https://ntrs.nasa.gov/search.jsp?R=19710017331 2020-03-11T20:05:26+00:00Z

CR-115.04/p

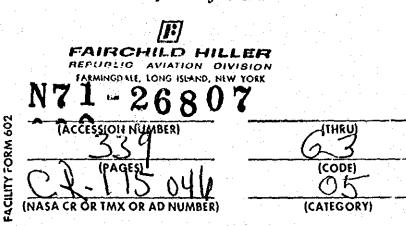
MS124Y0002 Volume IIA 30 October 1970

HOUSEKEEPING CONCEPTS FOR

NASA Approved

MANNED SPACE SYSTEMS

DATA BOOK VOLUME IIA WASTE DEFINITION


Prepared For

NATIONAL AERONAUTICS and SPACE ADMINISTRATION

Manned Spacecraft Center Houston, Texas 77058

Contract NAS9-10662 DRL Line Item No. 4

Prepared By Manned Space Systems

PRECEDING PAGE BLANK NOT FILMED

ABSTRACT

FAIRCHILD HILLER

This Data Book'on Housekeeping Concepts for Manned Space Systems contains parametric data on the waste control aspects of housekeeping for future manned orbital spacecraft. The data is intended for use by the mission planner, the spacecraft conceptual designer, and the equipment designer. The areas investigated include:

Identification of Waste Products, Rates of Generation and Constraints

Approximately 220 potential wasie sources, i.e., personnel life support functions, subsystem equipments and potential experiments, are identified. Study of these waste sources identified 1500 waste items, their constituents, rates of production and interfacing information for handling and processing.

<u>Utilization Processes</u>

Utilization processes are potentially capable of converting waste into useful onboard consumables/expendables in lieu of logistical resupply. Both existing systems and basic processing concepts useful as building blocks are discussed.

Pretreatment Processes for Disposal

Conceptual designs and parametric data are presented for treatment of normal organic and potentially pathogenic waste for deactivation or sterilization. Concepts for the compaction and packaging of deactivated wastes are presented.

Waste Disposal

۰.

Conceptual designs and parametric data are presented for separating wastes from the spacecraft. These include the use of the shuttle with resupply/ disposal modules, rocket launch for incineration in the earth's atmosphere or for alternate earth and sun orbits, and overboard jettisoning.

Waste Control and Housekeeping

Manual and automated concepts of waste collection, pickup, transfer and sorting for interfacing with utilization or disposal processing equipment are presented. The rationale for preparation of crew task and time line information as influenced by partial and zero gravity is developed. In addition, background human factors information for space flight is discussed.

Search/Report Computer Program

Because of the magnitude of the information generated, a computer program with updated and search capabilities was developed, and is presented.

111

The Data Book is divided into three volumes and, because of the magnitude of the information presented, Volume II is in two books. The contents by volume are as follows:

AIRCHILD HILLER

AVIATION DIVISION

UALIO

• VOLUME I - WASTE CONTROL - TASKS AND SYSTEM CONCEPTS

This volume contains the basic results of the study, except for the backup data on the definition of wastes.

• VOLUME II - WASTE DEFINITION

These books (IIA and IIB) contain the definition of waste products and the backup information.

• VOLUME III - WASTE CONTROL SEARCH/REPORT COMPUTER PROGRAM

This volume contains the printouts of the computer stored data.

VOLUME II WASTE DEFINITION DATA BOOK

CON TEN TS

	Page
INTRODUCTION	
The Problem The Data Arrangement Data Upgrading The Data Format	0.0-1 0.0-2 0.0-3 0.0-4
SUPPORT LIFE FUNCTIONS	
Monitor and Maintain Crew Health and Safety Provide Crew Quarters Provide Crew Food and Drink Provide for Crew Hygiene Provide and Control Atmospheric Environment	1.1-1 1.2-1 1.3-1 1.4-1 1.5-1
MAINTAIN SPACECRAFT FUNCTIONS	
Control Spacecraft Orbit Position and Attitude Provide for Electric and Thermal Power Provide for System Maintenance and Repair Provide Communication and Navigation Provide Station Data Collection and Storage Provide for Spacecraft Logistics Provide for Experiment Support	2.1-1 2.2-1 2.3-1 2.4-1 2.5-1 2.6-1 $3.7-1$
PERFORM MISSION TASKS	
Astronomy, Astrophysics, and Celestial Mechanics Studies/Tasks Physics and Chemistry Studies/Tasks Agriculture and Animal Housing Studies/Tasks Biology Studies/Tasks Medical Studies/Tasks Space Manufacturing Studies/Tasks Earth Resources and Oceanography Studies/Tasks Advanced Technology and Engineering Operations Lunar and Interplanctary Mission Support Military Sciences Studies/Tasks	3.1-1 3.2-1 3.3-1 3.4-1 3.5-1 3.6-1 3.7-1 3.8-1 3.9-1 3.10-1
	The Problem The Data Arrangement Data Upgrading The Data Format SUPPORT LIFE FUNCTIONS Monitor and Maintain Crew Health and Safety Provide Crew Quarters Provide Crew Food and Drink Provide for Crew Hygiene Provide for Crew Hygiene Provide and Control Atmospheric Environment MA INTAIN SPACECRAFT FUNCTIONS Control Spacecraft Orbit Position and Attitude Provide for Electric and Thermal Power Provide for Electric and Thermal Power Provide for System Maintenance and Repair Provide for System Maintenance and Repair Provide for System Maintenance and Storage Provide for Spacecraft Logistics Provide for Experiment Support PERFORM MISSION TASKS Astronomy, Astrophysics, and Celestial Mechanics Studies/Tasks Physics and Chemistry Studies/Tasks Agriculture and Animal Housing Studies/Tasks Biology Studies/Tasks Medical Studies/Tasks Earth Resources and Oceanography Studies/Tasks Earth Resources and Oceanography Studies/Tasks Advance 4 Technology and Engineering Operations Lunar and Interplanctary Mission Support

0.0 INTRODUCTION

The data in this volume deals with the definition of waste products that could result from manned spacecraft systems having various combinations of mission activities and subsystems. The definition of the waste is in a form that is meant to enhance the derivation of requirements and constraints on waste control housekeeping routines and equipments for various mission configurations. The definition includes identification of waste types and quantities and deals with small, medium, and large spacecraft presently being considered by the NASA agencies or studied by the aerospace 'ndustry. The mission limits include up to 100 men, a 10-year mission duration, a 30-day resupply interval, a 300-nautical mile near earth orbit, and a 55-degree orbit inclination.

0.1 THE PROBLEM

With the successful accomplishment of the Apollo mission and the manned landing on the moon, the United States objectives in space are being broadened. Skylab, the three-man orbiting workshop, will perform scientific, engineering, and medical experiments and will provide a basis for future manned spacecraft. Space stations orbiting the earth with 6 to 12 men aboard, servicing attached and remote manned and unmanned experiment modules, and being supplied by recoverable space shuttles are all part of the scope of near future plans. Longer term plans, which are less definitive, include the establishment of manned orbiting space bases, Lunar colonies, and manned exploration of the neighboring planets. Among all the esoteric skills that have already been developed for space, there is the less glamorous one of housekeeping that must be further broadened as the scope of space projects becomes more extensive.

The magnitude of housekeeping requirements aboard an orbiting space station will, in a very short time, give rise to a situation that is analogous to the polution and solid waste disposal tasks being encountered by the earthbound communities, that is, cope with the waste or be inundated by it.

In order to cope with the anticipated housekeeping trash and waste handling problems, carly planning and early development of appropriate waste handling and disposal means are required. Among the first tasks to be undertaken by the planners of future spacecraft to arrive at adequate space age housekeeping provisions and routines is to define the magnitude of the problem that is being attacked. This document, Volume II, "Waste Definition Data Manual", supplies a tool usable in defining the problem.

It is appropriate at this point to define certain key words used repeatedly in this study report.

- <u>Wastes</u> (products, materials) -- are substances as items that are produced in the course of spacecraft operations, and that are no longer useful in their present form. These substances or items can be disposed of, or subsequently processed for utilization in their original function or to supply other consumables required in the operation of the spacecraft or in the performance of its mission.
 - <u>Waste Sources</u> -- are the man, activities, subsystems, equipments, or laboratories that produce the various waste items.
 - <u>Utilization</u> -- is the reuse of waste either in its original function or in another function after conversion in total or in part.
 - <u>Process for Utilization</u> -- includes any processing, i.e., conversion, conditioning, extraction, etc., of waste materials to facilitate utilization.
 - <u>Reclamation</u> -- is the special case of processing a waste for reuse in its original function.
- Disposal -- is separation of wastes from the spacecraft.
- Process for Disposal -- includes any processing, i.e., sterilization,
 drying, compaction, etc., of waste materials to facilitate disposal.

0.2 THE DATA ARRANGEMENT

The waste definition data has been arranged into approximately 220 discrete packages of information and data, each one dealing with a particular facility, group of equipment, or experiment whose operation satisfies some portion of a spacecraft function. The data results from reviewing the facility or group of equipments, establishing an operating rationale, and determining the consumables/expendables and the waste types and quantities that could result from such an operating rationale. Each data package, therefore, generally includes an operational description, a list of consumables/expendables, and a list of wastes.

The individual packages of information are grouped into one of three sections by their governing function:

- **1.0** Support Life Functions
- 2.0 Maintain Spacecraft Functions
- 3.0 Perform Mission Tasks

Each package is assigned a five digit identifying number that is made up of four indents under the above function number 1, 2, or 3. This volume contains these information packages and separates them into the three numbered groups and, in addition, into the first indent subgroups thereunder. The table of cortents and the oversized tab sheets separating each section in this book are keyed to those first indent subgroups (i.e., the first two digits of the information package identifying number). The sheet following each sectioning tab sheet presents a table of contents for that section and can be modified, as required, without upsetting the rest of the data book.

The functional requirements and the numbering system used to identify the data packages resulted from a general functional analysis of manned spacecraft and is included in Volume I of this data book and at the end of this section for your convenience.

0.3 DATA UPDATING

The data in this book and its method of presentation reflects the initial efforts to establish a handbook of waste data for future space program planners. Considerable effort went into establishing the data format in order to simplify access to the data and in order to enhance and encourage its use by future planners; however, the major importance of the data presentation methods chosen was the intent to simplify the data updating. It was recognized early in this effort that the concurrent studies undertaken by other contractors to define the space station and other long-term space missions would make new and better data on waste definition available. In light of this expectation, provisions for data updating were incorporated in this data presentation scheme.

Updating of the data book is readily accomplished by updating the specific information in the individual data packages. Each data package is independ of all other data packages. The data is presented on simple formats (which are explained in the following subsections) and can be readily changed at any level of detail from a single waste item to an entire operational description without upsetting any other data or the table of contents.

0.4 THE DATA FORMAT

This document contains the data that resulted form reviewing the different spacecraft facilities and functions from the point of view of the waste, trash, and debris generated. The data is arranged into approximately 220 individual data packages each consisting of A, B, and C sheets identified by a common five digit number.

0.4.1 <u>A-xxxxx = Operational Description</u>

These sheets briefly describe the function of a particular facility or group of equipments. A hypothesized rationale is supplied that becomes the basis of the determination of the material types and quantities expected to flow through the equipments under review. In most cases, a schematic block diagram showing the flow is supplied as well as a listing of selected references from which baseline data has been extracted.

0.4.2 B-xxxxx = Consumables/Expendables List

These sheets tabulate those consumable or expendable materials that result from the rationale given in sheet A. In addition to the generic name of the consumable/ expendable, the following information is supplied on these B sheets.

0.4.2.1 How Consumed

This refers to that action to which the material is subjected which consumes it, i.e., eaten, worn, saturated with O_2 , failed, etc.

0.4.2.2 Basic Constituents Consumed

This refers to that material characteristic that is no longer available after use. . This includes such characteristics as freshness, life, and availability as well as latent heat, chemical potential, and surface area.

0.4.2.3 Quantity Data

This heading does not appear on the Consumables/Expendables sheet. Instead, there are three different heading types, each giving specific quantity data dependent on the basic function being satisfied by the equipment or experiment. These quantity headings are keyed to the basic function and, consequently, to the first digit in the five digit identifying number as follows:

> B - 1.xxxx -- Quantity data is supplied for those equipments satisfying the function "Support Life." The quantity data is expressed as the total weight per year in pounds for 12 men, 50 men, and 100 men because the material quantity is sensitive to time and the number of consumers involved.

> B - 2.xxxx -- Quantity data is supplied for those equipments satisfying the function "Maintain Spacecraft Functions." The quantity data is expressed as the ten-year total weight in pounds, the daily rate in pounds per day, and the single unit size in pounds per unit because the material quantity for the type of equipment is most sensitive to overall mission life and because the material will most likely be handled in single units.

B - 3.xxxx -- Quantity data is supplied for those equipments satisfying the function "Perform Mission Tasks." The quantity data is expressed as the experiment total in pounds, the daily rate in pounds per day, and the normal batch size handled in pounds because, for the most part, the function will be satisfied by discrete experiments that require special facilities for discrete time periods using or operating on specific batches of materials.

0.4.2.4 Average Density As Received, lbs/cu. ft.

This refers to the packaged density of the consumable, not the density of the basic material constituent. As an example, the dnesity of paper sheet, the density of a package of paper bags, and the density of a crumpled paper sheet are all very different. From a housekeeping point of view, the density that is important to deal with is the as-received density. In the above example, that would be the crumpled paper density for waste handling and the packaged paper density for the handling of consumables/expendables.

0.4.3 <u>C-xxxxx = Wastes Lists</u>

These sheets tabulate those waste materials that result from the use of the equipments under review. These materials can be categorized as wastes, or trash, or debris or could even be reusable; but in this document, all are treated under the common name "Wastes." This includes even those materials that can readily be reutilized by the use of a highly feasible, in-space, processing method (i.e., dishes, clothing wash water, carbon dioxide, etc.). Treating the subject of wastes so broadly results from the fact that all on-board processes for reuse will be in competition with a future shuttle resupply craft that promises to make resupply extremely inexpensive. If this result is achieved, it could become uneconomical to maintain an in-space reprocessing facility and to expend in-space man-hours to revitalize or repair anything. Items that can be returned to earth and that are not routinely handled as part of some other function (i.e., data items, scheduled overhaul items, etc.) will possibly be handled within the scope of housekeeping routines and are, therefore, included in the waste lists. The rationale for these wastes are supplied in the A sheet. In addition to the generic name of the waste item, the following additional information is supplied on these C sheets.

0.4.3.1 Characteristics/State and Attributes

This refers to those characteristics of the waste materials that could be useful or important to the considerations of housekeeping. A breakdown of typical characteristics by general categories follows:

> 1) State -- The basic state in which the waste material will be handled for housekeeping purposes, i.e., either as a liquid, a gas or as a solid.

> 2) Attributes -- The waste material/housekeeping interface can be identified by categorizing the material by:

• Material type, i.e., metal, plastic, glass, textile, paper, acid, alkali, oil, water, colloid, suspension, gel, etc.

Form factor, i.e., flexible, rigid, sheet, rod, tubular, spongy, bulky, loose granuals, sharp, brittle, semiliquid, slurry, highly dense, etc. Constraints, i.e., toxic, pathogenic (potentially), contaminated (exposed to pathogens), noxious odor, explosive (with O_2), unstable (auto-decomposition), radioactive, organic (this is a broad category for materials that are nutrients for a wide range of organisms that are not necessarily pathogenic but that could putrify), hot (uncomfortable to the touch), cold (will result in condensation), dusty, smoky condensable (near room temperature), etc.

0.4.3.2 Chemical Composition

This refers to the make-up of the material. It is not a purely academic chemical analysis but is rather a breakdown of the material by common material names, by common compounds, and, in some cases, by the basic elements.

0.4.3.3 Action Required to Reclaim

This refers to those actions necessary to restore the capacity or the original function of the major ingredient of the waste item. (Washing is the prime example here.)

0.4.3.4 Quantity Data

This heading does not appear on the waste list in this form. Instead, there are three different heading types, each giving specific quantity data dependent on the basic function being satisfied by the equipment being reviewed. These quantity heading types are keyed to the basic functions and, consequently, are keyed to the first digit in the five digit series in the same manner as described above for the B sheets (Consumables/ Expendables).

C-1.xxxx -- Waste quantities totalized for a year: 12, 50, and 100 men.

C-2.xxxx -- Waste quantities totalized for 10 years, by daily rate and by unit weight.

C-3.xxxx -- Waste quantities totalized by experiment, by daily rate and by batch size.

0.4.3.5 Average Density As Required, lbs/cu.ft.

This refers to the density of the material in the condition that it interfaces with the housekeeping system (i.e., the lighter density of a crumpled paper bag rather than the density of paper itself).

0.4.3.6 Remarks

This column is used for any other comments considered significant by the originator of the data.

0.0-9

TABLE 0.0-1. SPACECRAFT FUNCTIONS AND WASTE SOURCES

F	UNCTIONAL REQUIREMENT	SUBSYSTEM OR LABORATORY	EQUIPMENT OR EXPERIMENT (WASTE SOURCES)	OPERATIONAL DESCRIPTION DOCUMENT NUMBER	LOCATION BY SFACECRAFT AREA
1.1	Mainiain and Monitor Crew	1. Medical Dispensary	1. Routine Examination of Crew Members	1 1	Services: Dispensary
	Health and Safety		2. Illness Event	1.1.1.2.1	
•		2. Dental Dispensary	1. Routine Examination and Illness Event	1. 1. 2. 1. 1	Services: Dispensary
		3. Dispensary Housekeeping	1. Medical	1.1.3.1.1	Services: Maintenance
			2. Dental	1.1.3.2.1	
÷ .					1
		4. Personnel Protection	1. Space Suits and Portable Life Support Systems	1.1.4.1.1	Services: Airlocks
1					
					• · · · · • • • • •
1.2	Provide Crew Quarters	1. Provide Furnishings	1. Room Furnishings	1.2.1.1.1	Living Area; Bed Room
		2. Provide Personal Articles	1. Clothing	1.2.2.1.1	Living Area; Bed Room
			2. Bed Lions	1.2.2.2.1	Living Area; Bed Room
- 9 y 			3. Limited Personal Grooming Facility	1.2.2.3.1	Living Area; Bed Room
				i i	-
		3. Rest and Relaxation Provisions	1. Individual Crew Recreation	1.2.3.1.1	Living Area; Recreation Living Area; Study/Librar
1.3	Provide Crew Meals	1. Food Storage System	1. Perishable Food Storage		Fond Preparation and Service: Storage and Kitch
			a) Perishable Food Storage - Mechanical	1.3.1.1.1	
			b) Perishable Food Storage - Thermoelectric	1.3.1.1.2	
*			c) Perishable Food Storage - Space Radiator	1.3.1.1.3	·
			2. Stable Food Storage	1.3.1.2.1	Food Preparation and Ser-
			2. datike rood dwrage		vice; Storage and Kitchen
		2. Food and Food Preparation	1. Food Reconstitution		Food Preparation and Ser-
			a) Food Reconstitution - Rehydration	1. 3. 2. 1. 1	vice; Kitchen auf Snack Ba
			b) Food Reconstitution - Heating	1.3.2.1.2	. · · · · · · · · · · · · · · · · · · ·
		•	2. Meal Assembly	1.3.2.2.1	Food Preparation and Ser- vice: Kitchen
					VICT; MICOCO
•		3. Meel Service and Dining	1. Meal and Accessory Transport	1.3.3.1.1	Food Preparation and Ser- vice; Dining Area
			2. Dining	1.3.3.2.1	Food Preparation and Ser.
					vice; Dining Area and Snac
				1 8	Bar

Sheet <u>1</u> of <u>12</u>

0.0-10

TABLE 0.0-1. SPACECRAFT FUNCTIONS AND WASTE SOURCES (Cont'd)

FUNCTIONAL REQUIREMENT	SUBSYSTEM OR LABORATORY	EQUIPMENT OR EXPERIMENT (WASTE SOURCES)	OFERATIONAL DESCRIPTION DOCUMENT NUMBER	LOCATION BY SPACECRAFT AREA
.3 Provide Crew Meals	4. Pousekceptog	1. Debris Collection		
• • • • • • • • • • • • • • • • • • •		a) Debris Control - Mechanical	1.3.4.1.1	Food Preparation and Ser
		b) Debris Control - Manual	1. 3. 4. 1. 2	vice; Kitchen, Dining Are and Snack Bar
		2. Uteosil Cleansing	1.3.4.2.1	Food Preparation and Ser vice: Kitchen
		3. Waste Stowage	1.3.4.3.1	Food Preparation and Ser
				vice; Kitchen, Dining Are Snack Bar
.4 Provide for Crew Hygiene	1. Human Waste Management	1. Fecal and Vomitus Waste Management		
		a) Integrated Vacuum Drying	1.4.1.1.1	Living Area; Bathroom; Services and Dispensary
		b) Automated Bag/Vacuum Drying	1.4.1.1.2	п н
	n an an Arten an Art Arten an Arten an Art	c) Wet Collection/Processing	1.4.1.1.3	
		2. Urine Collection	1.4.1.2.1	tt 19
				· · · ·
	2. Fall Body Wash	1. Body Wash		
		a) Shower	1.4.2.1.1	Living Area; Bathroom
	$\sum_{i=1}^{n} f_i = \sum_{i=1}^{n} f_i $	b) Immersion Bath	1.4.2.1.2	Living Area; Bathroom
		c) Automated Sponge Bath	1.4.2.1.3	Living Area; Bathroom
	3. Partial Body Wash and Personal Grooming	1. Hygiene Center	1.4.3.1.1	Living Area; Bathroom
	4. Revitalization of Textiles	1. Laundry	1.4.4.1.1	Services; Laundry
	5. Crew Quarters Presekeeping	1. Vacuum Cleaner	1.4.5.1.1	Services: Maintenance
	Capability			•
		2. Surface Washer/Wiper (Automated Mop)	1.4.5.2.1	Services; Maintenance
5 Environmental Control/Life	I. Atmospheric Gas Supply	1. Supercritical Storage and Supply	1.5.1.1.1	Services; Storage
Support				
	2. Atmospheric Control	1. Atmospheric Mixing and Pressure Control	1.5.2.1.1	Services; Storage
		1		-

of 12 2 Sheet

0.0-11

TABLE 0.0-1. SPACECRAFT FUNCTIONS AND WASTE SOURCES (Cont'd)

FUNCTIONAL REQUIREMENT	SUBSYSTEM OR LABORATORY	EQUIPMENT OR EXPERIMENT (WASTE SOURCES)	OPERATIONAL DESCRIPTION DOCUMENT NUMBER	LOCATION BY SPACECRAFT AREA
1.5 Environmental Control/Life Support	3. Atmospheric Temperature and Humidity Control	1. Variable Speed Fas System	1. 5. 3. 1. 1	Services; Equipment
	4. Trace Contaminant Removal System	1. Regenerable Charcoal/Catalytic Oxidation System	1. 5. 4. 1. 1	Services; Equipment
	5. Bacterial/Particulate Control	1. Direct & orngo Method	1. 5. 5. 1. 1	Services; Equipment
	System	2. Sterilization/Storage Method	1. 5. 5. 2. 1	Services; Equipment
•				
1. A second sec second second sec	6. Carbon Dioxide Control and Oxygen Generation	1. CO ₂ Removal/Concentration Systems 2. CO ₂ Reduction System	1.5.6.1.1 1.5.6.2.1	Services; Equipment Services; Equipment
		3. Water Electrolysis System	1.5.6.3.1	Services; Equipment
	7. Thermal Transport Circuit	1. Coolast Loop	1.5.7.1.1	Services; Equipment
				_
	8. Water Management	Water Reclamation System Z. Potable Water Storage System	1.5.8.1.1 1.5.8.2.1	Services; Equipment Services; Equipment
		- Former of the state of the st		
		· · · · · · · · · · · · · · · · · · ·		
•				
			֥.	
	e da anti-como estado en trabajo de tra	 Mithematical and the second state of the second state		

Sheet_3____ of ____2

0.0 - 12

TABLE 0.0-1. SPACECRAFT FUNCTIONS AND WASTE SOURCES (Cont'd)

BASIC FUNCTION: 2.0 MAINTAIN SPACE CLAFT FUNCTION						
FUNCTIONAL REQUIREMENT	SUBJYSTEM OR LABORATORY	EQUIPMENT OR EXPERIMENT (WASTE SOURCES)	OPERATIONAL DESCRIPTION DOCUMENT NUMBER	LOCATION BY SPACECRAFT AREA		
2.1 Control Spacecruit Orbit Position, Attitude and Motion	I. Nav. Guid, Stabilization and Control	1. Electronic Systems	2, 1, 1, 1, 1	Work Area;Communica- tions Extra Vehicular		
		2. Mechanical Systems				
		a) Control Moment Gyros	2.1.1.2.1	Work Ares; Control		
		b) Reaction Jet Control, Mono-Propellant	2.1.1.2.2	Services; Equipment and Extra Vehicular		
		c; Reaction-Jet Control, Bi-Propellant	2, 1, 1, 2, 3	Services; Equipment and Extra Vehicular		
2.2 Provide Electrical and	1. Electric Power	1. Solar Arrays	2.2.1.1.1	Extra Vebicular		
Thermal Power		2. Radioisotope Brayum Cycle	2.2.1.2.1	Extra Vehicular		
	2. Regulate Power	1. Power Conditioning System	2, 2, 2, 1, 1	Services; Power		
	3. Distribute Power	1. Power Distribution System	2.2.3.1.1	Services; Power		
2.3 Maintaia and Repair	1. Maintenance Facilities	1. Structural Maintenance	2.3.1.1.1	Services; Maintenance		
Space Craft		2. Avionics Systems Maintenance	2. 3. 1. 2. 1	Services; Maintenance		
		3. Utilities Maintenance	2.3.1.3.1	Services; Maintenance		
2.4 Provide Communication	L. Ship-to-Base Communications	1. To and From Ground - Data Relay Space Satellites	2. 4. 2. 1. 1	Work Areas; Communic tions		
		2. To and From Ground - Direct	2.4.1.2.1	Work Areas; Communic tid24		
	2. Inter-Vehicular Communica- tions	1. To and From Experiment Modules	2.4.2.1.1	Work Areas; Communic tions		
an a		2. To and From Space Station Shuttle	2. 4. 2. 2, 1	Work Areas; Communic tions		
		3. Extra-Vehicular Communications	2.4.2.3.1	Work Areas; Communic tions		
	3. Intra-Vehicular Communica- tions	1. Onboard Communications	2.4.3.1.1	Work Areas; Communic: tions		
2.5 Provide for Data Manage-	1. Data Collection, Storage and	1. Data Managemeni-Electronic	2.5.1.1.1	Work Area: Computer		
incat.	Display	2. Data Management - Photographic	2. 5. 1. 2. 1	Work Area; Photographi Support		
2.6 Provide for Spacecraft Logistics						
2.7 Provide for experiment	•					
Support				· ,		
 These areas not reviewed during it 	the performance of this study due to the	lack of definitive plans for future programs.				
	 A state of the sta		1 2 8			

Sheet_____ of ____12

0.0-13

TABLE 0.0-1. SPACECRAFT FUNCTIONS AND WASTE SOURCES (Cont'd)

FUNCTIONAL REQUIREMENT	SUBSYSTEM OR LABORATORY	EQUIPMENT OR EXPERIMENT (WASTE SOURCES)	OPERATIONAL DESCRIPTION DOCUMENT NUMBER	LOCATION BY SPACECRAFT AREA
3.1 Astronomy, Astrophysics and Celestial Mechanics Studies and	1. Astronomy and Astrophysics	1. Plasma Physics (FPE 5.7) s) Ionospheric Spacecraft Wake Experiment	J. 1. 1. 1. 1 VOID	
Tasks		2. Grazing Incidence X-Ray Telescope (FPE 5.1)	(See 3.2.1.1.1)	
		a) Polarization of X-Radiation	31121	Remote Module
		b) Curved Crystal X-Ray Spectrometer	1.1.1.2.2	Remote Module
		c) High Resolution Studies of X-Ray Sources	3. 1. 1. 2. 3	Remote Module
		d) Maximum Sensitivity X-Ray Detector	3.1.1.2.4	Remote Module
			0.1.0.4	
		3. High Energy Stellar Astronomy (FPE 5.5)		
		a) X-Ray Imaging	3. 1. 1. 3. 1	Remote Module
		b) Bragg Spectrometer	3. 1. 1. 3. 2	Remote Module
		c) Spark Chamber, Nuclear Emulsion Gamma-Ray	3.1.1.3.3	Astronomy Module
		d) Nuclear Gamma-Ray Spectrometer	3.1.1.3.4	Astronomy Module
		4. UV Stellar Survey (FPE 5.4)		
	•			A
		a) Schmidt Image Converter Stellar Spectrograph	3. 1. 1. 4. 1	Astronomy Module
1.2 Physics and Chemistry Studies	1. Physics	1. Plasma Physics (FPE 5.7)		
and Tasks		a) Plasma Wake Experiments	3.2.1.1.1	Work Area: Laboratory
				and Remote Satellite
		b) Cyclotron Harmonic Wave Transmission Experiment	3.2.1.1.2	Work Area: Laboratory and Remote Satellits
				· · · · · · · · · · · · · · · · · · ·
		2. Cosmic Ray Physics (FPE 5.8)		
		a) Interaction Physics Experiments (Bay 1)	3.2.1.2.1	Work Area: Airlock and
		b) High Energy Primary Cosmic Ray Experiment (Bays 2	3.2.1.2.2	Attached Module Work Area: Airlock and
		and 3)		Attached Module
•				
	2. Chemistry	1. Unit Separation Processes in Space	3.2.2.1.1	Work Area: Laboratory
		2. Industrial Microbiological Applications in O G		Work Area: Laboratory
		a) A Vaccine Satellite Program	3.2.2.2.1	
		and the second		•
	a service of the service of the service			

5 of 12 Sheet

0.0 - 14

TABLE 0.0-1. SPACECRAFT FUNCTIONS AND WASTE SOURCES (Cont'd)

BASIC FUNCTION: 3.0 PERFORM	BASIC FUNCTION: 3.0 PERFORM MISSION TASKS (Control)					
FUNCTIONAL REQUIREMENT	SUBSYSTEM OR LABORATORY	EQUIPMENT OR EXPERIMENT (WASTE SOURCES)	OPERATIONAL DESCRIPTION DOCUMENT NUMBER	LOCATION BY SPACECRAFT AREA		
3.3 Agriculture and Animal Husbandry	1. Plant Crops	1. Rapid Lettuce Growth	3. 3. 1. 1. 1	Work Area: Agricultural Study Area, Remote Dockable Module		
		2. No Waste Food (Radish/Cabbage)	3. 3. 1. 2. 1	Work Area: Agricultural Study Area, Remote Dockable Module		
		3. Increased CO ₂ on Food Plants	3 3. 1. 3. 1	Work Area: Agricultural Study Area, Remote Dockable Module		
	2. Animal Crops	1. Japaneze Quail (Colinus)	3. 3. 2. 1. 1	Work Area: Animal Housir		
3.4 Biological Sciences and Biotechnology Studies	1. Micro Biology Experiment (BIO C)(FPE 5.25)	 The Role of Gravity in General Cellular Function a) General Growth Behavior and Reproduction in Cells 	3.4.1.1.1	Work Area; BIO-Laboratory		
		 b) Maintenance of Normal Growth and Reproduction in Free Cells c) Mineral Metabolism in Cells 2. Genetic Stability in Free Cells 	3. 4. 1. 1. 2 3. 4. 1. 1. 3 3. 4. 1. 2. 1	Work Area: BIO-Laboratory		
		 S. The Role of Gravity in Tissue Function a) Animal Tissue Development 	3. 4. 1. 3. 1	Wort: Area: BIO-Laboratory		
		b) Plant Tissue Development4. Development in the Animal Embryo	3, 4, 1, 3, 2 3, 4, 1, 4, 1	Work Area: BIO-Laboratory		
		5. Host-Parasite Relationships 6. Biorythms in Microorganisms	3.4.1.5.1 3.4.1.6.1	Work Area: BIO-Laboratory Work Area: BIO-Laboratory		
		7. Weightlessness and Molecular Reactions in Vitro	3.4.1.7.1	Work Area:BIO-Laboratory		
	2. Invertebrates Experiments (BIO F)(FPE 5.26)	i. The Invertebrate Organism and its Life Cycle	3.4.2.3.1	• •		
		 The Role of Gravity in Morphogenesis The Role of Gravity in Invertebrate Metabolism 	3. 4. 2. 2. 1 3. 4. 2. 3. 1 VOID (See 3. 4. 2. 1. ?)	1		
		4. The Role of Gravity in Aging in Invertebrates	3.4.2.4.1			

Sheet 6 of 12

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

0.0-15

TABLE 0.0-1. SPACECRAFT FUNCTIONS AND WASTE SOURCES (Cont'd)

OPERATIONAL II						
FUNCTIONAL REQUIREMENT	SUBSYSTEM OR LABORATORY	EQUIPMENT OR EXPERIMENT (WASTE SOURCES)	DESCRIPTION DOCUMENT NUMBER	LOCATION BY SPACECRAFT AREA		
4 Biological Sciences and Bio-	2. Invertebrates Experiments	5. Genetic Phenomina in Invertebrates		Work Area: BIO-Laborator		
technology Studies (continued)	(BIO F)(FPE 5,26)	a) Mutability in Adult Drosophila	3, 4, 2, 5, 1			
		b) Radiation Repair Mechaniams in Chromosomes	3.4.2.5.2			
		6. Biorythmicity in Invertebrates		Work Area: BIO-Laborator		
		a) Circadian Rythms in Invertebrates	3.4.2.6.1			
		b) Biorythmicity in Fiddler Crabs	3.4.2.6.2			
		7. Behavior Influences in Invertebrates	1 1 1	Work Area: BIO-Laborator		
		s) Behavior Influences in Bees	3.4.2.7.1			
		b) Orientation and Geosensing in Spiders	3.4.2.7.2	:		
	3. Small Vertebrates Experiments	1. The Role of Gravity in Cardiovascular Function	3. 4. 3. 1. 1	Work Area: BIO-Laborator		
	(BIO D) (FPE 5, 9)			Animal Housing		
	••••••••••••••••••••••••••••••••••••••	2. The Life Cycle of Rodents		Work Area: BIO-Laborator		
		a) Pregnancy and Growth in the Mammalian Organism	3.4.3.2.1	Animal Housing		
		b) Physiology and Behavior Through One Generation	3.4.3.2.2			
		c) Turnover of Mineralized Tissue	3.4.3.2.3	· · ·		
		d) Metabolic Adaptation of the Mammalian Organism	3.4.3.2.4			
		3. Immune Responses of Mammals		Work Ares: BIO-Laborator		
		a) Mobile Celia and Muco Proteins	3.4.3.3.1	Animal Housing		
		b) Production and Persistance of Circulating Anti-Bodies	3.4.3.3.2			
		4. Embryogenesis and Development in Amphibia	3.4.3.4.1	Work Area: BIO-Laboratory		
				Animal Housing		
		5. Growth and Metabolism in Reptiles	3. 4. 3. 5. 1	Work Area: BIO-Laboratory		
		6. Influence of Gravity on Behavior in Mammals	3.4.3.6.1	Animal Housing Work Area: BIO-Laboratory		
			5.4.3,0.1	Animal Housing		
		7. Influence on Bicrythms of Animals	3.4.3.7.1	Work Area: BIO-Laboratory		
				Animal Housing		
		8. The Role of Gravity in Hibernation	3.4.3.8.1	Work Area: BIO-Laborator, Animal Housing		
		A second s				
				بر بر		
				4		
			1			
			1 8			

Sheet 7 of 12

0.0-16

TABLE 0.0-1. SPACECRAFT FUNCTIONS AND WASTE SOURCES (Cont'd)

F	UNCTIONAL REQUIREMENT	SUBSYSTEM OR LABORATORY		EQUIPMENT OR EXPERIMENT (WASTE SOURCES)	OPERATIONAL DESCRIPTION DOCUMENT NUMBER	LOCATION BY SPACECRAFT AREA
.4	Biological Sciences and Bio- technology Studies (continued)	4. Plant Specimens (B1O E) (FPE 5, 10)	1.	Plant Responses from 0 to 1 G	3.4.4.1.1	Work Area, Agricultural Study Area or Remote Dockable Module
			2.	Pea Soedling Growth in Orbit	3 4.4.2.1	Work Area, Agricultural Study Area or Remote Dockable Module
•.			3.	Plant Morphogenesis Under Weightleseness	3. 4. 4, 3, 1	Work Area, Agricultural Study Arer or Remote Dockable Module
			4.	Effect of Weightleseness on Gamotogenesis and Morpho- genesis of Pteris Gametophytes	3. 4. 4 4, 1	Work Area, Agricultural Study Area or Remova Dockable Module
18 18			5.	Role of Auxin Mediatod Reactions in the Developing Wheat Seedling in O ${\bf G}$	3. 4. 4. 5, 1	Work Area, Agricultural Study Area, Remote Dockable Module
•			6.	Role of Gravitational Stress in Land Plant Evolution	3. 4. 4. 6 . 1	Work Area, Agricultural Study Area or Remote Dockable Module
			7.	Effect of Geophysical Factors on Circadian Rhythms in Plants	3. 4. 4. 7. 1	Work Area, Agricultural Study Area or Remote Dockable Module
			8.	Algae, Duckweed in 0 G	3. 4. 4. 8. 1	Work Area, Agricultural Study Area or Remote Dockable Module
						
		5. Primates		Physiology of Chimpanzees in Orbit.	3 4.5.1.1	Work Area, Animal Hous
			2.	Nemodynamics and Metabolic Effects on Monkeys	3 4. 5. 2. 1	Work Area, Animal Hous
	Biotechnology and Human	1. Biomedical Research (FPE 5, 13)	1.	Neurophysiology		Work Area: Medical
2	Research	•		a) Effect of Head Movement During Rotation	3.5,1,1,1	Laboratory
•				 b) Sensitivity of Otolith and Semi-Circular Canal Mechanisms 	3. 5. 1. 1. 2	
				c) Effect of Altered Day-Night Cycles, Effect on Litter Size, and on EEG of Cats	3. 5. 1. 1. 3	
			_	d) Human Vestibular Function	3.5.1.1.4	
			2.	Cardiovascular		Work Area: Medical Laboratory
•				 a) Changes in Circulatory Response to Exercise 	3. 5. 1. 2. 1	Lawl Soll y
				b) Effect of Blood Distribution on Arterial Pressure Control Systems	3. 5. 1. 2. 2	
				c) Alterations in Venous Compliance Due to the Absence of Hydrostatic Pressure	3. 5. 1. 2. 3	
			1.1	d) Cardiac Dynamics	3. 5. 1. 2, 4	1

Sheet 8 of 12

0.0 - 17

TABLE 0.0-1. SPACECRAFT FUNCTIONS AND WASTE SOURCES (Cont'd)

	FUNCTIONAL REQUIREMENT	SUBSYSTEM OR LABORATORY		EQUIPMENT OR EXPERIMENT (WASTE SOURCES)	DESC	ATIONAL RIPTION NT NUMBER		TION BY
. 5	Biotechnology and Human	1. Biomedical Research (FPE 5.13)	2.	Cardiovascular (cont'd)			Work Area:	Medical
	Research (continued)	(continued)		e) Intraocular Arterial Blood Pressure	3, 5, 1, 2, 5	i	Laboratory	
			1	f) Cardiac Output. Direct versus Indirect	3. 5. 1. 2. 6			
				g) Use of a LBNP Device to Prevent C.V. Deconditioning	3.5.1.2.7			
				h) Use on an On-Board Centrifuge to Prevent C.V. Deconditioning	3, 5, 1, 2, 8	· · · ·		
				i) Use of Occlusive Cuffs to Prevent C.V. Deconditioning	3. 5. 1. 2. 9			· · · ·
				j) C.V. Response to Shock Therapy	3.5.1.2.1	0		
				k) Sensitivity of the Carotid Sinus-Arterial Pressure	3. 5. 1. 2. 1	1	•	
			ŀ	Control Loop 1) Peripheral Arterial Reactivity	3. 5. 1. 2. 1	2		
			1	m) Changes in Blood Volume and Distribution	3. 5. 1. 2. 1	3		
•				n) Carotid Baroreceptor Electrical Activity in Primates	3. 5. 1. 2. 1	4	l	
			3.	Respiration			Work Area:	Medical
				a) Pulmonary Mechanics	3. 5. 1. 3. 1		Laboratory	
				b) Respiratory Conirol	3. 5. 1. 3. 2			
				c) Blood and Ventilatory Gas Exchange	3. 5. 1. 3. 3		Į	
				d) Lung Cleaning in Rats	3. 5. 1. 3. 4	1.1	j :	
	a share			e) Induced Pulmonary Infection in Mice	3. 5. 1. 3. 5			
				() Recovery Rate from Non-Infectious Trauma in Rate	3. 5. 1. 3. 6			
			4.	Gastrointestinal	Į.		Work Area:	Medical
				a) G. 1. Motility and pH	3.5.1.4.1		Laboratory	
				b) Intestinal Absorption	3.5.1.4.2	· · ·		
				c) Indices of Renal Function	3.5.1.4.3			
				d) Renal Calculus Formation in Rats	3. 5. 1. 4. 4			
				e) Renal infection in Rats	3. 5. 1. 4. 5		·	
			5.	Metabolism and Nutrition			Work Area:	Medical
				a) Energy Metabolism	3. 5. 1. 5. 1		Laboratory	
				b) Carbohydrate and Fat Metabolism	3.5.1.5.2	· ·		
				c) Protein Metabolism	3.5.1.5.3			
				d) Fluid and Electrolyte Balance	3. 5. 1. 3. 4	1		
			· ·.	e) Mineral Metabolism	3. 5. 1. 5. 5	H	ан сайта. Сайта	
				f) Bioassay of Body Fluids	3. 5. 1. 5. 6		· .	
			-		1			
						1		÷
								•.
							•	•••
						1		

Sheet 9 of 12

0.0-18

TABLE 0.0-1. SPACECRAFT FUNCTIONS AND WASTE SOURCES (Cont'd)

FUNCTIONAL REQUIREMENT	SUBSYSTEM OR LABORATORY	EQUIPMENT OR EXPERIMENT (WASTE SOURCES)	OPERATIONAL DESCRIPTION DOCUMENT NUMBER	LOCATION BY SPACECRAFT AREA
5 Biotechnology and Human	1. Biomedical (FPE 5.13)(continued)	6. Musculoskeletal		Work Area: Medical
Research (continued)	 The second s	a) Bone Density	3. 5. 1. 6. 1	Laboratory
		b) Fracture Healing in Animals	3.5 1.6.2	
		c) Calcium Mobilization	3. 5. 1. 6. 3	
		d) Muscle Mass and Strength	3. 5. 1. 6. 4	
		e) Induction of Pressure Atrophy	3, 5, 1, 6, 5	
		f) Electromyography as an index of Deconditioning	3. 5. 1, 6, 6	
		g) Specimen Mass Measurement	3. 5. 1. 6. 7	
		7. Endocrinology		Work Area: Medical
•		a) Endoctrine Function and Stress Physiology	3. 5. 1. 7. 1	Laboratory
		b) Temperature Regulation Mechanisms	3. 5. 1 7. 2	
		c) Adrenal and Parathyroid Functions in Rats	3. 5. 1. 7. 3	· · ·
		d) Gonad Histopathology	3. 5. 1. 7. 4	× 11
		8. Hematology		Work Area: Medical
		a) Leukocyte Replication	3. 5. 1. 8. 1	Laboratory
		b) Blood Cell Dynamics - Erythrocyte	3. 5. 1. 8. 2	
		c) Leukocyte Dynamics	3. 5. 1. 8. 3	·
		d) Platelet Dynamics	3. 5. 1. 8. 4	•
		e) Leukocyte Mobilization in Mice after Chemical Challeng		
		() Maximum Rate of Srythrocyte Production in Rate	3. 5. 1. 8. 6	
		g) Wound Healing	3.5.1.8.7	
		h) Blood Coagulation and Hemostatic Function	3. 5. 1. 8. 8	
		1) Cytogenetic Etudies	3. 5, 1, 8, 9	
		j) Elood Volume and Red Cell Life Span	3. 5. 1. 8, 10	•
		9. Microbiology and Immunology		
		a) Microbiological Evaluation of Surfaces	2, 5, 1, 9, 1	All Surfaces
		b) Microbial Profiles of Crew Members	3. 5. 1. 9. 2	Work Area: Microbiology
			1 1	Laboratory
		c) Air Sampling for Microorganisms	3.5.1.9.3	All Areas
		d) Immunological Survey of Crew Members	3, 5, 1, 9, 4	Work Area: Medical
				Laboratory
	2. Man-Systems Integration	1. Space Systems Human Factors		Work Area: Laboratory
	(FPE 5. 14)	a) Restraint and Fine-Force Generation	3. 5. 2. 1. 1	
		b) Restraint and Gross Force Generation	3. 5. 2. 1. 2	
		c) Psychomotor Functions	3. 5. 2. 1. 3	
		d) Volume and Layout of Crew Work and Rest Areas and	3.5.2.1.4	
		Modifications		

Sheet 10 of 12

.

TABLE 0. 0-1. SPACECRAFT FUNCTIONS AND WASTE SOURCES (Cont'd)

FUNCTIONAL REQUIREMENT	SUBSYSTEM OR LABORATORY	EQUIPMENT OR EXPERIMENT (WASTE SOURCES)	OPERATIONAL DESCRIPTION DOCUMENT NUMBER	LOCATION BY SPACECRAFT AREA
5 Biotechnology and Human	2. Man-Systems Integration	e) Interior Design	3, 5, 2, 1, 5	All Areas
Research (continued)	(FPE 5.14) (continued)	f) Clothing	3. 5. 2, 1. 6	Ad Lib
		g) Interpersonal Factors	3. 5. 2. 1. 7	Work Area:Communications
		h) Recreation	3. 5. 2, 1. 8	Living Area: Recreation
		2. EVA/TVA Technology		
		a) Orientation, Stability and Restraint	3. 5. 2, 2, 1	Ad Lib
		b) Personnel Translation	3. 5. 2. 2. 2	E.V.A. + Ad Lib
		c) Mass Translation	3. 5. 2. 2. 3	Ad Lib
		d) Protective Clothing and Advanced Space Suit Assembly Development	3. 5. 2. 2. 4	EVA
•		e) IVA Suit (Partial Pressure)	3. 5. 2. 2. 5	Work Area: Laboratory Work Area: Airlock
		3. Maintenance and Maintainability		
		a) Accessibility	3. 5. 2. 3. 1	Various Areas
		b) Maintenance and Repair in Zero G	3.5.2.3.2	All Areas
	· · · · · · · · · · · · · · · · · · ·	4. Behavior		
		a) Intrapersonal Factors	3. 5. 2. 4. 1	Work Area: Psychology Laboratory
		b) Visual Function	3. 5. 2. 4. 2	Work Area: Psychology Laboratory
		c) Communications and Recording	3. 5. 2. 4. 3	Work Area: Psychology Laboratory
				Work Area: Control
		d) Kinesthetic Function	3, 5, 2, 4, 4	Work Area: Psychology Laboratory Work Area: Control
		e) Orientation Senses	3. 5. 2. 4. 5	Work Area: Psychology Laboratory Work Area: Control
		() Chemical Sense Function	3.5.2.4.6	Work Area: Psychology
		1) Chemical Sense Function	5, 5, 2, 9, 5	Laboratory Work Area: Control
		g) Somesthetic Function	3, 5, 2, +, 7	Work Area: Psychology Laboratory
	an an an an an an an ann an Arlanna. An an	h) Inteliectual Function	3. 5. 2. 4. 8	Work Area: Control Work Area: Psychology Laboratory Work Area: Control
		i) iligher Mental Function	3. 5. 2. 4. 9	Work Area: Psychology Laboratory
		j) Auditory Function	3. 5. 2. 4. 10	Work Area: Control Work Area: Psychology
				Laboratory Work Area: Control

0.0-19

Sheet 11 of 12

0.0-20

TABLE 0.0-1. SPACECRAFT FUNCTIONS AND WASTE SOURCES (Cont'd)

FUNCTIONAL REQUIREMENT	SUDSYSTEM OR LABORATORY	EQUIPMENT OR EXPERIMENT (WASTE SOURCES)	OPERATIONAL DESCRIPTION DOCUMENT NUMBER	LOCATION BY SPACECRAFT AREA
Space Manufacturing Studies and Tasks	1. Materials Melting (FPE 5. 16)	1. Minimum Batch Size	3. 6. 1. 1. 1	Work Area: Melting
Lagno				2
		A Marken Track Class	3.6.2.1.1	
	2. Materials Processing (FPE 5.16)	1. Medium Batch Size	3. 0. 2. 1. 1	Work Area: Melting
	3. Pre-Production Materials Pro-	I. Pre-Production Lots	3.6.3.1.1	Work Area: Laboratory
a ser a ser e la construction de la construcción de la construcción de la construcción de la construcción de la	cessing (FPE 5.24)		5. 0. 5 . 1 .	
-				
				·
	4. Production Materials Processing	1. Manufacturing and Processing Facility	3.6.4.1.2	Work Area: Laboratory
	(FPE 5.24)			
Earth Surveys	1. Earth Resources and Meteorology (FPE 5. 1)	1. Agriculture/Forestry and Geography Experiments	3.7.1.1.1	Earth Observations Laboratory
		2. Geology/Minerology Experiments	3.7.1.2.1	Earth Observations Laboratory
		3. Hydrology/Water Resources Experiments	3.7.1.3.1	Earth Observations Laboratory
		4. Meterology Experiments	3.7.1.4.1	Earth Observations Laboratory
•		5. Oceanography Experimenta	3.7.1.5.1	Earth Observations
				Laboratory
			- [
Advanced Technology and		NOTE: These areas not reviewed during the performance		
Engineering Operations		of this study due to lack of definite plans for future		
		programs		
			tin territoria de la deservación de la	
Lunar and Interplanetary	1. Lunar Missions	1. Astronomical Investigations	3.9.1.1.1	Work Area:Laboratory a
Mission Support		2. Geological Explorations	3.9.1.2.1	Storage
			1 ii	Work Area: Laboratory : Storage
			J H	Swinge
0 Military Sciences		NOTE: Not further reviewed due to classified nature of		
		material		. ,
				· · · · ·
			j ·	

Sheet 12 of 12

SUPPORT LIFE FUNCTIONS

SECTION 1.0

MONITOR AND MAINTAIN CREW HEALTH AND SAFETY

TABLE OF CONTENTS

Document Number	Title	Page
1.1.1.1.1	Routine Examination of Crew Members (Medical Dispensary)	1.1-1
1.1.1.2.1	Ilness Event (Medical Dispensary)	1.1-4
1.1.2.1.1	Routine Examination and Illness Event (Dental Dispensary)	1.1-9
1.1.3.1.1	Medical (Dispensary Housekeeping)	1.1-13
1.1.3.2.1	Pental (Dispensary Housekeeping)	1.1-16
1. 1. 4. 1. 1	Space Suit and Portable Life Support Systems	1.1-19

Doc. No. A-1.1.1.1.1 Sheet No. 1 By: G. Greenstein Date: 20 July 1970

ş.

OPERATIONAL DESCRIPTION

TITLE: Routine Examination of Crew Members (Medical Dispensary)

OBJECTIVE:

To maintain and monitor crew health and safety.

RATIONALE:

.

Approximately 10% of the crew will be monitored each week. The major portion of the wastes produced from the routine examination of crewmembers will be produced by the experiments conducted in the aerospace medical laboratory. The results of these experiments will be used as an indicator of the overall health of each crewmember. The only wastes produced by the routine examination will be from the results of the throat examinations and the maintenance of sanitary conditions in the facility.

EQUIPMENT USED:

Tongue depressors (10)	0.1 lb./week
Thermometers (10)	0.25 lb./week
Sheets (10)	1.3 lbs./week

REFERENCES:

Experiment Program For Extended Earth Orbital Missions, Revision No. 1, September 1, 1969, NASA OMSF.

Definition of Space Flight Medical Kits: A Rationale, Brooks Air Force Base, Texas, AMD TR 67-1, May 1967.

1-2

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1.1.1.1.1	Sheet	No.	1	
Operational Description No.	<u>A-1.</u>	1.1	.1.1	
Subsystem Medical Dispens	ary			
By: G. Greenstein	Date:	20	July	1970

Title: Routine Examination of Crew Members

Consumable/Expendable		HOW	BASIC	Total Per	Weight F Year -	lequired Lbs	Average Density As	REMARKS	
ITEM		CONSUMED	CONSTITUENTS CONSUME D	12 Man	50 Man	100 Man	Received lbs/cu.ft.		
1 - Tongue Depressor	•	Contaminated	Balsa	0.52	2.60	5.20	0.3	Must be inactivated	
2 - Thermometers		Contaminated	Borosilicates	1.30	6.50	13.0	241.92	Must be inactivated	
3 – Sheets		Contaminated	Cellulose	7.76	38.80	77.60	6.07	Must be inactivated	
				•					
				- -					
	en Romanne († Romanne (†								
				a de la composición de la comp					

FARMINGONE, LONG ISTAND, NEW YORK

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Title: Routine Examination of Crew Members

Doc. No.C-1.1.1.1.1Sheet No.1Operational Description No.A-1.1.1.1.1SubsystemMedical DispensaryBy:G. GreensteinDate: 20 July 1970

Title: Routine Examination of	Crew Members	· · · · · · · · · · · · · · · · · · ·						
WASTE	Characteristics	Chemical Composition	Action Required	Total W Per	eight Ro Year - I		Average Density As	Index Of Utilization
ITEM	State And Attributes	Composition	To Reclaim	12 Man	50 Man	100 Man	Received lbs/cu.ft.	Potential
1 - Tongue Depressor	Solid Wood Contaminated	Balsa	N/R	0.52	2.60	5.20	0.3	
2 - Thermometers	Solid Glass Contaminated	Borosilicates	Sterilize	1.30	6.50	13.0	241.92	
3 – Sheets	Solid Paper Contaminated	Cellulose	N/R	7.76	38.80	77.60	6.07	
4 – Packaging Material	Solid Paper And Plastic Contaminated	Cellulose And Polyethylene	Reuse As Is	0.52	2.60	5.20	0.08	

Doc. No. A-1.1.1.2.1 Sheet No. 1 By: G. Greenstein Date: 20 July 1970

OPERATIONAL DESCRIPTION

TITLE: Illness Event (Medical Dispensary)

OBJECTIVE:

To maintain and monitor crew health and safety

RATIONALE:

To anticipate the waste products produced from this experiment the following assumptions were made:

a. Three members of the crew per day will receive medications for skin rashes.

b. Three members of the crew per day will receive medications for possible cold infections.

c. Data will be received from other laboratory facilities necessitating no duplications of equipment. The wastes produced from these facilities will not be included in the analysis of the waste products produced from this facility.

d. In case of serious illness the crew member will receive limited care and will be returned to earth for subsequent treatment.

e. Medications will be renewed on a daily basis.

EQUIPMENT USED:

Medication tubes (3)	0.06 lb./day
Spray bottles	0.06 lb./day
Medication bottles	0.02 lb./day
Disposable face masks (3)	0.03 lb./week
Pill boxes (3)	0.06 lb./day
Band aids (3)	0.003 lb./week
Dressings and adhesives	0.02 lb./3 months
Catheter (2)	0.1 lb./mission
Antiseptic solution	0.6 lb./month

Loc. No. A-1.1.1.2.1 Sheet No. 2 By: G. Greenstein Date: 20 July 1970

Splint (2) Gloves (1 pair) Eye patches (3) 0.2 lb./mission 0.02 lb./week 0.006 lb./week

REFERENCES:

Experiment Program for Extended Earth Orbital Missions, Revision No. 1, September 1, 1969, NASA OMSF.

Definition of Space Flight Medical Kits: A Rationale, Brooks Air Force Base, Texas, AMD TR 67-1, May 1967.

Use of the Ben Franklin Submersible as a Space Station Analog, Volume II Psychology and Physiology OSR-70-8, Contract NAS 8-30 172.

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

1.1-6

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B- 1.1.1.2.1Sheet No. 1Operational Description No. A-1.1.1.2.1Subsystem Medical DispensaryBy: G. GreensteinDate: 20 July 1970

Title:	11	Illness	Event

Consumable/Expendable	HOW	BASIC CONSTITUENTS	Total Weight Required Per Year - Lbs.			Average Density As	REMARKS
ITEM	CONSUMED	CONSUME D			100 Man	Received lbs/cu.ft.	
Medication Tubes	Material used up	Antibiotics and polystyrene	7.30	14.60	21.90	10.36	None
Spray Bottles	Material used up	Antibiotics and polystyrene	1.72	12.00	21.90	56.80	None
Disposable Face Masks	Contaminated	Cellulose	3.65	7.30	10.95	0.7	Must be in- activated
Pill Boxes	Material used	Antibiotics and polystyrene	7.30	14.60	21.90	22 . 46	None
Medication Bottles	Material used up	Antibiotics and polystyrene	0.40	4.00	7.30	10.36	None
Band Aids	Contaminated	Cellulose and polyvinyl	0.026	0.078	0.156	0.3	Must be in- activated
Dressings and Adhesives	Contaminated	Cellulose and plastic	·	0.02	0.08	6.07	Must be in- activated
Catheter	Contaminated	Polyvinyl		-	0.05	8.26	Must be in- activated
Antiseptic Solution	Material used up	Iodine and boro- silicates	0.06	0.18	0.72	5.64	Must be in- activated
Splint	Contaminated	Steel	-	-	0.1	490.0	Must be in- activated
Gloves	Contaminated	Polyethylene	0.24	0.60	1.04	0.7	
Eye Patches	Contaminated	Cellulose	0.04	0.4	1.03	0.7	
	1997 - 19						

1.1-7

REPUBLIC AVIATION DIVISION

	Housekeeping		_		G
C A. J - - - - - -			L	MANNO	<u>> > > < <</u>
	HANGOVOONING		- C 1 1 1 1		13124CF
STUUY UI	II OUSCACE DILLE	- OULCEDW		TATCETTY ~ ~	~~~~~

TABLE III. WASTES

Title: Illness Event

Doc. No. C- 1.1.1.2.1	Sheet No. <u>1</u>	
Operational Description No.	A- 1.1.1.2.1	
Subsystem <u>Medical Dispens</u>	sary	
By: G. Greenstein	Date: 20 July 1	

Title. Inness Event	<u></u>	Chemical	Action	Total W	eight Re	auired	Average	Index Of
WASTE	Characteristics State	Composition	Required		Year -	-	Density As	Utilization
ITEM	And Attributes		To Reclaim	12 Man	50 Man	100 Man	Received lbs/cu.ft.	Potential And Remarks
Medication Tubes	Solid Plastic Contaminated	Polystyrene	N/R	3.65	7.30	10.35	5.20	
Spray Bottles	Solid Plastic Contaminated	Polystyrene	N/R	0.48	8.00	14.60	41.47	
Disposable Face Masks	Solid Paper Contaminated	Cellulose	N/R	3.65	7.30	10.95	0.7	
Pill Boxes	Sclid Plastic Contaminated	Polystyrene	N/R	3.65	7.30	10.35	11.40	
Medication Bottles	Solid Plastic Contaminated	Polystyrene	N/R	0.20	2.00	3.65	5.20	
Band Aids	Solid Plastic and Paper Contaminated	Plastic and Cellulose	N/R	0.026	0.078	0.156	0.3	
Dressings and Adhesives	Solid Plastic and Paper Contaminated	Cellulose and Plastic	N/R	-	0.02	0.08	6.07	
Catheter	Solid Plastic Contaminated	Polyvinyl	N/R	-	_	0.05	8.26	
Antiseptic Solution	Solid Glass Contaminated	Borosilicates	N/R	0.04	0.12	0.48	4.52	
Splint	Solid Metal Contaminated	Steel	Sterilize	-	-	0.1	4.90	
								•

[] FAIRCHILD HILLER REPUBLIC AVIATION DIVISION TARHERGOALE, LONG INC LED, NEW YORK

1.-8

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No. C-1.1.1.2.1	Sheet	No	2	-
Operational Description No.	A-1.	1.1.2.	1	
Subsystem Medical Dispense				
By: G. Greenstein	Date:	20 Ju	ly 19'	7
	-			

Title: Illness Event

	ASTE TEM	<u>Characteristics</u> State And Attributes	Chemical Composition	Action Required To Reclaim	Total W Per 12 Man	eight Re <u>Year -</u> 50 Man	equired Lbs. 100 Man	Average Donsity As Received lbs/cu.ft.	Index Of Utilization Potential And Remarks
Gloves		Solid Plastic Contaminated	Polyethyrene	N/R	0.24	0.60	1.04	0.7	
Eye Patches		Solid Paper Contaminated	Cellulose	N/R	0.04	0.4	1.03	0.7	
Packaging		Solid Paper Contaminated	Cellulcse	Reuse as is	0.75	2.0	3.65	.08	
									•

Doc. No. A-1.1.2.1.1 Sheet No. 1 By: G. Greenstein Date: 20 July 1970

OPERATIONAL DESCRIPTION

TITLE: Routine Examination and Illness Event (Dental Dispensary)

OBJECTIVE:

To waintain and monitor crew health and safety.

