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FOREWORD

This report presents results of work performed by Northrop-Huntsville
while under contract to the Aero-Astrodynamics Laboratory of the Marshall
Space Flight Center (Contract NAS8-20082). The work was performed for the
Astrodynamics and Guidance Theory Division in partial response to the require-

ments of Appendix E~1, Schedule Order No. 67.

The material presented in this report is primarily an elaboration of
references 4 and 5 by the author. However, the solution for the adjoint
variables and transition matrices contained in Appendix A and the associated

computer program are the original contributions of I. F. Burns of Northrop.
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LIST OF SYMBOLS

Definition
fuel burning rate magnitude
exhaust velocity
thrust magnitude (F = cB)

1/8, an independent variable (¢ = O corresponds to
impulsive case)

independent variable time
initial time
(k =1, 2, ..., N) initial time on kth burn arc

(k 1, 2, ..., N) final time on kth'burn arc

final time

position of space vehicle, a two or three component
column vector

mass of space vehicle
Vector of Lagrange multipliers corresponding to §

transpose of column vector

time rate of change Ay of A and the negative of the
Lagrange multiplier vector corresponding to y (In
general the dot represents partial derivative 3/5t with
respect to time ‘t)

magnitude of A

switching function K = (c¢/m) [A| - A_, where A_ is the
. m m
multiplier corresponding to m

acceleration due to gravity, usually assumed in this
report to be equal to -uy/|y

variational Hamiltonian which is ATG - XT§ +8K on a

thrust arc and ATG - ATy on a coast arc. It is ordin-
arily a constant of integration in a uniform gravitational
field. When t; is free, it is zero.

iv




i
1
‘
l

Symbol
u(r, )
L{A)

Gy(t, y)

Q(t, y, )
U*(t, )
G*(t, £)
Gy*(t, £)

Gt*(t, £)
(Gt)*
(XL N

% (8)
¥, (8)
G ¥ (€)

v,

)

fke(e)
yk+(€)

yk_(E)

8y, €)

AVk(e)
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function lTi/IAI (Note: K = cU/m)
optimal steering function A/|A|
square matrix whose i th row consists of the derivatives
of the 1th component of G with respect to the components

of y

vector Gyk (Note: A = Q 1s an Euler-Lagrange equation)

UIA(E, €), A(t, €)]
clt, y(t, €)]
G (t, y(t, €)1

G [t, Y(t’ e)] + G [t’ Y(t, e)l Y(t’ £)
i e., the "total" ¥ime derivative of G

Gt[t, y(t, €)] (i.e., the partial time derivative)
% 5 (p) %

p=1
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ylE (), el
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Atk(s)
Amk(e)
Atkt(s)

1

a§k

t
HOM
k

(;eek)
d(en)
c(en)

e(en)

LIST OF SYMBOLS (Concluded)

Definition
tk(e) - tk(s)

i (e) - my (e

tke(e) - tke(e)

considering y 41 to be a function of §k (thereby deviating
from the usuaE %unctional notation), this symbol repre-
sents a matrix whose (i,j) element is the partial deri-
vative of the ith component of yy4; with respect to jth
component of yi (these partial derivatives depend upon ¢)

f(Ek) - £(t)

represents a matrix (or temsor) summation defined in the
body of the report

these symbols denote terms of '"order e". Precise defin-
itions are given in the body of the text.
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Section |
INTRODUCTION

This report 1is concerned with impulsive approximations to exo-atmospheric,
space flight optimization problems in which the powered portions of the flight
are of relatively short duration. For example, the problem may be that of
determining ignition and burnout times and the time-histories of the thrust
control angles which provide an orbital transfer maneuver, from a given state
to a given final orbit, with minimum fuel expenditure., A typical program might
consist of a coast phase, followed by a powered phase to take the vehicle out
of its initial orbit, followed by a long coast perilod to carry the vehicle to
the vicinity of the final orbit, followed by another powered portion which
serves to inject the vehicle into the specified orbit (Figure 1-1). Only space
vehicles having constant thrust magnitude F and fuel burning rate magnitude B8,

on each thrust arc, are considered in this report.

In many such cases it is possible to obtain multi-impulse solutions which
closely approximate the true solution, the impulsive solution being defined
(ref. 1) as the limit of the optimum finite thrust solutions as 8 approaches
infinity, where F = cB, and ¢ is the constant exhaust velocity. The impulsive
approximations to many finite thrust problems may be obtained quickly and

easily (refs. 2 and 3).

It is understood throughout this report that the optimal solution for any
finite thrust problem is theoretically obtained by solving the boundary condi-
tion problem arising from the necessary conditions for optimality of the
calculus of variations. Such a solution requires the determination of the
time.histories of Lagrange multiplier variableg. Once the initial values KI’
XI’ AI of the Lagrange multipliers (or equivalent variables), the ignition
times tl’ t2, cves tN’ the engine cutoff times tl, t2, cens tN’ and the final

time t_, are known, then the entire optimal flight program can be completely

F
determined.

1-1
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Roughly speaking, the method for obtaining the corrections to the impulsive

Aes Ao, E , t , and t_ as functions
I* "1° "1’ k7 K’ ¥
of €, to assume that the derivatives of these variables with respect to € exist

solutions is to let € = 1/B, to consider K

for € > 0 in some neighborhood of € = 0, and to develop the systems of linear
equations which the derivatives, corresponding to € = 0, must satisfy. If the
linear equations are independent, they may be solved for the desired deriva-

tives. Once the derivatives have been computed, Taylor series expansions, in

powers of e, of KI(e), XI(E), etc. about € = 0 (i.e., about the impulsive solu-

tion) may be determined. For example,

. d 2 dZAI
A (e) = A_(0) + &= s 1 + ...
I I i | Tz,

The linear equations determining derivatives with respect to € are obtained
by considering the boundary conditions to be identities in ¢ and by differen-
tiating both members of each boundary equation with respect to . However, all
of the derivatives with respect to e (for example dyF/ds where yF(e) is the
final value of y corresponding to &) appearing in the resulting equations must be

A

expressed in terms of derivatives of K A Ek’ and t Therefore, it

1° M Mo B F*
is necessary to obtain expressions, applying at € = 0, for the changes in the

derivatives, with respect to e, over coast arcs and over thrust arcs.

Section II of this report describes the general physical problem and the
necessary conditions of the calculus of variations which determine optimal
solutions to the problem. Section III defines the impulsive solutions to the
problems discussed in Section II. Section IV gives the mathematical assumptions

of differentiability to be employed as well as a few basic definitionms.

The introductory material of Sections I through IV allows for the detailed
description given in Section V of the overall procedure to be followed in
obtaining the derivatives with respect to €. Then there remain the problems
of determining changes in the derivatives (at € = 0) over coast arcs (Section

VI and Appendix A) and over thrust arcs (Sections VII through IX and Appendix B).



Sections X, XI, and XII provide specific problems to which the theory is
applied. Appendix C gives listings of computer programs employed in the

numerical studies given in the latter sectioms.

This report places work presented in references 4 and 5 in one detailed
and comprehensive document. It also includes a broadened discussion of the
work on intercept problems reported in reference 6. Emphasis is placed on

building a firm analytical basis for the generalized impulsive theory.

The problem of obtaining higher order corrections to impulsive solutions
has been studied independently by the author of this report and several men
agsociated with Princeton University. The latter work is contained in refer-
ences 7 through 11. References 7 and 9 are concerned with the problem in which
the thrust-acceleration F/m is a constant on each thrust arc. References 8
and 10 consider the same problem and extend the work to the problem considered
in this report. However, these two papers make use of expansions in terms of
two parameters rather than just the parameter e. The parameters are initial
thrust-acceleration and the rocket jet exhaust velocity. Reference 11 con-
siders numerical applications of the other papers to the early phase of low

thrust mission analysis.
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Section 11

PHYSICAL PROBLEM AND GOVERNING EQUATIONS

The problem under consideration is the determination of the optimal vacuum
flight of a gpace vehicle (assumed to be a point mass) from a given point in
state space (i.e., given time, mass, and position and velocity components) to
a specified orbit, position, etc. The flight has at least one coasting phase.
When thrusting, the vehicle has g constant thrust magnitude F and a burning
rate magnitude 8. The flight program is to be optimized with respect to final
payload. The choice of this payoff function is somewhat arbitrary; the theory

can be easily modified to cover other payoff functions.

The equations of motion are

gl

¥y = = L() + G(t, y)

m = -f
(F =8 =0 on coast arc)

where y is the position vector, G is acceleration due to gravity, m is the
total mass, and L()\) is the optimal steering function A/lxl which may be
determined from the calculus of variations (refs. 1 and 12). The vector A is
the solution of the Euler-Lagrange equations (of the calculus of variatioms),

having the form

}: = Q(t’ As Y)

Let t, and t, be the initial and final times on the kth thrust arc (k = 1,

k k
2, «v.y N). 1If the initial subarc is a thrust arc, then tl is equivalent to

the known initial time t If the Nth thrust arc is the last subarc of the

I

trajectory, then t coincides with tF' Again, the calculus of variations

N
(refs. 1 and 12) may be used to show that the optimum tk and Ek for each thrust

2-1



arc are determined by the switching function K satisfying a differential

equation¥®
. e .
K= E-U(A, A)
where
ATH

a.l

. . T .
A being considered as a column vector and A~ a row vector. It is necessary

that K = 0 when t = tk (unless t, = tI) and when t = Ek (unless t, = tF).

k k

Letting ¢ = 1/B, the total system of differential equations is

<
I}

c .
Eﬁ-L(A) + G(t, y) EE-L term omitted on coast arcs

X = Qt, A, ¥)

K=<uM, W) (2-1)
m

. 1

m=-= (on thrust arcs)

m=0 (on coast arcs)

The problem is ultimately a multi-point boundary condition problem in

which the initial values K XI, and XI’ the switching times, and the final

T
time tF are to be determined such that K = 0 at the switch times and such that
the terminal end conditions (including a scaling condition on the Lagrange
multipliers and including transversality conditions from the caléulus of varia-
tions) are satisfied. A somewhat arbitrary scaling condition on the Lagrange
multipliers is imposed because the differential equations (2-1) are known to be

homogeneous in the variables A, i, and K.

The multi-point boundary condition problem is a problem fundamentally of

solving a system of non-linear equations in several unknowns,

* .

In refevence 12, it is shown that K = s-lkl - A, where A is a Lag?ange

WH@HWSwwﬁMQ%emm%mim=%ﬁﬂ.I%wﬂm,K=%L$.
m | A



Section 111
IMPULSIVE SOLUTIONS

For each € > 0 in a neighborhood of € = 0, assume that there is a solution
y(t, €), y(t, €), m(t, €), A(t, €), A(t, €), K(t, €)

t, (e, £ (), tp(e)

to the multi-point boundary condition problem discussed in Section II. We are
now thinking of y, y, etc. as functions of two arguments, t and . The limiting
solution as ¢ approaches zero, if it exists, is called the impulsive solution.

(Recall that 8 = 1/e and F = c/e.)

In reference 1 and later in this report it is shown that, as € > 0,

Ek(E) > t, (e)

y(ts €) > y(t,, €)

. - . m(tk, €)
y(t,, €) = y(tk, e) + ¢ [log — L{A(t,, )]
m(t, , €)
k
. - . m(tk, €)
AV, () = |y(E,, &) - y(t,, €] > ¢ log ———
m(tk, €)
A(Ek, e) > A(ty, )
i(Ek, e) > i(ck, e)
U[A(tk, €), i(tk, e)] -0 (i.e., K = 0) at an interior impulse¥

The multi-point boundary condition problem for the impulsive case is a
modification of that of the non-impulsive problem. In the impulsive case,

Al AI’

one must choose KI’ I AV, , and t_ such that

ber BV F

* .

If the impulse is at t. or t,, it is not necessarily true that K(t,, e) > 0

as € ~ 0. In orbital Fransfor problems Kp(e) »~ 0, but this 18 not necessarily
true in other problems.

3-1



k(tk, 0) =0 (for interior impulses)

and such that the terminal end conditions are satisfied.

11
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Section IV
ASSUMPTIONS AND DEFINITIONS

Assume that for any ¢ > 0 within some neighborhood of € = 0, there are

functions y(t, e), y(t, ), A(t, €), i(t, e), K(t, ), m(t, €), tk(e), Ek(e),
and tF(e) which satisfy the differential equations (2-1) and the boundary

conditions. (It is understood that & now appears in all of the arguments since

it is to be treated as a variable.) Furthermore, all of thése functions are

assumed to be continuous in € and, for tI <t j_tF, to approach finite limits

as ¢ approaches zero. For any t in the interval and for ¢ > 0, the latter

assumptions imply that within some neighborhood of € = 0, the functions are

bounded.

Assume that for € > 0, the derivatives (with respect to ¢) of all orders

of AI(E), iI(s), tk(e), Ek(e), and tF(e) exist in some neighborhood of € = 0

and approach finite limits as € -~ 0. This implies that the derivatives of any

order of these quantities are bounded for ¢ > 0 in some neighborhood of € = 0.
The following notation is introduced:
v (e) = yle, (e), €l
v (e) = ylt, (&), el
=3y
Ve d€
M 4 =
Y =% °F Ve T e
= dyk = 3y + di EX = + t oy
Yke T~ de e de ot Yek © Yke Tk
t=t t=t
k k
and so on for the other variables. (As a notational simplification an & sub-

script is sometimes used to signify an ordinary derivative rather than a

partial derivative.) When required or convenient, + and - superscripts will

be used to denote right and lefthand limits with respect to time at tk or Ek;

for example,



Z o+ .- - -

Y (€) = lim y(t, €) = G(tk, ¥y )
t > El_c

(£ > t)

We define new functions as follows:

L*(t, €) = L[x(t, €)]

G*(t, e) = G[t, y(t, €)]

Q*(t, €) = Qlt, A(t, €), y(t, €)]
U*(t, €) = U[A(t, €), A(t, €)]

and similarly for other functions of t, y, and A to be introduced later. For

example, »

*
G y(t, g) = Gy[t’ y(t, €)]

L (e, ©) = LM, )] Ale, €

where LA is a matrix and X is a column vector. 1In order that there will be no

*
ambiguity in the symbol G g2 we let

(Gt)* = Gt[t’ y(t, )]
and

% - G* .
G e = (Gt) v v .

In a uniform gravitational field, (Gt)* = 0.

The symbol c(en) will denote a finite summation of functions of the form

n n
a(e)e Mot ()]

where ny, D,y and n are non-negative integers such that ny + nz_i n, and a(e)
is bounded for € > 0 within some neighborhood of € = O. Therefore, as ¢ ~ O,
c(en) > 0 if n > 1. The symbol 8(en) is defined in the same manner as o(en)

with each function a(e) B constant.




Section V

GENERAL PROCEDURE FOR DETERMINING DERIVATIVES WITH RESPECT TO ¢ =1/8

Consider a terminal end constraint

q’(YF, YF, m-F’ }\Fs >\F’ IQF’ tF) =0

Let

67(e) = olyg(e), Fp(e), mp(e), A (e), An(e), Ko(e), tg(e)]
Then

*

¢ (e) =0,
and

d * - d2 * -

e ¢ () =0, =% ¢ (e) 20,

de

Applying the chain rule of differentiation to the identity corresponding to

the first derivative, we obtain

b Yo+ be oy + o + o A, + o AL o, K. +¢_t. =0 (5-1)
yp Fe = Yy, Fe mFmFe Ap Fe Ap Fe T PR Fe tp Fe

If, for example, the terminal subarc is a coast arc, then the quantities Ve

Ype® Mpes AFE’ AFe’ and KFe in equation (5-~1) can be expressed in terms of

Yye? YNE’ mNe’ ANE’ ANE’ and KNE as shown in Section VI.

