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1 .O INTRODUCTION 

In  a previous study by Pa0 (Reference 1 ), a  generalized  theory  of supersonic jet  noise 
production has been formulated. In  this theory  the analysis i s  based on the convected 
wave  equation as derived by  Phillips (Reference 2 ) . General solutions to  the con- 
vected wave equation  have been obtained in the  important range of supersonic and 
transonic convection speeds. Since the  convected  wave  equation has taken the  detailed 
local mean flow properties of the shear layer into account, the  local noise generating 
mechanisms and far f ield noise characteristics can be described much  more accurately 
in the generalized. theory  than in  other existing theories. Far reaching understanding 
of noise generating processes in  a supersonic turbulent shear flow  can  be  gained through 
further developments of this  generalized  theory. 

The general results of Reference 1 can be extended into two areas of immediate  interest: 

a) The Analytical Implications  of the Theory: - The analytical study 
of  the dynamics of wave radiation i s  only  the  starting  point  of a 
systematic study of  jet and rocket noise phenomena. The mean flow 
parameters, the  turbulence structure, and other thermodynamical or 
aerodynamical  effects must be studied simultaneously. The overal I 
studies of  jet noise is, therefore,  vastly  complex. Analytical insight 
of noise generating mechanisms w i l l  be the most valuable guidance 
for  organizing  detailed experimental studies, correlation  of  experi- 
mental data, and developments of noise prediction or noise control 
methods. 

b) Application  of the Theory to  Actual  Numerical  Calculations: - 
Since this method i s  capable of  predicting  jet noise intensity, 
spectrum,  and directivity through the same equations in  a unified 
manner, i t  i s  of great practical  benefit  to  develop  the  theoretical 
results into a  numerical scheme for noise predictions.  According 
to previous experiences (Reference 5 ), the noise of low subsonic 
jets can  be  predicted analytically  to an accuracy of 5 1 dB. If 
similar  accuracy  can be obtained  for supersonic jet  noise prediction 
using the generalized. theory,the.numericaI prediction scheme w i l l  
become a  useful tool for defining the noise environments of future 
rocket engines, estimating the change in  acoustical  characteristics 
due to design modifications, an'd the design and evaluation  of various 
noise control devices or concepts. 

I n  the present report, the  major objective i s  to  refine  the  theoretical results of Refer- 
ence 1 , such that some important questions  under area (a) can be  resolved. The 
theory  have also been modified such that numerical  computational schemes can  be 
programmed as an immediate  next step. Via the  refinement of the  analytical results 
of the generalized  theory,  a number of important noise generating mechanisms have 
been found for  the  first  time on a solid  analytical basis. It i s  found also that  the 
results of the  generalized  theory correspond precisely with results i n  the  literature. 
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In either low speed or high speed jets, both  the  self noise and the shear noise types 
of sound  sources are present, and both of them contribute  to  the  overall sound power 
i n  the same order of magnitude. According  to  the  convected wave equation, there 
are many modes of noise radiation i n  a supersonic je t .  However, their domains of 
dominance are heavily  overlapping. Three representative modes are  studied i n  this 
report: 

a)  The Mach modes, [ S .  11 and [ S .2]. Different  analytical 
solutions to the  convected wave equation are required for 
Mach wave radiation  in various  frequency ranges. The 
Mach mode wave radiation  in the high frequency end, 
[ S.11 , and the  Mach mode wave radiation  in the low fre- 
quency end, [ S .2] , are chosen to cover the  entire spectrum. 
Both the sonic components and the  hydrodynamic components 
i n  the  turbulence are contributing  to  the  Mach mode radiation, 
with the  hydrodynamical source dominating in  most  cases.  The 
unique  character of  Mach wave radiation  via  the hydrodynamical 
sources i s  that it depends mainly on the longitudinal wave number 
component of the  turbulent  structure in  the shear layer. 

b) The Acoustical mode, [ S .O] . Although  both  Mach  wave and 
acoustical  wave  radiations are included  in the  Mach modes, 
there i s  also a purely  acoustical mode of  noise radiation  in a 
supersonic jet .   In this mode, all the sound  sources in  the  turbulent 
shear flow are "acoustical"  in nature, i .e., the sound source i s  the 
sonic mode  (Reference 36) in  the  turbulent  structure. From an analytical 
point  of  view, this mode i s  also the simplest solution  to the  convected 
wave  equation. The Lighthill's theory, including the extension to 
high speed convections given  by Ffowcs Williams, can be identified 
with this acoustical mode, except that the Mach wave radiation as described 
by Ffowcs Williams  would have to be excluded from this correspondence. 

Based on the general solutions [ S .O], [ S .  11 , and [ S .2], the parametric dependence of 
the sound power  on mean flow and turbulent properties has been derived  for these modes 
of wave radiation. By using these parametric equations, comparisons with  the  Lighthill's 
theory can be made. It was found that the generalized  theory  predicts  exactly  the 
U8-law and ULlaw for sound power in  the subsonic and supersonic  ranges, respectively. 
However, the  detailed mechanisms of noise production  for the  Lighthill's theory and 
the  generalized  theory are subtly different. The transition  between  the U8-law and 
the @ - l a w  as predicted in  the  generalized  theory occurs early  in  the transonic range 
of convection speed, and the acoustic efficiency  in this region agrees quite  well  with 
previous experimental evidences. I t  was noted  before  by Ribner  (Reference 6 ) and 
Lowson and Pa0 (Reference 5 )  that some difficulties  in sound power predictions  were 
encountered by using  the equations derived via  the  Lighthill's approach. 
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The Doppler shift and refraction effects of the shear flow are carried  implicitly  by  the 
general solutions [ S .O] , [ S. 11 , and [ S .2]. The coupled  Doppler shift and refraction 
effect has produced some important  modifications to the analytical properties of noise 
generation mechanisms,  such  as: 

0 The convection  effect on the  forward  propagating waves in  the 
high frequency ranges i s  reduced by the  refraction, and 

0 The low  frequency  Mach wave and acoustical  wave  radiations 
are  strongly  favored i n  the down-stream direction. 

The important steps and  arguments for developing  the  analytic results, the  characteristics 
of the  convected  wave equations and i t s  solutions, and the parametric dependences of 
the sound power are discussed in  Section 2 .O. The spectrum, sound source strength distri- 
bution,  acoustic efficiency,  directivity patterns, and  the refraction  effects are discussed 
in  Section 3 .O and Section 4.0. The detailed formulas and derivations for the  principal 
results of the generalized  theory are given in Appendix A .  Finally, as an important  part 
of  the noise prediction study, the properties of high speed jet exhaust flows are summarized 
in  Appendix B. 
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2.0 A REFINED ANALYSIS OF THE CONVECTED WAVE EQUATION 

For aerodynamical noise rediation problems in the high speed regime, the  convection 
speed in  the mean flow i s  often comparable with  the  local speed of sound. Aero- 
dynamics and acoustic  wave  propagation  can no longer be  treated as separate problems. 
In  order to  predict  accurately  the properties of far f ield noise radiation, it i s  necessary 
to describe fu l ly the complex process of local  interactions between  the mean flow and 
the  turbulent noise sources. I t  has long been recognized  that  the Phillips approach of 
formulating  a  convected wave equation provides an accurate  description  of  the funda- 
mental  physicql properties of noise radiations in a high speed  shear flow, (References 2, 
3, and 4). However, the Phillips equation was very  difficult  to solve and only one 
solution was given  by Phillips  for shear flows with asymptotically  large  Mach numbers. 

In  a previous report by Pao (Reference 1 ), solutions to  the  convected wave  equation 
have been constructed which are uniformly  valid  in both the transonic and low 
supersonic convected speed ranges. Since these analytical solutions are  derived from 
the  convected  wave without any approximation, these results are potentially  very 
powerful  tools for studying  the noise generating mechanisms in  supersonic jets and 
rocket exhausts.  Furthermore, the analysis follows an integral  equation approach, 
the convergence of the  iteration scheme and the accuracy of numerical computations 
can  be accurately estimated. A critical review  of the previous results i s  presented in  
Section 2.1. 

Although the fundamental solutions to the noise radiation from  supersonic turbulent 
flows have been obtained through the convected wave equation, some important refine- 
ments should be made before  the results are directly  applicable  to the study of noise 
generating mechanisms and numerical calculation.  An important analytical  detail, 
which was not encountered in the Phillips' analysis, i s  the specification  of boundary 
conditions. I n  the convected wave equation, the instanteneous velocity  fluctuation 
quantities are specified in  the source  terms. I t  i s  well known that  the  statistical 
properties of the instanteneous fluctuating  quantities are not measureable. Only the 
mean  square values of the  fluctuations in  a  turbulence are statistically measurable. 
In  the asymptotic solution  given  by Phillips,  the far f ield noise and the instanteneous 
source  term are related  via a simple linear  relation. The dependence of  the mean 
square  sound  pressure fluctuation on the mean  square turbulence  fluctuation can be 
obtained directly through multiplying the instanteneous solution by i t s  complex conjugate. 
I n  the  generalized solutions as considered in  the present report, such a simple situation 
does not prevail. A detailed analysis working  directly through the boundary conditions 
i s  required. A comprehensive discussion of the boundary condition i s  given i n  Section 
2.2. 

In  Section 2.3, the magnitude and explicit  functional dependence of various terms in  
the  generalized solutions are discussed in  detail.  In the process of constructing the 
generalized solutions from the convected wave equation, several transformations of 
variables have been adopted. By examining the analytical results, their  relation  to 
familiar physical  quantities, such as Strouhal number,  or classical laws,  such as Doppler 
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2.1 

shift, i s  not obvious at al l .  The discussion i n  Section 2 .3  wi l l  help  to  clarify  the 
interpretations of the  generalized solutions in  physical terms. 

By including  the  analytical  details as given in  Sections 2 .2  and 2.3 ,  the  generalized 
solutions are now ready  for  exact  numerical computations. However, they are not i n  
a  convenient form for comprehensive discussions of various important supersonic je t  
noise generating mechanisms. In  Section 2.4, a set of approximate solutions to the 
convected wave equation has been obtained. These approximate solutions are obtained 
by  simplifying the exact  generalized  solutions.  Although these approximate solutions 
suffer from numerical  inaccuracy, their  functional dependence on various parameters i s  
preserved. By using these approximate solutions, penetrating  insight  to  the noise genera- 
ting mechanisms in   je t  and rocket exhaust flows can be achieved. 

The Fundamental Solutions 

The convected wave equation i s  derived from the momentum equation,  the continuity 
equation, and the  equation of state for a perfect gas. The general equation can be 
given as, (Reference 1) 

D2 a a au.  au. 

I j I log (:)I y - - 
D t2 a x   a x .  

I 
J +  

where p i s  the pressure, S i s  the entropy, and u. denotes the velocity components. 
For  sound radiation processes in  a  turbulent  flow, both  heat  conduction and viscosity 
are likely  to be  unimportant. Furthermore, i f  the  flow f ield i s  shock free, one can 
probably consider the effect  of pressure fluctuation and the  effect of  entropy fluctuation 
separately. Under these circumstances, the last two terms  on the right of Equation (1) 
can be neglected. 