RATIONALE:

Approximately 10% of the crew members will be monitored each week. Standard dental equipment will be used. Examinations will be brief and will involve a minimal amount of equipment. The major problem of dental hygiene during aerospace missions will be stimulation of the gums. Since the problem of decay will be minor, particularly in flights of short duration, (less than six months) because of dietary adjustments that can be made to minimize the growth of organisms that produce tooth decay, there will be no need for tooth filling machinery. For this analysis the following assumptions will be made:

a. There will be one serious case of tooth decay once per year for 12 men.
b. There will be a tooth broken twice for a 12 man-year period.
c. Only emergency tooth extractions will be done onboard the vehicle (3 times per 12 man-year period).

EQUIPMENT USED:

Head rest covering	0.02 lb./each	Used routinely
Dental probe	0.05 lb./each	Used routinely
Dental mirror	0.10 lb./each	Used routinely
Extraction pliers	0.2 lb./each	See notes a, b, & c above
Scalpel	0.06 lb./each	See notes a, b, & c above
Drug and bottle	0.06 lb./+.30 lb), ea, "
Anaesthetic and bottle	0.06 lb./+.30 lb).ea. "
Dressing pad	0.002 lb./each	1
Syringe	0.013 lb./each	and a standard for the standard s
v u		· · · ·

Doc. No. A-1.1.2.1.1 Sheet No. 2 By: G. Greenstein Date: 20 July 1970

REFERENCES:

Sanitation and Personal Hygiene During Acrospace Missions MRL TDR 62-68 Life Support Systems Laboratory, Wright-Patterson Air Force Base, June 1962.

1-11

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Routine Examination and Illness Event

Doc. No. <u>B- 1.1.2.1.1</u> Sheet No. <u>1</u> Operational Description No. <u>A- 1.1.2.1.1</u> Subsystem <u>Dental Dispensary</u> By: <u>G. Greenstein</u> Date: <u>20 July 19</u>70

Consumable/Expendable	HOW	BASIC		Veight R Year -	equired Lbs.	Average Density As	REMARKS	
ITEM	CONSUMED CONSTITUENTS CONSUMED		12 Man			Received lbs/cu.ft.		
Dental Probe	Contaminated	Steel	3.1	13.0	26.0		Must be Inactiv- ated	
Dental Mirror	Contaminated	Steel and Boro- silicates	6.2	26.0	52.0		Must be Inactiv- ated	
Extraction Pliers	Contaminated	Steel	0.6	2.6	5•2		Must be Inactiv– ated	
Scalpel	Contaminated	Steel	0.18	0.75	1.5		Must be Inactiv- ated	
Drug and Bottle	Used Up	Drug and Boro- silicates	0.36	1.5	3.0	83.37	None	
Anaesthetic and Bottle	Used Up	Anaesthetic and Borosilicates	0.36	1.5	3.0	83.37	None	
Dressing Pad	Contaminated	Cellulose	0.012	0.05	0.1		Must be Inactiv- ated	
Syringe	Contaminated	Polystyrene	0.078	0.32	0.65		Must be Inactiv- ated	
Head Rest Covering	Contaminated	Cellulose	1.24	5.2	10.4		Must be Inactiv– ated	
					- 			

REPUBLIC AVIATION DIVISION TATAL 46844 C. LONG 151 AND, 4CH TONE

1.1-12

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Title: Routine Examination and Illness Event

Doc. No.C-1.1.2.1.1Sheet No.1Operational Description No.A-1.1.2.1.1SubsystemDental DispensaryBy:G. GreensteinDate: 20 July 1970

WASTE	Characteristics State	Chemical Composition	Action Required		/eight Re Year – I	bs.	Average Density As	index Of Utilization
ITEM	And Attributes	••••••••••	To Reclaim	12 Man	50 Man	100 Man	Received Potential lbs/cu.ft. And Reman	
Dental Probe	Solid Metal Contaminated	Steel	Sterilize	3.1	13.0	26.0	490.0	
Dental Mirror	Solid Metal Contaminated	Steel	Sterilize	6.2	26.0	52.0	490.0	
Extraction Pliers	Solid Metal Contaminated	Steel	Sterilize	0.6	2.5	5.0	490.0	
Scalpel	Solid Metal Contaminated	Steel	Sterilize	0.18	.75	1.5	490.0	
Drug and Bottle	Solid Glass Contaminated	Borosilicates	N/R	0.30	1.25	2.50	52.57	
Anaesthetic Bottle	Solid Glass Contaminated	Borosilicates	N/R	0.30	1.25	2.50	52.57	
Dressing Pad	Solid Gauze Contaminated	Cellulose	N/R	0.012	0.05	0.1	9.3	
Syringe	Solid Plastic Contaminated	Polystyrene	N/R	0.078	0.32	0.65	35.6	
Head Rest Covering	Solid Paper Contaminated	Cellulose	N/R	1.25	5.2	10.4	6.07	
Tooth	Solid Bone Diseased	Calcium	N/R	. –		Neglig- ible	Negligible	

Doc. No. A-1.1.3.1.1 Sheet No. 1 By: G. Greenstein Date: 22 July 1970

OPERATIONAL DESCRIPTION

FAIRCHILD HILLER

REPUBLIC

AVIATION DIVIBID

TITLE: Medical (Dispensary Housekeeping)

OBJECTIVE:

The medical dispensary will be cleaned on a daily basis. Reusable equipment will be wrapped in cloths and placed in the autoclave. Contaminated material and empty medication containers will be placed in trash hampers. These hampers will be emptied daily and the contents of the trash hampers will be autoclaved. Specially designed wipes will be available to clean up any spillage and all the patient areas. These wipes will be impregnated with a bactericide.

EQUIPMENT USED:

	Trash hampers (2)	4.0 lbs./each
*	Autoclave used for both dental and medical dispensary at the same time (2)	1.0 lb./day - (once for contaminated material and once for reusable.)
	Disposable bags for trash hampers (2)	0.06 lb./day
*	Wipes impregnated with bactericide (4)	0.24 lb./day
*	Autoclave wrapping cloths	0.02 lb./day

* - 50 and 100 men spacecraft result is same waste rate, 12 men size approximately 1/3 the rate is assumed.

REFERENCES:

Experimental Program for Extended Earth Orbital Missions Revision Dated September 1968, NASA Office of Manned Space Flight.

1, 1 = 14

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Medical Dispensary Housekeeping

Doc. No. B- 1.1.	3.1.1 Sheet 1	No. 1
Operational Descr	iption No. A-1.	1.3.1.1
Subsystem Disper	sary Housekeep	ing
By: G. Greenster		22 July 197

Consumable/Expendable	HOW BASIC			Weight R Year -	-	Average Density As	REMARKS	
ITEM	CONSUMED	CONSTITUENTS CONSUME D	12 Man	50 Man	100 Man	Received lbs/cu.ft.		
Trash Hamper	Contaminated	Polystyrene				0.35	None	
Trash Hamper Bags	Contaminated	Polyethylene	3.0	10.95	21.90	0.08	Must be Inactiv- ated	
Wipes	Contaminated	Cellulose and Bacter icide	24.00	87.60	175.20	10.37	Must be Inactiv- ated	
Autoclave Cloths for Wrapping Instruments	Wrapping Material	Cellulose	2.0	7.0	14.0	6.07	Must be Inactiv- ated	
Water	Steam Condensate Escaping	н ₂ о	50.0	183.0	366.0	62.0	Possible Escape of Noxious Odors	

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

1.1-15

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No. C	;- 1.1.3.1.1	Sheet	No	1
Operational	Description No.	A-1.1	.3.1.1	
Subsystem	Dispensary Hou	sekeepi	ng	
By: G	Greenstein	Date:	22 July	1970

Title: Medical Dispensary Housekeeping

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim	Total V Per 12 Man	Veight Re Year - I 50 Man	quired .bs. 100 Man	Average Density As Received lbs/cu.ft.	Potential
Trash Hamper	Solid Plastic Contaminated	Polystyrene	Reuse As Is				0.35	
Trash Hamper Bags	Solid Plastic Contaminated	Polyethylene	N/R	3.0	10.95	21.40	0.69	
Wipes	Solid Gauze and Bactericide Contamined	Cellulose	N/R	24.0	87.60	175.20	10.37	
Autoclave Cloths for Wrapping Instruments	Solid Cloth Contaminated	Cellulose	Reuse As Is	2.0	7.0	14.0	6.07	
Autoclave Waste Water	Vapor Steam 250°F	H ₂ C and Impurities	Condense, Strain	50.0	183.0	366.0	62.0	
Packaging Material	Solid Plastic Contaminated	Polyethylene	Reuse As Is	. 2.0	7.30	14.60	.08	
								•

Doc. No. A-1.1.3.2.1 Sheet No. 1 By: G. Greenstein Date: 22 July 1970

OPERATIONAL DESCRIPTION

TITLE: Dental (Dispensary Housekeeping)

OBJECTIVE:

To maintain and monitor crew health and safety.

RATIONALE:

The dental dispensary will be cleaned on a daily basis. Reusable equipment will be wrapped in autoclave cloths, placed in the autoclave and sterilized. Contaminated material will be placed in a trash hamper. The trash hamper inner liner will be removed at the end of each waking day and the contents of the trash hamper will be autoclaved. Impregnated wipes will be used to maintain the sanitary conditions of the facility.

EQUIPMENT USED:

	Trash hamper	2.0 lbs./each
*	Disposable bags for trash hamper	0.03 lb./day
*	Wipes impregnated with bactericide (2)	0.12 lb./day
*	Autoclave cloths (5)	0.1 lb./day

Autoclave (wastes are produced from both medical and dental dispensary and are are enumerated in 1.1.3.1.1).

*For 12 men these will be approximately 1/3 the size required for 50 and 100 men.

REFERENCES:

Experimental Program For Extended Earth Orbital Missions Revision Dated September 1968, NASA Office Of Manned Space Flight.

REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Dental Dispensary Housekeeping

Doc. No. B- 1.1.3.2.1	Sheet No. 1
Operational Description	No. A- 1.1.3.2.1
Subsystem Dispensary	Housekeeping
By: G. Greenstein	Date: 20 July 1970

Consumable/Expendable	HOW	BASIC		Veight R Year -		Average Density As	REMARKS	
ITEM	CONSUMED CONSTITUENTS CONSUMED		12 Man	50 Man	100 Man	Received lbs/cu.ft.		
Trash Hamper	Contaminated	Polystyrene				0.35	None	
Trash Hamper Bags	Contaminated	Polyethylene	3.0	10.95	10.95	-	Must be Inactiv- ated	
Wipes	Contaminated	Cellulose and Bactericide	12.0	43.80	43.80		Must be Inactiv- ated	
	Wrapping Material	Cellulose	12.0	36.5	36.5	-	Must be Inactiv- ated	

EPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No. C- 1.1.3.2.1	Sheet No 1
Operational Description No.	<u>A-1.1.3.2.1</u>
Subsystem Dispensary Ho	usekeeping
By: G. Greenstein	Date: 20 July 1970

Title: Dental Dispensary Housekeeping

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim		eight Re Year - I 50 Man		Average Donsity As Received lbs/cu.ft.	Index Of Utilization Potential And Remarks
Trash Hamper	Solid Plastic Contaminated	Polystyrene	Reuse as is				0.35	
Trash Hamper Bags	Solid Plastic Contaminated	Polyethylene	N/R	3.6	10.95	10.95	0.08	
Wipes	Solid Gauze and Bactericide Contaminated	Cellulose and Bactericide	N/R	12.0	4 3. 80	43.80	10.37	
Autoclave Cloths/ Wrapping Instruments	Solid Cloth Contaminated	Cellulose	Reuse as is	12.0	36.56	36.50	6.07	
Packaging Material	Solid Plastic Contaminated	Polyethylene	Reuse as is	1.0	3.65	3.65	0.08	

1.1-18

Doc. No. A-1.1.4.1.1 Sheet No. 1 By: P. Cooper Date: August 1970

OPERATIONAL DESCRIPTION

TITLE:

Space Suits and Portable Life Support Systems

1. RATIONALE

This system baseline consists of a Pressure Garment Assembly (PGA) and a Portable Life Support System (PLSS) each designed for a specific wearer. These units are not considered interchangeable except in an emergency. The individual PGA and the basic PLSS are considered to be replaceable with the crew members and, therefore, are not housekeeping problems. The PLSS is assumed to have replaceable or rechargeable modules which result in the consumables/expendables and wastes listed in Tables II and III.

This rationale treats the scheduled or planned EVA tasks such as routine external inspections and repairs, construction or erection of separate structures and transfers to external module.

The rationale on consumables/expendables and waste generation is based on the following guidelines (1):

• EVA occurs with two men at a time for a period of four hours.

Approximately 1/2% of the available space station hours is consumed by EVA. This works out to 40 hours/month or 5 two man EVA excursions per month for a 12 man station. In that space station, EVA would be occurring for about 3% of the calendar time. For a 50 man station these figures work out to 160 hours/month, 20-two man excursions/month and 11% of the calendar time. For a 100 man station the latter figures would be doubled.

• Water evaporated for heat rejection = 1.75#/man-hr

- Oxygen for breathing (converted to CO_2) = 0.325/man-hr
- Li OH for atmospheric contaminant control = 1.25#/man-hr
- CO₂ removed = 0.39#/man-hr
- Power supply battaries = 1.4#/man-hr
- EVA airlock 232 cu. ft. (2) at 14.7 psia $31\% O_2$, $69\% N_2$

• The PLSS and the space units are essentially personal articles and go up with a man and return to earth with him so that there is no waste directly from this basic equipment.

Doc. No. A-1.1.4.1.1 Sheet No. 2 By: P. Cooper Date: August 1970

2. **REFERENCES**

1. McDonnell Douglas Astronautics Co. MDC GO634, Space Station Preliminary Design Data, Volume 1, Book 3, Crew Systems (July 1970) contract NAS8-25140.

FAIRCHILD HILLER

2. North American Rockwell Corp., Space Division MSC-00735, Space Station Design Sheets, Vol. 1, Sections: 4.6 and 4.7, Contract NAS9-9953.

REPUBLIC AVIATION DIVISION

1.1-21

15

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. <u>B-1.1.4.1.1</u>	Sheet No. 1
Operational Description	n No. A-1. 1. 4. 1. 1
Subsystem_Personnel	
By: P. Cooper	Date:

1

Title: Space Suits and P.L.S.S.

Consumable/Expendable	HOW	BASIC CONSTITUENTS		wght rec year-lb	-	Ave rage Density	REMARKS
ITEM	CONSUMED CONSUMED		12 Man	50 Man	100 Man	lòs/cu.ft.	
Water for Heat Rejection	Evaporated	H ₂ O, latent heat	840	3, 360	6,720	62.4	
Oxygen	Metabolized and expelled	O ₂ availability	156	624	1,248	. 09	
LIOH	Adsorber of CO ₂	Affinity for con- taminants	600	2,400	4,800	28.0	
Power Supply (Battery)	Discharged	Chemical Potential	670	2,680	5,360	100.0	
Cabin Air	Vented to spac	• 0 ₂ , N ₂	854	3,418	6,836	. 07	

اسر م

. 1-22

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

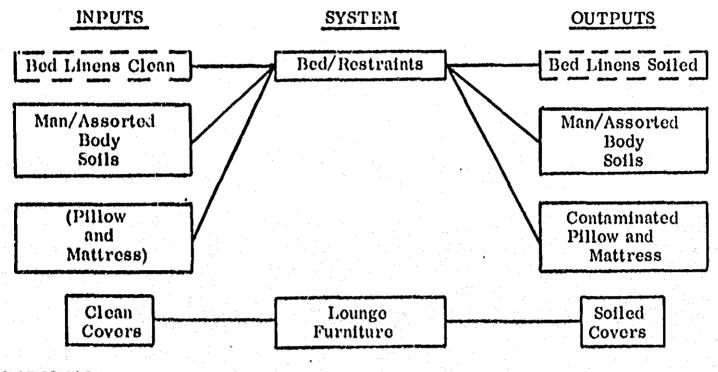
Doc. No. (-1.1.4.1.1	Sheet	No.	1	
Operational	Description N	o. <u>A-1.1</u>	.4.	1.1	
Subsystem	Personnel Pr	rotection			
By: P. C		Date:	28	Aug.	<u>19</u> 70

Title: Space Suits and P.L.S.S.

WASTE	WIDID Characteriouso		Action		l wght r er year-		Average	Index Of Utilization					
ITEM	State And Attributes	Composition	Composition	Composition	Composition		And a training a second	Required To Reclaim	12 man	50 man	100 man	Density Ibs/cu.ft.	Potential And Remarks
Water	Liquid, Vaporized	H ₂ O	N/R	840	3,360	6,720	62.4						
co ₂	Gas, combined with LiOH	O ₂ , C	Trap and scrub	187	749	1,498	-	at about 7 mm Hg. partial pres- sure					
LiOH	Solid, Granular, Hydroscopic, Strong Caustic	LiOH	N/R	600	2,400	-	28.0						
Power Supply (Battery)	Solid, Dense, Corrosive	Unknown	Recharge		2,680	5,360	100.0						

PROVIDE CREW QUARTERS

TABLE OF CONTENTS


Document Number	Title	Pago
1,2,1,1,1	Room Furnishings	1.2-1
1.2.2.1.1	Clothing	1.2-5
1.2.2.2.1	Bod Linens	1.2-8
1.2.2.3.1	Limited Personal Grooming Facility	1.2-11
1.2.3.1.1	Individual Crew Recreation	1.2-14

Doc. No. A-1.2.1.1.1 Sheet No. 1 By: P. Trotta Date: 16 June 1970

OPERATIONAL DESCRIPTION

TITLE: Room Furnishings

SCHEMATIC BLOCK DIAGRAM:

RATIONALE:

a. Bed/Restraints

This subsystem is designated to define consumables and products other than the normal linen which is considered separately (see Document No. A-1.2.2.2.1. The subsystem consists of any and all sleep fixtures, restraints or supports. Pillows or mattresses, if used in a manner similar to that used on Earth, can be changed or cleaned as the user changes (i.e., new crewman: fresh pillow and mattress,) or if they become contaminated. It is assumed that if pillows and mattresses are used, they will be of the inflatable type and will weigh approximately 1/3 lb, and 1 lb, respectively and will be used for 90 days before replacement.

b. Lounge Furniture

The lounge furniture, if present, is essentially a passive system. Furniture covers, if used, will be the only conceivable consumable and/or waste product. These covers, it is assumed, will not be replaced faster than yearly on the average

1.2-1

Doc, No. A-1, 2, 1, 1, 1 Sheet No. 2 By: P. Trotta Date: 16 June 1970

(including replacements due to accidental contamination). They are assumed to weigh 1 lb. each.

c. Closets, Shelves, Drawers, Clean Materials Hampers

This is essentially a passive system and as such has no consumables in and of itself. Its contents will not be considered as expendables, consumables, products or wastes.

REFERENCES:

Hygiene Systems Analysis Debris Generation and Flow Patterns, FHR #3864, December 30, 1969, FH/RAD

1.2-3

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

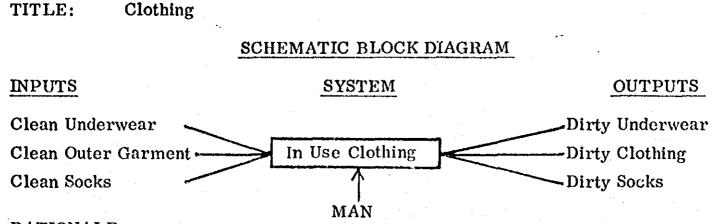
Doc. No. B-1.2.1.1.1Sheet No. 1Operational Description No. A-1.2.1.1.1Subsystem Provide FurnishingsBy: P. TrottaDate: 16 June 1970

Title: Room Furnishings

Consumable/Expendable	HOW	BASIC	Total wght req'd per year-lbs		Average Density As	REMARKS	
ITEM	CONSUMED	CONSTITUENTS CONSUME D	12 man	· · · · · · · · · · · · · · · · · · ·		Received lbs/cu.ft.	
Pillows (inflatable)	Contaminated in use	External purity	16	67	133	40	Density noted Assumes de- flated condition
Mattress (inflatable)	Contaminated in use	External purity	48	200	400	40	Density noted Assumes de- flated condition
Lounge Covers	Contaminated in use	Life, freshness	12	50	100	20	
							-

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

1.2-4


Study of Housekeeping Concepts For Manned Space		Sheet No1
TABLE III. WASTES	Operational Description No. Subsystem <u>Provide Furnishi</u> By: <u>P. Trotta</u>	

Title: Room Furnishings

The: Room Furnishings				`			,	
WASTE	Characteristics	CharacteristicsChemicalActionTotal wght req'dper year-lbs			Average Donsity As	Index Of Utilization		
ITEM	State And Attributes	Composition	Required To Reclaim	12 man	50 man	100 man	Received lbs/cu.ft.	Potential And Remarks
Used inflatable pillow	Solid, plastic inert, sheet	Teflon	Launder/ Wipe Clean	16	67	133	40	
Used inflatable mattress	Solid, plastic inert, sheet	Teflon	Launder/ Wipe Clean	48	200	400	40	
Worn furniture covers	Solid, plastic sheet, inert	PBI (Poly-ben- zimidazole)	None	12	50	100	20	
		or nylon (poly- amide)						
				•				

Doc. No. A-1.2.2.1.1 Sheet No. 1 By: P. Trotta Date: 15 June 1970

OPERATIONAL DESCRIPTION

RATIONALE:

Clothing has been considered as a system unto itself for ease of handling. Clean garments constitute the consumables and dirty garments constitute the product or waste. Their individual weights and usage time is as follows:

Article of Clothing	Weight	Usage Period (Days)	LB/MN/DAY
Short sleeve shirt	0.27/shirt	3	0.09
Trousers	0.77/trousers	6	0.13
Jacket (lightweight)	0.62/jacket	90	0.0069
Undershirt	0.17/shirt	2	0.085
Undershorts	0.17/shorts	2	0.085
Socks	0.04/pair	2	0.02
Shoes	0.55/pair	180	0.003

REFERENCES:

Preliminary Definition - Integrated Hygiene System Material Provisions, FHR #3871, January 29, 1970 FH/RAD

Hygiene Systems Analysis Debris Generation and Flow Patterns. FHR #3864, December 30, 1969 FH/RAD

Space Station Phase B Definition Design Sheets by Space Division N.A.R. MSC-00735 SD 70-150, Vol. 1, Page 002

Handbook of Garment Selection Criteria for A Space Station, By Austin C. Morris of B. Welson & Co., Inc., Hartford, Conn. NASA CR 102051, N70-15022 (1969-1970) FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. <u>B-1.2.2.1.1</u>	Sheet No.	1
Operational Description No	A-1.2.2.1.	.1
Subsystem Personal Artic	les	
By: P. Trotta	Date: <u>15</u> Ju	<u>ine, 1</u> 970

Title: Clothing

1.2-6

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUME D	Total Wght Req'd per year-lbs 12 50 100 MAN MAN MAN		Average Density As Received Ibs/cu.ft.	REMARKS	
Shirt(short sleeve)	Soiled as worn	Freshness	389	1620	3240		Density is a function of packing
Trousers	Soiled as worn	Freshness	554	2310	4620	15	
Jacket,Lightweight	Wear and soiling	Life	28	124	248	17	
Undershirt	Soiled as worn	Freshness	367	1530	3060	15	
Undershorts	Soiled as worn	Freshness	367	1530	3060	15	
Socks (pair)	Soiled as worn	Freshness	86	360	720	10	
Shoes (pair)	Wear and soiled	Life	13	56	110	64	

Study of Housekeeping Concepts For Manned Space

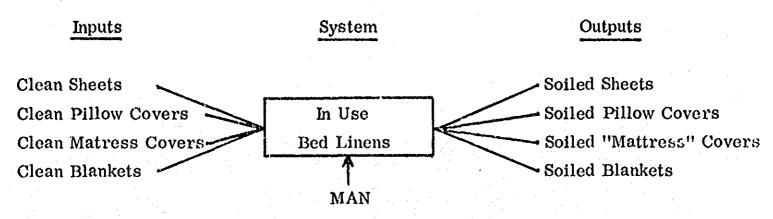
TABLE III. WASTES

Doc. No.C-1.2.2.1.1Sheet No.1Operational Description No.A-1.2.2.1.1SubsystemPersonal ArticlesBy:P. TrottaDate: 15 June, 1970

Title: Clothing

1.2-7

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim		oght req ear-lbs 50 man		Average Density As Received lbs/cu.ft.	Index Of Utilization Potential And Remarks
Soiled shirt (short sleeve)	Solid, Textile Sheet, Pathogenic	Cellulose H-C-O	Launder	428	1782	3564	17	
Soiled Trousers	11	Cellulose	Launder	609	2541	5082	17	
Soiled Jacket, Lightweight	11 11	Cellulose	Launder	8	34	68	19	
Soiled Undershorts	11	Cellulose	Launder	440	1836	3672	18	
Soiled Undershirts	31	Cellulose	Launder	440	1836	3672	18	
Soiled Socks (pair)	11	Cellulose	Launder	103	432	864	12	
Soiled Shoes (pair)	Solid, plastic, inert, sheet	Flourel soaked doeskin	Clean with solvents	7	28	56	65	
							1	
					•			


FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Doc. No.A-1.2.2.2.1 Sheet No. 1 By: P. Trotta Date: 15 June 1970

OPERATIONAL DESCRIPTION

TITLE: Bed Linens

SCHEMATIC BLOCK DIAGRAM

RATIONALE:

Bed linens are considered as a system unto itself separate from bed/restraints (A 1.2.1.1.1) or laundry (1.4.4.1.1). The inputs consist of the clean items noted above, the outputs are the same items - soiled. Sheets weighing 0.37 lbs each will be replaced every 6 days. Blankets and mattress covers weigh approximately 1.0 lb and 0.7 lb respectively and will be used for approximately 6 months. Pillow cases weigh approximately 0.1 lbs and will be replaced every 6 days with the sheets.

REFERENCES:

Space Station Phase B Definition Design Sheets by Space Division N.A.R. MSC-00735 SD 70-150 Vol.1, Pages 008.

Hygiene Systems Analysis Debris Generation and Flow Patterns, FHR 3864 December 30, 1969, FH/RAD.

Preliminary Definition - Integrated Hygiene System Material Provisions, FHR #3871, February 2, 1970, FH/RAD.

REPUBLIC AVIATION DIVISION

•

N

1.2-9

Study of	Housekeeping	Concepts	For	Manned	Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. <u>B-1.2.2.2.1</u> Sheet No. <u>1</u> Operational Description No. <u>A-1.2.2.2.1</u> Subsystem Personal Articles By: <u>P. Trotta</u> Date: <u>15 June 1970</u>

Title: Bed Linens

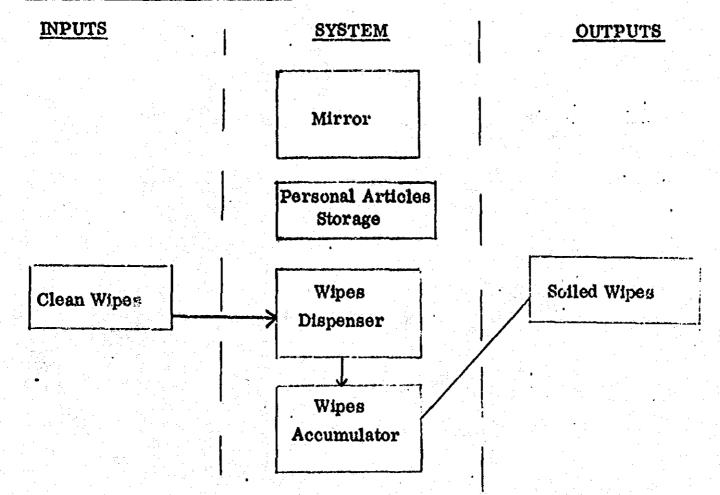
Consumable/Expendable	HOW	BASIC CONSTITUENTS	pe	al wght 1 er year-	lbs.	Average Density As	REMARKS
ITEM	CONSUMED	CONSUME D	12 man	50 man	100 man	Received lbs/cu.ft.	
Sheets	Soiled as used	Fabric cleanliness	266	1110	2220	30	Density is a function of packing
Blanket	Wear or accid- ental contamin- ation		24	100	200	5	
Pillow Cases	Soiled as used	Fabric cleanliness	73.2	305.0	610.0	30	
Mattress Covers	Wear or accid- ental contamin- ation		17	70	140	5	
					an a		

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION (ARMINGOALE, LONG ISLAND, KEN YORK

Study of Housekeeping	Concepts For	Manned Space	Doc. No. <u>C-1.2.2.2.1</u> Sheet No. <u>1</u>
		·	Operational Description No. A-1.2.2.2.1
TABLE	III. WASTE	₽	Subsystem Personal Articles
			By: P. Trotta Date: 15 June 1970

Title: Bed Linens

1.2-10


WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim		weight r vear-l 50 man	-	Average Density As Received Ibs/cu.ft.	Potential
Sheets Soiled	Solid, Fabric, Shcet, Organic Soil	Cellulose	Launder	320	1332	2664	25	Density is a function of packing
Blanket	Solid, Fabric, Sheet, Organic Soil	Cellulose	Dry Clean or Launder	24	100	200	5	Density is a function of packing
Pillow Cases	Solid, Fabric, Sheet, Organic Soil	Cellulose	Launder	73.2	305.0	610.0	25	Density is a function of packing
Mattress Covers	Solid, Fabric, Sheet	Cellulose	Launder	17	70	140	5	Density is a function of packing

Doc. No. A-1.2.2.3.1 Sheet No. 1 By: P. Trotta Date: 16 June 1970

OPERATIONAL DESCRIPTION

TITLE: Limited Personal Grooming Facility

SCHEMATIC BLOCK DIAGRAM:

RATIONALE:

The personal limited grooming facility is essentially a passive system. It consists of a mirror and storage for any personal grooming aid the crew member would want in his quarters (i.e., comb, brush). It may however, be the location of a wipes dispenser in the crew quarters and as such it will "consume" clean wipes and "produce" soiled wipes at a rate of 10 wipes/day (approx. 4 gm each).

REFERENCES:

Vol. 1 - Preliminary Design Report (Space Station: Hygiene, Waste Management, and Food Subsystems). FHR #3900 June 1, 1970 Fairchild Hiller/RAD. Design Sheets (Hygiene and Food Management) for MDAC. FHR #3902 June 5, 1970 FH/RAD.

Preliminary Definition - Integrated Hygiene System Material Provisions. FHR #3871 Jan. 29, 1970 FH/RAD.

Hygiene Systems Analysis Debris Generation and Flow Patterns. FHR #3864 Dec. 30, 1969 FH/RAD.

REPUBLIC AVIATION DIVISION * ***

1.2-12

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

....

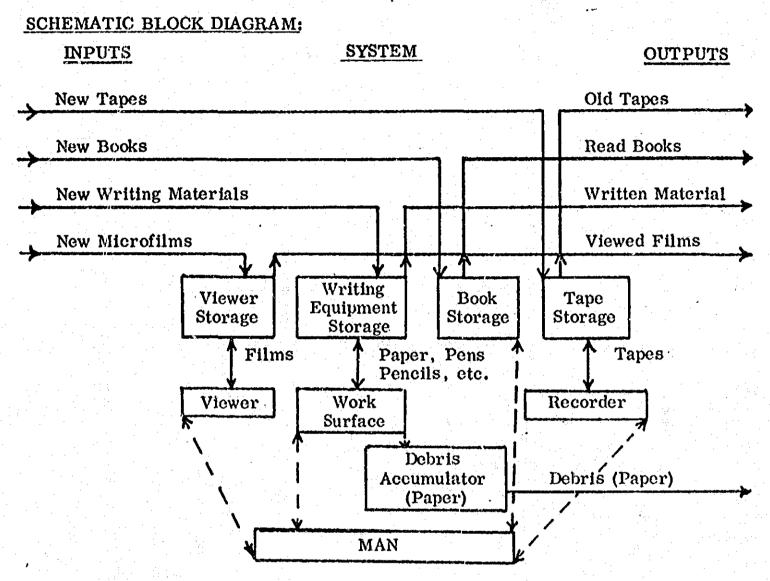
Doc. No. B-1.2.2.3.1	Sheet No. 1
Operational Description	No. A- 1.2.2.3.1
Subsystem Provide Per	sonal Articles
By: p. Trotta	Date: <u>16 June 19</u> 7

Consumable/Expendable	HOW			tal wght er year		Average Density As	REMARKS	
ITEM	CONSUMED	CONSTITUENTS CONSUME D	12 man	50 man	100 man	Received lbs/cu.ft.		
Absorbent Paper Wipes	Soiled in use	Papers ability to absorb liquids and debris	38.6	160.8	323.6	7.0	Density is a function of packing	
			•					

2

AIRCHILD HILLER EPUBLIC AVIATION DIVISION

1.2-13


WASTECharacteristicsCompositionRequiredper year-iosDensity AsUtilizationITEMAnd AttributesAnd AttributesTo Reclaim1250100 manReceivedPotential Ibs/cu.ft.Potential And Reman		TABLI		nned Space		Opera Subsy	tional D	ovide P	on No. <u>A-</u> ersonal Ar	eet No. <u>1</u> 1.2.2.3.1 ticles te: <u>16 June 19</u>
Absorbent Wipes 4 gm ea.Solid, Paper Pathogenic, SheetCellulose H-C-OClean, Dry and disin- fect38.6160.8321.67.0Density is a function of packing			State And		Required	p 12	er year-	1bs 100	Density As Received	Potential
	Wipes 4 gm ea.	-	Solid, Paper Pathogenic,		and disin-	38.6	160.8	321.6	7.0	
		• .								
		•								
								•		

Doc. No. A-1.2.3.1.1 Sheet No. 1 By: P. Trotta Date: 22 June 1970

OPERATIONAL DESCRIPTION

Individual Crew Recreation

FAIRCHILD HILLER

RATIONALE:

TITLE:

The individual crew recreation center may utilize printed books as well as tapes and films as mediums. Recreational reading (or non-music tapes or micro film) will have its utility change as the fraction of crewmembers who have used it compared to those who have not, changes. That is, a change of crew will increase the utility of a book without the book changing in any physical way. (One book is assumed read/man/wk). The crewmember will also use about 10 sheets of writing material/day for personal logs and letters, half of which will be discarded.

REFERENCES:

Hygiene Systems Analysis Debris Generation and Flow Patterns - FHR #3864 December 30, 1969 - FH/RAD

1.2-15

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1.2.3.1.1	Sheet	No. 1
Operational Description No	. <u>A-1.2</u>	.3.1.1
Subsystem Rest and Relaxa	ation Pr	ovisions
By: J. Trotta	Date:	6/22/70
-	1. 1. I.	

Title: Individual Crew Recreation

Consumable/Expendable	HOW	BASIC	Tota pe	al wght r r year-l	eq'd bs	Average Density As	REMARKS
ITEM	CONSUMED	CONSTITUENTS CONSUME D	12 man	50 man	100 man	Received lbs/cu.ft.	
Paper for writing Books Magnetic Tape Cassettes	Written upon Read by all Listened to by all	Surface Novelty Novelty	40 52 8	170 52 8	350 52 8	50 50 80	
New Micro Films	Viewed by all	Novelty	5	5	5	80	

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

FARMINGOALE, LONG ISLAND, NEW YORK

1.2-16

Study of Housekeeping Concepts For Manned Space	1	Study of Housekeeping Concepts For Manned Space	
---	---	---	--

TABLE III. WASTES

Title: Individual Crew Recreation

Doc. No. <u>C-1.2.3.1.1</u> Sheet No. <u>1</u> Operational Description No. <u>A-1.2.3.1.1</u> Subsystem <u>Rest and Relaxation Provisions</u> By: <u>P. Trotta</u> **Date:** June 22, 1970

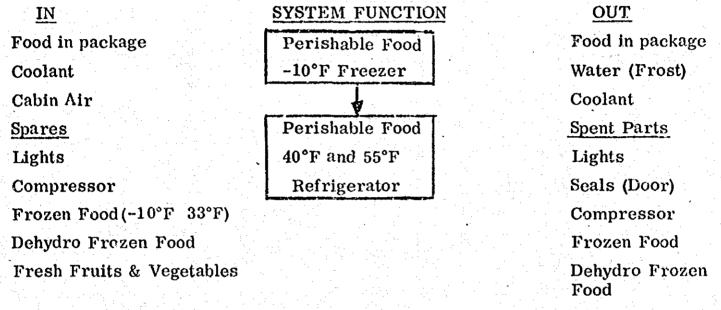
WASTE	Characteristics	Chemical	Action		l wght re year-lb		Average Density As	Index Of Utilization
ITEM	State And Attributes	Composition	Required To Reclaim	12 man	50 man	100 man	Received lbs/cu.ft.	Potential
Debris (Paper)	Solid, Paper, Sheet,Inert	Cellulose C-H-N	Reprocess	20	85	175	3 - 20	Density is a function of packing
Books (100% Read)	Solid, Paper Sheet, Inert	Cellulose C-H-N	Reprocess	52	52	52	50	
Magnetic Tapes Cassettes	Solid, Plastic Sheet, Inert	Mylar, F _e	Erase and Rerecord	8	8	8	80	
Viewed Micro Films	Solid, Plastic Sheet, Inert	Acetate	Reprocess	5	5	5	80	
					· · · · · · · · · · · · · · · · · · ·			
						:		

PROVIDE CREW FOOD AND DRINK

SECTION 1.3

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

TABLE OF CONTENTS


Document		t Alexandria Alexandria
Number	Title	Page
1.3.1.1.1	Perishable Food Storage - Mechanical	1,3-1
1,3,1,1,2	Perishable Food Storage - Thermoelectric	1.3-5
1.3.1.1.3	Perishable Food Storage - Space Radiator	1.3-8
1,3.1.2.1	Stable Food Storage	1.3-11
1,3.2.1.1	Food Reconstitution (Rehydration)	1.3-14
1.3.2.1.2	Food Reconstitution (Heating)	1.3-17
1,3.2.2.1	Meal Assembly	1.3-20
1.3.3.1.1	Meal and Accessory Transport	1.3-23
1.3.3.2.1	Dining	1.3-26
1.3.4.1.1	Debris Control – Mechanical	1.3-29
1.3.4.1.2	Debris Control - Manual	1.3-32
1.3.4.2.1	Utensil Cleansing	1.3-15
1.3.4.3.1	Waste Stowage	1.3-38

Doc. No. A-1.3.1.1.1. Sheet No. 1 By: L. Peyser Date: 10 July 1970

OPERATIONAL DESCRIPTION

TITLE: Perishable Food Storage - Mechanical

SCHEMATIC BLOCK DIAGRAM

Fresh Fruit & Vegetables

RATIONALE:

The mechanical, compressor operated, refrigerator and freezer act only as transient storage facilities for perishable food items. The freezer subassembly will include a compressor, unloading device, condensor, and an evaporator/separator. The machinery transfers heat from within its compartments and dumps it either directly or indirectly into the ECLSS. Internal freezer volume required for the 12 man food supply 365 days is 147 ft³. The refrigerator subassembly consists of four (4) insulated compartments capable of storing food at two preselected temperature levels simultaneously. Internal refrigerator volume required for the 12 man food supply for 365 days is 30 ft³. Internal volumes for crews of greater number will increase linearly.

Doc. No. A-1.3.1.1.1. Sheet 2 By: L. Peyser Date: 10 July 1970

Food stored in the system is defined as follows:

Туре	Density lb/ft ³	<u>12 Men</u>	50 Men	100 Men
Frozen	56	5,650	23, 500	47,000
Dehydro-Frozen	46	2,140	8,900	17,800
* Perishable	15	57	237	474
		7,847	32,637	65,274

*Perishable foods are fresh fuits and vegetables placed on board not as a vital part of the food supply. This amount represents a 30 day supply.

REFERENCES:

Fairchild Hiller Study - FHR 3885 "Food Management Subsystem - Space Station", 2/17/70

1.3-3

REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TAELE II. CONSUMABLES/EXPENDABLES

Title: Perishable Food Storage - Mechanical

Doc. No. B-1.3.1.1.1	Sheet No. 1
Operational Description N	No. A-1.3.1.1.1
Subsystem Food Storage	
By: L. Peyser	Date: 10 July 1970

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS	Total Weight RequiredPer Year - Lbs.1250100		Average Density As Received	REMARKS	
		CONSUMED	Man	Man	Man	lbs/cu.ft.	
Refrigerant in container	Escape to Atmosphere	Freon	10	42	84	120.0 as Liquid	
Lights (2/yr/system) (100 w. bulb .076#)	Burn Out	Life	.152	.608	1.215	8.0	
Compressor & Engine Parts 100 1 ¹ / ₂ hp	Random Failure	Metals Rubber Teflon	4	8	16	120	
Atmospheric Humidity	Condensed	Water	41	170	340	64	
Food-In Pkg. (Perishable) (45% by dry wt of total)	Removed for Preparation	N.A.	7,847	32,637	65,274	56	

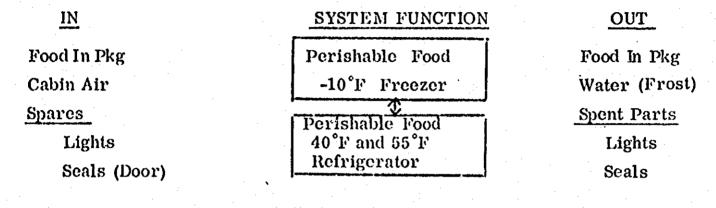
1.3-4

Study of Housekeeping Concepts For Manned Space	Doc. No. <u>C-1.3.1.1.1</u> Sheet No. <u>1</u>
TABLE III. WASTES	Operational Description No. <u>A-1.3.1.1.1</u> Subsystem Food Storage System
	By: L. Peyser Date: 10 July 1970

.

Title: Perishable Food Storage - Mechanical

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim		/eight Ro Year - 50 Man		Average Density As Rcceived lbs/cu.ft.	Potential
Freon	gas, inert,	Freon	N/A	10	42	84	120	
Light bulbs	Solid, Fragile, Sharp Pieces	Glass Tungsten Steel	N/A	.152	.608	1.215	8.0	
Spent Parts	Solid, Dense, Small Metal, Plastic Liquid,	Fe, Cu, A1, Teflon	N/A	4	8	16	120	
Water	Frost	н ₂ О	Condense & Recover	41	170	340	64	1.0
Food in Pkg. (.1% Spoilage)	Solid, Organic Plastic, Sheet, Metal	Polyethylene Aluminum	None	7.8	32.6	65.3	56	Deactivate Bacteria


Doc. No. A-1.3.1.1.2 Sheet No. 1 By: L. Peyser Date: 10 July 1970

OPERATIONAL DESCRIPTION

TITLE:

Perishable Food Storage - Thermoelectric

SCHEMATIC BLOCK DIAGRAM

RATIONALE:

The passive thermoelectric refrigerator and freezer act as transient storage facilities for perishable food items. Adjunct equipments for the system are condensor and evaporator/separator. The system dumps heat either directly or indirectly into the ECLSS. Volume requirements are as for A-1.3.1.1.1.

REFERENCES:

Fairchild Hiller Study FHR 3885. Food Management Subsystem - Space Station 2/17/70.

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

1.3-0

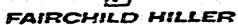

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No. <u>C-1.3.1.1.2</u> She	
Operational Description No. A-1	.3.1.1.2
Subsystem Food Storage System	
	e: 10 July 1970

Title: Perishable Food Storage - Thermoelectric

WASTE ITEM	<u>Characteristics</u> State And Attributes	Chemical Composition	Action Required To Reclaim	Total W <u>Per</u> 12 Man	Veight Re Year - 1 50 Man	equireo Lbs. 100 Man	Average Density As Received lbs/cu.ft.	Potential
Light bulbs Water	Solid, Fragile, . Sharp, Pieces Liquid, Frost	Borosillicate Tungsten Steel	Pulverize Condense	.152	.608	1.215	8	As pulv eri zed
Food in Pkg .1% Spoilage	Solid, Organic, Plastic, Sheet, Metal	H ₂ O Polyethylene Aluminum	& Recover None	41 7.8	170 32.6	340 65 . 3	64 56	1.0 Deactivate Bacteria

REPUBLIC AVIATION DIVISION

1.3-7

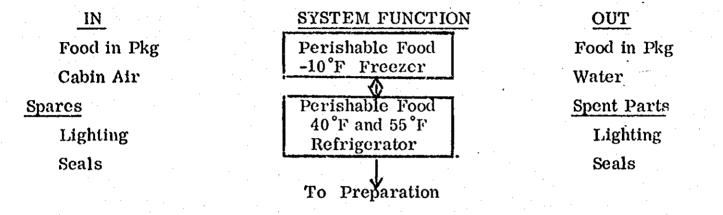
Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1.3.1.1.2Sheet No. 1Operational Description No. A-1.3.1.1.2Subsystem Food Storage SystemBy: L. PeyserDate: 10 July 1970

Title: Perishable Food Storage - Thermoelectric

Consumable/Expendable	HOW	BASIC		Weight F r Year -	Required Lbs.	Average Density As	REMARKS
ITEM	CONSUMED	CONSTITUENTS CONSUME D	12 Man	50 Man	100 Man	Received lbs/cu.ft.	
Lights 2/yr/system 100 W Bulb .076#	Burn Out	Tungsten	.152	.608	1.215	8.0	As Packaged
Atmospheric Humidity	Condensed	Water	41	170	340	64	
Food in Pkg. (Perishable) (45% by dry wt. of total)	Removed to Preparation	NA	7,790	32,400	64,800	56	


Doc. No. A-1.3.1.1.3 Sheet No. 1 By: L. Peyser Date: 10 July 1970

OPERATIONAL DESCRIPTION

TITLE:

Perishable Food Storage - Space Radiator

SCHEMATIC BLOCK DIAGRAM

RATIONALE:

The passive space radiator refrigerator freezer acts as transient storage. The subassembly will include a condensor, and an evaporator/separator. The system dumps heat directly to the space radiator. Volume requirements are as for A.1.3.1.1.1.

REFERENCES:

Fairchild Hiller Study - FIIR 3885. Food Management Subsystem - Space Station 2/17/70.

REPUBLIC AVIATION DIVISION

1.3-9

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Perishable Food Storage - Space Radiator

Doc. No. <u>B-1.3.1.1.3</u>	_ Sheet No	1
Operational Description No	A-1.3.1.1.	3
Subsystem Food Storage S	System	· · · · ·
By: L. Peyser	Date: 10 Ju	ly 1970

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUME D		Veight R Year - 50 Man		Average Density As Received lbs/cu.ft.	REMARKS
Lights	Burn Out	Tungsten	.152	.608	1.215	8.0	As Pkgd.
Atmospheric Humidity	Condensed	Water	41	170	340	64	
Food in Pkg. 45% by dry wt. of total	Remove to preparation	NA	7,970	32,400	64, 800	56	

REPUBLIC AVIATION DIVISION

) junià

3-10

۰.	Study	of	Housekeeping	Concepts I	For	Manned	Space

TABLE III. WASTES

Doc. No.C-1.3.1.1.3Sheet No.1Operational Description No.A-1.3.1.1.3SubsystemFoodStorage SystemBy:L.PeyserDate:10July 1970

Title: Perishable Food Storage - Space Radiator

WASTE	Characteristics State	Chemical Composition	Action Required	Total W Per	/eight Re Year - 1	quired	Average Density As		
ITEM			To Reclaim	12 50 Man Man		100	Received lbs/cu.ft.		
Light Bulbs	Solid, Glass Fragile Sharp, Pieces	Borosilicate Tungsten Steel	Pulverize	.152	.608	1.215	8	As Pulverized	
Water	Liquid, Frost	н ₂ 0	Condense & Recover	41	170	340	64	1.0	
Food in Pkg. (.1% Spoil)	Solid, Organic Plastic, Sheet, Metal	Polyethylene Aluminum	None	7.8	32.6	65.3	56	Deactivate Bacteria	

Doc. No. A-1.3.1.2.1 Sheet No. 1 By: L. Peyser Date: 10 July 1970

OPERATIONAL DESCRIPTION

TITLE: Stable Food Storage

SCHEMATIC BLOCK DIAGRAM

SYSTEM FUNCTION	OUT
Stable Food	Food In Package
Storage Structure	Spent Parts Lights
	Stable Food Storage

RATIONALE:

The stable food storage structures are unsealed compartments subject to ambient temperature, pressure, and humidity. The structure acts as transient storage facilities for dried and thermostabilized food.

Food stores in the structure are defined as follows:

Type Dens		Packaged Weight			
		12 Men	50 Men	100 Men	
Dry	50	1,245	5,200	10,400	
Freeze-Dried	10	1,245	5,200	10,400	
Thermostabilized	56	5,875	24,500	49,000	
Total		8,365	34,900	69,800	

REFERENCE:

Fairchild Hiller Study - FHR 3885,"Food Management Subsystem -Space Station," 17 February 1970.

REPUBLIC AVIATION DIVISION

1.3-12

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No.B-1.3.1.2.1Sheet No.1Operational Description No.A-1.3.1.2.1SubsystemFood Storage SystemBy:L.PeyserDate:10July 1970

Title: Stable Food Storage

Consumable/Expendable. ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUME D		Weight R Year - 50 Man	equired Lbs. 100 Man	Average Density As Received lbs/cu.ft.	REMARKS
Food in pkg.	Removed to preparation	Food	8,365	34,900	69,800	41.8	
Lights (2/yr/system)	Burn out	Tungsten	.152	. 608	1,215	8.0	as pkgd.

1.3-13

FARMENGDALE, LONG INCAND, NEW ORK

Study of Housekeeping Concepts For Manned Space	Study of	Housekee	ping Co	oncepts	For	Manned	Space
---	----------	----------	---------	---------	-----	--------	-------

TABLE III. WASTES

Doc. No. <u>C-1.3.1.2.1</u> Sheet No. <u>1</u> Operational Description No. <u>A-1.3.1.2.1</u> Subsystem <u>Food Storage System</u> By: <u>L. Peyser</u> Late: <u>10 July 1970</u>

• WASTE	Characteristics State	Chemical Composition	Action Required	Per	<u>Year - I</u>	bs.	Average Density As	
ITEM	And Attributes		To Reclaim	12 Man	50 Man	100 Man	Received lbs/cu.ft.	Potential And Remark
Food in pkg. .1% of total	Solid, Organic, Plastic Sheet	Food, Polyethylene	Physical separation of consti- tuents	8.4	34.9	69.8	41.6	Deactivate bacteria
Light Bulbs	Solid, Glass, Fragile, Sharp, Pieces	Borosilicates Tungsten Steel	Pulverize	.152	. 608	1.215	8	
	Sharp, Fleces							
						•		
		in an tao ing kabupatén kabupatén kabupatén kabupatén kabupatén kabupatén kabupatén kabupatén kabupatén kabupat Kabupatén kabupatén k						
· · · · · · · · · · · · · · · · · · ·								

Doc. No. A-1. 3. 2. 1. 1 Sheet No. 1 By: L. Peyser Date: 10 July 1970

OPERATIONAL DESCRIPTION

TITLE:

Food Reconstitution (Rehydration)

SCHEMATIC BLOCK DIAGRAM

<u>IN</u> Food In Package (Dry) Water (For Reconstitution) Water (For Drinking) SYSTEM FUNCTION Food Rebydration <u>OUT</u> Rehydrated Food In Package Dry Food In Package Drinking Water

RATIONALE:

Dehydrated food products; i.e., freeze dried, powder, ground, and dehydrofrozen, are rehydrated with hot or cold water prior to being assembled onto a meal tray. Water quantities are derived as follows: (Man per day quantities)

Beverage rehydration	1000 ml	2.2#	4 beverages of 250	ml each
Drinking water	1045 ml	2.3#		· · ·
Food reconstitution	455 ml	1.0#		· · · ·

The waste factor assigned to inpackage food reconstitution is 0.5%.

REFERENCE:

Fairchild Hiller Study FHR 3885 -"Food Management Subsystem - Space Station," 17 February 1970.

REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space	Study of H	lousekeeping	Concepts	For	Manned	Space
---	------------	--------------	----------	-----	--------	-------

TABLE II. CONSUMABLES/EXPENDABLES

Title: Food Reconstitution (Rehydration)

DOC. NO. B-1.3.2.1.1Sheet No. 1Operational Description No. A-1.3.2.1.1Subsystem Ford and Food Prep.By: L. Peyser Date: 10 July 7 Date: 10 July 1970

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUME D		Veight R <u>Year -</u> 50 Man		Average Density As Received Ibs/cu.ft.	REMARKS
Water 1.0#/Man/Day	Rehydration of Dehydrated Food	H ₂ O	4,380	18 , 250	36,500	62	
2.2#/Man/Day	Rehydration of Dehydrated Beverages	H ₂ O	9,620	40,000	≈0,000	ô2	
Dry Food In Package Package . 214#/#Food	Reconstituted (Rehydration)	Food & Package	4,630	19,300	38,600	36.2	
Food.75#/Man/Day							
Water (Drinking) 2.3# 1000 ml	Drinking	^H 2 ^O	10,074	42,000	84,000	62	

1.3-10

Study of Hous	ekeeping Cond	cepts For Ma	anned Space	Doc. No. <u>C-1.3.2.1.1</u> Sn Operational Description No. <u>A</u>	-1.3.2.1.1
	TABLE III.	WASTES		Subsystem Food and Food Pre	
				By: <u>L. Peyser</u> Da	ate: 10 July 1970

Food Reconstitution (Rehydration) Title:

WASTE ITEM	<u>Characteristics</u> State And Attributes	Chemical Composition	Action Required To Reclaim	Total W Per 12 Man	eight Re Year - 1 50 Man	equired Lbs. 100 Man	Average Donsity As Received lbs/cu.ft.	Potential
Food In Package .5%	Solid, Organic, & Plastic Sheet	Food, Polyethlene	None	45. 5	188	375	56	
Water Spilled & Not Drunk	Liquid Water	н ₂ о	Recycle	1007	4,200	8,400	62	1.0
10%								
					-			

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Doc. No. A-1.3.2.1.2 Sheet No. 1 By: L. Peyser Date: 10 July 1970

OPERATIONAL DESCRIPTION

Heat to 180°F

Hold @

Chill 45°F

140°F

TITLE: Food Reconstitution (Heating)

IN

Wetpack Food

Frozen and

in Packages

SYSTEM FUNCTION

OUT

Warmed Food in Package

Cooked Food in Package

Prepared Food in Package

Trays

Spoiled Food Package

Trays

Handling Equipments

RATIONALE:

Stable wet pack, perishable frozen, and dehydro-frozen foods may require heat reconstitution prior to serving. This is accomplished with ovens, warmers, and chillers. Ovens are combination microwave-forced air convertion for quickest warm-up. The chiller is an adjunct to the refrigerator. Possible consumables result from random failure of the 7 pound magnitron which has an estimated useful life of three to five thousand hours.

REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Food Reconstitution (Heating)

Doc. No. B-1.3.2.1.2	Sheet No.	. 1
Operational Description No.	A-1.3.2	2.1.2
Subsystem Food and Food	Prep.	
By: L. Peyser	Date: 10	July 1970

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUMED	15	Weight F <u>Year -</u> 50 Man	lequired Lbs. 100 Man	Average Density As Received lbs/cu.ft.	REMARKS
Precooked Food in Pkg. Include frozen, wetpak and dehydro frozen	Warmed cr Chilled or Cooked	Food and Pkg	13,650	57,000	114,000	56	
Magnitron tube Spares	Random failure	Usefullness	2.1	4.2	7.0	100	

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

FARMINGDOLE, LONG INT AND, NON TOPE

Study of	Housekeeping	Concepts I	for Manned	I Space

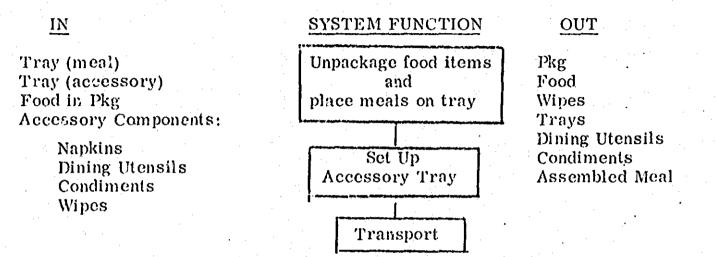
TABLE III. WASTES

	Sheet			·
Operational Description No.	<u>A- 1</u> .	3.2	2.1.2	
Subsystem Food and Food	Prep.			· .
By: L. Peyser	Date:	10	July	1970

•

Title: Food Reconstitution (Heating)

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim		Veight R <u>Year -</u> 50 Man	Lbs.	Average Density As Received lbs/cu.ft.	Potential
Spoiled Food in Pkg. (1% of total)	Solid – Food	Organic Plastic	N/R	136.5	570	1,140	56	
Magnitron Tube	Solid Glass Envelope intact	Borosilicates, Fe, Cu, Ni, W	N/R	2.1	4.2	7.0	100	


FAIRCHILD HILLER

Doc. No. A-1.3.2.2.1 Sheet No. 1 By: L. Peyser Date: 10 July 1970

OPERATIONAL DESCRIPTION

TITLE: Meal Assembly

SCHEMATIC BLOCK DIAGRAM

RATIONALE:

(2)

Primary menu items, i.e., meat, vegetable, and starch, are unpackaged and placed onto an individual meal tray. Secondary menu items, i.e., beverage, bread, cerea!, dessert, salad, sandwich, and soup, are assembled onto group service trays. Maximum number of group service trays per six man meal service will be two. Cloth towels weighing .125 pound each will be utilized for collection of spilled food and water, and they will be consumed at the rate of four per day per 12 man crew. Trays weigh 0.5 pound each and are consumed at the rate of 18 per day for the twelve man crew. Dining utensils are consumed as follows:

- (1) Tongs, 1.15 oz each
 - "Spork" 1.0 oz ezch

2.5 oz each per man per meal

Total 7.5 oz per man per day = .47 lb. Drinking devices weigh 4 oz = .25 lb each with attached flexible ends. Ends are designed for 1 year useful life.