Furthermore, yNE(O), yNe(Oz, mNE(O), ANE(O), ANE(O%’ and KNe(O) can be
expressed in terms of yNe(O)’ yNe(O)’ mNE(O), ANE(O), ANE(O), and KNE(O); i.e.,
in terms of the € derivatives at the initial point of the N thrust arc, where

the derivatives are evaluated at € = 0. For example,

Ve (0 = ¥ (0) + 2y (0)

where A§Ns is an expression to be derived later in this report. The function

AyNE depends upon AmNE(O), mNe(O)’ and A E(O) as well as upon the known quan-

N
tities §N(0), AN(O), etc., The major problem resolved in this report is the



determination of expressions for AykE(O), A§k€(0), AmkE(O), AAkE(O), Aike(o),

AKke(O)’ and the changes in the second derivatives as Weil.

Proceeding in the manner described above, it is possible to work back to
the initial point of the flight path and to express the lefthand member of
equation (5-1) in terms of known quantities (obtained from a precomputed
impulsive solution) as well as the unknowns AIE(O), AIE(O), KIs(O)’ tkE(O)
k=1, 2, ..., ), Amke(o) (k =1, 2, ..., N), and tre

dure can be followed for every boundary constraint on the flight path. The

(0). A similar proce-

resulting system of linear equations can be solved for the unknowns AIE(O),
XIE(O), etc. 1In the cases.of the example problems to be discussed later in

this report, it is shown that it is rather easy to invert the matrix A of
coefficients of the unknowns and thereby to obtain simple expressions for
AIE(O), iIE(O), etc., in terms of the impulsive solutions. Furthermore, the
coefficient matrices for the unknown second derivatives AIEE(O), AIEE(O),

and the higher order derivatives are identical to A, although the column

vectors of constants become increasingly complicated as the order of the deriva-
tives increases. It is understood that the derivatives of lower order must be

computed before the derivatives of the Nth order can be solved for.

At this point it is helpful to examine the relationship between Atk and
fmk' When Amk =m -m is computed for the impulsive case, then Atke(o) =
tke(o) - tka(o) is known, because

m (e) = m (e) - B[t (e) - ¢, ()]

Atk(a)
— = hm )

Atke(o) = —Amk(O)
using L'Hospital's Rule. Therefore, EkE(O) can be determined from tke(o) and
Amk(O). Furthermore,

Atk(e)

m, () = m (e) - ———

5-2



=

At
= Atks —.—EE ehtye - Aty
e (€) = m (&) - —————= mee (€) - —_—“:;f——-_—
(last term indeterminant at € = 0)
gAt + At, - At
= _ _ s kee ke ke _ _1
mke(o) - mka(o) iig 2¢ N mke(o) 2 Atkee(o)

In general, for n =0, 1, 2, ... and € = 0, it may be shown that

dnﬁk dnmk . dn+1_Atk
den den n+1l den+l

In obtaining the first derivatives with respect to e, the unknowns -
th -
. - wil
corresponding to the k thrust arc will be AmkE and tkE (or tke) rather

than t and t In general, in the determination of the n derivatives,

ke ke’
a"a

a at € = 0 will be an unknown.
de
Another complication can arise in the "ideal" approach which has been out-
lined. 1If K(tk, g) = 0 and K(Ek, ¢) = 0 (as in the cases of interior thrust
arcs or the final thrust arc of an orbital injection problem), then K(tk, 0) =0
*
(see Section VIII) and Uk(O) = 0. It will be evident that in these cases the
conditions Kke(o) = 0 and Rke(O) = 0 will lead to only one independent condition
on the first derivatives. Similarly, the conditiomns Kkee(o) = 0 and Kkes(o) =0
will lead to only one independent condition on the second derivatives, and so
on. In the latter cases, the condition Rke(o) = 0 will be supplanted by
ﬁkEE(O) = 0 which will contain no unknown second derivatives. In general, in

obtaining the derivatives in the aforementioned cases, the condition

will be replaced by



dn+l—Kk
dEn+l

=0
e=0

. . th . . .
In summary, in calculating n derivatives with respect to € at ¢ = 0,

the unknowns are

n ne n
d AI d AI d KI
H 3
den den den

a"e

= (where k = 1, 2, ..., N unless tl = tI’ in which case
d€ k.=2, 3, s 0y N)

d A
& (k=1,2, ..., N)
n
de
d"t _
(unless t_ = t_, in which case this derivative can be determined,
N F n n-1
de d"t d A
if so chosen, from - N and )
n n-1
de de

- . . th . . . . .
The determining equations include the n = derivatives of eight terminal condi~-
tions (in the case. of three spacial dimensions); namely, a scaling condition
on the Lagrange multipliers, the given physical constraints, and the trans-

versality conditions. In addition, they include the conditions

dnKk "R,
=0 (unless k =1 and t_ = t,, in which case we take = Q)
n I 1 n
de de
dn+ll_<.k
1 - 0 (for interior thrust arcs and the final thrust arc of
de orbital injection problems)

It is not necessary that one choose exactly the same unknowns and condi-

tions as have been indicated here.



Section VI
THE EQUATIONS OF VARIATION

This section is primarily concerned with the determination of changes in
‘the derivatives, with respecf to €, over coast arcs. However, the section will
first give a brief introductory discussion of the equations of variation which
may be used to determine the derivatives over any arc for any gravitational
field.

The derivatives Yes Yo Ae, Ae, Ke’ m_ on a time interval [tk, tk] are

the solution to the equations of variation:

. m+ € me c
y_.=-c¢ L+—0L, A +G_ vy
€ (Em)Z em A € y ‘¢
>\€=Q>\>\€+nyE
cm’
K = - £ < . )
[3 2 U+ m (UA >\e: + UA Ae)
m
n =L
€ 2
€

4+ o+ o+ o+ 4
Yek? Aek’ Xek’ Kek’ ek

may be obtained by differentiating equations (2-1) with respect to e (ref. 13).

with inditial values y:k, The equations of variation
The equations of variation for the second derivatives may be obtained by
differentiating equations (2-1) twice (ref. 14) and so on for the higher deri-

vatives.

On an interval [Ek’ tk+1]’ corresponding to a coast arc, the equations
of variation simplify to
Ve = Gy Ve
Ae N QA >‘t: + Qy Ve
. cm c .
K, = -5 U+= (U, A_+0;5 1)

m

=
[l

- — + -
c 0 (so, for tk+l >t z-tk’ me(t, g) = msk(e) = msk(tk’ £))

with initial values §:k’ §:k’ X:k’ X:k’ R:k’ ﬁ:k

tions of variation for the second derivatives.

and similarly for the equa-
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Of course the equations of motion, the Euler-Lagrange equations and the
equations of variation may be integrated numerically over each coast arc of
the impulsive solution in order to obtain the derivatives which correspond to
the final point of the trajectory. However, in cases of an inverse square or
constant gravitational field, closed form solutions to all of the latter
differential equations may be found. References 15 through 18 and Appendix A
of this report contain basic discussions of the closed form solutions. Refer-
ences 15 and 17 and Appendix A describe computer programs for obtaining first
derivatives of y, &, A, A at time tk+1 with respect to y, ;, As A at time Ek'
Closed expressions for the second and higher order derivatives of these quan-—

tities can be found by differentiating the closed form expressions for the

first derivatives.

Let the matrix of partial derivatives of y at time tk+l with respect to y

at time t, be denoted by

k

OVie41

Byk

and similarly for the other partial derivative matrices. As in reference 17,

the chain rule of differentiation yields

S T e Y A
yE Jktl 33; yEk 3;7 yE‘,k
k| k
ra. - ~ 1
v 3y .
. V1| =+ ktl
Ve, o#l ~ 23 Ve t B: Yek
| oy | |9y | (6-1)
- N I e o I s = I i <= N
e, ktl = Yek s Yek o7 ek o ek
| Yk | | Yk | B | k|
[~ o ] T e . [~ » _ [ . =
= P | N1 | =+ M1 | —+ el | 2+
A =|——|y. + 2 y. +|——| 2+ A
g,ktl 3y ek 3y ek X ek X ek
[ Uk [ k] L "k L Tk

—+
The rather subtle reason for the appearance of the partial derivatives Yek?

;:k,‘etc. rather than the total derivatives §ke’ Yie? etc. in the righthand

members of equations (6-1) is illustrated as follows:
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ye,k+l =

Similarly

yea,k+l

yee,k+l

Aee,k+l -

xes,k+l =

where the symbol

(yet__:k) =

W1 - 3"’1<+1—1 : OV 41
—=ly |y, +E |—
*35 ke 8; ke ke 3E
i k | B k | k
- = = 3 .
3y, _ V. 3 _ 3y, 3y
kil y,  + —ktl vy, -t kel y, + kil }7" (ref. 13)
P ke 55 ke ke 2y k 3y k
| Yk | | Yk | Yk Tk
e =51 R S N R S
-~ ke = "ke Yk = ke ~ ke Ok
[ ] .
Virr | o+ [ P T
- yek = yek
Wy 24"
_ - _ )
P |+ ) Pk 1] + Gy
- Yeek = Veek Yeek
ayk ayk
Fay T o 7.
= EZEtl -+ + aykt;T o+ + (~ )
- yeek = yeek Yeek
Byk i Byk |
[on, . | o, . ] - o, ] A
k+1l | —+ k+1 | —+ k+1] —+ k+1 | =+ >
=|——ly + < y + A + . AL+ (O )
3; eck 8; eek X eck ax eek eek
L k — L k = kJ k
M1 | —+ M1 | =+ M| — M1 |+ :
3§ eek 8; eek o eck Bi eek eek
L "k | L k| L k | k
(;eek) stands for the matrix summation
p (5002 Vil |, S+ 3 st | \| =+
LVew -0 |2 Yk IO |- Yek
Tk x| Tk Tk
) ()43 3141 | §(i)+ 3 V1| \| =+
ek =(i) = ek (i) 2 ek
i ayk Byk | y ayk

. . th .
where the i superscript signifies the i component of the vector. Similar

meanings hold for (§ssk)’ (isek)’ and (Xeek)'

no second derivatives with respect to &.

The latter quantities contain

The derivatives of K can be derived from the equation
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Kt = K F éi U - [ikl)

whose righthand member is the solution to

A

2]

K =

Blo

evaluated at t = t Then the first derivative is

k+1°
K =f +—< o a oIt (6-2)
€,kt+1 ek - lx l k+l e,k+1 k “ek
el
since Kk+l = Ek = 0 and, consequently, ka+l| = |Xk|. Similarly,
- _ =t c T - _ 5T
Kss,k+l - Ksek = Ix l (Ak+1 >‘gz—:,k+l Ak xeek)
il Mk
c -T - —+T —+
oo Qo Ml T Mk el
m A
c T - =T —+ =T —+
Qa1 e ikl ™ A e Qi Aerd

- .3
m X, |

- Zemy oI " ST
= 2= Kkl “e,ktl T 'k ek
A

Appendix A contains a further discussion of the partial derivative matrices,
presents a new method for determining these matrices in an inverse square
gravitational field, and provides a listing of a computer program for obtaining

the matrices of first order derivatives.

In the expressions so far derived in this section, computation is in terms

-t -

of partial derivatives y;k, Yer? Assk’ etc. However, in the determination of

changes in the e derivatives over thrust arcs, we will employ the total deriva-
i y A etc. er to obtain the relati i twee

tives yke’ yke’ kee? In order relationships between the

partial and the total derivatives, consider a composite function

B (e) = Bl (), €]
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where B(t, €) is a function of t and €. Then, for example, we have

n A% _em | L %% s

ke de e _ de t _

t t
k

Bke = Bek + tkeBtk (6—3)
Therefore

Bek = Bke - tkeBtk (6-4)
and, similarly,

=+ = - =+

Bek = Bre 7 TrePex (6-3)
It follows from equation (6-3) that

Bkee = Beke + tkeBtke + tkeeBtk

= Beek + tkeBtek + tkeBtks + tkeeBtk
= Beek + tks(Btke - tkeBttk) + tkeBtke + tkethk

Therefore,

B =B - 2¢, B, +t>B. -t B 6-6)

eek kee ke tke ke ttk kee tk (6-

and, similarly,

—+ = - =+ -2 =+ - =+

Bask B Bkee - 2tkeBtka + tkaBttk tkeeBtk (6-7)

Employing equations (6-4) and (6-5), it is easy to express equations (6-1)

and (6-2) in terms of total derivatives.

Thus,

6-5



. Fayi&; - - 2 Wper1 | 2 "
Yirl,e = Skl Vil T A Ge =~ bV * = Ge ™ BB
L e | Yk
r - ] . -
By . 3y .
.- * K+l |- - = K+l 2 S
Yetl,e = kbl elkrl T = Gre ™ BV * = Gre ™ e
L Yk ] k
o _
32 ) 3 )
. K+l | = - o k1| 2 -
Merl,e T B, etiel T - Gre = e ¥ | 7= [ Vke ™ Ere®’
Vi 9y
L - .
A ) A )
K+l | - S K+l | 2 -
+ - (Ake tkekk) + = (Aks tker) (6-8)
a% 3%
K K
A . A
. _ * o 1 el |2 = =%
Merl,e T el eQir T TS [Uke T BV YT Uk T RS
Ay ay.
K K
P P
K+l | = K+l | 2 -
+ X ( ke tks k) + Bi (Ake tker)
K K
=K += U T
Kert,e = Bee VT (gr, eV ™ Bree¥?
In.k
c T . T - S
T e P e 7 S, et ) T M Pke T Bt
m |3 |

Likewise, equations (6-6) and (6-7) could be used to express all changes

in the second derivatives (over coast arcs) in terms of total derivatives.
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Section VII
INTEGRALS WHICH APPROACH ZERO

In Sections VIII and IX we will determine changes over thrust arcs in the

derivatives of y, §, A, i, etc. with respect to €. For example, we will write

by

k k Q*dt.

Ex

Integration by parts will give

—_ tk
3 . £ %
= - * >
Ak Ak e[mQ ]t + € mQtdt
k t
k
Then differentiation yields _ _
- - e e
N =5 - mQ*] - e [mor) K4 | mQfar + e 4| mar.
ke ke tk de tk t de t
x i

In preparing for Section VIII, this section will show that the latter two

integral terms and similar expressions approach zero as & approaches zero.

Consider a function f(X, i, YV, ;, m) which has continuous partial deriva-

tives with respect to its arguments and such that, for € > 0, the function

£%(t, ) = £[A(t, €), A(t, ), y(t, ), y(t, €), m(t, €)]

is continuous and bounded in the interval [tk(e), Ek(e)] within some neighbor-

hood of ¢ = 0. Consider the integral

Ek(E)
I(e) = [ f%(t, e)dt
tk(E)

By a mean value theorem for integrals,
t, (e

I(e) = f*[E(e), el f dt = Atk(e) f*[g(e), el (t
tk(e)
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Since f* is bounded, we write I(g) = o(c). (See Section IV.)

Let

Ek(e) T
f f*(t, e)dt dt

I(e) = [
tk(s)

tk(e)

The mean value theorem for double integrals implies that

tk T
I(e) = £*(t, ) J_ J dt dt (tk-i t < Ek)
b Ttk
='% Atkz f*(E, g)
= 0(82)

Next the derivatives of I(e) will be examined. From the rule for differ-

entiation under an integral sign, it follows that

k
d - -
a = * - * o+ *
e I(e) tkef K tkef Kk f . dt
‘t
k
fEk
=t fx -t fx + (£% T+ £x: TR 4+ £x Ly
ke k ke™ - Je A e A e y ¢
k

+ f*-T§ + f* m ) dt
vy e m e

where f*A for example is a vector whose components are assumed to be bounded

in some neighborhood of ¢ = 0. The meard value theorem for integrals yields

d - =z T Ts T
. = f*x -~ t. f* + (f* + f*. ‘%
de (E) tkE k kE k. (f )\ A’E f by )\E + £ y YE:
+ f5ooy 4 fAom )| dt (¢, <t <t
y "€ el ot (o) t, k k

=t * -
o

T T 2 T
% % %o *
Ef Kk + [ A (eAe) + £ X (EAE) + £ - (eye)
T, : ht
ko F3 —
£ T(ey ) + EX )] - —
t=t
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At this p01nt it must be argued that the functlons e [t(E), €],
eX [t(e), e]l, Y, [t(e), e], Ey [t(e), €], em [t(e), e] are bounded for
e > 0 within some neighborhood of € = 0. Let us examine €m_ for example.