I 

I n  order to construct a  solution to the  convected wave equation, i t i s  necessary to 
specify  the  flow field. A parallel shear flow has been chosen  such that i t has a 
characteristic thickness of 2L, and that  the mean flow properties and the  turbulent 
structure  are homogeneous in  the x, and x2 directions. The mean flow  velocity, 
u,, and the  local speed of sound, a ,  are functions of x3 only. Equation (1) can 
be further simplif ied i f  small terms are omitted. In  a  turbulent flow., the fluctuating 
velocity Components are small in  comparison with the mean velocity. However, the 
derivatives of the  fluctuating  velocities may not be small at  all.  In  the present  study, 
only terms depending‘ on the small velocity fluctuations  to the second  or higher orders 
are omitted. Equation ( 1 )  then becomes 

- 
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a  a  a a -  a I log (t) = l(a"t - + u  1 q - ( & + u , + ; z  ax,  I - - ax. I ax; I 

au:  au: 
a x  

1 

where y i s  the specific heat ratio, and u! denotes velocity fluctuations with zero 
mean. 

I 

The resulting Equation (2) i s  different from the original equation  given by Phillips i n  
two respects: 

1)  On the right-hand side of the equation, there  are two source  terms. 
The first term i s  the shear noise and the second term i s  the  self noise. 
It i s  known that in  subsonic  noise theory that  the self noise actually 
makes a greater contribution  to the overall noise power of a jet  than 
the shear noise. 

An additional term @/at + T1 a/ax,) U; a/axi log (p/p,)  appears 

on the  left-hand  side. I t  can be regarded as a dispersion term. Both 
a/at and T a/axl  of the fluctuating  velocity are large quantities. 

Fortunately, their combination represents the evolution  of the  turbulence 
in  the  moving frame of reference. The evolution  of  turbulence  in  the 
moving frame i s  known to  be slow  and the value of D/Dt 1 u' i s  of the 
same order of magnitude as the  acoustic radiation. Hence, the effect 
produced by this term may be compared to the diffraction  of sound by 
sound, which i s  a second order effect.  After  neglecting this term, the 
resulting  equation has the same left-hand side as given by Phillips. I t  
should be noted  that such a term i s  important in  the study of second 
order or nonlinear  effects  of wave generation processes. 

1 

I n  Reference 1 ,  Equation (2) i s  further rewritten i n  a non-dimensional form. Since the 
parallel shear flow  wave radiation problem can be regarded as statistically homogeneous 
in  the x l ,  x and t coordinates, Fourier transformation in these coordinates has been 
taken, and t2e  convected wave equation i s  reduced to an ordinary  differential equation 
of second order. In  the transonic and  supersonic convected speed  ranges, several types 
of solutions can be constructed  for  describing  the  wave radiation process i n  the low, 
intermediate, and high frequency ranges. In References 1 and 2, solutions have been 
obtained for both the high, and  low frequency ranges of wave  radiation. The wave 
radiation  in the  intermediate frequency range can be  approximated by either  the  high 
or low frequency solution, and it has estimated that  the error thus involved i s  less than 
1.5 dB. In  the following,  the  high frequency "Mach model' radiation solution, designated 

6 



as [ S. 11 , and the low frequency "Mach mode" radiation solution, designated as [ S .2] , 
are given in  their general forms: 

where (y, k , w) represents the sound  pressure fluctuations in  the  far field, q i s  a 
wave number i n  the  y-direction, and 5 i s  a transformed coordinate related  to y .  The 
source function is  represented by h (t) which includes  both  the  self noise and shear 
noise sources. q ( 5 ,  k , w), as well as H(5 ), i s  a  linear  function in  terms of the 

Airy's functions Ai (M2h 5 )  and Bi (My" 5 ) .  The function R ( 5 ,  t) i s  a  resolvent  kernel, 

and i t  i s  bilinear in terms of the Airy's functions. As a first  approximation, the resolvent 
kernel i s  equal to the  integral kernel of  the transformed convected  wave  equation: 

I n  Equation (5) ,  the  definitions  of various terms are similar to those in  Equation (3). 
However, q (5, k, m) and H(5) are linear  functions i n  terms of, 
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I n  addition  to'the solutions [ S .l] and [ S .2] , a third solution [ S .O] i s  necessary for 
a complete  description of noise radiations from  supersonic jets as well as subsonic jets. 
The solution [ S .O] can be  called the pure acoustic mode, or simply  "acoustic mode". 
It i s  defined as 

where q (y, k, o) and H ( 6 )  are linear in  the  trigonometric  functions sin (M 5 )  and 
cos (M t), and the  resolvent  kernel  can be defined as 

R (5, t) = M-' {sin (M 5) cos (M t) - cos (M 5) sin (M t) 1 (8) 

The detail expressions for terms in  [ S .O] , [ S. 11 , and [ S .2] wi l l  be given in  Appendix 
A .  

In  the present  study, two principle types of noise sources are under consideration; the 
self, noise and the shear noise terms. In  a jet, or other shear flows, these two types of 
sources always appear in  parallel, and their  contributions  to  the  overall far f ield noise 
i s  of  the same order of magnitude.  Aerodynamical noise i s  radiated from  these  sources 
i n  two modes: the  "Mach mode''  and the  "acoustic mode" . The "Mach mode'' exists 
only  in supersonic jet,  while the  "acoustic mode'' i s  the  dominating noise radiating 
mechanism in  a subsonic je t .  

Mathematically, the Mach mode radiations [ S .l] and [ S .2] are characterized by the 
process of  accelerating the frozen components of pressure fluctuations i n  the  turbulence 
such that  acoustic radiation  into the far f ield i s  achieved.  Along  the  radiation  ray path 
of solutions [ S. 11 and [ S .2], acoustic mode radiation  actually contributes also to the 
overal I noise radiation. However, the  Mach mode radiations [ S. 11 and [ S .2] can 
only reach  a limited sector in the first quadrant. Beyond the  limits  of this sector, the 
acoustic mode of  radiation, [ S .O] , becomes the only noise generating mechanism. 
Therefore, the [ '5.01 acoustic mode remains to  be a  dominating noise radiation mech- 
anism even in  je ts  with transonic or low  supersonic Mach numbers. 

I n  rocket exhaust flows, the Mach mode radiations can practically reach  the entire 
first quadrant since the apparent Mach number i s  very  large. The pure acoustic radia- 
t ion  wi l l  dominate  the sound f ield  in the second quadrant.  Although  the contribution 
to the  overall sound power by  the [ S .03 mode could be small i n  Comparison to those 
from [ S. 11 and [ S .2] , the [ S .O] mode of noise radiation remains very  important 
because the  rocket  vehicle structure i s  entirely  within the second quadrant for most 
launch and in-flight configurations. 
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2.2 Boundary Conditions 

When the  convected wave equation i s  reduced to an  ordinary  differential equation 
through Fourier transformations, two boundary conditions  are  required to determine 
the  arbitrary constants in the general solution. These boundary .conditions are  specified 
by  the  physical requirements of wave propagations in each of the  solutions [ S.01 , [ S.11 , 
and [ S .2] . 
For the  acoustic mode, [ S .O] , the  turbulent sound  source i s  the local  acoustic component 
i n  the  turbulent  structure itself. I t s  wave number, frequency, and propagation direction 
i s  identical  to  the corresponding parameters  on the  radiation  ray path as determined by 
the general solution [ S .O] . Both the  radiation  ray path and the local sonic turbulent 
source  components are vector  quantities. Since the radiation  ray path has a predetermined 
direction, the solution [ S.01 represents the wave propagating in  one way  along the ray 
path. For this  simple case, the boundary conditions are 

a) The acoustic wave propagates away from the shear layer at 
positive infinity, and 

b) The amplitude  of  the pressure fluctuation vanishes at  negative 
infinity . 

The second condition states that at negative infinity, the  radiation path has not  yet 
passed through any source regions, and the wave amplitude is  zero. 

For the  solution [ S .1] , both  acoustic and hydrodynamic source  terms are encountered 
along  the  radiation  path. The hydrodynamical sound  sources are located  below  the so 
called  critical, or transition  point. In  [ S .l] , the  propagating wave i s  restricted  to 
the  high frequency range, the contribution of hydrodynamic sources to wave radiation 
decreases rapidly  with the distance from the transition  point. The statements of the 
boundary condition ramain the same  as those in  [ S .O] . The continuity  of  the wave 
function .at the transition  point i s  automatically ensured by using the Airy's functions 
as the principal solutions. 

For the  solution [ S.21 , the  physical mechanism of  Mach wave radiation i s  markedly 
different from [ S .  11 . Since the wave number i s  assumed to be small, the subsonic 
layer which contains  the  hydrodynamical sources  (Reference 1)  i s  mathematically 
"thin". The hydrodynamic source i s  responsib.le for  the wave radiations  both above 
and under the shear layer.  Continuity  of the two radiated waves i s  maintained through 
the subsonic layer. I n  the  original  Phillips formulation, two separate wave equations 
are used for  the upper branch and the lower branch of  the propagation  path. Therefore, 
four boundary conditions are required. 

a) The waves are propagating away from the shear layer at  positive 
and negative  infinities, and 

b) The wave  function, as well as i t s  first derivative, is  continuous 
through the subsonic layer. 

9 



In  view  of  the generalized analysis, there i s  no apparent advantage of using two 
separate wave equations. Same degree of approximation i s  involved i f  only one 
wave  equation i s  used for  both  the upper branch and the lower branch. If one wave 
equation i s  used, the  continuity  of  the  wave  function  at  the subsonic layer i s  auto- 
matical l y  satisfied. The only required boundary conditions  are  the  radiation  criteria 
at plus and minus infinities. 

In   a l l  the analysis carried  out so far, only  the instantaneous values of  the pressure wave 
as well as the source function has been considered. However, the instantaneous value 
of the  source.function i n  an actual  turbulent  flow i s  not  a  statistically measurable 
quantity.  Only  the mean  square values of the  turbulent  fluctuations, or the second 
order correlation functions, can be defined. 

By examining  the  derivations of the analytical solutions, it can be found that  the 
turbulent source functions i s  required  for  the boundary conditions. In  a highly 
simplified  notation,  the boundary conditions  can be written as 

allA + a B = L 
12 1 (9) 

a21A + a B = L 
22 2 (10) 

where a.. are known constants, A, B are  the arbitrary constants in  the general solutions 

of  the wave equation, and L,,  L2 are known integrals of  the  generalized Fourier trans- 
forms of  the instantaneous source functions. A parallel wave propagation problem can 
be posted such that  the source function and the  wave  equation are the complex conjugate 
to  the  original mathematical problem. Therefore, the corresponding boundary condition 
can  be  written as 

' J  

where the asterisks denote the complex conjugate  of  the  various symbols. By  cross 
multiplying Equations (9), (lo), (1 l ) ,  and (12), and taking  the  statistical averages 
of the products, a set of four linear equations are obtained. 

a a* AA* + A* B + a a* AB* + a a* BB* = LIL: (13) 

a  a* AA* + a*  a A*B + a21a;2 AB* + a a* BB*  = L f (14) 

- 
11 1 1  11 n 12 12 

21 2 1  2 1  22 22  22 2 2  
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The.overbar in  Equations (13) and (14) denote the ensemble  averages of the products 
of  the source integrals. In this set of  equations, a l l  the  coefficients on the  left hand 
side are known. The products of  the  arbitrary constants AA*, A*B, AB*, and BB* can 
be regarded as the four unknown quantities. I t  can be shown (Appendix A) that  the 

source integrals L L* and L L* can now be  given in terms of the correlation  functions 

of the  turbulent  fluctuations. The linear equations (13) through (16) can  therefore be 
solved algebraically. It i s  interesting to note that, mathematically,  only  the magnitude 
of the wave amplitudes can be computed. The instantaneous phase of the  wave  function, 
w i l l  not  be known because the values of A, 8, A*, and B* can  not  be solved individually. 