I ANNINGDALE, LONG ISI AND. NEW YORK

1.3-21

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1.3.2.2.1Sheet No. 1Operational Description No. A-1.3.2.2.1Subsystem Food and Food Prep.By: L. PeyserDate: 10 July 1970

Title: Meal Assembly

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUMED	Total Weight RequiredPer Year - Lbs.1250100ManManMan		Average Density As Received Ibs/cu.ft.	REMARKS	
Packaging	Food Unpkgd	Polyethylene Aluminum	2,920	12,200	24,400	120	Must be bac- terially inactivated
Wipes (towel)	Utilized Daily	Cloth (cotton)	184	775	1,650	100	Wash
<u>41 days . 125 lb ea</u> 12 man crew							
Trays (meal) (.5 lb ea)	Utilized daily	Plastic	6,600	27,200	54,400	125	
Dining Utensils	Utilized daily	Aluminum	225	937	1,874	250	Pkgd density
Drinking Utensils	Utilized	Plastic	1,195	4,560	9,120		
Trays (Accessory)	Utilized	Plastic	1,065	2,130	4,260	125	
			·				

FAIRCHIED HILLER REPUBLIC AVIATION DIVISION TARNINGDALE, LONG ISLAND, NEW YORK

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

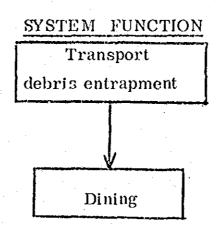
Doc. No. C-1.3.2.2.1	Sheet No. 1
Operational Description No.	A-1.3.2.2.1
Subsystem Food and Food	Prep.
By: L. Peyser	Date: 10 July 1970

Meal Assembly Title:

WASTE ITEM	<u>Characteristics</u> State And Attributes	Chemical Composition	Action Required To Reclaim		Veight Ro Year - 50 Man	Lbs.	Average Density As Received lbs/cu.ft.	Potential
Packaging	Solid, Flexible	Polyethylene Alum. Foil	Wash	2,920	12,200	24,400		
Attached Food . 5% overall	Solid,Organic, Semi-Liquid	Food	N/R	14.5	61.0	122.4		
Wipes (towel) 4/day/12 man crew 10% waste	Solid, Cloth	Cotton	Re-weave	18	77	165	100	1.0 use as rags
Flex drinking device tips	Solid Flex.	Hypalon rubber	Wash	.37	1.56	3.12	20	
Spilled Food 3%	Solid, Organic, Semi-Liquid	Food	N/R	87.0	366	730	56	

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Doc. No. A-1. ?. 3. 1. 1 Sheet No. 1 By: L. Peyser Date: 10 July 1970


OPERATIONAL DESCRIPTION

TITLE:

Meal and Accessory Transport

SCHEMATIC BLOCK DIAGRAM

<u>IN</u> Assembled meal Tray (meal) Tray (accessory) Airflow Disinfectant sol

OUT Assembled meal Tray (meal) Tray (accessory) Airflow Spilled food Disinfectant sol

RATIONALE:

Meal and accessory trays will be transported from the assembly area to the dining area by means of a man or mechanical conveyor system. The area through which the tray travels must provide spill control such that any item ejected from a tray is entrapped and can be collected.

Expected spillage is < .5% of total transported food. Total transported assembled meals for the 12 man crew is 20,000 lb/yr.

Filters for collection will be metalic grids for entrapment -- food debris must removed daily -- filters should be cleansed weekly with disinfectant.

REPUBLIC AVIATION DIVISION FARMINGONES, LONG ISLAND, NEW YORK

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1. 3. 3. 1. 1Sheet No. 1Operational Description No. A-1. 3. 3. 1. 1Subsystem Meal Service and DiningBy: L. Peyser Date: 10 July 1970

Title: Meal and Accessory Transport

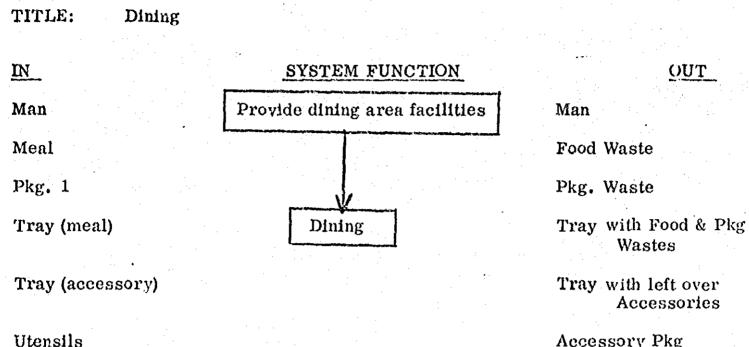
Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUME D	1	Weight F Year - 50 Man	Required Lbs. 100 Man	Average Density As Received Ibs/cu.ft.	REMARKS
Assembled meals	Transported	Food	20,000	83,300	166,600	56	
Disinfectant sol	Utilized	Liquid	52	220	440	64	
Package for disinfectant	Emptied	Polyethylene	1.75	- 7.0	14.0	57	

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

1.3-25

FARMINGON, E, LONG 1 ST AND, NYN YORK

Study of Housekeeping Concepts For Manned Space


TABLE III. WASTE

Doc. No.C-1. 3. 3. 1. 1Sheet No.1Operational Description No.A-1. 2. 3. 1. 1SubsystemMeal Service and DiningBy:L. PeyserDate: 10 July 1970

Title: Mean and Accessory Transport

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim	3	/eight R Year - 50 Man	Lbs. 100	Average Density As Received Ibs/cu.ft.	Potential
Spilled food	Solid, liquid saturated, organi	Food	N/R	100	460	920	56	Possible use as animal food
Disinfectant sol	Liquid chemical	BAC solution	N/R	5 2	220	440	64	
Package for disinfectan	Solid,plastic molded container	Polycthylene	N/R	1.75	7.0	14.0	57	

Doc. No. A-1.3.3.2.1 Sheet No. 1 By: L. Peyser Date: 10 July 1970

Accessory Pkg Napkins

Soiled Utensils

RATIONALE:

Dining is accomplished in the seated position. Man and tray restraints are provided. Food and trays will be held in place by means of laminar air flow or electrostatic forces. Primary concern will be not for dining technique but rather for spill control as outlined in A 1.3.4.1.1.

Food wastes are based upon food rejection due to personal dislike and selection capability data generated for in house food management studies. Napkins are consumed at the rate of three per day per man. They are linen and washable. They weigh 15 gm (.03#) each. Initial supply will be six per man with expected attrition to be 30% per year or 2 per man.per year. Spares can be utilized as washable wipes as required.

REPUBLIC AVIATION DIVISIO

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1.3.3.2.1Sheet No. 1Operational Description No. A-1.3.3.2.1Subsystem Meal Service and DiningBy: L. PeyserDate: 10 July 1970

Title: Dining

	فستعتبذ والبكاء كالإنتباط والكراف فتشع مشتبا ومتعاور والمراجع						
Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUME D	1			Average Density As Reccived Ibs/cu.ft.	REMARKS
Assembled Meal	Eaten	Food	20,000	83,300	166,600	56	
Dining Utensils	Utilized	Usefulness	225	937	1,874	100	Wash
Drinking Utensils	Utilized	Usefulness	1, 195	4,560	9, 120	40	Wash
Meal Tray	Utilized	Usefulness	6,600	27,200	54,400	125	Wash
Accessory Tray	Utilized	Usefulness	1065	2,130	4,260	125	Wash
Napkins	Utilized	Cloth	146	607	1,214	30	

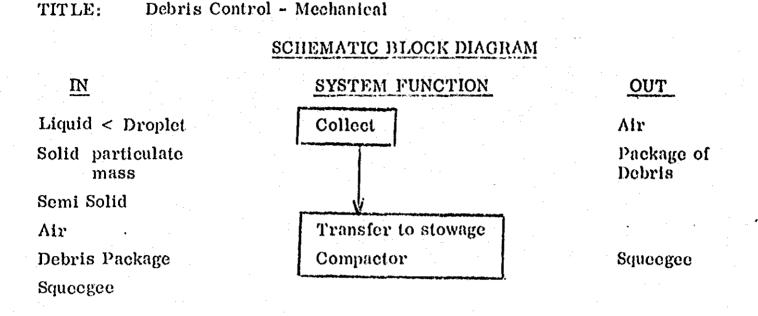
REPUBLIC AVIATION DIVISION

FARMINGDALE, LONG LAL MC. MEN 1088

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No.C-1.3.3.2.1Sheet No. 1Operational Description No.A-1.3.3.2.1SubsystemMeal Service and DiningBy:L. PeyserDate:10 July 1970


Title: Dining

WASTE ITEM	Characteristics State And	Chemical Composition	Action Required To Reclaim	Total W Per 12 Man	/eight Ro Year - 50 Man	equired Lbs. 100 Man	Average Density As Received Ibs/cu.ft.	Index Of Utilization Potential And Remarks
Uneaten Food	Attributes Solid. organic	Food	N/R	2,780		23,200		
Napkins (-linen)	Solid linen soiled torn	fibre- acetate	Wash, reweave	42	175	350	70	
Spilled Food	Solid, organic	Food	N/R	100	460	920	56	
					• •			

Doc. No. A-1.3.4.1.1 Sheet No. 1 By: L. Peyser Date: 10 July 1970

OPERATIONAL DESCRIPTION

PAIRCHILD HILLER

RATIONALE:

Automatic collection of liquid and solid debris in the zero g environment is accomplished by an airflow plenum chamber device in the areas where meals are assembled, transported, and caten.

Filters will pass air and entrap liquid, and solid wastes. These wastes will be collected from the filter surface by means of a scraping and vacuum device.

Debris packages will not be reusable because of difficulty of unpackaging at the compactor.

REPUBLIC INIATION DIVISION

Study of Housekeeping concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. <u>B-1.3.4.1.1</u> Sheet No. <u>1</u> Operational Description No. <u>A-1.3.4.1.1</u> Subsystem Housekeeping By: <u>L. Peyser</u> Date: <u>10 July 1970</u>

Title: Debris Control - Mechanical

Consumable/Expendable ITEM	HOW CONSUME D	BASIC CONSTITUENTS CONSUMED		Veight F Year - 50 Man	tequired Lbs. 100 Man	Average Density As Received Ibs/cu.ft.	REMARKS
Debris package	Utilized	Polyethylene	10.9	43.7	87.4	50	
Package tie	Tie seal pkg.	Plastic Choke	2.55	9. 50	19.0	26	Reusable
Scraper (squeegee)	Utilized	Hypalon rubber	.4	.8	1.6	69	Washable
Vacuum cleaner tips	Utilized	Hypalon rubber	.8	1.6	3.2	69	Washable

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

1.3-31

Study of Housekeeping Concepts For Manned Space

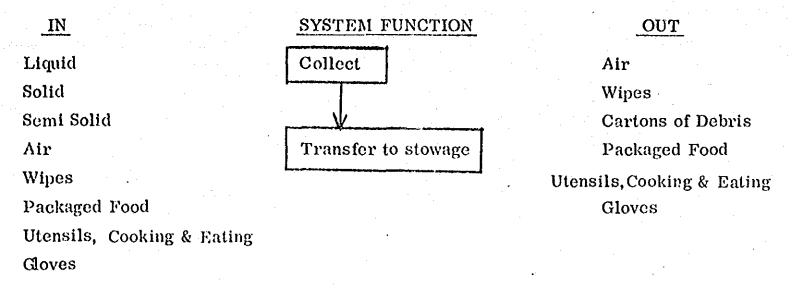
TABLE III. WASTES

Sheet No. <u>1</u>
<u>A-1.3.4.1.1</u>
Date: 10 July 1970

Title: Debris Control - Mechanical

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim	I	Veight R <u>Year -</u> 50 Man	-	Average Dersity As Received Ibs/cu.ft.	Index Of Utilization Potential And Remarks
Filter Unit, clogged	Solid, organic. debris, sharp	Teflon, aluminum	Reverse fiush	2.6	10.8	21.6	5	
Debris pkg. filled with debris	Solid flex con- •tainer filled	polyethylene	-	10.9	43.7	87.4	50	
Package tie, reusable	Solid, plastic ribbon	Teflon	Remove from debris pkg	2.55	9.50	19.0	26	
Scraper, worn	Solid, plastic	Hypalon rubber	-	.4	.8	1.6	69	
Collected Food Waste	Solid, organic	Food	-	100	460	920	56	Use as animal food
Vacuum cleaner tips, worn	Solid. plastic	Rubber	N/R	.8	1.6	3.2	69	

Doc. No. A-1.3.4.1.2 Sheet No. 1 By: L. Peyser Date: 10 July 1970


OPERATIONAL DESCRIPTION

FAIRCHILD HILLER

TITLE: Debris C

Debris Control - Manual

SCHEMATIC BLOCK DIAGRAM

RATIONALE:

There will be in any food preparation, assembly, and dining areas, spills and waste food collection requirements. The spoiled food is removed by hand from the process stream. This may be in the form of hand pick up or wipe. Waste food will be scraped from utensils into cartons and transferred by hand to waste storage facilities.

Wipes will be paper weighing .01# each. Saturated with water their weight increases four times.

REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No.B-1.3.4.1.2Sheet No.1Operational Description No.A-1.3.4.1.2SubsystemHousekeepingBy:L.PeyserDate:10July1970

Title: Debris Control - Manual

Consumable/Expendable ITEM	HOW CONSUME D	BASIC CONSTITUENTS CONSUME D	Total Weight RequiredPer Year - Lbs.1250100ManManMan			Average Density As Received lbs/cu.ft.	REMARKS
Wipes	Utilized	Paper	12.8	51.7	103.4	6.87	
Bags	Utilized	Polyethylene	10.9	43.7	87.4	50	
Gloves	Utilized	Polyethylene	11	44	88		
Scraper (Squeegee)	Utilized	Rubber Hypalon	.4	.8	1.6	69	Washable
Vacuum cleaner tips	Util'zed	Rubber Hypalon	.8	1.6	3.2	69	Washable

FARMENGDALE, LONG INCANO, NEW YORK

1.3 - 34

Study of Housekeeping Concepts For Manned Space	Doc. No. C-1.3.4.1.2 Sheet No. 1
	Operational Description No. A-1.3.4.1.2
TABLE III. WASTES	Subsystem Housekeeping

Ċ

Title: Debris Control - Manual

By: L. Peyser

Date: 10 July 1970

Title: Debris Control - Manu	1ai				<u> </u>			
WASTE	<u>Characteristics</u> State And	Chemical Action 7 Composition Required To Reclaim			eight Re Year - 1 50		Average Density As Received	Index Of Utilization Potential
ITEM	And Attributes			Man	Man		lbs/cu.ft.	And Remarks
Wipes	Solid, paper, wet, soiled	Organic	N/R	51.2	235	412	55	
Bags of wasted food	Solid, flexible, filled	Polyethylene Food wastes	N/R	3,165	13,251	26,500	56	
Gloves	Solid, flexible, sheet	Polyethylene	Wash	11	44	88	26	
Scraper	Solid, plastic, rod	Rubber hypalon	Wash	.4	.8	1.6	69	
Nozzle, Vacuum Pickup	Solid, plastic, tubular	Rubber hypalon	Wash	.8	1.6	3.2	69	
		nyparon						
					an an an Arr			

Doc. No. A-1.3.4.2.1 Sheet No. 1 By: L. Peyser Date: 10 July 1970

OPERATIONAL DESCRIPTION

FAIRCHILD HILLER

TITLE:

Utensil Cleansing

SCHEMATIC BLOCK DIAGRAM

IN

SYSTEM FUNCTION

Remove Debris Wash Dry Food debris Water Air Utensils (Clean)

OUT

Wash Water

Food Debris

Cooking Utensils

Eating Utensils

Rinse Water

Air

Surfactant (detergent)

RATIONALE:

Eating and drinking utensils will be manually scraped prior to placement into the dishwasher. In the dishwasher, water jets with detergent will remove remaining debris. The debris will be collected and removed, water will be filtered, sterilized, and recycled. Utensils will be removed dry and stored until next usage.

Wash water will be consumed at the rate of 8 pounds per pound of equipment washed. Detergent will be consumed at the rate of .38 pounds per 80 pounds of water.

REPUBLIC AVIATION DIVISION

Study of Housek

TABLE II. COMBLES/EXPENDABLES

Title: Utensil Cleaning

Doc. No. B-1.3.4.2.1	Sheet No. 1	· .
Operational Description No.	A-1.3.4.2.1	
Subsystem Housekeeping		
By: L. Peyser	Date: 10 July 1	970

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUMED		Weight F r Year - 50 Man	tequired Lbs. 100 Man	Average Density As Received Ibs/cu.ft.	REMARKS
Eating Utensils	Used	Freshness	225	937	1874	100	
Drinking Utensils	Used	Freshness	1,195	4,560	9,120	40	
Meal Tray	Used	Freshness	6,600	27,200	54,400	125	
Accessory Tray	Used	Freshness	1065	2130	4260	125	
Water	Utilized	Freshness	8520	17,000	34,000	62	
Surfactant (Detergent)	Utilized	Detergency	40.5	81.0	162	67	

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

1.3-37

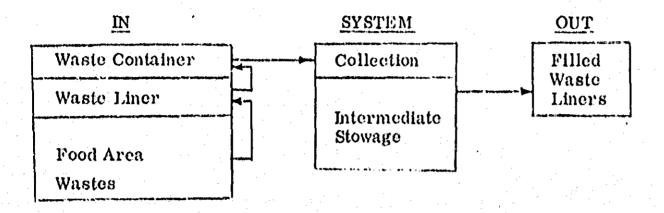
Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No. C-1.3.4.2.1	Sheet No. 1
Operational Description No.	<u>A-1.3.4.2.1</u>
Subsystem Housekeeping	
By: L. Peyser	Date: 10 July 1970
	·

Title: Utensil Cleaning

	WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim		eight Re <u>Year - 1</u> 50 Man	<u>lbs.</u> 100	Average Density As Received lbs/cu.ft.	Index Of Utilization Potential And Remarks
	Food Debris Detergent	Solid Water Sat- urated Liquid	Organic Sulfonates	N/R N/R	278	1160	2320	56	
	Water	in solution Liquid saturated	н ₂ О	Filter, Boil	40.5 8520	81.0 17,000		67 62	
		Food and detergent							
وجواري المحالي والمحالي المحالي									


Doc. No. A-1.3.4.3.1 Sheet No. 1 By: L. Peyser Date: 10 July 1970

OPERATIONAL DESCRIPTION

TITLE;

Waste Stowage

SCHEMATIC BLOCK DIAGRAM

RATIONALE:

Wastes from all areas of the Food Management subsystem are collected in individual, lined, containers strategically located on those areas. It is assumed that only the liners are consumed and not the containers proper. The liners which have an average capacity of about 5 cu. ft. each are assumed to be completely filled with uncompressed waste and then compressed manually to about 75% capacity for transportation. The empty bags are assumed to weigh 0.25 pounds each (average for 5 cu. ft. capacity). It is assumed that the average is made up of small bags and large bags as required for the daily tasks.

	Total We	Lbs/cu.ft Uncompressed		
	12 Man	50 Man	100 Man	Density
Wasted Food in Packages	198	825	1650	56
Packaging	2920	12200	24400	30
Wipes	51	235	412	30
Waste Food	2967	12426	24850	56

Total Volumes Collected in a Year:

12 man: 156 cu. feet 50 man: 650 cu. feet 100 man: 1300 cu. feet

FARMERGONEL, CONGASSAND, MEN YORK

1.3-39

Study of Housekeeping Concepts For Manned Space

TABLE IL CONSUMABLES/EXPENDABLES

Sheet No. 1
A- 1.3.4.3.1
Date: 10 July 1970

Title: Food Waste Stowage

Consumable/Expendable	HOW BASIC		Total Weight Required Per Year - Lbs.			Average Density As	REMARKS
ITEM	CONSUMED	CONSTITUTINTS CONSUMED	12 Man	59 Man	100 Man	Received lbs/cu.ft.	
Stowage Containers	Filled	Space	*	*	*	-	* Reuse as is
Stowage Liners	Filled	Freshness	8	32.5	65	65.0	
				•			
							•

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION fARMIRGDELE, 1946 3 41 4+0, 454 -044

N.E. 1946 14	1 4+0, 414 70+a	
	Study of Housekeeping Concepts For Manned Space	Doc. No. $C-1.3.4.3.1$ Sheet No. 1
	TABLE III. WASTES	Operational Description No. <u>A-1.3.4.3.1</u> Subsystem Housekeeping
		By: L. Peyser Date: 10 July 1970
Title:	Food Waste Stowage	

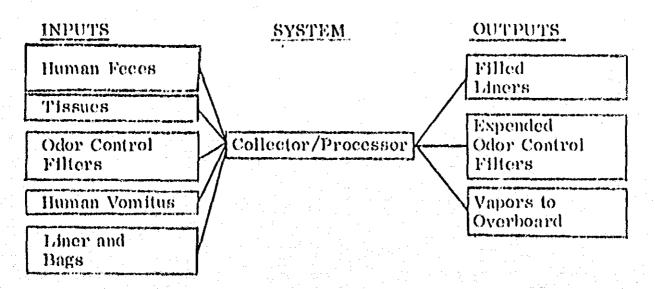
	WASTE	Characteristics State	Chemical Composition	Action Required	Total W Per	eight Re Year - I	Lbs.	Average Density As	Index Of Utilization
	TTEM	And Attributes		To Reciaim	12 Man	50 Man	100	Received lbs/cu.ft.	Potential And Remarks
	Filled Waste Liners	Solid, Plastic Sheet, Organic	Teflon + Food Wastes	Empty, Wash	8	32.5	65	50.0	
1.3-40									
	•								

PROVIDE FOR CREW HYGIENE

SECTION 1.4

TABLE OF CONTENTS

Number	Title	Page
1.4.1.1.1	Integrated Vacuum Drying (Fecal and Vomitus Waste Management)	1.4-1
1,4,1,1,2	Automated Rag with Vacuum Drying (Fecal and Vomitus Waste Management)	1.4-4
1, 4, 1, 1, 3	Wet Collection and Processing (Fecal and Vomitus Waste Management)	1.4-7
1.4.1.2.1	Urine Collection	1.4-10
1,4,2,1,1	Shower	1.4-13
1,4,2,1,2	Immerston Path	1.4-17
1.4.2.1.3	Automated Sponge Bath	1.4-21
1,4,3,1,1	Hygiene Conter	1,4-25
1,4,4,1,1	Laundry	1.4-30
1,4.5,1,1	Vacuum Cleanor	1.4-34
1,4.5.2.1	Surface Washer/Wiper (Automated Mop)	1.4-38
		and the second


FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Doc No. A-1.4.1.1.1 Sheet No. 1 By: W. Ford Date: 17 July 1970

OPERATIONAL DESCRIPTION

TITLE: Integrated Vacuum Drying (Fecal and Vomitus Waste Management)

SCHEMATIC DIAGRAM

RATIONALE

The integrated vacuum drying feeal/vomitus waste collection and processing system directly collects the human feees and is along with soiled conventional toilet tissue, exposed to space vacuum for drying and de-activation. The system is also used as an optional convenience for similar collection and processing of human vomitus.

Defecation is directly into a lined collector/processor and the soiled tissue is collected similarly by the same collector. After defecation, the collector/processor is exposed to space vacuum and ambient cabin heat until all gaseous matter is drawn off. The gaseous matter may be either condensed out or allowed overboard. The liners which contain the debris are capable of holding the waste from 35 man days or approximately 7.6 lbs each. The liners containing the dried and inert residue must then be stored on board, returned to earth or placed in extra-earth orbit.

Vomitus disposal is handled ofther by initial placement in a specially designed bag with subsequent placement in the collector/processor or by directing the vomitus directly into the feces collector/processor. In both cases, the vomitus is processed concurrently with the feces.

REPUBLIC AVIATION DIVISION

1.4.2

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1.4.1.1.1	Sheet No. 1
Operational Description	No. A-1.4.1.1.1
Subsystem Human Wast	e Management
Ey: W. Ford	Date: 17 July 1970

Title: Integrated Vacuum Drying

Consumable/Expendable	HOW	BASIC CONSTITUENTS		Weight : r Year	Required (Ibs)	Density As	REMARKS	
ITEM	CONSUMED	CONSUME D	12 man			Received lbs/cu.ft.		
Toilet Tissue	Soiled	Cleanliness	75.4	314.3	628.6	64		
Filters (Odor Control)	Filled	Volume	51.9	216.3	432.5	85		
Liners	Filled	Volume	21.9	91.2	182.5	64		
Bags	Filled	Volume	14.4	60.0	120.0	64		
Filters (Bacteria Control)	Filled	Volume	2.6	10.8	21.6	5		

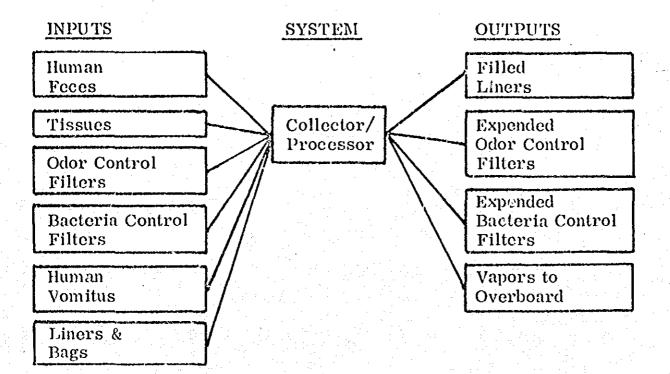
FAIRCHILD HILLER REPUBLIC AVIATION DIVISION VARIAGEALL, LONG 151 AND, BEN 1978

15

	Study of Housekeeping Concepts For Man	ned Space	Doc. No. <u>C-1.4.1.1.1</u> Sheet No. <u>1</u>
	TABLE III. WASTES		Operational Description No. <u>A-1.4.1.1.1</u> Subsystem Human Waste Management
			By: W. Ford Date: 17 July 1970
Title:	Integrated Vacuum Drying	n Statistica (S. 1996) (1997)	

The: Integrated vacuum Dr	Y LING.	والمحادي الانتفاد ومروار الماكات أحدي وبروعة ويصحب							
WASTE	<u>Characteristics</u> Chemical State Composition		Action Required To Reclaim		Year (lbs)	Average Donsity As Received	Index Of Utilization Potential	
	And Attributes		10 necialiti	12 man	50 man	100 man	lbs/cu.ft.		
Filters (Odor Control)	Solid, Metalic/ Granular Pathogenic	Activated Charcoal	Purify Charcoal	51.9	216.3	432.5	85		
Filters (Bacteria Control)	Solid,Teflon Sheet,Pathogenic	Teflon	Purify Clean	2.6	10.8	21.6	5		
Waste Container (Filled)									
Bags	Solid,Plastic Sheet,Pathogenic		Empty/ Clean						
Liners	Solid,Plastic Sheet,Pathogenic		Empty/ Clean						
Tissue	Solid,Paper Sheet,Pathogenic	Cellulose	N/R	940	3915	7795	64		
Feces	Solid Bulk Pathogenic	Bacteria	N/R						
Vomitus	Semi-liquid, Organic, Bulk, Pathogenic	Protein H ₂ O-HCL	N/R				:		
Vaporized Products	Gas Corrosive, Wet	Methane, Ammonia H ₂ O, N	N/R	1022	4258	8550	0		
		2							

٠

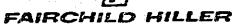

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Doc. No. A-1. 4. 1. 1. 2 Sheet No. 1 By: W. Ford Date: 14 August 1970

OPERATIONAL DESCRIPTION

TITLE: Automated Bag with Vacuum Drying (Fecal and Vomitus Waste Management)

SCHEMATIC DIAGRAM



RATIONALE

The automated bag with vacuum drying fecal/vomitus waste collection and processing system collects the human feces in a bag which has been previously positioned automatically. The bag in sealed after fecal collection and insertion of the soiled tissue and is drawn down into the processing chamber by cabin air.

The chamber is then exposed to space vacuum and ambient cabin heat for drying. The liners containing the dried and inert residue are stored on board, returned to earth or placed in extra earth orbit. The liners which contain the debris are capable of holding the waste from 35 man days or approximately 7.6 lbs each.

Vemitus disposal is handled by either initial placement in a specially designed bag with subsequent placement in the collector/processor or by directing the vomitus directly into a fecal collection bag. In either case, the vomitus is processed concurrently with the feces.

1.4-5

REPUBLIC AVIATION DIVISION AGDALE, LONG ISLAND, NEW YORK

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Automated Bag with Vacuum Drying

Doc. No. B-1.4.1.1.2	Sheet No. 1
Operational Description No.	A-1.4.1.1.2
Subsystem Human Waste N	lanagement
By: W. Ford	Date: 14 August 1970

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUME D	Total Weight RequiredPer Year (lbs)1250100manmanman		Average Density As Received lbs/cu.ft.	REMARKS	
Toilet Tissue Filters (Odor Control) Liners Bags Filters (Bacteria Control)	Soiled Filled Filled Filled Filled	Cleanliness Volume Volume Volume Volume	75.4 51.9 21.9 452.4 2.6		432.5 182.5 3770.0	64 85 64 64 5	

1.4-6

FARMINGDALE, LONG ISLAND, NEW YORK

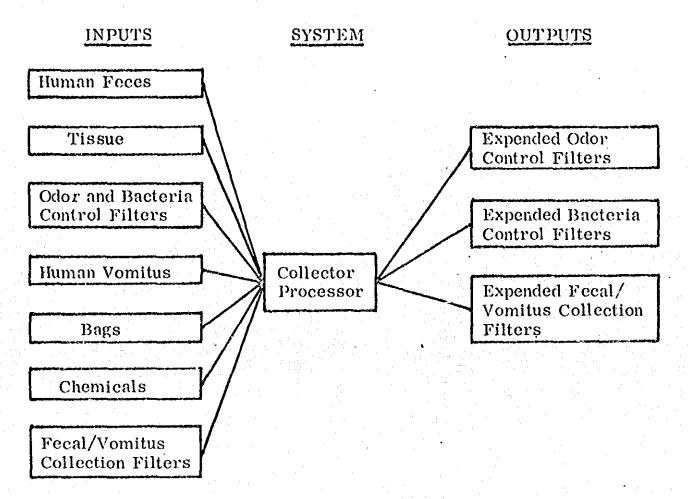
Study	of	Housekee	ping	Concepts	For	Manned	Space

TABLE III. WASTES

Doc. No. C- 1.4.1.1.2	Sheet No. 1
Operational Description No.	A-1.4.1.1.2
Subsystem <u>Human Waste M</u>	anagement
By: W. Ford	Date: <u>14 August 1</u> 970

Title: Automated Bag with Vacuum Drying

WASTE ITEM	<u>Characteristics</u> State And Attributes	Chemical Composition	Action Required To Reclaim	Total W Per 12 man	Veight Re Year (1 50 man	equired bs) 100 man	Average Density As Received Ibs/cu.ft.	Index Of Utilization Potential And Remarks
Filters (Odor Control) Waste Container (Filled)	Solid Metalic/ Grannular Pathogenic	Activated Charcoal	Purify Charcoal	51.9	216.3	432.5	85	
Bags	Solid, Plastic Sheet,Pathogenic	Teflon	Empty, Clean					
Liners	Solid,Plastic Sheet,Pathogenic	Teflon	Empty, Clean					
Toilet Tissue	Solid, Paper Sheet,Pathogenic	Cellulose	Clean 🍾	1387	5742	11450	64	
Feces	Solid,Organic, Bulk,Pathogenic	Organics/ Bacteria	N/R					
Vomitus	Semi-liquid, Organic, Bulk, Pathogenic	Protein HCL,H ₂ O Food	N/R					
Filters (Bacteria Control)	Solid Teflon Sheet Pathogenic	Teflon	Purify, Clean	2.6	10.8	21.6	5 [:]	
						•		


FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Doc. No. A-1.4.1.1.3 Sheet No. 1 By: W. Ford Date: 14 Aug. 1970

OPERATIONAL DESCRIPTION

TITLE: Wet Collection and Processing (Fecal and Vomitus Waste Management)

SCHEMATIC DIAGRAM

RATIONALE

The wet collection and processing system for human feces and vomitus is a chemical deactivation system utilizing a deactivating solution such as formaldehyde. The solids are filtered out of the solution after they have been diced up and deactivated. The filters are replaced as necessary and then stored for return to earth or placement in extra-earth orbit. Cabin air is drawn through the seat pulling the feces into the processor. The air is then filtered and returned to the cabin. Additional chemicals are added to the solution as necessary.

Vomitus is handled either by initial placement in a specially designed bag with subsequent insertion into the feces processor or by vomiting directly into the processor. In both cases, the vomitus is processed concurrently with the feces.

 \mathcal{C}

₽

1.4-8

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No.B-1.4.1.1.3Sheet No.1Operational Description No.A-1.4.1.1.3SubsystemHuman Waste ManagementBy:W.FordDate:14 Aug.1970

Title: Wet Collection and Processing

Consumable/Expendable	HOW	BASIC CONSTITUENTS		Weight R er Year (-	Average Density As	REMARKS	
ITEM	CONSUMED	CONSUME D	12 men	50 men	100 men	Received Ibs/cu.ft.		
Chemicals	Absorbed	Deactivation	55.5	231.0	462.0	32		
Bags	Filled	Volume	14.4	60.0	120.0	64 .		
Filters (Cdor Control)	Filled	Volume	51.9	216.3	432.6	85		
Tissues	Solid	Cleanliness	75.4	314.3	628.6	64		
Filters (Bacteria Control)	Filled	Volume	2.6	10.8	21.6	5		
Filters (Fecal and Vomitus Collector)	Filled	Volume	240	1000	2000	5		

Study of Housekeeping		nned Space			No. <u>C-</u> tional D		<u>.3</u> She	et No. <u>1</u> 1. 4. 1. 1.3	
TABLE					stem <u>H</u>		aste Manas		
WASTE	Characteristics State	Composition Required Per Year (lbs)					Density As	-	
ITEM	And Attributes		To Reclaim	12 men	50 men	100 men	Received lbs/cu.ft.		
Filters (Odor Control)	Solid, Metalic/ Granular, Pathogenic	Activated Charcoal	Purify Filter Element	51.9	216.3	432.6	85		
Filters (Bacteria Control) Waste Container (Filled)	Solid, Teflon Sheet Pathogenic	Teflon	Purify, Clean	2.6	10.8	21.6	5		
Bags	Solid,Plastic Sheet, Pathogeni	Teflon	Empty, Clean						
Chemicals	Liquid, Caustic	Various	Isolate		an an Araba Marina an Araba Marina an Araba	e Alexandria			
Tissue	Solid, Paper Sheet Pathogenic	Cellulose	Clean	2000	8333	16666	64		

N/R

N/R

Purify,

Clean

240

Solid,Organic Bulk,Pathogenic

Semi-liquid

Solid Sheet

Fathogenic

(Bulk)

Organic Bulk, Pathogenic

Bacteria

Protein HCL.H₂O

Cellulose

Feces

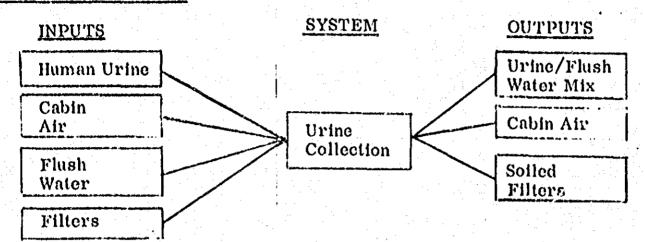
1.4-9

Vomitus

Filters, Fecal and Vomitus Collector

1000

2000


5

Doc. No. A-1.4.1.2.1 Sheet No. 1 By: W. Ford Date: 13 August 1970

OPERATIONAL DESCRIPTION

TITLE: Urine Collection

SCHEMATIC DIAGRAM

RATIONALE

The urine collection system concerns only the collection of human urine and its transportation to the water reclamation system where the water is recovered for re-use.

Operation of the system is initiated by opening the cover of the urinal horn. This activates a blower which draws cabin air down through the horn. The crewman urinates directly into the horn. The urine is carried through the horn and into a liquid/air separator by the flow of cabin air. The flush water button is pushed and flush water washes down the sides of the horn and tubing as it is drawn into the liquid/air separator by the cabin air flow. The cabin air is filtered by bacteria and odor control filters and returned to the cabin. The urine/flush water mixture is then separated from the trapped air by the liquid/air separator and the liquid delivered to the H2O reclamation system for processing.

mudy of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1.4.1.2.1Sheet No.Operational Description No. A-1.4.1.2.1Subsystem Human Waste ManagementBy: W. FordDate: 13 August 1970

Title: Urine Collection

Consumable/Expendable	HOW	BASIC	Total Per	Weight I <u>r Year (</u>	Required 165)	Average Density As	REMARKS	
ITEM	CONSUMED	CONSTITUENTS CONSUME D	12 50 100 man man man		Received lbs/cu.ft.			
Filters	Filled	Volume	25.9	108.2	216.2	85		
			· · · · · · · · ·					
			•			•		

FAIRCHIL HILLER REPUBLIC AV. N DIVISION TARNINGBALE, LONG LAND, NEW YORK

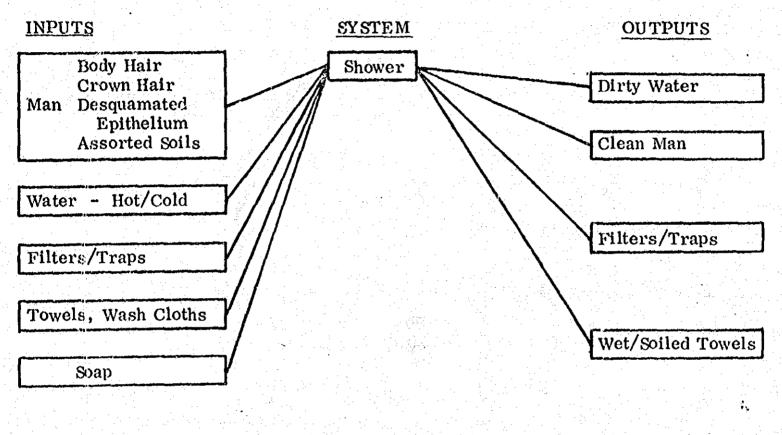
1.4-12

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Title: Urine Collection

Doc. No. C-1.4.1.2.1	Sheet No.	ang ta
Operational Description No.	A-1.4.1.2.1	-
Subsystem Human Waste Ma	anagement	e staat me
By: W. Ford	Date: 13 August	197(


WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim	Total W Per 12 man	Veight R Year (50 man	equired ibs) 100 man	Average Density As Received Ibs/cu.ft.	Index Of Utilization Potential And Remarks
Filters	Solid Metalic/ Grannular Pathogenic	Activated Charcoal	Purify Filter Element	25.9	108.2	216.4	85	

Doc. No. A-1.4.2.1.1 Sheet No. 1 By: P. Trotta Date: 17 June 1970

OPERATIONAL DESCRIPTION

TITLE: Shower

SCHEMATIC BLOCK DIAGRAM

RATIONALE:

The zero-gravity shower is a cylindrical enclosure approximately 36 inches in diameter and 84 inches high. The man enters the shower naked and is restrained by foot stirrups while the mixture of air and water impinge upon his body. Water is introduced from a fixed (or hand-held) shower head. The spray is carried laterally along the cylinder axis and out the end by the air stream. A water collector/blower is utilized for the removal of local accumulations of water and to aid in drying. Temperatures and flow rates are controlled by the crewman. A wash cloth is provided for local area washing within the shower, and toweling may be required for final drying.

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Doc. No. A-1.4.2.1.1 Sheet No. 2 By: P. Trotta Date: 17 June 1970

The shower system uses up filters and debris traps ε s it removes clogging debris and soils from the recirculating water or from the water being returned to the water management system. The other consumables and expendables are those listed in Table I and are related to shower usage.

TABLE I SHOWER RATIONALE

- A. Showers taken 3 times/week/man
- B. Water Usage 20 lbs/shower
- C. Soap Usage .044 lbs/shower
- D. Filters/Traps Good for 6 shower usages before clogging. Replaceable elements weigh 0.5 lb each
- E. Towels weigh 0.25 lbs each, once/shower
- F. Wash Cloths weigh 0.08 lbs each, once/shower

REFERENCES:

Vol. I Preliminary Design Report (Space Station: Hygiene, Waste Management, and Food Subsystems). FHR #3900, June 1, 1970 Fairchild Hiller/RAD

Design Sneets (Hygiene and Food Management) for MDAC. FHR #3902 June 5, 1970, Fairchild Hiller/RAD

Preliminary Definition - Integrated Hygiene System Material Provisions. FHR #3871, January 29, 1970, Fairchild Hiller/RAD

Hygiene Systems Analysis Debris Generation and Flow Patterns. FHR #3864 December 30, 1969, Fairchild Hiller/RAD

REPUBLIC AVIATION DIVISION

FARMINGDALE, LONG ISLAND, NEW TORK

1.4-15

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1.4.2.1.1Sheet No. 1Operational Description No. A- 1.4.2.1.1SubsystemFull Body WashBy: P. TrottaDate: 6-17-70

Consumable/Expendable	HOW	BASIC CONSTITUENTS CONSUME D		wght rec er year-		Average Density As	REMARKS
ITEM	CONSUMED		12 man	50 man	100 man	Received lbs/cu.ft.	
Water - Hot/Cold	Contaminated with soap and body soil	Water purity	37,440	156,000	312,000	62.4	Water to be recovered
Filters/Traps	Saturated with organic body debris	Voids filled and, bacteria growth	156	650	1300	20	
Fowels	Contaminated with debris	Freshness	1,400	5,880	11,760	8	Density deper on packing method
Washcloths	Contaminated with debris	Freshness	150	627	1,254	16	Density depen on packing method
Soap	Disolved	Soad	82	343	686	62.4	

FAIRCHILD HILLER REPUBLIC AVION DIVISION TANNINGDALL, LONDI AND, NEW YORK

1.4-16

							~
- · · ·	~			Concepts	100	Manua di	Con no
	<u></u>	しんれてんにん	nanma	1 OTICODIS	HOT	wannen	SECE
STELLAR -	1.71	DUUSCE	CCUTTE	CONCERNE	TVL	TITCHTUNN	~puvv
	~~						the second s

TABLE III. WASTES

Doc. No. C-1.4.2.1.1	Sheet	No.	1	
Operational Description No.	A-1.	4.2.1	.1	
Subsystem Full Body Wash	1	1. 1. A. 1. A. 1.	2 36 S	
By: P. Trotta	Date:	June	17,	<u>19</u> 7(

Title: Shower Total wght required Index Of Average Action Chemical Characteristics WASTE per vear-lbs Density As Utilization Required Composition State 50 100 12 Received Potential To Reclaim And TTEM lbs/cu.ft. And Remarks man man man Attributes 62.4 2.6 - 130,Purification 37,440 156,000 312,000 H₂O Liquid, water, Contaminated Wash Water replacement organic body water soils 650 1300 20 0.04 - 2, 156 Sporke Decontami-Solid, plastic, Filters/Traps clean filter Teflon nate and granular, microbial clean activity 0.4 - 2.45,880 11,760 8 Launder 1400 Cellulose Textile Towels Solid launder C-H-N Damp Included with 16 Launder 150 627 1,254 Cellulose Textile Washcloths Solid towels Damp C-H-N

Doc. No. A-1.4.2.1.2 Sheet No. 1 By: P. Trotta Date: 22 June 1970

OPERATIONAL DESCRIPTION

RATIONALE:

TITLE:

The immersion bath concept consists of a plastic suit which has four pads of sponge material on the inner surface strategically located, which are replaced every bath. The crewman steps into the suit and seals it around himself (the suit does not cover his head). Water is introduced through lines from the water management subsystem. Washing is obtained by either rubbing the sponge areas over the body, use of a washcloth, or direct hand washing. Upon completion of the wash, water is pumped out to the water management subsystem. The man rinses the same way, steps out of the suit, washes the suit out and dries it after removing the four sponge pads.

The immersion bath uses up filters and traps as they remove clogging materials and debris from the water prior to its return to the water management system. The other consumables/expendables are listed in Table I and are related to the bathing process.

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

> Doc. No. A-1.4.2.1.2 Sheet No. 2 By: P. Trotta Date: 22 June 1970

TABLE I. IMMERSION BATH RATIONALE

- A. Baths taken 3 times/wk/man
- B. Wash water usage is 7 lbs/bath for body plus 3 lbs/bath to wash bath.
- C. Soap usage . 044 lbs/bath.
- D. Wash sponges 0.02 lbs/sponge, 4 sponges/bath.
- E. Filters/Traps good for 6 baths before replacement.Elements are 0.5 lbs each.
- F. Towels 0.75 lbs/usage.
- G. Immersion bath should last for 52 baths before requiring replacement. Bath weighs about 11, bs each.

REFERENCES:

Vol. 1 Preliminary Design Report (Space Station: Hygiene, Waste Management, and Food Subsystems). FHR #3900 June 1, 1970 Fairchild Hiller/RAD.

Design Sheets (Hygiene and Food Management) for MDAC. FHR #3902 June 5, 1970. FH/RAD.

Preliminary Definition - Integrated Hygiene System Material Provisions. FHR #3871. Jan. 29, 1970, FH/RAD.

REPUBLIC AVIATION DIVISION

1.4-19

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No.B-1.4.2.1.2Sheet No.1Operational Description No.A-1.4.2.1.2Subsystem Full Body WashBy:P. TrottaDate:22 June 1970

Consumable/Expendable	HOW	BASIC CONSTITUENTS		Weight F · Year -	lequired Lbs.	Average Density As	REMARKS	
ITEM	CONSUMED	CONSTITUENTS	12 man			Received lbs/cu.ft.		
Water Hot/Cold	Contaminated with Soap and Body Soil	Water Purity	18,720	78.000	156,000	62.4		
Filters/Traps	Saturated with Debris from Wash Water	Filter Element Voids Filled	156	650	1,300	20		
Towels	Wet and Soiled in Drying	Freshness	821	3,422	ô,843	8	Depends on Packing Method.	
Soap	Dissolved in Wash Water	Soap	82	343	686	62.4		
Sponges	Contaminated with Debris	Freshness	150	627	1,254	1.2	Depends on Packing Method	
Immersion Bath Suit	Worn out	Life Expect.	396	1,650	3,300	40.0	Depends on Packing Method	

FATRCHIL HILLER REPUBLIC AVI. IN DIVISION

1,4-20

Study of Housekeeping Concepts For Manned Space

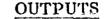
TABLE III. WASTES

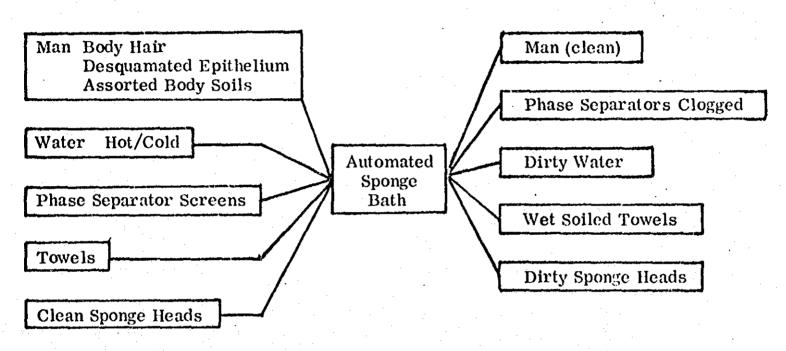
Doc. No. C-1.4.2.1.2	Sheet No. 1
Operational Description No.	A-1.4.2.1.2
Subsystem Full Body Wash	·
By: P. Trotta	Date: 22 June 1970

le: Immersion Bath WASTE	Characteristics State	Chemical Composition	Action Required		/eight R Year – I	equired bs.	Average Density As	1
ITEM	And Attributes	Composition	To Reclaim	12 man	50 man	100 man	Received lbs/cu.ft.	Potential And Remark
Dirty Wash Water	Liquid-Water, Organic Body Soil	H2O	Remove Contaminants		78,000	156,000	62.4	1.3 → 65 Replaces Water
Exhausted Filters and Traps	Solid-Plastic, Screen, Micro Organisms	Glass/Teflon	Remove Contaminants	156	650	1,300	20	0.04 → 2.0 Clean Filte
Used Towels	Solid Fabric, Damp	Cellulose C-H-N	Launder	821	3,422	6,843	8	$0.4 \rightarrow 2.4$ Launder
Used Sponges 12" x 12" x 1/4" Changed ever 3 washes .02566/sponge	Solid, Plastic Inert Pathogenic	Polyurethane	Launder	150	627	1,254	1.2	Clean with Towels
Spent Immersion Bath Suit	Solid Sheet Plastic	Polyester/ Glass	-	396	1,650	3,300	40	-
		e agus a' an an an an An Anna an Anna an Anna an Anna an An						
	and a second second Second second second Second second second Second second second Second second second Second second second Second second second Second second second Second second second Second second							

1

Doc. No. A-1.4.2.1.3 Sheet No. 1 By: P. Trotta Date: 18 June 1970


OPERATIONAL DESCRIPTION


TITLE: Automated Sponge Bath

SCHEMATIC BLOCK DIAGRAM:

<u>INPUTS</u>

SYSTEM

RATIONALE:

The automated sponge bath has water delivery lines leading to a hand-held flexible sponge. A metering/mixing valve dispenses a controlled amount of water and detergent to the sponge at the option of the crewman. The hand-held unit is moved over the body for local cleaning. A return line permits pickup of water from the body with liquid moved through the sponge and line by a blower. At the pickup end, an air/water separator is used to remove the used water for delivery to the water management system. Sponge heads are replaceable and are provided in quantity to allow a clean sponge for each wash. The sponges remove gross particulate matter from the water prior to its entry into the phase separator which is of the passive screen type. Table I supplies the rationale for the material rates.

Doc. No 1.4.2.1.3 Sheet No. 2 By: P. Trotta Date: 18 June 1970

TABLE I - AUTOMATED SPONGE BATH RATIONALE

- A. Bath Usage 1 man/day
- B. Water Usage 0.5 lbs/man/day
- C. Phase Separators 0.2 lb each, changed twice/month/man
- D. Sponge Heads 0. 02 lbs each, changed 1/day/man
- E. Towels 0.27 lbs/each, one/man/day (these are lighter than bath towels)
- F. Detergent 1 Ml/usage (. 0022 lbs) Benz Alkonium Chloride

REFERENCES:

Vol 1 Preliminary Design Report (Space Station: Hygience. Waste Management. and Food Subsystems), FHR #3900, June 1 1970, Fairchild Hiller/RAD.

Design Sheets (Hygicne and Food Management) for MDAC, FHR #3902, June 5, 1970, Fairchild Hiller/RAD.

Preliminary Definition - Integrated Hygiene System Material Provisions, FHR #3871, January 29, 1970, Fairchild Hiller/RAD.

Hygiene Systems Analysis Debris Generation and Flow Patterns, FHR 3864, December 30, 1969, Fairchild Hiller/RAD

1.4-23

REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No.B-1.4.2.1.3Sheet No.1Operational Description No.A-1.4.2.1.3SubsystemFull Body WashBy:P.TrottaDate:18 June 1970

Title: Automated Sponge Bath

Consumable/Expendable	HOW	BASIC		l wght ro c year-lt		Average Density As	REMARKS
ITEM	CONSUMED	CONSTITUENTS CONSUME D	12 man	50 man	100 man	Received lbs/cu.ft.	
Water (Hot/Cold .5 lb/usage 1/usage/man/day	Contaminated with scap and body soil	H ₂ O	2190	9125	18250	62.4	
Filters .2 lb each 12 usages/filter	Become satura- ted with debris	Purity of filter material	57.6	240	480	20	
Towels .75 lb ea used 4 days	Become wet and soiled in drying	Cotton terry cloth	1250	5000	10000	8	
Clean sponge heads 1/2" x 2" x 3" . 03	Become satura- ted with debris	Purity of sponge material	88	365	730	1.2	Density is a function of pack- aging
Detergent	Diluted in wash water	Germicidal action	10	. 40	80	75	

1.4-24

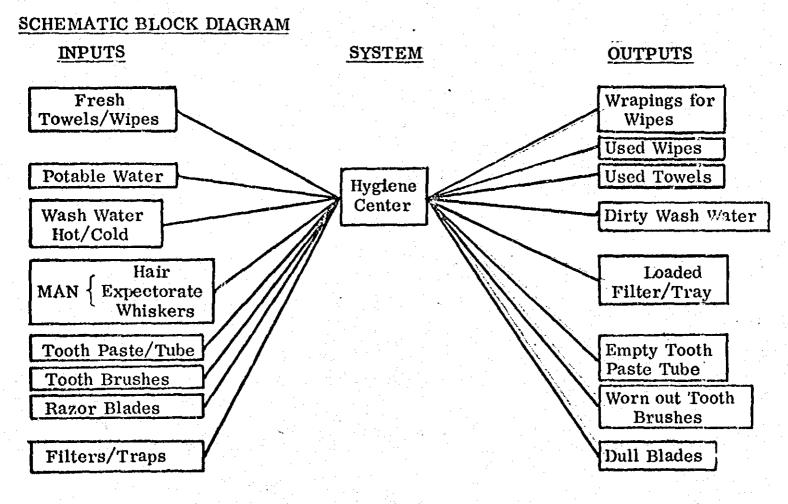
Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Title: Automated Sponge Bath

Doc. No. $C-1.4.2.1.3$	Sheet No.	1
Operational Description No.	A-1.4.2.1.3	
Subsystem Full Body Wash	h	
By: P. Trotta	Date: 18 June	<u>197</u> 0

;


WASTE	Characteristics State	Chemical Action Composition Required To Reclaim			wght re year-lb:		Average Density As	Index Of Utilization Potential And Remarks
ITEM	And Attributes			12 man	50 man	100 man	Received lbs/cu.ft.	
Used Wash Water	Liquid, water, organic body soil	H ₂ O	Decontami- nate	2190	9125	18250	62.4	.2 → 7 repro- cess water
Clogged Phase Separators	Solid plastic screen, micro- organisms	Glass/teflon	Decontami- nate	57.6	240	480	20	0.01 → clean screens
Used towels	Solid, textile, damp	Cellulose C-H-N	Launder	1200	5000	10000	8	0.6 → 3.6 launder
Used sponge heads	Solid, plastic, pathogenic	Polyurethane	Decontami- nate	88	365	730	-	Clean with towels
Detergent	Liquid - deter- gent germicide	Amine + quater nari	None	10.0	40	80	75	0.0 recovery

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Doc.No. A-1.4.3.1.1 Sheet No. 1 By: P. Trotta Date: 18 June 1970

OPERATIONAL DESCRIPTION

TITLE: Hygiene Center

RATIONALE:

For daily grooming and simple hands and face washing a personal hygiene center is assumed consisting of a personnel storage area and a sink which flows hot/cold water and collects the water by airflow when gravity is absent. The functions and material flow through the hygiene center are shown in Figure 1.0. The rationale behind the consumables/expendables and wastes listed in document B and C-1.4.3.1.1 is supplied in Table 1.

Doc. No. A-1.4.3.1.1. Sheet No. 2 By: P. Trotta Date: 18 June 1970

Table 1. Hygiene Center Rationale

A. Hands and face wash - once in morning and before each meal - 4 times per man/day.

1.	Water usage	-	120 ml/man/usage	• • • • • • • • • • • • • • • • • • •
2.	Towels		1/man/day - 0.27lb each	
3.	Soap -	-	0.004 lbs/usage	

B. Hands/face wipes - for refreshment after meals and after body evacuations, an average of 12 wipes/day/man. Wiper are premoistened with a cleaner plus a bactericide propylene glycol and alcohol and packaged in an aluminum foil cover. Wipes weigh about 3 gms with about 1 gms for the wrapping (0.1 lbs/man/day).

C. Shaving - assuming one shave each day using safety razor and soap lather generator. Blades are 1.0 gms each and are usable about 5 times each. Soap, water and towelling are included in "A" above.

D. Har cutting, nails, etc. - performed on or as needed basis - estimated at
0.0175 lbs/man/day (8gms).

E. Oral hygiene - twice/day using 50 ml potable water for rinsing each usage.

a. tooth paste - 3 gms/usage

b. spent tooth paste tube - once per man/month 25 gms each.

c. tooth brush - 1 per 90 days - 30 gms each.

F. Spares - the sink would have scheduled and unscheduled maintenance items.

1. Scheduled:

- Filter material used to collect the drain water and separate it from the air. Repluce once/man/month, 0.5 lbs/unit.
- Activated charcoal odor control elements used at the rate of one cannister (0.92 lbs) every 500 sink usages or .222 lbs/man/month.

2. Unscheduled:

• One set of sink parts for each 4 men once per year at a weight of 20 lbs/set.

Doc. No. A-1.4.3.1.1. Sheet No. 3 By: P. Trotta Date: 18 June 1970

<u>REFERENCES</u>:

Vol. 1 Preliminary Design Report (Space Station: Hygiene, Waste Management, and Food Subsystems). FHR #3900, June 1, 1970, Fairchild Hiller/RAD

Design Sheets (Hygiene and Food Management) for MDAS, FHR #3902, June 5, 1970, Fairchild Hiller/RAD.

Preliminary Definition - Integrated Hygiene System Material Provisions, FHR #3871, February 2, 1970, Fairchild Hiller/RAD.

Hygiene Systems Analysis Debris Generation and Flow Patterns, FHR #3864, December 30, 1969, Fairchild Hiller/RAD.