The equation of variation for m_on a thrust arc is

. o_ 1
n, =
Therefore
- t(e) 1
m I8, o] =u 5, el + [ S
€ € tk(e) €
. t(e) - £ (€
ame[t(e), el = eme[tk(s), e] + e
But - _
t(e) - tk(e) . tk(s) - tk(e) _ Atk(e)
€ — € T e
where Atk(e)
lim ——— = A (0)
lin —— = bty

Therefore, (t - tk)/s is bounded within some neighborhood of € = 0, Also

em (£ » €) is bounded provided emE(E €) is bounded since em_ is constant

k-1’
over a coast arc. Eventually the question of boundedness depends on whether

or not Ems(tI, £) is bounded; but €mE(tI, €) is zero.

As another example consider y, on a thrust arc. The equation of variation

(Section VI) is

. m + emE c
y =-c———L+—L A +Gy
€ (em)z em A € y'e
Therefore, £(e)
. ~ . C l .
€Y8[t(e), gl = sys[tk(e), el - . =L dt + (higher order terms)
tk(s)
The integral £(e)
gal 1y ae
€ m
£, (e




requires the most critical study in regard to boundedness. By a mean value

~

1
theorem for integrals, there is a t in the interval [tk’ t] such that

t(e)
* R | m(t, , £)
J =-% L (t', €) ﬁ-dt =L (t, ) log ——:E————
tk(e) m(t, €)
Hence
* 1 m(tk, E)
IJ| §_|L (t, e)| log

m(tk, e)
since m(Ek, e) £ m(t, €). Therefore, assuming m(t, €) has a lower bound which
is greater than zero, one may conclude that J is bounded for all € > 0 within

some neighborhood of & = 0.

Similarly it can be argued that

n n
Enu, ena_z’ etc. (n=1, 2, ...)
n n
o€ o€

are bounded within some neighborhood of ¢ = 0. It would be impractical to
provide a full proof of the proposition in this report. The general idea,
however, is simple: ¢ factors in the denominators of the terms in the equa-
tions of variations are removed by multiplying both members of each of the

equations by € factors, thereby allowing the solutions to be finite.

Having taken care of the problem of boundedness, one can finally conclude
that

€ %E I(e) = o(e)

Using similar arguments, one can show for n=0, 1, 2, ..., that

n d° _
e — I(e) = a(e)
de
(7-1)
n
e " 1e) = o)
de
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Now it is possible to define a symbol O(em), m > 1, denoting a function

5(em) as defined in Section IV, or

~ n

o(" ) " & 1(e) @=0,1, 2, ...)
de
or
- n
c(am—l) et 1 Q—H I(e) (n=0,1, 2, ...)
de

or a finite sum of such functions. Employing equations (7-1), it can be shown

that O(em) has the properties, for m > p > 0, that

P -
o™ = 0™ P)
dep
and
0(e) = o(e)
Suppose for example that @(83) = ;(az)e %E-I(e). Since %E-o(sn) = c(en-l),
ve have
2
d 3, - d ~ 2.4 ~ 2. d
EE‘@(E ) = g(e)e EE-I(s) + o(e™) EE'I(E) + ag(eN)e EEE-I(E)
~ d ~ d - 2 d2
= g(e)e EE'I(E) + o(e)e-EE-I(e) + o(g)e ;;5 I(e)
= @(62)
2 ~ d
If 0(e”) = ag(e)e EE-I(E), then
d 2.~ 0, d ~ d ~ a®
i 0(e”) = o(e )e EE'I(E) + o(¢e) e I(e) + o(e)e ;;7 I(e)
- 0. d ~ 0, d ~ o, 2 a2
=g(g )e =—I(e) + g(e e =— I(e) + o(e )e” —5I(e)
de de dsz

o(e) (by equations (7-1))
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The reader might wonder why the symbol c(em) would not suffice without

the need for.@(em). The explanation is that one can not state that

1

& o™ = o™

with assurance because o(e) has a factor a(e) which is bounded within some
neighborhood of & = 0, but whose derivatives may not even exist. Sometimes
little is known about a(e) because it may correspond to a function evaluated

at some indeterminate time t(e) within the interval [tk(e), Ek(s)].
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Section VHI
CHANGES OVER A THRUST ARC — NON-IMPULSIVE CASE

In this section we will derive expressions of the form

§k(e) = Yk(E) + ak(e) + @(63)

T (&) = 5.(e) + b (e) + o)

etc. For example, the change in § over a thrust arc will be expressed as a
derived function bk(s) plus a third order term 0(53). Later, the first and
second derivatives with respect to ¢ will be taken in order that the jumps
in these derivatives over a thrust arc may be determined; for example,

Vi (8) = Vi (€ + b, (&) + 0e)
where

lim o(g) = 0
e>0

The expressions for the higher derivatives, though complicated, may be obtained

by similar procedures.

The first step is to find expressions for the integrals

tk tk T
G* dt, G* dt dt

by B T

™ |-

Since m = - , repeated integration by parts yields:

By € e
G* dt = —e[mG*]t + ¢ mG* dt (fudv = uv - fvdu, where
tk k tk u=G6* and v = - €m)
£ £ £
k 1 2.2 k,1 2 2 *
= - * - — sl
e[mG*] 5 € [m™G t]t + 5 J m°G dt
k t
k
* 1 2
(u Gt’ V=~ en )
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But

* *
(Gt) + G ¥

*
Gt

*
Gtt

G* y + f*(t,
¥ (t, )

-£ % 1% 4+ £%!
em  y

where f* and f*' are continuous and bounded in the interval [tk’ Ek] within

some neighborhood of & = 0, Therefore,

tx Y%
1 2 2 1 3 © is defined in
2 J mG¥y dt =G e L me* L* dt + o(e™) (Section vit )
k

Integration by parts of the integral on the right yields the desired expression

s _ - -
k t t t
G* dt = —¢[mG*] k l-ez[mzc* 1 k_1 caz[sz* L*] ky 6(53)
t 2 t't 4 y t
tk k k k

The expansion of the double integral is

tk T tk T

f J G* dt dr —e[mG*] " + e f nG*  dt | dr
t It & t t t

k  tx K Kk

T Ex 3
- mG* dt + ¢ m G*k dt + o(eg™)
k ty

t
1 ez[sz*]tk + ¢At,m G* + 0(53)
k

2 kk k

Now we may examine the changes in y and y over a thrust arec:

v =<

y = EHIL + G
t t

= . c k 1. * k * m

k k el m ¢ ,
k k

2 . tk tk tk

Yk = Yk - ¢|l{log — |L* + c log _— L*t dat + G* dt

mk tk tk mk tk



|..

——IH-MWWW-H

t
k
§k+c logii L% - ce|m log:mL—l L%
My ™ "
Y . Fyx
+ cg m|log — -1 L"_‘tt dt + G* dt
e Py Yk
m, E
. k "
k. S R *
¥, * o |log = Ju¥ 4 cem log — |L T ce[mL ]tk
B i
t t
2 k k
~ee? B f1og 2 - )L |+ [ G dt + 6(e”)
" % %
) m m E
- P —k Ay x *
yk+c log — Lk+c€tn.k log — Ltk+c€[mL ]tk
m
t
1 2 2 " 3 2.2 k
EY _k Yrx = *
tyee oy logﬁk L ¥ 5 € [mLtt]tk
tk 3
+ G* dt + o(eg™)
"
. te 1 L# Ee [T
. L L* .
Vi + Atkyk el 1, m dt dt + . . G* dt dt
k k k k
i rtk T T
- LU P LI P
Vi + Atkyk + c IR P log L + . log L ‘ dt »>drt
k L e tk k e




= - = Lx - *
Vi + Aty = ce my log — K ce[mL ]t
m, k

k

tk o mk
= V. - 2% A K Jr*
Vi + Atkyk c . (log - )L dt + ¢ tk log — L X
k T My
tk T .
+ ¢ log — L*t dt dt + [[ G*
T Py
. - tk tk
+ bty +ce |m (log = - 1|L¥| - ce m (log =- - 1| L*_ dt
By tx x Py
m tk t
k * m * 3
+ ¢ At {log — L, - ce m {log — - 1 |L*, dt + G* + 0(e™)
T x Py £,

tk mk
- 2c¢ m |log %— -1 L*t dt + ¢ At log — L*k
Tr

tx M

Ok 3
= _ *
+ cedt, m log — 1] L ex T G* + 0(e™)

3
+cs:Atkmk logii-l L*tk+JJG*+O(e)

m.k

x _
"k Y
= v - = x - *
Vi + Atkyk ce m log — |L " ce[mL ]t
m k
2 m2 m 3 tk n
o D2\ X *
v 2ce > log — > L*, +c Atk log — Lk
Ty t, P



+ At y, + c(At, - ) logi 1% - ce:[mL*]tk
Wk k- Tk ) LN £

m k

Y

t
k 3 2.2 .. k
+ cge mk(Atk - em.k) éog - L*tk - E ce [m L:’.t]tk
Tk

o om
= - £ \1x - %
Vi + At,y, — ce m log — |L ce[mL#*]
o
_ m 2.2 . .tk :
-ce m m |log = ! L*t]tk - ce My m L
o X
tk T 3
+ G* dt dt + o(e™)
e Tt
and )\ will be examined:
= Q(t, ¥, ) j
[ ] tk
=3+ * dt
)\k . Q
k
. T, "k
=), - elmQ*] ~ + ¢ mQ*_ dt
k tk & t
k
- - £
t t k
_ 3 k 1 2.2, .k 1 2 2 .
_>\k—s:[mQ*]t —Zs[mQt]tk+Ze m Qttdt
k
. . £
t t k
. k 1 2.2 k 1 2 2 - 3
= - % - = E3 = * +
Age a[mQ]tk Zs[mQt]t+zeJthyydt o(e™)
k
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_ - i

. t t

- . k 1 2 2 k, 1 3
- % - = = % L%

A }‘k e[mQ ]tk 2 € [m Q*t]tk + 5 Ce J m Q y L% dt + o(c”)

t

. t t
- . k 1 2 2 k 1 2.2 k 3
= - & - — - — %
Mo = A e[mQ ]t 5 € [m Q*t]t % C€ [m Q*yL ]t + o(e”)
k k k
— - tk T
= k3
A = A F AL A ol Q* dt de
k k
- 1

k- M T A TS

>
I}

t
2.2 k 3
% *
[m™Q ]tk+ € Atkka.k+ o(e™)
following the same procedure used earlier in the expansion of f[ G*.

For reasons mentioned in Section V and to be fully explained later, it
will be necessary to determine derivatives of Kk(s) up to the third order.
Therefore, the next task is to derive an expression, for the change in K over

a thrust arc, of the form

ik(e) = Kk(s) + Kk(E) + 0(64)

Since
o c .
K = o U, A)
we have
t
- %
R =K +c U? de
th
_ — tk tk o
Kk=Kk—ch*log_— + ce U*_ log — dt
"k |t By T
N k
t
- 2 m &
Kk_—_-Kk+ceU_*klog_——c$ U*tm log — -1
) " ™ £,
2 [k
+ ce U*ttm log — - 1) dt
e My



'—IIIIJL_I_J“—

m t

= k 2 x 2 k
= 4 * —_— * —_— *
K'k K‘k ceUklog_+ce Utkm.klog__+ca[Utm]tk
" T
t t
2 k k 2
3 m m 3 3 m m 3
- k  —— 2 = * — o 2
ce Utt 5 log — 2 + ce J't Uttt > log - 5 dt
e t k "
k
- o 2 M 2 Ek
= * — * —_— *
Kk Kk+chklog_+ce: Utkmklog_+ce(Utm]t
my k
13 2 ™ 3 3 2.5
+ 5 ce U*ttk m log — + 7 ce [U*tt m ]tk + I
where _
t
- 1 3|k .2 3
I=73ce (u*; Q*y v) m“ |{log — - > dt + o6(e )
i My
*T . oo
Here U*i =L ~, Q% is a square matrix, and y is a column vector. Then
Ek
~ *
I = %— c2€2 J (L T Q* L#*) m |log ?j_* —% dt + @(64)
t y m,
t
2 k
1 * 4
="'2‘C293 (LTQ*yL*)m_Z_ ]_Og_—ﬂ_z + 0(e )
Pk £,
t
1 23 ,_*T 2 Me 1 23 *T 2.k
= == * * —_— = * ’
; C € (LkakLk)mklog_+2ce[(Lk Q*yL)m]tk
+ 0(24)

Summarizing, we have:
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- ce[mL*] -3 cf-:?'[m2
tk 2

[ |

k—ce:At m L*t

L* ]
toe, k 'k

k

t
1 2 2 k 3
= * + +
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t
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k

; 1,220 41
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t
1 2 2 k 3
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Taking first derivatives of both members of equations (8-1), we have:

s 4 i * *
Yee = Yre ¥ ¢| gg 108 = (W +oemy LRy
+ 1 e (i.* +m L*, + L* ., + L* +oem 2 L)
¢ (log - ke Ty Lo *oem LV Foem M T M MTeek

k
k

ot

+ * + ® *
c[mL t] ce(mks L £l m L tl)
t

- - 3 2 k
* - * 2 *
+ <:a(m_k L tke ~ My L tke) + > ce[m™ L tt]t

k
t

[mG*]tk

k

- em 6% - m G¥) - elm G - m G )

t
e[mz(G* + 1 c G*_ L*)] k + 9(82)
t 2 y tk

. m _ _
- c. = * *
i + Atkyke c [ log P (sm.k’3 L x t em, L* .
‘k

+ At
>

ke ~ Yk k

4 m t

m * o * - - < _k * . x1 K

+2€mkkat1+m'kL1) _cz-:m.kdslog_ L% c[mL]t
k

k

Tt
=

- — - - 2
cs(m.ke L.*k - m L*k) - ce(mk L*ke - m L*ks) - 3ce[m L*t]

t

2 k
- * - * _ + * + c*
c:Atkkatk ce Atkemk]."tk e[m G*] A, m k

fk k k

2
*
+eAtk€mka+O(e)
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M T e T QM metm @ mm @) - el @y - omy @)
2 1 £ 2
—em™ (@ +5c @ L¥)] "+ 0()
t 2 y t
- . . 2 Ek
= *
Mee = Mke T A A T AL A telnQ ]tk +ag o O
+ e At, m Q% + O(ez)
ke k k
_ d "k
= * - >
Kke KkE + ce(U K + eU*tk mk) de log -
k

2 2
* * * 'k
Foe[U% + eUk +2eUk, m +e” TR om bt B om

3 2 2 3 2 _*T 2 mk
= * 2 * * =
+ 5 € U crk D + 4 Gt (Lk Q vk L k)mk ] log —
e
Ek 9 _ _
* C -
+ 2ce[U c m]tk + cg (U*tke m, U*tks mk)

2 - -
+ ce (U*tk me T U*tk mke)

t
k + @(83)

F3
+ 3 ce?1 Uk + 2¢ LT gf L#)m?]
t y t,

4 t k

The second derivatives are:
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ykee+ c 5 log — |L* + 2c ac log — (L e T L tk)

de .