- - 
1 1  2 2  

2.3 Characteristics of  the Wave Functions 

Since  the  convected  wave  equation i s  formulated  according to the basic equation  of 
aerodynamics, i t  i s  valid for shear flows of  all speeds.  For wave radiations in  the 
acoustic mode, the  wave  equation i s  well behaved and the simplest solution, [ S.01 
can be constructed by methods of wave propagation in  a nonhomogeneous  medium. 
I f  the  convection speed in  the shear flow exceeds the ambient speed of sound, Mach 
wave radiation w i l l  be also a part of the wave generating mechanisms. Two more 
important solutions, [ S .  11 and [ S .2] , are therefore constructed by means of  the 
WKB method. These representative solutions can cover a l l  the aerodynamical noise 
generating mechanisms in  a subsonic  or  supersonic  shear flow. The domain of  validity 
of these solutions overlap each other, hence, the mathematical problem of  matching 
these solutions does not  arise. 

I n  a supersonic jet, the  Mach wave radiation can  reach a maximum angle of 

qM - 
- cos” ( l/Mc ) 

where Mc i s  the  convection  Mach number. Beyond this  angle,  the hydrodynamic 
noise sources remain partially  effective  until  the  radiation angle in  the far field 
reaches a critical angle 

For a l l  far field  radiation angles greater than q the noise generation mechanism 
w i l l  be  purely  the  acoustic mode. According  to Equation (18), the  angle q~ i s  

always greater than zero  for  any  positive value  of Mc. Therefore, there is always 
a  portion of wave radiation  which belongs to the classes of solutions [ S.11 and [ S.21 , 
even i f  the shear layer has a subsonic convection speed, (Reference 35). 

cr‘ 
cr 

Since the analysis of the  generalized  theory  follows an approach which i s  different 
from the  conventional methods employed in  acoustics, the solutions [ S .O] , [ S. 11 , 
and [ S.21 are expressed in  unfamiliar terms.  However, once the meaning of a few 
key parameters have been clarified,  the physical meaning of these analytical results 
w i l l  not  be  too  difficult  to  interpret. 
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All the  quantities i n  the final results are non-dimensional . The free stream Mach 
number i s  the  ratio  of  the maximum  speed in the shear layer to  the ambient speed of 
sound. All the local  convection speed in  the shear layer i s  normalized as V, which 
has a value between  zero and one. .For any point i n  the shear layer, the  local con- 
vection Mach number, Mc, i s  given by 

Mc = M V c  

The non-dimensional frequency 0, as defined in  the fixed frame of  reference, i s  
directly proportional  to the Strouhal number, St 

According  to  the  definition of terms in  the non-dimensional coordinates, the ambient 
speed of sound  has a value  of M". Therefore, the  relation between  the frequency o, 
and the  wave number k, (magnitude of the wave number in  the three-dimensional sense), 
can  be written as 

o = 2 (*) 
I 

I t  i s  very important to observe the sign convention  for  frequency and wave numbers. 
According  to  the  definitions adopted in  this analysis, a  wave  propagating in  the 
positive  direction  of  time corresponds to a  negative  value  of o. Hence, if a wave 
propagates i n  the  positive  direction as indicated  by a  wave number vector , the 
frequency, w, and the magnitude of  the wave number, k, w i l l  have opposite signs. 
The quantities o and k w i l l  have the same sign i f  the wave i s  propagating in a 
direction opposite to k. The function q, defined in  the generalized  theory as 

plays a  central  role in  both  the transformation of the  wave  equation and the  final 
representation of the general solutions. I t  i s  directly proportional to the  wave number 
i n  the y3-direction: 

k3 = M q  (23) 

By knowing q, the chosen values of k,, k2, and w, one can define  clearly  the  local 

wave propagation direction and phase  speed in  the three-dimensional space. 

The Doppler shift effect,  which i s  explicit  in the Lighthill formulation, i s  implicit  in 
the  generalized  theory. However, the  exact  Doppler shift relation can be  derived 
from  Equations (21), (22), and (23), 
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1 - Mc COS 9 w =  

where w i s  the  radiated wave frequency i n  the  far  field, cp is  the  angle between the 
direction  of  the shear flow and  the direction  of  the  far  field  wave propagation, and 
w i s  the  local wave frequency of  the turbulent source in  a frame of reference which 

moves with a  convection  Mach number Mc. 
0 

A striking  difference occurs between  the Lighthill theory and the  generalized  theory 
concerning  the  practical  significance  of the Doppler shift effect  in the noise generating 
mechanisms. In the Lighthill or Ffowcs Williams approach, the  factor (1 - Mc cos cp) 
i n  Equation (24) can take  very large  negative numbers i f  the  convection  Mach numbers 
i s  sufficiently large. This equation  applies equally  we'll  to  high frequency radiations 
as well as low frequency radiations. I f  the local frequency wo equals to zero, it i s  
obvious from Equation (24) that  the source  term i s  the frozen component of turbulence. 
The only possible wave radiation mechanism i s  Mach  wave radiation  in  which 

cos cp = MF' and 1 - Mc cos cp = 0 , 

However, if oo # 0, the nature of the source term becomes very ambiguous  because 
the  orientation  of  the wave number i n  the  turbulent source i s  unknown. Consequently, 
the  local source fluctuation can be subsonic,  sonic,  or even the dynamically inadmissible 
case of  locally supersonic. In  the absence of  refraction effects, one would have to assume 
that  the  wave number remains the same in  both  the source volume and the far field. Such 
an approach has been tacitly or explicit ly  in previous studies of je t  noise (References 7 
and 8). In  this case, the source function w i l l  be locally subsonic (hydrodynamical) in  
nature for 11 - & cos 8 I < 1; and the source function w i l l  be locally supersonic 
(dynamically  inadmissible  for infinitesimal waves) for [ 1 - Mc cos 8 I > 1. 

I n  the  generalized theory, the  detailed wave generating mechanisms which leads to the 
Doppler shift effect i s  clearly demonstrated by  the  analytical solutions. Two conclusions 
with  practical importance  shall  be discussed here: 

a) For any given supersonic convection  Mach number, the  convection 
factor (1 - M, cos cp) i s  predominately greater than minus one. I t  
may be less than minus  one only for wave  radiations in  the extremely 
low frequency.range , (VM) << 1. 

b) The local sound source fluctuations are either  hydrodynamical (subsonic) 
or acoustical (sonic) in nature. The correspondence between  the  far 
field  radiation and the  turbulent noise sources can be  defined  precisely. 

I n  an actual shear layer, the  convection and refraction  effects are  combined. For 
the  solution [ S .O], the  convection  factor i s  always greater than zero because i t s  
domain of  application i s  restricted  a  region where 
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i n  accordance with Equation (18). For the  solution [ S. 11 , the sound  sources are 
contained in two regions. In the subsonic layer  between  the  transition  point,  the 
sources are  hydrodynamical. I n  the  region  between  the upper transition  point and 
the outer edge of  the shear layer, the sound source i s  always sonic because the 
refraction  effect changes the radiation  direction  continuously such that  only the 
locally acoustic source  component can contribute  to the far field  radiation. 
According  to  the  definition of the  solution [ S. 11 , the  region  below  the lower 
transition  point w i l l  not  contribute  to  the  far field  radiation for waves i n  the upper 
branch. I f  the  convection speed of the  frozen source layer i n  the  hydrodynamical 
zone i s  chosen as Mc, then  the  convection speeds for layers i n  the hydrodynamical 
zone w i l l  range from (Mc + 1) to (Mc - 1 ) .  Since i t  i s  known from previous dis- 
cussions that Mc cos 9 = 1, therefore, the lowest value  the  convection  factor can 
take is 

1 - ( M , + ~ ) C O S ~  =   COS+&-^ (25) 

Finally, for  the case [ S .2] , where Mach mode radiation  in the  very low frequency 
range i s  considered, the source region in  the shear layer  below  the lower transition 
point can also contribute  to  the far field wave radiation  in the upper half space. 
Only  in this case, the  convection  factor  can be less than minus one. 

I n  the expressions of the general solutions, two  equivalent coordinates for  the  axis 
normal to  the shear layer  remain i n  effect, i .e., y and 5. There i s  no analytical 
inconvenience  involved because the  coordinate  y appears only  implicit ly  in the 
definition  of the source function h, and the wave number function  q. I n  practical 
computations, the c~rrespondence between  y and 5 must be  specified i n  order to 
locate the shear layers and the source functions  properly. 

The function g(t) represents  an error term introduced by the WKB transformation. 
Generally speaking, g(t) i s  proportional to the local  curvature  of the velocity  profile 
near the critical  layer. I t  i s  generally small, and approaches zero to the order of 5-* 
i n  the far field. The precise definition  of g(t) in  terms of mean flow parameters w i l l  
be presented i n  Appendix A .  

2.4 The Parametric Dependence of the Analytical Solution 

A very important objective  of the development of the generalized  theory i s  identifying 
the noise generating mechanisms in  a supersonic jet.  An  effective way to achieve such 
an investigation i s  to  reduce the analytical  solution  to  their essential basic elements by 
eliminating  the  quantitative  details  of the  numerical  values of various terms. In  this 
section, the  derivations  of  the parametric dependence of the analytical solutions w i l l  
be discussed in  detail. The various implications  of  the  derived results w i l l  be discussed 
in  subsequent sections. 

14 



I n  Equations (3), (4)., and (5)., the source function h (5) i s  related  to  the  actual sound 
source in the physical coordinates v ia 

where r (y, k, w) i s  the instantaneous generalized spectrum of  the turbulent noise 
source, M i s  the  free stream Mach number, a' i s  the  derivative  of 5 with respect to 
y, and A (y). i s  the  ratio  of the local speed of sound to  the ambient speed of sound. 

