ$ total has to be performed in $\Delta \propto = 3.9^\circ$ incre- ments because of the high spin perturba- tion which occurs at N = 85 RPM.	dV = .014 m/sec $d\alpha = .18^{\circ}$ dN = .30 RPM
b) Spin Control ΔN = ±03 RPM	P _T , T _T , T _{B5,6,7,8, N}	ΔN , T _{on} if Necessary	Fire: 5 and 8 or 6 and 7		dV= .0044 m/sec dα = .031° dN= .019 RPM
Repeat three more times for Events 25 c), d), e), f), g), h), i), j).					
k) $\Delta \alpha$ Trim $\Delta \alpha = .5^{\circ}$	$\frac{\mathbf{P}_{\mathrm{T}}, \ \mathrm{T}_{\mathrm{T}}, \ \mathrm{T}_{\mathrm{B3,8}, \ \mathrm{N}}}{\overline{\alpha}, \ \overline{\mathbf{x}}},$	$\Delta \alpha$, EPW, Timing, No. of Pulses taking	Fire: 3 and 8		dα= .051°
26) Retarget S/C Bus	PT, TT, TP2 4 6 8	$\Delta \overline{V}$, EPW, Timing,	Fire: 2,4,6,8		dV = .9 m/sec

Hamilton Standard Š D

EOLDOUT FRAME

	h), i), j).				•			
k)	$\Delta \alpha$ Trim $\Delta \alpha = .5^{\circ}$	$ \begin{array}{c} \mathbf{P}_{\mathrm{T}}, \ \mathbf{T}_{\mathrm{T}}, \ \mathbf{T}_{\mathrm{B3,8, N}}, \\ \overline{\alpha}, \ \overline{\mathbf{x}} \end{array} $	$\Delta \propto$, EPW, Timing, No. of Pulses taking	Fire:	3 and 8	· · · · · · · · · · · · · · · · · · ·	d∝=	-051°
26) a)	Retarget S/C Bus $\Delta V = 15 \text{ m/sec}$	P _T , T _T , T _{B2,4,6,8} N,	$\Delta \overline{V}$, EPW, Timing, No. of Pulses taking into Account C.G. Shift Due to Maneu-	Fire:	2,4,6,8		$dV = d\alpha = dN =$.9 m/sec .058° .0102 RPM
b)	$\Delta V = 3 M/Sec$	$\frac{\mathbf{P}_{\mathrm{T}}, \mathbf{T}_{\mathrm{T}}, \mathbf{T}_{\mathrm{B2}, 4, 6, 8, \mathrm{N}}}{\alpha', \mathbf{x}}$	vers $\Delta \overline{V}$, EPW, Timing, No. of Pulses taking into Account C. G. Shift Due to Previous Maneuvers	Fire:	2,4,6.8		dV=	.23 m/sec % Error = 1.3%
27) 8)	Correct Sun Angle Drift $\Delta \propto = 3.9^{\circ}$	$\frac{P_{T}}{\alpha}, \frac{T_{T}}{x}, T_{B3,8}, N,$	$\Delta \propto$, EPW, Timing, No. of Pulses	Fire:	3 and 8		$dV = d\alpha = dN = dN = dN = dN = dN = dN = dN$.014 m/sec .18° .30 RPM
b)	Spin Control $\Delta N = \pm 03 RPM$	P _T , T _T , T _{B5,6,7,8} N	ΔN, T _{on} if Necessary	Fire:	5 and 8 or 6 and 7	-	dV = d& = dN =	.0044 m/sec .031° .019 RPM
	Repeat three more time for Events 27c), d), e), f), g), h), i),							
k)	$\Delta \alpha = .5^{\circ}$	$\frac{P_{T}}{\alpha}, \frac{T_{T}}{x}, \frac{T_{B3}}{8}, \frac{8}{3}, \frac{N}{2}$	$\Delta \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	Fire:	3 and 8		dα=	.051°
28) a)	Orient Spin to Velocity Vector $\Delta \propto = 3.9^{\circ}$	$\frac{P_{T}, T_{T}, T_{B3, 8}, N}{\tilde{\alpha}, \tilde{x}}$	$\Delta lpha$, EPW, Timing, No. of Pulses	Fire:	3 and 8		dV = d& = dN =	.014 m/sec .18° .30 RPM
ь)́	Spin Control $\Delta N = \pm 03 RPM$	P _T , T _T , T _{B5, 6, 7, 8 N}	ΔN , T _{on} if Necessary	Fire:	5 and 8 or 6 and 7		dα=	.031°
8)	Repeat for Events 28c), d), e), f) $\Delta \propto$ Trim $\Delta \propto = .3^{\circ}$	$\frac{\mathbf{P}_{\mathrm{T}}}{\overline{\alpha}}, \frac{\mathbf{T}_{\mathrm{T}}}{\overline{\mathbf{x}}}, \frac{\mathbf{T}_{\mathrm{B3}}}{\overline{\mathbf{x}}}, \mathbf{s}, \mathbf{N}$	ムα , EPW, Timing No. of Pulses	Fire:	3 and 8		da=	.051°

5.4-13/5.4-14

1

EOLDOUT FRAME SP 07R70-F

Hamilton UNITED AIRCRA Standard

<u>Components</u>

5.5

After determining which propulsion subsystems were to be evaluated, a survey was performed of operational hydrazine propulsion subsystems and those presently being developed, to identify those components which have been qualified, and can be considered for the Planetary Explorer applications. Data was gathered on components which would be considered as candidates for the propulsion subsystem concepts and this data was evaluated. In some cases components were considered which have flight history on applications other than hydrazine propulsion systems. The basic criteria used for the component evaluation were the flight and qualification histories of each component, along with judgment from previous component evaluation studies. Components recommended for the Planetary Explorer applications are listed in Table 5.5.0-I and the technical evaluations are summarized in Tables 5.5.0-II through 5.5.0-VII. Each component was rated from 0 to 3 points in the categories shown. A weighting factor was then applied to each rating to reflect the relative importance of each category. Component evaluation and trade-off information generated during the study and from previous component selection studies was referred to and modified, as necessary, to reflect Planetary Explorer requirements. The following is a definition of the rating scale and weighting factors used.

Rating Scale

- 3 Acceptable: Actual demonstrated no risk
- 2 Acceptable: Normal risk
- 1 Marginal: High Risk
- 0 Unacceptable

Weighting Factors

Factor

8 4

Definition

- 10 System will not function if criteria are not satisfied
 - System will function but specification is in jeopardy
 - System functions or specifications not in jeopardy but component characteristic may enhance capability of system

5.5.1 PROPELLANT TANK:

The propellant tank recommended at this time for the Planetary Explorer Orbiter and Probe spacecraft is the tank manufactured by Fansteel Metallurgical Corp. which is used on the IDCSP/A and NATO/SAT satellites. This tank, Fansteel part number 4425034, is designed and ported for a spin stabilized spacecraft application. The tank is designed as a bladderless integral pressurization expulsion system when either in the ground or flight acceleration fields. Location of

Hamilton U Standard A®

SP07R70-F

5.5.1 (continued)

the propellant outlet ports 90 degrees to each other provides for propellant draining during either ground test or when the satellite is spinning in space. This porting configuration also provides for flushing the tanks and lines after fabrication by allowing a continuous flow of fluid into the pressurant port and out the propellant port. The Fansteel tank is of the proper volumetric size for use in either Planetary Explorer application by utilization of a sufficient number of tanks, and provides a pressurant "blow down" ratio compatible with the IDCSP/A engine which has been considered in this study. Figure 5.5.1-1 shows system tankage weight as a function of propellant weight in the system for both the existing Fansteel design and a theoretically optimum tank design.

The basis for sizing an optimum tank for comparison to the existing design are the following:

- Tank Material: 6AL-4V-Ti
- Tank Outer Diameter: 9.86"
- Tank Wall Thickness: .012 .015

(.012 min wall based on F.S. = 2 for stability of tank at 1 atmosphere).

The figure indicates a slight advantage in weight for the optimum tank design; however, this savings probably does not justify the costs associated with developing and requalifying a new design.

Another tank which meets the volumetric requirements but does not have the flexibility of the Fansteel tank is one manufactured by Pressure Systems Incorporated for the Intelsat III satellite. This tank is designed for a bladderless integral pressurization system for a spin stabilized application only where propellant cannot be completely expelled under earth gravity unless the vehicle is turned on its side. Also, the Pressure Systems Incorporated (PSI) tank is trunnion mounted, whereas the Fansteel tank is flange mounted. Flange mounting is more suitable for the Planetary Explorer application and provides for a much lighter weight tank mounting structure.

The Fansteel and PSI tanks appear to be the only two flight qualified tanks available which meet the Planetary Explorer volume and size requirements. Of the two tanks, the Fansteel tank is the most suitable from a system integration and mounting standpoint. Table 5.5.1-I summarizes the basic characteristics of the two tanks.

Hamilton UNITED AIRCRAFT CORPORATION

5.5.2 **FILTER**:

The propellant filter recommended at this time is the filter manufactured by Vacco Industries which is used on the Intelsat IV satellite. The Vacco filter contains a multi-segmented element consisting of a stack of etched filter discs which are chemically milled from the basic stock. This eliminates the possibility of burrs being generated, and permits cleaning and inspection of each individual disc prior to assembly of the element, minimizing self-generated contamination. Another filter which has been incorporated in some spacecraft applications is a wire cloth element manufactured by Wintec Corporation. Filters of this type are difficult to manufacture clean and tend to become contaminant generators since there are a multitude of traps where contamination can be retained during manufacture of the wire cloth and after flushing the assembled filter. A summary of data for the two filters is shown in Table 5.5.2-I. The Vacco filter is judged superior in being able to be manufactured clean, retain contaminant to a specific absolute value, and not be a contaminant generator.

5.5.3 FILL AND DRAIN VALVE:

The fill and drain valve recommended for the propellant and pressurant fill and drain functions is the valve manufactured by Vacco Industries. This valve is a manually operated shut-off valve. The sealing of this valve is effected by seating a tungsten carbide ball into a seat formed in the valve body. The ball is held captive in the poppet which is activated open and closed by rotation of a retainer nut. The poppet is sealed when the valve is open during fill and drain operations by an "O" ring forming the poppet/body seal. Seating and sealing of the poppet into the seat is achieved by torqueing the retainer nut to a prescribed torque value. Redundant sealing is achieved by capping the valve port, and by the poppet/body seal. The Pyronetics fill and drain valve is similar to the Vacco in that primary sealing is achieved by metal-to-metal contact, but the Pyronetics valve utilizes a cylindrical sharp edge poppet seating into a tapered seat. A valve of this type is sensitive to overtorqueing with subsequent leakage problems. The Pyronetics valve has flown on spacecraft and is qualified for space applications, but is considered to have more potential problems than the Vacco fill and drain valve.

Other fill and drain valves considered were those manufactured by Futurecraft and Snap-Tite. Table 5.5.3-I is a listing of the characteristics for the fill and drain valves considered.