" 2
+ = * + * 4 * + %
c {los = _(L kee zmke L tk zmk L tke © Tk L ttk)

mk

- - _ . - - _ .
+ 2c(mke L*tk mke L tk) + 2c(mk L*tke mk L tke)

3 2 E‘k — -

= * -9 -
+ > c[n” L tt]tk 2(mk€ G*k m G*k)

- 2 1 Ek

- G - * - = * *

2(“’k G*ks m G kE) [m (G*t +5c G . L )]tk + 0(e)

. . L A -
- = * *
+ 2Atkeyke 2c | log — (mke L " + m L ke

IILk

+
ykee Atkeeyk

- - d e - =
* - L L \rx - * *
+ m, mk L tk) T log — L.k 2c(mke L KT M L k)

t
- - 2 k
_ - * - * - %
2c(mk Lke m L‘ke) 3c[m” L t]tk 2¢ Atke m L tk
2 Ek
* + * 0
+ [m™G ]tk 2 Atke m G Kk + 0(e)

ikee - z(aka Q*k T e Q*k) - 2(ak a*ke Ty Q*kE)

t
- °@*, + 3 cQ*, L*)]tt + o(e)

t

A + At 3+ 2 Atk + [mPQ¥]

k %
+ X + 0
kee kee' k ke ke 2 Atka e Q% (e)

ty
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m

g = 4d _k
Kkee = Kkee + 2c(U"‘k + sU*kE + 2:-:U"tk m.k) ac log -
' k

*
+ c[ZU*ke + EU*kEE: + ZU"‘tk m + 4€U*tks m + 4eU tk ke
m

2,3 *T * 2 k
+ 3::U*ttk m + > ce(Lk Q*yk Lk)mk 1 log —

ﬂlk

t
+ 2c[U*tm]tk + 4 ce(@ m - P m)
k

+ 4 ce(U%,, m_ - U* )+-§ceﬁ(3U* + 2e07T gx L*)mz]Ek
CE ek Mke tk ke 2 tt e Q v £

+ @(82)

The third derivative of Ek will be required. It is

2
R = 4.0 % % d
Kecee = Kpeee t 00U + Uy m) o log — + 2c0 " log —

2
' + + U*
+ BC[U*kEE + 2U*tke: mk 2U*tk mks Uttk mk

m
c *T 2 k
5 (Lk Q*yk L*k) m 1 log —

Ty

+

+ 6C(U*tkra mk - U*tkE m'k) + 6C(U‘ktk mke - U*tk mke)
"

by

3 *T

2
2 * % *
+ > c[(3U et + 2ch Q v L*)m™ ] + 0(e)
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Section IX
CHANGES OVER A THRUST ARC AS € APPROACHES ZERO

In this section we will be concerned with the limits of Ek, §k’ §k’ Xk’
Xk’ Rk’ and their derivatives as & approaches zero. The expressions for the

derivatives for & > O were derived in the preceding section.

From equations (8-1) it follows that

: m
ITlk

y, +
Y > Yy t e {log

Ve T Yk M Mk M Mk

R > K
as € > 0. Therefore, y, XA, i, and K are continuous over an impulse (as indi-
cated in ref. 1), but

A&k + ¢ |log ;f L*k

Letting AV, "= |A§k| and observing that |L* | = 1, it follows that, for ¢ = 0,

AV c log 2§

k
M
- e—AVk/c
e = ™
< .
Ayk AVk L Kk

as indicated in reference 1.



It follows from the equations for the first derivatives that

Kks = Kka + c U*k log 2£ + 0(e)

mk

0 and K (e) = 0, then U% (0) = 0; i.e., K (0) = 0. This
is a more general proof that Rk(O) = 0 than that provided in reference 1. It

Therefore, if Kk(e)

is also evident that, when kk(O) = 0, the condition Eke = 0, for example, will
not provide for a condition on the first derivatives (with respect to £) inde-
pendent of the condition Kke = 0. 1In this case we will resort to the condition
Kkee = 0 in order to obtain an independent condition on the first derivatives,

and similarly for the higher order derivatives.

Furthermore, as e -+ 0O,

s . d M\ % o % %
+ of =— = _X +
Yke > yke ¢ de log Lk + ¢flog — (Lke katk)

" M

_ —% % _ % x
el Ly -m L) - (my G -m G

+cfd 1 it Lk AV LY+ (mAV. + chm )L - Am G
e T L@ %8 =) kke | MV TS B T A5y

-5

where
d e _ " Mke T ™k ke - Amk ke ~ ™ Amke
T m m o M

and, as shown in Appendix B,

* 1 * T
Lye = e (T - Lbyp M.

Moreover,

_ ) m 0\ _ o
- —_— % — % - *
Ve T Ve T Ot Yy T © [log =) m LF - e(m L¥ - m 1Y)



Ve ” Ve = Yy eom)TE, - dmyy
ika > Aee — A Q- m k)

” ike - Am Q%
Xkr—: M Ake + Atke ik

T e T8 Ay

- + Uk
Kee ™ Bree ¥ Tk Yk
From the equations for the second derivatives with respect to e it follows

that as € » 0,

e e

— d
K o+ 2008 S 100 K x4 Uk log &
Keee ™ Free cU* ae tos = + 2e(U¥ 4+ U*, m) log =

"k "k

U* m - U*
+ 2¢(U tk mk 1) tk mk)

- d .
+ xS —= U*  + 2 + cAm )U*
Kpee ” Miee T 290" g o8 T F 2 AV IR+ 2(m AV, o+ eam )UR
e
X * 1 i e = =
where U’kE and U e 2Te developed in Appendix B. If Kk(s) £ 0 and Kk(a) =0,

then U*k(O) = 0, Ekee(e) = K E(e) = 0, and it is necessary at ¢ = 0 that

ke

% + U* % =
AVk(U ke U i mk) + cAmk U tk 0

No second derivatives are involved in the latter equation.

Summarizing, at € = 0 the equations of discontinuity for the first

. . th
derivatives on the k thrust arc are:
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8y (0) = —— (dmm - mdm )L¥ + —E (T - L% L*kT)Akew

my T 24

+ alkL*tk - AmkG*k
B (0) = = 2yl = tm ¥,

> (9-1)

by (0) = - tm Q%
8 (0) = - tm R
K _(0) = AV, U*, J

where

A
1k = Ty AVt oclm

o
]

(See Appendix B for the series development

& AV, + chn of ajy and ay.)

V]
|

2k

Tre © mk—l, e mk—l, € + Amka k>l

0 if k = 1.

The necessary conditions for the first derivatives at € = 0, applying at

the kth thrust, are

Kka = 0 (or perhaps Eks = 0)

AVk « T Te

— = - *® 3 _
(Ak Ake + Ak Ake) alkU K does not apply 1f) (9-2)

|2, U%, (0) # 0

In examining the limit as € + 0 of the second derivatives, it will be
necessary to take a closer look at the relationships between a*tk(O) and

G*tk(O), between i*tke and L*tke’ etc. The latter functions are developed in

Appendix B, where it is shown that as € -~ O,

G* * L * + *
G Kk > G k L > L AL t

tke tke ke

% % * 7 O%* ®
G*ex T e TR Qe > Q%

9-4



1

G* . > G*

* * *
Qe ™ e + gy

vk vk

Gx, > G*__ + 8G% ﬁ*yk > Qo

i*k > L*k 6*ke M Q*ke + AQ*ka

L¥ e > T¥ O > O

e ™ Teex U ™ T

Tx > L U > U + L* Tqx Ay
Ak Ak ttk ttk k Ty

E*ke - L*kg - Aka*tk l_I*tks ” U*tke + AU*tke

where

AG* e = = 2 B T A BTy

ML e = = bm DOLTHR O3+ L% 0% ]

APy = = Mm@~ 3

AU* e = asz*kTQ*ykL*k B Aka*kTQ*tk +’%§TE (‘ikTQ*k U

K

The symbol (ikL*

A

Ak) signifies

g iép) L*a Py

. s s th
where the p superscript indicates p component.

Observe that AG*

derivatives.

*
ke’ AL tke

, etc., do not depend on any of the unknown €

Therefore, these functions can be calculated as soon as the

impulsive solution has been computed.

Now we are prepared to examine the second derivatives with respect to €

as € > 0,

have:

Referring to the second derivatives developed in Section VIII we
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= . d T d "k

> + c__ Sl ox 4 gz = x4 *
Ykee ~ Tkee © € ( 2 log — )L k 2e (de log (& ke '« Mk L tk)

de mk
2
* % * %
AV AE Ty LRt 2m LR hm T LR )
* * n *
+ 2 c Amke L tk + 2 c Amk L tke + 2 c mk AL tke
+ 3 (m 2 _ 2)L* -2 A G% - 2 Am_ G* - 2 m_AG*
2 oy o ttk Ty k T “"ke M ke
~ 2 2 1 - 2
- - % — * * -— *
(m " = m ) (G + 5 e Gy TR - om e 8GR

It is easily shown that

2 A - m A m 2 2
Y S e Tl T _(mke
2 - — —
e m ™ i
and in Appendix B it is proven that
1 T 1 T T
* = — - L% L* T * - *
L kee I L kL k )Akee + 2 [: 2(L k Ake)xke * keAkE)L k
N |
T 2
% *
Therefore,
. Amkmk - mkAm AV
= €€ kee k T
* —_— - L% L*
Ykee M ykee te < = L k + IA I I L kL k )Akee + nk
e ™ k
where
ARNEEY R -
€ ke € £
= =L - | == % * *
Ny — <n%.> L " + 2c¢ — (L ke + ka tk)
I T T
AV
k T T T 2
- * - * %* *
+ NE [= 2@% M I e ™ OlieMed e + 3@F 2 )T
k
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* * * A ) * - *
2c mkAmk[(}\ L A )}\] + L }JQ ]] + 2 c (m.k mk )L £t 2Amk€G]

m * * L% o * * - *
4+ 2 m.k[Amk(G’ tk +c¢c G ykL k) + mk AVk G vk L k] ZAmkG ke

- 2 2 1 - 2
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k
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k "ke’ ke -
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ke
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mk

+

2c

*
+ ZAVkmkE + 2cAmk€ L K

2 3 -2 2
2 AV m + chm )Lx o+ [V m T+ 5 e (mo - m D ILE

+

' 3 * 3 * * - *
2e m Amy [Oy THy O+ L%, Q% T =~ 20m G

+

= -2 2
[z tmy = (o = my D168~ 20w, Gy,

= - 2 1 -2 2 - 2
+ 2w + m AV ) - 3 S - m e - m " AV 16k LE

mk 2 m.k 2 AV
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I —

2
< * *
+ = (akakE + CAmkAmke)L tk + 2a1k L tke.
e
2 c ,~ 2 2
< - *
+ [AVkmk + 3 > (mk m )IL ttk

- . . 2
- * + L% Q%] — * * - %
2c mkAmk[(AkL AXk)Ak L XkQ ] 2Amke G " + Amk G K 2AmkG ke

- 1 2
+ + = * *
(a2kmk 2 CAmk )G vk L k

Observe that n, can be computed as soon as the first derivatives have been

i * = Q%
computed. It is also noteworthy that G ykAk Q K

Likewise

ykee M ykee + gk

where

= y ., - oL o Tk %
Ek Atkes Tk +2 Atks yke 2 AVk(mkeL k + ka ke + e M L tk)

a Ty
- _ —_— k3 - * - *
S e log — > L K ZCAmkeL Kk 2cAka ke
Ty
- 2cm AL* - 3c(m 2 - Z)L*
e ke e T M M ek
2
E3 %
+ 2cAmk mk L K + Amk G Kk
= - 2A o - 2am vy, + Am 2g*
e Yk T Yke e “7x

[;Avkﬁke +c mkmkem; mkmkE) + 2cAmké} L¥, = 2 a, L*

(ZalkE]k + cAmk2 - 4cAmkmk)

Similarly,

>
+

X >

kee kee Ck



where

Ck = _ZAmst*k - ZAka*ke - 2mkAQ*ke

~ 2 2 -2 c ,~ 2 2
B A A T R

= -20m Q% - 20m Q%+ 2m (Am Q% + ay QF, L%

-2 2 - 2 c -2 2
- (T - m QR - m A QR LR - (e - m Q% L

2
= —ZAmkeQ*k - 2Aka*ke + Amk Q*tk

- -2 c -2 2
+ [meay, - m AV, -5 Gy - om O 1Q% LY

Also
>\k:-:e: i Akee + pk
where
- - 2
= — - *
Py = ~28my Ay = 2bm A+ Am QR
Furthermore,
Kkee i Kkee + vk
where
d " T
vk 2cU k de log — + c(2U ke + 2U tkmk)log — + 2cAmkU tk
B ~ M
= * * *
2c - Uk, + 20V, U+ 2a,, U%
e ™
In the cases in which U*k = 0, we will have AKeea(o) = 0. We can set the

mathematical expression for AKEEE(O) equal to zero and employ it as one of the
conditions for determining the second derivatives with respect to €. The

equation obtained is
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6 c(U ke + U tk mk) dc log —
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+3 AVk[U kee +20 tke mk +20 tk mka + U ttk My
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2,— 2 2 T
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M ™
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+ 6 ctm U*  _+ 6 cmk[ a, L* Q ykL - Am LA Tk ™ A7Q k]
K
9 -2 2
% = - *
* 6 chmy UF g g olm T - m DUR
2 .

3 - 2,- 2
2 % To%x L% - %
+ 5 mk AVkL K Q ykL ” + 3 ¢ (mk m YL* Q k k
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i.e.,
AV . T3 mom, -
—_— *
]A | A kxkee + AV L* x kss = 2¢cU ke ke — €
k I
mom = My
- S s —— *
2 <% — + AVkmkE + cAmkE U
e
AV
—_ _...—k - 2 8 % T +T T »
™ (23" ke ke B Lo 0 ) T A+ AN
k
- (AV + 2cAm )U% - [Av 2 4 3. (m 2 2)]U*
Kk ™ 1> Kk 7¢ e ™ ttk
1 2 - -2 2 -2 2 T
- = - - % *
5 [cAVkmk 4cmka2k + AV, cmy + 2 c (mk m )]L*k thkL K
+ 2cm Am, (L% QF + 33t Q%)
mk mk k tk ‘ , k
k
i.e.,
AV
k =T
Mitkee T A
I |
k
where
r—Elkmke - mkake 2 -
= - * B e = + k
My 2cU ke - — (cAmkmk I\Y mkmk u
™Mk My

- %T 25 e h—iT (L*kT)\ke)(iTk)‘ke * KTkikgﬂ
- (av + 2chm )U* - [av 2,3 @2 - 2y yux
Kk e’ ke Kk 7 M T ™ ttk
- % [CAvk(ikz + ‘“kz) - demay, + Zcz(‘?‘kz - mkz)]L*kTQ*ykL*k
+ 2emy Amk(L*kTQ*tk * ﬁiT iTkQ*k)
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In summary,
. c AVk T
= - * ——— - * %
Aykea(o) - (Amkmkee mkAmkes)L k + I L kL k )Akes + nk

m B I

Aykas(o) = Ek

A o (0) = Ly (9-3)
Ahkee(o) = pk
AKkEE(O) = vk

where nk, ék, Ck’ pk, and vk contain no second derivatives with respect to €.
The necessary conditions for the second derivatives at € = 0, applying at the

th
k thrust are,

KkEE =0 (or perhaps KkEE = 0)
(9-4)
AVk . T .
— (A, A + A A Y =u (does not apply if
lAk, k “kee k "kee k U*k(O) 4 0)

Observe that equations (9-3) and (9-4) have the same form as the equations

(9-1) and (9-2) corresponding to the first derivatives.
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Section X
EXAMPLE 1: BURN-COAST INTERCEPT

As an example consider a thrust-coast intercept problem in which the
vehicle moves from a given point in state space to a point with given position
components. The time t_ of intercept is also specified. In this problem the

F
initial time tI must be identified with tl, and t, with t.

F
We will impose the scaling condition XlTAl = 1 upon the initial values of
the Lagrange multipliers. Therefore,
AlTAle -0 (1o—i)
The condition El = 0 implies Els = 0. The last of equations (9-1) gives
KIs = —AVlU*l.

Since Yy is fixed, we have

Yoo = 0.

From equations (6-8) it follows that

3y . ay .
2 — - = 2 -
- (yle - tleyl) + =
Byl 8yl

dy . ay
2 - = 2
e R T SR B

G%.) =0
- 1
Byl ayl

<Ay1e - tls

From equations (9-1) it follows that, for & = 0, we have

b .-z %, e
= (—a21>\l - Amlyl - tleyl) + ;:- [~¢c - Al + AVlAl€
Yy 1 1
* - % — t. G* =
+ allL el AmlG 1 tleG l] 0
10-1



where AVl = |A§1J.