REPUBLIC AVIATION DIVISION

1.4-28

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No.B-1.4.3.1.1Sheet No.1Operational Description No.A-1.4.3.1.1SubsystemPartial Body WashBy:P.TrottaDate:6/18/70

Title: Hygiene Center

Consumable/Expendable			Total wght req'd per year-lbs			Average Density As	REMARKS	
	CONSUMED	CONSTITUENTS CONSUME D	12 man	50 man	100 man	Received lbs/cu.ft.		
Potable Water	In teeth washing	Purity of Water	965	4020	8040	62.4		
Wash Water	In washing (hands & face)	Purity of Water	4,650	19,350	32,700	62.4		
Tooth Paste in Individual Tubes	Dissolved in Saliva and mixed with water	Paste inside the tube	58	241	482	70		
Tooth Brushes	Worn out by usage	Bristles become bent and soft	3.2	14.3	28.6	100		
Razor Blades	Dulled in shaving	Loses sharpness	1.93	8.7	17.4	400		
Odor control cartridge	Saturated with debris during utilization	Absorbent	32	134	268	50		
Filter Screen	n an	Free Area	72	300	600	20		
Spare Sink Parts	Wear	Seals & Fits	60	250	500	100	•	
Towels	Soiled in use	Freshness	1185	5,340	10,680	8		
Wipes	Opened and Soiled in use	Cleanliness	460	1,820	3,640	70		
Soap	Combined with Body Soil	Emulsifiers	70	292	584	62		

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION TANNINGDALE, LONG 141 AND, NEW YORK

1.4-29

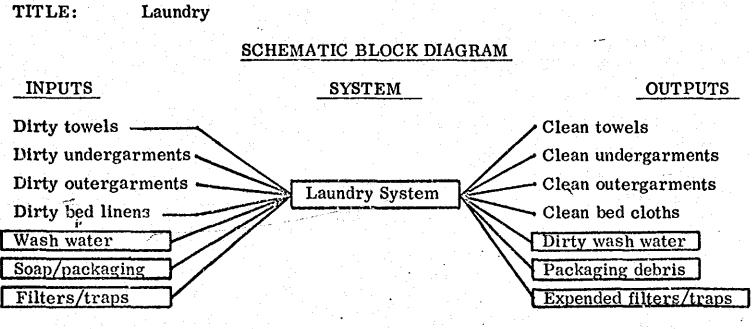
11

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Title: Hygiene Center

Doc. No. <u>C-1.4.3.1.1</u>	Sheet No. <u>1</u>
Operational Description No.	A-1.4.3.1.1
Subsystem Partial Body W	ash
By: <u>P. Trotta</u>	Date: 6/18/70


WASTE	Characteristics				wght re year-ll		Average Density As	Index Of Utilization	
ITEM	State And Attributes	Composition	Required To Reclaim	12 man	50 man	100 man	Received lbs/cu.ft.	Potential And Remarks	
Dirty Water	Liquid, water, Soap, organics	Н ₂ О	Decontamin- ate	5,615	23,370	46,740	62.4		
Empty Tooth Paste Tubes	Solid, metal and plastic, tube, soap residues	Aluminum foil Nylon top	Refill	8	36	72	190		
Worn Tooth Brushes	Solid, plastic rod,inert	Nylon	Replace worn bristles	3.2	14.3	28.6	100		
Razor Blades	Solid, metal sheet, inert, sharp	Steel	Resharpen	1,93	8.7	17.4	400		
Odor Control Cartridge	Solid, carbon, granular,organic contaminants	Activated charcoal	Reactivate	32	134	268	50		
Filter Screen	Solid, plastic, organic contam- inants	Glass, Teflon	Reverse flush	72	300	600	20		
Failed Sink Parts	Solid, metal, inert	Stainless steel	Replace worn seals	60	280	500	100		
Soiled Towels	Solid, fabric light body soil	Cellulose, c, H ₂ , N ₂	Launder	1185	5,340	10,680	8		
Wipes, Packaging	Solid, metal, foil	Aluminum	None	115	455	910	65		
Wipes, Soiled Tissues	Solid, paper & liquids, body soil	Cellulose, propylene glycol	None	345	1,365	2730	25		

 \bigcirc

Doc. No. A-1.4.4.1.1 Sheet No. 1 By: P. Trotta Date: 18 June 1970

OPERATIONAL DESCRIPTION

FAIRCHILD HILLER

RATIONALE:

The laundry will use packaged soap at a rate equivalent to 1% of the clothing usage rate (by weight). Soap packaging is assumed at 5% of the soap weight. Water is used in a ratio of 20 to 1 by weight with material to be washed. The number of changes of clothing and linens per year times the weight of these articles provides the weight of wash/year. The articles to be washed and their rates are covered in other documents as shown in Table I – Laundry Rationale. Also included are the scheduled/ unscheduled maintenance items.

TABLE I - LAUNDRY RATIONALE

Laundry load:

Α.

- Clothing usage = 0.42 lbs/man/day (see A-1.2.2.1.1)
- Bed linens = 0.063 lbs/man/day (see A 1.2.2.2.1)
- Toweling/shower = 0.83 lbs/man/day (see A-1.4.2.1.1)
- Toweling/grooming = 0.27 lbs/man/day (see A-1.4.3.1.1)

Total Wash = 1.633 lbs/man/day.

Laundry cycle = 11.431 lbs/man load once/week - two hours wash and dry cycle.

Doc. No. A-1.4.4.1.1 Sheet No. 2 By: P. Trotta Date: 18 June 1970

TABLE I - LAUNDRY RATIONALE (Cont'd.)

B. Scheduled Maintenance:

- Filter material used to filter lint, etc. from the drain water. Replace after each 1000 lbs of wash. 0.5 lbs each unit.
- Filter material used as air seperator, 0.5 lbs/unit replaced after each 500 hours of use.
- C. Unscheduled Maintenance:
 - Motor/gearbox 16 lbs/set 2000 hour life expectancy
 - Valving bearings, seals and controls 20 lbs/set expected replacement at the rate of 5 lbs/1000 hours of use.

REFERENCES:

Vol. 1 Preliminary Design Report (Space Station: Hygiene, Waste Management, and Food Subsystems) FHR 3900 June 1, 1970 FH/RAD

Surface Active Agents and Detergents; AM. Schwartz, J.W. Perry, J. Berch. Vol. II, Interscience Publishers, Inc., N.Y. 2nd Printing, May 1966.

Handbook of Garment Selection Criteria for a Space Station. NASA CR 102051, by B. Welson & Co., Inc. Hartford Connecticut (1969)

Preliminary Definition - Integrated Hygiene System Material Provisions, FHR 3871 Feb. 2, 1970 FH/RAD

Hygiene Systems Analysis Debris Generation and Flow Patterns, FHR 3864 Dec. 30, 1969 FH/RAD

REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1.4.4.1.1Sheet No. 1Operational Description No. A-1.4.4.1.1Subsystem Revitalization of TextilesBy: P. Tro:taDate: 18 June 1970

Title: Laundry

1.4-32

Consumable/Expendable ITEM	HOW CONSUME D	BASIC CONSTITUENTS CONSUME D	Total Per 12 man	Weight F Year - 50 man	tequired Lbs. 100 man	Average Density As Received lbs/cu.ft.	REMARKS
Wash Water	Soil and Soap dissolved in it	Soil removal capacity	35540	148080	296160	62.4	
Soap (5% additional for packaging weight)	Diluted with water, com- bined with soil	Detergency	70	293	586	63	
Filter screen/lint	Saturated with debris	Free area	10	45	90	20	
Filter screen/seperator	Saturated with debris	Free area	2.4	10	20	20	
Motor/gear train	Wear out	Life	10	41.5	93	200	
Valving bearings, seals and controls	Wear out	Fit, seal, life	12.5	52	104	100	

ARNINGOALE,	LONG	ISLAND, MES	

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

 Doc. No. C-1.4.4.1.1
 Sheet No. 1

 Operational Description No. A-1.4.4.1.1

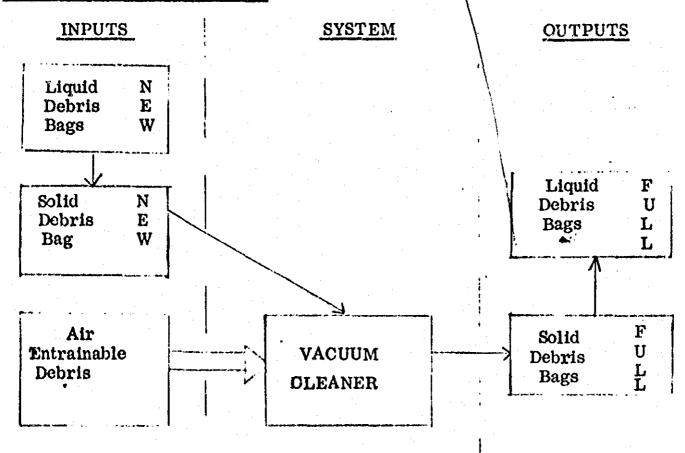
 Subsystem Revitalization of Textiles

 Date: 18 June 1970

WASTE	Characteristics	Chemical	Action	Total W Per Y	/eight Ro /ear - L	equired bs.	Average Density As	Index Of
ITEM	State Comp And Attributes	Composition	Required To Reclaim	12 man	50 man	100 man	Received lbs/cu.ft.	Utilization Potential And Remarks
Wash water	Liquid, water organic soil	н ₂ 0	De- contaminate	143,000	600,000	1,200, 000	62.4	
Soap packaging	Solid, organic bulkey, inert	Polyetheline	Reprocess	3.5	15	30	30	
Filter screen/lint	Solid, plastic screen plus textile lint	Glass, teflon cellulose	Reverse flush	10	45	90	20	
Filter screen/seperator	Solid, plastic screen	Glass, teflon	Reverse flush	2.4	10	20	20	
Failed motor/gears	Solid, Metal, cylinder, com- pact	Steel, copper, plastic	Replace worn parts	10	41.5	93	200	
Failed valving, bearings, seals, controls	Solid, metal compact	Steel, copper plastic	Replace worn	12.5	52	104	100	
			parts					
			•			•		

1.4-33

Doc. No. A-1.4.5.1.1 Sheet No. 1 By: P. Trotta Date: 19 June 1970


OPERATIONAL DESCRIENTION

FAIRCHILD HILLER

REPUBLIC AVIATION

TITLE: Vacuum Cleaner

SCHEMATIC BLOCK DIAGRAM:

Note:

(1) Liquid (inc. urine) spillage on surfaces (inc. Fabrics) and in air

(2) Hair on surfaces and in air

(3) Food particles on surfaces and in air

(4) Dust particles, paper (small bits), work debris

RATIONALE:

The vacuum cleaner will be used routinely and will have the capacity of retaining fluids as well as solids. One master unit will service the quarters of each 4 men or fraction thereof, on the assumption of one unit/deck.

The vacuum cleaner consumes empty bags at the same rate it produces full ones. The debris bags will be replaceable and will consist of a liquid debris bag section (5 gms), capable of holding 100 mc of liquid overflow from the main section (50 gms) which will hold the solid debris (1 liter) (50 gm, 1 liter). The bags will be replaced after any emergency spill and routinely once a month/unit. Two emer-

Doc. No. A-1.4.5.1.1 Sheet No.1 By: P. Trotta Date: 19 June 1910

gency spills (50 gms) per unit per year are assumed along with 0.5 lbs of routinely collected debris/unit/month. The average density of the solid debris is assumed to be approx. 10 lb/Ft^3 and the liquid approx. 62.4 lb/Ft^3 . The scheduled maintenance includes replacement of the blower motor (7 lbs) and the hoses (1 lb) once per uniper year.

REFERENCES:

Vol. 1 - Preliminary Design Report (Space Station: Hygiene, Waste Management, and Food Subsystems). FHR #3900 June 1, 1970 Fairchild Hiller/RAD.

Housekeeping and Trash Disposal Equipment Space Station. - FHR 3800 Feb. 16, 1970 FH/RAD.

Hygiene Systems Analysis Debris Generation and Flow Patterns. - FHR #3864 Dec. 30, 1969 FH/RAD.

FARMINGOALE, LONG + 51 -

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Vacuum Cleaner

Doc. No. B-1.4.5.1.1	_ Sheet	No.	1	
Operational Description No	A-1	4.5.	1.1	
Subsystem Crew Quarters	House	keep	ing	
By: <u>P. Trotta</u>	Date:			197

Consumable/Expendable	HOW	BASIC	Total wght req'd per year-lbs			Average Density As	REMARKS	
ITEM	CONSUMED	CONSTITUENTS CONSUME D	12 50 man man		100 man	Received lbs/cu.ft.		
Fresh Solid Liquid Debris Bags	Filled with Solid/Wet Debris	Volume	5.1	21.2	42.4	60		
Replacement Blower Motors	Wear Out	Seals, Fits, Lubrication	21	si.5	175.0	200		
Replacement Hose	Wear Out	Pressure Integrity	3	12.5	25	20		

1.4-37

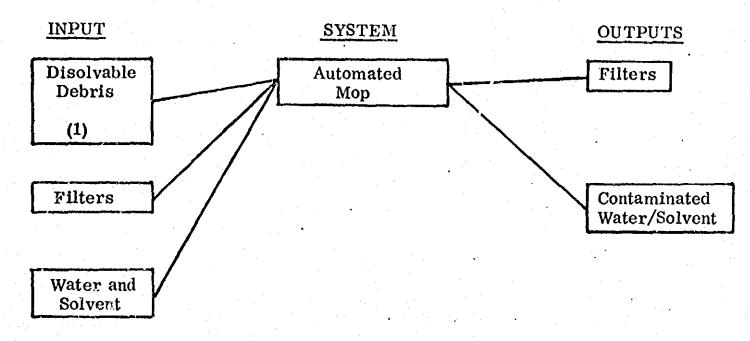
	Stud	y of Hou	sekeeping Cond	cepts For M	anned Space	
•			TABLE III.	WASTES		
	a A A					•

Doc. No. C-1.4.5.1.1	Sheet No. <u>1</u>
Operational Description No.	A-1,4,5,1.1
Subsystem <u>Crew Quarters</u>	Housekeeping
By: P. Trotta	Date:19 June 1970

1

Title: Vacuum Cleaner

WASTE ITEM	Characteristics State And	Chemical Composition	Action Required To Reclaim	per 5 12	wght red year-lbs 50 man	100	Average Density As Received lbs/cu.ft.	Potential
	Attributes			man				
Liquid/Solid Debris Bags	Solid, Plastic Sheet, Organic Debris	Teflon	Empty, Re- verse Flush		21.1	42.4	60.0	
Solid Debris in Bags	Solid, Organic	Dust, Food, Hair	None	21	87.5	175.0	10	
Failed Blower Motor	Solid, Metal Compact cylind.	Aluminum, Copper	Repair, worn part	21	87.5	175.0	200	
Failed Hose	Solid, Plastic Hollow Tube	Teflon	Patch	3	12.5	25	20	


•

Doc. No. A-1.4.5.2.1 Sheet No. 1 By: P. Trotta Date: 22 June 1970

OPERATIONAL DESCRIPTION

TITLE: Surface Washer/Wiper (Automated Mop)

SCHEMATIC BLOCK DIAGRAM

RATIONALE:

The automated mop provides for damp wiping operations in zero or low gravity fields and will be used to clean surfaces on a routine basis, probably weekly. One unit is assumed for each four men. It is expected that the unit will require two lbs of water per unit/week used for damp wiping, tables, lounges, bed sheets, coveralls, wall surfaces, ietc.. One percent by weight of a bactericide will be added to the water. The blower motor (7 lbs.) is expected to have a 2000 hour life and the hoses (1 lb) 500 hours of life. The unit will be used about one hour/man/week.

REFERENCES:

Vol. 1 Preliminary Design Report (Space Station - Hygiene, Waste Management, and Food Subsystems) FHR 3900, June 1, 1970, Fairchild Hiller/RAD.

Housekeeping and Trash Disposal Equipment Space Station. FHR 3880 February 16, 1970, Fairchild Hiller/RAD.

Preliminary Definition - Integrated Hygiene System Material Provisions, FHR3871, February 2, 1970, Fairchild Hiller/RAD.

Hygiene Systems Analysis Debris Generation and Flow Patterns, FHR3864, December 30, 1969, Fairchild Hiller/RAD.

1.4-38

1.4-39

REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1.4.5.2.1Sheet No. 1Operational Description No. A-1.4.5.2.1Subsystem Crew Quarters HousekeepingBy: P. TrottaDate: 22 June 1970

Consumable/Expendable	HOW	BASIC CONSTITUENTS	4	al wght : er year-	-	Average Density As	REMARKS	
ITEM	CONSUME D	CONSUME D	12 50 man man		100 man	Received lbs/cu.ft.		
Filters	Contaminated with debris	Free Area	10.8	45	90	20.0		
Sponge Heads	Contaminated with debris	Purity of Sponge Material	7.2	30	60	3.0		
Wash Water	Contaminated with debris	Freshness	312	1300	2600	62.4		
Bactericide	Diluted	Germicidal Strength	3.1	13.0	26.0	60.0		
Replacement Blower	Wear out	Seals, bits, lubricant	2.1	9.1	18.2	200.0		
Replacement Hoses	Wear out	Pressure, integrity	1.25	5.2	10.4	20.0		

FARMINGRALE, LONG VELIND, NEW YORK

1.4-40

Study of Housekeeping Concepts For Manned Space		Doc. No. $C-1.4.5.2$.		
TABLE III. WASTES	and a strange of the second second Second second second Second second	Operational Description Subsystem Crew Quar		
		By: P. Trotta		22 June 1970
Title: Automated Mop			e de la provintipa	a se a companya a comp

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim		l wght ro r year- 50 man		Average Donsity As Received lbs/cu.ft.	Potential
Exhausted Filters	Solid Plastic Sheet, Organic Debris	Teflon/Glass	Reverse Flush	10.8	45	90	20.0	
Dirty Sponge Heads	Solid, Plastic Organic Debris	Polyurethane	Decontam- inate (Launder)	7.2	30	60	3.0	
Used Wash Water and Bactericide	Liquid, Water	н ₂ 0	Filter Distill	315	1313	2626	62.4 '	
Failed Blower	Solid, Metal,	AL, Cu	Repl ace wor parts	h 2.1	9.1	18.2	200.0	
Failed Hose	Solid, Plastic Hollow Tube	Teflon	Patch	1.25	5.2	10.4	20.0	

•

- **-** - - -

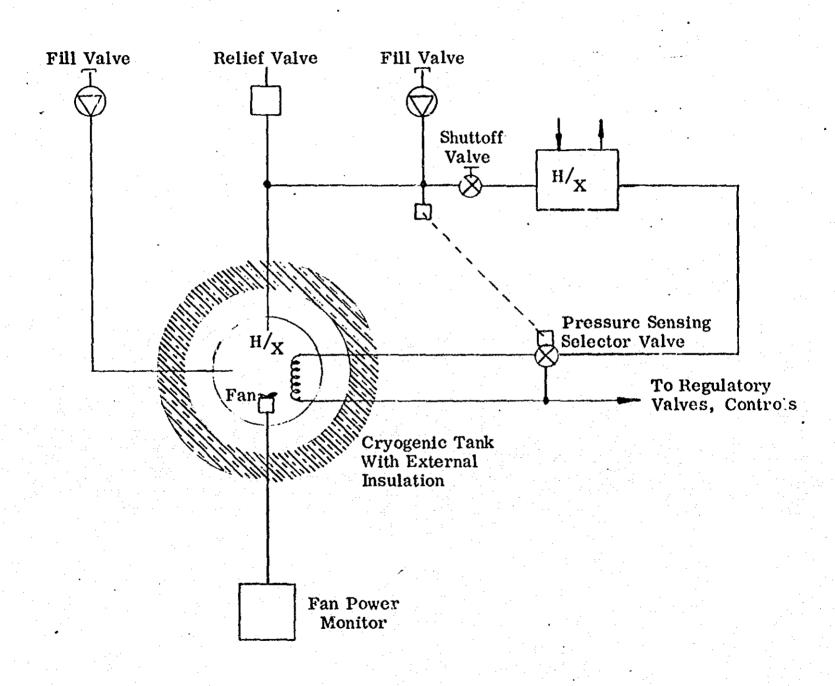
.

PROVIDE AND CONTROL ATMOSPHERIC ENVIRONMENT

SECTION 1.5

TABLE OF CONTENTS

Document Number	Title	Page
1.5.1.1.1	Supercritical Storage and Supply	1.5-1
1.5.2.1.1	Atmospheric Mixing and Pressure Control	1,5-5
1.5.3.1.1	Variable Speed Fan System (Thermal Control)	1.5-9
1.5.4.1.1	Regenerable Charcoal/Catalytic Oxidation System (Contaminant Removal)	1.5-13
1.5.5.1.1	Direct Storage Method (Bacterial and Particulate Control System)	1.5-17
1.5.5.2.1	Sterilization/Storage Method (Bacterial/ Particulate Control System)	1 1.5-20
1.5.6.1.1	CO ₂ Removal/Concentration System	1.5-23
1.5.6.2.1	CO ₂ Reduction System (Solid Electrolyte)	1.5.27
1.5.6.3.1	Water Electrolysis System (Circulating Gas Concepts)	1.5.31
1.5.7.1.1	Coolant Loop	1.5-35
1,5.8.1.1	Water Reclamation System (Diffusion/ Thermal Concept)	1.5-39
1.5.8.2.1	Portable Water Storage System	1.5-43


FAIRCHILD HILLER MEPUBLIC AVIATION DIVISION

Doc. No. A-1.5.1.1.1 Sheet No. 1 By: C. Cinicove Date 31 July 1970

OPERATIONAL DESCRIPTION

TITLE: Supercritical Storage and Supply

SCHEMATIC DIAGRAM:

Typical Schematic Per Tank

Doc. No. A-1.5.1.1.1 Sheet No. 2 By: C. Cinicove Date 31 July 1970

*************P

OBJECTIVE:

This system will store the oxygen and nitrogen needed to meet the cabin leakage requirements and pressurization functions.

RATIONALE:

The atmosphere supply will independently maintain two pressurized volumes. The gas will be stored at 3000 psia and 0°F. The storage bottles will consist of 3 nitrogen and 3 oxygen tanks to provide adequate redundancy to minimize hazards associated with degraded mission modes. A heat exchanger located within each tank will provide energy for pressurization so as to maintain isobaric conditions. A small fan will be used to sense the density of the oxygen as well as increase internal energy exchange.

The components and plumbing systems although long life items will require some repairs. The N_2 and O_2 utilized are accounted for wastes in other systems and are not considered as such here. The following additional assumptions are made.

1. Weight rates vary with crew size because either quantity, size or use rate must be adjusted to suit.

2. Component failures/repairs assumed are for 1 year - 12 men.

Pressure seals - 0. 08 lbs each - 8 replacements

Selector valve - 3.0 lbs each - 0.5 replacements

REFERENCES:

Roth, E. M., Selection of Space Cabin Atmospheres. Part I and IV, NASA - TN-D-2008, August 1963.

Life Support For Space Flights Of Extended Time Periods. NASA CR-614, General Dynamics (Contract NAS 1-2934)

REPUBLIC AVIATION DIVISION

1.5-3

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. <u>B-1.5.1.1.1</u> Sheet No. <u>1</u> Operational Description No. <u>A-1.5.1.1.1</u> Subsystem <u>Atmospheric Gas Supply</u> By: <u>C. Cinicove</u> Date: <u>31 July 1970</u>

Title: Supercritical Storage and Supply

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUME D		Weight F r Year - 50 Man	Lequired Lbs. 100 Man	Average Density As Received lbs/cu.ft.	REMARKS
Nitrogen	Leakage Metabolized	Availability Availability	670 8 400	2,500 34,200	5,000 74,400	15.4 16.4	
Oxygen Pressure Seals	Wear	Life	.64	2.6	5.2	10.4	
Fressure Sensing Selector Valve	Wear	Life	1.5	6.0	12.0	250	

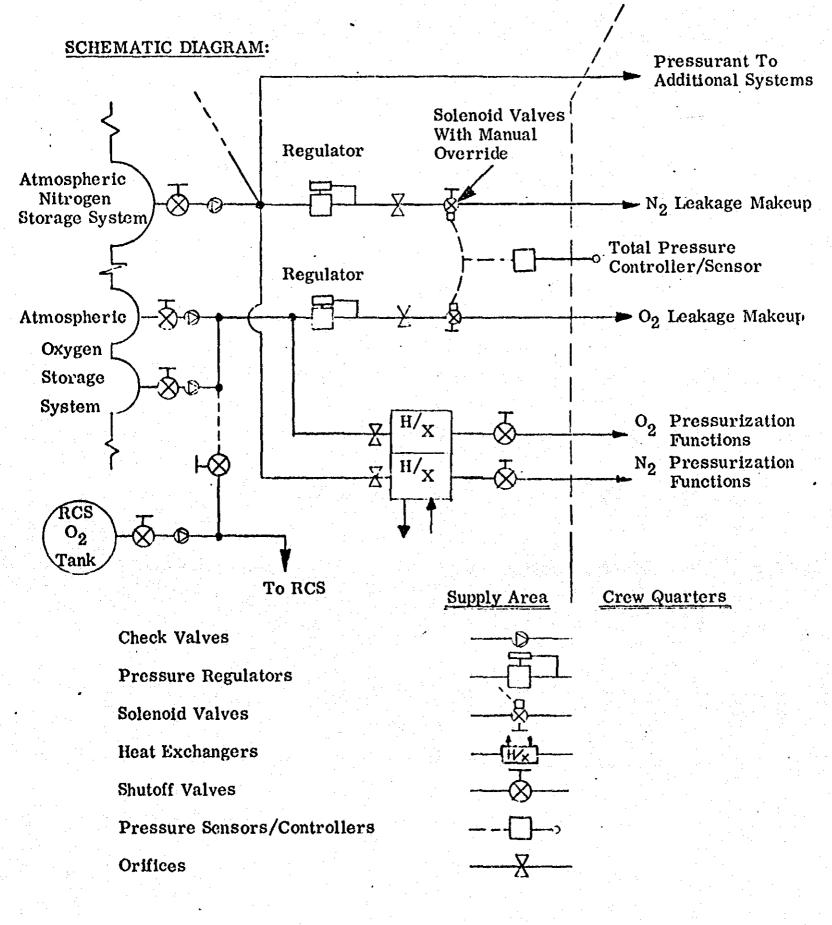
REPUBLIC AVIATION DIVISION

1.5-4

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No. C-1.5.1.1.1	Sheet No. 1
Operational Description Nc.	A-1.5.1.1.1
Subsystem Atmospheric Gas	Supply
By: <u>C. Cinicove</u>	Date: 31 July 1970


Title: Supercritical Storage and Supply

WASTE ITEM	<u>Characteristics</u> State And Attributes	Chemical Composition	Action Required To Reclaim	Per	Weight Re Year – L 50 Man	equired bs. 100 Man	Average Density As Received Ibs/cu. ft.	
Pressure Seals	Solid - Metal Ring	Fe, Ni, Cu	N/R	. 64	2.6	5.20	100	
Pressure Sensing Selector Valve	Solid - Metal	Al, Fe, Ni	N/R	1.5	6.0	12.0	250	
						•		

Doc. No. A-1.5.2.1.1 Sheet No. 1 By: C. Cinicove Date: 31 July 1970

OPERATIONAL DESCRIPTION

TITLE: Atmospheric Mixing And Pressure Control

1.5-5

Doc. No. A-1.5.2.1.1 Sheet No. 2 By: C. Cinicove Date: 31 July 1970

RATIONALE:

The Atmospheric Mixing And Pressure Control System will maintain the total cabin pressure and regulate the flow of oxygen and nitrogen to the cabin for leakage and pressurization requirements. Heat exchangers are required to warm the cryogens when the flows are large and the gasses expand rapidly. The valving provides manual override of all solenoid valves; in addition, oxygen can be tapped from the RCS supply for specified emergency conditions. Complete mixing of the atmospheric components is accomplished by supplementary circulation fans located in each compartment.

The components, pressure vessels and plumbing are normally long life items, but some repairs are allowed for requiring spares and resulting in wastes. The N₂ or O₂ required to operate valves are not considered as wastes or consumables because they are utilized in the atmosphere. The wastes are predicated on the following assumptions:

1. Component size, component wear as numbers c. components are proportional to crew size; therefore weight of wastes will be linear with crew size also.

2. Component failures/repairs assumed are:

- Regulator diaphragm .024 lbs each, one failure/year/12 men
- Pressure seals . 03 lbs each, 10 failures/year/12 men
- Pressure sensor parts . 01 lbs each, one failure/year/12 men
- Solenoid valves 1.0 lbs each, 0.5 failure/year/12 men

REFERENCES:

Roth, E. M., Selection of Space Cabin Atmospheres. Part I and IV, NASA - TN-D-2008, August 1963.

Life Support for Space Flights of Extended Time Periods. NASA CR-614, General Dynamics (Contract NAS 1-2934).

1.5-7

Study of Housekeeping Concepts For Manued Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Atmospheric Mixing and Pressure Control

Doc. No. B- 1.5.2.1.1				·
Operational Description	No. A-1.	5.2.	.1.1	
Subsystem Atmospheric	Control			
By: <u>C. Cinicove</u>	Date:	31	July	1970

Consumable/Expendable	HOW	BASIC Total Weight Required Per Year - Lbs.			Average Density As	REMARKS	
ITEM	CONSUMED	CONSTITUENTS CONSUME D	12 Man				REMARKS
					-		
Regulator diaphragm	Wear	Life	. 024	.10 .	20	550	
Pressure seals	Wear	Life	.30	1.2 2.	5	20	
Pressure sensor parts	Wear	Life	. 01	. 05	10	[*] 300 a s	
Solenoid valves	Wear	Life	. 5	2.0 4.	0	290	

APPHINGBALE, LONG I SLAND, NEW YORK

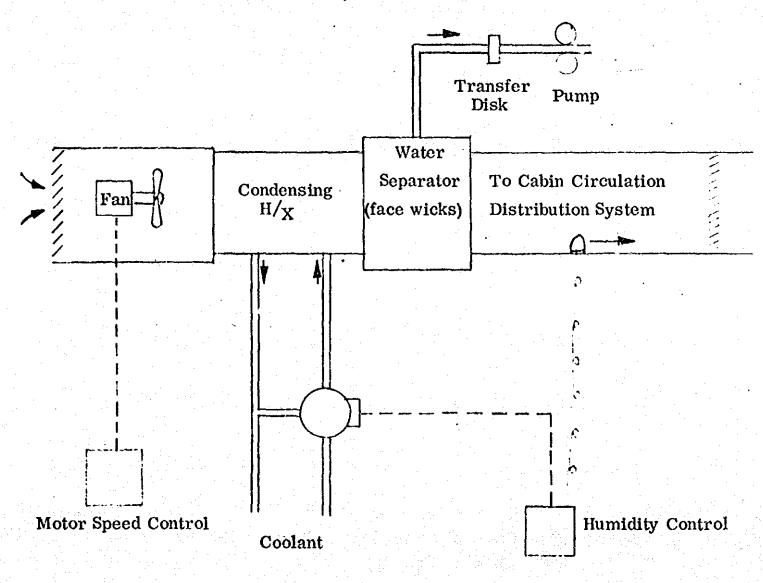
1.5-8

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Title: Atmospheric Mixing and Pressure Control

Doc. No. C-1.5.2.1.1	Sheet N	lo. <u>1</u>	*
Operational Description No.	A- 1.5.	2.1.1	
Subsystem Atmospheric Cor	ntrol		
By: C. Cinicove	Date:	31 July	<u>197</u> 0


WASTE	<u>Characteristics</u> Chemical State Composition		Action Required	. Total Weight Required Per Year - Lbs.			Average Density As	Index Of Utilization	
ITEM	And Attributes		To Reclaim	12 Man	50 Man	100 Man	Received lbs/cu.ft.	Potential And Remarks	
Regulator Diaphram	Solid - Metal Sheet	Fe, Ni, Co	N/R	. 024	.1	. 2	550		
Pressure Seals	Solid - Metal Ring	Fe, Ni, Cu	N/R	. 30	1.2	2.5	20		
Pressure Sensor, Contact Set	Solid - Metal Strip	Fe, Cu	N/R	. 01	. 05	.1	300		
Solenoid Valve	Solid – Metal	Fe, Cu	Repair on board	. 5	2.0	4.0	290		

Doc. No. A-1.5.3.1.1 Sheet No. 1 By: C. Cinicove Date: 31 July 1970

OPERATIONAL DESCRIPTION

TITLE: Variable Speed Fan System (Thermal Control)

SCHEMATIC DIAGRAM:

Doc. No. A-1.5.3.1.1 Sheet No. 2 By: C. Cinicove Date: 31 July 1970

RATIONALE:

The Atmospheric Thermal And Humidity Control System will maintain the relative humidity and cabin temperature within a preset range for crew comfort. Humidity is primarily controlled by modulating the heat exchanger coolant flow. Cabin temperature control is primarily effected by varying the airflow through the heat exchanger. The transfer disc incorporates a microporous water transfer device to prevent air carry over into the condensate collection system.

The components and ducting are considered to be long life components but some repairs are allowed for requiring spares and resulting in waste products. Water spillage into the atmosphere is not considered waste as it is utilized. The following assumptions have been made:

- 1. Weight rates vary with crew size because either quantity, size or use rate must be adjusted to suit.
- 2. Component failures/repairs assumed are for one year/12 men.
 - Microporous filter , 01 lbs each 16 replacements
 - Pressure seals . 08 lbs each 12 replacements
 - Fan Motor 8, 5 lbs each 0, 3 replacements
 - Temperature/Humidity control unit . 01 lbs each 8 replacements
 - Face Wicks New , 01 lbs each 12 replacements
 - Face Wicks Old . 10 lbs each
 - Control Valves 3.0 lbs each .5 replacements

REFERENCES:

Roth, E. M., Selection of Space Cabin Atmospheres. Part I and IV, NASA - TN-D-2008, August 1963.

Life Support For Space Flights of Extended Time Periods. NASA CR-614, General Dynamics (Contract NAS 1-2934).

1.5-11

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Variable Speed Fan System

Doc. No. B-1.5.3.1.1	Sheet No. 1
Operational Description	No. A- 1.5.3.1.1
Subsystem <u>Atmospheric</u>	Temp. & Humid. Control
By: C. Cinicove	Date: <u>31 July 1970</u>

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUME D		Weight R Year-L 50 Man	lequired bs. 100 Man	Average Density As Received Ibs/cu.ft.	REMARKS
				•			
Microporous Filter	Filled	Effectiveness	. 16	.70	1.5	30	
Face Wicks	Filled	Effectiveness	. 12	.5	1.00	11	
Pressure Seals	Wear	Life	1.0	4.0	8.0	20	
Fan Motor	Wear	Life	3.0	7.0	14.0	290	
Temperature Control	Wear	Life	. 32	1.30	2.6	60	
Unit Parts							
Humidity Control Unit Parts	Wear	Life	. 32	1.30	2.6	60	
Control Valve	Wear	Life	1.5	6.0	12.0	260	

FARMINGDALL, LONG ISLAND, NEW YORK

1.5-12

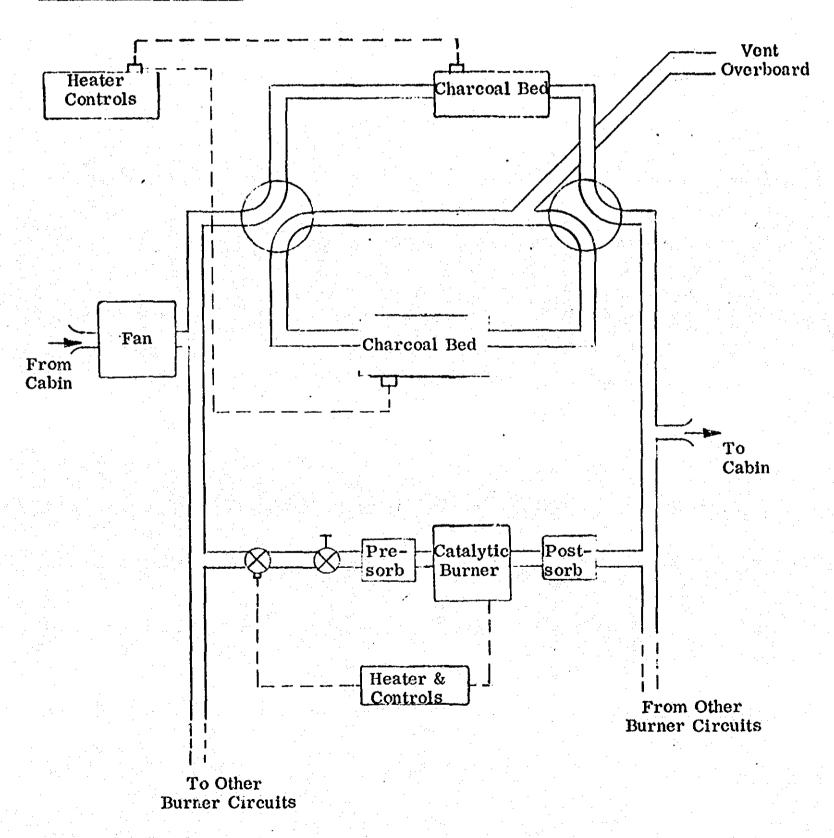
Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Title: Variable Speed Fan System

Doc. No. C-1.5.3.1.1			
Operational Description Nc.	<u>A-1.</u>	<u>5.3.1</u>	1
Subsystem Atmospheric Ten	np.& I	<u>Iumid</u>	<u>Control</u>
By: C. Cinicove	Date:	<u>31 J</u>	uly 1970

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim		Weight R r Year - 50 Man		Average Density As Received lbs/cu.ft.	
Microporous Filter	Solid, Mem- brane, Plastic	Flourinated Plastic Compound	N/R	. 16	. 70	1.5	30	
Pressure Seal	Solid - Rubber, Sheet	Butyl	N/R	1.0	4.0	8.0	20	
Fan Motor	Solid - Cylin- drical, Metal	Copper and Iron	N/R	3.0	7.0	14.0	290	
Temperature Control Unit Parts	Solic - Plastic, Metal	Phenolic,Cu, Fe	Repair component	.32	1.30	2.6	60	
Face Wicks	Solid - Wet, Fibrous mat	Cotton/Nylon	N/R	1.2	5.0	10. 0	60	
Humidity Control Unit Parts	Solid - Plastic Metal	Phenolic,Cu, Fe	Repair component	.32	1.30	2.6	60	
Humidity Control Valve	Solid - Metal	Fe, Ni, Cu	Repair on board	1.5	6.0	12.0	260	


FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

> Doc. No. A-1.5.4.1.1 Sheet No. 1 By: C. Cinicove Date: 31 July 1970

OPERATIONAL DESCRIPTION

TITLE: Regenerable Charcoal/Catalytic Oxidation System (Contaminant Removal)

SCHEMATIC DIAGRAM:

Doc. No. A-1.5.4.1.1 Sheet No. 2 By: C. Cinicove Date: 31 July 1970

RATIONALE:

The Contaminant Removal System removes harmful and irritating contaminants from the cabin atmosphere. The charcoal beds are used to remove sorbable gases such as benzene, freen, ethanol and others; the catalytic burner module removes non-sorbable contaminants such as hydrogen, carbon monoxide and methane using catalytic oxidizing techniques. The pre- and post-sorbants remove halogenated gasses such as hydrogen cloride, chlorine and flourine. The charcoal beds are alternately desorbed every 10 days by venting the beds to space and driving the contaminants off by direct heating. The capacity of the catalytic modules are deliberately oversized to allow for local poisoning of the catalytic material. Whenever a heater failure or massive poisoning incapacitates a module, another is valved into the circuit to replace it.

1.5-15

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1.5.4.1.1Sheet No. 1Operational Description No. A-1.5.4.1.1Subsystem Contaminant Removal SystemBy: C. CinicoveDate: 31 July 1970

Title: Regenerable Charcoal Catalytic Oxidizing System

	Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUMED		Veight R Year – 50 Man	equired Lbs. 100 Man	Average Density As Received Ibs/cu.ft.	REMARKS
	Charcoal Bed	Deactivated	Coconut Charcoal	8	36	72	40	
	Catalytic Burner	Poisoned with H ₂ S	Catalytic action	8	36	72	280	
۰ ۱۰ ۲۰ ۱۰ ۲۰	Presorber/Pc5tsorber	Deactivated	CuSO4	4	18	36	180	
• • •								

1.5-10

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Sheet No.	1
<u>A- 1.5.4.</u>	
oval System	1
Date: 31 J	ılv 1970

Title: Regenerable Charcoal/Oxidizing System

WASTE	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim		Veight Ro Year - 50 Man		Average Donsity As Received Ibs/cu.ft.	Index Of Utilization Potential And Remarks
Fan Motor	Solid - Metal	Fe, Cu	Repair on board	1	3	5 5	250	
Regulator	Solid - Metal	Al, Fe, Ni	Repair on board	.09	.40	-80	250	
Heater Control	Solid - Metal	Fe, Cu	Repair on board	-2	6	10	225	
4 Way Valve	Solid – Metal	Fe, Ni	Repair on board	5 5 5	20	35	285	
Pre-sorber/Post-sorber	Solid - Metal	Al, CuSO ₄ , Si	N/R	4	18	36	180	
Catalytic Burner	Solid – Metal	Al, Paladium Alumina Catalyst	N/R	8	36	72	280	
Charcoal Bed	Solid - Wood	Activated Charcoal, Aluminum	Replace Charcoal	8	36	72	40 _:	
Contaminated Gasses	Gaseous- Ambient	H Cl, Cl ₂ , F ₂ , benezene, NH ₃ , freon 13, CH ₄ , ethanol, H ₂ S,	board	.8	1.0	1.8	-	
		toluene, efc.						

Doc. No. A-1.5.5.1.1 Sheet No. 1 By: C. Cinicove Date: 31 July 1970

OPERATIONAL DESCRIPTION

TITLE: Direct Storage Method (Bacterial/Particulate Control System)

RATIONALE:

The Bacterial/Particulate Control System will remove contaminating particles from the cabin air. Particles such as lint, dirt, hair, fungi, viruses, etc. are passed through a bacterial filter rated at $.3\mu$; in addition, the bacterial filters are protected by a 50 μ filter and a hydrophobic-hyrophilic debris trap. The direct bagged storage technique requires that ladon filters be placed in plastic bags and stored in lockers for ultimate disposition.

PUBLIC AVIATION DIVISION

1.5-18

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Direct Storage Method

Doc. No. <u>B-1.5.5.1.1</u>	Sheet No.	1
Operational Description No		
Subsystem Bacterial/Partic	culate Contro	l System
By: C. Cinicove	Date: 31 J	uly 1970

Consumable/Expendable	HOW	BASIC	Total Weight Required Per Year - Lbs.		Average Density As	REMARKS		
ITEM	CONSUMED	CONSTITUENTS CONSUME D	12 Man	50 Man	100 M2n	Received lbs/cu.ft.		
Filter Storage Bags	Utilized	Usefulness	38	150	300	4.		
Filter Screens	Clogged	Filterability	300	1440	2880	20.		
				•.				
							з.	
	1	 A second s						

1.5-19

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No. <u>C-1.5.5.1.1</u> Sheet No. <u>1</u> Operational Description No. <u>A-1.5.5.1.1</u> Subsystem Bacterial/Particulate Control System By: <u>C. Cinicove</u> Date: <u>31 July 1970</u>

Title: Direct Storage Method

WASTE	Characteristics	Chemical	Action Required	fotal W Per	eight Re Year -	Lbs.	Average Density As	Index Of Utilization	
ITEM	State And Attributes	Composition	To Reclaim	12 Man	50 Man	100 Man	Received lbs/cu.ft.	Potential	
Filter Bags	Solid - Plastic	Polyethylene	N/R	24	100	200	4.		
Filter Screens	Solid - Film	Paper, Fe, Ni	N/R	360	1440	2880	20.		
						•			
					• •				

Doc. No. A-1.5.5.2.1 Sheet No. 1 By: C. Cinicove Date: 31 July 1970

OPERATIONAL DESCRIPTION

TITLE: Sterilization/Storage Method (Bacterial/Particulate Control System)

RATIONALE:

The Bacterial/Particulate Control System will remove contaminating particles from the cabin air. Particles such as lint, dirt, hair, fungi, viruses, etc. are passed through a bacterial filter rated at .3 μ ; in addition, the bacterial filters are protected by a 50 μ filter and a hydrophobic-hyrophilic debris trap. The heat sterilized concept utilizes a sterilizer that heats and kills all living matter trapped in the filters; storage then proceeds, using plastic bags and storage lockers, as before.

5-21

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. <u>B-1.5.5.2.1</u> Sheet No. <u>1</u> Operational Description No. <u>A-1.5.5.2.1</u> Subsystem <u>Bacterial/Particulate Control System</u> By: <u>C. Cinicove</u> Date: <u>31 July 197</u>0

1.10

Title: Sterilization/Storage Method

Consumable/Expendable	nsumable/Expendable HOW BASIC ITEM CONSUMED CONSTITUENTS CONSUMED		Total Weight Required Per Year - Lbs.			Average	DEMADUS	
ITEM			12 50 Man Man		100 Man	Density As Received Ibs/cu.ft.	2	
Filter Storage Bags	Utilized	Utilized Usefulness		38 150		4.		
Filter Screens	Clogged	Filterability	300	1440	2880	20.		
		andra an						

FAIRCHILE HILLER REPUBLIC AVIATION DIVISION

L

1.5-22

FARMENGOALE, LONG FSE SHO, HEM FORK

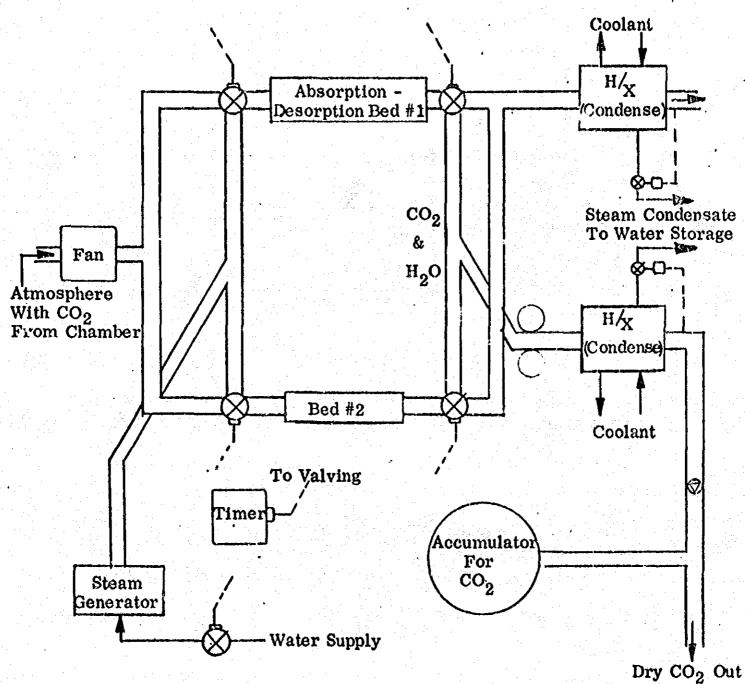
Study of House	keeping	Concepts	For	Manned	Space

TABLE III. WASTES

Doc. No.C-1.5.5.2.1Sheet No.1Operational Description No.A-1.5.5.2.1SubsystemBacterial/Particulate Control SystemBy:C.CinicoveDate:31July 1970

Title: Sterilization/Storage Method

WASTE	Characteristics	Chemical	Action	Total W Per	eight Re Year -	equired Lbs.	Average Density As	Index Of Utilization
ITEM	State And Attributes	Composition	Required To Reclaim	12 Man	50 Man	100 Man	Received lbs/cu.ft.	Potential
Heater Coil And Control	Solid - Metal	Fe, Cu, C	Repair on board	10	20	35	225	
Filter Bags	Solid - Plastic	Polyethylene	N/R	38	150	300	4.	
Filter Screens	Solid – Film	Paper, Fe, Ni	N/R	. 360	1440	2880	20.	
								-


١

Doc. No. A-1.5.6.1.1 Sheet No. 1 By: C. Cinicove Date: 31 July 1970

OPERATIONAL DESCRIPTION

TITLE: CO₂ Removal/Concentration System

SCHEMATIC DIAGRAM:

To Reduction System

Doc. No. A-1.5.6.1.1 Sheet No. 2 By: C. Cinicove Date: 31 July 1970

PATIONALE:

The steam desorbing CO_2 concentrator will remove gaseous CO_2 from the cabin atmosphere and concentrate it in a pressurized accumulator. The accumulator outlet supplies the CO_2 reduction system onboard. To conserve power, one bed will be on the absorption phase while the other is steam desorbing.

REPUBLIC AVIATION DIVIBION

Ð

1.5-25

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

CO2 Removal/Concentration Systems

Doc. No. B- 1.5	.6.1.1	Sheet	No.	1	<u>t</u>
Operational Desc	ription No.	A-1.	5.6	5.1.1	
Subsystem CO ₂	Control &	O_2 Ge	ner	ation	
By: C. Cinicove		Date:			

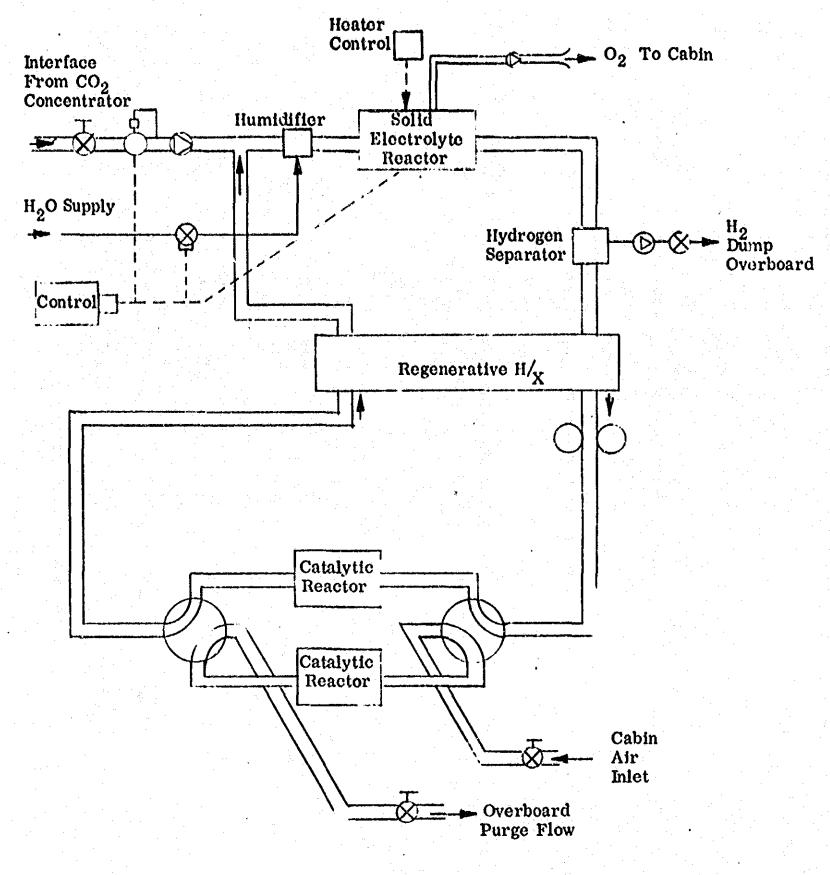
Consumable/Expendable			Total Weight Required Per Year - Lbs.			Average Density As	REMARKS	
ITEM	CONSUMED	CONSTITUENTS CONSUME D	12 50 Man Man		100 Man	Received lbs/cu.ft.		
Absorption/Desorption Bed	Mechanical or chemical failure	Ability to exchange ion effectively	6	18	24	105		
		0		100	000	070		
Condensor/Separator	Contaminated	Capillary action of separator	40	120	200	270		
		Separator						
					tin de la c	and and a second se Second second		
							n an	
	an an an Araba An Araba an Araba an Araba Araba an Araba an Araba							

REPUBLIC AVIATION DIVISION FARMINGDALE, LONG INLAND, NEW YORK

1.5-26

Study of Housekeepin TABL	E III. WASTES	anned Space		Doc. No. <u>C-1.5.6.1</u> Operational Descripti Subsystem <u>CO₂ Cont</u> By: <u>C. Cinicove</u>	on No. $A-1$ rol & O ₂ Ge		
Title: CO ₂ Removal/Concentr WASTE	Characteristics State	Chemical Composition	Action Required		Average Density As	Index Of Utilization	•

	State	Composition	Required	Per	Year -		Density As	
ITEM	And Attributes		To Reclaim	12 Man	50 Man	100 Man	Received lbs/cu.ft.	Potential And Remarks
Fan	Solid - Metal	Fe, Cu	Repair on board	8.5	17	25.5	290	
Absorption Bed	Solid - Metal	Fe, Resin	N/R	6	18	24	105	
Diverter Valve	Solid - Metal	Fe, Cu	Repair on board	1	3	6	230	
Condensor/Separator	Solid - Metal	Fe, Ni, Cu	N/R	40	120	200	270	
Timer	Solid - Metal	Fe, Ni	Repair on board	2	7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12	116	
Solenoid Valve	Solid - Metal	Fe, Cu	Repair on board	2.0	8.0	16	300	
Compressor	Solid - Metal	Fe, Al	Repair on board	2.0	8.0	16	425	
Water Regulator	Solid – Metal	Fe, Ni	Repair on board	.096	.40	.80	520	
Check Valve	Solid - Rubber	Butyl	Replace seal	.030	.12	.24	20	
Carbon Dioxide	Gas - CO ₂	co ₂	Reduce	9,000	37,500	75,000	.11	
				I share a share	[



Doc. No. A-1.5.6.2.1 Sheet No. 1 By: C. Cinicove Date: 31 July 1970

OPERATIONAL DESCRIPTION

TITLE: CO₂ Reduction System (Solid Electrolyte)

SCHEMATIC DIAGRAM:

Doc. No. A-1.5.6.2.1 Sheet No. 2 By: C. Cinicove Date: 31 July 1970

RATIONALE:

The Solid Electrolyte CO_2 Reduction System resupplies part of the metabolic oxygen requirements for the cabin. The system requires an interface with the steamdesorbed CO_2 concentrator. Inlet CO_2 joins the circulation stream and passes through a wick-type humidifier. The humidifies gas stream enters the electrolytic reactor where CO_2 and H_2O vapor break down to form CO, H_2 and O_2 . In this reactor, oxyger is electrochemically separated and vented directly into the cabin for metabolic consumption. Reactor effluent then enters the hydrogen separator where gaseous H_2 is removed and vented overboard. Carbon and CO_2 are released within the catahytic reactors. Carbon is deposited on the catalyst while the remaining CO_2 is diverted back to the incoming stream and recycled through the system. A cabin air purge through the catalytic reactors can be effected for easier replacement of the units.

FAPPLINGDALE, LONG JSEAND, NEW TORK

1.5-29

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

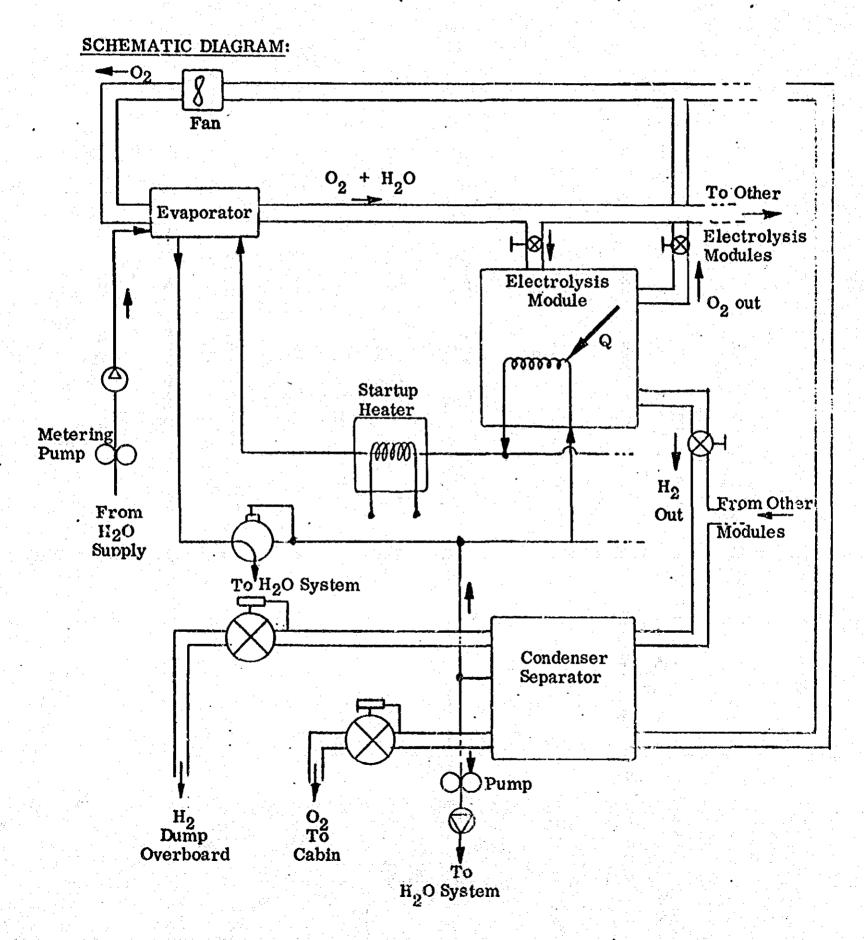
Title: CO2 Reduction System

Doc. No. B-1.5.6.2.1	Sheet No.	1
Operational Description N	0. <u>A-1.5.6.</u> 2	.1 and the
Subsystem CO2 Control &	O ₂ Generatio	<u>n</u>
By: C. Cinicove	Date: 31 Ju	ly 1970

Consumable/Expendable ITEM	HOW CONSUME D	BASIC CONSTITUENTS CONSUME D	Total Weight RequiredPer Year - Lbs.1250100ManManMan			Average Density As Received lbs/cu.ft.	REMARKS	
Electrolyte Modules	Catalytic depletion	Catalytic Effective- ness	45	150	300	285		
Catalyst Cartridges	Catalytic depletion	Catalytic Effective- ness	50	200	400	150		
Cabin Air	Vented over- board	0 ₂ , N ₂	50	200	400	.08		

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION FARMINGOALE, CONG ISLAND

1.5-30


Study of Housekeeping Concepts For Manned Space TABLE III. WASTES Title: CO ₂ Reduction System					Doc. No. $C-1.5.6.2.1$ Sheet No. 1 Operational Description No. $A-1.5.6.2.1$ Subsystem CO2 Control & O2 GenerationBy:C. CinicoveDate:31 July 1970					
WASTE		Action Required		otal Weight Required Per Year - Lbs.		Average Density As	Index Of Utilization			
ITEM	And Attributes		i'o Reclaim	12 Man	50 Man	100 Man	Received lbs/cu.ft.			
Humidifier	Solid – Metal	Aluminum	Replace wicking	3.0	12	24	95			
Heater Control	Solid – Metal	Fe, Cu	Repair on board	2.0	6.0	10.0	225			
Main Control	Solid - Metal	Fe, Cu	Repair on board	2.0	6.0	10.0	200			
Electrolyte Modules	Soliā - Metal	Fe, Ni, ceramic	N/R	45	150	300	285	•		
Hydrogen Separator	Solid – Metal	Al, Pd	N/R	10	35	80	165			
Heat Exchanger	Solid - Metal	Al, Fe, Ni	N/R	7	21	42	125			
Compressor	Solid - Metal	Fe, Ni	Repair on board	.8	16	32	300			
Catalyst Cartridges	Solid - Metal	Catalytic agent	Replace	50	200	400	150	Expected Qty.		
4 Way Valves	Solid – Metal	Fe, Ni	Repair on board	5.0	20	40	280			
Check Valve	Solid – Metal	Butyl	Replace seal	.03	.12	.24	20			
CO ₂ Regulator	Solid – Metal	Al, Fe, Ni	Repair on bcard	.096	.40	.80	250			
Oxygen	Gaseous-Ambient	0 ₂	Dump to cabin	7,000	29 x 10 ³	57 x 10 ³	.07			
Carbon	Solid - Chunks	С	N/R	2,220	9 x 10 ³	1.8x10 ⁴	50			
Hydrogen	Gaseous-Ambient	H ₂	N/R	45	180	360	.005			
							af e			

٠

Doc. No. A-1.5.6.3.1 Sheet No. 1 By: C. Cinicove Date: 31 July 1970

OPERATIONAL DESCRIPTION

TITLE: Water Electrolysis System (Circulating Gas Concepts)

1.5-31

Doc. No. A-1.5.6.3.1 Sheet No. 2 By: C. Cinicove Date: 31 July 1970

RATIONALE:

The Water Electrolysis System is used to generate makeup oxygen; that is, the part of the metabolic oxygen requirement not supplied by the O₂ Generation/CO₂ Control System. The hydrogen byproduct can also be used for recycling a carbon dioxide reduction process. Control of the process is maintained by varying the water metering pump and the power into the electrolysis modules.