5.5.4 ORDNANCE VALVE:

The ordnance valve recommended is the valve manufactured by Pyronetics Incorporated (Part Number 1365), which is functionally identical to valves supplied for the Gemini, Minuteman III and Intelsat III programs. The valve is internally the same as Part Number 1078 used on the Gemini spacecraft, the difference being the use of the Apollo Standard Initiator for actuation. The same valve, but

Hamilton U Standard A®

5.5.4 (continued)

designated Part Number 1259, has flown on the Intelsat III satellite, with the difference being the squib and mounting provisions. This unit provides hermetic isolation of the propellant from the downstream components until actuated open by firing the squib. The flow path is opened when pressure generated from firing the squib drives a ram which shears a solid hermetic closure on the valve inlet port. The squib considered is an "off-the-shelf" dual bridge wire cartridge designed for deep space applications. Conax Corporation and Futurecraft also supply ordnance valves which provide a hermetic closure at the valve inlet port which is sheared off by a ram actuated by the squib gases. These companies have supplied units for many military missile and space applications. Pyrotechnics Incorporated has supplied units for hydrazine propulsion subsystems which are now operational and are readily available and qualified for the Planetary Explorer application. Table 5.5.4-I summarizes the characteristics of the ordnance valves considered.

5,5,5 LATCHING SOLENOID VALVE

A review of latching solenoid valves that are manufactured for space applications shows that only two designs have been qualified for hydrazine applications. Table 5.5.5-I summarizes the characteristics of these and other designs. The Carleton Controls design, Part Number 2217002, is qualified for the Intelsat IV program and represents the only qualified, lightweight valve for hydrazine use. Although it has these favorable characteristics, the valve is very complex in construction and operation. The design utilizes a stainless steel poppet head with a teflon seating surface, and metal bellows are used to internally seal the valve from fluid flow, and also effectively pressure balance the valve poppet against both inlet and outlet differentials. The valve has sliding fits, many moving parts (including the bellows, poppet, belleville spring, and plunger), and dynamic seals are used as backups to the bellows. Valve latch holding forces for both open and closed positions are generated by a belleville spring and the latching force is overcome by dual electromagnets which move the armature in opposite directions when energized. Unlike the other designs, the Carleton valve does not use the force field of a permanent magnet to hold the valve in the open position, therefore eliminating the weight associated with the permanent magnet. In addition to the use of the permanent magnets for latching, the Parker and the Consolidated Controls valves operate by actuating a sliding fit plunger which moves the poppet to the open position. To close these values, current of reversed polarity is supplied to a solenoid coil, thus producing a magnetic field which cancels a portion of the latching force field and a spring device returns the poppet to the closed position.

The Carleton value appears to be the best choice of what is available based primarily on the qualified/lightweight characteristics of the value. However, due to the inherent complexity of the sliding fits, bellows and other moving parts, there may be an advantage in considering the use of a torque motor operated type latching value. It has been Hamilton Standard's experience to receive proposals (for various

5.5.5 (continued)

programs) from manufacturers of torque motor valves which utilize the single flapper concept with a permanent magnet to maintain the valve in the open position. This approach may prove to have advantages over the solenoid type due to simplicity and minimization of moving parts. However, the advantages still have to be compared to the cost of development and qualification since this status does not exist for a torque motor design.

5.5.6 PROPELLANT CONTROL VALVE:

The propellant control valve recommended for the Planetary Explorer application is the valve manufactured by Hydraulic Research and Manufacturing Corporation (Part Number 48000680) used on the IDCSP/A and NATOSAT satellite Rocket Engine Assemblies. The valve is a normally closed torque motor operated dual seat valve. The design incorporates two metal-to-metal flat-lapped poppets and seats in series to provide valve sealing redundancy. This valve is considered for Planetary Explorer for the following reasons:

- The engine recommended by Hamilton Standard for the Planetary Explorer applications was qualified with this valve for the IDCSP/A and NATOSAT programs.
- The redundant seat configuration provides a higher degree of confidence in mission success than a single seat valve.

A summary of all engine values considered, including torque motor and solenoid types, is shown in Table 5.5.6-I. All units, with the exception of the Moog value, have qualification status and space program history. However, only three designs (Hydraulic Research and Manufacturing, Stratos and Kidde), have actual flight history, and of these three, only the Stratos (a solenoid operated design with sliding parts) and the HR&M values utilize the dual series seat configuration. Final consideration resulted between these two values, and since the HR&M value is qualified for use with the engine selected for the Planetary Explorer application, it was chosen and is thus recommended.

5.5.7 PRESSURE TRANSDUCER:

Table 5.5.7-I lists the possible candidates for the selection of a pressure transducer. Each represents a design utilized on various space applications requiring various degrees of stability and accuracy, low weight and volume, and low power consumption. The Fairchild Controls and Dynasciences Designs are similar, in that they utilize a pressure sensitive diaphragm to which is bonded silicon semiconductor strain gages. The Statham transudcer is a vacuum deposited thin film strain-gage type which eliminates the use of bonding agents for attachment of the strain gage

Hamilton U Standard A®

5.5.7 (continued)

1

to the sensing element, and the Bourns units represents still a different type of transducer, in that it is a variable reluctance transducer, utilizing a twisted Bourdon tube as a strain sensing element.

Since all of the candidate designs presented have comparable qualification background and experience, and all appear to be satisfactory for the Planetary Explorer applications, no particular unit is recommended at this time.

5.5.8 GIMBAL ACTUATOR:

Based on limited data available on small, lightweight actuators used for space applications, the only actuator satisfying the above requirements and suited for the Planetary Explorer applications is manufactured by Nash Controls, Inc. and is Part Number DL2323M1. The design is a linear actuator -- used on the Lunar Excursion Module to position the landing radar antenna from the stowed to operating position. The unit is compact (approximately 2.25 inches by 2.25 inches by 4.00 inches), lightweight (1.05 lbs) and is compatible with a hard vacuum environment. The unit is powered by a permanent magnet direct current motor which drives the extending ram to the desired position which is monitored by an indicator switch which signals the ram position to external circuits. Designed to operate normally with a 28 volts de supply, the actuator has a normal stroke range of .1 inch to 1.25 inches with a high positioning accuracy, and with the capability of intermittent or continuous operation.

Hamilton UNITED AIRCRAFT CORPORATION

TABLE 5.5.0.-I. DEVELOPMENT STATUS AND

WEIGHT SUMMARY-SELECTED COMPONENTS

Component	Manufacturer	Weight	Development	The man It's at any
Composiente	& Part Number		Status	Program History
Propellant Tank	• Fansteel PN 4425034	1.60	Flight .	IDSCP/A
Propellant Valve	 Hydraulic Research and Manufacturing PN 8000680 	.47	Flight	IDSCP/A
Latching Solenoid Valve	. Carlton Controls PN 2217001-2	•54	Qualified	Intelsat IV
Ordnance Valve	. Pyronetics PN 1365	.30	Similar to Qualified Design except for initiator (1)	Similar design used on Gemini, Intelsat III and Minuteman III
Fill and Drain Valve	• Vacco PN 3181407	•25	Qualified	Intelsat IV
Filter	• Vacco PN-F1D10064	•30	Qualified	Intelsat IV
Pressure Trans-(2) ducer	Sr	∋e Table 5	•5•7-I	
Linear Actuator	. NASH Controls PN DL2323ML	1.05	Flight	LEM

(1) Design utilizes Apollo standard initiator (ATI)

(2) Final selection not made

THAT TH		A	TOTAL CULTURE DATA	THEFT & THEFT ARE AND	<u><u></u></u>	ALL & R. T. C. MICH. & CO. 71	TAMOTTATA		
TARLE	ה רך				-{} H *	. (* ΔΑΥΓΛ΄Ι ΓΛΔ'ΡΗ:	$\mathbf{L} \mathbf{A}' \mathbf{P} \mathbf{C} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{M} \mathbf{C}$	SOLENOID	VAIVEQ
	1.1	● V ── ⊥ ⊥ ⊥ ● .		TUTIOUTION	OT.	OUNDIDUIN	THUTOITTIC	DOTIMUTTO	AUATRO
and the second s	_	and the second secon						the second s	

and and the second s

.

.

		Weighing	Car PN 22	leton 17001-2	Pa PN 5	rker 640014	Pa PN 5	rker 680011	Consoli PN 37	dated Cont 95000-3
	· · · · · · · · · · · · · · · · · · ·	Factor	Rating	Tot Score	Rating	Tot Score	Rating	Tot Score	Rating	Tot Score
	.ceria	A	<u> </u>	AxB	<u> </u>	<u>AxB</u>	B	<u>AxB</u>	B	AxB
Desig	\mathbf{n}									
1.	Weight	4	3	12	1	4	1	4	1	4
2.	Simplicity	4	2	8 ·	2	8	2	8 -	2	8
3.	Envelope Adaptability	4	3	12	2	8	2	8	2	8
4.	Operating Concepts	10	3	12	3	12	3	12	3	12
5.	Number of potential	10	2	20 and 1	2	20	2	20	l	10
	problem areas									1
6.	Sealing capability	10	3	30	2	20	2	20	l	10
Perfo	ormance & Life									
1.	Expected ability to meet	8	3	24	3	24	2	16	l	8
	acceptance test	70	2	20	2	20	- -	20	•	6 0
1 2.	Expected ability to meet	10	3	30	3	30	5	30	2	20
2	Turnected shility to most	10	3	20	2	20	2	20	2	20
5.	design life	μO	3	.	3		5	20	5	3 0
Vendo	or Background									
1.	Experience with	4	3	12	3	12	3	12	3	12
	similar units									
2.	Awareness of potential	4	3	12	3	12	3	12	3	12
	STOUDIC AICAS									• 14
	TOTALS			202		180		172		134
	리는 사실은 말라는 것은 것 같은 것 같아요. 이 전 방문 전쟁은 것은 분들은 말을 다 있는 것 같아?									7
	양일 집에 가 있는 것 그 같아요. 이상 제									

. .

SP07R70-F

		Weighing	Pyronetics PN 1365		Conax PN 1832-131		Futurecraft PN 3467	
		Factor	Rating	Tot Score	Rating	Tot Score	Rating	Tot Score
Cri	ter ia	Α	В	AxB	В	AxB	B	AxB
Desig	n							
1	Weight	4	२	12	3	12	3	12
2.	Simplicity	<u>1</u>	3	12		12	3	12
3.	Envelope Adaptability	4	3	12	2	12	• 3	12
<u> </u>	Operating Concepts	10	3	30	2	20	2	20
5.	Number of Potential	10	2	20	2	20	2	20
	Problem Areas	na sela in a distriction L'activité de la constant						
6.	Sealing capability	10	2	20	2	20	2	20
Perfo	rmance & Life							
[].	Expected ability to	8	3	24	2	16	1	8
	meet acceptance test		Ĭ					
2.	Expected ability to	10	3	30	1	10	1	10
	meet qual_test	a algebra de tras. Nacional de la composición de la compos						
3.	Expected ability to	10	3	30	2	20	2	20
	meet design life							
Vendó	r Background							
1.	Experience with	4	3	12	2	8	2	8
	similar units							
2.	Awareness of potential	4	2	8	2	8	2	8
	trouble areas							
				ter an				
	TOTALS			210		148		140
							•	