1 = e =—- * = (% y =
Since Aml AtlE tle’ G 1 G 1 Ayl AVl

at € = 0, the equation reduces to

ay dy Am
2 2 1le Tys =
mayy [0 A H = e =Ry r vy +a (T - aa DA T =0 (10-2)
vy 91 m

Equations (10-1) and (10~2) may be expressed as

dy 3y, | [_
(—c— St Y wv, | —=2{| |om | [_Y—’
-y 3y 1 1 P 1le
1] %1 71
T
0 A by 0
1 1le
. pa— L e . -
where
oy 3y
- —2 _ 2 _ Tys
U § ol S T Fl e (T - 22000
Y1 41
Inversion of the linear system yields
B B - 3 -1 -
1, T| Y2 it
Am - —= 2 — -
le c 1 35 c
71
-1
dy
1 T 2
Me wo oMy = M
1 3y
| L 1

In general (see Appendix A),

oy y, |.
A, = ——g'k + —TZ'A
2 7 3e 1

¥ Yy

10-2
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* = -
Al’ and L 1 (T Alxl )Al

(10-3)
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But for an intercept problem the general transversality condition of the cal-

culus of variatlons implies that Az = 0. Therefore,
] 3y, | "t 3y,
A = - - — [ A (10_4)
1 P P 1

Utilizing the latter expression to simplify equation (10-3), we have

m
m Ts T, T,
bmy o= 2= laggdy ™Ay +aggdy (@ - AT )
m,a
1211 . T:
Mmy = = TR (10-5)
1 T . T, s
Me T &V (T = A0 [mapqhy = ag (T = A2 O]
2a
%3 T . )
Me = &V, [y A = A (10-6)

where it is understood that A Al, etc., are the impulsive values. If one

l’
were to derive expressions for AmlEE and Alee’ the equations would have the

same coefficient matrix as equatioms (10-3).

An expression for A can be obtained from the transversality condition

Az = 0. Thus,

1

and, from equations (6-8), we have

x| . o, ] -
e (¥1e = t1e¥) F R (716 = t1e6%9)
1 Y1
3}’2 _ _ 3372 ° _
= (e = tprp) * = (Age = £ Q%) =0
vy v,
10-3



3 ay2 Skz Byz
since [—=| =|— |and | == |=| —== | (see Appendix A).
BAl Byl | BAl Byl

Employing equations (9-1), one obtains

A . oA

2 . - - c T
- - - —_— e —— - *
= (mayyry - Bmyyy - £y yy) F = —hmg Ay AV (T-Ag R DA+ oag L
Y1 Vil ™
3y 9y, | .
+ —2 A + -.—2' =0
1e - le
ayl Byl
Therefore, we have
1
bt =ﬁ3 a 2%A——B—A—Z--E—Amx+(:[->\>\T)(AVA +a5\)
le 8 11],- |1 52 - 1le’1 171 171e 1171
J1 J1 il ™
ay2
- |—=1]2
= 1e
ayl
1
3y, | EDY 3A
: 2 2 2 c : T:
Y1 Y1 Yy 1
[
Byz
- |-=<1a (10-7)
3}_7 lE
L 1

It is noteworthy that equations (10-5) and (10-6) have very simple forms
which do not involve any transition matrices. However, equation (10-7) does

require evaluation of the transition matrices.
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In a constant gravitational field, Az = Al + (t2 - tl)kl at €

s 1
A, =0, A, = -~ — A..
2 ] 1 t2 tl 1

Ale = Ale = 0 when G is constant. This is not surprising, because

6 it has been shown that the impulsive solution provides exact valu

Therefore, equations (10-6) and (10-7) im

Lagrange multipliers in the burn-coast intercept problem with const
fixed tF. The latter observation would seem to imply that, if the
problem is roughly equivalent to a constant G problem, then the lin

tions to the impulsive solution should provide accurate formulas.

The Taylor series expansions about e = 0, truncated after firs
second~order terms, yield the approximate formulas

2 Am Am

T = £ = E_ T = T "
B S P I fe P aT e T 81 T B 2

_ l . —o ;L_-
Me T At A s A = Ay g A

le

Before considering a numerical example, we will briefly consid
determination of the impulsive solution. Given Yi» Ypo and tF - tI
conic through V1 and Yy may be easily determined by means of a Lamb
solution (refs. 2 and 3). There are many computer program subrouti
obtaining such solutions. The output data will ordinarily include

Then Al = L*l = Z%— Ayl, X, can be computed from equation (10-4), a

Consider a burn-coast intercept problem in which

t, = 0, t, = 380 sec, m, = 16892.0 kg—secz/m

F 1

le = (2872.5 km, 5907.8 km, 77.7 km)

&lT = (~7.33 km/sec, 3.22 km/sec, -.47 km/sec)
T

y, = (0 km, 6556.3 km, 0 km)

c = 4100 m/sec, B = 22 kg-sec/m
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u = .388 x 1015 ms/sec.

The vehicle (a Saturn S-IVB) is initially 100 n mi above the earth's surface.

It must intercept a point a few miles lower in altitude.

An IBM 1130 data processing system was employed in the solution. The

results are as follows:

t1 TRUE = 86.0 sec

- _ Aml
tl ™M = 76.6 (10.9 percent error) (tl ne - tl - —E_)
tl COR = 84.0 (2.3_percent error)

= 15,000 kg- ec2/

™y TRUE ’ g=sec /m
T, vp = 15,207 (1.4 percent error)
M, or = 15,044 (.3 percent error)

x, T = (.6618, .3727, .6506)

1 TRUE : > >

X, = (.6631, .3557, .6587)

1 1IMmP ‘ > >t

ERROR = (.2 percent, 4.6 percent, 1.3 percent)

AT = (.6623, .3726, .6503)

1 COR ' > >

ERROR = (.08 percent, .003 percent, .003 percent)

. T . -2 -2 -2

1 TRUE ~ (-.1725 x 10 7, -.1198 x 10 s —.1596 x 10 )
+ T -2 -2 ~2

1 IMP (-.1726 x 10 7, -.1149 x 10 °, -.1617 x 10 )

ERROR = (.06 percent, 4.3 percent, 1.3 percent)
e T _ -2 -2 -2
Al COR = (-.1726 x 10 =, -.1198 x 10 “, -.1596 x 10 )

ERROR = (.06 percent, 0.00 percent, 0.00 percent)
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The subscript IMP signifies values obtained from the impulsive solution. In

the case of t this means from the first-order term in equations (10-8).

1 ™MP°
The designation COR is for values obtained from the first order corrections in

the cases of Al and il’ and from the first—- and second-order terms in the case
of El'

A FORTRAN listing of subroutine OPINT (optimum intercept) is given in
Appendix C along with the listings of subroutines which it employs, except for
widely available subroutines and LAM which is described in Appendix A. The
call statement for OPINT is CALL OPINT(Y1l, YD1, Y2, T2, M1, C, GM, B, TBLC,

L1C, LD1C) where
Y1l = Yi» YD1 = R Y2 = Vo> T2 =t, - t

ML=m, C=c, GM=y, B=8,

LDI1C = A

TBlC = *1 cor’ 1 COR

tl COR’ L1C =

The following subroutines are employed by OPINT or its subroutines:

OPIMP determines optimum impulsive solution

LAM determines transition matrices

MINV obtains matrix inverse (listing not included)

FORC obtains corrected values of El’ Al’ and il

WR2 data print routine

DYST obtains Lambert solution (listing not included)

VMAG obtains vector magnitude (listing not included)

MPRD multiplies matrices (listing not included)

COF1 computes a;q = cAml + mlAVl

DOTN computes dot product of two vectors (listing not included)
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Section XI
EXAMPLE 2: CONSTANT BURN INTERCEPT

A constant burn intercept problem will now be discussed to illustrate how
the impulsive theory may sometimes be extended to problems with no coast phases.
This problem has already been discussed in reference 6. However, for the sake

of completeness, a discussion is also given herein.

The physical problem is the same as that discussed in Section X with the

exceptions that there is no coast phase and the final time t_ is not specified.

F
In order that the solution can be related to an impulsive solution, a boundary
condition problem is defined for any value of ¢ = 1/8 such that, when e = 0,

the impulsive solution is the solution to the problem and, when € =

1/8cru
boundary condition problem is set up such that there will be a thrust phase in

“TRUE ~
g one has the solution to the constant thrust problem. In so doing the

the time interval [tl, El] and a coast phase in the interval [El, t2]. However,

the time duration of the latter phase shrinks to zero as € EPRUE"

First we define a function

[

TRUE

T(e) = (1 -2 )AT(0)
which signifies the coast time, where AT(0) is a specified number, approxi-

mately equal to t ) - tl (i.e., the time duration of the constant thrust

2 CrruE
trajectory).

In reference 6 it is shown that if AT(0) is exactly equal to tZ(ETRUE) -ty
and G is constant, then the single impulse solution (i.e., the ¢ = 0 solution)
provides exact values of the Lagrange multipliers. Therefore, one would expect
the model to provide an accurate solution to many problems in which the
gravitational field is an inverse square field. Although, the constant burn
intercept problem seems to be particularly amenable to approximation by impul-
sive methods, other problems - such as the constant burn rendezvous problem -

are not (ref. 6).
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The following boundary conditions are imposed:

AlT(s)Al(e) = 1 (scaling)

tz(e) - tl(e) = AT(e)
(11-1)
yo(€) = a
Az(s) = 0 (transversality)
where a is a constant vector.
The scaling condition implies
T
Al Ale =0 (11-2)
Furthermore,
toe = tle = ATE (11-3)
and
Yoo = 0.
As in Section X, the latter equation yields
oy oy Am
. 2 2 le Iy | 2
ty Yo = 21y = Al + 3; -c —— Al + AV:L)\18 + all(I A1A1 )Al =0 (11-4)
Y1 71 1
The term t2€§2 is new, since t28 is not necessarily zero in the problem now

under consideration.

t, =t. + AT = At, + AT = -Am

+ .
2e le € le € 1 ATE

Therefore, equations (11-2) and (11-4) can be written as

oy ay
e |22 '
- a; Al AVl a: Aml€ Y
T
0 Al Ale J 0

11-2

But equation (11-3) signifies that, at € = 0,

(11-5)



where
' = -— v
Y y + (Aml ATe)y2
Equations (11~5) have the same coefficient

and vy was defined in Section X.
As

matrix as that obtained for the burn-coast intercept problem in Section X.

in the latter section,
— — F- _ -1 _ — — -
Jy m
1, Tr "2 1 '
bm, o c M o c A Y
= Y1
-1
3y
1 T 2
L}\ls A T T A 0
| 1 dy L A
1
L |
Therefore, at ¢ = 0
- -1
oy
- -1, T2 '
Amle B c Al 8; Y
Y1
-1
A -1 (I - XA T) o v'
le AV 11 =
1 Byl

Furthermore, from equation (11-3) it follows that

t, (0) = &, + AT_ = Aty - QT—(O—)—
€ € TRUE

= - Aml + %ligl

TRUE
tZEE(O) = tles = Atles =T 2Amle'

A can be obtained from the last condition,

As in Section X, an expression for Ale
AZ = 0, of equations (11-1). Hence,

which implies (Section X) that
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réy A 9A
. _ 2 . 2 2 c s Te
Me T | Z o TSP S T v B ol B et PR B +a11{}1 Oy )‘1”1]

Byl ayl ayl ml
3y, ]

- ==
3;7 1e
Lo

No numerical studies, employing the equations of this section, have been

conducted.
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Section XII
EXAMPLE 3: BURN-COAST-BURN RENDEZVOUS

As another example consider a thrust—coast-thrust rendezvous problem in
which the vehicle moves from a given point in state space to a point with
given position and velocity components. The time tF of rendezvous is also

specified. In this problem,

tl = initial time = tI

El = first engine cut-off time
t2 = reignition time

t2 = final time = tF.

The boundary conditions are as follows:

AlTAl = 1 (scaling condition)
Rl =0, K2 = 0 (switching conditions)
;2 = a, §2 = b (rendezvous conditions)

(Furthermore, since K, = El = 0, XZT(O)AZ(O) =1.)

The scaling condition implies
A =0 (12-1)

The first switching condition implies Ele = 0. Then from the last of
equations (9-1) we have the trival condition Kls = - VlU*l at € = 0. The
second switching condition gives K2 = 0. Then the last of equations (6-8)

yields

c_ - ¢ U c_ T - ) 2T _f 3 =
= (£, U%, - £ D% ) + = [, 700 — £y 3) = A Oy~ t 01 =0

: - _T 3 T -
for ¢ = 0. Since Me Xle tlexl and Ay kle 0, we have
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) T) = 3 - * - Am
Az 2 = A A Am_U U*

From equations (6-8) it follows that

o] . B
PP P EEZ_ (¥, - L, y.) + E—g- (¥, - t, G*)
2 2¢ 2 e 1e 1’1 B; le le” 1
1 °Y1] | °Y1 ]
[3y,] . 3y, -
< - — *
+ 3 (Als tlsxl) + 3; (Ale tleQ l)
| V1] | °V1 ]
= MmALTR. - Am U*, - Am U*
272 72 1" 1 2" 2
It follows from equations (9-1) that
oA oA
T : 2 2 c T,:
12 Amzk2 - all ;:—-Al + 3: - Amlexl + AVl)\lE + all(I—XlAl )Xl
I Y1 1
3}72 3}’2 . Ts
< —_ = - * %
+ = Ale + 3; Ale AmZA2 AZ (AmlU 1 + AmZU 2)
71 71
Rearranging, we obtain
3\ A dy
c T 2 T 2 2
- bmy T2, = A F A, favg = + = M.
"1 71 71 Y1
dy A A
T| V2l T 2, 1220, T
+ 2, . Ao =2t - A ~ (I-A A )R
Y1 71 Y1
U*_) (12-2)

- * o+
(AmlU 1 Am2 2

The equation ;2 = a yields §2€ = 0, and from equations (9-1) it follows

that

Yae T 32ty + AmpY,

From equations (6-8), we have

3y, | . - s 9y | = -
— - R— - % =
= | e T B P TE | 01 T 165 T a5k,
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Employing equations (9-1) once more, we obtain

¥y %y, c T, .
—all ;:— Al 4+ ;Ef- - érﬂmlekl + AVlX16 + all(I—llll )Al = 822A2
Y1 Y1 1
Therefore,
3y oy 3y
c 2 2 2
_Amle = ai Al + AVl ;3— Ale all = Xl
1|91 Y1 Y1
3y, T, :
- all — (I—Alll ))\l + a22)\2 (12-3)
3yl

The equation ;2 = b yields §2€ = 0, and from equations (9-1) it follows
that

T

M C
_ - 4 -
Yoe + — (Amzm2€ mZAmZE))\2 AVZ(I AZAZ )AZE
m,.m
2™
- (T2 A T)A. + Am, G*
812 2%2 /%2 272
From equations (6-8) it follows that
3, | - = 0y | = - c
—_— — - - % -
= Oy~ EeY) F | TE | O Tt Y T (Gmpbmy = mydmy ),
ayl ayl ml m2
T ) 3, I .
+ AV, =252, ) gty F 5= (¥1e - tleyl)
Iaé!
oA ] . Fay N .
+ =2, - T,ex ) + | —2 |G, - E, X))
s 1€ 1e71 )z 1le 1e™1
[ 71 ]
[ Y] by t. Q% AL TyA
LTy T B Q) T mag (TR,
Byl

Hence,
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8y2 ay2 .