The generalized  spectral  function r ( y ,  !$, w) contains  both  the  self noise and the 
shear noise. According  to the definition  of the source terms, the  self noise i s  the 
product of the  spatial  derivatives of two velocity components. I n  the Fourier trans- 
formed wave number representations, the self noise term contains a  factor  of k2 due 
to the  differential operators. Furthermore, i f  the  turbulent velocity  fluctuation 
spectrum i s  assumed to be normal (Reference lo), the spectrum of  in the noise 
production range wi l l   be a slowly  varying  function  of k.  I t  can be assumed to be  a 
constant for  practical purposes.  The  shear noise  term i s  the  product of the  local mean 
velocity gradient and the  derivative  of the transverse turbulent velocity component. 
Since  the  generalized spectrum for  the velocity  fluctuation depends  on .k,. the  overall 
shear noise term  depends  on k2. Hence, both  the  self noise and the shear noise source 
spectrum  depends on k2. 

J 

By examining  the structures of the general solutions and the boundary conditions, one 
can easily find that  the  amplitude of the  radiated  wave depends mainly on the strength 
of the source function,. The effect  of  the error term under the integral sign plays only 
a secondary role as far as the  qualitative nature of the solution i s  concern. I n  the 
following derivations, the wave amplitude w i l l  be assumed to be directly proportional 
to the source integral . 
For the acoustic mode solution [ S.01 , the  coordinate transformation 5 i s  defined as 

0" 
therefore 

According  to Equation ( 7  ), the  resolvent  kernel i s  a function  of (M 5 )  and (M t). If 
the source spectrum f (y, k, 0) i s  assumed to be constant throughout the source region, 
and the observation point 5 i s  i n  the  far field,  the source integral can be  written  as' 
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R (<,t) h (t)dt = - 
l / 7  

sin (M 6 )  cos (M t) - cos (I&) sin (M t) 
M2 

0 0 (28) 

Since h (t) i s  assumed to be constant, therefore, h (t) = h (M t). After this factor i s  
taken  out of the  integral sign, the remaining  integral i s  a pure mathematical function 
which i s  independent of  the physical properties of  the shear layer. The value  of this 
integral is, therefore, a universal constant. By substituting  the  result  of Equation (28) 
into Equation (7), the functional dependence of  the  far  field noise radiation can  be 
written as 

for  the  self noise,  and 

for the shear noise, where SI and S, are the  generalized spectra for  the velocity 
fluctuation components called for in  each case, a i s  a longitudinal scale of the 
turbulent structure, and R i s  the shear velocity gradient i n  the mean flow. Since 
the shear noise and the self noise have essentially  identical  functional dependence 
on the shear flow and turbulence parameters (Reference 5 ), only  the  self noise w i l l  be 
discussed in  the remainder of this  report. Shear noise w i l l  not  be  mentioned separately 
unless i t  i s  necessary. 

I n  the  acoustic mode of radiation,  the transverse wave number M q  has a value 
completely independent of the longitudinal wave number k because the orientation 
of the  acoustic noise source orientation i s  arbitrary. Therefore, the function q in  
equations (29) and (30) i s  an arbitrary  function, and can  be omitted. As w i l l  be shown 
later  in this section,  q.and k are closely  related i n  the  Mach modes [ S.11 and [ S .2] , 

The mean  square  sound  pressure fluctuation can be  obtained  by  multiplying Equation 
(29) by its complex conjugate, and taking an ensemble average: 

where @ (y, k, o) i s  the spectrum of the mean  square turbu 
of  the  self noise source. According  to the definition  of cp 
(21), Equation (31) can be  written  equivalently as 
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lent  velocity fluctuations 
(Reference 1) and Equation 
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For the 
and 5 

high frequency Mach mode, [ S .l] , the  coordinate transformation between y 
i s  defined as 

and therefore 

2/3 6 
9' = (k) (2 M Q  cos 0) (33) 

in  the neighborhood of the  hydrodynamical source zone. Since the  fluctuation  levels 
of the hydrodynamic sources in  a  turbulent shear layer i s  much higher than those of the 
acoustic source terms, only the  contributions from the neighborhood of the  hydrodynamical 
source zone w i l  I be considered. By using Equation ( 3 ), ( 4 ), and the transformation of 
integration  variable  similar  to the one employed in  Equation (28), the contribution  of the 
source integral i s  proportional to: 

According  to Equation ( 3 ), the transformed solution q ( 5  , k ,  o) i s  a  linear  function of 

the  Airy's functions A i  (M2/3 t ) and Bi  (M2/3 5 ) .  Their coefficients are proportional to 
the source integral, I ,  as given  by Equation (34). In  the  far field, the asymptotic magni- 
tude of Ai and Bi i s  given  by 

- g  
I im Ai  (M2I3 t), Bi (M2' 5 )  - Mg ($1' q (y) dy) COS (MJ'qdy + p 1 
(+a, 

where p i s  a constant phase angle.  According  to Equation ( 3  ), the  final wave  amplitude 

depends also on q-% . The function q should take its value  in the  far field 
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Therefore, the mean  square  sound  pressure fluctuations i n  the far field i s  

By using a similar procedure, the parametric dependence of the 
tions in  the  far f ield for  the low frequency Mach mode, [ S .2] , 

sound  pressure fluctua- 
can be  obtained: 

I n  Equations (31), (38), and (39),  the sound  pressure level  in the  far f ield i s  produced 
by a unit volume of turbulent nois? source. The Mach number dependence of the far 
f ield sound  pressure intensity i s  M . This i s  different from the M/1 dependence given 
before by Phillips (Reference 2). This i s  because that  the  Mach number dependence of 
k and q has not been included in  the  derivations in  Reference 2 .  

3 
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3.0 THE OVERALL SOUND POWER AND THE SOUND SOURCE DISTRIBUTION 

Equations (31),  (38), (39) contain some important clues concerning  the dependence 
of  overall  radiate sound power and sound source locations on the shear layer parameters 
such as convection Mach numbers and turbul nt structures. The well established l a w s  of 

U8, U3, and { (1 - M COS + a2 M2 dependences of  jet noise, as given  by 

Lighthill, Ffowcs Williams,  and Ribner, can  be  precisely reproduced in  the generalized 
theory. Beyond  these classical l a w s  of dependence, the  generalized  theory  can  further 
explain many hitherto unknown properties of  noise generating mechanisms in the transonic 
and supersonic convection speed ranges. &sed on the results obtained in Section 2 .O, 
the  overall sound power radiated from a  turbulent  high speed je t  and the sound source 
distribution  along  the axis of the jet  wi I I be discussed. 

74 

3.1  Parametric Dependences of the Overall Sound  Power in  the Far Field 

Analytically, the  acoustic mode solution [ S .O] of  the generalized  theory i s  equivalent 
to the Lighthill's  solution  to the  aerodynamical noise generation problem. From the 
parameteric  equation (31), the dependence of the  far field sound  pressure level i s  pro- 
portional  to M4 u4. In  the [ S .O] mode of solution,  the noise source i s  always locally 
sonic. Therefore, the frequency w i s  proportional to the  natural frequency of the 
fluctuation  of the turbulence itself .  In  the existing  literature,  the  local  fluctuation 
frequency, wo , i s  often assumed to be  proportional to the  convection  Mach number i n  
the  jet (Reference 11). I t  has also been suggested before (Reference 5 )  that the fluc- 
tuation frequency may be  proportional to the local shear strength. In  the  latter case, 
the  frequency wo i s  actually  proportional  to  the  convection  Mach number indirectly. 
Since the configuration  of a round je t  remain  similar  for  a  wide range of  Mach numbers, 
the mean flow velocity gradient across the jet  profile i s  directly proportional to the 
maximum  speed of the jet. The famous U*-law of  Lighthill for jet  noise i n  the low 
speed range i s  therefore, recovered. The far field frequency o i s  related  to  the  local 
sound source frequency w by the  Doppler  shift relation as given by Equation (24). 
Equation (31) represents t R e constant band width spectrum of the  far field noise. I f  
Equation (24) i s  substituted into Equation (31), and a band width adjustment 

d w  1 
" 

"0 

- 
1 - Mc COS + 

i s  incorporated, the far field noise spectrum w i l l  be 

Equation (40) agrees with the  Lighthi 11's solution (Reference 6). I t  i s  interesting  to  note 
that, i n  Equation (31),  (38), and (39),  the  factor  (cj/cO)" i s  equivalent  to  the depend- 
ence of jet noise on the  density ratio (p./p )* . 

J o  
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3 
For the solution [ S.11 and [ S.21, the sound  pressure level depends explicitly on M in  
both Equations (38) and ( 3 9 ) .  The factor (WM) i s  not a function  of M although it i s  
proportional to w .  I n  the shear layer, the  principal noise source  term can be related 
to the  frozen  turbulence, where the spectral characteristics i s  a function  of k alone. 
Since k i s  inversely  proportional  to  the  hydrodynamical zone thickness, (l/M), (k/M) 
w i l l  be independent of M. Also, the velocity gradient 9 i s  a number normalized 
against a unit free stream velocity,  the dependence on M has already been extracted 
and incorporated into the M term. Hence, the solutions [ S .  1 I and [ S .2] represents 
the U3-law as predicted by Ffowcs Williams (Reference 9) .  There  are, however, a few 
important  differences. 

3 

For the Mach mode radiations,  not only  that the Mach number dependence has been 
reduced from ME to M , but also that the wave number dependence has been reduced 
from (k/M)4 to (k/M)’.’ in  [ S .  I], and to (YM)’.50 in [ S .2]. The factor (k/M)” has 
an implicit  influence on the noise power dependence on Mach number. In  the  work of 
Ribner (Reference 6 ) and also Lowson and Pao (Reference 5 ), formulas have been 
derived to express the broadband acoustic intensity. For a spectrum depending of 
(k/M)4 , the broadband intensity w i l l  depend  on 

3 

i f  a Gaussian turbulent  structure i s  assumed (Reference 5 ) . For the cases of [ S .  11 and 
[ S .2], the broadband intensity w i l l  depend  on 

and 

- (1 - M cos 

+ ,2 f5’ 
respectively. Figure 1 shows the dependence of acoustic power  on Mach number. By 
using the formulas given  by Ribner or  Lowson and Pao, a very  high noise radiation 
efficiency can occur near the sonic convection speed of Mc = 1 . I f  a* were chosen as 
0.1, as given in Reference 5 , the  deviation form the U8 law near M, = 1 i s  greatly 
reduced. The transition between the U8 law to  the U3 law, as predicted  by  the 
generalized theory, agrees quite  well  with the existing data, compiled by Powell 
(Reference 12) on jet  and rocket noise (Figure 2). 
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Figure 1 .  Jet  Noise Radiation Efficiency as Predicted by  the  Lighthill's 
Theory  and the  Generalized Theory 
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3.2 

Another  important mechanism in  the Mach mode radiation i s  the depen'dence of noise 
intensity on the velocity gradient, !J at the  center of the  mixing  layer  of  the in i t ia l  
zone of a jet, a i s  of  the order of  unity. I t s  effect on the noise intensity i s  small 
in  a cold  jet.  In  the transition zone, however, the most intense turbulence moves 
toward  the  center of the je t .  The je t  turbulence  intensity in  the  transition zone remain 
more or less the same as the  mixing zone, while the shear decreases. According  to  the 
solutions [ S. 11 and [ S .2] , the  radiated noise intensity w i l l  be  greatly increased*. 
This mechanism  may well account  for the increase in  noise radiation i n  the  transition 
zone of a jet,  which i s  commonly observed in  experiments. 