TABLE 5.5.0-IV. ENGINEERING EVALUATION OF CANDIDATE ORDNANCE VALVES

SP07R70-F

TABLE 5.5.0-V. ENGINEERING EVALUATION OF CANDIDATE FILL & DRAIN VALVES

	Pyronetics Weighing P/N 1805		Va P/N	Vacco P/N 3181407		ecraft 50448	Snaptite P/N 4274		
Criteria	Factor A	Rating B	Tot Score A x B	Rating B	Tot Score A x B	Rating B	Tot Score A x B	Rating B	Tot Score A x B
Design									
1. Weight	4	ર	12	2	12	2 ;	12	2	10
2. Simplicity	1	2	12	2	12		h h		12 }i
3. Envelope Adaptability	4	2	12	1	12	2	8	1 2	8
4. Operating Concepts	4	2 2	12	1 7	12	2	8	2	8
5. Number of Potential	8		16	2	16	7	8	- <i>C</i> 7	8
Problem Areas	Ŭ	-	± 0		10	<u> </u>	U.		0
6. Sealing Capability	10	2	20	3.	30	1	10	1 -	10
Performance & Life									
1. Expected ability to meet acceptance test	8	2	16	3	24	2	16	2	16
2. Expected ability to meet qual. test	10	2	20	3	30	2	20	2	20
3. Expected ability to meet design life	10	2	20	3	30	2	20	2	20
Vendor Background									
1. Experience with similar units	4	2	8	2	8	3	12	2	8
2. Awareness of potential trouble areas	4	2	8	2	8	2	8	2	8
TOTALS			156	· · · · · · · · · · · ·	194		126		122

J-01111

5.5-15/5.5-16

	Weighing	PN	P si 80076	Fansteel PN 4425034	
동안 철 가 많이 가지 않는 것같은 것은 것 같이 있는 것이 있는 것이 같이 가지 않는다. 이렇게 가 같은 것 같은 것 같은 것은 것 같은 것 같은 것 같이 있는 것 같은 것 같이 있는 것 같이 같이 같이 같이 같이 같이 없다.	Factor	Rating	Tot Score	Rating	Tot Score
Criteria	Α	В	АхВ	В	AxB
Design Weight	<u>h</u>	2	12	3	10
2 Simplicity	<u>)</u>	2	8	2	8
3. Envelope Adantahility	8	2	16	2	<u>о</u> й
4. Operating Concents*	8	2	16	1	24
5. Number of Potential	ŭ	7	4	2	8
Problem Areas				_	Ŭ
6. Sealing Capability	4	3	12	3	12
Performance & Life					
1. Expected ability to meet acceptance test	8	3	24	3	24
2. Expected ability to meet	10	3	30	3	30
3. Expected ability to meet design life	10	3	30	3	30
Vendor Background					
1. Experience with similar units	4	2	8	3	12
2. Awareness of potential trouble areas	4	3	12	3	12
TOTALS			172	<u></u>	196

TABLE 5.5.0-VI. ENGINEERING EVALUATION OF CANDIDATE PROPELLANT TANKS

*Port arrangement for expulsion

5.5-17/5.5-18

SP07R70-F

		Weighing	ע זרית זא כב	acco	על ער זאס	Intec 1251-560
		Factor	Reting	Tot Score	Reting	Tot Score
Cri	teria	A	B	AxB	B	AxB
Desig	\mathbf{n}					
1.	Weight	4	2	12	3	12
2.	Simplicity	4	2	8	3	12
3.	Envelope Adaptability	4	3	12	3	12
4.	Operating Concepts	8	3	24	2	16
5.	Number of potential	8	3	2 ¹ 4	2	16
	problem areas					
6.	Sealing capability	4	3	12	3	12
	승규는 한 것 같은 것이라는 말한 것.					
Perfo	ormance & Life					
1,	Expected ability to	8	3	24	3	24
	meet acceptance test					
2.	Expected ability to	10	3	30	. 3	30
	meet qual. test					6 -
3.	Expected ability to	10	3	30	3	30
	meet design life					
Vendo	r Background					
1.	Experience with	4	3	12	3	12
	similar units					
2.	Awareness of potential	4	3	12	3	12
	trouble areas					
	momato			200		זער 72
	TUTALS			200		τįU
	조직 1. 분석 별로 가 하는 모델다 드립니까? 같이 같은 또 다니지 않았다. 별로 가지다.					

TABLE 5.5.0-VII. ENGINEERING EVALUATION OF CANDIDATE FILTERS

......

SP07R70-F

Hamilton UNITED AIRCRAF Standard A® RIVORATION

TABLE 5. 5. 1-I.PROPELLANT TANK CHARACTERISTICS

	Manufa	cturer
Characteristics	Fansteel	PSI
Manufacturer's Part Number	4425034	80076
Envelope (in.)	9.86 o.d.	9.56 o.d.
Volume (cu in.)	497	457
Porting	3 ports	2 ports
Expulsion Device	None	None
Weight (lb-max)	1.6	1.6
Operating Pressure (psia)	400	600
Burst Pressure (psid)	100	1200
Program History	IDCSP/A	Intelsat III

Hamilton U UNITED AIRCRAFT CORPORATION Standard A®

	Manufacturer				
Characteristics	Wintec	Vacco			
Manufacturer's Part Number	15241-569	FID 10064-01			
Envelope (in)	1.25 dia x 2.2 lg	1.0 dia x 2.0 lg			
Capacity (mg of AC fine dust)	100	100			
Pressure Drop @ Rated Flow (Δ psi @ lb/sec)	< 3.0@.015	< 5.0 @ .025			
Туре	Pleated wire mesh (rein- forced)	Etched disc stack			
Weight (lb)	0.33	0.30			
Filtration Level (microns)	10 ABS	10 ABS			
Burst Pressure (psid)	2400	1200			
Program History	Intelsat III	Intelsat IV			

TABLE 5.5.2-I. FILTER CHARACTERISTICS

5.5-23/5.5-24

Hamilton UNITED AIRCRAFT CORPORATION

	Manufacturer					
Characteristics	Snap-Tite	Pyronetics	Vacco	Futurecraft		
Manufacturer's Part Number	4274	1805	3181407	50448		
Pressure Drop @ Rated Flow (∆ psi @ lb/sec)	20 @ 0.1	(.022 in ² area)	20@0.5	20@0.5		
Physical Size (Envelope) - (in.)	1.0 dia x 1.47 lg (not incl fitt)	1.3 dia x 1.99 lg (incl cap)	1.0 x 1.5 x 3.06 lg	1.3 x 2.0 x 1.57 lg (not incl fitt)		
Leakage, Uncoupled (scc N2/hr)	0.5 350 psia)	1 x 10 ⁻⁵ (scc He/ sec, 350 psia)	1 x 10 ⁻⁶ (sec He/ sec, 200 psia)	0.5 (300 psig)		
Seat Arrangement	poppet/ o-ring	poppet/ hard seat	ball/ hard seat	poppet/ soft seat		
Weight	0.18	0.25	0,15 Ti housing	0.2		
Coupling Arrangement	quick disconnect ball-lock	MS flare-tube fitting	MS flare-tube fitting	threaded coupling		
Operating Pressure (psid) Burst Pressure (psid) Program History	0 - 350 700 P-95	600 2400 Intelsat III	0 - 200 600 Intelsat IV	0 - 300 1178 Titan Sandia		

TABLE 5.5.3-I. FILL AND DRAIN VALVE CHARACTERISTICS

Hamilton	U	
Standard	A®	CORPORATIO

	Manufacturer				
Characteristics	Conax	Futurecraft	Pyronetics		
Manufacturer's Part Number	1832-131	31467	1365 (1)		
Operating Pressure (psig)	1000	3000	5000		
Physical Size (Envelope) – (in.)	.88 x 1.72 x 3.47 lg	.75 x 1.25 x 3.45 lg	.87 x 1.25 x 2.74 lg		
Leakage (scc/sec of He)	.5 x 10 ⁻⁶	1 x 10 ⁻⁶ @ 6000 psi	1 x 10 ⁻⁶ @ 5000 psi		
Opening Response (ms)	5@5.0a nom	5 @ 2.0 a	6 @ 4.5 a max		
Weight (lb)	. 45		.30		
"Seat" Arrangement	Shear plug	Shear plug	Shear plug		
Min Recommended Firing Current (amps)	5.0/circ.	1.0	4.5		
Bridge Wire Resistance (ohms)	1.0 ^{+.2} 1	0.9 ±0.3 (@ .01 a max)	1.0±0.1		
Flow Passage (Min) After Actuation (in.)	.168 dia	. 188 dia	.170 dia		
No Fire Current (Max) (amps)	1.0/5 min (1 watt)	0.2/5 min	1.0/5 min (1 watt)		
All Fire Current (amps)		2,0	2.77		
Program History			Gemini Intelsat III Minuteman IV		
Burst Pressure (psid)	14,520	12,000	10,000		

TABLE 5.5.4-I. ORDNANCE VALVE CHARACTERISTICS

5.5-27/5.5-28

Hamilton UNITED AIRCRAFT CORPORATION Standard AR

1

TABLE 5.5.5-I. LATCHING VALVE CHARACTERISTICS

f	MANUFACTURER						
CHARACTERISTICS	Consolidated Controls	Parker	Parker	Carleton Controls			
Mfr. Part Number	3795000-3	5640014	5680011	2217001-2			
Flow Rate lb/sec	.166	.166	.166	.022			
Operating Pressure psia	0 - 400	0 - 250	0 - 400	0 - 300			
Pressure Drop @ Rated Flow psi @ lb/sec	18 @ .166	~	18 @ .166	1.@.022			
Physical Size (Envelope) in.	1.48 dia. x 6.0 LG + Bosses	2.50 dia. x 3. IG + Bosses	2.46 dia. x 5.8 LG + Bosses	1.4 dia. x 4.6 IG + Tubes			
Voltage Range vdc	20 - 33	18 - 32	20 - 33	18 - 50			
Power (Max) watts	100 (33 vdc)	70 (28 vdc)	99 (33 vdc)	67.5 (27 vdc)			
Leakage scc N ₂ /Hr	50 (425 psig)	10 (He)	10	1.4			
Opening Response ms	50	\sim	50	30			
Closing Response ms	50	\sim	50	3 0			
Seat Arrangement	Poppet	Poppet	Po ppe t	Poppet			
Weight	1.98	1.45	2.6	0.54 (No cable)			
Program History	Apollo	Apollo (LEM)	P-95	Intelsat IV			
Position Indicator	Үев	Yes	Yes	Yes			
Life cycles	5000	\sim	5000	1000			
Latching Mechanism (Open Position)	Permanent Magnet	P erma nent Magnet	Permanent Magnet	Belleville Spring			
Burst Pressure (psid)	800	1050	800	1250			