- _ T o 2 _z x _ 72 2
B(y,, = £,.5,) + C(y = £, C%)) + AV, (I-2,),7) Aot Ay
By ay
1 1
+ Am cimy A, = A, S— A, =~ (a,. + AV.A 5) (T2, Iy
le = = 2 2¢ - "2 212 2t 222 )%y
1™2 m)
where
3y [oa, ]
B =|—=2 [+ av, (1-a ) [ —2
as; 2 272 3}_7
1 |71
and
3y | [on, ]
y
c=|=2|4+ av. (2T | =2
e 2 22 33
Y1 | | vy |
Therefore,
- a,  Br, + C[- SAm, A, + AV A+ (T-2 A, )R
1171 - Mt 1"1e T %11 1"1 "1
my
3y ay
./ | Y2 “a|;
+ 8V, (I-A,2,0) a At : M.
yl yl
cAm
2 c _ T
+ bmy — Ay = bm, = A, 5o (T=AM, YA )
1™2 2
Am oy
c 2 c T 2
bmy  Z= (<CAy + =T A,) = dm, T A, AV C o+ AV, (TI-A,0, )| M.
1 m, m, vy
oy
T 2:
+ AV, (T=A,10,0) = M.
71
T-
= a ;B\, - a;;C(I~ xlxl )Al a,,(I=2,2, )4, (12-4)

Writing equations (12-1) through (12-4) in matrix form, we have
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The following row operations will be performed:
3y2

e The third row will be multiplied by

e Then —>\2T —
Byl

The result is

12-5

T
0 0 A
c . 1|2 T ) 2y,
- St == 0 A Ay, == —=
o 2 3; 1 2 1 P 93
1 1 1 Y1
dy 3y, |
- |20 0 . |—2
o ey | L Liss
1|71 1]
Am oy
[+ 2 c T
= (—C)\l + = )\2) - = >\2 AVlC + AVZ(I~>\2>\2 ) aT
| M1 ) ) y
B 0
A A
T 2 2 T,
all)\z ‘a—_—' Ay - a_._ (I—Xl)\l ))\l
Y1 1
oy Ay
_ 20 2 (1 Tys
= all — Al all < (1 Alxl )Al + a
Yy oYy
BA, - C(I-A. A, DYa. - (I-X.\
117" T %1 11 7% 7 %22 2

Byl

- %
(AmlU

2

1

+ Am2

*
U 2)

Then -C times the third row will be added to the fourth row.

Amls

Am28

1le

e

le

3
times the third row will be added to the second row.




B T
0 0 AL 0
oy oy
0 0 P r T =2
2 |3 2 |32
Y1 Y1
C
- - AL 0 av I 0
1
cAm dy oy |
— _2 A, - - AV, (T-2 A =2 AV, (T-A A, Ty |—2
o a 2 272 3; 2 272 3§
I 1™2 2 1 ;J
[ 0 ]
A P\
- T .._g T _._2_ - * %
AZ ag D+ allAZ = Al (AmlU 1 + Asz 2)
¥y ¥y,
T -
D - ay (I-A13 )k
-CD + a, . Bxr, - (I-2 D)3
211°%1 T @9 2%2 72 ]
where
3y, -1 3y, 3y, -1
D=l (211 = | T2t = (e Fag) = A
Byl ayl ayl

The latter development makes use of equations (A-3) in Appendix A.

tion, the inverse of the coefficient matrix is

(-ﬁ AV
1°71 0
C
Am
2 0
C
Ay 0
3y, [ay ay, ]t
2 2 2
-~ | — A —_— A
3y 3y, | T 3y 2
¥ 71 Y1

m

12-6
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Aml€

Am

2¢e

1e

le

llA

a1t

By inspec-—




Therefore, multiplying the inverse matrix by the column of constants, we have

___ 1.,
AmlE = " Al D
Am m
-2, 0I5 _ 2 -
Am2€ = - xl D S AZ (- CD + allBll)
D S T - :
Me T &V (I-2)2,7) (D = ay4339)
-1
3y A A
. 2 T|°"2 T| %2
= |—= - —_— —_— - % *
A = Ay d A, = D+ ajqh, = Ay = (bm U]+ Am,U%,)
Y1 Y1 Y1
-1
oy oy
1 2 2 T .
AR e A T IR S E L
Y1 Y1
1 ]2 - T .
+o7 | = (T, (- e+ ajBhy - ay,1))
2 |3y
1
Substitution of the expressions for C, B, and D yields
- -1
oy
-1 Ty _ T| 72 -
bmpoo=orqats A T (e AN R (12-5)
1
Am m 3y sy 17t
-2 2, Tl 72 2 _ 3
hmye = = e PP X (ag; + a59) . Ay T 2N
1 I Yy
o |22,
1= |
71

In Appendix A it is shown that

ay ay
N ' 213
Ay = - A+ = A
Y1 J1
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Therefore,

Am m 3y, | [oy,] 7"
_ m 1|2 (197, _ Te _
Bmy == dmy + 7 o(agy +ay,)A = |5 Ay = apphy Ay po (1276)
™ Y191
Moreover,
1 T Yy - .
Me = avs (TAqA ) qlagg +ay)) | =7 Ay = 2apphy (12-7)
1 Syl
-1
3y F 3 dy
- |9 _ T|%%*2 1 2 T T
‘e T E Mo = |t <IA11)+A (I-250, 7)€ D
Byl i ayl 1 Byl 2
oA a Yy
T| %2 1 | Y2
*ajghoh = At v, | (I- A1*1 YAy
171 ¥y
+——(IAA)(a BX —ai)—(AmxTA + Am AL AL
av, 2 17~ %22% 1M1 M 2 2 Agdhy
-1
. 3y 3y 3
1= |2 L |22 a0, D) + |2
le = A l 1 =
Byl 1 ayl Byl
. -1
oy oy
1 T.|%Y2 . 2
v (I, )= 2112y ~ (agy F a2
2 3y 3
ay oA
231 |99, . 2
+ W, |- (T-a Ay DAy +apg - A
Y1 Y1
T %5, . ,
+§,‘; (I-2,2, ) ajy ;§— AL T @yt | T (Aml 1 )‘1 + Amz}\z 2))\ (12-8)
1
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Equations (12-5) through (12-8) give the first-order corrections for the burn-
coast-burn rendezvous problem with any gravitational acceleration G(t, y). In

employing the latter equations, the coefficients a1 and 35, should be computed

by means of the series expansions provided in Appendix B.

In setting up a numerical example to test equations (12-5) through (12-8),

a constant gravitational field (i.e., constant G) was chosen. Then Q = 0,

Az = Al = const., and AZ(O) = Al(O) + AT Al(O), where AT = t2(0) - tl(Oz.

. —-1‘_. _ _ = k3
Therefore, Al(O) = AT[AZ(O) Al(O)]. Furthermore, y2(0) yl(O) + AT yl(O)

ATZ - 2
+ =5 G, YZ(O) = Yl(O) + ATG,
3y dy 3§2 352 ax
TZ_ = I, —_,_2 = ATI, — |= 0, — | =1, TZ = 0, etc.
9yq 9y, 91 91 9y,

In the constant G case, equations (12-5) through (12-8) reduce to

- A
m
S T
bmy = - Gar (apn T oagr Ay
(a - a.)m
11 7 322% ¢
bmye = CAT g Ay = D = by
a - a
11 7 222 T
_ 11 “22 - 12-9
Me ATV L7202 = 4] > (12-9)
a - 8.~
. 1 2 1 11 7 222 T
A, = - "1l - (A, = (A0 ]
le AT o &, 1 1 %%
+ (. - 2m Fm )L - (LEA)IA
) 1M 1 "271%2 )

Before presenting numerical results obtained from equations (12-9), we will
consider the determination of the impulsive solution for the rendezvous problem.
First, the orbit through points Y1 and.§2, corresponding to a time duration EZ’
is calculated (letting tl = 0). Then vy and Yoo the velocities at the terminal-

points of the orbit, are found. Then one determines

12-9



1 . 1 .
= L% = — =Lk = —
M S T M A S Ty Ay
1 2
- [ad _ 3 o . . .
where AVi | yil lyi yil As shown in Appendix A,
My 3y
O Bt S B AN
1 a* 2 P 1
Y1 71
o3, | oy
. 2 2
)\2— 8T)\:L+ BL )\l
|71 71

Consider a two-dimensional, burn-coast-burn rendezvous problem in which

t, = 0, EZ = 380 sec, m, = 17 x 105 kg—secz/m
GT = (4.63 m/secz, 8.00 m/secz)
T
y, = (1800 km, 6300 km)
« T
vy, = (6.8 km/sec, - 2.0 km/sec)
T
Yy, = (4131.02 km, 5014.62 km)
§2T = (5.28352 km/sec, ~5.05836 km/sec)

c = 4100 m/sec, B = 22 kg-sec/m

(The vehicle is a Saturn S-IVB.)

An IBM 1130 data processing system was employed in the solution. The
results are as follows:

tl TRUE 50.00 sec

tl ™MP = 46.47 (7.1 percent error)
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t1 cor = 49.64 (.7 percent error)
t2 TRUE 350.00 sec
t, e 352.47 (.71 percent error)
t2 COR — 350.60 (.17 percent error)
m = ,15240 x 105 k —seczlm
™ TRUE ~ ° g
m = ,15372 x 105 (.87 percent error)
2 IMP :
- 5
B, GoR - .15261 x 107 (.14 percent error)

T
Mo orrue - 8 +6)
AT = (L8414, .5404)

1 1IMP : >

ERROR = (5.2 percent, 9.9 percent)
A T = (.7992 6060)

1 COR * >t

ERROR = (.1 percent, 1.0 percent)
i T = (-.002, -.004)

1 TRUE ) o
AT = (-.001733, -.004009)

1 IMP : >

ERROR = (13.3 percent, .2 percent)
AT = (-.001979, -.004065)

1 CoOR ¢ >

ERROR = (1.0 percent, 1.4 percent)

A FORTRAN listing of program RENDZ is given in Appendix C. The program
determines an impulsive solution and a first-order correction for the three-
dimensional, constant G, burn-coast-burn, final time-fixed, rendezvous problem.

Ml = m G =G, Y1 = Yy YD1 = K

The input data is C = ¢, B = B, TBAR2 =t

. 2’
YBAR2 = §2, YDBAR2 = y

9°
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The output data is TB1IM = impulsive value of t TB1C = corrected value

l’
of tis T2IM = impulsive value of tys T2C = corrected value of tys L1IM = impul-
sive approximation to Al, LD1IM = impulsive approximation to il’ L1C = corrected
A, vector, LD1C = corrected i vector.

1 1
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Section XIlI
SUMMARY

A procedure for obtaining first and higher order corrections, to impulsive
solutions to space flight optimization problems, has been developed. The steps

to be taken in deriving formulas for the first-order corrections (for example)

are:

® Derive the transversality conditions for the problem under consideration.

e Differentiate all boundary conditions, including transversality condi-
tions, with respect to e = 1/8.

® Express all derivatives (with respect to €) in terms of AIE, XIE, KIe’
tler Togs +ovs ENeo Amye, Amgg, ..., Amye, tpo. ¥n 80 doing one must
employ equations (6-8) for the changes in the derivatives over coast
arcs and equations (9-1) for the changes over thrust arcs (for e = 0).
The new development in Appendix A may be used to obtain closed expres-
sions for the transition matrices, appearing in equations (6-8), for
the case of an inverse square gravitational field.

® Write the resulting systems of equations in matrix form as shown in the
example problems of Sections X, XI, and XII.

® Reduce the system of equations by means of elementary row transforma-
tions,

Invert the resulting system of equations, analytically if possible.
® Obtain the first-order corrections; for example, the correction to
1
AL (0).
Breog 1€

AI(O) is simply
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Appendix A
FORMULAS FOR ADJOINT VARIABLES AND TRANSITION MATRICES OVER COAST ARCS

Consider a coast arc over the time interval [Ek, ] and assume that the

b1

state variables are known at times Ek and t , and that the Lagrange multi-

kt+1l

pliers are known at time t This appendix is concerned with the determination

K’
of the Lagrange multipliers and the transition matrices (i.e., partial deriva-
tive matrices) over the coast arc. It first makes some general observations
applicable to any gravitational acceleration function G(t, y) and then restricts
the problem to an inverse square gravitational field. Then a concise system of
equations for the Lagrange multipliers (adjoint variables) are derived for the
case of non-parabolic motion, from which the transition matrices can be obtained
in a straightforward manner. Finally, a computer program - based on the afore-

mentioned method for obtaining transition matrices - is briefly discussed, and

a FORTRAN listing of the program is provided.

Consider the adjoint differential equations of the form

b =G (A-1)
p=C,

where p is a 3 x 1 column vector or a 3 x 3 matrix. Since equations (A-l) are

linear and homogeneous in p, there exist matrices A(t) and B(t) such that

p(t) = A B, +Bp
Kk k (A~2)

p(t) =Ap +B

for tk <t i-tk+l'

the initial values.

In other words, p(t) and ﬁ(t) are linearly dependent upon

Since equations (A-1l) are the equations of variation for the system
; = G(t, y), the matrix [%%—J igs a solution to the system (A-1) with initial
conditions k

Ek = é%— =1
oy -
k t



Therefore, from equations (A-2) it follows that

3 1 - AT +B0=a.
ayk
Bz . . . . A s
Moreover, < is a solution to equations (A-1) with initial conditions O and
I so that aYk
2Y {= A0+ B-I =5
Byk

Since the Lagrange multiplier vector X is a solution to equations (A-1),

it follows - from equations (A-2) and the observations we have just made - that

= .
O P e
-Layk; N
B (A-3)
. [‘a. B _ a. A .
fe = [ e 2
ayk Byk k
| < .

o | _ |y ax ||y 5 dy 3\ dy
- - - ’ il = - ) - _ ’ K =
ax % 5 7%
k Yy k Yk k Yy Iy Yy
Furthermore,
LS I A (G (-0 A [y
3y oy 5. | sy, | ¥
Tk k k k



and similarly for 2%— s §:~_, 3% .
el |?Y 3Y,

The first and higher order derivatives of y and § with respect to Ak and

A, are obviously all zero. It is also evident that

k
) [5 ) _ 9 3y
- (D |3 Tz (D) z
Byk _axk Byk Byk
3 2N ) 3y = by )5
= D [,z 25 @ a5 ey kT [ |
Tk [Tk k Yk k Yk

X .th
and so on, where (i) indicates i component.,

Now we will turn from a general gravitational field to the special case
of an lnvErse;squfre fleld to derlv? analytic expressions for Ak+l and Ak+l in
terms of Ak’ Ak’ Yier Yo Yit1? and Yi+1”

The desired expressions can be obtained from the following constants of

integration for an inverse square field:

% . .
L Sy X A+ yx A (ref. 19)
vl =T- T .T «T .« T.s
M = [(y'y - L1+ & 3 Yy Ir + [-(¥y' YOI + 2yy - yy 1x  (refs. 6
7] |y and 20)
B = A + 2yTA + 30 (£ - §.) (ref. 21)
k k k :

where Z*k, ﬁ*k, and gk signify the constants evaluated at time Ek’ and ﬁk is

the Hamiltonian H B - i 3(yTA) - &Ti (on a coast arc) evaluated at Ek'

|y
(The Hamiltonian is also a constant.)




Let S(p) denote a matrix

0 L3 @

N R e

N CON DR

such that S(p)q = p x q for any 3 x 1 vectors p and q. We observe that
T T T
S"(p) = -S(p) and S(p)S(q) = qp” - (q'p)I.

Then the constants of integration can be written in matrix form as:

B : 10 7 -
-S(y) s(y) B 7
N k
T T «T .T - T -
(vy - —+91 + -+ 3 Y -(y¥I + 2yy" - yy = | M%,
|yl |yl ;
.T 257 B, -3, (t-T,)

L y -~ - L.