1.5-33

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No.B-1.5.6.3.1Sheet No.1Operational Description No.A-1.5.6.3.1Subsystem CO2 Control & O2 GenerationBy:C. CinicoveDate:31 July 1970

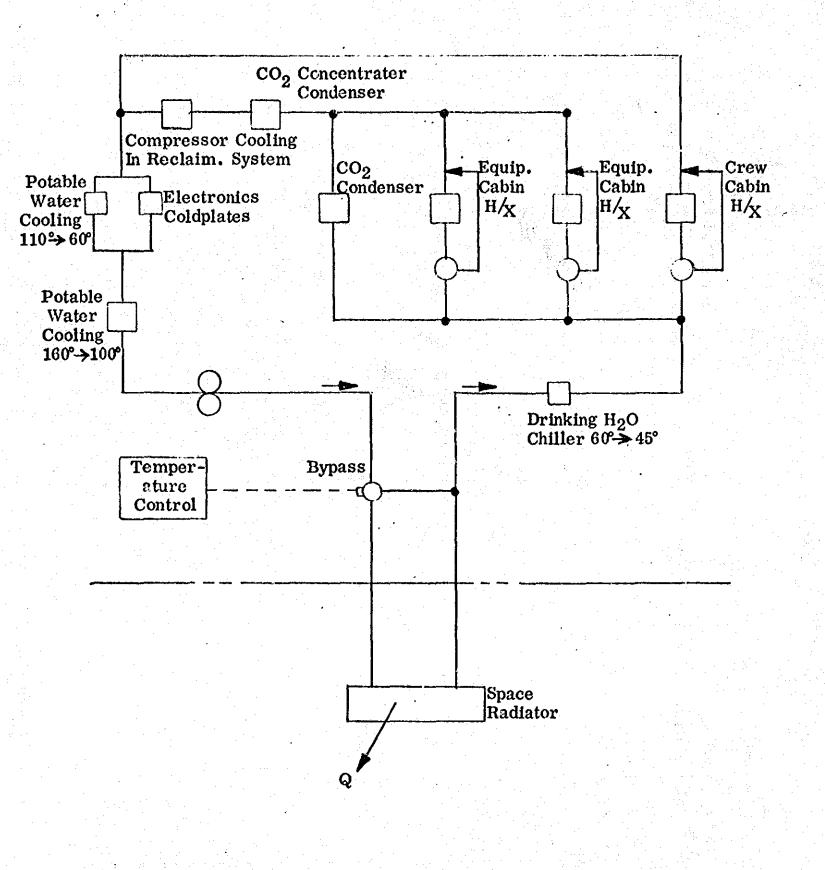
Title: Water Electrolysis System

Consumable/Expendable ITEM	HOW CONSUME D	BASIC CONSTITUENTS CONSUME D	Total V Per 12 Man	Veight R Year - 50 Man	equired Lbs. 100 Man	Average Density As Received Ibs/cu.ft.	REMARKS
Water	Electrolyzed	O ₂ and H ₂	850	3500	7000	62.4	

1.5-34

REPUBLIC AVIATION DIVISION FARMURGDALE, LONG 135 AND, REY YORK

Study of Housekeeping Concepts For Manned Space Doc. No. <u>C-1.5.6.3.1</u> Sheet No. <u>1</u> TABLE III. WASTES Operational Description No. <u>A-1.5.6.3.1</u> Subsystem <u>CO2 Control & O2 Generation</u> By: C. Cinicoye Date: 31 July 1	
Subsystem coy control a by control a	، را، را: <mark>تحصيري</mark>
By: C. Cinicove Date: 31 July 1	<u>970</u>


WASTE	Characteristics State	Chemical Composition	Action Required		eight Re Year -	Lbs.	Average Density As	
ITEM	And Attributes		To Reclaim	12 Man	50 Mau	100 Man	Received lbs/cu.ft.	Potential And Remarks
Evaporator	Solid – Metal	Aluminum	Replace wicking	3.0	12	24	95	
Startup Heater Assembly	Solid - Metal	Fe, Cu	Repair on board	2	6	10	225	•
Electrolytic Module	Solid - Metal	Fe, Ni	N/R	5	20	40	130	
Fan	Solid – Metal	Fe, Cu	Repair on board	1	3	5	250	
Regulators	Solid – Metal	Al, Fe, Ni	Repair on board	.096	. 40	.80	250	
Check Valve	Solid - Rubber	Butyl	Replace seal	.03	. 12	.24	20	
Condensor	Solid – Metal	Aluminum	N/R	12	40	80	250	
.Oxygen	Gaseous-Ambient	0 ₂	Vent to cabin	750	3150	6300	.070	
Hydrogen	Gaseous-Ambient	H ₂	Dump over- board	100	390	780	.005	
Metering Pump	Solid - Rubber	Butyl	Replace seal	.03	. 12	.24	20	

Doc. No. A-1.5.7.1.1 Sheet No. 1 By: C. Cinicove Date: 31 July 1970

OPERATIONAL DESCRIPTION

TITLE: Coolant Loop

SCHEMATIC DIAGRAM:

Do.c No. A-1.5.7.1.1 Sheet No. 2 By: C. Cinicove Date: 31 July 1970

RATIONALE:

The liquid thermal transport circuit will provide the necessary cooling flow capacity required by all heat exchangers and condensors in the thermal control system. The space radiator and the bypass valve are sized to maintain temperature levels within the intravehicular circuit. The bypass valve is controlled by temperature sensors in the radiator interloop and by the cabin temperature/humidity controller. Water was selected for the transport fluid due to its non-toxic nature.

REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No.B-1.5.7.1.1Sheet No.1Operational Description No.A-1.5.7.1.1SubsystemThermal Transport CircuitBy:C.CinicoveDate:31 July 1970

Title: Coolant Loop

1.5-37

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUMED	Total V Per 12 Man	Weight R r Year - 50 Man	equired Lbs. 100 Man	Average Density As Received lbs/cu.ft.	REMARKS
Coolant Fluid	Leaked away	н ₂ о	2	8	16	62.4	
			•				

-As

REPUE

<u>Study of Housekeepin</u> TABL itle: Coolant Loop	e III. WASTES	anned Sp <u>e</u>	•	Opera Subsy	No. <u>C-</u> ational D stem C. Cinic	escripti T	on No. <u>A-</u> hermal Tr	eet No. <u>1</u> <u>1.5.7.1.1</u> ansport Circuit te: <u>31 July 197</u>
WASTE ITEM	<u>Characteristics</u> State And Attributes	Chemical Composition	Action Required To Reclaim	8	Veight Re Year - 50 Man	-	Average Density As Received lbs/cu.ft.	
Bypass Valve Control		Fe, Cu, Ni	Repair on board	2.0	8.0	16.0	200	
Bypass Valve	Solid - Metal	Fe, Cu	Repair on board	5.0	20.	40.	280	2 -

•

•

.

.

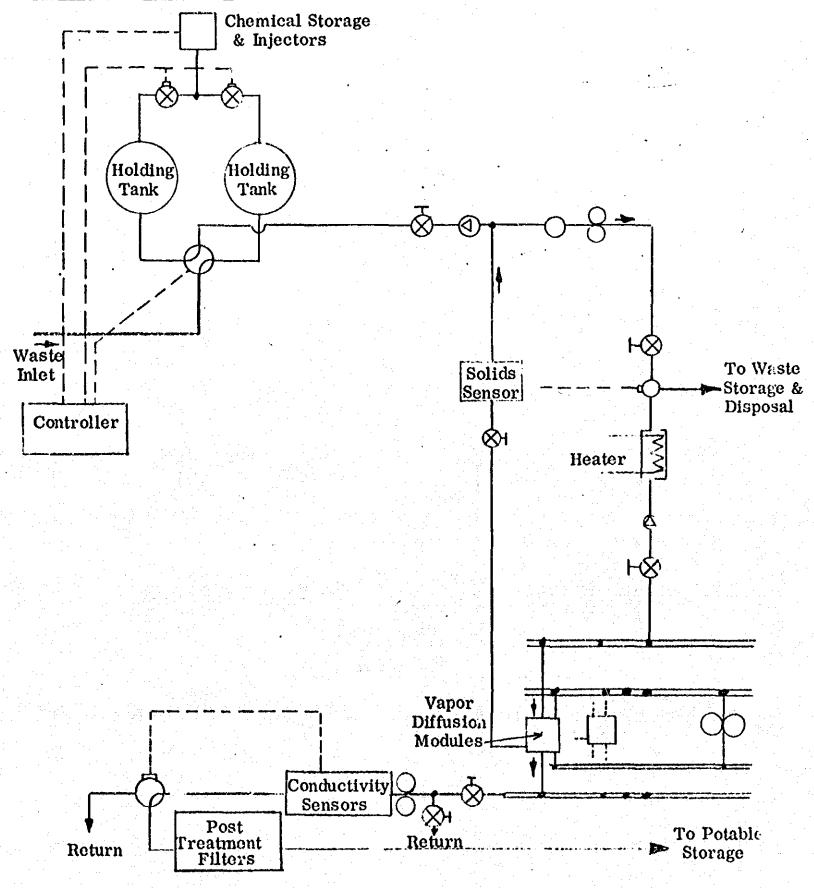
.

.

;

•

•


1.5-38

Doc. No. A-1.5.8.1.1 Sheet No. 1 By: C. Cinicove Date: 31 July 1970

OPERATIONAL DESCRIPTION

TITLE: Water Reclamation System (Diffusion/Thermal Concept)

SCHEMATIC DIAGRAM:

Doc. No. A-1.5.8.1.1 Sheet No. 2 By: C. Cinicove Date: 31 July 1970

RATIONALE:

The Water Reclamation System will collect and purify waste water and deposit it in the potable storage tanks. Pretreatment equipment is employed to fix volatile free ammonia, destroy organics and kill baoteria. The vapor diffusion modules use distillation techniques to separate the water from the dissolved solids. Internal membrane barriers control the liquid-gas interface and prevent bacterial or organic carryover. The post treatment equipment passes the condensate through bacterial and charcoal filters to remove any residual organics and bacteria; in addition, conductivity sensors monitor the effectiveness of the process and prevent any contamination from spreading. The solids sensor detects residuum concentrations in the circulation loop and feeds them to the waste management system for disposal.

REFERENCES:

Metzger, C.; Hearld, A.B.; McMullen, B. Water Recovery From Human Waste During Prolonged Confinement. Tech. rep. AMRL-TR-65-170, Aerospace Medical Research Laboratories, April 1960.

1.5-41

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Water Reclamation System Title: (Vapor Diffusion/Thermal Distillation) Doc. No. B-1.5.8.1.1Sheet No. 1Operational Description No. A-1.5.8.1.1Subsystem Water Mgmt.By: C. CinicoveDate: 31 July 1970

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUME D				Average Density As Received Ibs/cu.ft.	REMARKS	
Pretreatment Chemicals	Utilized	Cr_2O_3 and H_2SO_4	1270	5280	10,560	66		
Post Treatment Chemicals	Neutralized	Chemical Effective- ness	250	1040	2,000	34		
Membrane Barriers	Clogged	Diffusability	84	154	308	32		
Bacterial Filters	Clogged	Filtering Effect	6.0	11	22	30		

1.5-42

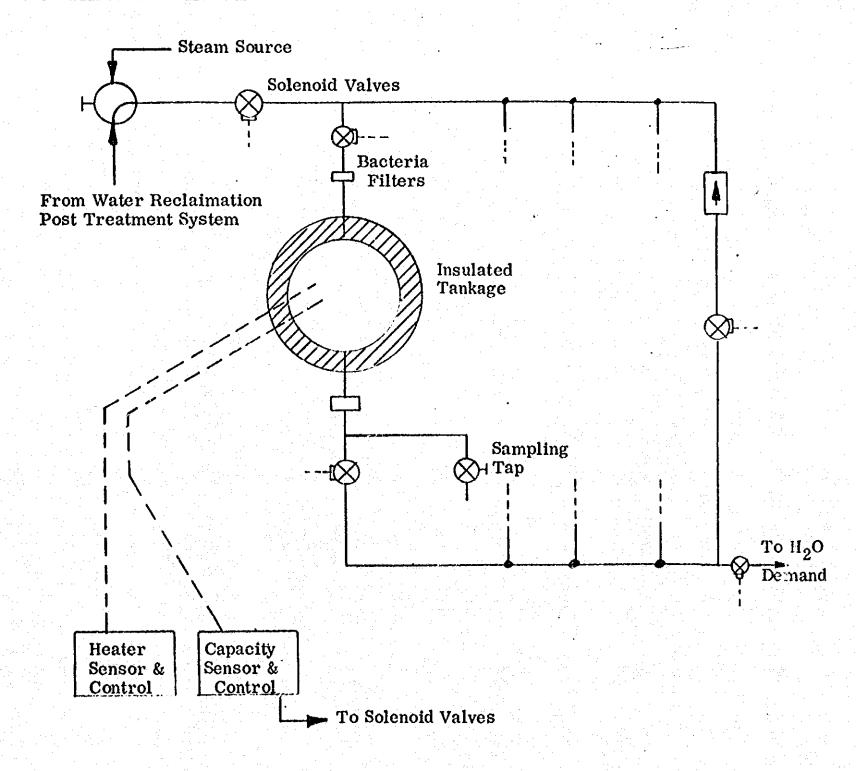
REPUBLIC AVIATION DIVISION TARNERGOALE, LONG ISLAND, NEW YORK

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Water Reclamation System Title: (Vapor Diffusion/Thermal Distillation)

Doc. No. C- 1.5.8.1.1	Sheet	: No	•	1
Operational Description No.	<u>A-1.</u>	5.8	3.1.1	·
ubsystem Water Mgmt.				
By: C. Cinicove	Date:	31	July	1970


WASTE ITEM	<u>Characteristics</u> State And Attributes	Chemical Composition	Action Required To Reclaim		eight Re Year - 50 Man	-	Average Donsity As Received Ibs/cu.ft.	Potential
Heater Control	Solid – Metal		Repair on board	2.0	8.0	16.0	280	
Conductivity Sensor	Solid - Plastic		Repair on board	1.0	4.0	8.0	80	
Heating Unit	Solid - Ceramic	Ceramic, Ni	N/R	1.0	4.0	8.0	300	
Pressure Regulator	Solid - Metalic	Aluminum, St Stl	Repair on board	.096	.4	•8	550	
Solids Sensor	Solid - Plastic		Repair on board	1.28	5.0	10	80	
Pressure Seals	Solid - Rubber	Butyl	N/R	.03	.13	.30	20	
Solenoid Valve	Solid - Metal	Fe, Cu	Repair on board	5.0	20	40	280	
Bacterial Filter Canister	Solid - Metal Cylinder	Flour inated plastic com- pound	Recharge	6	11	22	30	
Charcoal Canister	Solid - Metal Cylinder	Activated Charcoal	Refill	150	500	1000	66	
Waste Concentrate	Liquid - Fluid	Urine residuum	N/R	1490	6200	12400	64	
	I the probability of the second se		•					

Doc. No. A-1.5.8.2.1 Sheet No. 1 By: C. Cinicove Date: 31 July 1970

OPERATIONAL DESCRIPTION

TITLE: Potable Water Storage System

SCHEMATIC DIAGRAM:

Doc. No. A-1.5.8.2.1 Sheet No. 2 By: C. Cinicove Date 31 July 1970

RATIONALE:

A. The Potable Water Storage System will hold reclaimed and treated water at 160°F in insulated tankage. Surface tension devices within each tank will provide an expulsion means. The inlet and outlet of each tank will be provided with a bacterial filter; a sampling tap is provided so that water may be withdrawn for testing purposes. The fill-hold-drain cycle will be automatically controlled by time capacity sensors coupled to solenoid valves. Water for the 45°F outlet will be cooled by a heat exchanger. The delivery of potable water for use on demand implies supplying certain specific quantities for specific uses or functions. The hardware required to implement the potable water storage system will be predicated on these specific delivery requirements. The following requirements represent average and peak delivery rates per man.

The requirements and schematic are based on the information referenced below.

Use	Temperature (°F)	Average (lbs/day)	Peak (lb/hr)
Food and Drink	160°	1.14	13.0
Preparation	45°	5.85	13.0
Body Shower		5.60	26.0
Local Washing		1.50	26.0
Housekeeping		50	13.0
Misc.		10.0	60.0

The following tabulation shows the unit weight and estimated numbers of component failures per year for the various sized crews. It is assumed here that the consumption or utilization rate of specific components such as filters and seals are directly related to the amount of service they must withstand. Because this service is predicated on the daily requirements of the individual crew members, the replacement rate of the above components is proportional to the crew size.

Conversely, the rate of replacement for system components such as heating elements, sensors, controls and valves is particularly sensitive to the number of individual storage tanks, where each tank requires 3 valves, one heater sensor/control and one capacity sensor/control. However, the actual compliment of storage tanks

Doc. No. A-1.5.8.2.1 Sheet No. 3 By: C. Cinicove Date 31 July 1970

does not increase directly with crew size. For example, if the potable water requirements were to double, the number of storage tanks would increase only 30% with an accompanying increase in the tank diameter of about 15%.

	Unit Weight	Failures Expected Per Year							
	lbs.	12 men	50 men	100 men					
Seals	.003 avg.	10 •	42	84					
Filter	.18 avg.	9	37	75					
Valves	2.5	2	6	9					
Capacity/Control	.35 avg.	3	- 9	14					
Heater Sensor/ Control	، 35	2	. 6	9					
Heater Element	1.0	1	3	5					
Packaging	10%	-	-	.					

REFERENCES:

1. Feindler, K.: Filtering System for Aerospace Water Reclamation. Tech Rep. AMRL-TR-67-157. Aerospace Medical Research Lab, December 1967.

2. Metzger, C.; Hearld, A.B.; and McMullen, B.G.: Evaluation of Water Reclamation Systems and Analysis of Recovered Water for Human Consumption, Tech. Rep. AMRL-TR-65-37, Aerospace Medical Research Lab., Feb. 1967.

REPUBLIC AVIATION DIVISION

1.5-46

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-1.5.8.2.1Sheet No. 1Operational Description No. A-1.5.8.2.1Subsystem Water Mgmt.By: C. Cinicove Date: 31 July 1979

Title: Potable Water Storage System

Consumable/Expendable ITEM	CONSUMED CONSTR		BASICTotal WeigCONSTITUENTSPer Yeig1212ManMan		-	Average Density As Received Ibs/cu.ft.	REMARKS	
Bacterial Filters	Contaminated	Effectiveness to filtration	1.6	6.7	13.5	30		
Seals	Worn	Life	. 030	. 13	. 25	20		
Valves	Worn Seats	Life	5.0	15.0	22.5	280		
Capacity Control	Failure	Availability	1.0	3.2	4.9	80		
Heater Sensor/Control	Failure	Availability	0.7	2.1	3.2	280		
Heater Element	Failure	Availability	1.0	3.0	5.0	300		
Packaging	Opened	Protectiveness		•			10% by weight	

REPUBLIC AVIATION DIVISION

.____

,5-47

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Sheet No. 1
A- 1.5.8.2.1
Date: 31 July 1970

Title: Potable Water Storage System

WASTE Characteris State		Chemical Composition	Action Required		Weight Re Year - Ll	bs.	Average Density As	· · · · · · · · · · · · · · · · · · ·	
ITEM	And Attributes		To Reclaim	12 · Man	50 Man	100 Man	Received lbs/cu.ft.	Fotential And Remarks	
Pressure Seals	Solid - Rubber	Butyl	N/R	. 030	. 13	. 25	20		
Capacity Control	Solid - Plastic	Phenolic, Cu, Fe	Repair on board	1.0	3.2	4.9	80		
Solenoid Valve	Solid – Metal	Fe, Cu	Repair on board	5.0	15	22. 5	280		
Heater Sensor/Control	Solid - Metal	Fe, Cu, Ni	Repair on board	0.7	2.1	3.2	280		
Filter, Bacterial	Membrane - Sheet	Flourinated plastic compound	N/R	1.6	6.7	13.5	30		
Heater Element	Solid-Ceramic	Ceramic material, Ni	N/R	1.0	3.0	5.0	300		
Packaging	Solid- Plastic Spongy	Styrofoam	Reuse as is	1.0	3.0	5.0	5		

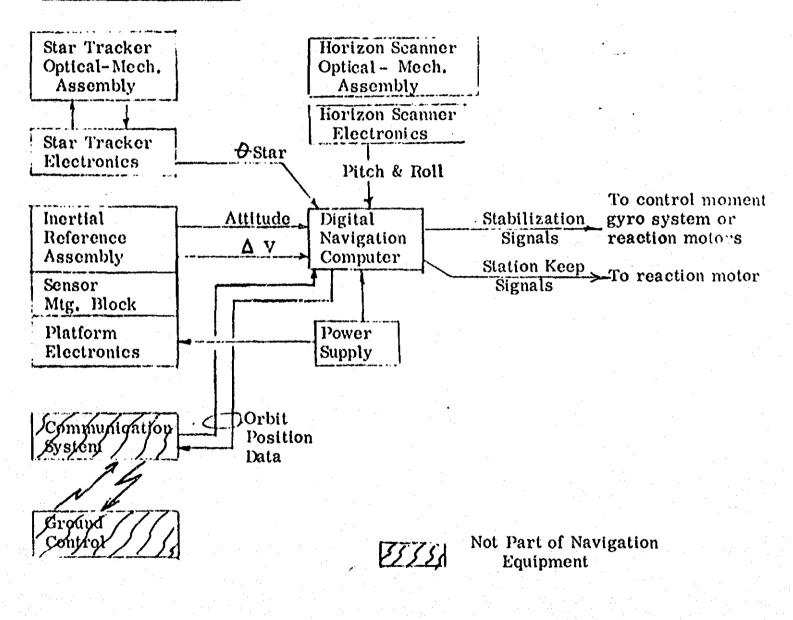
MAINTAIN SPACECRAFT FUNCTIONS

SECTION 2.0

CONTROL SPACECRAFT ORBIT POSITION AND ATTITUDE

TABLE OF CONTENTS

Document Number	Title	Page
2.1.1.1.1	Electronic Systems (Navigation, Guidance, Stabilization and Control)	2.1-1
2.1.1.2.1	Control Moment Gyros (Navigation, Guidance, Stabilization and Control)	2.1-8
2.1.1.2.2	Reaction Jet Control - Monopropellant System	2.1-13
2.1.1.2.3	Reaction Jet Control - Bipropellant System	2.1-20


Doc. No. A-2.1.1.1.1 Sheet No. 1 By: J. Torian Date: 14 May 1970

OPERATIONAL DESCRIPTION

FAIRCHILD HILLER

TITLE: Electronic Systems (Navigation, Guidance, Stabilization and Control)

1. <u>SCHEMATIC DIAGRAM</u>

Navigation and Guidance -- Stabilization and Control Electronic Systems

2.1-1

Doc. No. A-2.1.1.1.1 Sheet No. 2 By: J. Torian Date: 14 May 1970

2. APPROACH TO AVIONICS SYSTEMS

This section is devoted to an evaluation of the waste products of the major avionics systems which, it is anticipated, will be employed in a space station. At this stage of the effort, much of the equipment is still undefined or at best is only broadly defined. The approach taken, therefore, is to postulate particular equipment based on experience, references in the literature and contact with verdors knowledgable in the state of the art. In the rationale associated with the analysis of each equipment category a description of the equipment including a block diagram and a breakdown into line replacement unit (LRU's) is given. The references are cited at the end.

A key ingredient of the analysis which determines the electronics waste is the avionics subassembly level (LRU) which will be replaced in the space station. This level must be compatible with the fault isolation capabilities of the built-in-test (BIT) system and/or the external test equipment required for fault isolation and be compatible with the technical skills of the personnel as well. In addition, if the level of replacement is too low, a su'stantial stock and inventory control system must be maintained. In the analyses conducted herein, the LRU selected has been a compromise among these various factors and represents our best judgment at the present time. The failure rates of these LRU's have been estimated or determined and included in the tables. Using the calculated failure rates of the subassembly in question and the weight and volume of that subassembly, the total weight of failed subassemblies per year may be determined. The minimum single replacement weight is the weight of the lowest replaceable subassembly.

It is anticipated that all failed Avionics LRU's will be returned to earth for repair and analysis of cause of failure. The original packaging material used to deliver the replacement item will be used as packaging material for the return of the failed part.

3. OPERATIONAL DESCRIPTION AND RATIONALE

The Navigation and Guidance stabilization and control electronic system comprises a strapdown inertial reference assembly and an associated digital computer. In addition, telescopic star sighting are used to update the system and for alignment as required. Orbit position and attitude data are sent to ground control via the communications system for monitoring and correction as required.

Doc. No. A-2.1.1.1.1 Sheet No. 3 By: J. Torian Date: 14 May 1970

The analyses of consumables and expendables is based on the assumption of four inertial measuring unit LRU's plus two star tracker LRU's and two horizon scanner LRU's.

The communications to ground control (shown cross-hatched) are analyzed under the communications system analysis and are shown in the schematic diagram merely for completeness.

Estimates of the LRU sizes, weights a 1 failure rates were obtained by extrapolation from data available on the Minneapolis Honeywell H-429 Guidance and Navigation System (Ref. 1) and on an Inertial Navigation Element proposed by Lear Siegler (Ref. 2) for use in the F-15 aircraft. While it is realized that neither of these systems will be the one employed in the space station, it is felt that they are representative of the state-of-the-art for which data is available to this contractor. These data have been extrapolated to the space station requirements by application of engineering judgment. Failure data based on an aircraft environment have been extended to the space environment by application of a factor of 6.5. That is, an item which might have an estimated failure rate of 65 failure per million hours of operation in a military aircraft environment, would have an estimated failure rate of 10 failures per million hours of operation in the benign environment of the space station.

The Platform Electronics LRU is mounted on the Sensor Mounting Block LRU and the combination is called the Inertial Reference Assembly.

The combined failure rate of these two LRU's is 33 plus 17 equal to 50. This compares with an Inertial Reference Assembly failure rate of 59 (Ref. 3).

Table I is a summary sheet of the analysis for the Navigation and Guidance stabilization and control Electronic Systems. Document No. B-2.1.1.1.1 summarizes the consumables and expendables and document No. C-2.1.1.1.1 summarizes the waste items.

Doc. No. A-2.1.1.1.1 Sheet No. 4 By: J. Torian Date: 14 May 1970

4. **REFERENCES**:

- 1. Technical Description H-429 Guidance and Navigation System -Honeywell Aerospace Division, St. Petersburg, Florida.
- 2. Lear Siegler Publication No. GRP-011-0569-IIB, Inertial Navigation Element - F-15 Avionics System.
- 3. Fairchild Hiller ATS-F & G Proposal.
- 4. Bendix Corporation Navigation & Control Division, OAO Star Tracker Program N69-39788, NASA CR10695.

Doc. No. A-2.1.1.1.1 Sheet No. 5 By: J. Torian Date: 14 May 1970

TABLE L AVICNICS WASTE ANALYSIS

SUBSYSTEM: NAVIGATION AND GUIDANCE STABILIZATION AND CONTROL ELECTRONIC SYSTEMS

the second s	a Robert and Alexandre		2000 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	and the second		1				
LRU Part Type	Number of Items	Weight Per Item	Total Weight Pounds	Failure Rate Fails/10 ⁶ Hrs	Number of Failures Per Year	Total Weight Per 10 Yrs.	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
·····	t	h								
Power Supply Package	1	25	25	14	0. 123	30.6	25	Cu, Fe, Al, Si Semicond	77 lbs/cu.ft. Solid Metals, Insulation	Return-to-Earth for repair and determination of failure. Package to avoid handling and snipping damage.
	t sere									
Computer	1	35	35	74	0.648	226.8	35	Cu, Fe, Al, Si Semicond	52 Ibs/cu.ft. Solid Metals,	Return-to-Earth for repair and determination of failure.
									Insulation	Package to avoid handling and shipping damage.
	[·					[
* Sensor Mounting Block		40	40	33	0.289	115.6	40	Cu, Fe, Al. Si Semicond	80 lbs/cu.ft. Solid Metals, Insulation	Return-to-Earth for repair and determination of failure. Package to avoid handling and shipping damage.
a tanan ar	•	(· · ·			· · · · ·	1	1			
* Platform Electronics	1	10	10	17	0.149	14.9	10	Cu, Fe, Al, Si Semicond	52 lbs/cu.ft. Solid Metals,	Return-to-Earth for repair and determination of failure.
					1. 1.				Insulation	Package to avoid handling and shipping damage.
** Star Tracker Mechanical Assy	1	25	25	22	° . 19 2	48	25	Cu. Fe, Al, Si Semicond, Si O ₂	44 lbs/cu.ft. Solid Metals, Optical Glass,	Return-to-Earth for repair and determination of failure. Package to avoid handling
									Insulation	and shipping damage.
	1 · ·									
Star Tracker Electronics	1	14	14	11	0.096	13.4	14	Cu, Fe, Ai, Si Semicond	42 lbs./mu.ft. Solid Metals Insulation	Return-to-Earth for repair and determination of failurs. Package to avoid handling and shipping damage.
ł .						1	1			
Horizon Scanner Mechanical Assy	1	25	25	22	0.192	48	25	Cu, Fe, Al, Si Semicond	44 lbs/cu.ft. Solid Metals, Optical Glass	Return-to-Sarib for repair and determination of failure. Package to avoid handling
									Insulation	and shipping damage.
Horizon Scanner Electronics	1	14	14	11	0.096	13.4	14	Cu, Fe, Al, Si Semicond	42 lbs/cu.ft. Solid Metals. Insulation	Return-to-Earth for repair and determination of failure. Package to avoid handling
										and shipping damage.

* The Platform Electronics LRU is mounted on the Sensor Mounting Block LRU.

** Reference 4

REPUBLIC AVIATION DIVISION

2.1-6

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-2.1.1.1.1Sheet No. 1Operational Description No. A-2.1.1.1.1Subsystem Navigation Guideance, Stabilization &By: J. TorianDate:5/15/70Control

Title: Electronic Systems

C	consumable/Expendable	HOW CONSUME D	BASIC CONSTITUENTS CONSUME D	10 Yr Total lbs.	Daily Rate- lbs/day	Unit Wght Ibs.	Average Density As Received Ibs/cu.ft.	REMARKS	
1.	Failed power supply . package	Part Failure	Component Part	30.6		25	77	RTE	
2.	Failed computor	Part Failure	Component Part	226.8		35	52	RTE	
3.	Failed sensor mounting block	Part Failure	Component Part	115.6		40	80	RTE	
4.	Failed platform electronics	Part Failure	Component Part	14.9		10	52	RTE	
5.	Failed star tracker mechanical assembly	Part Failure	Component Part	48		25	44	RTE	
6.	Failed star tracker electronics	Part Failure	Component Part	13.4		14	42	RTE	
7.	Failed horizon scanner mechanical assembly	Part Failure	Component Part	48		25	44	RTE .	
8.	Failed horizon scanner electronics	Part Failure	Component Part	13.4		14	42	RTE	
9.	Packaging for replace- ment parts	Environmental integrity destroyed	Internal environ- ment changed				5	Reuse for returning failed items	
			•					·	
					a at a				ŀ

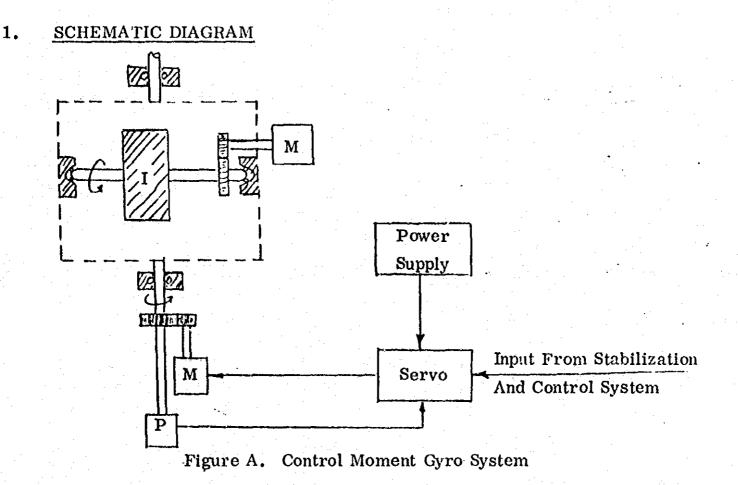
2.1-7

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No. C-2.1.1.1.1	Sheet No. 1
Operational Description No.	A-2.1.1.1.1
Subsystem Navigation, Guida	nce. Stabilization &
By: J. Torian	Date: 5/15/70/Control

Title: ELECTRONIC SYSTEM


	WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim	10 Yr. Total lbs.	Daily Rate- lbs. / Day	Unit Wght Ibs.	Average Density As Received lbs/cu.ft.	Remarks
1.	Failed power supply package	Solid Metal RTE	Cu, Fe, Al, Si	Repair	30.6	-	25	77	
2.	Failed computor	Solid Metal RTE	Cu, Fe, Al, Si	Repair	226.8	-	35	52	
3.	Failed sensor mounting block	Solid Metal RTE	Cu, Fe, Al, Si	Repair	115 . 6	-	40	80	
4.		Solid Metal RTE	Cu, Fe, Al, Si	Repair	14.9	-	10	52	
5.	Failed star tracker mechanical assembly	Solid Metal RTE	Cu, Fe, Al, Si, Si O ₂	Repair	48.0	-	25	44	
6.	Failed star tracker electronics	Solid Metal RTE	Cu, Fe, Al, Si	Repair	13.4		14	42	
7.	Failed horizon scanner mechanical assembly	Solid Metal RTE	Cu, Fe, Al, Si, Si O ₂	Repair _.	48.0	-	25	44	
8	Failed horizon scanner electronics	Solid Metal RTE	Cu, Fe, Al, Si	Repair	13.4	-	14	42	
9	Packaging for replacement parts	Solid Plastic RTE	Plastic Sponge and Sheeting	e Reuse as i	5 –		-	5	
	가는 것 같은 것이 있는 것 같은 것이 있는 것 같은 것이 있다. 이 같은 것 같은 것이 있는 것이 있는 것이 있는 것이 같은 것이 있는 것이 있는 같은 것이 같은 것이 같은 것이 있는 것								

Doc. No.: A-2.1.1.2.1 Sheet No. 1 By: J. Torian Date: 18 May 1970

OPERATIONAL DESCRIPTION

TITLE: Control Moment Gyros (Navigation, Guidance, Stabilization and Control)

OPERATIONAL DESCRIPTION AND RATIONALE

2.

Control Moment Gyros (CMG's) will be used for attitude stabilization of both the space station and space base (Ref. 1). The system comprises three CMG's, oriented n the x, y and z directions, with associated spin drive motors, gimbals, gimbal angle drive motor and gimbal angle pick-offs. In operation, the gimbal angle is driven off by a servo under control of signals from the stabilization and control system until the disturbance moments are compensated.

The analyses given herewith is based on an assumed gyro wheel weight of 240 pounds. The estimated bearing and motor weights have been sized accordingly and are given in the analysis Table II. If a different size gyro wheel is employed, the weights of bearings and motors may be scaled linearly as a first approximation.

Doc. No. A-2.1.1.2.1 Sheet No. 2 By: J. Torian Date: 18 May 1970

The failure rates employed were obtained from Ref. 2, modified by engineering judgment and combined other sources.

3. <u>REFERENCES</u>

- 1. NASA, Space Station RFP
- 2. MIL-HDBK-217A (1 Dec. 1965) Reliability Stress and Failure Rate Data for Electronic Equipment

Doc. No. A-2.1.1.2.1 Sheet No. 3 By: J. Torian Date: 18 May 1970

TABLE L. AVIONICS WASTE ANALYSIS

SUBSYSTEM: NAVIGATION AND GUIDANCE STABILIZATION AND CONTROL -- ELECTRG-MECHANICAL SYSTEMS

LRU Part Type	Number of Items	Weight Per Item	Total Weight Pounds	Failure Rate Fails/10 ⁶ Hrs	Number of Failures Per Year	Totai Weight Zer 10 Yrs.	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
CMC Gyro Bearing	6	6	36	5.2	.0. 274	16.4	6	Fe	Solid. Metal 250 lbs/cu. ft.	Return-to-Earth for determination of failure, package with replacement package
CMG Gimbal Bearing	6	6	36	2.6	0,137	5.2	6	Fe	Solid, Metal 250 lbs/cu.ft.	Return-to-Earth for determination of failure. package with replacement package
CMG Drive Motor	3	50	150	7.5	0,187	93.5	50	Cu, Fe, Insul.	Solid, Metal 200 lbs/cu.ft.	Return-to-Earth for determination of failure, package with replacement package
CMG Gimbal Angle Pick-Off	3	1	3	7.0	0.184	1.8	1	Cu, Fe, Insul.	Solid, Metal 200 lbs/cu.ft.	Return-to-Earth for determination of failure, package with replacement package
CMG Servo Electronics	3	15	45	11.00	0, 289	43.4	15 .	Al, Cu, Fe, Insul. Sl Semicond.	Solid, Metal 52 lbs/cu.ft.	Return-to-Earth for determination of failure. package with replacement package
CMG Gimbal Angle Servo Motor	3	25	75	7.5	0.187	46.8	25	Cu, Fe, Insul.	Solid, Metal 200 lbs/cu.ft.	Return-to-Earth for determination of failure, package with replacement package
CMG Power Supply	1	15	15	14.00	0.123	18.5	15	Al, Cu, Fe, Insul., Si Semi- cond.	Solid. Metal Insulation 77 lhs/cu.ft.	Return-to-Earth for determination of failure, package with replacement package

2, 1-11

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Control Moment Gyros

Doc. No. <u>B-2.1.1.2.1</u>	Sheet No. 1
Operational Description	No. A-2.1.1.2.1
	Guidance, Stabil. & Cont.
By: J. Torian	Date: 5/18/70

	Consumable/Expendable ITEM	HOW CONSUME D	BASIC CONSTITUENTS CONSUME D	10 Yr. Total Ibs.	Daily Rate Ibs/day	Unit Wt. Ibs.	Average Density As Received lbs/cu.ft.	REMARKS
1.	CMG Gyro Bearing	Part Failure	Component Part	16.4	-	6	250	RTE
2.	CMG Gimbal Bearing	Part Failure	Component Part	8.2	-	6	250	RTE
3.	CMG Drive Motor	Part Failure	Component Part	93.5	-	50	200	RTE
4.	CMG Gimbal Angle	Part Failure	Component Part	1.8	-	1	200	RTE
5.	CMG Servo Electronics	Part Failure	Comporent Part	43.4	· _	15	52	RTE
6.	CMG Gimbal Angle Servo Motor	Part Failure	Component Part	46.8	· · _	25	200	RTE
7.	CMG Power Supply	Part Failure	Component Part	18.5	-	15	77	RTE
8.	Packaging for Replacement Parts	Environmental Integrity Destroyed	Internal Environ- ment Changed	-	_	-	5	Reuse for Returning Failed Items

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION VARMING ALL, 1346 141 400, 164 -014

2.1-12

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No. C-2.1.1.2.1	_ Sheet No. <u>1</u>
Operational Description No.	<u>A-2.1.1.2.1</u>
Subsystem Navigation, Guidan	nce, Stabil, & Cont,
By: J. Torian	Date: 5/18/70

Title: Control Moment Gyros

WASTE ITEM		Characteristics State And Attributes		Chem Compos		Action Required To Reclaim	10 Yr. Total Ibs.	Daily Rate Ibs/day	Unit Wt. Ibs.	Average Donsity As Received lbs/cu.ft.	Rem	irks
1.	Failed CMG Gyro	louis -	Metal RTE	Fe		Repair	16.4	-	6	250		-
2.	Failed CMG Gimbal Bearing	Colla 1	Metal RTE	Fe		Repair	8.2	-	6	250		•
3.	Failed CMG Gimbal Motor	Collid	Metal RTE	Cu, F	e	Repair	93.5	-	50	200		
4.	Failed CMG Gimbal Angle Pick-Off	Salid	Metal RTE	Cu, F	'e	Repair	1.8	-	1	200		
5.	Failed CMG Servo Electronics	Con: a	Metal RTE	Al, C Fe, S		Repair .	43.4		15	52		
6.	Failed CMG Gimbal Angle Servo Motor	Salia	Metal RTE	Cu, F	'e	Repair	46.8	-	25	200		
7.	Failed CMG Power Supply	Salid	Metal RTE	Al, C Fe, S	-	Repair	18.5	· _	15	77		
8.	Packaging from Replacement Parts	Salid	Plastic Reuse	Plasti Spong Sheeti	e and	Reuse As Is	-	-	-	5	· · ·	

PAIRCHILD HILLER

Doc. No. A-2, 1, 1.2.2 Sheet No. 1 By: J. Torian 8 June 1970

OPERATIONAL DESCRIPTION

TITLE: Reaction Jet Control - Monopropellant System

1. SCHEMATIC DIAGRAM

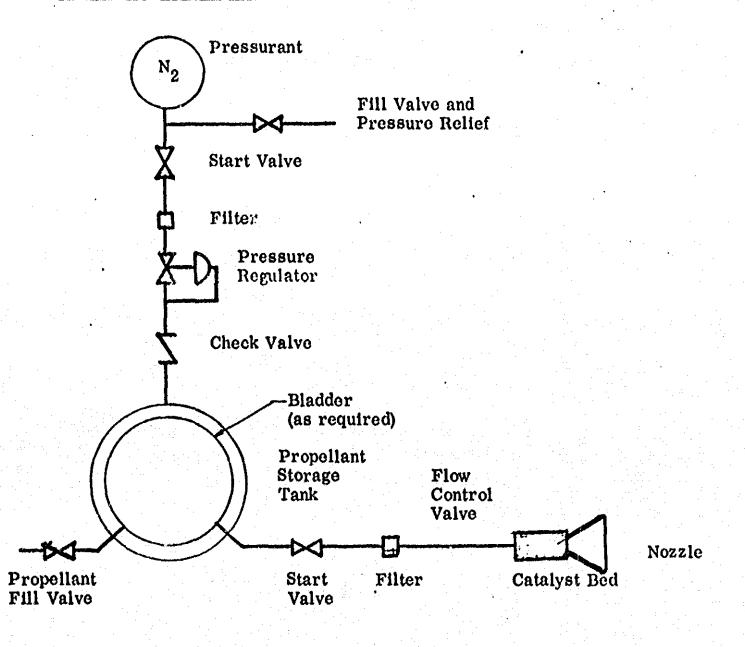


Figure 1. Typical Monopropellant Propulsion System

Doc. No. A-2.1.1.2.2 Sheet No. 2 By: J. Torian 8 June 1970

2. OPERATIONAL DESCRIPTION AND RATIONALE

These systems employ fuels which break down in the presence of a catalyst, into hot gaseous products which provide the desired thrust. In general, such systems are more reliable than bipropellant systems because they have fewer component parts.

The system, as shown in Figure 1, comprises a pressurant tank, various valves and filters, a pressure regulator, a propellant storage tank, a flow control valve, catalyst bed and nozzle. The system depicted in the figure shows only one nozzle. If more than one nozzle is employed, each duplicated nozzle would require an associated catalyst bed and flow control valve. Thus, if twelve nozzles are employed, the consumables/expendable data for one nozzle, catalyst bed and flow control valve must all be multiplied by twelve.

3. <u>REFERENCES</u>

- 1. Auxiliary Propulsion Survey AFSC - USAF AF APL-TR-68-67 3 Parts
- 2. Failure Rate Data Handbook, Tri-Service and NASA SP 63-470
- 3. Study of Space Station Propulsion System Resupply and Repair. Victor A. DesCamp; Martin Marietta Corporation; Denver, Colorado. Jan. 1970. N70-22830; NASA CR102542

Doc. No. A-2.1.1.2.2 Sheet No. 3 By: J. Torian 8 June 1970

TABLE L AVIONICS WASTE ANALYSIS

SUBSYSTEM: REACTION JET CONTROLS; MONOPROPELLANT SYSTEMS

Part Type	Number of Items	Weight Per ltem	Total Weight Pounds	Failure Rate Fails/10 ⁶ Hrs	Number of Failures Per Year	Total Weight Per 10 Yrs.	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
Pressurant Tank	1	250	250	23	0.202	505	250	Titanium	Solid Metal 10 lbs/cu.ft. (Form Factor)	Ecturn-to-Earth for determination of failure. Package with replacemen package.
Fill Valve and Pressure Relief	1	3	3	30	0.263	7.9	3	Fe, Cu	Solid Metal 260 lbs/cu.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacemen package.
N ₂ Start Valve		2	2	40	0.350	7.0	2	Fe, Cu	Solid Metal 260 lbs/cu.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacemen package.
Filter	2		2	50	0.438	8.76	1	Stainless Steel	Perforated Metal 170 lbs/cv.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacemen package.
Pressure Regulator	1	5	5	60	0.526	26-3	5	Fe, Cu	Solid Metal 260 lbs/cu.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacemen package.
Check Valve	1	1	1	3	0.026	0.26	1	Fe, Cu	Solid Metal 27 ru.ft. 107 tor	Return-to-Earth for determination of failure. Package with replacemen package.

TABLE L AVIONICS WASTE ANALYSIS

SUBSYSTEM: REACTION JET CONTROLS; MONOPROPELLANT SYSTEMS

2.1 - 16

				n an chairt Bhhas	· · ·					
Part Type	Number of Items	Weight Per Item	Total Weight Pounds	Failure Rate Fails/10 ⁶ Hrs	Number of Failures Per Year	Total Weight Per 10 Yrs.	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
Bladder	1	50	50	8	0.076	35	50	Plastic	Solid, Plastic 50 lbs/cu.ft. (collapsed)	Return-to-Earth for determination of failure. Package with replacement package.
Prope‼ant Storage Tank	1	1000	1000	23	0.202	2020	1000	Titanium	Solid Metal 10 lbs/cu.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacement package.
Propellant Fill Valve	1	2	2	3	0.026	0.52	2	Fe, Cu	Solid Metal 260 lbs/cu.ft (Form Factor)	Return-to-Earth for determination of failure. Package with replacement package.
Fuel Start Valve	1	2	2	40	0.350	7.0	2	Fe, Cu	Solid Metal 260 lbs/cu.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacement package.
Flow Control Valve	12*	3	36	120	1.05	378	3	Fe, Cu	Solid Metal 269 Ibs/cu.it. (Form Factor)	Return-to-Earth for determination of failure. Package with replacement package.
Catalyst Bed	12*	35	420	50	0.438	1840	35	Iridium	Solid Metal 350 lbs/cu.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacement package.
Nozzle	12*	5	60	38	0.333	200	5	Fe, Titanium	Solid Metal 94 lbs/cu.ft. Formed	Return-to-Earth for determination of failure. Package with replacement package.

* Based on assumption that twelve nozzles are used in the system

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Reaction Jet Control - Monopropellent System

Doc. No. <u>B-2.1.1.2.2</u> Sheet No. <u>1</u> Operational Description No. <u>A-2.1.1.2.2</u> Subsystem <u>Nav.</u>, <u>Guid.</u>, <u>Stab.</u>, <u>and Control</u> By: <u>J. Torian</u> <u>Date: 29 May</u> 1970

1				ſ	1	1	1	1
	Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUME D	10 Year Total Ibs.	Daily Rate Ibs/day	Unit Weight Ibs.	Average Density As Received lbs/cu.ft.	REMARKS
1.	Failed Pressurant Tank	Part Failure	Component Part	505		250	10	RTE
2.	Failed Fill Valve and Pressure Relief	Part Failure	Component Part	7.9	6	3	260	RTE
3.	Failed N ₂ Start Valve	Part Failure	Component Part	7.0		2	260	RTE
4.	Failed Filter	Part Failure	Component Part	8.76		1	170	RTE
5.	Failed Pressure Regulator	Part Failure	Component Part	26.3		5	260	RTE
5.	Failed Check Valve	Part Failure	Component Part	0.26		1	260	RTE
7.	Failed Bladder	Part Failure	Component Part	35.0		50	50 collapsed	RTE
8.	Failed Propellant Storage Tank	Part Failure	Component Part	2020.0		1000	10	RTE
9.	Failed Propellant Fill Valve	Part Failure	Component Part	0 . 52		2	260	RTE
10.	Failed Fuel Start Valve	Part Failure	Component Part	7.0		2	260	RTE
11.	*Failed Flow Control Valve	Part Failure	Component Part	378.0		3	260	RTE
12.	*Failed Catalyst Bed	Part Failure	Component Part	1840.0		35	350	RTE
13.	*Failed Nozzles	Part Failure	Component Part	200.0		5	94	RTE
14.	Packaging for Replacement Parts	Environmental in tearity destroyed	Internal Environ- ment changed				5	Reuse for return- ing failed items

* Based on the assumption that 12 thruster nozzles are used in the system.

RTE = Return to earth for repair/analysis

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION TARMINGDALC, LONG 15C AND, NEW YORK

2.1-18

15

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No.C-2.1.1.2.2Sheet No.1Operational Description No.A-2.1.1.2.2Subsystem Nav.Guid.Stab.and ControlBy:J.TorianDate: 29 May 1971r.

Title: Reaction Jet Control - Monopropellent System

	WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim	10 Year Total Ibs.	Daily Rate lbs/day	In cieme	Average Density As Received Ibs/cu.ft.	Remarks
1.	Failed Pressurant Tank	Solid Metal RTE	Titanium	Repair	505		250	10	
2.	Failed Fill Valve & Pressure Relief	Sclid Metal RTE	Fe, Cu	Repair	7.9		3	260	
3.	Failed N ₂ Start Valve	Solid Metal RTE	Fe, Cu	Repair	7.0		2	260	
4.	Falled Filter	Solid Metal RTE	Stainless Steel	Clean or Replace	8.76		1	170	
5.	Failed Pressure Regulator	Solid Metal RTE	Fe, Cu	Repair	26.3		5	260	
6.	Failed Check Valve	Solid Metal RTE	Fe, Cu	Repair	0.26		1	260	
7.	Failed Bladder	Solid Plastic RTE	Plastic	Repair or Replace	35		50	50 collapsed	
8.	Failed Propellant Storage Tank	Solid Metal RTE	Titanium	Repair	2020		1000	10	
9.	Failed Propellant Fill Valve	Solid Metal RTE	Fe, Cu	Repair	0.52		2	260	

FAIRCHELD HILLER REPUBLIC AVIATION DIVISION

2.1-19

15

Study of Housekeeping Concepts For Manned Space

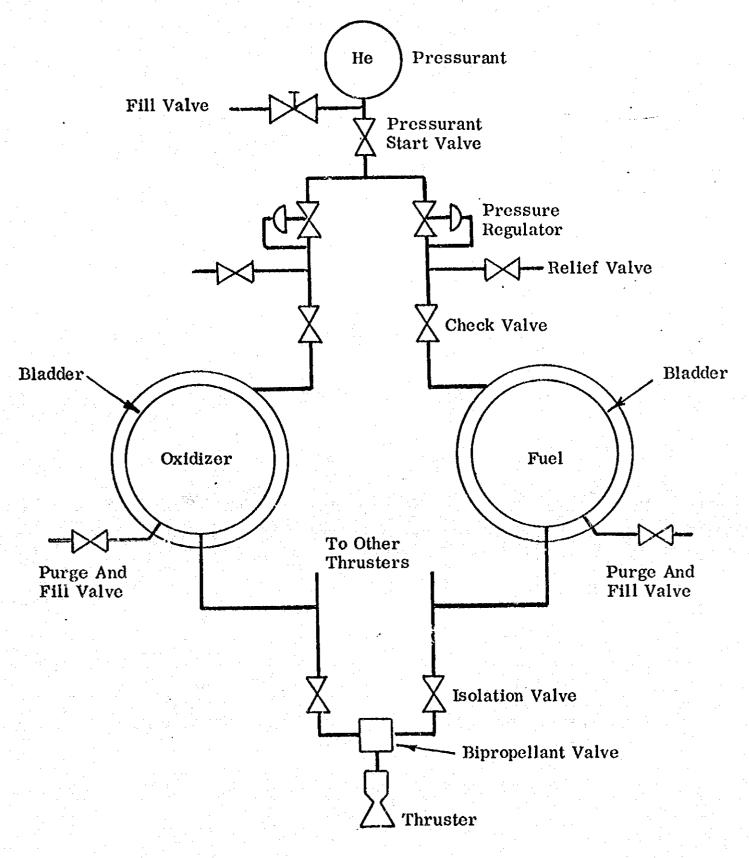
TABLE III. WASTES

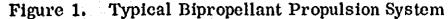
Title: Reaction Jet Control - Monopropellent System

Doc. No.C-2.1.1.2.2Sheet No.2Operational Description No.A-2.1.1.2.2Subsystem Nav., Guid., Stab., and ControlBy:J. TorianDate: 29 May 1970

114					†	1			
	WASTE FI EM	<u>Characteristics</u> State And Attributes	Chemical Composition	Action Required To Reclaim	10 Year Total Ibs.	Daily Rate bs/day	Unit Weight Ibs.	Average Density As Received lbs/cu.ft.	
10:	Failed Fuel Start Valve	Solid Metal RTE	Fe, Cu	Repair	7.0		2	260	
11.	*Failed Flow Control Valve	Solid Metal RTE	Fe, Cu	Repair	378		3	260	
12.	*Failed Catalyst Bed	Solid Metal RTE	Iridium	Chemically Treat or Replace	1840		35	350	
13.	*Failed Nozzles	Solid Metal RTE	Fe, Titanium	Repair	200		5	94	
14.	Packaging for Replacement Parts	Solid Plastic RTE	Plastic Sponge and Sheeting	Reuse as is				5	
	•								
						•			
					ļ				

* Based on the assumption that $\underline{12}$ thruster nozzles are used in the system.


RTE = Return to earth for repair/analysis


FAIRCHILD HILLER

Doc. No. A-2.1.1.2.3 Sheet No. 1 By: J. Torian 8 June 1970

TITLE: Reaction Jet Control - Bipropellant System

1. <u>SCHEMATIC DIAGRAM</u>

Doc. No. A-2.1. 1.2. 3 Sheet No. 2 By: J. Torian 8 June 1970

2. RATIONALE

These systems generally utilize a fuel plus an oxidant such as LOX and LH_2 which are mixed and ignited to provide combustion explosions which provide the thrust desired. These systems are currently in common usage.

The system as shown schematically in Figure 1, comprises a pressurant tank, various valves, pressure regulators, oxidizer and fuel tanks with bladders, a bipropellant valve and thruster nozzle(s). The system depicted in the figure shows only one thruster nozzle. If more than one nozzle is employed, each duplicated thruster nozzle would also require an associated bipropellant valve and isolation valve. Thus, if twelve thruster nozzles are employed in a system, the consummables/ expendables data for one thruster nozzle, bipropellant valve and two isolation valves must all be multiplies by twelve.

Estimates of fuel, oxidizer and pressurant consumption have not been included, but can be determined from data contained in reference 3.

3. **REFERENCES**

- 1. Auxiliary Propulsion Survey ASFC - USAF AF APL-TR-68-67 3 Parts
- 2. Failure Rate Data Handbook Tri-Service and NASA SP 63-470
- Study of Space Station Propulsion System Resupply and Repair. Victor A. DesCamp; Martin Marietta Corporation; Denver, Colorado Jan, 1970 - N70-22830; NASA CR102542

TABLE L AVIONICS WASTE ANALYSIS

Doc. No. A-2. 1. I. 2. 3 Sheet No. 3 By: J. Torian Date: 8 June 1970

	SUBSYSTEM:	STABILIZATION AND CONTROL -	 MECHANICAL SYSTEMS - REACTIO 	N JET CONTROL - BIPROPELLANT SYSTEM
--	------------	-----------------------------	--	-------------------------------------

LRU Part Type	Number of Items	Weight Per Xæm	Totai Weight Pounds	Failure Rate Fails/10 ⁶ Hrs	Number of Failures Per Year	Total Weight Per 10 Yrs.	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
Pressurant Tank	1	250	250	23	0.202	505	250	Titenium .	Solid Metal 10 Ibs/cu.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacement package.
Fill Valvo	1		3	30	0.263	7.9	3	Fe, Cu	Solid Metal 260 lbs/cu.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacement package.
Pressurant Start Valve	1	2	2	40	9.350	7-0	2	Fe, Ca	Solid Metal 260 lbs/cn.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacement package.
Pressure Regulator	2	5	10	60	0.526	52.6	5	Fe, Ca	Solid Metal 260 Ibs/cu.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacement package.
Relief Valve	2	. 3	3	30	0.263	15.8	3	Fe, Ca	Solid Metal 260 Ibs/cu.ft. (Form Factor)	Return-to-Earth for determination of failure, Package with replacement package.
Caeck Valve	2		2	3	0.026	0.52		Fe, Ca	Solid Metal 260 lbs/cu.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacement package.
Oxidizer Tank	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	500	500	23	0.202	1010	500	Titanium	Solid Metal 10 Ibs/cu.ft. (Form Factor)	Return-to-Earth for determination of failure. Package with replacement package.

Doc. No. A-2 1 1.2 3 Sheet No. 4 By: J. Torian Date: 8 June 1970

.

TABLE L AVIONICS WASTE ANALYSIS (continued)

SUBSYSTEM: STABILIZATION AND CONTROL - MECHANICAL SYSTEMS - REACTION JET CONTROL - BIPROPELLANT SYSTEM

1						e per en de l'ar		·		
LRU Part Type	Number of Rems	Weight Per Rem	Total Weight Pounds	Failure Rate Fails/10 ⁶ Hrs	Number of Failures Per Year	Total Weight Per 10 Yrs.	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
	Net.									
Oxidizer Tank Bladder	1	25	25	8	0.070	17.5	ద	Plastic	Solid Plastic 50 lbs/cu.ft. (collapsed)	Return-to-Earth for determination of failure. Package with replacement
•							and and a second se		(compared)	rackage.
Fuel Tank	1	500	500	23	0.202	1010	500	Titanium	Solid Metal 10 lbs/cu.ft.	Return-to-Earth for determination of failure.
									(Form Factor)	Package with replacement package.
Fuel Tank Bladder	1	-25୍	25	8	0.070	17.5	25	Plastic	Solid Plastic	Return-to-Earth for determination of failure.
									(collapsed)	Package with replacement package.
								· · · · ·		
Purge and Fill	2	2	4	3	0.026	2.04	2	Fe, Cu	Solid Metal 260 lbs/cu.ft.	Return-to-Earth for determination of failure.
								•	(Form Factor)	Package with replacement package.
Bolation Valve	24*	2	48	3	0.026	12.48	2	Fe, Ca	Solid Metal	Return-to-Earth for
									260 lbs/cu.ft. (Form Factor)	determination of failure. Package with replacement package.
			ł							
Bipropellant Valvo	12*	4	48	120	1.05	504_0	4	Fe, Ça	Solid Metal 260 Ibs/cu.ft.	Return-to-Earth for determination of failure.
								•	(Form Factor)	Package with replacement package.
		•		le jester i serie		1				
Thruster Nozzle	12*	7	84	38	0.333	279.7	7	Fe. Fitanium	Solid Metal 94 Ibs/cu_ft_	Return-to-Earth for determination of failure.
									(Form Factor)	Package with replacement package.