5.5-29/5.5-30

FOLDOUT FRAME

Hamilton

TION

CHARACTERISTICS Manufacturer Part Number Type Seat Configuration		HR&M 48000680 Torque Motor	HR&M 48001000	1 Stratos 449000	MANUFACTURE Stratos 403000	R Parker	Parker	Moog	Kidde
CHARACTERISTICS Manufacturer Part Number Type Seat Configuration		HR&M 48000680 Torque Motor	HR&M 48001000	Stratos 449000	Stratos 403000	Parker	Parker	Moog	Kidde
Manufacturer Part Number Type Seat Configuration		48000680 Torque Motor	48001000	449000	403000				1.4
Type Seat Configuration		Torque Motor	Torque Motor			5680036	5690023	Develop Unit	141806
Seat Configuration		(a) State of the second secon second second sec	*order motor	Single Solenoid	Dual Coil Sol.	Solenoid	Solenoid	Solenoid	Solenoid
		Dual Series	Dual Series	Dual Series	Dual Series	Hard	Soft	Soft	Single Soft
Sealing Material		Tung. Carb.	Tung. Carb.	Ethylene Propylene	Ethylene Propylene	304L Seat 17-4 Poppet	Teflon Seat 17-4 Poppet	Teflon Poppet Hard Seat	Saphire - Teflon
Number of Coils		2	2	1	2	1	1	1	1
Coil Resistance	ohms	73-78	43-45	7378	-	42 at 70°F	42 ±1 at 70°F	-	58 ±2
Size		1,33x2,17x4.62	1.4x2.13x5.22	1x2x4.65	-	1.6x1.83x3.03	1.6x1.83x3.03	-	1.07 Diax2.75
Weight	lb	<.047	< 0.67	< 0.34	. 38	0.4	0.4	0.4	0.3
Power Profile (See Curves)		See Note 1	See Note 1		-	See Note 1	-	-	
Maximum Power	watts	14 (33r)	21 (30r)	14 (24-304)	10	35 at 38 vdc	35 at 38 vdc	29 at 33 vdc	-
Max. Opening Response (Over Design Voltage Range)	ms	15 (spec)	15 (spec)	15 (spec)	15	6.5 at 24 vdc 250°F	6.9 at 24 vdc 250°F	-	11 at 30 vdc (spec)
Max. Closing Response (Over Design Voltage Range)	ms	10 (spec)	10 (spec)	10 (spec)	5	6.2 at 33 vdc 35°F	6.2 at 33 vdc 55°F	-	5 at 30 vdc (spec)
Max. Opening Response (28 ±2% vdc)	ms	11.0	11.0	12.5	-	5.1	5.3 at 70°F	4.5 at 70°F	-
Max. Closing Response (28 ±2% vdc)	ms	5.0	4.5	3.8		5.0	5.0 at 70°F	4.0 at 70°F	
Operating Voltage Range	volts	24-36	18.6-35	24-36	25-31	24-33	24-33	24-33	23-35
Internal Leakage (Over Pressure Range)	N ₂ scc/hr	0.50	1.00	0.50	0.50 (at 600)	10	5 (Life to 10)	1.0	0.24
Operating Pressure	psia	50-300	75-300	50-275	600	50-300	50-300	0-300	65-235

TABLE 5. 5. 6-I. THRUST CHAMBER VALVE CHARACTERISTICS

12.1

.

العبيرة المشدر

. ist date

÷∳ ≩

÷.,

.

Der strand Andrew Strandstrand	1110	0.0	4.7	0.8		5.0	5.0 at 70°F	4.0 at 70°F	-
Operating Voltage Range	volts	24-36	18.6-35	24-36	25-31	24_33	24-33	24-33	23-35
Internal Leakage (Over Pressure Range)	N ₂ scc/hr	0.50	1.00	0.50	0.50 (at 600)	10	5 (Life to 10)	1.0	0.24
Operating Pressure	psia	50-300	75-300	50-275	600	50-300	50-300	0-300	65-235
Max. Internal Operating Temperature	°F	250	160	250	250	250	250	. 	с . <u>—</u>
Demonstrated Cycle Life		50,000	350,000	50,000	50 ,0 00	50,000	50,000	1 x 10 ⁶	-
Design Life (Space)	yrs	5	7	5	5		-	- .	-
Repeatability, Opening	±ms	1	1	1	-	0.7	0.7	-	_
Repeatability Closing	± ms	1	1	1	_	0.7	0.7		
Pressure Drop at Rated Flow A: si at	t 1b/sec	20 at . 0224	28 at . 0250	15 at . 0224	70 at . 0150	4.6 at .0117	14.6 at.0117	25 at . 022	10 at.0220
Program Application History		idcs¤/A	I-IV/CP-3	IDCSP/A	I-JII	P-9 5	P-95	Develop/P-95	ATS-III
Sinusoidal Vibration Qual Level			20 @ 80-120 cps	-		4g's (50-2000)	4g's (50-2000)	-	40(55-65 cps)
Random Vibration Qual Level	RMS g's	19.5	23.6	19.5		53.6	53.6	40	-
Flight History		Yes	No	No	Yes	No	No	No	Yes
Min. Dropout Voltage		2.0	1.0	2.0 vdc		2.5 vdc	2.5 vdc	2.5 vdc	_
Max. Pull-in Voltage		8.8	-	-	in an	20 vdc 200 psig	20 vdc 200 psig	10 vdc	-
Status		Qualified	Qualified	Qualified	Qualified	Qualified	Qualified	Adv. Develop.	Qualified
Built-in Filter		25 μ Abs. 15 μ Nom.	No -	Yes -	20μAbs. -	25μAbs. 10μNom.	25 μ Abs. 10 μ Nom.	25 μ Abs. 10 μ Nom.	No
Filter Source		HR&M	-	-	-	Wintec	Wintec	-	-
Burst Pressure (PSID)		900	>600	700	-	1200	1200	>1200	
Note: 1. Power Profile per Table 5.5	. 6-11								FOLDOUT
									FRAME 2

.

1

SP 07R70-F

	MANUFACTURER						
CHARACTERISTICS	FAIRCHILD	DYNASCIENCES	STATHAM	BOURNS 2309			
Manufacturer's Part Number	TF125-4-0075	1025	PA 493 - 500				
Voltage (vdc)	24-32	28-30	24-32	24-32			
Operating Pressure	0-500	0-300	0-500	0-300			
Envelope	1.18 x 2.01 x 2.7 LG (Less Fitt. &Conn.)	1.0 Dia x 2.5 LG (Less Fitt. &Conn.)	1.0 Dia. x 2.5 LG (Less Fitt. &Conn.)	1.0 Dia x 2.0 LG (Less Fitt. & Conn.)			
Weight	. 32	.32	. 32	. 44			
Output Voltage (vdc)	$0-5.0 \pm 0.5$	0-5	0-5	5 to +7.5			
Program History	Lunar Orbiter IDCSP/A Natosat	Apollo LEM	Minuteman Pioneer Nimbus	P-95 Saturn V			
Sensor Type	Bonded Silicon Strain Gage	Bonded Silicon Strain Gage	Deposited Film Strain Gage	Twisted Bourdon			
Burst Pressure (PSID	10,000	7500	1000 د	1000			

TABLE 5. 5. 7-I. PRESSURE TRANSDUCER CHARACTERISTICS

T. 201

5. 5-33/5. 5-34

FIGURE 5.5.1-1. TOTAL TANKAGE WEIGHT VS PROPELLANT WEIGHT

5.5-35/5.5-36

SP 07R70-F
Hamilton UNITED AIRC Standard

5.6 <u>Test Plans</u>

In establishing an overall Test Plan for Planetary Explorer, as for any other program, the following factors constitute major influences:

- The degree of confidence desired by the customer before qualification testing of the system is initiated.
- The minimum requirements established by the customer for scope and depth of the system qualification test in terms of the number of test samples, and types of tests conducted.
- The extent to which selected components have previously demonstrated the capability of satisfying requirements that they have to meet for the Planetary Explorer program.
- The type of contract under which the program will be funded -- Fixed Fee or Cost type. It is natural to expect potential propulsion subsystem subcontractors to attempt to reduce program target costs by reducing the pre-qualification test effort where the increased risk in this approach has a limited liability to the subcontractor under the provisions of a cost type contract.

The program test plan presented herein is based on the following programmatic assumptions which were made on a best judgment basis to establish a frame of reference.

- The program will be funded under a Fixed Fee type of contract.
 - Where equipment has been qualified at the component level or system level to environmental requirements which differ in some cases from those of Planetary Explorer, the subcontractor's engineering judgment, with supporting rationale, will suffice to establish the level to which additional component level testing is required. The judgment here will decide whether or not sufficient confidence can be established to enter system level qualification testing without additional component level testing, or if supplemental testing or complete requalification of the component is required.
- One flight configuration system will constitute the test sample for qualification of the design.
- The system design will be based on using individually mounted rocket engine assemblies (REA's), rather than the clustering of REA's in a module (reference Section 4.4.5 for rationale).

Hamilton U AIRCRAFT CORPORATION

 $SP07R70-F^{\mu}$

5.6 (continued)

- System level testing prior to qualification testing of the system will not be a program requirement.
- Spin balance testing will not be required for qualification or acceptance testing because balancing will be accomplished by GSFC at the spacecraft level (reference Section 5.12 for rationale).
- Reduced program costs will be a major program objective.

With the above information as a basis, the Test Plan recommended by Hamilton Standard is discussed below:

A test matrix for the overall test program is presented in Table 5.6.0-I. In summary, this matrix defines a test program wherein component level testing, other than acceptance testing, is limited to design verification tests for a few items, with qualification testing at the component level not required. This matrix also defines a program in which there is no system level testing prior to the system level qualification test. The rationale for the approach defined in the test matrix is discussed below:

A basic approach in reducing costs of any program such as Planetary Explorer is to reduce the technical risk associated with meeting program requirements, and the utilization of equipment with previously established capability so as to minimize the cost of proving that a capability does, in fact, exist. One of the major considerations in the selection of components for the candidate systems was the extent to which each component had previously demonstrated a capability to meet Planetary Explorer mission requirements. In almost every case, the selected components have been qualified at the component level, and at the system level, in monopropellant hydrazine propulsion systems for flight programs. Major items of equipment such as the rocket engine assemblies and the propellant tanks are presently flight operational in the configuration for which they have been selected for the candidate systems described herein. The various phases of the recommended test program are discussed below.

5.6.1 COMPONENT VERIFICATION TESTS:

The primary purpose of the verification testing is to confirm an engineering judgment that the components which have been qualified to requirements which differ somewhat from those of Planetary Explorer will be able to perform as required when subjected to qualification testing on the propulsion system level. Figure 5.6.1-1 (Verification Test Sequences) illustrates the test sequences proposed for the propellant control valve and the propellant tanks. These tests are to assure that the difference between the vibration environment which these components were subject to, and those of the

SP07R70-F

Hamilton Standard U A®

TABLE 5.6.0-I. TEST MATRIX

Equipment Level	Acceptance Test	Verification Test	Performance Mapping	Qualification Test		
Component						
• Latching Solenoid Valve	x	X				
• Fill & Drain Valve	x					
• Filter	X					
• Pressure Transducer	X	an ang ting panganan ang panganan Ang panganan ang panganan ang panganan Ang panganan ang panganan ang panganan ang panganan ang panganan ang pang				
• Propellant Tank	X					
• Engine Propellant Valves	X	X				
• Rocket Engine Assembly	x	X	X			
System	X			X		

NOTE: Performance mapping of the rocket engine assembly is part of the system qualification test which is run at the component level in order to obtain propellant flow rate data during simulated Planetary Explorer duty cycle pulsing operation.

SP07R70-F

Hamilton U DIVISION OF UNITED AIRCRAFT CORPORATION

5.6.1 (continued)

Planetary Explorer mission, will not affect the component qualification status. A comparison of the vibration requirements is presented in Figure 5.6.1-2. Although the Planetary Explorer requirement is lower in magnitude than the IDCSP/A level, the duration of 4 minutes per axis instead of $1 \frac{1}{2}$ minutes per axis requires verification.

5.6.2 SYSTEM QUALIFICATION:

The planned qualification test sequence illustrated in Figure 5.6.2-1 provides assurance that the Planetary Explorer propulsion system meets all technical requirements. A description of each phase of the qualification test is presented in Table 5.6.2-I.