Before proceeding, we define the following functions:

L 4 y X § (angular momentum)

=
|

A - U
X L - erifocus vector
y T 7 (p )

t
I

A1 ,+T:- U
5 Gy - (energy)
3 OV - TyT gy
(NOTE: L, M, and E are also constant over a coast arc)

Now we will premultiply both members of the matrix equation (A-4) by the

following sequence of 7 x 7 row operation matrices:

_ —~ -
I 0 oT 1 0 0
T .
ﬂ’z‘ LT I -—~1in 01, -S(y) 1 0 .
Iz |z
0 0 1 0 0 1
| 4 L _

A-4

(A-4)



I - lﬁl S(y) 0 I 0 0
0 I ol , 0 I o |,
0 0 1 0 gt 1
o i _ H i
rI 0 0
1 v (assuming E # 0; i.e., a non-
0 I - EE-T;T y parabolic orbit)
0 0 1

The resulting reduced matrix equation is

[ ] [ A _ . o]
0 S(y) L K~ lfi vy + M*k + lﬁlﬁkLk + lfl y x (y x L*k)
A
- TﬁT-I 0 . = ﬁ*k + ﬁky - § X L*k - l%l Z§
A -
_ 2 E |yl
0 _ 2yl g m il LA
L H k ] B u

1 *T = Tz u = = -
- —-— “ — —
A = {y” M* + (y'y)H + TsT (b, - 30 (t - £ )]},
E
k
If we multiply the coefficient matrix, of the system (A-5) of matrix equations,

by the matrix

o -l 0
! (4-6)
- —l——-S( ) 0 S - N
2 5 EIRER
Iyl 2E, |y|

on the lefthand side, we obtain an identity matrix. Therefore, the vector
: T
(A, A)" is equal to the product of the matrix (A-6) and the column of constants

of equation (A-5). Thus,

(A-5)



—[ﬁ-x &xZ*k-ﬁ*k—ﬁky+z§

(A-7)
2. - .
ly|"A = -y Ix ~yx (yx2) -2y
Equations (A-7) may be used to compute XA and A at any time during a coasting
phase, given the corresponding values of the state, the time t, ﬁ*k, ﬁk’ E*k’
bk’ and Ek'
From equations (A-3) it is evident that if one sets Ak = 1 and ik = 0 in
equations (A~7) (considering A, and ik as 3 x 3 matrices), one will obtain the

k
state transition matrices:

Byk Byk

Moreover, if one sets Ak = (0 and ik = I, one will obtain

9¥— = A, 9%— = A

The mathematical expressions for the latter matrices will not be written out

in this report except for é%—- as an example. Thus, we write the first of
Byk
the equations (A-7) as follows:

u . - - — 1 «oT. - - T 3u - . T
A = * ~M* - Hy+— * + H - - + b
Ty =¥ x %y P = {(yy M+ e ly'y = Tople-t)ly + 17 by

k
= SMIx + |Gy - 1| #x +—E—F 5
k| oE KOoE |y f
K k
= 1 T: _ 3u T y1s
Gy = Iyy - T (e Iy
2E,



= SMI-SGPT, + SGOX] + —_“——[(&?Tk) %+ 2(§§Tk>ik]
y .

2E,
B 1 ee T 2T =~ - =T -
Hl— Gy) -1 (ykyk— - )I+—_“—3ykyk Ay
2E, 19| 1y, |

-

o]

b

27 - T R,
-(y kyk)I +2yY "Ny Kk

|
> e
=

\_V_J

] 1 T _ 3u = . v =T = =T =
yHr o vy ST ERly p TR Y At Y
2E
k k
Setting Xk = 0 and Xk = I, we obtain
d = =T
< | = J%J- s(y)s(y, ) + C vy Kk
3y, E |yl

2E

1 T i . SR L
=y - I) [(y Wil T Ty o vy k]
k

7 1 T 3 - - 2T
Yy, T = ly'y - -,%l- (t—tk)](yy k)
2E,

A FORTRAN subroutine, based upon the techniques just presented, has been
developed for obtaining the first order transition matrices. The call statement
for the subroutine is CALL LAM(XO, XDO, X, XD, AALO, AALDO, GM, DT, IOPT, AAL,
;kX=y, XD = y, AALO = X, , AALDO = X, ,

AALD, PXX, PLX) where X0 = §k, XDO = o N
IOPT = control const., AAL = A, AALD = i,

GM = p, DT = t-Ek,



[~ ) P
3y | 2y A )
LBykj aykJ ayk Byk
PXX = - , PLX =|- ~ — 7
[ . e 7 . M - . 3
3y 7 FaX. Fa ag
Layk Layk J Byk Layk
| . - L - =]

If the matrices PXX and PLX are desired, they must be set equal to the 6 x 6

identity matrix before calling LAM. There are three options available:

IOPT = 1 - only AAL and AALD are computed
IOPT = 2 » PXX is also computed
IOPT = 3 » PLX is also computed.

A listing of LAM follows.
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SUBROUTINE LAM(XOeXDOsXeXDsAALOPAALDOY
- % GMsDTLI0PT
* AAL s AALD oPXX o PLX)
MENST X0(3) s XDO(3) 9X(3)9XD(3) s AALO(3)+sAALDO(3)

T SAAL(3) sAALD(3) sPXX(636) sPLX(696)
_ ALO(3),ALDO(3)sAL(3)4ALD(3)
sALS(3)9sALSS(3) sAMS(3) sAMSS(3)
oALSP(B)yAMSP(3)

DIMENSION SL(3)sSLD(3)
. _EPS=140E=5_

R2=DOTNI(XsX»3)
_R=SQRT(R2)

*-
*

e R
*

R20=DOTN(XOsX0s 3)
RO=SQRT(R20)
GMR=GM/R
GMR3sGMR/R2
GMRO=GM/R0O

. _GMR30WGMRO/R20
V2aDOTN{ XN XDy 3)
F=45%V2=~GMR

ALPHA®YZ2=GMR

RETA=DOTM(XeXNe3)

DO 1900 K=110PT
DO 1800 Jmleb
GO TO (100+200300) sK
100 DO 110 I=143
ALO(I)=AALO (1
110 ALDO(I1)=AALDC
GO TO 700
200 DO 210 1=143
ALO(T)=PXX(1sJ)
210 ALDO(I)SPXX(I+3sJ)
GO TO R00
300 _DQ 310 I=1,3
ALO(I)=PLX(T4d)
310 _ALDO(I)=PLX(I+3sJ} _
GO TO ROO
700 CONTINUE
020aDOTN(ALOsX0s3)
_Q30=DOTN(ALDDsX0s3)
CALL CROS(ALOsXDOsAMS)
_CALL CROSUIXNyALDOWALS)
DO 710 I=1,3
710 ALS(I)=ALS(I)+AMS(T)
Hz=DOTN(ALDOyXDOs3 )=GMR30%Q@20
CALL MS(XDOsALSsHsXOsGMROSALO9Q30sAMS)

)
(1)

C=DOTN(ALOsXDO93)+2eN¥Q30=34OXH*¥DT
_AK= (DOTN(XDsAMS 43 ) +BETAXH+GVR*¥C)/ (2e0%F)

TCALL MS{XDeALS»1e09AMSsHs X s=AKsAL)
. NO 720 1=1,3
720 AL(T)=AL({1)/GMR
_Q2=DOTN(XsALs3)
CALL MS{XsALSs=Q2 s XDsBETA AL +=AKsALD)
NO 730 I=l143

720 ALD(TY==ALD(I)/R2




———7

CCONT INUE

GO TO 9S00

0200=DATN(ALOsX0s3)
Q3PO=DOTN(ALNDOIX0s3)

CALL _CROS(XOsALDO»ALSP) _ _

ALSP(I)=sALSP(I)+AMSP(])

CALL CROS(ALOsXDOyAMSP)

DO B1l0 [=1,3

HP==DNTN (ALDOsXDO +3) =GMR30%*Q2P0
CALL MS(XDOsALSPIHP+XOsGMRO9ALOsQ3PO4AMSP)

a20

CPaNOTN(ALOWXNO 93142, 0#Q3P0=3,0#HP*DT
AKP = (DOTN(XDsAMSP 4 3)+BETA*HP+GVMR*CP) /(24 O*E)

TCALL MSUXDsALSP 31 40sAMSP I HP s X s=AKP yAL)

PO 820 =143 )
ALCT)Y®SAL (1) /6MR™
Q2P =DOTN(XsAL+3)

830

900,

1r0n

CALL MS{XsALSPs=Q2P XD sBETAWAL 4=AKP4ALD)
DO 830 I=1,3
ALD(I)==ALD(]I) /R2
CONTINUE N ,
GO TO (10004120091300) 4K
PO 1010 I=1,.3

1710
1200

1210

PXX (T mAL (1Y

AAL IV =AL(I])
AALD(I)N=ALD(T)

GO TO 1600

DO 1210 I=143

PXX(I+34J)=ALD(])

1300

GO TO 1800 T
CONTINUE

" CALL CROSTAALOSALDOSAMES

CALL CROS(ALOsAALDOWALSS)

PO 1310 I=1.3

1310

ALSS({T)=ALSS(I)+AMSS(])

1320

HS==DOTN(AALDOsALDO3)=GMRIO* {DOTN(AALDALOs3)=3,0/R20
*¥Q20*¥Q2P0)

0==GMR30#%Q2P0O

CALL MS(ALDOWALSsHYALOS Qs AALC Q309 AMSP)

TQ=NOTN(AALNDWALT 3

CALL MS{XDOsALSSsHSsX090DeDsXOsQ9AMSS)

" PO 1320 I=1+3

AMSS(I)=AMSS(T)+AMSP (1)

CSEPOTN(AALOWALDO 3 ) +240%¥Q=3 ¢ OXHS*DT

AKS=(DOTNLALDAVS, 3)+(DOT§}5EQm§q3)+DOTN(AL0XD.3))*H
=GMR3*Q2P¥C+DOTN (XD sAMSS y 3 ) +BETA%HS+GMR%CS
+24DOHHP RAK ) / (2 4O%E)

CALL MS{XDsALSSs1e0sAMSS s HS 9 X +=AKS s AMSP)

Q==GMR23®NQ2P

CALL MS(ALDWALS sHeAL 3QsAAL s=AKsSL) ~

DO 1330 I=143

CSL{T)=(SLIT)Y+AMSP (1)) /GUR
R1P=DOTM (AL XD 3)

CALL MS(XsALSSs=QS+XDsQsAAL s=AKSyAMSP)

Q0=Q1P—=AKP
NS3aDOTN (AL sAAL»3)+DOTN({XeSLs3)

CALL MS(ALoALSo-OZgALp’BETAQSL9-AK9SLD)

D0 1340 I=1,
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1340

C.DO 1350 1=1,3

SLD(T)=(=SLD(I)=AMSP(]1)=2.0%#Q2P*AALD(1))/R2

DLX(IsJ)=SL{T)

1350 PLX(I+3eJ)mSLD(I)
1800 CONTINUE
1900 CONTINVE e
RETURN
CEND

SUBROUTINE MS(XDsALSsHsXsAlsALsA24ANS)
DIMENSTION X(3)sXD(3)9AL(3) sALS(3)9AMS(2)

CALL CROS(XDsALSsAMS)
DO 10 Iml,3

10 AMS({T) 2AMS (T)=H*X (T)=AT*AL(I)=A2*XD(I) =
RETURN
END
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Appendix B
FUNCTIONAL DEVELOPMENT

In this appendix we will develop functions appearing in the first- and/or

second-order corrections.

Development of G*

In an inverse square gravitational field,

M
ly

G¥* = —

B
where ¢ is the Gaussian gravitational constant. Since y is continuous over an

impulse, in general

G% *
G > Gy

as € > 0.

Development of G*
In an inverse square gravitational field
| B
3y 3 —EY
| ]

G*
t

1]
|

|y

M - 3T'
3 -y + _z_% y)
ly] ly]

In general as € + 0,

ykyk

G* = (C Y* *
G G* + 6 vk T

* *
k —>(Gt)k+G

+ A&k) - Gx L  GR AYy

Development of ny

In an inverse square gravitational field,

3 T
G* = H -1 + ——— yy)
3 2
Yo lyl |yl




where I is the identity matrix. In general, since y is continuous over an
impulse,

= e
Gk g > G*

as ¢ > 0,

Development of G¥
KE

In an inverse square field,

T
3y kyks
+ 2 Yk
A

- (-
| , 3 ( ykE
Tk

In general as ¢ »> 0,

% = G% v t G )*
e = Ok Yke T tre (G %

¥

% - n Av. - g % % *
G oklVie = My ¥y — Amy (e + eLFDT + Ay (GO* + 1y (G%
% - G* _ [m ; ¥ % - %
> Gx -G yk[mk by, + Amk(yk + cL k)] Amk(Gt) K

* - (A m A * L% - *
T G T (Ame d m AV ) GRO LE - dm GR

Development of L*

Since L% = T%T-A and A is continuous over an impulse,

L* > L%



Development of L¥*
(5

, 1« A% 1 T, : .
Since L*t = [kl A - 3 A= IAI (I - L*L* )A and A and A are continuous
over an impulse, IAI
L% *
L tk > L tk
as € + 0.
Development of L*
tt
Since
*T *+T.. 2
1 207\ e 1 T +T: 3(A7X)
L* = Q* - A+ [-A7Q% — A7A + 22222 1)
o EY ANV Nk

and since Q, A, and X are continuous over an impulse,

1% *
Lk 7 etk

as € » 0.

Development of L*A

Since
. ()
(1) -1 _A (1)
L N2 T 6ij |A|3 Y

we have
1 1 T
L*, = (I - ——F A\7")
A ]A |A|2
As € + 0,
*
Lk Mk

Development of L%,
—ke
T
AT
1 k"ke 1 T
* = _-_————— = - * *
Mre T TRT Mke NE M " (T = LR LY 0 e
k



As e » 0,

= L* Y
ke = "k ke @

> L% L*

- 3 =
ke = AmlF ik

Development of L¥*

AmkA )
- *
ke ~ M Mk

—KEE
1 T 1 T T
= - * * - * - *
e T Ty (T = LH L% 0 e * ML 2% M e = ey IT%
k
T 2
* *
+ 3(L kxke) L k]
%
Development of L ke
T +T
S T AN i T S 2h S
tke )\k ke |>\ |3 k ,)\ ’3 ke
k k
T T
L1 ST 23Ty 4 3(A ) kxke) \
|>\ I3 ke k kkE lA |2 k
k k
As € ~ 0,
- 3 - = - = - )
% = — * *
L* ke = 3¢ T = Mk T Martke
- - - 2 = KX
(Ake Akk)xk + L Akxke
> [(Ak - Am b )L Mk]Ak + L* Ak - Aka
- *
> Oy xR+ TR A - am TGLL* R+ TH Q% ]
> L*

tke Amk[(A L* Axk) k

where, for example,

A (p)
Oy ek’ = g Mee TPy
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and the superscript p indicates pth component.

Development of;ji_L*AA)

. , A < (p)
(AL* ) = ] AFL* ()
P
AT 3 T 1 ST e
=22 L+ =5 ) - =5 (AT + D)
|A] |A] [ A

Development of Q%

Q y

In an inverse square gravitational field,

T

Q* = - L -2y
3 2
ly] |yl

Since y and A are continuous over an impulse, in general

% *
Q k Q K
as € -~ 0.