* Based on the accomption Past 12 thruster north and and in the system

RTE = Return-to-Earth

3

1-23

REPUBLIC AVIATION DIVISION

2.1-24

Study of Housekeeping Concepts For Manned Space

TABLE IL CONSUMABLES/EXPENDABLES

Doc. No.B-2.1.1.2.3Sheet No.1Operational Description No.A-2.1.1.2.3SubsystemNav.Guid.Stab.and ControlBy:J.TorianDate: 2 June 1970

 $i = \lambda$

Title: Bipropellant System

	Consumable/Expendable ITEM	HOW CONSUME D	BASIC CONSTITUENTS CONSUMED	10 Yr. Total Ibs.	Daily Rate lbs/day	Unit Weight lbs.	Average Density As Received Ibs/cu.ft.	REMARKS
1.	Failed Pressurant Tank	Part Failure	Component Part	505		250	10	RTE
2.	Failed Fill Valve	Part Failure	Component Part	7.9		3	260	RTE
3.	Failed Pressurant Start Value	Part Failure	Component Part	7.0		2	260	RTE
4.	Failed Pressure Regulator	Part Failure	Component Part	52.6		5	260	RTE
5.	Failed Relief Valve	Part Failure	Component Part	15.8		3	260	RTE
6.	Failed Check Valve	Part Failure	Component Part	0.52		1	260	RTE
7.	Failed Oxidizer Tank	Part Failure	Component Part	1010		500	10	RTE
8.	Failed Oxidizer Tank Bladder	Part Failure	Component Part	17.5		25	50 Collapsed	RTE
9.	Fai'ed Fuel Tank	Part Failure	Component Part	1010		500	10	RTE
10 .	Failed Fuel Tank Bladder	Part Failure	Component Part	17.5		25	50 Collapsed	RTE
11.	Failed Purge and Fill Valve	Part Failure	Component Part	1.04		2	260	RTE
12.	*Failed Isolation Valve	Part Failure	Component Part	12.48		2	260	RTE
13.	*Failed Bipropellant Valve	Part Failure	Component Part	504. 0		ġ	260	RTE

*Based on the assumption that $\underline{12}$ thruster nozzles are used in the system.

RTE = Return-to-carth

2.1-25

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Bipropellant System

Doc. No. <u>B-2.1.1.2.3</u> Sheet No. <u>2</u> Operational Description No. <u>A-2.1.1.2.3</u> Subsystem <u>Nav. Guid. Stabil</u> and Control By: <u>J. Torian</u> Date: <u>2 June 1970</u>

	Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUMED	Total	Daily Rate lbs/day	Unit Weight Ibs.	Average Density As Received Ibs/cu.ft.	REMARKS
14.	*Failed Thruster Nozzle	Part Failure	Component Part	279.7		7	94	RTE
15.	Packaging For Replace- ment Parts	Environmental Integrity Destroyed	Internal Environ- ment Changed				5	Reuse for Re- turning Failed Items

*Based on the assumption that $\underline{12}$ thruster nozzles are used in the system

E FAIRCHILD HILLER

2.1-50

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No. <u>C-21123</u> Sheet No. <u>1</u> Operational Description No. <u>A-21123</u> Subsystem <u>Nav.</u>, Guid., Stab., and Control By: <u>J. Torian</u> <u>3 June 1970</u>

Title: Bipropellant System

	WASTE	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim	10 Yr. Total Ibs.	Daily Rate Ibs.		Average Density As Received Ibs/cu.ft.	Remarks
1.	Failed Pressurant Tank	Solid Metal RTE	Titanium	Repair	507		250	10	•
2.	Failed Fill Valve	Solid Metal RTE	Fe, Cu	Repair	7.9		3	260	
3.	Valve Pressurant Start	Solid Metal RTE	Fe, Cu	Repair	7.0		2	260	
4.	Failed Pressure Regu- lator	Solid Metal RTE	Fe, Cu	Repair	52.6		5	260	
5.	Failed Relicf Valve	Solid Metal RTE	Fe, Cu	Repair	15.8		3	260	
6.	Failed Check Valve	Solid Metal RTE	Fe, Cu	Repair	0.52		1	260	
7.	-Failed Oxidizer Tank	Solid Metal RTE	Titanium	Repair	1010		500	10	
8.	Failed Oxidizer Tank Bladder	Solid Plastic RTE	Plastic	or Repair Replace	17.5		25	50 Collapsed	
9.	Failed Fael Tank	Solid Notal RTE	Titanium	Repair	1010	•	500	10	
10.	Failed Fuel Tank Bladder	Solid Plastic RTE	Plastic	or Repair Replace	17.5		25	Collapsed	
11.*	Failed Purge and Fill Valve	Solid Metal RTE	Fe, Cu	Repair	1.04		2	260	

*Based on the assumption that 12 thruster nozzles are used in the system.

RTF = Return-to-carth

2.1-27

REPUBLIC AVIATION DIVISION

Study of	Housekee	ping Concept	s For N	lanned Space
----------	----------	--------------	---------	--------------

TABLE III. WASTES

Title: Birpopellant System

Doc. No.C-2.1.1.2.3Sheet No.2Operational Description No.A-2.1.1.2.3SubsystemNav.GuidStab.and ControlBy:J.TorianDate:3 June 1970

The: Birpopenan System				· · · · · ·		5		
WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim	10 Yr. Total Ibs.	Daily Rate lts.	Unit Weight 1bs.	Average Donsity As Received lbs/cu.ft.	Remarks
12.* Failed Isolation Valve	Solid Metal RTE	Fe, Cu	Repair	12.48		2	260	
13.* Falied Bipropellant Valve	Solid Metal RTE	Fe, Cu	Repair	504.0		4	260	
14.* Failed Thruster Nozzles	Solid Metal RTE	Fe, Titanium	Repair	279.7		7	94	
15. Packaging of Replace - ment Parts	Solid Plastic RTE	Plastic Sponge and Sheeting	Reuse as is				5	
								ж. С
							•	

*Based on the assumption that $\underline{12}$ thruster nozzles are used in the system.

PROVIDE FOR ELECTRIC AND THERMAL POWER

SECTION 2.2

FAIRCHILD HILLER REPUBLIÓ AVIATION DIVISION

TABLE OF CONTENTS

Document Number	Title	Page
2.2.1.1.1	Solar Arrays (Electric Power Source)	2.2-1
2.2.1.2.1	Radioisotope Brayton Cycle (Electric Power Source)	2.2-7
2.2.2.1.1	Power Conditioning System	2.2-21
2.2.3.1.1	Power Distribution System	2.2-28

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

> Doc. No. A-2.2.1.1.1 Sheet No. 1 By: J. Torian Date: 8 June 1970

OPERATIONAL DESCRIPTION

TITLE: / Solar Arrays (Electric Power Source)

1. <u>SCHEMATIC DIAGRAM</u>

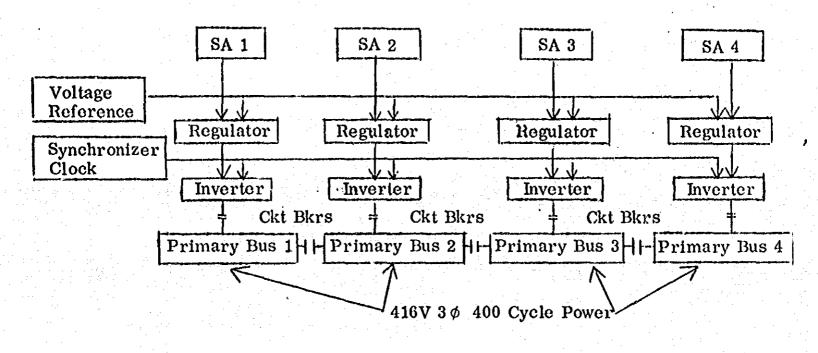


Figure 1. Solar Array Schematic

2. RATIONALE

The 1975 Space Station power requirements will run between 25 kilowatts and 42 kilowatts including from 4 to 15 kilowatts for experiment support. Solar arrays with 7500 sq. ft. of surface and with batteries, chargers and regulators will furnish an average electric power of 25 kilowatts.

When nuclear power plants are used as a prime power source, roll out solar arrays and batteries will be maintained as a source of 25 kilowatts standby power.

The electrical power system has been divided for purposes of this analyses into three basic functional categories:

a. the primary electric power system, i.e., solar array system covered in this document including all items up to the primary power buses. As shown in Figure 1, the solar array system is divided into four separate arrays, each

Doc. No. A-2.2.1.1.1 Sheet No.2 By: J. Torian Date: 18 June 1970

with an associated regulator and inverter. The regulators are referenced to a common voltage reference and the inverters are keyed to a synchronizer clock to insure frequency phase lock. This enables interconnection of the four buses without synchronization problems. Primary buses 1 and 2 may be fed by solar arrays 1 or 2 and 3 or 4. Each "bus" comprises three wires to accommodate the three phase system.

Although only one regulator and inverter per solar array are shown in the schematic, a spare regulator and inverter are included in the tabulation of avionic waste analysis. In addition, although only five circuit breakers are shown, a number of power contactors, monitor meters and remote control switches which are estimated to be a part of the system have also been included in the tabulation.

b. the power conditioning system covered in document number A-2.2.2.1.1 includes everything between the primary buses and the distribution buses such as transformation, inversion, rectification, regulation, battery chargers, batteries and fuel cells.

c. the distribution system, covered in document number A-2.2.3.1.1, comprises the buses, loading and transfer devices, fault isolation and sub-system "on-off" control.

In order to insure compatibility, it is assumed the design requirements for Space Base will be used to drive the design of the Space Station. For example, the use of 400 cps 3 % 416 volt distribution proposed by North American Rockwell in the reference is designed to provide flexibility, to accommodate the long cable runs involved in the Space Base and to minimize the weight of the power conditioning system.

3. REFERENCES

NASA Request For Proposal For Phase B Definition Of A Space Station Program. North American Rockwell Space Station Program Phase B Definition, Technology Requirements Review, PDS70-217, 25 March 1970.

2.2-2

TABLE L. AVIONICS WASTE ANALYSIS

SUBSYSTEM: SOLAR ARRAYS PRIMARY POWER SYSTEM

·		<u></u>							· · ·	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
LRU Fart Type	Number of Items	Weight Per Items	Total Weight Pounds	Fáilure Rate Fails/106 Hrs.	Number of Failures Per Year	Total Weight Per 10 Yrs.	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
Soiar Arrays *	4	1844	7376	-•		24587	1844	Si Semicond Al. Cu, Steel, Plastics	0.12 [‡] /cu.ft. Semi- rigid, Aluminum structure of glass.	** RTE For repair and deter- mination of cause of failure.
Regulator +	5	15	75	8.4	7.36 x 10 ⁻²	55	15	Si Semicond. Cu. Fe. Al Plastics	77 [#] /cu ft., Solid metals, Insulation	Pkg. to avoid handling and shipping damage.
inverter +	5	25	125	12	1.05 x 10 ⁻¹	131	25	Si Semicond. Cu, Fe, Al Plastics	77 [‡] /cu ft., Solid metals, Insulation	Pkg. to avoid handling and shipping damage.
Voltage Reference	1	2.5	2.5	4.3	3.76 x 10 ⁻²	0.9	2.5	SI Semicond. Cu, Fe, Al Plastics	52 [#] /cu ft. Solid metals, Insulation	Pkg. to avoid handling and shipping damage.
Synchronizer Clock	1	2.5	2.5	4.3	3.76 x 10 ⁻²	0.9	2.5	Si Semicond. Cu, Fe, Al Plastics	52 [*] /cu ft. Solid metals, Insulation	Pkg. to avoid handling and shipping damage.
Circuit Breakers	7	1	7	1 •	0.876 x 10 ⁻²	0.6	1	Cu, Fe, Al Plastics	77 [#] / cu ft. Solid Metals, Insulation	Pkg. to avoid handling and shipping damage
Power Contactors	8	1	8	1	0.876 x 10 ⁻²	9.7	1	Cu, Fe, Al Plastics	77 [#] / cu ft. Solid Metals, Insulation	Pkg. to avoid handling and shipping damage.
Monitor Meters (DC)	4	0.5	2	0.5	0.44 x 10 ⁻²	0.09	0.5	Si, Qz, Plastic	77 [#] /cu ft. Solid Metals, Insulation	Pkg. to avoid handling and shipping damage.
Monitor Meter Sws.	8	0.25	2	1	0.876 x 10 ⁻²	0.18	0.25	Plastics	77 [‡] /cu ft. Solid Metals, Insulation	Pkg. to avoid handling and shipping damage.
Remote Control Switches	15	0.25	4	1	0.876 x 10 ⁻²	9.35	0.25	plastics	Metals, Insulation	
Primary Syst. Wiring	-	-	400						AWG0000-19.5 ⁷ /10 AWG000-15.4 [#] /100 AWG00 -12.3 [#] /100 AWG-0-9.7 [#] /100*	
						n an	an tao 1940. Tao 2010			

· Designed for 3 yrs. end of life

** RTE means return to earth + Includes switchable redundant unit.

FAIRCHILD HILLER

REPUBLIC AVIATION DIVISION

2.2-4

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. <u>B-2,2,1,1,1</u> Sheet No. <u>1</u> Operational Description No. <u>A-2,2,1,1,1</u> Subsystem<u>Electric Power Source</u> By: <u>J. Torian</u> Date: <u>8 June 1970</u>

Title: Solar Arrays

	Consumable/Expendable ITEM	HOW CONSUME D	BASIC CONSTITUENTS CONSUME D	10 Yr Total Ibs.	Daily Rate- lbs/day	Unit Weight lbs.	Average Density As Received lbs/cu.ft.	REMARKS
1.	Failed Solar Arrays	Part Failure	Component Part Sub-Assembly	24587		1844	0.12	RTE
2.	Failed Regulator	Part Failure	Component Part	55		15	77	RTE
3.	Failed Inverter	Part Failure	Component Part	131	n an	25	77	RTE
4.	Failed Voltage Reference	Part Failure	Component Part	0.9		2.5	52	RTE
5.	Failed Synchronizer Clock	Part Failure	Component Part	0.9		2.5	52	RTE
6.	Failed Circuit Breakers	Part Failure	Component Part	0.6		1	77	RTE
7.	Failed Power Contactors	Part Failur e	Component Part	0.7		1	77	RTE
8.	Failed Monitor Meters (DC)	Part Failure	Component Part	0.09		0.5	77	RTE
9.	Failed Monitor Meters (AC)	Part Failure	Component Part	0.09		0.5	77	RTE
10.	Failed Monitor Meter Sws.	Part Failure	Component Part	0.18		0.25	77	RTE
111.	Failed Remote Control Sws.	Part Failure	Component Part	0.35		0.25	77	RTE
12.	Failed Primary Sys.Wiring	Part Failure	Component Part	-		-	14	RTE
13.	Packaging For Replacement Parts	Environmental Integrity	Internal Environ- ment Changed			-	5	Reuse For Returning
		Destroyed	mone mundor					Failed Items

(E-) FAIRCHILD HILLER REPUBLIC AVIATION DIVISION TATHLUGBALE, LONG ISLAND, NEW TOPE

2.2-5

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No. C-2.2.1.1.1	Sheet No. 1
Operational Description No.	A-2.2.1.1.1
Subsystem Electric Power S	ource
	Date: <u>8 June 1970</u>

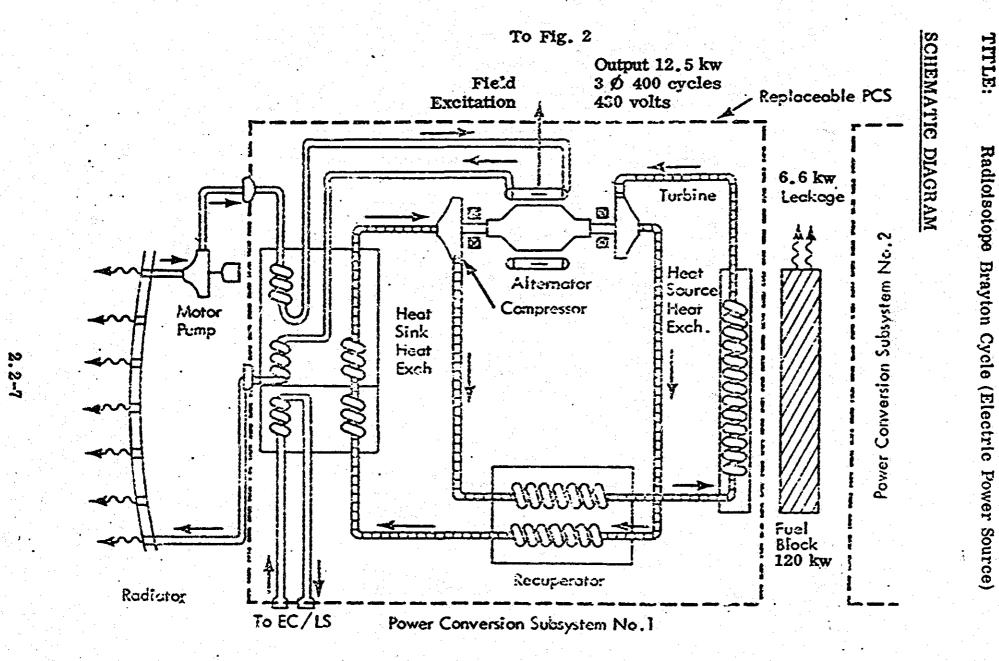
Title: Solar Arrays

WASTE ITEM	Char <u>acteristics</u> State And Attributes	Chemical Composition	Action Required ToReclaim	10 Yr. Total Ibs.	Daily Rate- Ibs/day	Unit Weight lbs.	Average Density As Received lbs/cu.ft.	Remąrks
1. Failed Solar Arrays	Solid Metal RTE	Al, Cu, Fe Plastics, Si- Semiconducto	Replace	24587		1844	0.12	Replace After 3 yrs. Life
2. Failed Regulator	Solid Metal RTE	A1, Cu, Fe Plastics, Si- Semiconducto	Repair	55		15	77	
3. Failed Inverter	Solid Metal RTE	Al, Cu, Fe, Plastics, Si- Semiconductor	Repair	131		25	-77	
4. Failed Voltage Reference	Solid Metal RTE	Al, Cu, Fe, Plastics, Si- Semiconducto:	Repair	0.9		2.5	52	
5. Failed Synchronizer Clock	Solid Metal RTE	Al, Cu, Fe, Plastics, Si- Semiconducto:	Repair	0.9	-	2.5	• 2 52 • • • •	
6. Failed Circuit Breaker	Solid Metal RTE	Cu, Fe, Al Plastic	Replac e	0.6	-	1	77	
7. Failed Power Contactor	Solid Metal RTE	Cu, Fe, Al Plastic	Replace	0.7	-	1	77	
8. Failed Monitor Meter(DC)	Solid Metal RTE	Cu, Fe, Al, SiO ₂ , Plastic	Repair	0.09	-	0.5	77	
9. Failed Monitor Meter(AC)	Solid Metal RTE	Qi, Fe, Al, SD ₂ , Plastic	Repair	0.09	-	0.5	77	
0. Failed Monitor Meter Switches	Solid Metal RTE	Cu, Fe, Al, Plastics	Repair	0.18	-	0.25	77	

B FAIRCHILD HILLERS REPUBLIC AVIATION DIVISION TATHLAGOALT, COL ISLAND, NEW TOAL

2.2-6

Study of Housekeeping Cencepts For Manaed Space

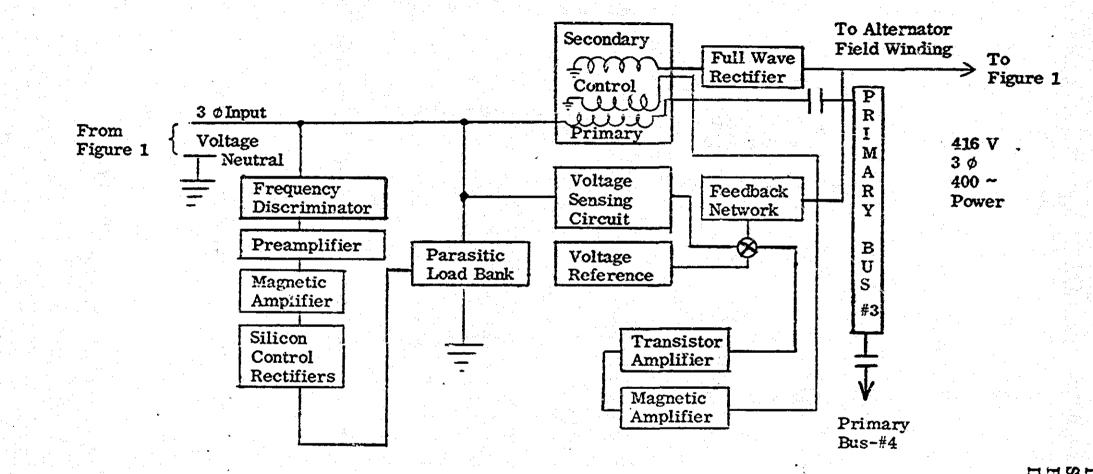

TABLE H. WASTES

Doc. No. <u>C-2.2.1.1.1</u> S	seet No. 2	
Derational Description No. A.		
ubsystem Electric Power Sour	rce	;
	ate: 8 June 1970	

Title: Bolar Arrays

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	letion Lequired To Reclaim	10 Yr. Total Ibs.	Doily Rate- los./ day	Unit Weight lbs.	Average Consity Ac Received ibs/cu.ft.	
11. Failed Remote Control Switches	Solid Metal RTE	Cu, Fe, Plastics	Replace	0.35	-	0.25	77	
12. Failed Primary System Wiring	Solid Metal RTE	Al	Replace	-		-	14	
13. Packaging For Replace- ment Parts	Solid Metal RTE	Plastic Sponge and Sheeting	Reuse as is	- -	-	-	5	

1


Figure 1. Brayton Cycle Power Conversion System Schematic

FAIRCHILD HILLER

Doo. Sheet By: Date: No. Zo. 81 Torian 18 June A-2. 1970 2.1.2.1

OPERATIONAL DESCRIPTION

Saturating Current Potential Transformer

 \mathbf{N}

2-8

Figure 2. Brayton Cycle Power System Auxiliary Schematic

Doc. No. A-2.2.1.2.1 Sheet No. 2 By: J. Torian Date: 18 June 1970 REVULIO AVIATION DIVISION

Doc. No. A-2.2.1.2.1 Sheet No. 3 By: J. Torian Date: 18 June 1970

2. <u>RATIONALE</u>

The 1975 Space Station power requirements will run between 25 and 42 kilowatts including from 4 to 15 kilowatts for experiment support. For the Space Base, it is estimated 100 kilowatts will be provided from four 25 kilowatts nuclear power plants. This analysis is based on a 25 kilowatt radioisotope/Brayton system which is considered the basic building block for nuclear power sources.

The electrical power system has been divided for purposes of this analyses into three basic functional categories:

a the primary electric power system, i.e. the radioisotope/Brayton system, including all items up to the primary power buses. These are discussed in this document.

b. the power conditioning system, covered in document A-2.2.2.1.1, includes everything between the primary buses and the distribution buses such as transformation, inversion, rectification, regulation battery chargers, batteries and fuel cells and

c. the distribution system, covered in document number A-2.2.3.1.1, comprises the buses, loading and transfer devices, fault isolation and subsystem "on-off" control.

The system considered comprises two 12.5 kilowatt subsystems of the type shown in the schematic of Figure 1 to produce a total of 25 kilowatts of power. A fuel block of 120 kilowatts thermal capacity is considered necessary to supply the two subsystems based on the efficiency of the Brayton cycle system and the estimated thermal lossess. Such a system would have the following weight breakdown:

Figure 1	Isotope Fuel Block { Shielding Power Conversion System Weight	2500 pounds 2500 pounds 4200 pounds
Figure 2	{ Power Distribution System Power Conditioning System	3300 pounds 1400 pounds

It is anticipated that neither the fuel block or the shielding will need replacement during the life of the Space Station. It is further anticipated that each Power Conversion System (PCS) will be replaceable as a complete unit. Accordingly, the failure rate of the PCS will be equal to the sum of the failure rates of all the elements of the system.

FAIRCHILD HILLEH

Loc. No. A-2.3.1.2.1 Sheet No. 4 By: J. Torian Date: 18 June 1970

The net failure rate of the PCS is derived as follows: (See Table 1 for Waste Analysis)

PCS Element	Failures	s Per I	Million	Hours	Of C	Operation
Turbine			15		• •	
Heat Exchangers (3)	*		3			
Compressor			7	•		
Alternator			8			
PCS Total		•	33	•	90 k	A ,

External to the PCS are the motor/pump for circulating coolant through the radiator.

Pump/Motor			17.5
Radiator	۰.	. **	$\sim 10^{-1}$, $\sim 10^{-1}$

In addition to the PCS, the additional equipment shown in Figure 2 is essential to the Radioisotope Brayton cycle power system for speed regulation and voltage control. As such, it is considered to be an integral part of the primary Radioisotope Brayton cycle power source. Table 1A summarizes the Waste Analysis.

Frequency control is effected by varying the load on the generator by applying additional load when the frequency is too high as indicated by a frequency discriminator system and associated load bank and reducing the load when the frequency is too low. In addition, voltage regulation before the primary bus is achieved by varying the voltage on the alternator field winding under control of a voltage sensing system. Primary Buses 3 and 4 may be connected to RI/Brayton Power Generation Units 1 or 2 and 3 or 4 respectively.

3. REFERENCES

NASA Request For Proposal For Phase B Definition Of A Space Station Program.

North American Rockwell Space Station Program Phase B Definition Technology Requirements Review, PDS70-217, 25 March 1970.

Integrated Manned Interplanetary Spacecraft Concept Definition Final Report System Definition D2-113544-4, Prepared For NASA Langley by Boeing Aerospace Group, January 1968.

Summary Of Electrical Component Development For A 400 Hertz Brayton Energy Conversion System - Corcoran and Yeager, Lewis Research Center. NASA Technical Note NASA TN D-4874.

Doc. No. A-2.2.1.2.1 Sheet No. 5 By: J. Torian Date: 18 June 1970

3. <u>**REFERENCES</u>** (Continued)</u>

Space Station Supporting Research And Technology Initial Briefing, McDonnell Douglas Astronautics Company, 24 March 1970. TABLE 1

Doc. No. A-2.2.1.2.1 Sheet No. 6 By: J. Torian Date: 18 June 1970

WASTE ANALYSIS FOR BRAYTON CYCLE POWER CONVERSION SYSTEM SCHEMATIC (see Fig. 1)

Part Type	Number of Items	Weight per Lem	Total Weight Pounds	Failure Rate Fails/10 ⁶ Hrs	Number of Failures per Year	Total Weight per 10 Yrs	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
Fuel Block	2	2500	2500	– 1	-	-	2500	P _u -238	Metal-Solid 1224 #/cu ft	89 yr half-life merits recovery
Shielding		2500	2500		-		2500	Uranium- lithium hydride	Solid 51.2 #/cu ft	
Replaceable PCS	2 †	4200	8400	33	0.29	24,360	4200	Fc, Cu, Al insulation	Metal assembly replaceable as a unit 16.1#/cu ft	RTE for repair and determin tion of cause of failure
Radiator	1	2300	2300	1	0.009	207	2300	Aluminum, and insulation quartz	Metal tubing and sheets and back surfaced mirrors 11#/cu ft	Prg to avoid handling and shipping damage
Pump/Motor	2	25	50	17.5	0,15	75	25	Fc, Cu, Al. insulation	Metal, solid 200#/cu ft	17
† Two (2) spare	pes units a	re carried					1			

2.2-12

TABLE 1A

Doc. No. A-2.2.1.2.1 Sheet No. 7 By: J. Torian Date: 18 June 1970

WASTE ANALYSIS FOR BRAYTON CYCLE POWER SYSTEM AUXILIARY SCHEMATIC (see Fig. 2)

Part Type	Number of Items	Weight per Item	Total Weight Pcunds	Failure Rate Fails/10 ⁶ Hrs	Number of Failures per Year	Total Weight per 10 Yrs	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
Frequency Discriminator	9 †	2	18	12	1.05x10 ⁻¹	18.9	2	St Semi-Cond Al, Cu, Fe, Plastics	52#/cu ft solid metals, insula- tion	**RTE for repair and de- termination of causes of . failure
Magnetic Preamplifier	6	2	12	0.35	0.31x10 ⁻²	0.37	2	Al, Cu, Fe, M, Plastics SI- Semi cond.	80#/cu ft solid metals, insula- tion	Pkg to avoid handling and shipping damage
Magnetic Amplifier	6	3	18	2.8	2.45x10	4.41	3	. 4	R La	17
Slicon Controlled Rectifiers	18	.25	4.5	3.0	2.63x10 ⁻²	1,18	0.25	SI-SCR Ceramics Al, Cu	77#/cu ft solid metals, insula- tion	
Parasitic Load Bank	6	60	360	0.05	0.44x10 ⁻³	1.58	69	Nichrome Ceramics Fe, Cu	11	
Voltage Sensing CCT	2	2	4	4_3	3.76x10 ⁻²	1.5	2	SI-Semi Cond Al, Cu, Fe, Plastics	52#/cu ft solid metals, insula- tion	
Voltage Reference	2	2	4	4.3	3.76x10 ⁻²	1.5	2	17	10	
Transistor Amplifier	2	1.5	3	4.3	3.76x17 ⁻²	1.1	1.5	Η	B	17
Magnetic Amplifier	2	3	6	2.8	2.45x10 ⁻²	1.5	3	Al, Cu, Fe, Ni, Plastics Si- Semi Cond	80#/cu ft solid metals, insula- tion	7
Feedback Network	2	.25	0.5	2.9	2.54x10 ⁻²	0.13	0.25	Nichrome, ceramics, Al, Plastics, Cu	52#/cu ft solid metals	
Full Wave Rectifier	2	1.5	3	6.0	5.26x10 ⁻²	1.6	1.5	Fe, Cu, Al, S- semi-cond ceramics	77#/cu ft solid metals, insula- tion	5 (97
Saturating Current Potential Trans- former	2	40	80	0.45	0.395x10 ⁻²	3.16	40	Fe, Cu, Al plastics	80#/cu ft solid metals, insula- tion	••
Circuit Breakers ** RTE means Retu † Includer switchat		1	4	1	0.875x10 ⁻²	0.35	1	tt	77#/cu ft solid metals, insula- tion	

TABLE 1A

WASTE ANALYSIS FOR BRAYTON CYCLE POWER SYSTEM AUXILIARY SCHEMATIC (see Fig. 2)

Doc. No. A-2.2.1.2.1 Sheet No. 8 By: J. Torian Date: 18 June 1970

Part Type	Number of Items	Weight per Item	Total Weight Pounds	Failure Rate Fails/10 ⁶ Hrs	Number of Failures per Year	Total Weight per 10 Yrs	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Nandling Requirements
Power Contactor	4	1	4	1	0.876x10 ⁻²	0.35	1	Fe, Cu, Al plastics	77#/cu ft solid metals, insulation	Pkg to avoid handling and shipping damage
Monitor Meters (DC	2	0.5	1	0.5	0.44x10 ⁻²	0.04	0.5	Cu, Al, Fe SI 02 plastics	17	u
					0.44x10 ⁻²	0.04		plastics -	•	•
Munitor Meters (AC Remote Control	28	0.5 .0.25	1 2	0.5 1	0.44210 0.876x10 ⁻²	0.04	0.5 0.25	Cu, Fe, Al		*1
witches		.0.25	2	▲	0.3/0210	0.11	0.43	plastics		
							$\gamma_{\rm c} = -\gamma_{\rm c}$			
					l i state					
	1									
						ad a second				
				and a second second Second second						
					1					
	1 . · · · ·									
	ł	1 .								
	1	te fa								
	l e te a	1					e de jarre en el			
	1									
			a		3				I	
	· · ·					.÷				

2.2-14

FRIRCHILLED HELTERS REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE R. CONSULIABLES/ENPENDABLES

Doc. No. I	3-2.2.1.2.1	Sheet	No. 1	L
Operationa	l Description	1 No. A-2	.2.1.2.	1
Subsystem	Electric Po	wer Sourc	е	_
By: J.			18 June	: 19'

10

Title: Radioisotope Brayton Syst	em	¹ në përse së pjetë dë të presi 2	y				
Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSULIED	Total	Daily Rate Ibs/day	Unit Weight Ibs	Average Density As Received Ibs/cu.ft.	REMARKS -
1. Failed Fuel Block	89 yr half life	Pu-238 Radioactivity	-	-	2500	1224	RTE
2. Failed Shielding	Not consumed		-	-	2500	51.2	
3. Failed Replaceable P.C.S.	Part failure	Component part	24,360	-	4200	16.1	RTE
4. Failed Radiator	Part Failure	Component part	207		2300	11	RTE
5. Failed Pump/Motor	Part Failure	Compoment part	75	-	25	200	RTE
6. Packaging for Replacement Parts	Environmental integrity destroyed	Internal environ- ment changed	- 		-	5	Reuse for returning failed items.

NOTE:

2.2-15

This Table pertains to the portion of the system covered in Figure 1, The Power Converstion System.

	Study of Housekeeping C TABLE IF. CONSUM				Opera	tional De	2.2.1.2.1 escription No lectric Power	Sheet No. 2 <u>A-2.2.1.2.1</u> Scurce
Titl	e: Radioisctope Brayton Syste	m		•	By:	J. Toria	<u>n</u>	Date: <u>18 June 197</u>
	Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUI:NTS CONSUM : D	10 Yr Total Ibs	Daily Rate lbs/day	Unit Weight Ibs	Average Density As Received lbs/cu.ft.	REMARKS
1.	Failed Frequency Discriminator	Part failure	Component part	18.9	-	1	52	R.T.E.
2.	Failed Magnetic Preamplifier	Part failure	Component part	0.37	-	2	80	11. 11. 11. 12. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14
3.	Failed Magnetic Amplifier	Part failure	Component part	4.41	ан <u>—</u> на март	3	80	11
4.	Failed Silicon Controlled Rectifiers	Part failure	Component part	1.18	-	0.25	77	на на селото на селот На селото на селото на На селото на селото н
5.	Failed Parasitic Load Bank	Part failure	Component part	1.58		60	77	11
6.	Failed Voltage Sensing	Part failure	Component part	1.5	_ _ ·	2	52	11
7.	Failed Voltage Reference	Part failure	Component part	1.5	-	2	52	1
8.	Failed Transistor Amplifier	Part failure	Component part	1.1	-	1.5	52	17
9.	Failed Magnetic Amplifier	Part failure	Component part	1.5	-	3	80	VT.
10.	Failed Feedback Network	Part failure	Component part	0.13	_ `	0.25	52	1
11.	Failed Full Wave Rectifier	Part failure	Component part	1.6	-	1.5	?7	1
12.	Failed Saturating Current Transformer	Part failure	Component part	3.16	-	40	80	
13.	Failed Circuit Breaker	Part failure	Component part	0.35	I	1	77	11
14.	Failed Power Contactor	Part failure	Component part	0.35	_	1 /	77	1.
NO	TE: This Table pertains to th Figure 2, The Power Sys	2 T	vstem covered in					

FAIRCHILD HILLER

Γ:

REPUBLIC AVIATION DIVISION

2.2-17

Study of Housekeeping Concepts For Manned Space

TABLE IL CONSUMABLES/EXPENDABLES

Doc. No. B-2.2.1.2.1	Sheet No.	3
Operational Description No.	A-2.2.1	.2.1
Subsystem Electric Power	Source	
By: J. Torian	Date: 18 J	une 1970

Title: Radioisotope Brayton System

	Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUINTS CONSUNCED	10 Yr Total Ibs	Daily Rate Ibs/day	Unit Weight Ibs	Average Density As Received Ibs/cu.ft.	REMARKS
15.	Failed Monitor Meter (DC)	Part failure	Component part	0.04	· _	0.5	77	RTE
16.	Failed Monitor Meter (AC)	Part failure	Component part	0.04		0.5	77	TY
17.	Failed Remote Control ' Switches	Part failure	Component part	0.17	-	0.25	77	5
18.	Packaging for Replacement Parts	Environmental Integrity Destroyed	Internal Environment Changed	-	-	- 1 ¹	5	Reuse for returning failed items
•								

EPUBLIC AVIATION DIVISION

2.2-18

15-1

 	1	1.54	 =tu	70 #5	

			A MAT	C-2.2.1.2.1	Sheet No. 1
Study of Housekeeping Concepts For Manned Space					a i i i i i i i i i i i i i i i i i i i
Durdy of modelanceshing other office and the		Ond	eration	al Description No.	A-2.2.1.2.1
TARLE III WASTES		0 P.			

Title: Kadioisotope Brayton System

Operational Description No.A-2.2.1.2.1Subsystem Electric Power SourceBy:J. TorianDate:18 June 1970

	WASTE ITEM	Characteristics State And Attributes	Chemical Composition	A: ion Required To R:claim	10 Yr. Total Ibs.	Daily Rate- Ibs.	Unit Size lbs.~	Average Density As Received lbs/cu.ft.	Index Of Utilization Potential And Remarks
1.	Failed Fue! Block	Solid, Metal, RTE	Pu-238	-	-	-	2500	1224	89 yr half-life merits recovery
2.	Failed Shielding	Solid, Metal, RTE	Uranium – Lithium Hydride	Repair	2500	-	2500	51.2	
3.	Failed Pcs.	Solid, Metal RTE	Fe. Cu. Al Insulation	Repair	24360	-	4200	16.1	
4.	Failed Radiator	Solid, Metal, RTE	Al, SiO ₂ Insulation	Repair	207		2300	11	
5.	Failed Pump/Motor	Solid, Metal RTE	Fe, Cr, Al. Insulation	Repair	75	-	25	200	
6.	Packaging for Replace- ment Parts	Solid, Plastic RTE	Plastic Sponge and Sheeting	Reuse as is			• • • • • • • • • • • • • • • • • • •	5	•
NC	OTE: This Table pertains to Figure 1, The Power			red in					

FAIRCHILD HILLER

REPUBLIC AVIATION DIVISION FARMINGBALL, LONG "SLAND, NEW YORK

2.2-19

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No.C-2.2.1.2.1Sheet No.2Operational Description No.A-2.2.1.2.1SubsystemElectric Power SourceBy:J. TorianDate: 18 June 1970

Title: Radioisotope Brayton System

	WASTE ITEM	<u>Characteristics</u> State And Attributes	Chemical Composition	Ac ion Required To Reclaim	10 Yr. Total lbs.	Daily Rate- lbs.	Unit Weight Lbs:	Average Density As Received 155/cu.ft.	Index Of Utilization Potential And Remarks
1	. Failed Frequency Discriminator	Solid, Motal, RTE	Al, Cu, Fe, Si Semi Cond Plastics	Repair	18.9	-	2	52	
2	. Failed Magnetic Preamplifier	Solid, Metal, RTE	Al, Cu, Fe, Ni, Plastics Si- Semi Cond.	Repair	0.37		2	80	
3	. Failed Magnetic Amplifier	Solid, Metal, RTE		Repair	2.8	-	3	80	
4	. Failed Silicon Controlled Rectifiers	Solid, Metal, RTE	Al, Cu, Si- Semi Cond	Repair	1,18	-	0.25	77	
5	. Failed Parasitic Load Bank	Solid, Metal RTE	Fe, Cu, Nich- rome Ceramic	통 · · · · · · · · · · · · · · · · · · ·	1.58	-	60	77 .	
6	. Failed Voltage Sensing Circuit	Solid, Metal, RTE	Al, Cu, Fe, Si-Semi Cond Plastics	Repair	1.5	-	2	52	
7	. Failed Voltage Reference	Solid, Metal, RTE	19. (20. 11) 	Repair	1.5	-	3	52	
8	: Failed Transistor Amplifier	Solid, Metal, RTE	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	Repair	1.1	_ •	1.5.	52	
9	. Failed Magnetic Amplifier	Solid, Metal, RTE	Al, Cu, Fe, Ni, Si-semi cond Plastics	Repair	1.5	-	3	80	
Ĩ	0: Failed Feed Back Network	Solid, Metal, RTE	Al, Cu, Ni- chrome, Ceramics, Plastics	Repair	0.13	-	0.25	52	

NOTE: This Table pertains to the portion of the system covered in Figure 2, The Power System Auxiliary.

165 FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

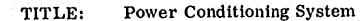
PARMINGRALE, LCHG ISLAND, NEW YORK

2.2-20

Doc. No. <u>C-2.2.1.2.1</u> Sheet No. 3 Study of Housekeeping Concepts For Manned Space Operational Description No. A-2,2,1.2.1 TABLE III. WASTES

Title: Radioisotope Brayton System

Subsystem <u>Electric Power Source</u> But I Torian Date: 18 June 1970


	WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Exquired To Reclaim	10 Yr. Total lbs.	Daily Rate- Ibs.	Unit Weight lbs	Average Density As Received Ibs/cu.ft.	Potential
11.	Failed Full Wave Rectifier	Solid, Metal, RTE	Al, Cu, Fe, S-semi cond ceramics	Repair	1.6		1.5	77	
12.	Failed Saturating Current Potential Transformer	Solid, Metal, RTE	Al, Cu, Fe Plastics	Replace	3.16	-	40	80	
13.	Failed Circuit Breakers	Solid, Metal, RTE	₹ 	Replace	0.35	-	1	77	
14.	Failed Power Contactor	Solid, Metal, RTE	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	Replace	0.35	-	1	77	
15.	Failed Monitor Meter (DC)	Solid, Metal, RTE	Al, Cu, Fe, Si 0 ₂ , Plastic	Repair	0.04	-	0.5	?7	
16.	Failed Monitor Meter (AC)	Solid, Metal, RTE	11	Repair	0.04		0.5	77	
17.	Failed Remote Control Switches	Solid, Metal, RTE	11	Replace	0.17	-	0.25	77	
18.	Packaging for Replacement Parts	Solid, Plastic, RTE	Plastic Sponge and Sneeting	Reuse as is	-	-	- System A	5	

NOTE: This Table pertains to the portion of the system covered in Figure 2, The Power System Auxiliary.

DOC No. A-2.2.2.1.1 Sheet No. 1 By: J. Torian Date: 17 August 1970

OPERATIONAL DESCRIPTION

FAIRCHILD HILLER

1. Schematic Diagram

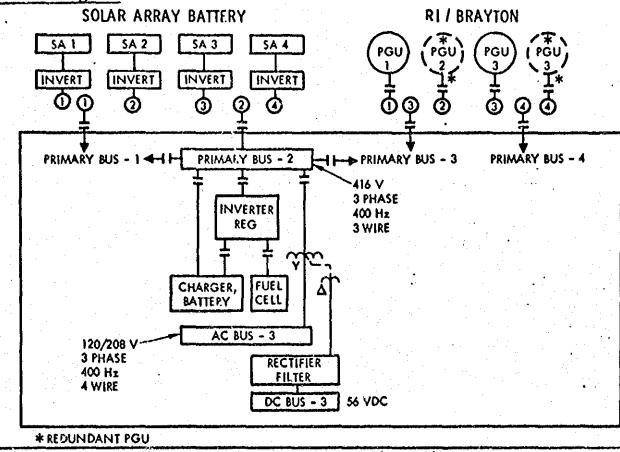


Figure 1. Power Conditioning Schematic

2. Operational Description and Rationale

As shown in Figure 1, the power conditioning system comprises those equipments which take the 416V, 3_{d} , 400 Hz primary power and modify it to provide battery power, power for a 56 volt dc bus and 120/208 V 3_{d} 400 Hz for distribution in the space vehicle. Accordingly, the power conditioning system comprises inverter regulators, batteries and battery chargers, fuel cells, transformers, rectifier filters, miscellaneous circuit breakers and a switch, control and meter panel. The power conditioning equipment associated with all four primary buses is essentially the same. However the amount of battery capacity associated with buses 1 and 2, which are the solar cell fed buses, is greater in order to handle the earth orbit solar cell illumination cycle. Battery power for the Brayton/Isotope power system is required to start-up the system and for handling communications and other vital house keeping functions during start-up. The fuel cells are used as back up and can be used to provide emergency power to the primary buses by using the inverter

2.2-21

Doc. No. A-2.2.2.1.1 Sheet No. 2 By: J. Torian Date: 17 August 1970

regulator to convert the DC output of the fuel cell to AC for the bus supply. Using a Charger, Battery, Regulator (CBR) combination rating of 135 watts each and 80 pounds each, 185 CBR's will provide 25,000 watts average power. For the RI/Brayton system 74 CBR's are employed to provide 10,000 watts average power. Hydrogenoxygen fuel cells to provide 10,000 watts are also provided at a weight of approximately 1.5,#/kw-hr or 15,000 pounds. Of this weight 1 pound is for the reactants which yield about 1 pound of water per kw-hr.

Doc. No. A-2.2.2.1.1 Sheet No. 3 By: J. Torian Date: 17 August 1970

TABLE 1. POWER CONDITIONING SYSTEM WASTE ANALYSIS

LRU Part Type	Number of Items	Weight per Items	Total Weight Pounds	Faihre Rate Fails/10 ⁶ Hrs.	Number of Failures Per Year	Total Weight Per 10 Yrs.	Single - Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
Circuit Breaker	24	1	24	1 1	0. 876 x 10 ²	2.1	1	Fe, Cu, Al Plastics	77#/cu ft.Solid Metals, Insulation	• RTE for repair and determination of cause of failure
Inverter Regulator	5	40	200	20.4	1. 79 x 10 ⁻¹	358	40	Si Semicond. Fe, Cu, Al Plastics	77#/cu ft, Solid Metals, Insulation	Pkg. to avoid handling & shipping damage
Solar Array Battery Charger Regulators	185	80	14800	13.4	1.14 x 10 ⁻¹	16872	80	Si Semicond. Fe. Cu, Al Plastics	77#/cu ft, Solid Metals, Insulation	Pkg. to avoid handling & shipping damage
RI/Bryton Battery Charger Regulator	74	80	5920	13.4	1.14 x 10 ⁻¹	6749	80	Si Semicond. Fe, Cu, Al Plastics	77#/cu ft, Solid Metals, Insulation	Pkg. to avoid handling & shipping damage
Fuel Cell	4	3750	15000					Hydrogen, Oxygen Al,Cu,Plastics		H ₂ O produced may be utilized on board
Rectifier Filter	5	20	100	6	5.26 x 10 ⁻²	52.6	20	Si Semicond. Fe, Cu, Al Ceramics	71#/cu ft Solid Metals, Insulation	*RTE same as items above
Transformer	5	25	125	0.25	0.22 x 10 ⁻²	2.75	25	Fe, Cu, Al Plastics	80#/cu ft Solid Metals, Insulation	*RTE same as items above
Power Contactors	28	1	28	1	0. 876 x 10 ²	2.45	1	Fe, Cu, Al Plastics	77#/cu ft Solid Metals, Insulation	*RTE same as items above
Monitor Meters (DC)	2	0.5	1.0	0.5	0.44×10^{-2}	0.04	0.5	Cu. Al, Fe, SiO ₂ , Plastics	77#/cu ft Solid Metals, Insulation	*RTE same as items above
Monitor Meters (AC)	2	0.5	1.0	0.5	0.44 x 10 ⁻²	0.04	0.5	Cu, Al, Fe, SiO ₂ , Plastics	77#/cu ft Solid Metals, Insulation	*RTE same as items above
Monitor Meter Switches	2	0.25	0.5	I	0.876×10^{-2}	0.04	0.25	Cu, Fe, Al Plastics	77#/cu ft Solid Metals, Insulation	*RTE same as items above
Remote Control Switches	5	0.25	1. 25	1	0.876 x 10 ⁻²	0.11	0.25	Cu, Fe Plastics	77#/cu ft Solid Metals, Insulation	*RTE same as items above

* RTE means return to earth

2.2-23

2.2-24

REPUBLIC AVIATION DIVISION

•	Study	of	Housek	eeping	Concepts	For	Manned	Space

TABLE IL. CONSUMABLES/EXPENDABLES

Doc. No. B-2.2.2.1.1Sheet No. 1Operational Description No. A-2.2.2.1.1SubsystemBy:J. TorianDate:8/17/70

Title: Power Conditioning System

	Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUI NTS CONSUM : D	10 Yr Total Lbs	Daily	Unit Weight Lbs	Average Density As Received Ibs/cu.ft.	REMARKS
1 -	Failed Circuit Breaker	Part Failure	Component Part	2.1	-	1	77	RTE
2 -	Failed Inverter Regulator	Part Failure	Component Part	358		40	77	RTE
3 -	Failed Solar Array Battery Charger Regulator	Port Failure	Component Part	16872	-	80	77	RTE
4 -	Failed RI/Brayton Battery Charger Regulator	Part Failure	Component Part	6749	-	80	77	RTE
5 -	Failed Fuel Cell	Part Failure	Component Part		-	3750		RTE
6 -	Failed Rectifier Filter	Part Failure	Component Part	52.6	-	20	77	RTE
7 -	Failed Transformer	Part Failure	Component Part	2.75	-	25	80	RTE
8 -	Failed Power Contactor	Part Failure	Component Part	2.45	-	1	77	RTE
9 -	Failed Monitor Meter (DC)	Part Failure	Component Part	0.04	-	0.5	77	RTE
10 -	Failed Monitor Meter (AC)	Part Failure	Component Part	0.04	-	0.5	77	RTE
11 -	Failed Monitor Meter Switches	Part Failure	Component Part	0.04	— 1	0.25	77	RTE
12-	Failed Remote Control Switches	Part Failure	Component Part	0.11	-	0.25	77	RTE

REPUBLIC AVIATION DIVISION

2.2-25

Study of Housekeeping Concepts For Manned Space

TABLE IL. CONSUMABLES/EXPENDABLES

Doc. No.B-2.2.2.1.1Sheet No.2Operational Description No.A-2.2.2.1.1SubsystemRegulate PowerBy:J. TorianDate: 8/17/70

Title: Power Conditioning System

	Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUI INTS CONSUM ID	10 Yr Total Lbs	Daily	Unit Weight Lbs	Average Density As Received lbs/cu.ft.	REMARKS
13 -	Packaging for Replacement Parts	Environmental Integrity Destroyed	Internal Environment Changed		-	-	5	Reuse for Returning Failed Items

15:

REPUBI	./Ç	: AVIA	1101	UIV	a an
					And

2.2-26

			 A set of the set of	
	C. J. C. M C. M	ncepts For Manned Space	and the second	Doc. No. C-2.2.2.1.1
	Smay of Housekeeping Co	reepts rut Manneu opace		
		and the second se		
1				Operational Description No.

TABLE III. WASTES

Operational Description No. A-2.2.2.1.1	
Subsystem Regulate Power	
By: J. T. T. Date: <u>8/17/70</u>	

Title: Power Conditioning System

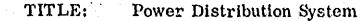
4									
	WASTE ITEM	Characteristics State And Attributes	Chemical Composition	A: ion Req tired To R :claim	10 Yr Total Ibs.	Daily Rate- lbs.	Unit Weight Ibs.	Average Density As Received Ibs/cu.ft.	
	1 - Failed Circuit Breaker	Solid Metal RTE	Fe, Cu, Al Plastics	Replace	2.1	-	1	77	
	2 – Failed Inverter Regulator	Šolid Metal RTE	Fe, Cu, Al Plastics Si-Semicond.	Repair	358	-	40	77	
	3 – Failed Solar Array Battery Charger Regulator	Solid Metal RTE	Fe, Cu, Àl Plastics Si-Semicond.	Repair	16872	-	80	77 	
	4 - Failed RI/Brayton Battery Charger Regulator	Solid Metal RTF	Fe, Cu, Al Plastics Si-Semicond.	Repair	6749 ,	-	80	77	
	5 - Failed Fuel Cell	Solid Metal RTE	Fe, Cu, Al Plastics Si-Semicond.	Replace		-			
	6 – Failed Rectifier Filter	Solid Metal RTE	Fe, Cu, Al Ceramics Si-Semicond.	Repair	52.6	-	20	77	
	7 Failed Transformer	Solid Metal RTE	Fe, Cu, Al Plastics	Replace	2.75		25	80	
	8 - Failed Power Contactor	Solid Metal RTE	Fe, Cu, Al Plastics	Replace	2.45	-	1	77	
	9 – Failed Monitor Meter (DC)	Solid Metal RTE	Cu, Al, Fe Si O ₂ , Plastics	Repair	0.04	_	0.5	77	

2.2-27

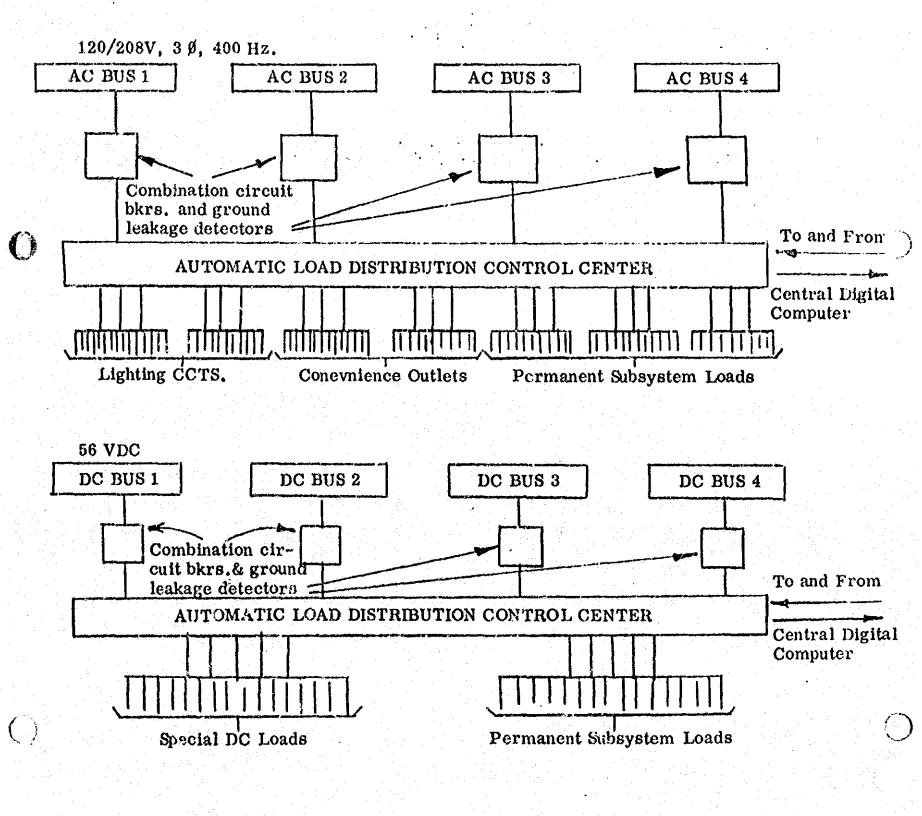
ß

		-	
 	8.10=6	ISLAND.	NEW YORK'.

Study of Housekeeping Concepts For Manned Space	 Doc. No. $C-2.2.2.1.1$ Sheet No. 2
TABLE III. WASTES	Operational Description No. <u>A-2.2.2.1.1</u> Subsystem Regulate Power
	 By: J. T. T. Date: <u>8/17/70</u>


.

Title: Power Conditioning System


	WASTE ITEM	Characteristics State And Attributes	Chemical Composition	A: ion Reltired To t:claim	10 Yr Total Ibs.	Daily Rate- Ibs.	Unit Weight Ibs.	Received lbs/cu.ft.	Remarks
10 -	Failed Monitor Meter (AC)	Solid Metal RTE	Cu, Al, Fe Si O ₂ , Plastics	Repair	0.04	-	0.5	77	
11 -	Failed Monitor Meter Switches	Solid Metal RTE	Cu, Fe, Al Plastics	Repair	0.04	-	0.25	77	
12 -	Failed Remote Control Switches	Solid Metal RTE	Cu, Fe Plastics	Replace	0.11	_	0.25	77	
13 -	Packaging for Replacement Parts	Solid Plastic RTE	Plastic Spong and sheeting		-	- 	-	5	

Doc. No. A-2.2.3.1.1 Sheet No. 1 By: J. Torian Date: 12 August 1970

OPERATIONAL DESCRIPTION

1. Schematic Diagram

Doc. No. A-2. 2. 3. 1. 1 Sheet No. 2 By: J. Torian Date: 12 August 1970

2. Operational Description and Rationale

As shown in Figure 1, the 120/208V, 3ϕ , 400 Hz, power distribution system comprises the wiring, circuit breakers, shock protection trip-out devices and the automatic load distribution control center which functions to monitor and control the bus loading and transfer, fault isolation and subsystem "ON-OFF" control. About 10% of the power is made available at 50 VDC and the distribution and control of this power is handled in a similar manner as the 120/208V, 3ϕ , 400 Hz power. The combination circuit breaker and ground leakage detectors are designed not only to protect the equipment from damage during overloads or short circuits but also to protect personnel from shock hazard in the event a leakage path is established from any one of the "hot" lines to ground through the man's body, clothing or suit.

The automatic load distribution control center senses bus loading, faults, low voltage, etc. and under control of the central computer system switches loads, transfers equipment to different buses as required and turns various subsystems ON or OFF as required. The centers, one for the AC system and the other for the DC system comprise a number of computer compatible elements such as solid state circuit breaker/load control rivets and current sensitive elements. While the number of these will vary with the complexity and amount of subsystems which are installed, a representative estimate has been used in the waste analysis which may be readily extrapolated when more specific data is known.