The temperature of the je t  has an indirect  influence on the  overall  intensity  of  the 
noise radiation,  other than that i t s  effect represented by the  factor (c./c )'4. The 
velocity gradient G! as given in  Equations (38) and (39) i s  actually a AracPI'ent of the 
local (actual)  Mach number in  the shear flow.  In a high temperature jet,  the tempera- 
ture gradient in  the jet  reduces the magnitude of !J significantly.  According  to pre- 
liminary  calculations, G' can  be as low as 0.3 to 0.5 i n  the center of  the  mixing layer 
i n  a rocket exhaust flow. Therefore, the  effect  of !2-' in  Equation (38) and in  
Equation (39) can produce a 3 dB to 5 dB increase in  the  overall acoustic power. A 
conclusive estimate would have to  await  the results of  further  numerical computations. 

Sound Source Strenath Distribution  in a SuDersonic Jet 

The Equations (31), (38), and (39) represent the far f ield noise intensity produced by the 
turbulent noise sources in  a unit volume. In  physical terms, the  wave number k, the 
frequency o, and the velocity gradient G! depend  on the  characteristic dimension of the 
je t  exhaust flow. I f  this characteristic dimension i s  represented by the integral  turbulent 
scale, a, then 

According  to Equation (43), the dimensional forms of Equations (38) and (39) wi  II be 
independent of a,. The.dimensional form of Equation (31) w i l l  also be independent of 
a in  spite of i t s  dependence on 04, because a  factor  of  q-4 was omitted from the para- 
metric Equation (31). In  order to  obtain  the broadband noise intensity, Equations (31), 
(38) and ,(39) should be  integrated with respect to o or k .  A factor of  a" i s  introduced 

d v e  radiation near the center of  the  jet, where 
fi = 0, becomes infinite. In this ease, another WKB solution  shall be constructed. This  
solution i s  similar to [ S.21 except  that  the dependences on i?, wi l l   be replaced by the depend- 
ences on f i t ,  which i s  the  curvature  of  the  local  velocity  profile. 
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via  the  integration. Hence, the broadband noise intensity w i l l  depend on for the 
acoustic mode [ S .O] , as well as the Mach modes [ S. 11 and [ S .2] . 
In  the initial  region  of the  jet,  the  turbulent scale, a ,  can  be assumed to be proportional 
to the distance from the jet  nozzle  along the  axis of  the  jet,  x, (Reference 13). The 
cross section of the mixing zone in  the init ial region of the je t  i s  an  annulus, hence, the 
volume per unit length of the jet  i s  proportional to  xl. Therefore the sound  source strength 
per unit length of the je t   in  this region i s  constant. 

For a subsonic jet, this result agrees exactly  with the  xo-Iaw as given by Ribner  (Refer- 
ence 14). The greement of  the xo-Iaw with experiment has been verified.  In  the super- 
sonic regime, the evidences are conflicting.  In some detailed  jet noise measurements 
obtained  by Eldred, eta1 ., the source distribution i n  the  init ial region of the j e t  seem 
to  follow the  xo-Iaw  very well (Reference 15). On the other hand, the  unique source 
distribution experiment given  by Potter and  Jones (Reference 16), and the  recent results 
by Nagamatsu  (Reference 17), indicate that the sound source distribution  in  the  mixing 
region of the jet  increases linearly  with the distance from the j e t  nozzle, i .e ., a x 1 -law. 
Such a conflict can  not  be resolved by using existing results from the theories. 

In  the  transition zone of a supersonic jet,  the  volume per unit length of the j e t  as well 
as the  turbulent  scale remains constant. The mean velocity  of the jet  begins to decay. 
However, the  turbulent  intensity may still maintain a level close to  its  intensity  in the 
mixing zone, (Reference 18). Furthermore, a large segment of the transition zone w i l l  
be supersonic for a rocket exhaust,  and Mach mode radiations w i l l  remain dominating. 
Due to the  effect  of S2 on the far field noise intensity, as discussed in  Section 3.1, the 
noise source  per unit length of  the  jet  in the  transition zone can actually  be greater than 
the source strength per unit length in the mixing zone. Beyond the so called sonic point 
of the  jet,  the exhaust flow i s  identical  with the  developed region  in a subsonic jet .  
The noise source dependence w i l  I naturally  flow  the  xJ - l a w  of Ribner. 

3.3 The Relative  Importance of the  Acoustic Mode and the Mach Modes 

For either the supersonic or the subsonic  case, the critical angle ecr as given  by 
Equation (18) can be used as the dividing  line for the domains of  application  of  the 
acoustic mode and the  Mach modes.  The Mach modes dominate in  the sector of 
cp < cpcr and the  acoustic mode  dominates in  the obtuse sector of cp > qcr which 

includes  the transverse radiation and the upstream radiations. 

Although  both  the Lighthill's theory and the  generalized  theory  predicts  the same U8 
and U3 l a w s  of dependence for various convection speed  ranges, the  generalized  theory 
provides further  insight into the relative importance of the Mach mode and the  acoustic 
mode of  radiation i n  a high speed je t .   In  the region of cp > cpc , the results of Ffowcs 
Williams (Reference 8) and the generalized  theory are identicar. For a high speed jet, 
the  convection  factor (1  - Mc cos +) i s  always positive.  In upstream propagations, 
(1 - Mc cos cp) i s  the crder M, and therefore  the sound power i s  proportional to L? for 
supersonic jets. 
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In the  region of + < qcr, the Ffowcs Williams'  theory does predict  both  the  Mach  wave 
and acoustical  wave  radiations. However, the  Mach wave i s  only one of the components 
over the source  spectrum,  and it does not dominate the far f ield noise. The change over 
from U8 to i s  mainly due to the  convection  factor (1 - cos +) as i s  the case of 
+ =- +,,. Analytically,  the  transition  of sound power from MC8 U to due to  the  con- 

vection  effect  alone  actually occurs at a relatively  high supersonic Mach number (Figure 
1).  On  the other hand, the  generalized  theory  predicts  that  the  Mach mode of  radiation 
dominates the  entire sector of < qCr, as discussed in  Section 2.3. Since the  Mach 
modes take over the  radiation mechanism  from the  acoustical mode when Mc cos + - 1, 
the  transition of  sound  power  dependence from U8 to U3 w i l l  occur at a relative low 
transonic convection  Mach number. T h i s  new prediction seems to agree better  with 
experimental results. 

25 



4.0 JET NOISE SPECTRUM AND DIRECTIVITY 

4.1 A Review of Previous Studies 

In  practical applications,  the  knowledge of   jet  noise spectral  and directional  character- 
istics i s  as important as the  overall sound power level. Such informations  are commonly 
obtained via experimental measurements because the  prediction  of spectrum and directi- 
v i t y   in   je t  noise i s  far more involved than the prediction of sound power level  alone. 
There have been many previous investigations  attempting to uncover the  key mechanisms 
which  would  relate  the  actual spectrum  and directivity  of a jet  to i t s  mean flow and 
turbulent source properties. 
discussed. 

Shear Noise and Self  Noise 
two principal types was first 

In  this section, several representative apporaches w i  I I be 

- The division  of  the  overall  turbulent noise source into 
given  by Ribner. The  shear noise i s  generated through the 

interaction  of  the  turbulence  with  the mean  shear i n  the  jet exhaust flow. The noise 
source i s  basically  dipole  in nature, whi le its dependence on the  convection  effect i s  
similar to a quadrupole. The  shear noise has a two lobe directivity pattern  oriented 
parallel  to  the  jet axis,  and a peak frequency generally lower  than the peak frequency 
of the  overall noise. The self noise i s  produced via the  interaction  of  turbulence  with 
itself. The self noise i s  basically quadrupole in  nature.  Since  the spectrum of the  self 
noise source i s  analytically  related  to the convolution  of two turbulent velocity  fluctua- 
tion spectra, the fundamental frequency of the  self noise i s  one octave above the shear 
noise. In  a  stationary  coordinate system, the  self noise has an omni-directional  directivity 
pattern. Through the  distinction  of  self noise and shear noise, Ribner and his co-workers 
have explained many of the  puzzling features of subsonic je t  noise,  such as the apparent 
reverse Doppler shift effect, and have designed various experiments for je t  noise studies. 
Through both  theoretical and experimental  work (References 5, 6, 19, and 20) i t  was 
found that  the shear noise and self noise  power levels are in  the same order of 
magnitude. 

The Convection Factors - The convection  factor  obtained through the Lighthill theory 
i s  a fundamental property of classical acoustics. It remains to be  the most important 
analytical  tool for dealing  with  jet noise directivities. However, other  than  that some 
qualitative results concerning  the  orientation  of maximum  sound intensity  direction, 
and the  correlation  of +ear noise and self noise predictions with experiments i n  low 
speed jets, the  effectiveness of this factor i n  dealing  with  high speed je t  noise i s  incon- 
clusive. This factor i s  equally  applicable  to sound radiation  in  all frequencies, while 
experimental evidences have shown that the directivity i s  frequency dependence,  and 
that  only the low frequency sound seems to  follow  the  Lighthill's l a w  of convection, 
(Reference 2 1 ) .  
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Noise Spectrum for  Given ”̂ ” Turbulence Models - In a few anaIyi.icsI studies by Meecham, 
t i e  r:oise specGT&&cteristics for several given turbwlence modes have been predicted 
v ia  ihe Lighthill’s theory. It i s  assumed that  the noise i s  produced i n  the energy containing 
wave nmber range of the turbulence. By using some simplying assumptions concerning  the 
inter-pelofionship  between  the second order turbulence spectrum and the  fourth order spec- 
trum, as required by the  jet noise theory, the  calculation  of  the noise spectrum in  the 
higher  frequency end i s  permitted, (References 22 arld 23). I f  one assumes that the enerw 
spectrum i s  the Kolmogoroft” spectrum 

E (k) - k - , 

a power spectrum i s  obtcriced for the sound falling  off  at  high frequency end as 0’~/3 . 
(St1 the other hand, if E (k) - km2 i s  used for  the energy spectrum of the  turbulence, 
a spectrum somef;mes deserved experimentally  for  low Reynolds  number flow,  a power 
spectrum i s  obtained  for the sound falling  off as . These spectra are flatter than 
some Jet noise measurements; a frequency spectrum u3 would  follow from E (k) 
The last spectrum i s  a realistic one and i t  has been used before by Lowson and Ollerhead 
for  rotor  blade noise predictions. 