Development of Q*
(=

In an inverse square field,

T: T T T: T T:

QF, = H A e Ly 2 32Ty -G DG
£ 3 2 2 2 4
|yl ly| ly| Iyl |y

In general as € > 0,

* = Q% ok v 0 )*
W = Pt T Py ¥ Q%
* ) * (v 7 *
* * y
T Qg T Qg AV
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Development of ij
In an inverse square field,

T

3 T T 5y A T T
Q*y = = Dyt A - 2 yyt + (v 01
Iyl vl
In general, as € > 0,
* *
Q) > Q%
Development of;Qﬁ*,E
In an inverse square field
T T
o = —Y_ |- Y ke, Pk
ke =y 3| ke Iy 2 kT, Tie
Tr Yk Vi
T T T T
. 30 kM TV ) B 6
Mk b I
Vi Vi

In general, as € +~ O,

Q*ke - Q*Akkke + Q*ykyke + tke(Qt)*k
> Q5 Qe — M)+ Q¥ Iy - m by - Ay (3 oel¥)]
+ Atke(Qt)*k + tke(Qt)*k

- * - (m *
> Qe T am Q- (m A+ chm JQE LR

Development of U*

1 Te
* =
U m}\)\
As € » 0,
U* %*
U Kk -+ U X
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Development of U*
(&)

1 *T: T 1 Ts.2
U* = (AA + A7Q%) - ——= (A7)
t A Q |R|3
As € > 0,
U* *
U ™ U
Development of U*‘t
1 .T T 3 Ts. oTs T o3
U* =——(3)\Q*+}\Q*)+———(}\>\)(}\>\+)\Q*)+————
tt t 3 2
(A [A] [A]
Therefore, as € > 0,
O% - | 33T qx, + 2T (Qx , + Qx_ Ay)
ttk A Kk~ k ke ek vk Tk
T » 3
ox)
3 T & 3T 3 T 4 Kk
+ 3 @ k)\k)(A k}\k+)\kQ k)+ 7
| ™

1T .
x x A
T A A T My

T .
% * %*
T U T Qe A

Development of U%*,
Ke

1 [ T . .T T
* = - * *
U e . [A e TN rrke T TR @ kxkei]

Development of U*,
KEE

1 [t .7 T T .
* = - * * *
U e N [x L RS RS %}Akss L M ee

.T 2 T .T T
- C 3
+ ] [éx ke ke I LA M e Ao + A A )

o1 T T 3 T oy sl 2
] AT LRI O ) * N (AT LA @F A )
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*
Development of U tke

1 T . T T 1 T .T - T
* = * *® - —
U* ke M (A7 A ke F A @ + A Q%) NE Qe e + A7 Q%)
k
2 T T T 3 T T & 2
- 3 AT e F AN 5 O AT
A | 1A,
Therefore, as € +~ 0,
Tk > U% |+ o |-2am AT Q% - om AL Q% - Am AT Qk
tke tke © [A] e e A A
A
- T M T T & T
- *
(my AV + clm AT, Q% L ;] + NE O gy + A, 0%)
k
2Amk 3A
T : T . T M T+ .3
* -
+ INE QM Ay + A7 Q%) INE M
k k
> U* - (W AV, + cAm )L* Q%  L* - Am L*L Q%
tke = "k 'k A A e D S
3Amk
.T 1 T s o ,oT & T 1 T + .3
- % _— % - _——
T A @t 7 ) QT e + A0, 0%) 7 O
k A 2

- T T
* - * * * - * *
T ke T AV T oem OLE QRO LR - dm LA Q%

3Amk

.T
- * ® *
+ ] (A7 Q%+ UF Ux )

The functions

A
alk = AVkmk + cAmk

A -—
ok - AV tochmy
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are of frequent occurrence. Furthermore, care must be exercised in their cal-
culation because they are the differences of nearly equal terms. Expansion of
aj, sives:
-AVk/c
1% = AVkmk + cmk(e -1)

oo AV
(l)
AVkmk + cmk L ( )
n—O

W
|

vy - | - om, T B )

2 n
e poLnt 2
ey c n=0 (nt+2) ! c

The latter series expansion should be employed for the calculation of I

Expansion of a yields:

2k

SR (c + AVk)mk - omy

—AVk/c

(c + AVk)mke -em,

-1HP AVk
=mk(c+AV)n§ (n)! (—c—>—c
L.

n
~ 2 (=n? AVk o (-1)" AVk
=m fe 1o (—> M M-l Wy

o AV
n 1 1 k
ey nZO (-1) [} (n+1)! + ;%]( c >

n+1l

[

Il

E _l)n __.n___. (ﬂ)
Che nel ( (n+1)! c
2

n
o (D)5 e (M
e c n=0 (n+2)! c
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Appendix C
PROGRAM LISTINGS

The FORTRAN listings of the burn-coast intercept subrouti@e and some of
its subroutines follow. These listings are followed by a listing of the

program for the constant G, burn-coast-burn rendezvous problem.

SUBROUTINE OPINT(Y1eYD1sY29T2sM1sCsGMeRsTBICsL1C,H,LD1C)
REAL M1sMB1eMR2

"REAL L102)9LD1(3)4L2(37,LD2(3),L1C(3)LDIC(3),
1LY (363)eLYD(343) o

DIMENSTION Y1(3)sYD1(3)sY2(3)sYDRL(3)4YDB2(3)sYD2({3) +PXX (646
1PLX(696) sYY(353)sYYD(393)9P(3)9Q(3)

102 PXX(I19J)m0s

103 PXX(Te 1 mie

NIMP=]
CALL OPIWP(YleDloYZoYDBZng:MlyCoGM’YDBloYDZoLloLDlOLZvLDZD
T1DV1sDV2eMR1yMRZ2 ¢ NIMP) T
DMl aMBla=V] e B

TA1=COF1(CeDVIsMI DMLY o T T T T e e o
[10PT=3 -
DO 105 I=mls6
DO 105 Jaleb
IF (I=J) 1024103,102

PLX(IsJ)=00
GO T0 105

PLX(IsJ)=le

105 CONTINUE
_CALL LAM (Y14YDB1oY2sYD2sL1sLD1sGMsT2+I10PTsPsQsPXXsPLX)

DO 110 1=14+3
DO 110 J=1,3

YY (T s d ) =PXX(1sJ)
_ YYD(TeJ)=PXX(IsJ+3)

LY(TeJ)=PLX(TIsJ)
110 LYD(IsJ)=PLX(T0sJ+3)

CALL MINV{YYDs3sDsPs)

CALL FORC(YY.YYDQLY’LYD’MHI’AlyC’LloLDloﬁV19DMl9BsTBIE TBlEE
1TBIC.L1C¢LD1C)'"—“
CALL WRZ(MloMBloNBZoC9GM¢BoDVIoDV2-TBlFoTBlEE TBlCoTZoYl YDloYDBIo
1Y2,L12LD1wL24LD2HLIC,LDICY T

RETURN

‘END

SUBROUTINE OPIMP(Y1eYD1sY2sYDB2sT2eM1lsCeGMeYDB1lsYD2sL1sLD1lsL2sLD2y
_1DV1sDV2.MAL 4 MB2INIMP)
REAL M1eMB1,MB2
_REAL L1(3)sLD1(3)4L2(3)sLD2(3) -
TDIMENSION Y1(3)sY2(3)sYDB1(3)eYD2(3)sYD1(3)sYDB2(3)+sDYD1I(3) s
_ 1DYD2(3) ¢ePXX(696) sPLX(696) sYY(393)sYYD(343)sYDY(3+3)sYDYD(393)s

201(3)+02(3)+03(3)9sP1(3)9sRO{E)IRI(6)
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DO _20 I=143

20

RO(I)=Y1(1)
R(I)=sY2(1I)

CALL DYST (ROOR’TZ’GM)
DO 22 =143

22

DO 25 I=1,3

YDB1(1)=RO(I+3)
YD2(I)=R(I+3)

DYD1(I)=YDB1(1)=¥YD1(1I)

2%

DYD2(1)=YDB2(1)=YD2(1I)
DV1=VMAGI(DYD14+3)

27

IF (NIMP=1)27+¢27+29
DV2=0.

28

DO 28 I=1s3
L2(I) =0,

29

GO TO 35
DV2sVMAG(DYD2,3)

30

DO 30 I=1,3
L2(I)=DYD2(I)/DV2

38
40

DO 40 I=1.3
L1(I)=DYD1(I)/DV1

TMBl=M1REXP (=DV1/C)

MB2aMB1*EXP (=DV2/C)

42

DO 55 Jml,46

ToPTa2
DO 55 Imleb

IF(I=J) 42+43442

PXX(TsJ)=0e
PLX(1eJ)=00

43

55

60

GO TO 55
PXX(IeJd)mls

PLX(TsJ) =10
CONTINUE

DO 60 I=m1,3
LD1(1)=0s

T DO 70 Jmle3

CALL LAM (Y1sYDB1sY24YD2sL14LD1sCMsT29I0PTsPLlsLD2+PXXsPLX)

DO 70 I=1.3

YY(TeJ)aPXX(Ted)
YYD{1sJ)=PXX(19J+3)
YOY(IoeJ)mPXX{I+30J)

70

YDYD(14J)1=PXX(T+340+3)
CALL MINV(YYDs3+sDsQlyQ2)

CALL MPRD(YYoL1sQ1s343,1)
CALL MPRD(YDYsL1+Q2¢343s1)

75

DO 75 1=1s3
PLIT)=L2(11=01(1)

__CALL MPRD(YYDyPloelD1l93s3s1)

CALL MPRDIYDYDsLD1eQ3+34341)
DO 76 1m1,3

76

LD2(11=Q2(1)+Q3 ()
RETURN

END
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I

130 L1IE(I) ==2,%A1#(LD1(1)=2%L1(1))/DV1

SUBROUTINE FORC(YYsYYDsLYsLYDsMB1l sAlsCsL1eLD1sDV1eDMLR oT”lt;

REAL MRl

_REAL L¥(3e3)9LYD(33)9L1(3)sLD1(3)sLIC(3)sLDICI3)sL1E(3)sLDIE(3)
(

DIMENSION YY(343)sYYD(3+3)sP(3)+Q(3)sDYDEL
Z=DOTN(L1eLD1s3)

" DM1E= MR1#A1%Z/C
DO 130 I=1,3

DO 135 1=1,43

135 DYDEL1(1)==C#DM1E*L1(1)/MB1=A1*(LD1(I)=Z*1(1))
CALL MPRD(LYsL19Qe393y1)

CALL MPRD(LYDsDYDE1sPs39391)
DO 140 I=1e3

140 Q(I)IsA1I*Q(1)=P (1)
CCALL MPRD(YYsL1EsP9393,41)

DO 145 1=1,3

145 QUI1)=Q(1)=P(])

CALL MPRD(YYDsQosLDIE+343+1)
_TBlEw=NM)

TB1EE==2,*NMIF
 TB1C=(TB1lF+45%TBIEE/B)/B

DO 150 I=1+3
LIC(I)=L1(1)+L1E(I) /R

REAL M__

X2mX1%x1

150 LD1C(I)=sLD1(I)+LD1E(I)/B
LRETURN
FND

FUNCTION COF1(CsDVeMeDM)

X1l=aDv/C

X3mX1%x2
XhmX2®X2

COF1aCuMEX2%( 48=X1/6e+X2/24e=X3/120e+X4/T72004)
_RETURN
END
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SUBROUTINE WR2(M1eMBleMB2sCsGMeBsDV1IeDV29sTBIEWTBIEESTB1ICT20Y1
"1YD1sYDBl1oY24L1sLD1sL24LD2+L1CeLD1C)

* T REAL M1.MB1sv82
REAL L1(3)-LDl(3).L2(3)oLDZ(B).LlC(B)oLDlC(B)

DIMENSION Y1(3)sYD1(3)sYDB1(3)sY2(3)
WRITE(34200) M1sMB14MB2+sCeGMeB

WRITE(3+4201) DV1eDV2+sTBLEsTBIEESTB1C,sT2
WRITE(364202)(Y1(I)sYDL(I)oYDBL(INsY2(I)eI=143)

WRITE(39203) (L1(I)eLDI(I)sL2(T)sLD2(TI)sLICIIIoLDIC(TIsI=143)
200 FORMAT (19X 92HM19165Xe3HMB1913X93HYB2+11XeIHCs 16X s2ZHOM» 13X s 1 HBa/ s

112X +6E16e7)
201 FORMAT (19X 93HDV1e14Xs3HDV2913Xs4HTBIEL 10X s5SHTB1EE 12X 44HTHB1Cs11Xy

12HT 29/ 912%X9»6E1667)
202 FORMAT (18X|2HY1013X03HY01013X94HYDBIolZXoZHYZ-/;(12X.A516.7))

203 FORMAT (18X e2HLI»I13Xs3HLD1 913X e 2HL2s14Xs3HLD2+16Xs3HL1C,123Xs
14HLD1Cs/ 9 (12Xs6E1647))

RETURN
END
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A listing of the burn-coast-burn constant G, rendezvous program follows.

REAL M1sMB1IMsMB2IM
REAL L1IM(3)sL2IM{3)sLDLIM(3)sLIE(3)sLDIE(3)sL1IC(3},LDICI3)

" DIMENSION G(3)9Y1(3).YD1(3).YBAR2(3),YDBR2(3)oYDlIM(j‘,YUZIN(3)o
1IDYD1(3)sDYD2(3)

100 FORMAT(5E1245)
110 FORMAT(10Xs'TBlIM="'+F15 B892Xs'TBIC="9E154892Xs ' T2IM="4E158

12X 'T2C=14E15484/)
115 FORMAT(10Xs 'L1IM(1)="5E254892Xs 'L1IM(2)="»E150892Xs'L1IM(3) =",

"1E15e84 /) T
120 FORMAT(10Xs'DL1IM(1)="'sE154892Xs 'LD1IM(2)="9E15e8+2Xs'LD1IN(3)=

1E15e89/)

125 FORMAT(10Xs'L1C(1)="'4E154852Xs'L1C(2) =" +E154892Xs 'L1CI3)="+E15080

17)
130 FORMAT(10Xs 'LD1C(1)="+E154892X,'LD1C(2)=",E154842X+'LDICI3)="s

~ 1E154847/)
REAC(2+100) CeBsTBARZ2sM1

TREAD(25100) (G(TI) sY1 (1) +YDI(T)sYBAR2(I Vs YDBRZ(1) s1=153)
DO 35 I=1,3

TTTYDIIMIT =(YBARZ(T) =YL (1)) /TBAR2+5¥TRARZ*G(1)
_ YD2IM(I)=YD1IM(I)~TBAR2*G (1)

DYD1(I)=YD1IM(I)=YDI(I)
135 DYD2(1)=YDBR2(1)=YD2IM(I)

ADYD1=SQRT(DYDI( 1) *¥*2+DYD1(2) *¥*2+DYD1 (31 %%2)
ADYD2=SQRT (DYD2( 1) *%2+DYD2(2)%%2+DYD2(3) *%2)

MB1IM=MI1*EXP(=~ADYDI1/C)
_MB2IM=MBlIM*EXP(=ADYD2/C}
DM1=MB1lIM=M]
DM2=MB2IM-MB1IV

NO 40 1=1+3
LIIM(I)=DYD1I(I)/ADYD1

L2IM{T)y=DYD2( 1V /ADYD2
40 LDLIM(I)=(L2IM(I)=L1IM(I))/TBAR2
ALTIL=C*¥M1* (ADYD1/CI##2%( o5=(ADYD1/C)/6e+( (ADYD1/C)*%2)/2b4e=
1{{ADYD1/C)%%3)/120e+( (ADYD1/CI*%4)/720,)
AZTIL=C¥MRLIV* (ADYD2/CI kX 2% (=a5+(ADYD2/C)/3e=( (ADYDZ2/CI%%2) /84

1+((ADYDZ/C)**3)/3O--((ADYDZ/C)**4)/144.)7 -

"R=0e
DO 45 I=1s3
45 R=R+LIIM(II*L2TM(T)
DM1E==MB1IM/ (C*TBAR2)* (A1TI
/1

L+A2TIL*R)
TBARZ*C)#(R=14)=DM1E

OMZE= (MB2 T (ALTTLoAZTIL))
DO 50 I=1,3

LIE(I)=(AITIL=A2TILYI/(TBARZ¥ADYDI) * (R¥LIIM(I) ~ L2IM(I)
50 LD1E(I) ==L1E(I)/TBAR2 +(1a/TBARZ2¥¥2)%((=1¢%(A1TIL=A2TIL) ADYDc
TTUTTILIIMOITSR¥L2IMITYY + (DM2=DM1V ¥ (R=14) * L2IVM(I)) -
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B2=B%8

TB1IM==DM1/B
TB1C=TB1IM=DM1E/B2

" T2IM=TBAR2+DM2/8B

T2C=T2IM+DM2E /B2

5O 55 1=1+3
LIC(I)=L1IM(I) + L1E(I)/B

55

LDICI{)=LDIIMT D *LPLIE(T /B
WRITE(34110)TBLlIMsTB1C»T2IMsT2C

WRITE(33115)(L1TM(TYsI=1s3)
WRITE(34120)(LD1IM{I)s1=1y3)

WRITE(39125) (LIC(T141=133)
WRITE(3,130) (LD1IC(I)sI=193)

CALL EXIT
ENO
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