TABLE L POWER DISTRIBUTION SYSTEM WASTE ANALYSIS

Doc. No. A-2.2.3.1.1 Sheet No. 3 By: J. Torian Date: 12 August 1970

Part Type	Number of Items	Weight per Item	Total Weight Pounds	Failure Rate Fails/10 ⁶ Hrs.	No. of Failures per Year	Total Weight per 10 Yrs.	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition of Special Handling Requirements
120/208 VOLT - 30	- 400 HER	TZ EQUIP:	MENT							* RTE for repair and determination of cause of failure
Cct. Bkr. & Ground Leakage Detector	4	20	80	11	0.96x10 ⁻¹	76.8	20	Fe, Cu, Al, Si Semiconduc- tor Plastics	77#/cu ft Solid Metals, Insula- tion	Pkg. to avoid handling and shipping damage
Cct. Bkr/Load Control Unit	21	20	420	6	5.26x10 ⁻²	220	20	Fe, Cu, Al. Si Semiconduc- tor Plastics	77#/cu ft Solid Metals, Insula- tion	Pkg. to avoid handling and shipping damage
Current Sensitive Element	21	1.5	31,5	11	0.96x10 ⁻¹	30, 3	1.5	Fe, Cu, Al, Si Semiconduc- tor Plastics	77#/cu ft Solid Metals, Insula- tion	Pkg. to avoid handling and shipping damage
Individual Line Cct. Bkr.	84	0.5	42	1	0.88x10 ⁻²	3.7	0.5	Fe, Cu, Al Plastics	77#/cu ft Solid Metals, Insula- tion	Pkg. to avoid handling and sbipping damage
Monitor Meters (AC)	2	0.5	1.0	0,5	0.44x10 ⁻²	0.04	0.5	Cu, Al, Fe, SiO ₂ , Plastics	77#/cu ft Solid Metals, Insula- tion	Pkg. to avoid handling and shipping damage
Monitor Meter Switches	2	0.25	0.5	I	0.88x10 ⁻²	0.04	0.25	Fe, Cu, Al Plastics	77#/cu ft Solid Metals, Insula- tion	Pkg. to avoid handling and shipping damage
Remote Control Switches	21	0, 25	5.3	1	0.88x10 ⁻²	0.47	0,25	Fo, Cu Plastics	77#/cu ft Solid Metals, Insula- tion	Pkg. to avoid handling and shipping damage
	•									

TABLE L POWER DISTRIBUTION SYSTEM WASTE ANALYSIS (cont'd)

Doc. No. A-2. 2. 3. 1. 1 Sheet No. 4 By: J. Torian Date: 12 August 1970

والمتحديد والمحادث والمتحدين والمتحد والمتحدث والمتحدث والمتحدث والمتحدث والمتحدث والمتحدث والمحاد والمتحدث والمحاد										
Part Type	Number of Items	Weight per Item	Total Weight Pounds	Failure Rate Fails/10 ⁶ Hrs.	No. of Failures per Year	Total Weight per 10 Yrs.	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition of Special Handling Requirements
56 VOLT - D.C. EQ	UIPMENT									*RTE for repair and determination of cause
										of failure
Cct. Bkr. & Ground Leskage Detector	4 - 1999 1997 - 4 - 1999 1997 - 1997 1997 - 1997 - 1997	.20	80	11	0_96x10 ⁻¹	76.8	26	Fe. Cu, Al. Si- Semiconductor Plastics	77#/cu ft Solid Metals, Insula- tors	Pkg. to avoid handling and shipping damage
Cct. Bkr. & Load Control Unit	8	20	160	6	5.26x10 ⁻²	54. 8	20	Fe, Cu, Al, St- Semiconductor Plastics	77#/cu ft Solid Metals, Insula- tors	Pkg. to avoid handling and shipping damage
Current Sensitive Element	8	1.5-	12	11	0.96x10 ⁻¹	11.5	12	Fe, Cu, Al, Si- Semiconductor Plastics	77#/cu ft Solid Metals, Insula- tors	Pkg. to avoid handling and shipping damage
Individual Line Cct. Bkr.	32	0.5	16	1997 1 997 - 1997 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997	0.88x10 ⁻²	1.4		Fe, Cu, Al Piastics	77#/cu ft Solid Metals, Insula- tors	Pkg. to avoid handling and shipping damage
Monitor Meters (DC)	2	0.5	1.0	0.5	0.44x10 ⁻²	0.04	0.5	Cu. Al. Fe. SiO ₂ . Piastics	77#/cu ft Solid Metals, Insula- tors	Pkg. to avoid handling and shipping damage
Monitor Meter Switches	2	0, 25	0.5	1	0.88x10 ⁻²	0.04	0.25	Fe, Cu, Al Plastics	77#/cu ft Solid Metals, Insula- tors	Pkg. to avoid handling and shipping damage
Remote Control Switches	8	0.25	2.0		0.88×10 ⁻²	0.18	0.25	Fe, Cu Plastics	77#/cu ft Solid Metals, Insula- tors	Pkg. to avoid handling and shipping damage
									· · · ·	
						1 -				
en de la contra de Ala					·					

REPUBLIC AVIATION DIVISION

2.2-32

15.

Study of Housekeeping Concepts For Manned Space

TABLE IL. CONSUMABLES/EXPENDABLES

Power Distribution System

Title: 120/208 Volt 3ø 400 Hertz Equipment

Doc. No. B-2.2.3.	1.1	Sheet No.	1
Operational Descri	ption No	. A-2.2.3.1	.1
Subsystem Fower	Distribu	tion System	
By: J.T. Torian	2	Date: 8/12/	70

	Consumable/Expendable	HOW	BASIC CONSTITUI:NTS	10 Yr. Total	Daily	Unit Weight	Average Density As	REMARKS
	ITEM	CONSUMED	CONSUME : D	lbs		lbs	Received Ibs/cu.ft.	
1.	Failed Cct. Bkr. & Ground Leakage Detector	Part Failure	Component Part	76.8	-	20	77	RTE
2.	Failed Cct. Bkr/Load Control Unit	Part Failure	Component Part	220	-	20	77	RTE
3.	Failed Current Sensitive Element	Part Failure	Component Part	30.3	-	1.5	77	RTE
4.	Failed Individual Live Cct. Breaker	Part Failure	Component Part	3.7	-	0.5	77	RTE
5.	Failed Monitor Meter (AC)	Part Failure	Component Part	0.04	-	0.5	77	RTE
6.	Failed Monitor Meter Switches	Part Failure	Component Part	0.04	-	0.5	77	RTE
7.	Failed Remote Control Switches	Part Failure	Component Part	0.47	-	0. 25	77	RTE
8.	Packaging for Replacement Parts	Environmental Integrity Destroyed	Internal Environ- ment Changed		-	-	5	Reuse for Returning Failed Items

ie P	υB	LIG	- e	NV IA	ric	. wav	01.0	1310	
		GOAL	ε.		1.51	A#0.		YORK	

2.2-33

litle	TABLE II. CONSUMPower Distribution Syst56 Volt - D		ABLES		Subsy		ower Distribu	$\frac{A-2}{2}, \frac{3}{3}, \frac{1}{1}, \frac{1}{1}$ tion System Date: $\frac{8}{12}/70$
	Consumable/Expendable	HOW CONSUMED	BASIC CONSTITUI:NTS	10 Yr. Total	Daily	Unit Weight	Average Density As Rcceived	REMARKS
		•	CONSUM :D	lbs		lbs	lbs/cu.ft.	
••	Failed Cct. Bkr. & Ground Leakage Detector	Part Failure	Component Part	76.8	_	20	77	RTE
1 	Failed Cct. Bkr. & Load Control Unit	Part Failure	Component Part	84.8		20	77	RTE
	Failed Current Sensitive Element	Part Failure	Component Part	11.5	-	12	77	RTE
•	Failed Individual Line Cct. Breaker	Part Failure	Component Part	1.4	-	0.5	77	RTE
	Failed Monitor Meters (DC)	Part Failure	Component Part	0.04	-	0.5	77	RTE
	Failed Monitor Meter Switches	Part Failure	Component Part	0.04	-	0.25	77	RTE
•	Failed Remote Control Switches	Part Failure	Component Part	0.18	-	0.25	77	RTE
	Fackaging for Replacement Parts	Environmental Integrity Destroyed	Internal Environ- ment	-	-	-	5	Reuse for Returning Failed Items

Title:

2.2-34

REPUBLIC AVIATION DIVISION

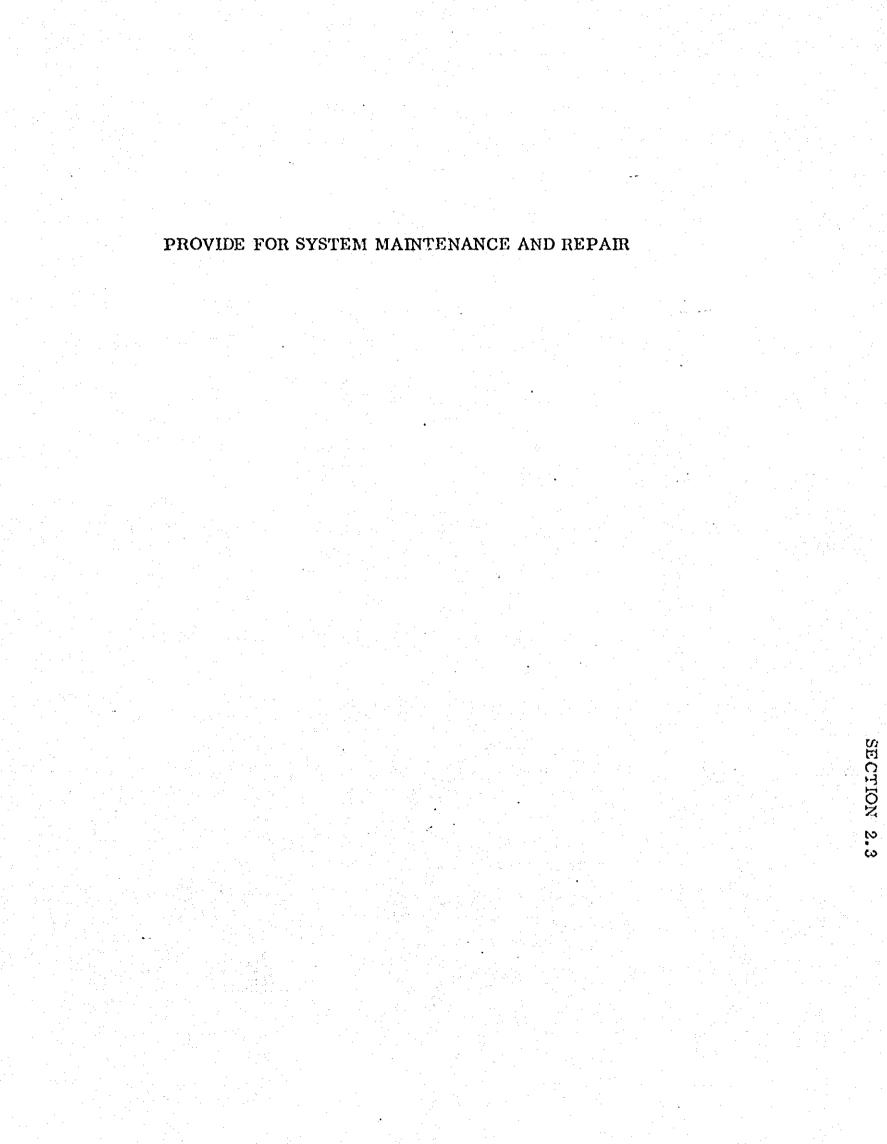
Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. Nc.C-2.2.3.1.1Sheet No.1Operational Description No.A-2.2.3.1.1SubsystemPower Distribution SystemBy:J.T. TorianDate: 8/12/70

Power Distribution System 120/208 Volt 3ø 400 Hertz Equipment

	WASTE ITEM	<u>Characteristics</u> State And Attributes	Chemical Composition	Ac ion Req ired To R :claim	10 Yr. Total Ibs	Daily	Unit Weight Ibs	Average Density As Received Ibs/cu.ft.	
1.	Failed Cct. Bkr. & Ground Leakage	Solid Metal RTE	Fe, Cu, Al Si, Semicond. Plastics	Repair	76.8	-	20	77	
2.	Detector Failed Cct. Bkr/Load Control Unit	Solid Metal RTE	Fe, Cu, Al Si, Semicond.	Repair	220	-	20	77	
3.	Failed Current Sensitive Element	Solid Metal RTE	Plastics Fe, Cu, Al Si, Semicond.	Repàir	30.3 ,	-	1.5	77	
4.	Failed Individual Line Cct. Breaker	Solid Metal RTE	Plastics Fe, Cu, Al Plastics	Replace	3.7	-	0.5	77	
5.	Failed Monitor Meter (AC)	Solid Metal RTE	Cu, Al, Fe, SiO ₂ , Plastics	Repair	0.04	-	0.5	77	
6.	Failed Monitor Meter Switches	Solid Metal RTE	Cu, Al, Fe, Plastics	Repair	0.04		0.25	77	
7.	Failed Remote Control Switches	Solid Metal RTE	Cu, Fe Plastics	Replace	0.47	-	0.25	77	
8.	Packaging for Replace- ment Parts	Solid Plastic RTE	Plastic Spong & Sheeting	Reuse as is	-	-	-	5	


È ...

2.2-35

÷ .

TAPH

BL#C A	Study of Housekeepin	or Concepts For	Manned Snace		De	oc. No.	C-2, 2, 3	.1.1 \$	sheet No.	2
· · · ·		E III. WASTES			O	perationa	l Descrip	otion No. A	-2.2.3.1.1	
Title	Power Distribu					ibsystem y: <u>J. T</u>			<u>ition System</u> Date: <u>8/12/70</u>)
	WASTE	Characteristic: State	5 Chemical Composition	Action Required	10 Yr. Total	Daily	Unit Weight	Average Density As Received	Remarks	3
	ITEM	And Attributes		To Reclaim	lbs		lbs	lbs/cu.ft.		
1.	Failed Cct. Bkr. & Ground Leakage Detector	Solid Metal . RTE	Fe, Cu, Al, Si Semicond. Plastics	Repair	76.8	-	20	77		
2.	Failed Cct. Bkr. & Load Control Unit	Solid Metal RTE	Fe, Cu, Al, Si Semicond. Flastics	Repair	84.8	<u> </u>	20	77		
3.	Failed Current Sensitive Element	Solid Metal RTE	Fe, Cu, Al, Si Semicond. Plastics	Repair	11.5		12	77		
4.	Failed Individual Line Cct. Breaker	Solid Metal RTE	Fe, Cu, Al, Plastics	Replace	1.4	-	0.5	77		
5.	Failed Monitor Meters (D. C.)	Solid Metal RTE	Cu, Al, Fe, SiO ₂ , Plastics	Repair	0.04	-	0.5	77		•
6.	Failed Monitor Meter Switches	Solid Metal RTE	Fe, Cu, Al, Plastics	Repair	0.04	-	0.25	77		
7.	Failed Remote Control Switches	Solid Metal RTE	Fe, Cu, Plastics	Replace	0.18	-	0.25	77		
8.	Packaging for Replace- ment Parts	Solid Plastic RTE	Plastic Spong & Sheeting	Reuse as is	-	-		5		

TABLE OF CONTENTS

Document		· · · · ·	
Number	Title		 Page
2.3.1.1.1	Structural Maintenance		2.3-1
2.3.1.2.1	Avionics Systems Maintenance		2.3-0
2.3.1.3.1	Utilities Maintenance		2.3-9

Doc. No. A-2.3.1.1.1 Sheet No. 1 By: J.S. Whyte Date: 8 September 1970

OPERATIONAL DESCRIPTION

TITLE:

Structural Maintenance

OBJECTIVE:

To define the structural type waste associated with room partitioning and structural maintenance and repair on spacecraft in orbit.

RATIONALE:

A. Partitions

Multi-manned space orbiting vehicles will have as their purpose the performance of many different types of tasks. Accommodations for compartmental changes to quickly comply with new requirements will be designed. The various layouts will be provided for in the basic design with fixed female attachments preinstalled. Moving of the facilities in this manner does not indicate that any consumables, expendables or waste products will result. The necessary hand tools will be ship stored in maintenance lockers and will probably be reusable indefinately. The weightlessness of space plus designing for space will minimize the wear and breaking of fasteners or even damaging the threads, therefore, only a one piece spare contingency for fasteners seems necessary. This is assumed as 10 fasteners/wall, 5 walls/deck, 2decks alterable.

Interiors are being designed utilizing metal surfaces treated to produce corrosion and wear protection. Present plans indicate that surfaces are not to be painted. Therefore, there will be no need to establish resurface treatments with their attendant supplies. Stainless steels and aluminum do, however, discolor with age and will need some cleaning to enhance their appearance. A quarterly clean wipe down with an approved paper towel or automated sponge mop (see A-1.4.5.2.1) wetted in a detergent water solution will accomplish this and not create outgassing atmospheric contamination nor increase the potential for fire. It is estimated that two heavy duty towels (0.25 lbs.each) or sponges and one percent by weight of a detergent per gallon of water will be required per deck, once per quarter - five cleanable decks are assumed for an average spacecraft.

Doc. No. A-2.3.1.1.1 Sheet No. 2 By: J.S. Whyte Date: 8 September 1970

B. Structural (including external items)

The vacuum of space, lack of propellant gas blast and materials selections will minimize the need for exterior structural care. Deteriorated or damaged antenna and solar cell panels, beyond acceptable tolerance, will be returned to earth as scrap, as it is inadvisable to undertake their repair or resurfacing in space. Optical cleanliness will require wiping with a detergent cleaner and lint free towelling if the optics can be brought indoors for cleaning. Cleaning by some EVA techniques are possible but not considered wise.

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

In the event of punctures in the pressure wall, it would be advisable to perform a fix immediately. Repairs can be affected by patching on the pressure side, using fiberglass cloth and a self actuating structural bonding agent. The average size fiberglass patch is assumed at 0.25 lbs. and it is assumed that the rate of usage would be around five a year average.

Structural damage such as distortion or fracture has been analysed and discounted. The reasoning is that structural design is predicted upon launching loads which far exceed the anticipated survivable in-orbit loadings.

The inflatable seals, as installed, will have a one or two unit redundancy which allows for adequate safety margin between supply missione, negating unschedule. maintenance or repair requirements. Scheduled bi-annual maintenance on seals appears warranted at this point for each of two 5 foot diameter seals. The components for docking (latching mechanisms), such as shock absorbers and alignment gear, is envisioned to be spring loaded and dry lubricated, as opposed to fluid operated, to minimize maintenance and reduce in-orbit maintenance requirements. Scheduled maintenance routines on a yearly basis will probably apply to each of the latching mechanisms or major mechanical assemblies therefrom. Twenty-four manhours per month are estimated to perform the aforementioned tasks.

Documents B-2.3.1.1.1 and C-2.3.1.1.1 summarize the anticipated expendables, consumables and waste products.

Doc. No. A-2.3.1.1.1 Sheet No. 3 By: J.S. Whyte Date: 8 September 1970

REFERENCES:

AIAA Paper No. 69-1062, Space Station Operations; Requirements and Interactions. Fritz C. Runge, McDefanell Douglas Astronautics Co.

ASD-TDR-62-1015, Repair of Leaks in an Aerospace Environment, AFSC Wright-Patterson AFB, Ohio. (Project No. 8170, Task No. 817005).

N63-18867, Self-Sealing Spacecraft Structures in the Meteoroid Environment. Northrup Space Laboratories No. NSL63-64, April 1963, James J. Piechocki

ARS Paper 2543-62, Metrotoid Protection for Space Radiators. I. J. Loeffler, S. Lieblien, and N. Clough, NASA Lewis Research Center, Cleveland, Ohio, 1962. FAIRCHIL D HILLER REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No.B-2.3.1.1.1Sheet No.1Operational Description No.A-2.3.1.1.1Subsystem Maintenance FacilitiesBy:J.S.WhyteDate:8/25/70

Title: Structural Maintenance

Consumable/Expendable ITEM	HOW CONSUME D	BASIC CONSTITUENTS CONSUME D	10 Yr. Total Ibs.	Daily Rate Ibs/day	Unit Weight Ibs.	Average Density As Received lbs/cu.ft.	REMARKS
Towel/Sponge	Soiled	Freshness	10		. 25	8.0	
Wash Water	Soiled	Freshness	300		7.5	62.4	
Powdered Detergent	In Solution	Phosphate	30		0.08	60.0	
Male Slide Fasteners	Wear	Life	25		0.25	500	
Glass Cloth Patch	As A Scab Patch	Availability	12.5		0.25	100	
Airlock Seals	Worn	Life	400		10.0	40.0	
Airlock Latching M shanisms	Worn	Life	1000	•	50.0	200.0	
Antennas & Solar Cells	Surface Deterioration	Surface Integrity		V DE T E	MINAN	T	

2.3-5

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No.C-2.3.1.1.1Sheet No.1Operational Description No.A-2.3.1.1.1SubsystemMaintenance FacilitiesBy:J.S.WhyteDate:8/25/70

Title: Structural Maintenance

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim	10 Yr. Total lbs.	Daily Rate lbs/day		Average Density As Received lbs/cu.ft.	
Towel/Sponge	Solid, Soiled, Textile Sheet	Cellulose	Wash	10		0.25	8.0	
Containers For Detergent	Solid, Plastic Box		Reuseable By Refilling	.5		.5	5.0	•
H ₂ O	Liquid, Soiled	H ₂ O + Detergent	Filter	300		7.5	62.5	
Partition Fasteners	Solid, Metal	Ni, Cr, Fe	N/A	25		. 25	500	
Antennas And Solar Cells	Solid, Metal, Large, Bulky	Al, Fe, Selenium, Cu Borosilicates						
Glass Cloth Patch Separators	Solid, Plastic Inert, Sheet	Teflon	N/R	12.5		0.25	65	
Worn Airlock Seals	Solid, Plastic, Tubular	Rubber	N/R	400		10.0	40	
Worn Airlock Latch Mechanism Assemblies	Solid, Metal Heavy	Fe	Overhaul	1000		50.0	200	
				•				

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Doc. No. A-2.3.1.2.1 Sheet No. 1 By: J.S. Whyte Date: 4 September 1970

OPERATIONAL DESCRIPTION

TITLE: Avionics Systems Maintenance

<u>**OBJECTIVE:**</u>

To define the potential waste resulting from the maintenance and repair of the on-board avionics subsystem including: Communications; Navigation and Guidance, Stabilization and Control; associated propulsion interface valving.

RATIONALE:

A. Avionics

All components of the avionics subsystems are expected to have reliability, back up redundancy and shuttle resupply so as to preclude in-orbit maintenance, except in emergency situations. Repair is not intended, just removal and replacement, or bridging, and returning defective units to earth for analysis and disposition.

Interchanging units will be accomplished using hand tools supplied at time of initial launching. The failed components, probably red tagged, will replace the new unit in its stock bin.

Push then screw-in electrical connectors, with a positive lock feature, can be disconnected or connected by hand, eliminating the need of accessory implements.

Some intercomponent rewiring or contact repair is to be expected, requiring a wire cutter, solderless crimping kit and spare wire/s for jumping the harness. Two kits and one spool of each guage of wire will be required for a 12 man mission; five kits and two spools for 50 men, and ten kits and 5 spools for the 100 man base providing also for modules. Heat shrinkable insulators are part of the kit and will require a heat source. A standard hair dryer type is advised since it can be used for multi-duty purposes such as, accelerated epoxy airing or hair drying. One will be sufficient for 12 men, two for 50 and five for 100 man mission.

2.3-6

Doc. No. A-2.3.1.2.1 Sheet No. 2 By: J.S. Whyte Date 4 September 1970

B. Propulsion Interface Valving

With break-open fluid lines proposed in the first reference for in-flight maintenance on fluid lines carrying toxic fluids and the resulting potential hazard to the entire crew, a preventative proposal seems in order. It is recommended that each interface valve of the toxic lines have the repairable fittings encased in a sealing flexible boot chamber on both ends for easy removal by hand tools. In addition, the boot should be equipped with a sensor/warning device and adapter host to vacuum. An additional benefit would be that only one portable breathing apparatus is needed for the maintenance man, in each compartment; the sealed boot around each removable fitting obviates the need for standby oxygen masks for the whole area crew complement.

Tubing maintenance, as a plumbing requirement, and filter control under general maintenance is provided for in Document A-2.3.1.3.1.

C. Summary

A list of anticipated expendables, consumables and waste products are specified in Table I without quantitative data. Recognizing that the performance of these tasks will occur sporatically, it is difficult at this time to estimate waste rates or man-hour expenditures for these maintenance tasks. It must suffice to say that on a 12 man crew the task will be accomplished, when required, by the individual/s trained in the respective area. On 50 and 100 man complements, a maintenance division with subsystem maintenance assignments are forseen with probably one-quarter of their working schedule devoted to preventative maintenance tasks.

TABLE I. Avionics Systems Waste Analysis

Consumable/Expendable

Electric wire crump and splice tool
Various gauges electric cables

- Solderless splice, terminal kits
- Shrinkable sleeve insulators
- Fluid line seals
- Tubing material
- Tube cutting, forming, tightening tools
- Original cartons and packaging
- O₂ for safety masks

Associated Wastes

Wire and insulation remnants Old wire, cables, spent spools and wire packaging

Terminal remnants

Insulation and tape remnants

Fluid line remnants, plastic and and metal tubing ends, seal covers

Wastę packaging CO₂

Doc. No. A-2.3.1.2.1 Sheet No. 3 By: J.S. Whyte Date: 4 September 1970

REFERENCES:

Study of Space Station Propulsion System Resupply and Repair. By Victor A. Des Camp, Martin Marietta Corp., Denver, Colorado, January 1970. N70-22830

Selecting Between Redundancy And Re, air In Manned Spacecraft. Memorandum RM-4325-NASA, The Rand Corporation, Santa Monica, California, Sept. 1964.

The Requirement For Maintainable Electronics On Long Duration Manned Space Missions. By M.L. Johnson, AIAA Paper A70-24895

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Doc. No. A-2.3.1.3.1 Sheet No. 1 By: J.S. Whyte Date: 10 September 1970

OPERATIONAL DESCRIPTION

TITLE: Utilities Maintenance

OBJECTIVE:

To define the potential waste that results during the course of maintaining or repairing the utilities of spacecrafts in orbit. These utilities include the plumbing, electrical, heating, airconditioning, machine shop, space suits and other general spacecraft support systems.

RATIONALE:

Every effort is being applied to design and establish each mission; 12, 50 or 100 man to perform maintenance free. Systems, sub-systems, components and details will be scrutinized minutely to assure space bound reliability with long life. The maintenance and repair demands then become minimal and probably nonexistant for the relatively short duration 12 man excursion. Therefore, this analysis will provide little in the way of maintenance provisioning on the workshop missions.

However, the extended flight duration of space stations and bases require acknowledging the probability that difficulties will occur. Also, man performed, spontaneous or scheduled, inspections will be needed to keep things flowing. An example would be the proposed endless belt style waste handling system. It may prove beneficial to replace some items, such as human waste facilities, periodically perhaps to coincide with a supply mission. These and many other "ifs" or "maybes" generate the need to resolve the needs of a capability to cope with routine and potentially serious troubles.

An earth parallel for this capability would be an office building. The maintenance control center usually occupies a designated area with all equipment therein stocked. Schedules are posted and emergency calls flow through with trained personnel dispatched to the fault area. The confines of a spacecraft will not permit the luxury of an equivalent set-up. Therefore, a scaled down version is visualized with the overall maintenance capability established on the space ships control deck, thereby tying in this function with command for rapid coordination, diagnosis, prognosis and rectification.

2.3-9

Doc. No. A-2.3.1.3.1 Sheet No. 2 By: J.S. Whyte Date: 10 September 1970

A. Plumbing

In general, the plumbing system will survive any anticipated mission duration without serious deficiencies. However, this should not discount having a maintenance and repair facility in readiness. For leaks; a two piece, bolted elastomer lined clamp, to fit over the point of leakage will provide a permanent, easily installed, light weight, small volume fix,

Valving of all types, ball, gate, check, pressure regulator, directional control, etc., will no doubt, be durable, but may require some servicing, especially if tight closure is required. It is expected that they will be of high quality with metal/metal, honed seating, and seals. A routine inspection frequency will have to be followed to check for leakage or to operate valves that are not normally actuated routinely. Gland tightening should be accomplishable using an adjustable hand wrench. It is possible that some valve replacement may be necessary. To achieve this, the appropriate experience gained from modulated exothermic tube brazing experiments performed on the Orbital Workshop, (Manufacturing and Process experiments - Document A-3.6.1.1.1), could be applied. An alternate to the brazed fittings are "cryofittings" where nickel/ titanium fittings are stored in liquid N₂ in an expanded state. After placement on tubing and allowed to return to room temperature, the fitting shrink-fits in place to form a pressure tight assembly. Valves and other components can be fastened in this manner. For disassembly, saturating the area with liquid N_2 in a rag allows the fitting to loosen and be removed. A conventional hand wheel type cutter is recommended for cutting o tubing to size.

B. Electrical

Electrical maintenance in the main requires that uninterrupted power be available at all locations implying the care of generators, control apparatus, power transmittion lines, circuitry, circuit control and electric drives. Once again, a routine inspection schedule is indicated with special attention given to the least used devices.

Even with the stated concept of limitating maintenance to "remove and replace" supported by back-up redundant components, there will always be the need for some "on the spot" repairs. Cannabalizing defective parts is the most likely means by which fixing will be attempted so that tooling kits should be supplied, if not already provided for other purposes. Portable VTVM, ohmmeters, wattmeters, etc. compact and light in weight should be available as a portable instrumentation package.

Doc. No. A-2.3.1.3.1 Sheet No. 3 By: J.S. Whyte Date: 10 September 1970

As pointed out previously, some in-orbit wiring is inevitable. A stock of wire, wiremold, wire raceway strips, 45° and 90° elbows and outlets with the wiremold held down using self-tapping screws or other convenient fasteners. Conduit tubing would require bending tools and other tools that would tend to disqualify its use except in very special cases. Many reasons direct the selection of wire mold; wire is not integral and can be used for many purposes, storing is easier, visual wire inspection at any point, etc.

Bulbs will probably be a specification controlled item with long life requirements, but some replacement needs must be expected. Waste disposal of the bulb material and gas fill as well as accidental breakage are some of the problems. Incandescent or fluorescent style sockets do have a tendency to require some replacement or adjustment after a prolonged period. Minimum on-board socket spares need be carried since the logistic shuttle schedule can supply these needs without inconvenience.

It is anticipated that electrical connectors of the most advanced types with installations requiring hand action only and positive locking acknowledgement by feel or sound will be used; therefore, there should be little difficulty from these parts. Spares of the connectors and cable rewiring will be minimized with switch-over redundancy incorporated where critical networks exist. Some rewiring will, however, come about so that solderless terminal and connector kits as well as cabling and wire will be required to be stocked. Wire specified in Document A-2.3.1.2.1 should serve this general purpose also. As major modification programs become necessary, the shuttle should supply all additional provisions. Motors, generators, relays, thermostats, rheostats, circuit breakers, time delay switches, etc., when defective, are to be returned to earth for failure analysis and disposition even if first cannabalized.

Electric power generators, in whatever form eventually used, will, in all likelyhood, support the entire 12 man flight duration. For the 50 and 100 man flight, unless great progress is made in simplifying and thereby improving the expected life of the generator, a contingency for in-orbit replacement seems in order. This applies even if a redundant unit is on stand-by and is alternately sharing the load and life cycle. It is expected that the base will be outfitted to accept an external plug-in from a shuttle craft during the replacement period. In talking about power generation, it occurs that demand factors increase as time passes. Consideration of this demand growth should be provided for.

Doc. No. A-2.3.1.3.1 Sheet No. 4 By: J.S. Whyte Date: 10 September 1970

Ladders, scaffolding and platform requirements in the areas subjected to artificial gravity will be built in, thereby minimizing the need to store and transport these maintenance aids from area to area.

C. Heating

Solar radiation will undoubtedly be the source for heating the various in-orbit spacecrafts. The radiation will be collected by radiators and stored in a fluid medium which will be circulated to the required areas. The heated medium will be compounded to prevent any foresceable deterioration and provide efficient operation for the first year of for small stations. Conversely, draining and resupply of the fluid and inhibitors will be required bi-annually for the larger, longer duration orbitting stations. Provisions for material or fluid breakdown and sediment formation must be provided in the form of filter traps strategically located. Sensing units to determine viscosity, particle, suspension quantity, heat or temperature, and flow will establish the method of control. Depending upon the degree of sophistication, additives can be automatically or manually metered requiring, in either case, expendables. The other components of an operating heat source will be maintained by the same personnel maintaining the plumbing or electrical systems.

D. Air Conditioning

Air conditioning systems which make use of mechanical or absorption type refrigeration may require periodic refrigerant recharging. Refrigerant losses will undoubtedly be slow leaks, rather than catastrophic. These leaks will impose a load on the atmospheric trace contaminant control system.

Recognizing the versitility requirements of spacecraft design and the feasibility of having individual, modulated air conditioning units, it only seems fitting that each compartment be self-equipped. From the maintenance viewpoint, periodic checks of all units should be made to assure efficiency and continued operation. Some control components, such as rheostats, should be carried as spares due to the abuse usually imposed on them. Continued operation is very desirable. Also, a few spare units, kept in the maintenance facilities, will be instrumental in minimizing local discomfort. Otherwise, there will be no need for other expendables, consumables, nor waste definitions. Defective units are to be stored in the maintenance area to await analysis, repair, cannabalization or return to earth.

Doc. No. A-2.3.1.3.1 Sheet No. 5 By: J.S. Whyte Date: 10 September 1970

E. Machine Shop

It may be decided upon to have some machine shop facilities on board a space base. From the raw material stock, a myriod of detail parts can be made upon demand, allowing a spares trade-off. Should this be the case, chips, cutting oils, solvents, wiping cloths, clothing, worn tools and the like, form waste items that have to be disposed of. Chips could be resmelted for reuse, oil from cutting and squeeze outs from rags would be reusable after fine filtering. The wipes may be cleanable or disposable. Tool sharpening and part grinding will create atmospheric contamination unless the whole area is "control airflow flooded" when in operation.

Pump impellers should not be a cause of repair; however, shaft bushings, when intermittantly operated, will need some maintenance. Spare undersized I.D. bushings are suggested for replacement purposes along with a flexible holder and single point cutter to undercut the shaft in place; if machine shop facilities are not available or convenient.

F. Space Suits

Space suits are really considered to be part of the general maintenance concern, but is broken out for emphasis.

The life support packages attached to the suit are to be maintained by the respective utility maintenance group. The polycarbinate head globe may receive some scratches that will have to be polished out and yet maintain optical quality. Tooth paste is a perfectly good abrasive for this job and a simple grid screen can be applied to determine if the optical quality is acceptable.

Damaged outer reflective film can be patched with an equivalent high/low temperature, pressure sensitive, adhesive backed tape.

Repairs to the suit's main fabric is not advisable considering the intricacies of design requirements incorporated therein.

G. General Maintenance

General maintenance relates to those operational functions not normally performed by any one of the utility groups. Bulb changing, lubrication, if required, duct cleaning, surface restoration, instrument calibration are a few examples of tasks

2.3-13

Doc. No. A-2.3.1.3.1 Sheet No. 6 By: J.S. Whyte Date: 10 September 1970

performed be a general maintenance group. Inventory control and ordering of supplies would, in orbit, be a requirement of this area.

FAIRCHILD HILLER

Table I lists the anticipated consumables/expendables and waste products respectively, that were determined from this review. Quantification data is omitted due to a lack of operating definition and experience in these areas.

TABLE I. Waste Analysis

Consumable/Expendable

- Plumbing repair clamp kits
- Cryofittings, liquid N₂
- Assorted valves and valve parts
- Modulated exothermic brazing fittings
- Plumbing tools (wrench, cuttors, formers)
- Machine tools
- Bar stock
- Cutting lubricant
- Motor and pump bearings and bushings
- Light bulbs
- Assorted wiring aids
- Refrigerants
- Solvents
- Space suit maintenance kit

Clamp holder, seal covers Gaseous N₂, cartons, rags Worn seats and scals Outgassing residues Tube ends, filings

Resulting Wastes

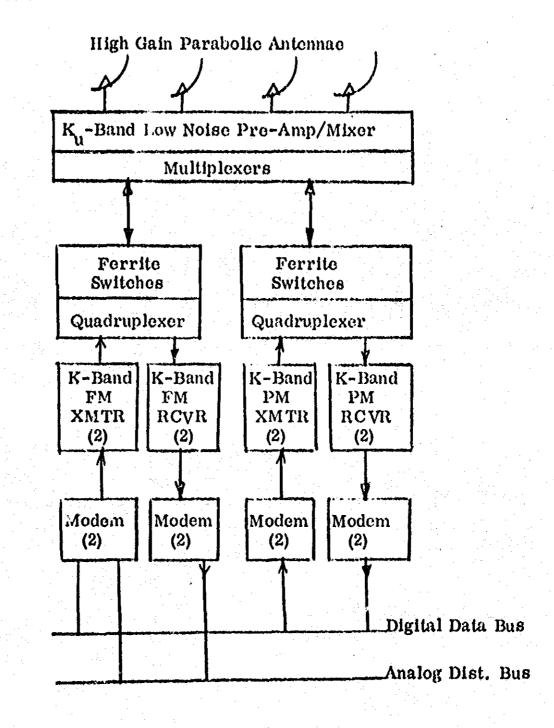
Chips and oil, cutting tools, wipes

Worn packings, bearings Expended bulbs Wiring reminants Atmospheric contaminants Atmospheric contaminants Seals, visor polish and reflector coating residues

PROVIDE COMMUNICATION AND NAVIGATION

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

TABLE OF CONTENTS


Documont Number	Title	Page
2.4.1.1.1	To and From Ground – Data Relay Space Satellites (Communications)	2.4-1
2.4.1.2.1	To and From Ground Direct (Communications)	2.4-7
2.4.2.1.1	To and From Experiment Modules (Communications)	2.4-12
2.4.2.2.1	To and From Space Station Shuttle (Communications)	2.4-18
2.4.2.3.1	Extra Vehicular Communications	2.4-23
2,4,3,1,1	Onboard Communications	2.4 -28

Doc. No. A-2.4.1.1.1 Sheet No. 1 By: J. Torian Date: 28 August 1970

OPERATIONAL DESCRIPTION

TITLE: To and From Ground - Data Relay Space Satellites (Communications)

SCHEMATIC DIAGRAM:

Figure 1. Communications to and from Ground Via DRSS

Doc. No. A-2.4.1.1.1 Sheet No. 2 By: J. Torian Date: 28 August 1970

OPERATIONAL DESCRIPTION

TITLE: Communications; To and From Ground Via Data Relay Space Stiellites

RATIONALE:

The system is predicated on the baseline capability of:

- a) Simultaneously receiving two K_u-Band signals demodulating up to 120 Kbps of PSK digital data on a PM subcarrier, and providing one of the data streams as an output to the high speed digital data bus.
- b) Simultaneously transmitting two K_u-Band signals and PM modulating the carrier with subcarrier which is PSK modulated by up to 120 Kbps of digital data being received by the subsystem from the high speed digital data bus,
- c) Simultaneously receiving two K_u-Band signals, demodulating the frequency multiplexed video, wideband audio, and telephone channels frequency modulating the carrier, and providing the outputs to the appropriate-storage, monitor, and telephone terminals on the Space Station.
- d) Simultaneously transmitting two K_u-Band signals and FM modulating the carrier with a composite frequency multiplexed signal consisting of multiple audio channels and a video channel of subcarriers which are PSK modulated by digital data. The signals may originate from terminals on board the Space Station or from external radio-linked sources.
- c) Detecting amplitude modulation on the K_u-Band signal described above, produced by quadrature lobe switching of the high gain antenna patterns, and providing antenna tracking.

REFERENCES:

Communication Subsystem-Preliminary Design Sheet for Space Station Program McDonnell Douglas Corp.

Weight, Volume and Reliability Tables for the Equipments comprising the Space Station Communications Subsystem - Collins Radio Company letter dated May 18, 1970.

MSFC-DRL-160 Line Item 13 Preliminary Systems Design Data Volume 1, Space Station Preliminary Design Book 2, Electronics MDC 60634

TABLE 1. AVIONICS WASTE ANALYSIS

Doc. No. A-2.4.1.1.1 Sheet No. 3 By: J. Torian Date: 28 August 1970

SUBSTSTEM: COMMUNICATIONS; TO AND FROM GROUND VIA DATA RELAY SPACE SATELLITES

PM Transmitter 2 2.5 5 2.3 2×10^{-2} 1.0 2.5 Al. Cu. Fe. Plastic Si-Semiconductor Insulation 96#/cu. ft. solid. Metals, Insulation Pkg to Avoid Handling and Shipping Damage PM Transmitter 2 2.5 5 2.3 2×10^{-2} 1.0 2.5 Al. Cu. Plastic. Si-Semiconductor Insulation Netals, Insulation Shipping Damage Ku Band PM 2 10 20 1.6 1.4 x 10-2 2.8 10 Al. Cu. Plastic, T2 #/cu. ft. solid. Netals, Insulation Pkg to Avoid Handling and Shipping Damage Receiver 10 20 1.6 1.4 x 10-2 2.8 10 Al. Cu. Plastic, T2 #/cu. ft. solid. Netals, Insulation Pkg to Avoid Handling and Shipping Damage	فسنعاف سينجر ومستاب المراجع والتقوي والمتقاع والتقاعي والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد وال				والمراجع المتحد والقريب المتقاد والمتحد والمتحد						
Fred and I collignerI.OI.OI.O 37 32×10^{-2} 1408 440 $Al_{\rm Cu}, Fe,$ Plastic $50/(m, f, solid,$ Neth, solid, Neth, solid, <th></th> <th>of</th> <th>per</th> <th>Weight</th> <th>Rate</th> <th>Failures</th> <th>WL Fer</th> <th>Load Rate</th> <th>Chemical Composition</th> <th>Physical Characteristics</th> <th>Special Handling</th>		of	per	Weight	Rate	Failures	WL Fer	Load Rate	Chemical Composition	Physical Characteristics	Special Handling
K. Band Preamp Mater/Miklear420801.3 11×10^{-3} 8.820Al. Cu, Fe, to SemiconducInstitutionPart to Avoid Handling and Suppling DamageK. Band Perrite Switches and Qual-mplemers R. Band Pri R. Band Pri 22255013.6 11.9×10^{-2} 6025Al. Cu, Fe, to Avoid Handling and Suppling DamagePig to Avoid Handling and Suppling DamagePM Treasentitier Receiver Receiver Modern210203.8 3.3×10^{-2} 6025Al. Cu, Fe, to Avoid Handling and Suppling DamagePig to Avoid Handling and 	Feed and Fostitioner		110	440	37	32 x 10 ⁻²	1408	440	Al, Cu, Fe Plastic	50#/cu.fl. solid. Netals,	RTE for Repair and Determ-
V_Band Perrice Switches and Quadrup/kerrs46240.7 5×10^{-3} 1.46Mail Con, Pianiconduc- More Plantic Mailing and Supping DamageNumber of the second Mailing and Supping DamageV_Band FM Quadrup/kerrs Quadrup/kerrs R_Band FM Traismitter2255013.6 11.9×10^{-2} 6025Al. Cu. Fe, 	K Band Preamp Mixer/Multiplexer	4	20	80	1.3	21 x 10 ⁻³	3.8	20	Al, Cu, Fe,]	
Quadrup lexers Sighted FM Sighted FM 2 25 50 13.6 11.9 x 10 ⁻² 60 25 Al. Cu. Fe. 1099/cu. ft. solid. Metals. Insulation Pig to Avoid Handling and Supping Damage FM Transmitter 2 10 20 3.8 3.3 x 10 ⁻² 6.6 10 Al. Cu. Fe. 1099/cu. ft. solid. 	KeBand Ferrie	4	6	24		3			Si-Semicononc-	Metals.	Shipping Damage
Registed FM Transmitter2255013.611.9 x 10^{-2}6025Al. Cu. Fe. Methics Semiconductor, CeramicsIdentitionPkg to Avoid Handling and Supping DamagePM Transmitter Roceber210203.83.3 x 10^{-2}6.610Al. Cu. Flastic Semiconductor, Ceramics589/cu. fl. solid, Netals, InsulationPkg to Avoid Handling and Supping DamageFM Transmitter Roceber210201.41.2 x 10^{-2}2.410Al. Cu. Plastic Simpling DamagePkg to Avoid Handling and Supping DamageFM Receiver Modem25102.21.9 x 10^{-2}1.95Al. Cu. Plastic Simpling DamagePkg to Avoid Handling and Supping DamageFM Receiver Modem25102.21.9 x 10^{-2}1.95Al. Cu. Plastic Simpling DamagePkg to Avoid Handling and Supping DamageFM Receiver Modem216201.21.1 x 10^{-2}2.210Al. Cu. Plastic Simpling DamagePkg to Avoid Handling and Supping DamageFM Transmitter Modem22.552.32 x 10^{-2}1.02.5Al. Cu. Plastic, Simpling DamageFM Transmitter Modem210201.61.4 x 10^{-2}2.810Al. Cu. Plastic, Simpling DamageFM Transmitter Modem210201.61.4 x 10^{-2}2.810Al. Cu. Plastic, Simpling DamageFM Receiver Modem2 <th>Quadroplexers</th> <th></th> <th></th> <th></th> <th>V.7</th> <th>5 X 10 ~</th> <th>1,4</th> <th>5</th> <th>Al, Cu, Fe Plastic</th> <th>Metals_</th> <th>Pkg to Avoid Bandling and</th>	Quadroplexers				V.7	5 X 10 ~	1,4	5	Al, Cu, Fe Plastic	Metals_	Pkg to Avoid Bandling and
PM Transmitter210203.8 3.3×10^{-2} 6.610Al. Cu, Fe., Semiconductor, CeramicsDisplaying DamagePkg to Avoid Handling and Shipping DamageReceiver210203.8 3.3×10^{-2} 6.610Al. Cu, PlasticSid/Cu. ft. solid, Neals, InsulationPkg to Avoid Handling and Shipping DamageReceiver210201.4 1.2×10^{-2} 2.410Al. Cu, PlasticSid/Cu. ft. solid, Neals, InsulationPM Receiver Modem25102.2 1.9×10^{-2} 1.95Al. Cu, PlasticSid/Cu. ft. solid, Sidping DamageFM Receiver Modem25102.2 1.9×10^{-2} 1.95Al. Cu, PlasticSid/Cu. ft. solid, Sidping DamageFM Receiver Modem216201.2 1.1×10^{-2} 2.210Al. Cu, PlasticSid/Cu. ft. solid, Sidping DamageFM Transmitter216201.2 1.1×10^{-2} 2.210Al. Cu, Plastic, Sid/Cu. ft. solid, Sidping DamagePM Transmitter22.552.3 10^{-2} 1.02.5Al. Cu, Plastic, Sid/Cu. ft. solid, Sidping DamageNodem210201.6 1.4×10^{-2} 2.810Al. Cu, Plastic, Ti solid, Sidping DamagePM Transmitter210201.6 1.4×10^{-2} 2.810Al. Cu, Plastic, Ti solid, Sidping DamageNodem25103.8 3.3×10^{-2} 3.35 </th <th></th> <th>2</th> <th>25</th> <th>50</th> <th>13.6</th> <th>11.0 - 10-2</th> <th>1</th> <th></th> <th></th> <th></th> <th></th>		2	25	50	13.6	11.0 - 10-2	1				
FM Transmitter Modem210203.83.3 x 10^{-2}6.610Al. Cr. Plastic Sigler. ft. solid. Metals, 							50	25	Plastic SI-	وتلفقها كالاته	Pkg to Avoid Handling and Shipping Damage
K_{u} Band FM210201.4 1.2×10^{-2} 2.410Al, Cu, Plastic Si-Semicondec.Metals, InsulationSupring DamageFM Receiver2510 2.2 1.9×10^{-2} 2.410Al, Cu, Plastic Si-Semicondec.Metals, 		2	10	20	3, 8	3.3 x 10 ⁻²	6.6	10	Ceramics Al. Co. Plastic		Pow to build the sti
FM Receiver Modem2510 2.2 1.9×10^{-2} 1.95Al. Cu. Plastic Si-Semicondec.Netals, InsulationPhy to Avoid Handling and Shipping DamageKuBsod PM21620 1.2 1.1×10^{-2} 2.210Al. Cu. Plastic 		2	10	20	1.4	$1.2 - 10^{-2}$			SI-Semiconduc.	Metals, Insulation	Shipping Damage
KuBsod PM216201.21.9 x 10 21.95Al. Cu. Plastic Si-Semiconduc.Sistering Metals, InsultationPhy to Ave filtering and 		2	4				Z.4	10	Al. Cu. Plastic Si-Semiconduc.	Metals,	Picy to Avoid Handling and Shipping Damage
Rumanistic216201.21.1 x 10^{-2}2.210AL Cu, Fe. Plastic SI- SemiconductorSef/cu. ft. solid. Metals, InsulationPkg to Avoid Mandling and Shipping DamagePM Transmitter22.552.32 x 10^{-2}1.02.5AL Cu, Fe. Plastic SI- 			.	10	2.2	1.9 x 10 ⁻²	1.9		Al, Cu, Pizatic Si-Semiconduc.	58#/cn. ft. solid, Metals,	Phy to Ave Standing and Shipping Damage
PM Transmitter 2 2.5 5 2.3 2×10^{-2} 1.0 2.5 Al. Cu, Plastic, Netals, Insulation Display to Avoid Handling and Shipping Damage Modem 2 10 20 1.6 1.4 x 10-2 2.8 10 Al. Cu, Plastic, Netals, Insulation Pkg to Avoid Handling and Shipping Damage PM Receiver 2 5 10 3.8 3.3 x 10-2 3.3 5 Al. Cu, Plastic, 58#/cu, ft. solid, Shipping Damage Pkg. to Avoid Handling and Shipping Damage	KuBrod PM Traumitter	2	16	20	1.2	² .1 x 10 ⁻²	2.2		Al, Cu, Fe. Plastic St-	96#/cu. ft. solid	Pkg to Avoid Padling and
Ku Band PM 2 10 20 1.6 1.4 x 10-2 2.8 10 Al, Cu, Plastic, T2 #/cu, ft, solid, Shipping Damage Pkg to Avoid Handling and Shipping Damage Receiver PM Receiver Modem 2 5 10 3.8 3.3 x 10-2 3.3 5 Al, Cu, Plastic, 58#/cu, ft, solid, Pkg, to Avoid Handling and Shipping Damage	PM Transmitter	2	2.5	5		-2			Semiconcietor		Shipping Damage
Kn Band PM 2 10 20 1.6 1.4 x 10-2 2.8 10 Al. Cu. Plastic, 72 #/cu. ft. solid, Netals, Si-Semiconduc. Pkg to Avoid Handling and Si-Semiconduc. PM Receiver Modern 2 5 10 3.8 3.3 x 10-2 3.3 5 Al. Cu. Plastic, 55#/cu. ft. solid, Pkg. to Avoid Handling and Si-Semiconduc. Si-S	Xodem				4, 3	¢ X 10 -	1.0		SI-Semiconduc.	Metals.	Pkg to Avoid Handling and Shipping Damage
PM Receiver Modern 2 5 10 3.8 3.3 x 10-2 3.3 5 Al. Cu. Plastic, 58#/cu. ft. solid, Pkg. to Avoid Handling and	K _u Band PM Receiver	2	10	20	1.6	1.4 x 10-2	2.8	10	Al. Co. Plastic,	nsulation 72#/cu. ft. solid.	Pkg to Avoid Handling and
and we washed a solid, pkg. to Avoid Handling and	PX Receiver Modern	2	5	10	3.8	3.3 x 10-2	3.3			losulation	Shipping Damage
										Metals, Insulation	Pkg. to Avoid Handling and Shipping Damage

۳.

REPUBLIC AVIATION DIVISION

2.4-0

Study of Housekeeping Concepts For Manned Space

TABLE IL CONSUMABLES/EXPENDABLES

Doc. No. <u>B-2.4.1.1.1</u>	_ Sheet 1	No	1 -	
Operational Description No	A-2.	4.1.1	.1	_
Subsystem Ship to Base Co				
By: J. Torian	Date:			

Title: To and From Ground - Data Relay Space Station (Communications)

	ITEM CONSUMED CON		BASI: CONSTITUINTS CONSUII:D	10 Yr. Total Lbs.	Daily Lbs.	Unit Weight Lbs.	Average Density As Received lbs/cu.ft.	REMARKS
1 -	Failed K _u Band Reflector Feed and Positioner	Part Failure	Component Part	1408	-	440	50	RTE
2 -	Failed K _u Band Mixer/ • Multiplexer	Part Faibure	Component Part	8.8	-	20	60	RTE
3 -	Failed K _u Band Ferrite Switches & Quadruplexers	Part Failure	Component Part	1.4	-	6	60	RTE
4 -	Failed Ku Band FM Transmitter	Par: Failure	Component Part	60	-	25	108	RTE
5 -	Failed FM Transmitter Modem	Part Failure	Component Part	6.6	-	10	58	RTE
6 -	Failed KuBand FM Receiver	Part Failure	Component Part	2.4	-	10	86	RTE
7 -	Failed FM Receiver Modem	Part Failure	Component Part	1.9	-	5	58	RTE
8 -	Failed K _u Band PM Transmitter	Part Failure	Component Part	2.2	-	10	86	RTE
9 -	Failed PM Transmitter Modem	Part Failure	Component Part	1.0	-	2.5	72	RTE
10 -	Failed KuBand PM Receiver	Part Failure	Component Part	2.8	-	10	86	RTE .
þ1 -	Failed PM Receiver Modem	Part Failure	Component Part	3.3	-	5	58	RTE
12 -	Packaging for Replacement Parts	Environmental Integrity Destroyed	Internal Environ- ment Changed	_	 	-	5	Reuse for Returning Failed Items
			e Basilian di B Basilian di Basilian di Basi Basilian di Basilian di Basi					

20

4-5

FARMIEGEALE, LONG ISLAND, NEW TORE

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No.C-2.4.1.1.1Sheet No.1Operational Description No.A-2.4.1.1.1______SubsystemShip to Base CommunicationsBy:J. TorianDate: 28 Aug 1970

Title: . To and From Ground - Data Relay Space Station (Communications)

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	A: ion Required To t:claim	10 Yr. Total Ibs.	Daily Rate- Ibs.	Unit Weight Ibs.	Average Density As Received Ibs/cu.ft.	REMARKS
1 - Failed K _u Band Reflector, Feed and Positioner	Solid Metal RTE	Al, Cu, Fe Plastic	Repair	1408	-	440	50	
2 – Failed K _u Band Mixer/Multiplexer	Solid Metal RTE	Al, Cu, Fe Si-Semicon. Plastic	Repair	8.8	-	20	60	
3 - Failed K _u Band Ferrite Switches and Quadruplexers	Solid Metal RTE	Al, Cu, Fe Plastic	Repair	1.4	-	6	60	
4 – Failed K _u Band FM Transmitter	Solid Metal RTE	Al, Cu, Fe Plastic,	Repair	60	-	25	108	
5 - Failed FM Trans- mitter Modem	Solid Metal RTE	Al, Cu, Plas- tic, Si-Semi- conductor		6.6	-	10	58	
6 – Failed K _u Band FM Receiver	Solid Metal RTE	Al, Cu, Plastic, Si- Semicon.	Repair	2.4		10	86	-
7 - Failed FM Receiver Modem	Solid Metal RTE	Al, Cu, Plastic, Si- Semicon.	Repair	1.9_	-	5	58	
8 - Failed KuBand PM Transmitter	Solid Metal RTE	Al, Cu, Fe, Plastic, Si- Semiconduc- tor, Ceram.	Repair	2.2		10	86	

REPUBLIC AVIATION DIVISION TARKINGOALE, LONG ISLAND, NEW TORE

2.4-6

 Study of Hou	usekeeping Concepts For Manne	ed Space	Doc. No. <u>C- 2.4.1.1.1</u> Sheet No. <u>2</u>
	TABLE III. WASTES		Operational Description No. <u>A-24111</u>
			Subsystem <u>Ship to Base Communications</u> By: J. Torian Date: <u>28 August 19</u> 70
 .	Caler Date Dates Cases St	otion (Communications)	

Title: To and From Ground - Data Relay Space Station (Communications)

WASTE ITEM	Char <u>acteristics</u> State And Attributes	Chemical Composition	A: ion Req ired To R:claim	10 Yr. Total Ibs.	Daily Rate- lbs.	Unit Weight Ibs.	Average Density As Received ibs/cu.ft.	REMARKS
9 - Failed PM Trans- mitter Modem	Solid Metal . RTE	AI, Cu, Plas- tic, Si- Semiconduc.	Repair	1.0	-	2.5	72	
10 – Failed K _u Band PM Receiver	Solid Metal RTE	Al, Cu, Plastic, Si- Semiconduc.	Repair	2.8	-	10	86	
11 - Failed PM Receiver Modem	Solid Metal RTE	Al, Cu, Plastic, Si- Semiconduc.	Repair	3.3	-	5	58	
 12 - Packaging for Re- placement Parts	Solid Plastic RTE	Plastic Spong and Sheeting	e Reuse as is			-	5	Reuse as is

. 11 K

Doc. No. A-2.4.1.2.1 Sheet No. 1 By: J. Torian Date: 28 August 1970

OPERATIONAL DESCRIPTION

TITLE: To and From Ground Direct (Communications)

SCHEMATIC DIAGRAM

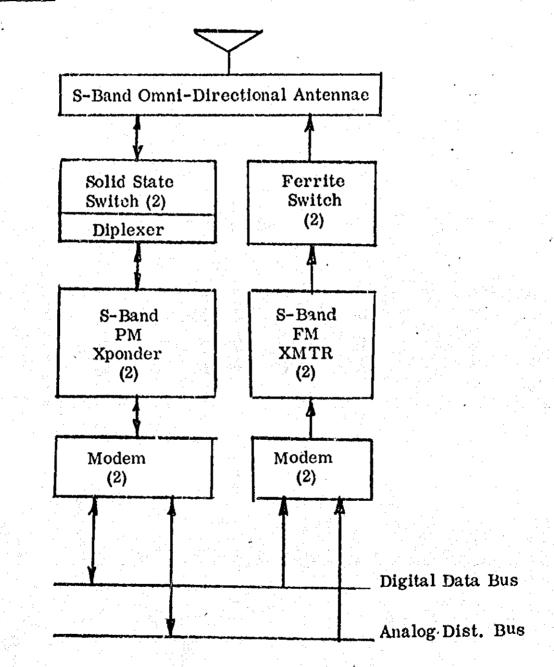


Figure 1. To and From Ground Direct (Communications)

Doc. No. A-2.4.1.2.1 Sheet No. 2 By: J. Torian Date: 28 August 1970

RATIONALE:

The system is predicated on the baseline capability of:

- a) Receiving an S-Band signal on either of two receivers and demodulating the PM baseband signals consisting of PRN ranging signals, a voice subcarrier (FM) and a data subcarrier (FM). The voice and data signals on the subcarrier shall be detected and provided as outputs to the appropriate telephone terminals or the high speed digital data bus. The receiver shall phase-lock to the received carrier signals and it shall be possible to drive a coherent transmitter from the receiver to enable the two units to be used as a transponder.
- b) Transmitting on either of two transmitters an S-Band signal capable of being referenced to either the received S-Band signal described in (1) or to a noncoherent auxiliary oscillator. The transmitter shall be PM modulated by the detected PRN ranging signals, a voice signal modulating a subcarrier (FM), a digital date signal modulating a subcarrier (PSK), or combinations of the three signals. The voice signal source will be any of the telephone terminals, and the digital data source will be the high speed digital data bus.

REFERENCES:

Communication Subsystem-Preliminary Design Sheet for Space Station Program-McDonnell Douglas Corp.

Weight, Volume and Reliability Tables for the Equipments comprising the Space Station Communications Subsystem - Collins Radio Company letter dated May 18, 1970.