I n  some recent studies of Pao and Lowson  (References 5, 7) , the  Lighthill’s approach 
has been used for  predicting the spectrum of noise generated by a low speed jet .  It was 
found through these  studies that  transition zone of the j e t  i s  responsible for over 30 percent 
of the overall sound power. Furthermore, the sound power  spectrum produced in  this region 
matches with the overall sound power  spectrum  near the peak of  the spectrum. The model 
of  turbulent  structure i n  this  region wi l l  have important  influences on the accuracy  of 
spectral predictions. 

k-2 -5 

Studies of  the Refraction  Effect - This effect has been studied both  experimentally 
and analytically  by Ribner  (Reference 24), Miles (Reference 25), Eldred (Reference 15), 
Graham  and  Graham  (Reference 26), Grande (Reference 27), and Schubert (Reference 
37). In these  studies, the  classical  ray  acoustic approach or plane wave analysis i s  
employed. i n  the analysis of Ribner and Miles,  plane wave propagation through a 
shear layer with  high  relative speeds (subsonic  or  supersonic) i s  studied. The refracted 
and reflected  wave system and the intensity  of each wave component are discussed in  
detail. A puzzling result was obtained through this  analysis. I f  a  plane  wave propa- 
gates against a  convected parallel  flow such that - Mc cos cp 2 2, where Mc i s  the 
Mach number and cp i s  the  direction  of the incident wave, then  a  wave having an 
intensity greater than  the  intensity of  the  incident wave, w i l l  be  reflected  at  the 
interface between  the  stationary ambient medium and the  convected flow, and  a 
backward  propagating wave w i l l  be transmitted through the  interface. 

The Eldred’s calculation was performed in  connection with a comprehensive study of 
je t  and rocket noise. The ray paths of waves originated  at a point i n  the shear flow was 
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computed. The results was found very useful in  correlating acoustic measurements to 
the  turbulent sources i n  the je t  exhaust flow. The refraction of sound. originated from 
a point source i n  a shear flow was also measured experimentally by Grande. The Graham 
and Graham analysis i s  a refined method along  the  line  of the Ribner’s analysis. The 
results can be  applied  to  practical studies of je t  noise characteristics. I n  a recent  report 
by Schubert, the refraction  of sound wave in  a je t  has been studied numerically i n  great 
detail . 

Each of the above mentioned studies i s  quite thorough and self  content. Yet, the  overall 
je t  noise spectral and directional properties are related  to  all  of the properties as reviewed 
above. I n  particular,  the effects of convection and refraction arc strongly  coupled i n  
actual  high speed  shear flows. Via the  generalized theory, these important aspects of 
the  jet noise spectrum and directivity can  be examined in  a unified manner. 

The noise generated from the  mixing zone, the transition zone,  and the  developed zone 
of a subsonic jet  was found (Reference 6 ) to dominate  the high frequency end, the peak 
region, and the low frequency end of the spectrum, respectively. Such a subdivision 
was found also by Lowson and Pao (Reference 5 ) to be convenient in  practical noise 
prediction  calculations.  In Section 3 .O, i t  was pointed  out  that the theoretical source 
strength distribution  along  the axis of the flow has essentially  the same characteristics 
for  either a subsonic je t  or a supersonic jet. Hence, i t i s  realistic  to assume that  the 
transition zone in  the  rocket exhaust flow w i l l  generate noise with the same character- 
istics as those near the peak of the spectrum. 

For a supersonic je t  flow, such as a rocket exhaust, the Mach mode radiation dominates 
the power spectrum. The sound frequencies in this regime depends  on the  longitudinal 
wave number spectrum of the  forzen  turbulence component in the je t  flow, and not on 
the  time  rate  of change of the  turbulence. I n  non-dimensional coordinates, the integral 
spatial scale of the  turbulence i s  proportional to M-’. In  other words, the correlation 
distance in the transverse direction i s  proportional  to  the distance between two points 
where the  difference  of  convection speed i s  larger  than  the local speed of sound. There 
have been very few experimental results regarding  turbulent structures in supersonic flows. 
Phillips (Reference 28) indicated  that the ratio of longitudinal  integral scale  to  the trans- 
verse turbulence  scale  can be as large as 18: 1 . In  some  measurements in  a Mach 3 .O 
supersonic wake, Demetriades (Reference 29) found that  the ratio i s  1O:l. According  to 
Townsend (Reference 30) this ratio i s  only 3: 1 for low speed  shear layers. For noise 
prediction purposes, i t i s  very important to know this scale ratio. For the above given 
numbers one can  either assume that  the  ratio i s  a constant for a l l  supersonic flows, or 
that  the ratio increases with Mach numbers. The latter case i s  plausible because the 
potential core  length of a supersonic jet  does increase linearly wi th  M, (Appendix B). 

The spreading rate  of  the  jet exhaust flow  in the  transition zone i s  relatively small. The 
diameter of the transition zone remains approximately constant (Reference 31). The 
characteristic dimension can be chosen as D, the exit diameter of the jet  under perfect 
expansion conditions.  According  to the generalized theory, the far f ield noise frequency, 
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w, i s  related  to  the  longitudinal wave number, k, and  the  convected  Mach number, 
Mc, via the  equation as follows: 

w = k (Mc/M) (44) 

If the transverse wave number i n  the turbulence i s  assumed to be 

(k3A/M) = TI 

where A i s  the  local speed of sound ratio, A N 3.0, then the  longitudinal wave 
number w i  I I be 

(k,A/M) = 0.10 IT (45) 

i f  the  scale ratio i s  assumed to  be 1O:l; and 

(k,A/M) = 0.30 m / M  , ( 4 6 )  

i f  the scale ratio i s  assumed to be  proportional to the  Mach number. I f  Equation ( 4 6 )  
were chosen to be the  representative model, then the peak Strouhal number w i l l  be 

w 1 0 .30n 

t 2 *  21T 2s A (2) 'y 0.05 (2) 
(47) 

I f  (Mc/M) i s  assumed to  be 0.60, then the peak Strouhal number w i l  I be 

S = 0.03. 
t 

This estimated peak Strouhal number i s  somewhat higher than the  peak Strouhal number 
commonly measured in  rocket noise power spectrum. The discrepancy can be the  direct 
result  of an under-estimate of the longitudinal  spatial scale of the  turbulence. It i s  more 
likely, however, that  the source volume corresponding to the peak frequency i s  actually 
iocated  further downstream. Since both the wave number  and the  convection speed are 
lower, the peak Strouhal number for the overall power  spectrum w i l l  also have a  lower 
estimated value. 

The falloff  of the power  spectrum at the high frequency end i s  actually determined by 
the source strength distribution i n  the  mixing zone.  Since the  characteristic  radiating 
frequency  for  a small slice  of  the  jet i s  inverse proportional to  the thickness of  the 
mixing layer at  that  location, the source width per unit frequency falls  off as wm2 . 
Hence, i f  the mixing zone source strength per unit length of the je t  i s  a constant, the 
power spectrum at the high frequency end falls  off as w J  . This seems to agree with 
the  rocket noise spectrum given by Cole (Reference 32). I f  the source strength increases 
linearly  with the  distance from the  nozzle,  then the power spectrum wil l   fal l   off  as w3 . 
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The rocket noise spectrum, given by  Wilhold,  eta1 ., (Reference 33,34) for near field 
noise predictions, follows  a u3 lcrw in  the high frequency end. 

The low frequency of the spectrum  corresponds to  the noise produced in  the developed 
region  of  the  jet exhaust flow. Since  the decreases of  the  turbulent  intensity,  the 
mean flow velocity, and the  characteristic  wave number are similar  to  the developed 
zone of a subsonic jet, the a3 l a w  as derived by Ribner  (Reference 6 ) should hold. 
However, such an asymptotic slope may not  be  reached in  the  portion  of spectrum which 
i s  practically important. A preliminary  predicted spectrum of  rocket noise i s  shown in  
Figure 3. 

4.3 e Coupled Effects of  Refraction and Convection 

In  a turbulent shear flow,  the  effects of convection and refraction  in the noise generating 
mechanism i s  coupled. Through this  coupling, two important consequences follow: 

0 For  sound radiated  locally  in the  forward direction,  the  refraction 
effect can significantly reduce  the  Doppler shift and intensification 
of the  radiated noise in  the far field. 

0 The high frequency noise and the low frequency noise have 
distinctively  different  directivity patterns. Low frequency 
noise radiation i s  high favored in  the downstream direction. 

AnalyticalIy, this coupled  refraction and convection i s  described in  the convected  wave 
equation v ia the  function q, which  in turn depends on the convection  velocity, IocclI 
speed of sound, and the  local frequency and longitudinal  wave number of the  turbulent 
source. 

I n  the  generalized theory, the  convection  effect i s  associated with  only  the  longitudinal 
wave number. In  the hydrodynamic pressure fluctuation regime, the  convection  effect 
increases the  local frequency of  the  longitudinal wave components until the phase speed 
f inally reaches the  local speed of sound. Th is  longitudinal hydrodynamic pressure fluc- 
tuation becomes a longitudinal wave component. While  the frequency i s  being increased 
further by  the  convection,  the transverse wave number, M q, begins to grow. The three- 
dimensional wave number maintains always a  magnitude such that  the frequency equals 
the product of the wave.number and the  local speed of sound,  as required by fvnda- 
mental f luid dynamical  principles. Through this process, the  convection  factor is 
weakened. For example, a local wave component with frequency o i n  the  turbulence, 
convected at a  Mach number Mc parallel  to  the wave  propagation  dlrectionr will have 
a  Doppler shift of 

0 

The subsonic Mach number i s  chosen mainly  for  the  simplicity  of argument, and  the 
generality  of  the physical phenomenon i s  not  affected. 
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By including'the  refraction effect,  the  Doppler shift w i l l   be 

0 
0 

o =  - 
1 - Mc COS ~p 

- 
0 ( 1  + M c }  

with 

cos ~p = { 1 + Mc}- ' (49) 

By comparing-Equations (48) and (49), i t  i s  interesting  to  note  that  they are approxi- 
mately equal for small convection  Mach numbers.  For the high subsonic Mach numbers, 
the Doppler shift given  by (48) i s  much larger than the Doppler shift of Equation (49). 
The leading error term in  Equation (48) i s  proportional to Mc 2 , which has the same 
dimensional dependence as the compressibi lity  effect. The compressibility  effect i s  
indeed an underlying mechanism which modifies  the  classical  Doppler shift law. 

In  addition  to the distinction  of the self noise and shear noise spectra and directivity 
pattern,  there is another major mechanism which favors the  forward  radiation  of low 
frequency noise in  a high speed jet .  For the  Mach mode radiations, the far f ield wave 
frequency i s  related  to the longitudinal wave number through Equation (44). In  a 
supersonic jet,  the  longitudinal wave number i s  determined by  the  overall  mixing 
process in  the jet, and therefore, i t  w i l l  remain  approximately  the same throughout 
the thickness of  the  jet. The peak of the jet  noise spectrum i s  produced in  the intense 
region of turbulence near the half  velocity region of the  jet,  the shear layer near the 
boundary of the je t  i s  s t i l  I a strong source region. However, the  lower convection 
speed w i l l  result i n  a  lower frequency and a smaller refraction  angle. 