5.6.3 ACCEPTANCE TESTING:

The objectives of acceptance testing are to assure that the materials, workmanship and performance of assemblies to be subjected to qualification tests, or programmed for delivery, perform as required, and that these assemblies have been manufactured to approved drawings and specifications.

Since acceptance testing is a recurring program task, particular attention is directed toward minimizing the individual test cost involved while maintaining test objectives.

The propellant control valve, propellant tank, latching solenoid valve, fill and drain valve, pressure transducer, and filter are all acceptance tested at the component supplier's facilities. This testing is witnessed by Hamilton Standard source inspection. In addition, the reaction engine assemblies are tested at Hamilton Standard's facilities. Component acceptance tests are described in test flow chart form in Figure 5.6.3-1.

The propulsion system is assembled using components that have successfully completed component level acceptance tests and is then subjected to the system level acceptance tests defined in Figure 5.6.3-2.

FOLDOUT FRAME SP 07R70 - F

. A. L.

a the line was

the states

FIGURE 5.6.1-1. VERIFICATION TEST SEQUENCES

5.6-5/5.6-6

1

SP 07R70 - F

Hamilton

U

CRAFT CORPORATION

USION OF UNIT

1

j ;

(11) キャーン 常 増して

ΕX

T

CON TES

FOLDOUT FRAME

FIGURE 5.6.2-1. QUALIFICATION TEST SEQUENCE 3

5.6-9/5.6-10

*DENOTES TESTS PERFORMED AT

FOLDOUT FRAME

SP 07R70 - F

5.6-11/5.6-12

•

FOLDOUT, FRAME

SP 07R70-F

RMED AT VENDOR FACILITY

- 8

FIGURE 5.6.3-1. COMPONENT ACCEPTANCE TESTS

5.6-13/5.6-14

4

\$

-

SP 07R70-F

* DENOTES TESTS PERFORMED AT VENDOR FACILITY

FIGURE 5.6.3-1. ACCEPTANCE TESTS

ι,

5.6-15/5.6-16

SP07R70-F

Hamilton	DIVISION OF I		CORPORAT
Standard		A.	

Test No.	Test Type	Objective	Success Criteria		
Q-1	Examination of Product	Compliance with Drawing and Specification Requirements	Meet Drawing and Specification Requirements		
⊋-2	Proof Pressure	To Demonstrate Structural Integrity of Unit	No Permanent Deformation		
Q-3	Leakage – External and Internal	To Verify that Leakage Rates are Within Specification Requirements	Leakage Does not Exceed Specification Limits		
Q-4	Base Point	Obtain Operating Value of Unit Performance	No Out of Specification Change in Performance as Result of Any Intermediary Testing		
Q-5	Qualification Vibration	Determine Effect of Vibration on Structural Integrity	No Failure, Malfunction or Out of Tolerance Performance Shall Occur 3tructural Integrity Shall be Maintained		
9- 6	Spin Fire	To Verify System Functional Capability at Mission Spin Rates	System Successfully Meets Specification Requirements With no Out of Tolerance Performance		
Q-7	Thermal Vacuum	To Demonstrate the Capability of the System to Operate in a Simulated Space Thermal Environment	No Out of Specification Degeneration Shall Occur as a Result of Operation of the System at the Extremes of Environment		
Q−8	Mission Life	To Acquire Sufficient Operating Time to Meet System Mission Requirements	System Successfully Meets Life Requirements with no Out of Tolerance Performance		

TABLE 5.6.2-I. QUALIFICATION TEST SUMMARY DESCRIPTION

Hamilton Standard

Test No.

A-2

A-3

·A-6

A-7

A-8

A-12

A-14

1

SP07R70-F

TABLE 5. 6.3-I. ACCEPTANCE TEST SUMMARY DESCRIPTION

Test			
No.	Test Type	Objective	Success Criteria
A-1	Examination of Product	Compliance with Drawing and Specification	Meets all Drawing and Specification Requirements
A-2	Proof Pressure	To Demonstrate Structural Integrity of Unit	No Permanent Deformation
A-3	Leakage – External and Internal	To Verify Leakage Rates Are Within Specification Requirements	Leakage Does Not Exceed Specification Limits
A-4	Base Point	Obtain Operating Value of Unit Performance	No Out of Specification Change in Performance as a Result of Intermediary Testing
A- 5	Acceptance Vibration	Determine Effect of Vibration on Structural Integrity	No Failure, Malfunction or Out of Tolerance Performance Shall Occur Structural Integrity Shall be Maintained
A-6	Performance	Demonstrate Acceptable Performance	No Out of Specification Perf.
A-7	Thrust Calibration	Match Engine Thrust Levels	Thrust Levels Within Tolerance for Given Inlet Pressure
A-8	Cleanliness Verification	Verification of Contamination Level	Measured Particulate Count in Tolerance
A-9	Radiographic Inspection	Verify Integrity of Welds	No Cracks, Inclusions or Imperfections
A-10	Insulation Resistance	Prove Test Unit Insulation Adequate	Measured Resistance Over Specification Requirement
A-11	Dielectric Strength	Prove Test Unit Housing Leakage Resistance	Measured Current Leakage Within Tolerance
A-12	Coil Resistance	Determine Test Limit Coil Resistance	Resistance Within Specified Tolerance
A-13	Flow	Check Unit Flow and Pressure Drops	Flow Within Specification Tolerance
A-14	Function Checks	Verification of Unit Operation	Successful Operation With no Out of Tolerance Parameters

Hamilton UNITED AIRCRAFT CORPORATION OF UNITED AIRCRAFT CORPORATION

5.7 <u>Thermal Analysis</u>

On the basis of the preliminary thermal information presented in the GSFC subsystem specification, all internally mounted equipment of the propulsion subsystem can be thermally controlled using passive design techniques. Based on this technical assessment, the thermal analysis performed during the study was directed toward aspects concerned with the Rocket Engine Assemblies (REA's) and their thermal interface with the spacecraft.

A study was conducted to evaluate the operational characteristics of the IDCSP/A engine assembly with the thermal interface defined for the Planetary Explorer mission in the GSFC subsystem specification. The engine installations must satisfy the following criteria:

- 1. The engine package external temperature must remain below 215°C (420°F) and have a low emittance ($\epsilon \leq .2$).
- 2. The engine mount temperature must not exceed 215°C with a mount resistance of 50°C/watt (26.4 °F hr/Btu).
- 3. The engine valve must not overheat during soakback.
- 4. Propellant at the engine valve inlet must not freeze at low compartment temperatures.

The results of this study are summarized in Table 5.7-I, along with a listing of assumptions used. These results are discussed below.

MAXIMUM SURFACE TEMPERATURE DURING VENUSIAN ORBIT:

The surface temperature and emissivity constraints mentioned above dictate the use of thermal shielding around the engine to reduce solar heat pick-up and to limit the external temperature of the engine during firing and soakback periods. The worst case, from an external temperature standpoint, are the spin engines which overhang the vehicle and are, therefore, heated for the full rotational period. With an emissivity of .2 and an $\alpha = .4$, for the outer insulation covering, the solar soak temperature of the shield becomes 298°F for maximum orbital solar and albedo input, and 228°F for average orbit input. This is excessively hot for the non-firing case. Application of a radiator coating ($\mathcal{E} = .7$, $\mathcal{P} = .2$) over the outer quadrants of these shields which look into space will aid heat rejection to space while lowering solar energy absorption. Although this approach technically violates the specified $\epsilon \leq .2$, the intent of the specification is not violated, since the low emissivity surface is retained on the portions of the shield which have significant radiative coupling to the spacecraft surface. The equilibrium solar soak temperature for the coated shield becomes 118°F for average orbital heat load. For a shield of this type, the outer skin would have to be fabricated from a material with high thermal

5.7 (continued)

conductivity in order to distribute engine firing heat evenly over the shield surface. Insulation requirements for the inner portions of the shield were determined under the constraint that the outer surface remain below 420°F during steady state engine firing while being simultaneously exposed to orbital solar plus albedo heat input. The results indicate that a one-half inch thick layer of MIN-K 2000 surrounded by a metal shroud with the previously described characteristics will meet the external temperature criterion.

MOUNTING FLANGE SOAKBACK TEMPERATURE:

Detailed thermal analyses performed for other applications of the IDCSP/A engine (with radiation shields) have shown that flange soakback temperatures will reach $425^{\circ}F$ at approximately 10 minutes following shut down from a steady state firing if the engine mount resistance is $15^{\circ}F/Btu$ -hr. The Planetary Explorer subsystem specification calls out a mount resistance of $26.4^{\circ}F/Btu$ -hr. A mount resistance this high will result in soakback flange (and propellant manifold) temperatures of roughly 500°F which are excessive from the standpoint of avoiding propellant boiling in the engine manifold, and overheating of the spacecraft structure at the engine interface. It is recommended that this requirement be relaxed to $15^{\circ}F/Btu$ -hr.

ENGINE PROPELLANT VALVE SOAKBACK TEMPERATURE:

The IDCSP/A engine configuration effectively isolates the propellant valve from the hotter engine parts through the high thermal impedance of the propellant feed tube. Maximum valve soakback temperatures for the Planetary Explorer application will be approximately 200°F.

INTERNALLY MOUNTED EQUIPMENT

The following discussion concerns equipment which is physically located in compartments within the spacecraft structure.

1. Engine Valves - Radial Engines

The equipment compartment temperature extremes given in Table 3 of the GSFC subsystem specification are not sufficiently severe (on the cold side) to warrant active heating for the engine valves if the small amount of solar heat picked up from the external portions of the engines is taken into account.

2. Tankage

If the assumption is made that, between the two sets of upper compartment temperature extremes labeled "completely insulated" ($-20^{\circ}C - 25^{\circ}C$) and "partially insulated" ($+13^{\circ}C - 76^{\circ}C$), there is an intermediate situation ($+5^{\circ}C - 65^{\circ}C$) which can be achieved, then nothing in the way of thermal protection for the tankage is required.

TABLE 5.7-I. SUMMARY RESULTS OF THERMAL ANALYSIS

Equipment Condition	Temperature	Mission Event	Assumptions
Maximum temperature of engine external surfaces	erature 400°F Venus orbit - full solar al surfaces plus orbital avg. albedo incident heat flux with engine firing steady state		1/2 inch of MIN-K conformal insulation enclosed by high conductivity can with $E \leq .2$ on spacecraft side, and $E = .7/$ \propto solar = .2 on sun side (achieved with radiator coating on sun side and polished aluminum on vehicle side)
Maximum temperature at engine mounting flange	420°F	Soakback after engine shutdown following steady state firing under conditions described above	Engine mount thermal resistance = 15 °F hr/Btu instead of spec value of 26.4 °F hr/Btu (Note: 26.4 °F hr/Btu will yield \$\$500°F' soakback temperature)
Maximum valve soakback temperature	Maximum valve ≈ 200°F Same as above soakback temperature		Same as above
Engine valves for radial engines which are buried in equipment compartment	Engine values for radial engines which are buried in equipment compartment40°-130°FAll		Small amount of heat picked up by valves from external parts of engine
Propellant tanks	oellant tanks 40°–140°F All		There is a "middle ground" between the two sets of temperature ranges in Table 3 of spec. headed "partially insulated" and "fully insulated"

SP07R70-F

5.8 Engine Exhaust Plume Impingement Effects

In spacecraft applications utilizing monopropellant hydrazine rocket engines, three aspects pertaining to the engine exhaust have to be taken into consideration. These are: (1) contamination of sensitive surfaces, (2) thermal effects, and (3) induced disturbing torques.

