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Summary

Although it has been wndely recognized that many compartmental systems are not
"in steady state", the lack of such assumption leads to mathematical difficulties
in the solution of the model. Such models are studied by numerical methods, for
example by the analog computer, but closed solutions to the differential equations
which would then permit parameter estimation are rare.

The present report contains a compéct analytic solution to the distribution
theory of a particular nonsteady state model. Thg application of the solution is

then illustrated with biological data.

1. Introduction

The concept of steady state compartmental analysis has gained wide acceptance
in the modelling of biological passage Qf "elearance"., Compartmental analysis
proposes that many biological systems may be divided into "compartments" through
which materials are transferred, and the steady state’provision specifies that
this transfer process is characterized by linear kinetics (see e.g. Sheppard [19627).
The rate of flow between any two compartments is descrlbed by an unknown transfer
rate coefficient which accordlng to linear kinetics is. constant over time. These
coefficients cambine into a sums of exponentlals functlon whlch then describe

passage through the whole system. Data fltted to the sums of exponentlals function

estimate the rate parameters of a compartmental.model.~'
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The lack of a detailed causative mechanism of transfer motivated the "more
realistic" incorporation of stochastic behayiof to the above steady state analysis
(Matis and Hartley [1971]). The probabilistic considerations produced the same
sums of exponentials "regression" function as before for themean value function,
but a new estimation procedure was suggested in light of the structure of stochastic
error.

The present paper contribubtes a generalization of a stochastic compartmental
model by including a form of nonlinegr flow kinetics. Whereas steady state analysis
specifies a constant rate coefficient, of equivalently'that the lifetimes of
particles within compartménts follow a negétive expdnential distribution, the
subsequent sections introduce the more general gamma distribution of lifetimes.

The report contains the explicit solution of only a particular two compartment model
with such lifetimes as an answer to a practical problem; a later reporﬁ'will'spell
out the complete generalization to an arbitrary n compartment system and will show
its relationship to other biomathematical models.

A biological example is included to demonstrate vividly the requirement for
nonlinear analysis on the basigloflé priori physiological considerations. Moreover,
subsequent analysis of thg‘datavalso illustrates the recognition of suchka non=steady

state phenomenon. -

- 2. Application

Physiologically,the assumption necessary for linear kinetics, 'or the constant
rate coefficient, is the "random appearance and disappearance of molecules” within

the compartments (Zilversmit, et al. [19457). Although some compartmental systems
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have been found to closelyvsatisfy this stipulation (most notably the flow of
potassiun, KFZ’ betweeﬁ.blood plasma and red blood cells), probably the majority do
not, either because of incomplete mixing within the compartments or as a result of
"age™ dependency of the particles. Hence the application of such a non-steady state
nmodel would seemingly be as widespread as the use of the usual compartmental analysis
which already encompasses a host‘of bio-medical fields (see e.g. Shepard [19627).

Consider, for exgmple, the flow of iron in the body. Iron, as well as many
other elements, is incorporated into the red blood cell "compartment“ and thereby
does not "disappear” in a "random" fashion but rather its disappearance is related
to the lifetime of the red blood cell. Passage through membranes or orifices are
typically time dependent also. This is illustrated at some length in this report
by the example of passage through the gaStro-intestinal‘tract of ruminants. Data
is convéniently available for this latter application but the techniques, of course,
would apply to all similar time dependent systems in any'field.

Blaxter [19567] proposed a two compartment model for the paséage of particles
through the gastro-intestinal tract of ruminants, and the stochastic modelling of
Matis and Hartley [1971] (henceforth denoted MH)' also confifms the adequacy of the
_two campartments. The rate coefficients for the passagé_of many substances, e.g.
water soluble isotopes and small indigestible plastic beéds used as roughage
substitute, are readily accepted to be independent of time with resultant steady
state conditions. |

"It is hypothesized? however, that the passage of hay particles proceeds quite
differently inasmuch as sﬁch particles undergo physical alteration associated with

digestion in the rumen. Since the probability of passage through the rumen orifice

increases as the particle's size decreases, and its size is in turn a function of its
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"age" in the rumen, age dependency of rate coefficients arises in a natural
manner through digestion. The incomplete mikﬁng in the rumen due to the
elongated particle size is also thought to contribute to time dependency.

This report assumes that the lifetimes'in the rumen follow a gamna
probability distribution. Not only is the gamma distribution a rich fanily
of curves with the desired range but its choice will be supported experimentally
in subsequent considerations.

In summary, the physioiogy of the gastro~intestinal tract suggests the
study of a two compartment model where gamma time dependency is incorporated
into the first compartment. The following section contains the full
statistical solution of the above niodel, and the last section analyzes data

. from a passage experiment.

3. Solution of Stochastic Model

3.1 Partial Differential Equation for the Generating Function

Consider the two compartment model of Figure 1, where the lifetimes
in the first compértmént are distributed according to the gamma law I'(n, Rl}
and in the second according to the exponential law E(xz). Let ﬂi(O} be the
known number of "labelleé" particles introduced into compértment i at time
“O and let ﬂi(t) be the random variable sgpecifying the number of particles in

compartment i at time t. The statistical problem is to

M, )| =[50 ] -

Figure 1

- determine the probability distribution over time of ni(t) for i = 1, 2.
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According to well-known theory (see e.g. Parzan [1962]), a necesséry
and sufficilent condition for a random variable to be exponentially distributed
is the stipulation that the random variablel"lacks a memory", i.e. X is
exponentially distribﬁted if and only if the conditional probability
P(X>1t + At 'l'x > t) equals the unconditional probability P(X > at). This
property enables one to treat all particles in compartment 2 alike regardless
of their "time of arrival”. The transfef probabilities are thus independent
of time and the same for each of the ﬂz(t) particles.