For the [ 5.21 mode, the acoustical sources below and above the  "hydrodynamic layer" 
are coupled on the same radiation  path. Since the  "deep" source, which  lies  far below 
the "hydrodynamic layer," obeys the  classical Lighthill  convection law, these  sources 
w i l l  have a.predominately low frequency character in  the far f ield for downstream 
radiations. 

o =  1 - Mc COS + Mc>> 1 

where 

- ( 1  - Mc cos cp) >> 1 for cp = Oo (50) 

Lowson (Reference 5 , 21) has pointed  out  repeatedly  that  the Lighthill's theory i s  
probably obeyed only  by the low frequency radiations  for  high speed jets. His arguments 
were based on both  analytical and experimental  evidences. Th is  bewildering  postulation 
i s  now strongly supported by the  generalized  theory.  Since  the  far field noise directivity 
i s  strongly dependent on the frequency, i t  i s  no longer a  simple task to  define apparent 
noise sources for rocket noise predictions. For near field noise environment  predictions, 
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the major concern i s  the sound  pressure levels on the vehicle  structure.  According 
to either  the  Lighthill’s approach or the  generalized theory, the  characteristic  fre- 
quency of  the upstream noise radiation is  expected to  be l o w .  I n  contrast, the acoustic 
field  right angle to the rocket exhaust flow  direction may have  a significantly higher 
characteristic  frequency. Hence, i t i s  highly disputable to assign only one set of 
source locations to the same frequencies for noise prediction in  different  directions. 

4.4 Some Preliminary  Calculations  of Directivity 

Based on the results given in  Section 2.0, the directivity pattern of overall noise 
radiation from high speed je t  can  be computed. Some preliminary  calculations are 
made for  the  Mach modes to show the trends. General properties of the acoustic 
mode, [ S .O] , are  essentially  the same  as the results given previously by Ffowcs 
Williams, (Reference 8), and therefore, the [ S .O] mode i s  not  included in  the 
preliminary study of  directivity. 

The  shear layer i s  assumed to have a velocity  profile  defined  by 

where yo denotes either  the  inner edge of the mixing  layer  in  the  initial region  of 
the  jet exhaust flow, or the center line  of the je t   in  the  transition  zone. I n  the 
latter case, r, = 0. The temperature in  the shear layer i s  assumed to be a constant, 
and it equals to the ambient speed of sound. I t  i s  further assumed that the sound 
source intensity across the shear layer i s  constant. 

I f  only the Mach wave  radiation from the hydrodynamic sources are considered, the 
directivity  function has a relative simple from  (Reference 2) for  the [ S .2] mode 

* v2 
tan ql I ql = cos” { l/Mc } 

where f (9) i s  the directivity  function  which i s  proportional to the sound  pressure 
intensity i n  the  far f ield. The directivity  function for the [ S .  11 mode can be  given 
in  a similar form: 

f (cp) = n“’ tan cp I ql = cos-’ { ’ 4  } 
The directivity pattern  for [ S .2] mode with various  free stream Mach numbers are 
given in Figure 4. The directivity pattern  given for Figure 4 i s  computed for  a  plane 
shear layer. This i s  representative of the noise radiation  pattern  for sound originated 
in  the  mixing zone. For the  transition zone, the shear flow i s  best represented in  a 
cylindrical coordinate. In  this case, the volume of turbulent source i s  a function  of 

Y: 
d (Vol) = y dy . 
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Furthermore, the area of the wave front in  the  far field i s  a function cif 9:  

By 'raking these factors into account, the direcfivity pattern for  noise radiated by a 
cylindrical :urbcrlsnt sheer layer i s  shown i n  Figure 5. Ihe peak noise intensity 
direction as shown in  Figure 5 agrees quits  well  with thr acoustic  data commonly 
cjbtoined for jet  engine noise measuremanis. 

For Mach wrjire radiation from hydrodyna~lEc sources alone, the  directivity pattern 
for the self noise ond the shear noise i s  essentially  the same because only  the  turbulent 
component para1 tel to the jet oxis i s  important. The on!y  difference i s  the  magnitude 
of the socrnd  pl-assr;re inter;sity. I f  the acoustic sources alone with the Mach mode 
mdiation paths  UP^ ;&en into account, the directivity pai.>erm for the  self noise and 
the shear i;oise w i l l  be different . In Figure 6, a set of compututions for a M = 2 .O 
shear flow i s  shown. For !r.r.r~e c~ngics of 9, the self noise level i s  higher than the 
shear noise. This difference is directly reloted 1.0 the difference in  local!y  directivity 
Fufterns for the sheor and  the self noise sources. 

I n  the moving coordinates, ihe self nnlst. source directivity i s  omnidirectional. l%ke 

shear noise has o two-lcbe  directivity pattern given by (References 5 and 6) 

For u Mach mode radiation,  the  lccal  direction  of propagution, which  indicates also 
the orientation of the sound source  component, i s  given by 

cos 9 = 
S 

I 

where Q i s  the ar;gle of local propugation direction, ids i s  the convection Mach 
number at the layer where the ucoustic source i s  located, and Mc i s  the convection 
Mach number at the frozen  reference  layer i n  the hydrodynamic zone. According to 
Equution (54) and (53, the contribution from the shear noise sources decreases rapidly 
along the radiation path in  a high speed  shear flow,  cnce  the path leaves the hydro- 
dynamic  zone. 

S 

In  actual  jet noise predictions,  the distribution of source strength i n  the shear lctyer 
must be taken into account.  Since the self noise depends  on the  turbulent  intensity 
to  the fourth power, the effect of source iztensity  distribution on directivity patterns 
w i l l  be important in the generalized approach. Further results would have  to await 
the development of a comprehensive computer program for the  generalized je t  noise 
prediction  theory. 
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APPENDIX A 

DETAILS OF THE MATHEMATICAL ANALYSIS 

The Derivation  of  the  Acoustic  Mode Solution, 1 S .Ol 

I n  Reference 1, the  convected  wave  equation in non-dimensional coordinates i s  

d2cp M2 (y, k , 0) - +  M2 q2 cp = - 
d YZ A2 

where 

For the acoustic mode of radiation,  the  function q2 (y) i s  always positive. Equation (A-1) can 
be transformed into a simple wave  equation 

by  using the transformations 

and 

The general solution of Equation (A-2) can be written as 

1: 

with 

R (6, t) = ’ 1 sin (M 6) cos (Mt) - cos (M 6 )  sin (M t) 64-51 

as a  first  approximation. The error involved in  this case i s  small. This acoustic mode solution 
i s  applicable to acoustic  wave propagations along  ray paths which are nowhere parallel  to  the 
shear flow  direction.  According  to Equation (A-4), the  local sound  sources, for  given ‘o and k, 

A- 1 



wi l l  necessarily be  the sonic component of the  local  turbulence structure. The' integral on the 
right hand side of Equation (A-4) can  be  interpreted as a "local" Fourier  transformation which 
selects a component, with a  wave number approximately  the  value of Mq, from the source 
function, r . Through  some algebraic  manipulations, i t  can be shown that  the product of  the 
lgcal speed of sound and the combined magnitude of k and Mq, i s  equal to the local 
frequency of turbulent  fluctuations. 

The Boundary Conditions 

Two types of boundary, conditions can be prescribed for the convected wave equation. The first 
type i s  a radiation  condition  at  infinity.  In the y-,  and t-(time) coordinates, the  wave velocity 
component on the  y-axis i s  given by (Reference 2 ) 

For the present case of a je t  exhaust flow, W i s  required to be  positive in  the  positive  y-direction, 
and negative in  the negative  y-direction. The second type of boundary condition requires simply 
that the wave function, 9 ,  vanishes at minus infinite. It states that  the  wave  amplitude i s  zero 
at  the  beginning of the wave radiation path, 

In  a l l  three modes of solutions, [ S.01, [ S .1], and [ S .2], the wave function can be reduced to 
trigonometric  functions with constant coefficients  at  positive  infinity. The radiation boundary 
condition can be  obtained via Equation ( A d )  as 

a,,A + a,B = 
Ll  (A -8) 

where a,, and a,* are known constants, A, B, are the  arbitrary constants i n  the general solution, 

and L, i s  given  by  the source integral 

a3 

L, = 1 R ( t , t ) h ( t )  dt ; &-.a (A -9) 
0 

The second boundary condition,  which i s  either  a  radiation  condition or  an init ial condition, 
can  be written as 

a2,A + aZ B = L2 (A-10) 

where 5 i s  also a source integral  with a definition  formally  identical  to Equation (A-9). For 
the acoustic mode [ S .O], the  value  of L, i s  zero. 

I f  the source function i s  replaced by i t s  complex conjugate,  a new wave radiation problem w i l l  
result. The boundary conditions for this complex conjugate problem are: 
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afl A* + a; B* = L; (A-1 1) 

ai, A* + a; B* = L; (A- 1 2) 

By  cross multiplying Equations (A-8), (A-lo), (A-1 l ) ,  and (A-12), and taking  the ensemble 
average of each product, a set of four equations w i  I I result 

a a* AA* + a a* A*B + a a* AB* + a a* B B *  = LIL: 

a a* AA* + a * a  A * B  + a a* A B *  + a a* B B *  = L L* 
22 22 2 2  

- 
1 1  1 1  12 1 1  1 1  I2 

2 1   2 1  21  22 2 1  22 

n n  - 
(A-13) 

(A-14) 

(A-15) 

(A- 16) 

Since the source terms in the  integrals L, and  are separated by  a  convection speed of more 
than the speed of sound,  these source integrals are not  correlated. Therefore, the  right-hand 
sides of (A-15) and (A-16) have zero ensemble averages. The definitions  of L11; and L2 L'; are 
similar in form: 

- 

5 
L 1 1  L* = l im JI R (5 ,  s) R *  (5, t) h (s) h*(t) ds dt (A-1 7) 

(+a3 0 

I f  the ensemble average and the integral signs are assumed to be exchangable in  position, then 

0 
(A- 18) 

with 

where the parameters , and w , as given in I&, have been omitted so far from h (s) and 
h (t) for  simplicity; and @ i s  the second order correlation  function for  the  turbulent sources 
(Reference 10 in  main text). 

I n  the case where the  turbulence i s  homogeneous, the  correlation  function w i l l  depend only on 
(s -t). A convolution  kernel (second order) can be constructed, and Equation (A-18) can be 
reduced to a single  integration. 
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( 1 1  22 12 21  
a  a a* a* + aYl ai2 a12  a21) - 

The Error Term s1 and the Transformation Scale $I 

(A-20) 

The function g (y) i s  a function  which  indicates  the error introduced by the WKB approximation. 
I t  i s  defined as 

with 
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This function  can  be  written  explicitly as a function  of 5 and other known  quantities in the 

where @ 

and B 

5 1  

16 t2 

5 1 

" 

1 5 d  -1  4 q2 
o : " - } + -  - 

4 q4 4 P  

(A-22) 

(A-23) 

The first term in  the error function i s  proportional  to (YM)" in the shear layer,  and it vanishes 
outside the shear layer. I n  the  far field, g (5) approaches zero as t2 for [ S .  11 and [ S .2l, and 
it i s  identically zero  for  the [ S .O] mode. The value  of g (5) remains finite as 5-0, because 
the singularities in the  first and the second  terms cancel each other. 