This section presents the results of a study to determine the effect of plume impingement on each of the 15 candidate systems presently being evaluated for the Planetary Explorer application. The 15 candidate system configurations utilize the three basic types of mounting which are described below.

• <u>Type I Engine Mounting</u> – Engines of this type are mounted above and/or below the main solar cell arrays on the spacecraft center structure and outboard of it, firing tangentially.

• <u>Type II Engine Mounting</u> - Engines of this type are mounted on the circumference of the main body of the spacecraft and fire perpendicularly outward.

• <u>Type III Engine Mounting</u> – Engines of this type are mounted on the circumference of the main body of the spacecraft and fire tangentially.

The Type II mounting configuration yields the lowest possibility of plume impingement and so will not be considered.

At specimen temperatures below -17° C, ammonia, water and traces of hydrazine in the plume may condense on vehicle surfaces. Of these, hydrazine has the lowest vapor pressure and will thus be the slowest to sublimate after the engines are turned off. However, Hittman Associates Inc., under NASA Contract NAS 5-11826 report that at temperatures above -73° C hydrazine will sublimate in a short period of time. It is thus concluded that for surfaces above -17° C plume condensation is not a problem and for surfaces above -73° C plume condensation may cause a temporary coating during engine firing but the coatings will rapidly sublimate after engine shutdown.

The solar cell array varies in temperature from 15° C to 70° C as it cruises toward Venus. Once in orbit, the greatest temperature variation, and the lowest solar cell temperature, occur for the Maximum Shadow orbit when temperatures vary from $+100^{\circ}$ C to -100° C over a period of approximately three hours. For other orbits, the lowest solar cell temperature achieved is 68° C. Exhaust product condensation would not appear to be a problem even for the Maximum Shadow orbit since any condensate

SP07R70-F

5.8 (Continued)

would only build up when the cells are in shadow and are therefore dormant, and when heat-up occurs, this condensate will quickly evaporate.

The contamination effects on space-borne equipment such as thermal control paint, solar cells and optics were investigated by the Air Force Rocket Propulsion Laboratory (Reference 3). Using a Hamilton Standard supplied 25 lbf hydrazine rocket engine, a series of more than 200 firings were conducted at each test position. The severity of the exhaust impingement effects was evaluated by: (1) measuring any change in the initial ratio of absorption and emittance of thermal control paint, (2) observing change in solar cell output and physical damage incurred, (3) observing image distortion and loss of transmittance through the optics as well as physical damage incurred, and (4) attempting to identify the exhaust plume contaminants. The thermal paint specimen which showed the greatest change in absorption value (specimens varied from .04% to 18.5% depending on axial location) was located only 5 inches from the nozzle of the 25 lbf engine. The optics and solar cell tests consisted of two different positions varying the distance of the test panel from the nozzle. In general, only very slight degradation of the test specimens occurred. In some cases, the ammonia, which is a product of the hydrazine reaction, appeared to have cleaned some of the optical specimens.

The effects of hydrazine exhaust plumes and propellant spills was also investigated in Reference 4 at LTV Aerospace Corporation. Using a two pound thrust engine, tests were run on the following materials:

- Polished 1060 aluminum
- Oxidized 1060 aluminum
- Zinc oxide thermal coating
- Potassium silicate thermal coating
- Aluminized Mylar (Schjel-Clad)
- Optical Glass
- Finned Copper Raschel Weave Lace
- Chromel Cloth
- Reinforced Polyethylene

No deleterious effects were found due to hydrazine spillage. During plume impingement testing, samples were exposed to pulses of varying length while located at different distances from the nozzle, although all the samples including the 1 mil Mylar withstood pulsed operation of the engine with the specimen located 5 inches from the nozzle. When on-times were increased to 1 second, only the polyethylene was damaged. Data for the finned copper lace was presented and showed a 500°F temperature rise for 1 second duration firing at a nozzle-specimen distance of 5 inches, a 400°F rise at 10 inch distance and a 325°F rise at 15 inch nozzle to specimen distance.

SP07R70-F

5.8 (Continued)

In order to determine the possible heating rates from the plume impingement for the configurations being considered, the analysis presented in Reference 1 was applied to the Type I mounting configuration.

Using the following equations, the density ratio profile of the exhaust plume may be determined:

$$\frac{\mathrm{Ve}}{\mathrm{V_{max}}} = \mathrm{Me} \left[\frac{\gamma_{-1}}{2} \left(1 + \frac{\gamma_{-1}}{2} \mathrm{Me}^2 \right)^{-1} \right]^{1/2}$$

$$\frac{\mathrm{CF}}{\mathrm{CF_{max}}} = 1/2 \left(1 + \mathrm{Cos} \ \boldsymbol{\Theta}_{e} \right) \frac{\mathrm{Ve}}{\mathrm{V_{max}}} \left[1 + \left(\gamma \mathrm{Me}^2 \right)^{-1} \right]$$

$$\boldsymbol{\delta} = \left[\sqrt{\pi} \left(1 - \frac{\mathrm{CF}}{\mathrm{CF_{max}}} \right) \right]^{-1}$$

$$\mathrm{X} = \mathrm{d}^* \left(\frac{\mathrm{B} \ \rho_{o}}{\rho} \right)^{1/2}$$

$$\mathrm{X} = \mathrm{X} \mathrm{Cos} \ \boldsymbol{\Theta} = \exp \left\{ -\frac{\delta 2}{2} \left[1 - \mathrm{Cos} \ \boldsymbol{\Theta} \right]^2 \right\}$$

where:

 V_e = exit velocity M_e = Mach no. at exit γ = ratio of specific heats Θ_e = exit angle of the nozzle δ = plume spreading parameter

The ρ_0/ρ was then plotted and appears in Figure 5.8.0-1. With the density profile known, the heating values may be determined as follows:

$$\rho_{o} = (\rho^{*}) \quad (1 + \frac{\gamma_{-1}}{2})^{\overline{\gamma^{*}-1}}; \rho = \frac{\dot{M}}{U^{*}A^{*}}; U^{*} = \sqrt{\frac{2\delta R T_{o}}{\delta + 1}}$$

With this expression, the local density may be determined, and since the exhaust velocity approaches a constant as the pressure approaches zero, the velocity U may be determined from:

$$U = U^* \left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma-1}} \frac{\delta}{2B\sqrt{\pi}}$$

where B is a constant which is a function of the nozzle geometry and gas properties and is found tabulated in Reference 1.

SP07R70-F

Hamilton UNISION OF LUNITED AIRCRAFT CORPORATION

5.8 (Continued)

An estimate of the heat transfer coefficient may now be obtained from the analysis presented in References 5 and 6. Using the equations presented and the plume density distribution already derived, the local heating rates which may be experienced along the edge of the lower solar cell array may now be calculated and are presented in Figure 5.8.0-2.

To obtain an estimate of the disturbing torques induced by the plume impingement presented in Figure 5.8.0-1, the plume velocity is once again determined as in the previous discussion, $U = 1.33 \times 10^4$ ft/sec, the normal component of which is used to calculate the dynamic pressure over the impinged surface. For a "worst case" analysis, the highest impingement flow density, $\rho = 4.12 \times 10^{-9}$ lb/ft² and the greatest incidence angle $\Theta = 20^{\circ}$ was used. At these high Mach numbers, the pressure force was calculated by assuming the normal component of momentum provided the total force.

The resulting pressure on the vehicle appears insignificantly low, $P_N = 8.3 \times 10^{-5}$ psia, so that disturbance torques need not be considered a problem for this application.

References

- 1. Hittman Associates Inc., <u>A Study of the Effects of Hydrazine Thruster</u> <u>Exhaust Upon a Spacecraft</u>, Report No. HIT-454, Contract No. NAS 5-11826, June 1970.
- 2. Y.C. Brill, R.C. Stechman and R.J. Reis, <u>Effect of Hydrazine Rocket Fuel</u> on Spacecraft Materials, 14th Annual Meeting, The Institute of Environmental Sciences, St. Louis, Missouri, 1968.
- 3. P.J. Martinkovic, <u>Monopropellant Exhaust Contamination Investigation</u>, AFRPL-TR-69-72, April 1969.
- 4. F. T. Esenwein, S. C. Walker, <u>Effects of Hydrazine Exhaust Plumes and</u> <u>Propellant Spills on Selected Spacecraft Materials</u>, Missile and Space Division, LTV Aerospace Corporation, Dallas, Texas, L 708-0980, December 1967.
- 5. H.K. Cheng, A.L. Chang, <u>Hypersonic Shock Layer at Low Reynolds</u> <u>Number - The Yawed Cylinder</u>, Cornell Aeronautical Labs. ARL #62-453, October, 1962.
- 6. A. Peracchio, <u>Heating Due to Rocket Exhaust Impingement</u>, Hamilton Standard Report, HSIR 2212, August 1964.

FIGURE 5.8.0-1. EXHAUST PLUME DENSITY

SP07R70-F

Hamilton Standard

õz

FIGURE 5.8.0-2. EXHAUST PLUME HEAT TRANSFER ESTIMATE

5.8-7/5.8-8

SP 07R70-F

5.9

Propulsion Subsystem Leakage Analysis

A mission leakage analysis was performed on the candidate propulsion subsystems to determine the maximum pressurant and propellant leakage rate during mission launch and armed modes. The leakage rates used for the various components (fill and drain valve, tank, squib valve, filter, latching valves and engine assemblies) were based on the component qualified levels, and the rates for line joints (both mechanical and welded) represent values which are commonly attainable in practice. A summary of the leakage rates are tabulated in Table 5.9.0-I and 5.9.0-II. The propellant leakage rates, expressed in terms of gas leakage, include a breakdown for the various candidate propulsion subsystems whereas the pressurant rates, which are independent of the hardware variables associated with the candidate subsystems, are shown only as a function of the Orbiter and Probe missions. The maximum pressurant leakage rate is 4.0 $(10)^{-5}$ scc/sec GN₂ (.0032 lb GN₂/yr) for the Orbiter mission and 2.8 $(10)^{-5}$ scc/sec GN₂ (.0022 lb GN₂/yr) for the Probe.

These values satisfy the specification limit of .02 lb/yr of GN₂ pressurant leakage. The maximum total estimate for propellant leakage (expressed in terms of gas leakage) is 141.5 $(10)^{-5}$ scc/sec N₂, and represents the leakage of the 8 engine Orbiter configuration with the FS-4 feed system. The estimated equivalent liquid leakage for this system, based on this total gas leakage, is .23 lb/yr* which exceeds the specification value of .08 lb/yr. However, it should be noted that there is a very high degree of conservatism in this estimated value, and there is confidence that this leakage will actually never be experienced. The analysis assumes that the latching solenoid valves are continuously open and that each of the engine valves are leaking the maximum rate of 14 $(10)^{-5}$ scc/sec N₂ (.5 scc/hr N₂). In addition, the effect of dual seats in the propellant valves has not been considered, and the analysis assumes that one of the seats in each of the propellant valves has failed. In addition, practical experience has shown that no liquid leakage will occur where the gas leakage is below 10 scc/hr N_2 . Since each of the components have rated values below this limit, experience predicts no liquid leakage from the system, thus, more conservatism is present in the analysis since practical experience is neglected and the theoretical values are used.