MSFC-DRL-160 Line Item 13 Preliminary Systems Design Data Volume 1 Space Station Preliminary Design, Book 2, Electronics MDC GO634

Doc. No. A-2.4.1.2.1 Sheet No. 3 By: J. Torian Date: 28 August 1970

TABLE 1. AVIONICS WASTE ANALYSIS

SUBSYSTEM: To and From Ground Direct (Communications)

2,4-9

Pari Type	Number of Items	Weight per Item	Total Weight Pounds	Failure Rate Fails/10 ⁶ hr.	No. of Failures Per year	Total Wt. Per 10 Yrs.	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Landling Requirements
S-Band Omni- Directional Antennae	1	2	8	0.2	1.75×10^{-3}	.14	2	Al, Plastic	25#/cu.ft. solid Metals, Insulation	RTE for Repair and determ- ination of cause of failure
S-Band Diplexer/ Switches S-Band Ferrite	2	6	12	0.8	7×10^{-3}	.84	6	Al, Fe, Cu	62#/cu. ft. solid Metals, Insulation	Pkg to avoid handling and shipping damage
Switches S-Band FM	2	5.5	11	0.7	6 x 10 ⁻³	. 07	5.5	Al, Fe, Cu	60#/Cu.in. solid Metals, Insulation	Pkg to avoid handling and shipping damage
Transmitter S-Band FM	2 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	14	28	19.2	16.8×10^{-2}	47	14	Al, Cu, Fe, Plas- tic; Si-Semicon.	80#/cu.ft. solid Metals, Insulation	Pkg to avoid handling and shipping damage
Transmitter Transponder Modem	2	12 10	24 20	20.0 6.9	17.5×10^{-2} 6×10^{-2}	42 12	12	Al, Cu, Fe, Plas- tic, Si-Semicon.	58#/cu.ft. solid Metals, Insulation	Pkg to avoid handling and shipping damage
Transmitter Modem	2	2.5	5	•	3 x 10 ⁻²			tic, Si-Scmicon.	60#/cu.ft. solid Metals, Insulation	Pkg to 2void handling and shipping damage
					0 * 20	1.5	2.5	Al, Cu, Fe, Plas- tic, Si-Semicon.	73#/cu. ft. solid Metals, Insulation	Pkg to avoid handling and shipping damage
										:
								•		
e e en				•						

REPUBLIC AVIATION DIVISION

2, 4 - 10

A A A		Housekeeping		`	<u>~</u>
C Anna Alan		TT and the second second		Trees Means of	
CLULLY .	V 1	AUGGGGGGGGGG	CONCOUS		
	_				

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No.B-2.4.1.2.1Sheet No.-1Operational Description No.A-2.4.1.2.1SubsystemShip to Base CommunicationsBy:J.TorianDate:8/28/70

Title: To and From Ground Direct (Communications)

Consumable/Expendable ITEM	HOW CONSUME D	BASIC CONSTITUI NTS CONSUME D	10 Yr Total Lbs.	Daily	Unit Weight Lbs.	Average Density As Received Ibs/cu.ft.	REMARKS
1- Failed S-Band Omni-directional Antennae	Part Failure	Component Part	0.14		2	25	R. T. E.
	Fart Failure	component Part	0.14	-	4	40 .	R. L.E.
2-Failed S-Band Diplexer/	Part Failure	Component Part	0.84	-	6 6	62	R.T.E.
3-Failed S-Band Ferrite Switches	Part Failure	Component Part	0.07	-	5.5	60	R.T.E.
4- Failed S-Band PM Transponder	Part Failure	Component Part	47	- -	14	80	R.T.E.
5-Failed S-Band FM Transmitter	Part Failure	Component Part	42	÷	12	 58	R.I.E.
6-Failed Transponder Modem	Part Failure	Component Part	12	-	10	60	R.T.E.
7-Failed Transmitter Modem	Part Failure	Component Part	1.5	-	2.5	73	R.T.E.
8-Packaging for Replacement Parts	Environmental Integrity Destroyed	Internal Environ- ment Changed	-	-	-	5	Reuse for Returning Failed Items

6

9

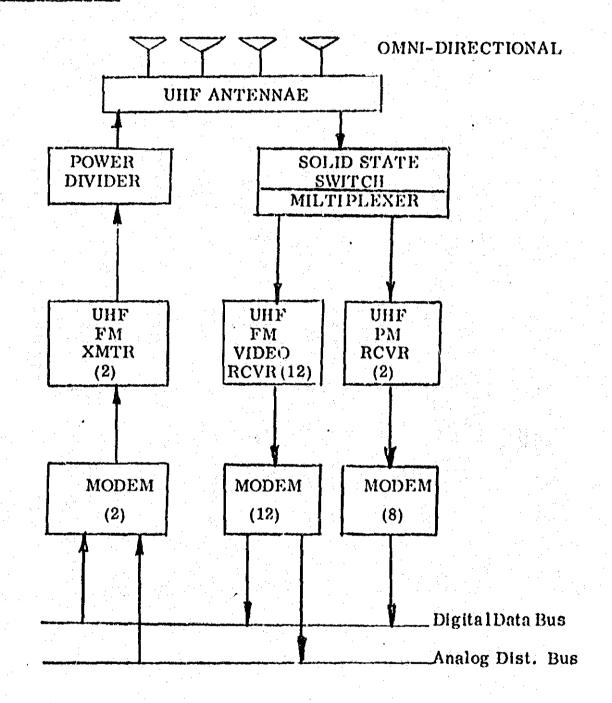
2.4-11

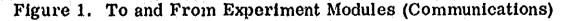
REPUBLIC AVIATION DIVISION TANNINGBALE, LONG ISLAND, NEW YORK

 Study of Housekeeping Concepts For Manned Space	Doc. No. <u>C-2.4.1.2.1</u> Sheet No. <u>1</u>
	Operational Description No. A- 24121
TABLE III. WASTES	Subsystem Ship to Base Communications
	By: J. Torian Date: 8/28/70

Title: To and From Ground Direct (Communications)

	WASTE ITEM	Char <u>acteristics</u> State And Attributes	Chemical Composition	A: ion Required To R:claim	10 Yr. Total lbs.	Daily Rate- lbs.	Unit Weight Ibs. Ibs.	Average Density As Received lbs/cu.ft.	REMARKS
1 -	Failed S-Band Omni- Directional Antennae	Solid Metal RTE	Al, Plastic	Replace	0.14	-	2	25	
2 -	Failed S-Band Diplexer/Switches	Solid Metal RTE	Al, Fe, Cu	Repair	0.84		6	62	
3 -	Failed S-Band Ferrite Switches	Solid Metal RTE	Al, Fe, Cu	Repair	0.07	- -	5.5	60	
4 -	Failed S-Band PM Transponder	Solid Metal RTE	Al, Cu, Fe, Si-Semicond.	Repàir	47	- -	14	80	
5 -	Failed S-Band FM Transmitter	Solid Metal RTE	Al, Cu, Fe, Si-Semicond.	Repair	42		12	58	
6 -	Failed Transponder Modem	Solid Metal RTE	Al, Cu, Fe, Si-Semicond.	Repair	12		10	60	
7 -	Failed Transmitter Modem	Solid Metal RTE	Al, Cu, Fe, Si-Semicond.	Repair	1.5		2.5	73	
8 -	Packaging for Replacement Parts	Solid Plastic RTE	Plastic Spong and Sheeting	e Reuse as is	-	-		5	Reuse as is
•									




Doc. No. A-2.4.2.1.1 Sheet No. 1 By: J. Torian Date: 28 August 1970

OPERATIONAL DESCRIPTION

TITLE: To and From Experiment Modules (Communications).

1. SCHEMATIC DIAGRAM

Doc. No. A-2.4.2.1.1 Sheet No. 2 By: J. Torian Date: 28 August 1970

2. OPERATIONAL DESCRIPTION AND RATIONALE

The system is predicated on the baseline capability of:

- a) Transmitting a UHF signal on either of two transmitters, FM modulating the carrier with PCM command signals being received by the subsystem from the high speed digital data bus at a rate up to 10 kbps.
- b) Shall be capable of simultaneously receiving 6 UHF signals on either of two sets of receivers (or a combination of receivers from either set), demodulating the FM video baseband signals. The detected signals shall be provided as outputs to the appropriate monitor or storage terminals on beard or provided as modulation signals to the transmitter described in A-2, 4, 1, 1, 1.
- c) Shall be capable of simultaneously receiving 4 UHF signals on either of two sets of receivers (or on combinations of receivers from either set) and demodulating the PCM signals PSK modulating the carrier at rates up to 300 kbps. The detected data signals shall be provided as modulation signals to the transmitter described in A-2.4.1.1.1.

3. REFERENCES

- 1. Communication Subsystem Preliminary Design Sheet for Space Station Program - McDonnell Douglas Corp.
- Weight, Volume, and Reliability Tables for the Equipments Comprising the Space Station Communications Subsystem - Collins Radio Company Letter dated May 18, 1970.
- 3. MSFC-DRL-160 Line Item 13 Preliminary Systems Design Data, Volur e 1. Space Stat! in Preliminary Design - Book 2, Electronics, MDC 60634.

Doc. No. A-2.4.2.1.1 Sheet No. 3 By: J. Torian Date: 28 August 1970

TABLE 1. AVIONICS WASTE ANALYSIS

SUBSYSTEM: COMMUNICATIONS: TO AND FROM EXPERIMENT MODULES

2.4-14

						· · · · · · · · · · · · · · · · · · ·				
LRU Part Type	Number of Items	Weight Per Items	Total Weight Pounds	Failure Rate Fails/10 ⁶ Hrs.	Number of Failures Per Year	Total Weight Per 10 Yrs.	Single Load Rate Lbs/Unit	Cbemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
UHF Omni- directions	е	10	40	0.2	1.75 x 10 ⁻³	0.70	10	Al. Plastic		RTE for repair and de- termination of cause of
UHF Power Divider	2	2	4	0.2	1.7×10^{-3}	0.07	2	Alumiaum	25#/cu.it. Solid Metals	Failure, pkg, to avoid handling and shipping damage
UHF Solid State Switch/Multiplexer	2	12	24	0.4	3.5 x 10 ⁻³	0.84				Failure, pkg. to avoid handling and shipping damage
UHF FM Transmitter	2	:1.5	3	0.69	6.0×10^{-3}	0.20				Failure, pkg. to avoid handling and shipping damage
UHF Transmitter MODEM	2	2		1.60	1.4×10^{-2}	0.56		Al. Cu. Fe, Si- Semicond, Plastic		Failure, pkg. to avoid handing and shipping damage
UHF FM Video Receiver	12	3	36	1.10	.96 x 10 ⁻²	3.5				Follure, pkg. to avoid handling and shipping damage
UHF PM Data Receiver	8	3	24	1.63	1.43 x 10 ⁻²	3.4				Failure, pkg. to avoid handling and shipping damage
Video Receiver MODEM	12	2.5	30	3.25	2. c5 x 10 ⁻²	8.6		Al. Cu. Fe. Si- Semicond. Plastic	72*/cu.ft. Solid Metals Insulation	Failure, pkg. to avoid handling and shipping damage
Data Receiver MODEM	8	2,5	20	3.25	2.85 x 10 ⁻²	5.7		Al, Cu. Fe. Si- Semiccod, Plastic	72#/cu.ft. Solid Metals.Insulation	Failure, pkg. to avoid handling and shipping damage
		•			ł					

REPUBLIC AVIATION DIVISION

2.4-15

Study of Housekeeping Concepts For Manned Space

TABLE IL CONSUMABLES/EXPENDABLES

Doc. No. B-2.4.2.1.1	Sheet No. 1
Operational Description No.	. A-2.4.2.1.1
Subsystem_Inter_Vehicular	Communications
By: J. Torian	Date: 8/28/70

Title: To and From Experiment Modules (Communications)

	Consumable/Expendable ITEM	HOW CONSUMED	EASI: CONSTITUI NTS CONSUII:D	10 Yr. Total Ibs.	Daily Rate lbs/day	Unit Weight Ibs.	Average Density AS Received lbs/cu.ft.	REMARKS
1.	Failed UHF Omni-directional Antenna	Part Failure	Component Part	0.70		10	25	RTE
2.	Failed UHF Power Divider	Part Failure	Component Part	0.07	-	2	25	RTE
3.	Failed UHF Solid State Switch/Multiplexer	Part Failure	Component Part-	0.84		2	50	RTE
4.	Failed UHF FM Transmitter	Part Failure	Component Part	0.20	-	1.5	130	RTE
5.	Failed UHF Transmitter MODEM	Part Failure	Component Part	0.5\$	-	2	86	RTE
6.	Failed UHF FM Video Receiver	Part Failure	Component Part	3.5	-	3	130	RTE
7.	Failed UHF PM Data Receiver	Part Failure	Component Part	3.4		3	130	RTE
8.	Failed Video Receiver MODEM	Part Failure	Component Part	8.6		2.5	72	RTE
9.	Failed Data Receiver MODEM	Part Failure	Component Part	5.7	<u> </u>	2.5	72	RTE -
10.	Packaging for Replacement Parts	Environmental Integrity Destroyed	Interval Environ- ment Changed				5	Reuse for returning failed items

REPUBLIC AVIATION DIVISION TADMINGONLE, LONG LSLAND, NEW TORE

2.4-16

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No.C-2.4.2.1.1Sheet No.1Operational Description No.A-2.4.2.1.1SubsystemInter-Vehicular CommunicationsBy:J.TorianDate:8/28/70

Title: To and From Experimer+ Modules (Communications)

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	A: ion Reluired To R:claim	10 Yr. Total Ibs.	Daily Rate- lbs/day	Unit Weight Ibs.	Average Density As Received Ibs/cu.ft.	REMARKS
1. Failed UHF Omni- directional Antennae	Solid Metal RTE	Aī, Plastic	Replace	0.70		10	25	
2. Failed UHF Power	Solid Metal RTE	Aluminum	Replace	0.07	-	2	25	
Divider								
3. Failed UHF Solid State Switch Multiplexer	Solid Metal RTE	Al, Fe, Si- Semicond. Plastic	Repair	0.84		12	50	
4. Failed UHF FM Trans- mitter	Solid Metal RTE	Al, Cu, Fe, Si-Semicond. Plastic	Repair	′0.20		1.5	130	
5. Failed UHF Transmitter MODEM	Solid Metal RTE	Al, Cu, Fe, Si-Semicond. Plastic	Repair	0.56	-	2	86	
6. Failed UHF FM Video Receiver	Solid Metal RTE	Al, Cu, Fe, Si-Semicond. Plastic	Repair	3.5		3	130	
7. Failed UHF PM Data Receiver	Solid Metal RTE	Al, Cu, Fe, Si-Semicond. Plastic	Repair	3.4	-	3	130	
8. Failed Video Receiver MODEM	Solid Metal RTE	Al, Cu, Fe, Si-Semicond. Plactic	Repair	8.6		2.5	72	
		nen. Sent bahasenteen						

REPUBLIC AVIATION DIVISION

2.4-17

Study of Housekeeping Concepts For Manned Space

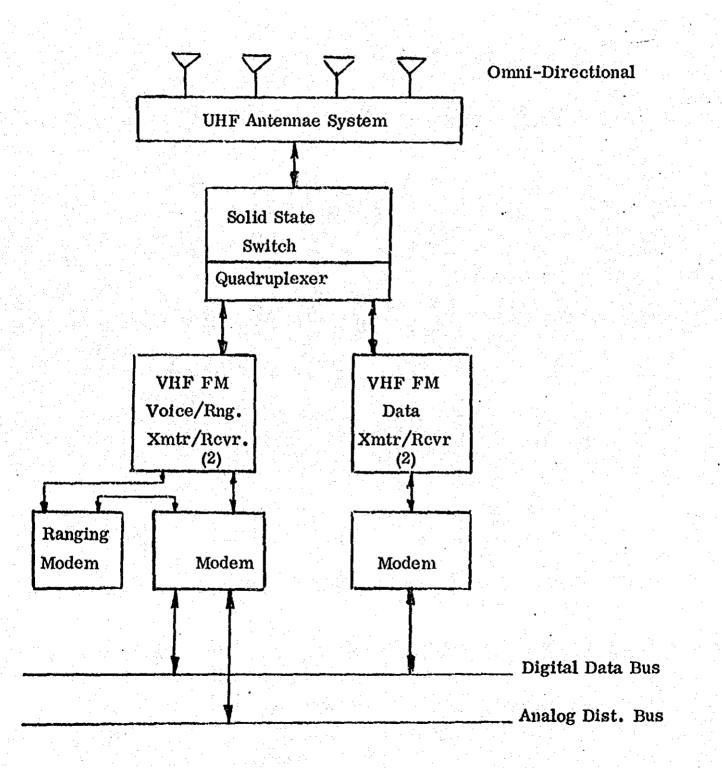
TABLE III. WASTES (cont'd)

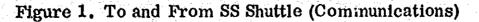
Doc. No. C-2.4.2.1.1	Sheet No. 2
Operational Description No.	A-2.4.2.1.1
Subsystem Inter-Vehicular (Communications
By: J. Torian	Date: <u>8/28/70</u>

Title: To and From Experimental Modules (Communications)

	WASTE ITEM	<u>Characteristics</u> State And Attributes	Chemical Composition	Action Required To Reclaim	10 Yr. Total lbs.	Daily Rate- lbs/days		Average Density As Received lbs/cu.ft.	REMARKS
	9. Failed Data Receiver MODEM	Solid Metal RTE	Al, Cu, Fe, Si-Semicond Plastic	Repair	5.7		2.5	72	
	10. Packaging for replace- ment parts	Solid Plastic RTE	Plastic Sponge and Sheeting	Reuse as is				5	
ۍ به به									

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION


> Doc. No. A-2.4.2.2.1 Sheet No. 1 By: J. Torian Date: 28 August 1970


> > . . .

OPERATIONAL DESCRIPTION

TITLE: To and From Space Station Shuttle (Communications)

1. SCHEMATIC DIAGRAM

Doc. No. A-2.4.2.2.1 Sheet No. 2 By: J. Torian Date: 28 August 1970

2. OPERATIONAL DESCRIPTION AND RATIONALE:

The system is predicated and the baseline capability of:

- a) receiving a VHF signal on either of two receivers and demodulating the voice and ranging signals FM modulating the carrier. The detected voice output shall be provided as an output to the onboard telephone system. The detected ranging signals shall be provided as an output to the ranging function described below.
- b) shall be capable of receiving a VHF signal on either of two receivers and demodulating the PCM signals PSK modulating the carrier at up to 10 Kbps. The detected data signals shall be provided as an output to the high speed digital data bus.
- c) shall be capable of transmitting a VHF signal on either of two transmitters and PSK modulating the carrier at rates up to 10 Kbps with PCM signals received by the subsystem from the high speed digital data bus.
- d) shall be capable of transmitting a VHF signal on either of two transmitters and FM modulating the carrier with voice signals originating at the telephone terminals and with ranging signals.
- e) shall, in conjunction with a cooperative ranging system in another vehicle, be capable of providing as an output to the high speed digital data bus information on the range and range rate between the two vehicles.

3. REFERENCES:

- 1. Communication Subsystem Preliminary Design Sheet for Space Station Program - McDonnell Douglas Corp.
- 2. Weight, Volume and Reliability Tables for the Equipments Comprising the Space Station Communications Subsystem - Collins Radio Company Letter dated May 18, 1970.
- 3. MSFC-DRL-160 Line Item 13 Preliminary Systems Design Data -Volume 1
 Space Station Preliminary Design - Book 2 - Electronics MDC G0634

TABLE 1. AVIONICS WASTE ANALYSIS

Doc. No.A-2.4.2.2.1 Sheet No. 3 By: J. Torian Date: 28 August 1970

			and the second s	
STESYSTEM	TO AND FROM	SPACE STATION	SHUTTLE (C	COMMUNICATIONS)

2.4-20

LRU PART TYPE	Number of Items	Weight Per Items	Total Weight Pounds	Failure Rate Fails/10 ⁶ Hrs.	Number of Failures Per Year	Total Weight Per 10 Yrs.	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
VHF Omni-direc- tional Antennae	4	15	60	0.2	1.75 x 10 ⁻³	1.05	15	Al, Plastic	25 [#] /eu ft. Solid Metals, Insulation	KTE For Repair and Deter mination of cause of failure Pkg. to avoid handling &
Solid State Switch/ Quadruplexer	2	12	24	0.4	3.5 x 10 ⁻³	0.84	12	Al, Fe, Si- Semicond., Plastic	50 [#] /cu ft. Solid Metals, Insulation	shipping damage.
VHF Voice Ranging T/R	2	15	30	32	2.8 x 10 ⁻¹	84	15	Al, Cu, Fe, SiO-Serficond., Plastit	58 [#] /cu ft. Solid Metals, Insulation	RTE for Repair and Deter- mination of cause of failur Pkg. to avoid handling and
			•	0.5	2.2×10^{-1}	40			52 [#] /cu ft. Solid	shipping damage. RTE for Repair and Deter-
Ranging Modem	2	9	18	25	Z.2 X 10	40	9	Al, Cu, Fe, SiO-Semicond., Plastic	Metals, Insulation	MIL for Repair and Deter mination of cause of failur Pkg. to avoid handling and shipping damage.
Voice Modern	2	5	10	4.3	3.8 x 10 ⁻²	3.8	5	Al, Cu, Fe, SiO-Semicond. Plastic	54 [#] / cu ft. Solid Metals, Insulation	RTE for Repair and Deter mination of cause of failur Pkg. to avoid handling and
									58 [#] /cu ft. Solid	shipping damage.
VHF Data T/R	2	15	30	32	2.8 X 10 ⁻¹	84	15	Al. Cu, Fe, SiO-Semicond. Plastic	68 /cu it. Solid Metals, Insulation	RTE for Repair and Deter mination of cause of failur Pkg. to avoid handling an shipping damage.
Data Modem	2	4	8	2.4	2.1 x 10 ⁻²	1.7	4	Al. Cu, Fe, SiO-Semicond. Plastic	55 [#] /cu ft. Solid Metals, Insulation	RTE for Repair and Deter mination of cause of failur Pkg. to avoid handling and shipping damage.
										Supplie tamage.
					Į					

FAIRCHILD HILL SR REPUBLIC AVIATION DIVISION

EPUBLIS AVIATION DUVISION

2.4-21

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

	Sheet No. 1
Operational Description No	. A- 2.4.2.2.1
Subsystem Inter Vehicular	
By: J. Torian	Date: 28 August 197

Title: To and From Space Station (Shuttle)

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUME D	10 Yr Total Lbs.	Daily Rate- lbs/day	Unit Weight Ibs.	Average Density As Received Ibs/cu.ft.	REMARKS
1. Failed VHF Omni-Directional Antennae	Part Failure	Component Part	1.05	-	15	25	RTE
2. Failed Solid State Switch/ Quadruplexer	Part Failure	Component Part	0.84		12	50	RTE
3. Failed VHF/Voice Ranging T/R	Part Failure	Component Part	84	-	15	58	RTE
4. Failed Ranging Modem	Part Failure	Component Part	40	-	9	52	RTE
5. Failed Voice Modem	Part Failure	Component Part	3.8	-	.5	54	RTE
6. Failed VHF Data T/R	Part Failure	Component Part	84	-	15	58	RTE
7. Failed Data Modem	Part Failure	Component Part	1.7	-	4	55	RTE
8. Packaging For Replacement Parts	Environmental Integrity Destroyed	Internal Environment Changed		-		5	Reüse For Returning Failed Items

5

FARMINGOALE, LONG + SLAND, NEW YORK

2.4-22

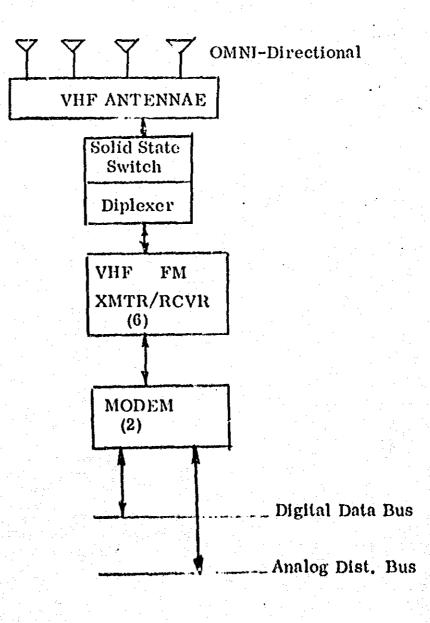
Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No.	C-2.4.2.2-1	Sheet	No. <u>1</u>	
Operation	al Description	No. A-2.4	1.2.2.1	
Subsystem	Inter Vehicu	ılar Commu	<u>mications</u>	
Б <u>ү: J. J</u>	<u>lorian</u>	Date:	28 August	<u>: 19</u> 7(

Title: To and From Space Shuttle (Communications)

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim	10 Yr Total lbs.	Daily Rate lbs.	Unit Weight lbs.	Average Density As Received lbs/cu.ft.	REMARKS
1. Failed VHF Omni-Direc- tional Antennae	Solid Metal RTE	Al, Plastic	Replace	1.05		15	25	
2. Failed Solid State Switch/ Quadruplexer	Solid Metal RTE	Al, Fe,Si- Semi-cond. Plastic	Repair	0.84	-	12	50	
3. Failed VHF Voice Ranging T/R	Solid Metal RTE	Al, Cu, Fe, Si-semicond, Plastic	Repair	84	-	15	58	
4. Failed Ranging Modem	Solid Mutal RTE	Al, Cu, Fe, Si- Semiconductor Plastic		40	-	9	52	
5. Failed Voice Modem	Solid Metal RTE	Al, Cu, Fe, Si- semiconductor Plastics		3.8	-	5 :	54	
6. Failed VHF Data T/R	Solid Metal RTE	Al,Cu, Fe,Si- semiconductor Plastic		84		15	58	
7. Failed Data Modem	Solid Metal RTE	Al, Cu, Fe, Si- semiconductor Plastic	, – ,	1.7		4	55	
8. Packaging For Replace- ment Parts	Solid Plastic RTE	Plastic Sponge and Sheeting	Reuse as is	-		-	5	


Doc. No. A-2.4.2.3.1 Sheet No. 1 By: J. Torian Date: 28 August 1970

OPERATIONAL DESCRIPTION

TITLE:

Extra Vehicular Communications

SCHEMATIC DIAGRAM

Figure 1 - Communications to and from EVA

Doc. No. A-2, 4, 2, 3, 1 Sheet No. 2 By: J. Torian Date: 28 August 1970

OPERATIONAL DESCRIPTION

RATIONALE:

The system is predicated on the baseline capability of:

- a) Simultaneously transmitting two VHF signals on either of two sets of transmitters (or on a combination of transmitters from each set). The carrier of each shall be FM modulated in parallel by a voice signal from an onboard EVA console and by the detected voice signals from the receiver which is not associated with that transmitter's duplex channel receiver.
- b) Simultaneously receiving two VHF signals on either of two sets of receivers (or on combinations of receivers from either set). Reception on these frequencies shall be provided at the same time that signals are being transmitted. One receiver of each set will operate in conjunction with one transmitter of each set, thus providing two sets of transmitter-receivers which will have two full-duplex channel capability. The subsystem shall demodulate the FM signals being received, providing the biomedical data subcarriers on each of the two channels as parallel outputs to an onboard EVA console, and providing the linearly summed voice outputs from the two receivers as an output to the same EVA console.

REFERENCES:

Communication Subsystem - Preliminary Design Sheet for Space Station Program - McDonnell Douglas Corp.

Weight Volume and Reliability Tables for the Equipment Compressing the Space Station Communications Subsystem - Collins Radio Company Letter, dated May 18, 1970.

MSFC-DRL-160 Line Item 13 - Preliminary Systems Design Data Volume 1. Space Station Preliminary Design Book 2 - Electronics MDC G0634.

TABLE L AVIONICS WASTE ANALYSIS

Doc. No. A-2.4.2.3.1 Sheet No. 3 By: J. Torian Date: 8 June 1970

SUBSYSTEM: EXTRA VEHICULAR COMMUNICATIONS

LRU Part Type	Number of Rems	Weight Per Rems	Total Weight Pounds	Failhre Rato Fails/10 ⁶ Hours	Number of Failures Per Year	Total Weight Per 10 Yrs.	Single Load Rate Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
VHF-OMNI- Directional Antennae	4	15	60	0.2	1.75 x 10 ⁻³	1.05	15	Al, Plastic	25#/cu, ft. Solid Metals, Insulation	RTE for repair and deter- mination of cause of failure
Solid State Switch/ Diplexer	2	18	36	0.4	3. 5 x 10 ⁻³	1.26	18	Al, Fe, Si-Semi conductor, Plastic	50*/cu.ft. Solid Metals, Insulation	Pkg. to avoid handling and shipping damage.
VHF FM XMTR/ KCVR	6 	2	12	2, 56	1. 37 x 10 ⁻²	1. 64	2	Al, Cu, Fe, Si- Gemicond, Plastic	70#/cu, ft. Solid Metals, Insulation	Pkg. to avoid handling and shipping damage.
MODEM	2	8	16	4.73	4.1 x 10 ⁻²	6, 56	. S	Al, Cu, Fe, Si- Semicond, Plastic	70#/cu, ft. Solid Metals, insulation	Fig. to avoid handling and shipping damage.

.

iii) FAIRCHILD HILLER

2.4-26

REPUBLIC AVIATION DIVISION

Study of Housekeeping Concepts For Manned Space

TABLE IL CONSUMABLES/EXPENDABLES

Doc. No. <u>B-2.4.2.3.1</u> Sheet No. <u>1</u> Operational Description No. <u>A-2.4.2.3.1</u> Subsystem <u>Inter Vehicular Communications</u> By: <u>J° Torian</u> Date: <u>28 August 1970</u>

Title: Extra Vehicular Communications

	Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUIENTS CONSUMED	10 Yr. Total Ibs.	Daily Rate Ibs.	Unit Weight Ibs.	Average Density As Received lbs/cu.ft.	REMARKS
-	Failed VHF OMNI - Directional	Part failure	Component part	1.05	-	15	25	RTE
	Failed Solid State Switch/ Diplexer	Part failure	Component part	1.26		18	50	RTE
	Failed VHF FM XMTR/RCVR	Part failure	Component part	1.64	-	2	70 	RTE
4.	Failed MODEM	Part failure	Component part	6.56	-	· 8	70	RTE
5. 	Packaging for Replacement Parts	Environmental Integrity de- stroyed	Internal environ- ment changed	-	• •		5	Reuse for returning failed items

REPUBLIC AVIATION DEVISION

2.4-27

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No.C-2.4.2.3-1Sheet No.1Operational Description No.A-2.4.2.3.1Subsystem Inter Vehicular CommunicationsBy:J. TorianDate: 28 August 1970

Title: Extra Vehicular Compunications

	WASTE ITEM	Characteristics State And Attributes	Chemical Composition	A: ion Required To R:claim	10 Yr. Total Ibs.	Daily Rate- lbs.	Unit Weight Ibs.	Average Density As Received lbs/cu.ft.	REMARKS
1.	Failed VHF OMNI Directional Antennae	Solid Metal RTE	Al, Plastic	Replace	1.05		15	25	
2.	Failed Solid State Switch/Diplexer	Solid Metal RTE	Al, Fe, Si- Semicond. plastic	Repair	1.26		18	50	
3.	Failed VHF FM XMTR/RCVR	Sclid Metal RTE	Al, Cu, Fe,Si- Semicond. plastic	Repair	1.64	-	2	70	
4.	Failed MODEM	Solid Metal RTE	Al, Cu, Fe, Si Semicond. plastic	Repair	6. 56	-	8	70	
5.	Packaging for Replace- ment Parts	Solid Plastic RTE	Plastic sponge and sheeting	Reuse as is	-	-	 	5	
•					-				

Doc. No. A-2.4.3.1.1 Sheet No. 1 Fy: J. Torian Date: 28 August 1970

OPERATIONAL DESCRIPTION

TITLE: Onboard Communications

SCHEMATIC DIAGRAM

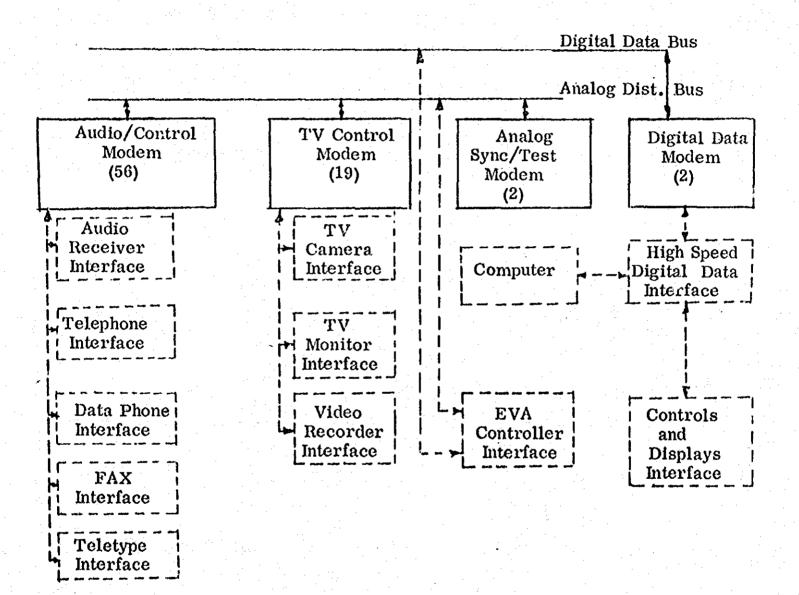


Figure 1. Communications Onboard

Doc. No. A-2 4.3.1.1 Sheet No. 2 By: J. Torian Date: 28 August 1970

OPERATIONAL DESCRIPTION AND RATIONALE

The system is predicated on the baseline capability of:

- a) 36 voice bandwidth channels for the onboard distribution of voice, data phone, facsimile, teletype, or similar information on a common bus. These channels shall be provided in a frequency division SSSC format compatible with the earth-based Bell system.
- b) 36 audio control terminals for use on the common bus. Terminal-toterminal access between these terminals shall be selectable at each terminal. Off-hook busy signals shall be provided which shall block other communications to the busy channel unless the conferencing mode is selected. Conferencing capability shall be provided under the control of called terminals.
- c) three wideband audio channels for the onboard distribution of entertainment type signals (on the common bus).
- d) 14 video (4.5 MHz baseband) channels for the onboard distribution of television signals on a common bus.
- e) 19 video control terminals capable of selecting any one of the 14 channels and either providing that channel's video signal as an output or placing a video input signal on that channel.
- f) 2 analog synchronization and test terminals.
- g) 2 digital data terminals for high speed digital data. Interface between the digital distribution bus and the central digital computer and the controls and displays.

REFERENCES

- 1. Communication Subsystem Preliminary Design Sheet for Space Station Program - McDonnell Douglas Corp.
- 2. Weight, Volume and Reliability Tables for the Equipments Comprising the Space Station Communications Subsystem -Collins Radio Company - Letter dated May 18, 1970.
- MSFC-DRL-160 Line Item 13
 Preliminary Systems Design Data Volume 1
 Space Station Preliminary Design Book 2 Electronics
 MDC G0634

TABLE 1 AVIONICS WASTE ANALYSIS

SUBSYSTEM: ON BOARD COMMUNICATIONS

Part Typ		Number of Items	Weight per Item	Total Weight Pounds	Failure Rate Fails/10 ⁶ Hr	Number of Failures per ycar	Total Weight per 10 yrs	Single Load Weight Lbs/Unit	Chemical Composition	Physical Characteristics	Disposition and Special Handling Requirements
Audio/Cont: Modem	rol	36	4	144	4.60	4.0x10 ⁻²	57.6	4	Al, Cu, Fe, S- semi-conductor. Plastic	72#/cu ft solid metals, insula- tion	RTE for repair and deter- mination of cause of failure
TV Control Modem		19	3	57	3.45	3.0x10 ⁻²	17.1	3	1000 - 1000 -	17	Pkg to avoid handling and shipping damage
/inalog Sync Modem	/Test	2	5	10		5.0x10 ⁻²	5	5		**	
Digital Data Modem		2	5	10	5.75	5.0x10 ⁻²	5.	5	H	••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••
								•			

FAIRCHULD MILLER

REPUBLIC AVIATION DIVISION FERENCESCON, 151-00, HEN YORK

Study of Nousekeeping Concepts For Manned Space

TABLE E. CONSUMABLES/ENPENDABLES

Dec. No. B-2.4.3.1.1 Sheet No. 1 Operational Description No. A-2.4.3.1.1Subsystem Intra Vehicular Communications By: J. Torian Date: 8-28-70

Title: On Board Communications

	Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS CONSUNED	10-Yr Total Lbs	Daily	Unit Weight Lbs	Averago Donsity As Received Ibs/cu.ft.	REMARKS
1.	Failed Audio/Control Modem	Part failure	Component part	57.6	-	4	72	RTE
2.	Failed TV Control Modem	Part failure	Component part	17.1	-	3	72	RTE
3.	Failed Analog Sync/Test Modem	Part failure	Component part	5	_	5	72	RTE
4.	Failed Digital Data Modem	Part failure	Component part	5	-	5	72	RTE
5.	Packaging for Replacement Parts	Environmental integrity destroyed	Internal environ- ment changed		-	-	5	Reuse for returning failed items

2.4-31

FAIRCHILD MILLER REPUBLIC AVIATION DIVISION

FARMINGGALF, LONG ISLAND, NEW YORK

Study of Housekeeping Concepts For Manned Space		Doi	с., I	N
		~		

TABLE III. WASTES

Title: -On Board Communications

Doc. No. C-2.4.3.1.1 Sneet No. 1 Operational Description No. A-2.4.3.1.1Subsystem Intra Vehicular Communications By: J. Torian Late: 8-28-70

	WASTE ITEM	Charactoristics State And Attributes	Chemical Composition	Lotion Inquired To Reclaim	10 Yr. Total Ibs.	Daily Rete- lbs.	Unit Weight 1bs.	Average Density As Received Ibs/cu.ft.	
1.	Failed Audio/Control Modem	Solid, Metal, RTE	Al, Cu, Fe, Si Semi-cond. plastics	Repair	57.6		4	72	
2.	Failed TV Control Modem		11	11	17.1		3	72	
3.	Failed Analog Sync/Test Modem	1	1.2000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000 1.20000000000	TT	5 -	· · · · · · · · · · · · · · · · · · ·	5.	72	
4.	Failed Digital Data Modem		11	"	5	-	5	72	
5.	Packaging for Replacement Parts	Solid, Plastic RTE	Plastic sponge and sheeting	Reuse as is	-		-	5	

2.4-32

PROVIDE STATION DATA COLLECTION AND STORAGE

SECTION 2.5

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Same States And Aller

TABLE OF CONTENTS

Document Number	Title			Page .
			. • **	· · · · ·
2.5.1.1.1	Data Management - E	lectronic		· •
2.5.1.2.1	Data Management - I	` hotographic		2.37.1

FAIRCHILD HILLEH REPUBLIC AVIATION DIVISION

> Doc. No. A-2.5.1.1.1 Sheet No. 1 By: A. Field Date: 3 September 1970

OPERATIONAL DESCRIPTION

TITLE: Data Management - Electronic

DESCRIPTION AND SCHEMATIC

This section is devoted to an evaluation of the waste products of the Data Management subsystem by electronic means. This subsystem provides the acquisition processing and distribution of data on board the space station. The entertainment and photographic processing will be handled elsewhere and is therefore not covered in this section. Since this subsystem is in its embryonic stages and very little of the hardware is defined except in general terms the following basic assumptions are being made:

- The system will be operational in 1975. Therefore, the hardware being developed and actually available for the 1971-1972 era will be used in the space station.
- The subsystem components will be completely modularized. Most components will consist of standardized book modules containing printed circuit boards with discrete, integrated circuits, MSI or LSI components.
 - A redundant digital data bus will be implemented on board the space station. Included in this data bus system will be an interface terminal which will provide the access for the individual components to the data bus. This terminal will be designed such that a catastrophic failure of a com ponent such as a shorted output will not drag down the entire digital dat: bus. In the event of a data bus failure, the terminal sensing will cause it to be switched to the back-up data bus. With this isolation capability in the interface terminal, then every subsystem component can be considered independent of all the other components. Therefore, the deletion or addition of any component has no affect on the overall system and can be treated arithmetically to update the overall analysis.

The finalized system will closely resemble the system outlined in Reference 1.

Doc. No. A-2.5.1.1.1 Sheet No. 2 By: A. Field Date: 3 September 1970

Figure 1 is a block diagram of the possible configuration of such a data management system. It can be seen that this subsystem can be subdivided into three basic categories:

- A) Acquisition of Data
- B) Processing
- C) Distribution

Two types of data busses will be present on the space station. A digital data bus where all digital or low frequency analog data will be circulated and an analog bus which will have the high frequency analog signals such as the Video signals impressed on it.

RATIONALE:

A. Acquisition of Data

The acquisition of digital data from the various sources will be via the digital data bus and will be in the form of either low frequency analog or digital data signals. These signals may come from sensors aboard or external to the space station. In any event these signals must be conditioned before frequency division multiplexing can be used to impress them onto the digital data bus. An identity tag indicating the source of data and a destination tag would be included in all data words. Analog signals must be scaled, in some cases multiplexed, converted to a digital data stream and formated before they can be impressed onto a data bus terminal or modem for access to the data bus line.

As a result, it is assumed that the following components will be involved in conditioning the data sources:

- Discrete components such as resistors, capacitors, variable gain amplifiers and OP amps
- Multiplexers
- Analog-to-digital converters and Digital-to-analog converters

Once conditioned, the data is now converted to FDM and interfaced to the digital data bus through the data bus terminals. These digital data terminals must be not only capable of accepting the data from a source and access the information onto the data

2.5-2

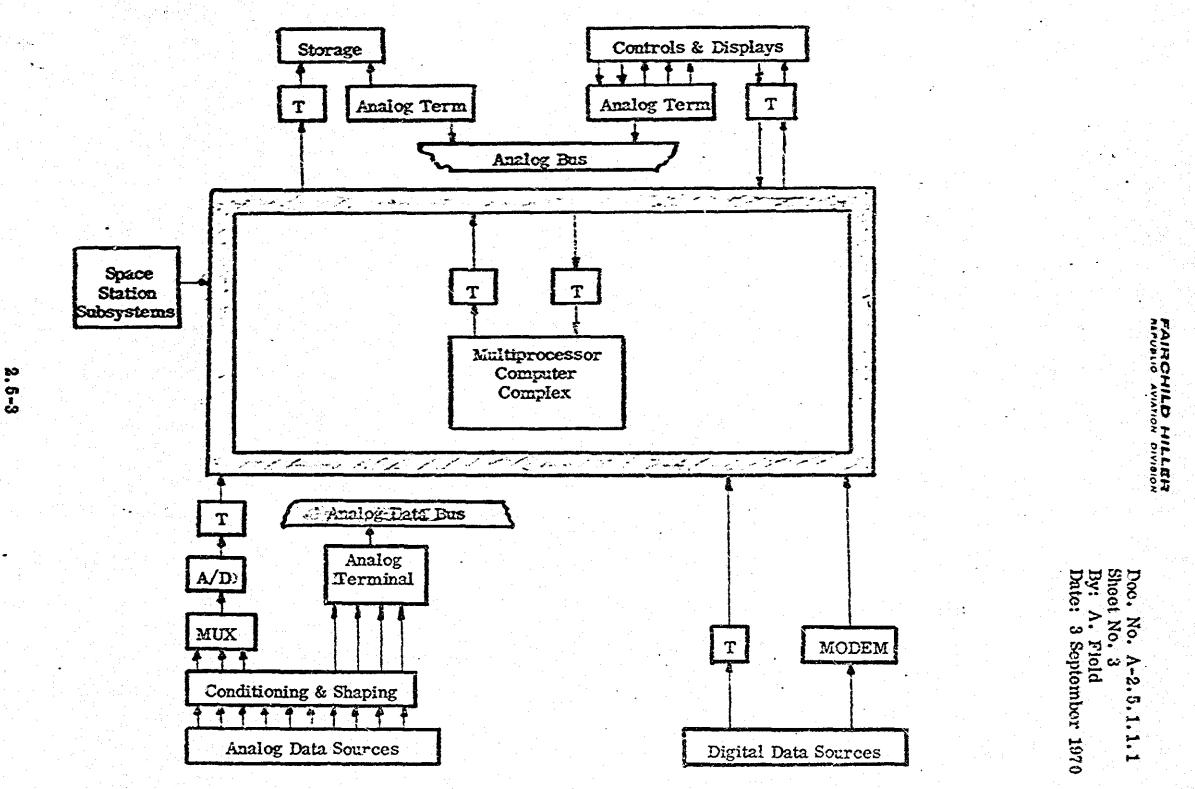


Figure 1. Data Management

Doc. No. A 2, 5, 1, 1, 1 Sheet No. 4 By: A. Field Date: 3 September 1970

bus at the proper interval, but it must also be capable of accepting data (i.e., computer) which is being transmitted to it from another source. The digital data terminal must therefore contain the following components:

- Data bus line drivers
- Data bus protective circuits
- Clocks, counters, and shift registers for data formating
- Address recognition logic
- Synchronization circuitry

B. Processing

The processing of all data on board the space station will be accomplished by a multiprocessor complex of computers. All computers will be basically identical. What will determine which computer will act as the DMS, Experiment or GNC processor will be the executive routing which will be set in before launch. In the event the DMS processor fails while in orbit, one of the other computers will take over its task and the space station will go into a backup mode until the computer failure can be corrected. The main and auxiliary memories will also be separate from the arithmetic and controsection of the computers making them also interchangeable or computer "switchable". The hardware assumed to be used will consist of the following components:

Data Management (DMS) processor and its main and auxiliary memories

- Experiment processor and its main and auxiliary memories
- Guidance, Navigation and Control (GNC) Processor and its main memory
- Bulk memory system containing enough capacity for retaining all software programs and long term storage of data

Data compression will be performed using software programs and no hardware implementation will be attempted to apply this technique.

C. Distribution

After the information is processed via the computation system complex the results are then fed onto the data bus for transmission to the various display units. The display system will be assumed to consist of the following components:

Doc. No. A -2. 5. 1. 1. 1 Sheet No. 5 By: A. Field Date: 3 September 1970

- Annunciators
- Video display terminal and equipment
- Recorders
- Printers
- Plotters

WASTE ANALYSIS

An analysis of the waste for the data management at the present time can only be done by a gross approximation of the systems and their expected reliability in the 1975-1980 era. An attempt has been made by researching the industry, previous projects, and the libraries to come up with a guess of reliability number which can be expected.

A basis for the approximations is the failure rate data handbook, Reference 2. At best, this only scratches the surface but it was used as a starting point for the work that was performed. At the present time, very little reliability information has been gathered on digital components such as solid state memories, LSI or MSI in outer space. Therefore, the reliability numbers to follow are based on little fact and mostly manufacturers' (optimistic) expectations and should be adjusted to their proper values whenever actual data becomes available.

The data which follows was developed by regrouping the basic components of the Data Management System into similar categories. For example, after study, it was guesstimated that the entire DMS would consist of 750 electronic circuit boards It has also been assumed that on-board maintenance will decrease some failures which might have otherwise been included (i.e., mechanical adjustment on the tape transports).

No data could be found on the failure rates of magnetic tapes or discs. According to the manufacturers they have an indefinite life and fail only due to abuse whether it be by human or machine. Some computer installations claim to have tape files that are still good after 5-10 years. Intuitively one failure was added to the listing which for the overall waste analysis is still negligible. Similarly throughout this analysis it was found that although reference 2 and the other documents contain a vast amount of failure rate data, personal judgement was used to determine which ones to apply and which ones to disregard. This judgement was seen to be capable of varying the failure rates by at least a factor of ten. All this is possible because little experience

Doc. No. A-2.5.1.1.1 Sheet No. 6 By: A. Field Date: 3 September 1970

has been gathered on the hardware to be used (and also not specifically designed) for this system.

REFERENCES:

- 1. McDonald Douglas Space Station Report #MDC G0634 "Preliminary Systems Design Data", Volume 1, Book 2, MSFC-DRL-160 Line Item 13, July, 1970.
- 2. "FARADA", Failure Rate Data Handbook, Volume 1A, Bureau of Naval Weapons, TR1-Service, NASA, (SP-63-470).
- 3. ATS Program Fairchild Hiller Corporation.
- 4. Reliability Report, Nov. 1968, National Semiconductor Corporation, page 14.
- 5. Reliability of Epoxy Transistors, presented at 1969 Annual Symposium of Reliability by General Electric, page 17.
- 6. The Requirement for Maintainable Electronics on Long-Duration Manued Space Mission by Mr. M. L. Johnson of the Aerospace Systems Division, April, 1969.

2.5-7

Study of Lousekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Doc. No. B-2.5.1.1.1_	Sheet No. 1
Operational Description No.	A-2.5.1.1 1
Subsystem Data Collection.	Storage & Display
By: A. Field	Date: 14 Sept. 1970

Title: Data Management - Electronics

Consumable/Expendable ITEM	HOW CONSUME D	BASIC CONSTITUENTS CONSUME D	10 Yr. Total Weight (lbs.)	Rate	Weight	Average Density As Received lbs/cu.ft.	REMARKS
Processors							
Controls/Arithmetic Mod- ules	Part Failure	Component Part	48.75		2.5	50	RTE
Main Memory	Part Failure	Component Part	2.5		2.5	50	RTE
Data Storage Media							
Mag. Tape	Abuse	Tape	5		5	40	Indefinite life, failure due to abuse
Mag. Disc	Abuse	Disc	5		5	40	Indefinite life, failure due to abuse
Data Storage Hardware							
Tape Transports	Part Failure	Component Part	101.6		40	42	
Data Management							
System Electronic Circuit Boards	Part Failure	Component Part	9		0.25	50	Assume 750 cards per system

2.5-8

REPUBLIC AVIATION DIVISION

		· / · · · ·	 Manned Space
	II M CALCAN	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	150000 ND00
STREET COL			
ULUCIY UL	TICKUCINCCL		

TABLE II. CONSUMABLES/EXPENDABLES

Title: Data Management - Electronics

Doc. No. B-2.5.1.1.1	Sheet No	. 2
Operational Description No	A-2.5.1	l. 1 1
Subsystem Data Collection,	Storage &	: Display
By: A. Field	Date: 3 S	

Consumable/Expendable ITEM	HOW CONSUME D	BASIC CONSTITUENTS CONSUME D	10 Yr. Total Weight (lbs.)	Rate	Unit Weight (lbs.)	Average Density As Received Ibs/cu.ft.	REMARKS
Sensors	Part Failure	Component Part	52.5		0.25	50	
Displays & Controls							
Cathode Ray Tubes	Part Failure	CRT	17.5		2 .	2.0	
Keyboard Terminals	Part Failure	Component Part	6.75		6.75	40	

F FAIRCHILD HILLER REPUBLIC AVIATION DIVISION TARHINGDALE, LONG INLAND, NEW YORK

2.5-9

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No. C-2.5.1.1.1	Sheet No. 1	et i
Operational Description No.	A-2.5.1.1.1	
Subsystem Data Collection,	Storage & Display	
By: A. Field	Date: 14 September	197(

Title: Data Management - Electronic

WASTE	<u>Characteristics</u> State And Attributes	Chemical Composition	Action Required To Reclaim	10 Yr. Total Weight (lbs.)	Daily Rate Ibs./day	Weight	Average Density As Received Ibs/cu.ft.	
Processor'								
Controls/Arithmetic Modules (Book Module)	Solid,Rigid Sheet Metal, Plastic	Al, Cu, Phenolic, Fibreglass, Silicon	Repair	48.75		2.5	50	RTE, Repairable
Main Memory (Book Module)	Solid, Rigid Sheet Metal, Plastic	Al,Cu, Phenolic, Fibreglass, Silicon	Repair	2.5		2.5	50	RTE, Repairable
Data Storage Media								
Magnetic Tape	Solid, Plastic, Wound Ribbon	Mylar, Iron Oxide	Replace	5		5	40	Discard Tape
Magnetic Disc	Solid, Rigid Disc, Plastic, Metal	Teflon, Iron Oxide, Fe, Cu	Replace	5		5	40	
Tape Transports	Solid, Metal, Dense	Fe, Cu	Replace	101.6		40	42	
Circuit Board	Solid, Rigid Sheet Plastic & Metal	Al, Cu, Phenolic, Fibreglass, Silicon	Repair	9		0.25	50	

FAIRCHILD HILLER REPUBLIC AVIATION DIVISION

FARMINGDALE, LONG ISE AND, NEW YORK

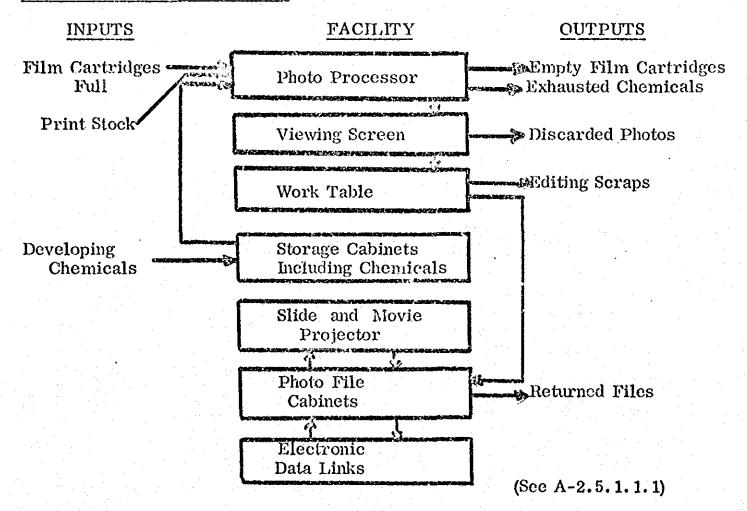
2.5-10

	Study of House	ekeeping Con	cepts For Manned S	Space	Doc. No. <u>C-2.5.1.1.</u>	
÷.		TABLE III.	WASTES		Operational Description Subsystem Data Collect	tion, Storage & Display
					By: A. Field	Date: 14 Sept. 1970

2

Title: Data Management - Electronic

WASTE ITEM	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim	10 Yr. Total Weight (lbs.)	Daily Rate lbs./day	Weight	Average Donsity As Received Ibs/cu.ft.	REMARKS
Sensor	Solid, Metal (Unknown)	Unknown	Replace	52.5		0.25	50	
Displays & Controls								
Cathode Ray Tube		SiO ₂ , Fe	Replace	17.5		2	2	
	Fragile, Danger- ous							
Keyboard Terminal	Solid, Plastic Semi-cond.	Phenolic, Al, Cu Silicon	Repair	6.75		6.75	40	
	Rigid							


Doc. No. A-2.5.1.2.1 Sheet No. 1 By: P. Trotta Date: 30 July 1970

OPERATIONAL DESCRIPTION

FAIRCI-ILD HILLER

TITLE: Data Management - Photographic

SCHEMATIC BLOCK DIAGRAM:

RATIONALE:

A photographic lab will manage, develop, edit, supply materials for transmittal (physical and electronic image) and store the photographic data as produced by the various experiments. It is assumed that for every lb. of film there will be: 1 lb. of print stock, 0.1 lb. of scrap materials produced from editing and spoiled film, 1 lb. of empty film cartridges, 1 lb. of developing liquids, and 0.1 lb. of discarded pictures. Cartridges are approximately 4" x 4" and weigh approximately 1.4 lbs. full each and 0.7 lbs. empty. The photographic laboratory will probably be started with a given capacity that will be able to encompass all of the future work envisioned plus some spare capability. With this assumption, the laboratory here is based on the load of a 100 man station. The laboratory would be the same size for smaller stations, but would have a proportionally smaller throughput. It is estimated that one man would be

Doc. No. A-2.5.1.2.1 Sheet No. 2 By: P. Trotta Date: 30 July 1970

required, full time, to operate their laboratory. 10 cartridges, on the average, will be used on any day. Developing fluid, will be changed in batches every 1 to 2 days and all the film of a particular day will be processed, edited, viewed and printed together.

REFERENCES:

MEES C.E.K.: The Theory of the Photographic Process - The Mac Millan Company. 1959, Rochester, N.Y.

Gundersen, Robt. T.: Earth-Orbiting Space-Base Crew Skills Assessment. NASA, M.S.C., Houston, Texas. NASA TM X-1982, April 1970. FAIRCHILD HILLER

REPUBLIC AVIATION DIVISION FARMENGOALE, LONG ISLAND, DEW FORCE

2.5-13

Study of Housekeeping Concepts For Manned Space

TABLE II. CONSUMABLES/EXPENDABLES

Title: Data Management - Photographic

Doc. No. B-2.5.1.2.1	Sheet No. 1	
Operational Description	No. A-2.5.1.2.1	
Subsystem Data Collecti		
By: p. Trotta	Date: 30 July 1970)

Consumable/Expendable ITEM	HOW CONSUMED	BASIC CONSTITUENTS · CONSUMED	10 Yr. Total lbs.	Daily Rate lòs./day	Unit Weight Ibs.	Average Density As Received lbs/cu.ft.	REMARKS
Developing Chemicals	Through reaction with silver halide emulsion on film	fate	25,550	7	14	63	
Film and Cartridges	Exposed to Light	Unexposed film	51,100	14	1.4	36	
Print Paper Stock (if used)	Exposed to light	Unexposed paper stock	25,550	7	7	72	

FAIRCHILE HILLER

5

EPUBLIC AVIATION DIVISION

2.5-14

Study of Housekeeping Concepts For Manned Space

TABLE III. WASTES

Doc. No.C-2.5.1.2.1Sheet No.1Operational Description No.A-2.5.1.2.1Subsystem Data Collection, Storage & DisplayBy:P. TrottaDate: 30 July 1970

Title: Data Management - Photographic

waste Item	Characteristics State And Attributes	Chemical Composition	Action Required To Reclaim	10 Yr. Total Ibs.	Daily Rate Ibs./day	Unit Weight 1bs.	Average Density As Received lbs/cu.ft.	REMARKS
Exhausted Developing Chemicals	Liquid ,Caustic	Sodium Thiosulfate	Reversal of develop- ing, reaction and remova of contam- inants		7	14	63	
Empty Film Cartridges	Solid. Metal	Steel	Refill with film	25,550	7	.7	10	
Discarded Pictures	Solid, Plastic, Caustic	Grains in	Clean and Resurface with fresh cmulsion	2,550	.7		25	
Editing Film Scraps	Solid,Plastic, Caustic	Silver Halide Grains in Gelitin on Mylar	Clean and Resurface with fresh emulsion	2,550	-7		10	

PROVIDE FOR SPACECRAFT LOGISTICS

SECTION 2.6

PAIRCHILD HILLER REPUBLIC AVIATION DIVISION

Doc. No. 2.6 Sheet No. 1 By: Date: 25 September 1970

OPERATIONAL DESCRIPTION

TITLE: Provide for Spacecraft Logistics

These areas were not reviewed during the performance of this study because of the lack of definite plans for future programs.

PROVIDE FOR EXPERIMENT SUPPORT

SECTION Z.T

FAIRCHILD HILLER NEPUBLIC AVIATION DIVISION

> Doc. No. 2.7 Sheet No. 1 By: Date: 25 September 1970

OPERATIONAL DESCRIPTION

TITLE: P

Provide for Experiment Support

These areas were not reviewed during the performance of this study because of the lack of definite plans for future programs.