The limiting value of $" as 5 -0 in cases [ S .l] and [ S .2] are very important  for the com- 
putation  of noise radiation  intensity. The values for @' can be given as 

and 

The values of rcl' (y) for 5 # 0 are given for [ S .O], [ S .  11, and [ S .21 as 

(A-24) 

(A-25) 

(A-26) 

The value of these  expressions can  be computed numerically. 
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The Numerical Scheme for  Computing  the Iterated Kernel 

where F, (5) and F, (5) are  the  normalized independent solutions to the homogeneous wave 

equation. The iterated kernels are defined as 

K (5, r)  g (r) Kn (r, t) dr n = 1, 2, . . . (A-28) 
t 

with 

In  the  numerical  calculations,  the functional dependence of the  wave  function, q (t), on the 
independent solutions F, (0,  F, (5) must remain explicit such that boundary conditions  can be 
established. Hence, the functions F, (t), F2 (5) must be separated out from the  numerical 
computations of the iterated kernels. 

The kernels can actually be  written  in  matrix notations: 

Kn (5,  t) = F. (5) Gr. (5, t) F i  (t) 
I ' J  

Furthermore, i f  G!) (5, t) i s  defined as 
I j  

a = l , n  

then the resolvent kernel  can  be  written as 

n = 1 ,  2, . . . (A-29) 

(A -3 0) 

By using this scheme, only  the  value  of G?. (5,  t) needs to be computed. The functional 

dependence of  the resolvent  kernel on F (5) and F, (5) i s  preserved explicit ly. 
'J 

1 

A d  



~i~ (5, t) is a constant matrix 

G!. (5, t) = 
‘J 

0 -1  

1 0 
and, by Equation (A-28), 

A 

(A-32) 

(A-33) 

Since  g (5) approaches zero as  [‘2for 5 - 00, the iteration i s  expected to converge rapidly. 

I t  i s  also important to  note  that 

and 

I im a G” (5, t) = o , since g (5) - 0 .  
5+03 a 5  (A-34) 

[n  the  radiation boundary conditions, i t is necessary to know the functional dependence of 

a 
= l im G!“) (5, t) + Fi (5) G!n) (5, t) 1 Fj (t) 

5 + 0 0  ‘ J  ‘ J  
(A -35) 

According  to Equations (A-30) and (A-34), the second  term in  the  bracket on the right hand side 
of  (A-35) i s  zero. Therefore, only the  numerical value  of G?. (5, t) i s  required, and i t  i s  not 

necessary to know the  functional. dependence of G!‘. (5, t) in the  calculations. 
‘ J  

‘ J  
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APPENDIX 6 

MEAN FLOW STRUCTURES IN A HIGH SPEED JET 

As a j e t  exhaust f low  init ially enters the  ambient air stream through a nozzle, the 
exhaust flow i s  generally laminar with  only a small disturbance in velocity, 
temperature, and  density. The  shear  stress between  the je t  exhaust and the ambient 
gas immediately  facilitates  the  mixing process, where the development of the j e t  
exhaust flow downstream of  the  nozzle begins. The development contains  three stages. 
In the  init ial segment, or the  mixing zone; a turbulent  flow  layer grows in between 
the  jet exhaust and the ambient gas; the  init ial laminar jet  f low i s  entrained into  the 
mixing layer  gradually, and vanishes at the end of the mixing zone. The next segment 
of  the je t  exhasut  enters a  transition stage, entrainment of ambinet air   wi l l  continue, 
while  the major  event i s  the re-adjustment of mean flow and turbulent  structure within 
the  jet  itself. The length of this segment i s  about the same as the  mixing zone. I n  the 
final stage, the jet  flow has reached similarity  profile. Both the  turbulence and the 
mean flow decay asymptotically. 

The noise generation  characteristics of a je t  are directly  related  to the  structure  of 
the mean flow and the  mixing parameters. Since most of the  acoustic power comes 
from the  mixing  region and the  transition  region,  the aerodynamical.properties i n  
these two regions wil l  be  the most important  concern. I n  subsonic jets  with constant 
density, the jet  f low structure has been studied  extensively. The mean flow properties 
and  the  turbulence structures are well-defined. I n  supersonic jets, the task of defining 
the precise jet  flow structure becomes immensely more diff icult. There are  a  large 
number of  variable parameters, and both  theoretical analysis and experimental  flow 
measurement are much  more involved. Nevertheless, knowledge in  this field has 
been advanced significantly  in the past few decades, and these results provide  a 
firm basis for  further  refined studies. 

The basic properties of mean flow developments in a high speed incompressible je t  have 
been  known  for some time. There are  theories (References 81-83), experiments (Refer- 
ences  84-66), and comprehensive texts (References 67-88) which describe the je t  flow 
properties i n  great detail. .The main  concern i n  this study is, however, the  flow 
properties of compressible, high temperature jets. 

A typical  jet exhaust flow  configuration i s  shown here i n  Figure 61. The key dimensions 
for  defining a jet  configuration are the  laminar  core length, the spreading rate  of  the  jet 
boundary, the mixing layer thickness, and the  location  in  the  radial  direction  of the 
point where  the  flow velocity i s  half  of  that  at the  center line. There are essentially 
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three methods in  use today by which the decay of  free  jets and  wakes are studied. 
These consist of  two methods that have been in  use for some time, and a method 
that has become available  within  the last  few  years as a  result  of  the'rapid  develop- 
ment and use of  high-speed computers. The three methods are: 

0 The simple momentum integral method 

0 Solution of the  equations of motion  when  certain assumptions 
are made which render these equations tractable  to  existing 
analytical techniques 

0 Step-by-step  numerical  solution of  the equations on high-speed 
digital computers 

All of these  methods  depend ultimately on experimental  turbulent  mixing data  since 
an essential part of  all these techniques i s  the  specification on the local eddy viscosity 
of the particular  turbulent  flow in  question at one  or  more general location i n  the 
mixing region; and, this i s  a task quite beyond  the power of  existing  theory. 

A significant amount of  work on the turbulent mixing process in  jets and  wakes has 
been done i n  recent years.  Among the  important  publications,  three  references should 
be  mentioned  here  specifically. The first, by Warren (Reference B l ) ,  presents the 
result of a number of experiments on the mixing  of  properly expanded, heated  jets in  
quiescent air.   In these experiments the init ial  Mach number of the air in  the jets 
studied was varied  between  approximately 0.7 and 2.6. These experimental results 
were  analyzed  by means of the momentum integral  technique and the general  character 
or mixing  rate  of the jets studied  which  were presented in  terns of  a  mixing-rate 
parameter that was a  function of Mach number. It i s  typical of the analysis or de- 
scription of mixing phenomena by means of the momentum integral  technique  that  only 
general  characteristic trends of the motions involved can be described. Some 
applications  of this method can be found in  Eldred, et  al. (Reference B9). 

The second  paper that should be mentioned i s  one by Libby (Reference B2). In this 
paper, an attempt i s  made to go beyond the momentum integral  technique and look 
for more complete  information  concerning  the  nature  of jet  mixing  by means of 
analytical  solutions  of approximate equations of  motion. The method presented by 
Libby was developed  in.connection with the mixing  of  two  coaxial streams of dis- 
similar gases, the  outer being  of  infinite  extent. This paper i s  important because 
the analysis  developed forms the basis for subsequent research on turbulent 
mixing. 
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The third and most recent i s  a paper given  by Donaldson and Gray (Reference B3). 
I n  this paper, an  extension of the Warren's method was developed  for  predicting  free 
je t  decay. The relation between  the jet  mixing process and  various flow parameters 
such as je t  molecular  weight, temperature, both subsonic and supersonic Mach numbers, 
and jet  expansion conditions, has been investigated by using this extended  theory and 
a series of experiments. The key parameter investigated in  this study i s  the 
turbulent mixing  coefficient. I f  this coefficient i s  assumed known, then  the jet  
structure  for given  Mach number, temperature, and  density can be  predicted. I n  
this study, the  mixing  coefficient i s  found to depend only on a  properly  defined  local 
Mach number (Figure B2), and within the accuracy  of the experiments, this general 
relationship i s  independent of the  physical  property or the thermodynamic state of  the 
mixing gas.  The dependence of  jet  flow decay on temperature, molecular  weight and 
other physical and thermodynamic state of the  jet, i s  encompassed by  the extended 
Warren's theory. The resulting  theoretical  prediction of mean flow development of a 
je t  was found to agree with experimental results over a Mach number range from 0.75 
to 2.20, and for gases i n  the jet  with molecular  weight  ranging from 4 to 88. By using 
any one of  the above three methods, a sufficiently accurate  decay profile of a high speed 
jet  can  be  obtained. 

The dependence of  the laminar  core  length on Mach number i s  shown in Figure 83. 
For a subsonic jet, the  core  length remains  more or less constant. The length i s  
about 5.5 jet  exit  diameters. The core  length becomes larger when supersonic Mach 
numbers are reached. For very high  Mach numbers, the  core  length varies almost 
linearly  with  the  jet  exit  Mach number. Inside the laminar core, the  velocity  at 
the center line  of the jet  remains constant. Beyond the mixing region, the  velocity 
at the centerline of the jet  begins to decay. The typical  velocity  profiles for an 
isothermal air  jet  at various Mach numbers are shown in  Figure B4. The growth of 
thickness of  the je t  i s  also a function  of Mach number. As Mach number  increases, 
the  mixing layer becomes thinner i f  the temperature of the j e t  remains the same 
(Figure B5). In a supersonic jet  the growth rate  of  jet thickness in  the init ial  mixing 
region i s  a constant. The thickness of the jet  remains approximately constant through 
the  transition  zone.  Growth  of the j e t  thickness resume in  the  developed  region. 
The growth rate  in the  developed  region i s  strongly influenced  by  the temperature of 
the jet .  

In  the theories of   jet  structures, the profiles across a  section of  the  jet  of quantities 
such as temperature, velocity, density, and enthalpy  are  usually  studied  separately. 
I n  the mixing region,  the velocity  profile can be described by  the so-called  Schlichting's 
formula 
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Figure 52. The Dependence  of  the  Turbulent Mixing  Coefficient, K, on the 
Local Mach Number at  the  Center  of  the Shear Layer (Ref. 83) 
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where To i s  the jet  exit  velocity, -G i s  the  velocity  at any point  in  the  mixing layer, 
and q i s  a nondimensional  coordinate. A similar formula i s  used for  defining  the 
velocity  profile  in the transition  region. In the developed region of the  jet, the velocity 
profile approaches a Gaussian distribution. 

The temperature profile  of  a  heated supersonic je t  has been measured before (Refer- 
ence 87). In  the mixing region, it can  be closely  approximated  by  a  straight  line. 
For heated jet  exhaust streams, both  the  enthalpy and the  local  Mach number profiles 
are difficult  to  obtain because very  complicated  heat  transfer  properties  are  involved. 
The local  Mach number  across the profile  of  a  jet i s  readily measurable because it i s  
simply  a  function  of  the ratio  of the  local pressure and the  local  total pressure in  the 
flow field. 

The detailed development of the je t  exhaust along the axial  direction and profiles 
of various  physical and thermodynamic quantities  are  of  particular  importance in  the 
advanced supersonic jet  noise theory. These structures affect  directly the  intensity, 
directivity, and the source location  of the radiated  noise. 
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