The analytical conversion from gas to liquid leakage was obtained using the leakage conversion nomograph (Per Leakage Testing Handbook #5-69-111 pg 6-15 NASA JPL). The conversion method was applied to the sum of all the component gas leakages which is the same as assuming the liquid leakage is linear with gas leakage. A separate analysis, however, shows this assumption to also be conservative. If the conversion were instead applied first to the individual rates and then summed, the total system leakage would be only .070 lb/yr which is below the specification value.

* Ref. Leakage Testing Handbook #S-69-111, NASA JPL per Contract NAS 7-396. Hamilton U UNITED AIRCRAFT CORPORATION Standard A®

SP07R70-F

5.9 (Continued)

The total propellant leakage prior to arming is also listed and it can be seen that for those systems not utilizing squib values for isolation, the leakages are comparable to those for the armed systems. The values shown are maximum and are contingent on maximum rates through the latching values coupled with the condition of maximum leakage rates through all the propellant values. Since the cumulative leakage of all of the propellant values will be greater than the latching values used for each system, the launch mode leakage will be governed by the leakage rates of the latching values. The same degree of conservatism also applies to this analysis as was previously stated.

TABLE 5.9.0-II. PRESSURANT LEAKAGE RATIO -

COMPONENT	Component Leakage 10-5 <u>scc</u> N ₂	O.	RBITER	PROBE		
		QTY	Leakage	QTY	Leakage	
N ₂ Fill & Drain Valve	. 1	1	•1	1	.1	
Tanks	• 1	9	•9	6	•6	
Line Joints Welded	•1	30	3.0	21	2.1	
TOTAL		4.0 (scc/s	10) ⁻⁵ ec N ₂	2.8 scc/	(10) ⁻⁵ 'sec N ₂	

ORBITER AND PROBE MISSIONS

IN OF UNITED AIRCRAF Hamilton Standard

FOLCOUT FRAME

TABLE 5.9.0-I. PROPELLANT LEAKAGE RATES - ORBITER AND PROBE

				CA I, II	NDIDA'	TE PROPULS, VII, VII	SION SYST	EM III		
Component	Teakage	ponent XIV & XV					(P5, P10 & P13) Config			
	_ scc		Launch	Armed		Launch	Armed			
	10 ⁻⁵ sec N2	Qty	Leakage	Leakage	Qty	Leakage	Leakage	Qty		
 Propellant Feed System Valve Upstream of Isolation N₂H₄ Fill & Drain Valve Pressure Transducer Line Joint (Welded) Line Joint (Mech) 	.1 .1 .1 2.0	1 1 (a) 1	.1 .1 6.0 4.2(b) 2.0	.1 6.0 4.2(b) 2.0	1 1 (a) 1	.1 .1 6.0 4.2(b) 2.0	.1 .1 6.0 4.2(b) 2.0	1 1 (a) 1		
. Propellant Feed Upstream of Engines Squib Valve Test Port Filter Latching Valve (N.O.) Internal External Latching Valve (N.C.) Internal External Line Joints (Welded)	.1 .1 .1 39.0 .1 39.0 .1 .1		N/A - - - 78.0 .2 1.7	N/A .2 .1 N/A - - .2 1.7	- 1 2 - 2 - 21	N/A - - - 78.0 .2 2.1	N/A .1 .1 - .2 - .2 2.1	1 1 2 - - 15		
. Propellant to Engines Engines Internal External Line Joints (Welded) Line Joints (Mech) TOTALS (10)-5 <u>sec</u> N ₂ : ORBITER	14.0 .1 .1 2.0	8 - 18 8	88.1	112.0 .8 1.8 16.0	8 18 8		- 112.0 .8 1.8 16.0 141.5	8 - 18 8		
sec PROBE			86.3	139.2		86.7	139.7			

1

NOTES: a) Orbiter - 60 Probe - 42 b) Value is for Probe

SP 07R70-F

SITER AND PROBE MISSION

S	ION SYST	EM	دیہے پیشتی کہ کاریا ہے کاری		CANDIDATE PROPULSION SYSTEM								
[] 27	I, IX, X 3) Confi	III rureti	ons							C FCT & 70	onfi a	nurations)	
.4			FS-E	3	$\frac{1}{FS-2}$			<u>^, ^1</u>	$\frac{\infty}{FS}$		FS- 8		
Ī	Armed		Launch	Armed	 -	Launch	Armed		Launch	Armed		Launch	Armed
4	Leakage	Qty	Leakage	Leakage	<u>Qty</u>	Leakage	Leakage	Qty	Leakage	Leakage	Qty	Leakage	Leakage
	.1 .1 6.0 4.2(b)	1 1 (a)	.1 .1 6.0 4 2(b)	.1 .1 6.0 h $2(h)$	1 1 (a)	.1 .1 6.0	.1 .1 6.0	1 1 (a)	.1 .1 6.0	.1 .1 6.0 1 $2(1)$	1 1 (a)	.1 .1 6.0 4 2(b)	.1 .1 6.0 4.2(h)
	2.0	I	2.0	2.0	1.	2.0	2.0	11	2.0	2.0	l	2.0	2.0
	N/A .1 .1 - .2 - .2 2.1	1 1 2 - - 15	.1 - - N/A -	.1 .1 .1 .2 N/A 1.5	- 2 1 - 2 - 17	N/A - N/A - 78.0 .2 1.7	N/A .2 .1 N/A - - .2 1.7	- 1 2 - 2 - 21	N/A - - - 78.0 .2 2.1	N/A .1 .1 - .2 - .2 2.7	1 1 2 - - 15	.1 - - N/A -	.1 .1 - - .2 N/A - 1.5
	- 112.0 .8 1.8 16.0 141.5 139.7	8 - 18 8	- - - - 8.3 6.5	- 112.0 .8 1.8 16.0 140.8 139.0	6 - 12 6	- - .2 - 88.1 86.3	- 84.0 .6 1.2 12.0 108.2 106.4	6 - 12 6	- - - 88.5 86.7	- 84.0 .6 1.2 12.0 108.7 106.9	6 - - 12 6	- - - - 8.3 6.5	- 84.0 .6 1.2 12.0 108.0 106.2

5.

Hamilton Standard **A**®

SP07R70-F

5.10 Environmental Effects

The environmental loading conditions for the Planetary Explorer spacecraft appear to be well within the requirements for spacecraft which are presently operational. Table 5.10.0-I summarizes the environmental characteristics for the propellant tanks and the engines. Components such as ordnance valves, latching solenoid valves, fill and drain valves, filters, and pressure sensors considered for the Planetary Explorer have been subjected to more severe environmental conditions in previous applications. The tanks and engines have also been exposed to similar environmental conditions for the IDCSP/A satellite application and the characteristics for the IDCSP/A are summarized in Table 5.10.0-I. Reviewing these characteristics relative to the Planetary Explorer requirements provides a basis for confidence in their use. All of the IDCSP/A levels, with the exception of sinusoidal vibration, are equal to or in excess of the Planetary Explorer requirements, however, the sinusoidal levels are satisfied by performing a comparison with the response levels encountered during random vibration. Note that the 19.5 g'rms represents a hard-mounted input therefore the response will be higher. A peak acceleration of 58.5 g's is estimated during random vibration which is somewhat higher than and therefore satisfies the Planetary Explorer sinusoidal requirements. Since the IDCSP/A shock levels are also expressed in terms of the input to the hardware, an estimate of the response was made, and the results indicate the levels to be considerably greater than what is required for the Planetary Explorer application.

5.10 - 1/5.10 - 2

SP 07R70-F

Hamilton U DIVISION OF UNITED AFFCRAFT CORPORATION Standard A

TABLE 5. 10-1. EQUIPMENT CAPABILITY - DYNAMIC LOADS

ITEM		
ENVIRONMENT IDCSP/A TANK	PLANETARY EXPLORER QUALIFICATION REQUIREMENTS	HARDWARE QUALIFICATION LEVELS
Sinusoidal Vibration	In 100-150 CPS Range 23.0 g's thrust dir. * 15.0 g1s lateral dir.* * Response Using Q = 10	None, however, peak acceleration from random vibration = 58.5 g's
Random Vibration	5.8 g rms 4.0 min/axis (Response Using $Q = 10$ and assuming for $= 120$ CPS)	19.5 g rms 1 1/2 min/axis Hardmounted Input 30 g's -x)
Steady Acceleration	14.7 g's Thrust Dir. 3.0 g's Lateral Dir. + 7.0 g's Due to Spin = 120 RPM	15 g's +x) 8 g's y, z (Lateral)
Shock	38 g's Response	Input: 750 g half sine for $.4 \pm .1$ ms Estimated Response: 140 g's Assuming $f_n = 120$ CPS
Acoustic	144 db Overall	147 db Overall
IDCSP/A ENGINE		
Sinusoidal Vibration	In 17-23 CPS Range: 6.0 g's Thrust Direction	None, however, peak acceleration from random vibration = 58.5 g's.
Random Vibration	15.7 g rms 4.0 min/axis (Response Using Q = 10 and Assuming $f_n = 350$ CPS)	19.5 g rms 1 1/2 min/axis Hardmounted Input
Steady Acceleration	14.7 g's Thrust Dir. 3.0 g's Lateral Dir. +10.0 g's Due to Spin = 120 RPM	25 g's Each Direction
Shock	120 g's Response	Input: 750 g half sine for .4 ±.1 ms Estimated Response: 400 g's Assuming f _n = 350 CPS
Acoustic	144 db Overall	147 db Overall

5, 10-3/5, 10-4

SP07R70-F

5.11 Contamination Control

The control of contamination in a propulsion subsystem is a major contributor toward improving reliability. This area must be controlled throughout design, assembly and testing phases of the program. The following five basic sources of contaminants can affect the propulsion subsystem:

- Contamination in the hydrazine propellant
- Contamination in the nitrogen pressurant
- Contamination generated by the catalyst
- Internal contamination, such as machining chips and self-generated contamination
- Contamination from external sources such as the atmosphere

In general, the contamination control considerations for the propulsion subsystem, in order to avoid contamination induced failures from the above sources, are as follows:

- Design to minimize contamination sensitivity
- Design to minimize contaminant generation
- Design to provide ease of cleaning and subsequent monitoring
- Cleaning and packaging of all parts to cleaning specifications prior to assembly
- System assembly procedures controlled to minimize introduction of contaminants
- Inspection procedures affirming compliance with cleanliness requirements
- Maintenance and servicing procedures planned to minimize the introduction of contaminants

Downstream of the injector tubes are previously proven propellant diffusers which have 200 x 200 mesh screens capable of filtering 74 micron or large particles. Should catalyst fines migrate into the injector tubes during vibration or handling, they will be flushed clear during the initial firing of the thruster. Those few catalyst particles are 80 percent smaller than the injector tube diameter and are readily flushed clear. The valve is not susceptible to catalyst contamination due to the fact that it is either closed or has a positive flow at all times.

The recommended system filter has a contaminant holding capacity of 100 milligrams which is an order of magnitude greater than the possible quantity of contaminants which may remain in the system upstream of the filter after cleaning. This filter has a rating of 10 microns absolute assuring protection of the downstream components. Contaminant trapped by the filter will be considerably less than the holding capacity of the filter even if it were possible for all of the residual contaminants in the system to migrate to the filter.

Hamilton Standard

5.11

(Continued)

Examples of specific steps taken to avoid contamination include:

- Selection of a propellant valve with no sliding parts
- Selection of materials which are compatible with hydrazine in order to avoid corrosion induced contamination
- Filter all fluids introduced into the subsystem through a 10 micron absolute filter to minimize the contaminant level introduced externally
- Seal all ports and openings with nylon film or protective fixtures when processing in non-controlled facilities
- Positive demonstration by way of fuel compatibility and contamination tests on all systems.

To provide a reliable propulsion subsystem for the Planetary Explorer applications the following cleanliness levels are recommended:

Components Upstream of Filter:

Particulate Size Range (Microns) No. of Particles Allowed per Sq Ft of Surface Area

 $\begin{array}{r} 0 - 100 \\ 100 - 150 \\ 150 - 175 \\ + 175 \end{array}$

Unlimited * 7 1 0

Components Downstream of Filter:

Particulate Size	No. of Particles Allowed
Range (Microns)	per Sq Ft of Surface Area
0 - 50	Unlimited **
50 - 75	5 5
75 - 90	1
90 +	0

"Unlimited" shall be restricted to that quantity of contamination which is not considered excessive silting to the point where discoloration of the membrane filter is observed.

** Same as single asterisk above plus - in addition, no metal particles over 50 microns in size shall be allowed.

SP07R70-F

Hamilton U Standard A®

5.11 (Continued)

** "Unlimited" shall be restricted to that quantity of contamination which is not considered excessive silting to the point where discoloration of the membrane filter is observed. In addition, no metal particles over 50 microns in size shall be allowed.

More stringent cleanliness level are possible, but, are considered unnecessary and costly, the basic problem being of inherent need and maintenance of cleanliness rather than achievement for short periods of time. Previous program experience (IDCSP/A) has indicated reliable operation of the thrust chamber and propellant control valve at 75 micron maximum particle size cleanliness level which is less rigorous than what is recommended.

Hamilton DIVISION OF UM Standard

5.12

C.G. Tolerances

The candidate subsystems are all inherently unbalanced because of the modularized component panel, and the unsymmetrical engine locations on two of the engine placement concepts. Since weight is critical on the Planetary Explorer spacecraft it appears impractical to balance the propulsion subsystem for these major unbalances with "dead" weight. Coordination between the propulsion system manufacturer and GSF'C can provide a compatible mass interface minimizing the addition of "dead" weight. The unbalance for the non-symmetrical placement of components would require the addition of a counterbalance of approximately 4.75 lbs for the worst case component panel, and approximately 10.0 lbs for the worst case engine and component panel concepts. This counterbalance would be strictly "dead" weight which could be better utilized in any number of areas.

Assuming the component panel and the engines can be counterbalanced by experiment packages, and final spacecraft balancing, the tanks then become the leading contributor the center of mass uncertainties. Table 5.12.0-I summarizes the center of mass deviation with, and without, subsystem balancing. From this table it can be observed that the C.G. deviation with, and without, propellant is slightly greater than the desired deviation of .015 inches when the unsymmetrical masses are counterbalanced. The C.G. deviations were estimated for the nine tank Orbiter arrangement and with engines in symmetrical locations, and are based on a $\pm .030$ inch dimensional location accuracy to the center of mass for each component and a ± 5 percent tolerance on the component weights. Before the tanks are assembled to the subsystem their weights will be determined and the tanks will then be distributed to minimize the unbalance for the tank and manifold assembly. The effective amount of unbalance contributed was statistically averaged, and the sum of these averages presented as the maximum net result. The tank and manifold assembly can be balanced before addition of the unsymmetrical components. This method of balancing will minimize the effect propulsion expulsion has on C.G. shift.

Propulsion subsystems with symmetrical engine positions can be balanced by adding a counterweight to the test setup offsetting unbalance caused by the component panel and components. This method can also be used for systems with unsymmetrical engine position. Balancing, at the tankage/manifold level can assure the highest accuracy of the subassembly which then will have the least disturbance effect on the spacecraft during propellant expulsion.
SP 07R70-F

and the same

TABLE 5.12-1 CENTER OF MASS RADIAL INACCURACY

Hamilton Standard

PROPULSION SUBSYSTEM	COUNTERBALANCED	COUNTER WEIGHT (LBS)	CENTER OF MASS RADIAL INACCURACY (MAX)		
P-5, P-7, P-10 (SYMETRICAL ENGINE PLACEMENT)	YES * NO	4.75 [*]	0.013 IN. 0.424 IN.	0.017 IN. 1.270 IN.	
P-12M, P-13 (UNSYMETRICAL ENGINE PLACEMENT)	YES* NO	9.87 [*]	0.013 IN. 1.42 IN.	0,018 IN. 4,33 IN.	

* NON SYMETRICAL COMPONENT PLACEMENT COUNTERWEIGHT ASSUMED OFFSET BY SPACECRAFT EXPERIMENT PACKAGES.

1

100

SP 07R70-F

APPENDIX A

RATE, RESOLUTION AND ENGINE MODULATION

Hamilton U Standard A®

RATE, RESOLUTION AND ENGINE MODULATION

Table A-1 summarizes the equations which can be used to determine the approximate values of rate and resolution for maneuvering a spin stabilized spacecraft. These equations are not exact since they do not account for engine warm-up which may significantly lower maneuver rate for short engine firings. However, for engine firings with on times in excess of 2 to 3 seconds, they approximate the maneuver rate within 10%. If more accurate results are desired the mission computer program used during this contract computes the actual maneuver rate for any given maneuver by dividing the maneuver size by the actual maneuver time required for the engine to deliver the necessary total impulse.

The most complex engine modulation for a spin stabilized spacecraft occurs when multiple engines are fired to perform a velocity change maneuver while simultaneously maintaining a constant vehicle spin rate and attitude.

The basic constraints listed below apply to the following discussion of this type of maneuver.

- The velocity change maneuver is performed with engines firing perpendicular to the spin axis.
- Engines are fired in a pulse mode over a short portion of the vehicle revolution when their thrust vector lines up approximately with the desired velocity change.
- Once the number and location of engines to be considered for the maneuver have been decided upon, it is desirable to complete the maneuver using minimum propellant and in a minimum time period.
- The center of gravity of the spacecraft is a known function of the mass of propellant consumed.
- The resultant thrust level of each engine is a known function of pulse width pulse number and mass of propellant consumed (Note: the resultant thrust level is the impulse delivered in the desired direction divided by the engine pulse width).

If it is assumed that all the engines to be used for the maneuver are fired with a fixed pulse width once per revolution, it can be seen that variations in c.g. location, engine moment arms and engine resultant thrust can cause distrubances in vehicle attitude and spin rate. These disturbances can be eliminated by pre-programmed modulation of the engines. There are at least three obvious methods of modulation:

(Continued)

- 1. Vary pulse widths on some engines.
- 2. Skip firing during some spacecraft revolutions on some engines.
- 3. Combinations of 1 and 2 above.

Regardless of the method used the following analysis applies. Assume it has been decided to consider "K" engines for performing the maneuver. (Note: The word consider is used since it is possible that the analysis will determine that "K-1" or "K-2", etc., engines are more desirable within the constraints defined above). It is assumed that at least one of the selected engines will be fired at the optimum pulse width (from a propellant consumption standpoint) once per revolution. This engine then becomes a reference and has a modulation constant (β) equal to one. In general, the modulation constant for other engines are given by:

$$\beta_{i} = \left(\frac{t_{on_{i}}}{t_{on_{opt}}}\right) \left(1 - \frac{1}{R}\right)$$

 $\beta_{\mathbf{i}}$

modulation constant of the th engine (none)

t_{on;} = pulse width of the ith engine (seconds)

t_{onopt} =

pulse width of the reference engine fired at optimum on time (seconds)

R = the number of revolutions between skipped pulses

The following analysis allows computation of the values of β_i for each engine when the vehicle c.g., engine moment arms and engine resultant thrust level for a optimum pulse width are known. If any of these values change as a known function of propellant consumption then the values of β_i can be updated and determined as a function of time during the maneuver using this analysis.

Step 1

Referring to Table A-1, calculate the values of the coefficients of β_i in the following two series. Each term represents an effective moment of the kth engine about the c.g. The terms in the first equation cause attitude errors. The terms in the second equation cause spin errors. Be consistent when selecting signs for each moment.

Step 2

From each equation select the term which has the largest coefficient. If these two terms have different subscripts for β then these β 's are the trial modulation constants. If these two terms have the same subscript for β then the term with the next smallest coefficient in the spin moment equation is determined. The three terms determined above have two β 's associated with them and they become the trial modulation constants.

Step 3

Set the attitude and spin moment equations equal to zero. Set all values of β except the trial modulation β 's and any previously determined zero β 's equal to one. Solve the two equations for the trial values of β .

(Continued)

If both trial values of β are positive the analysis is complete. If either or both are negative, the negative β 's should be set equal to zero and the analysis repeated starting with Setp one.

Step 4

To determine overall maneuver modulation constant average the non-zero modulation constants. To determine the effective number of firing engines sum the non-zero modulation constants.

The overall maneuver modulation constant can be used in approximating the maneuver rate by substituting its value in the appropriate equation in Table A-1. The effective number of firing engines can be used in the propellant consumption computer program as a means for estimating the effects of modulation on propellant consumption.

carbon 가는 것 같은 것 같				
<u>Maneuver</u>	<u>Rate (Units/Sec)</u>	Resolution (Units)		
(Velocity) ''ΔV'' (M/Sec)	$\frac{\mathbf{n} \mathbf{F} \boldsymbol{\eta} \boldsymbol{\beta}}{1019 \mathbf{M}} \frac{(\mathbf{N} \mathbf{ton})}{(60)}$	n F ŋ t _{on} . 1019 M		
(Spin) ''ΔV'' (RPM)	$\frac{n F r_{s}}{2.257 \times 10^{-5} I_{zz}}$	$\frac{n F r_{s} t_{on}}{2.257 \times 10^{-5} I_{ZZ}}$		
(Attitude) ''Δα'' (Degrees)	$\frac{n F \eta r_{\alpha}}{.3939 \times 10^{-6} N I_{ZZ}} (\frac{N ton}{1})$	$\frac{\text{n} \text{F} \boldsymbol{\eta} \textbf{r}_{\alpha} \text{ton}}{\textbf{.3939 x } 10^{-6} \text{N} \textbf{J}_{ZZ}}$		

RATE AND RESOLUTION EQ	DUATIONS FOR MANEUVERING.	A SPIN	STABILIZED	SPACECRAFT

TABLE A-1

Symbol	Units	Description	
ß	None	Modulation constant which is a function of C.G. location. If the sum of the force mements about the C.G. of all engines firing is zero it has a value of one.	
η	None	Impulse effectiveness ratio of impulse delivered in the desired direction to the total impulse delivered by engines.	
F	Lbs	Engine Thrust Level	
I _{ZZ}	Lb In ²	Vehicle Interia about the Spin Axis	
M	Lbs	Vehicle Weight	
Ν	RPM	Vehicle Spin Rate	
n	None	Number of Engines Firing	
$\mathbf{r}_{\boldsymbol{lpha}}$	Ft	Moment Arm for Attitude Control Engines	
r _s	Ft	Moment Arm for Spin Control Engines	
t _o n .	Sec	Engine on Time	

A-6

A-7/A-8

FIGURE A-1