The gamma distribution of compartment 1 does not follow the above
steady state theory, yet P(n k ) lifetimes may be generated by summingvn
independent exponentlal random variables, each with parameter A This
artlflce transforms the system of Flgure l to that of Flgure 2, where n

exponential subcompartments are embedded in compartment 1, and thus much of
the previous stochastic steady state formulation and some of the solution are

applicable to the present problem,

E) - [EQQ) - e BOG)| - [ EOY)
150 ond th
Figure 2

It should be noted that 6ften, as iﬁ the present application, the origiﬁal
compartments héve a physiélogical interpretation but the n pseudoécompartments
‘merely'generaxe desired liftime distributions.

It is now convenient to define n + 1 random variables so that at time
t the number in compartment 2 is Ni(t), the number iﬁ‘subcompartment n is
Nz(t), and so forth until the number inAsubcdmpartment 1 is Nn+l(t). Let
K(el, 92"..;’ 9n+l’ t) be the cumulan? generating function of these random

variables., Either the application of rules~of-thumb developed by Bailey
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[1964] or reference to a detailed derivation by MH indicates the following

equation for the present model,

6 t) n+l -0, + 6,

aK(el’ e2 Tt o n+l? - 3 (e T i-1 1) K
= 5
ot 1 i2p ‘ ‘ s} s
{1)
-9 N
1 oK
+ - 1) =&
with the initial condition
K(8), 6,5 «evs 8 05 0) = 7,(0)8 .+ n,(0)8, . (2)

3.2 Solution for the Generating Function

The linear partial differential equation (1) subject to constraint (2)
will now be solved via characteristic theory (see e.g. Ford [19557) to
establish the stochastic model. According to the theory, the n+2 characteristic

differential equations of (1), which are

de -6
—=ni-e b,
dei - -Gi‘+ 91-1 - )
= = Al(l - e ) fori=2, ..., n+l, (3)
~and " ‘ .
COK(By, e B s B) .
dt - ?

must first be solved in terms of n+2 independent integrals or "characteristic

curves", say‘ui(e s 92, cess en+l’ t) = c. where ci'is a constent, The

relation F(“l? Bos eees ”n+2) = 0, or equivalently w ., = @(ul, Bos eoes un+l)}

where T and‘@ are arbitrary functions ;is'theh'trué and determines the function

K(6., 8., «e.y 8 ., t) when investigated in light of the initial condition
-17 27 n+l

K(Gl, 92, "ﬂ’;en+1’ 0).
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The last equation of (3) has i = = 6 . :
e last equation of (3) has solution K ¢ en n+2( 15 055 eees © 112 t).

and the first nt+l may be transformed to a system of non~homogeneous linear
0.
equations by the relation Vi = e *. These transformed equations are

dvi
& - MM (k)
and
dv,
—Z =2 (v, -v. ) fori=2 n+l
at 1V T Yi-l T Er e .

Note that the particular solution v, = l, for i =1, ..., n+tl, satisfies the
above equations.

In the previous work of MH the coefficient matrix of the complinmentary
homogeneoﬁs system was assumed to have unequal eigenvaiues.' Since these
eigenvalues are functions of the data, the assumption holds with probability
1. The present‘system, however, differs in that n eigenﬁalues are known egual
by design. |

The complete solution to equations (4) is found by successive integration

to be
0 At
_ 1 _ 2
vi = e = cle + 1
and. ' 3
0. At . o=\ i=l At i-2 (=n.t)
v, = e 1_¢2 cl(i~—:lx~) Ctet T ci;. *w~%7~w +1 (5)
' 2" M g=0 9 &

for 2 <i <n+l ,
The n+2 independent integrals'are'equatéd,nOW‘by‘the fﬁnctional relationship

K85 B vevs O a5 t)" = VU = ol vy e u ] (6)
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from whence the function ¢ may be identified by the initial condition. Solving

for Bi in equations (5) when t = O, and substituting into initial condition

(2), one has

- A n

0) = ﬂl(o) ln[cl(i—_:——_

K(el’ 92’ tee E’n+1’ o N :
~ (7)

+ M,(0) In [e] 1] .

Comparing equations (6) and (7) shows that the arguments 61 through 8 . and

t enter only through the ui(eij’ cens en+l’ t) = c, curves, hence equations

(5) must be solved for ey and ¢ . in terms of an arbitrary t.

The equation
0 -t
c, = (e 1 1) e 2 ‘ (8)

is immediate, and Cramer's Rule yields ¢, = e ll det A, where A = (aij)

is the mabtrix defined asv

_)\ .
1
8., = (~—~*-—*—) where 1 <1 <n + 1,
R P
] 0 ) Cfor i<
a,, =
ij 9 L o
(=) t)i--j ] , o where 1 <1 <n + 1
1 S for 12> « . and 2 <j<n,
(e I . -
6. ‘ '
‘ ‘ , ‘ where 1 <i <n + 1 .
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Thus defining Ai j to be the cofactors of the A matrix, it follows that
s .

—xlt n+l R

—— 1 .
Cpt1 T © = (e 1) A na
;:l .

o~
\O
ot

e

In solving for these Ai' cofactors explicitly, it is immediately

>

clear that

Al ne1 T 1
Ah, ntl klt ?
and | A = (A t)%)2
: n-1,n+1 1 :

A generalization by induction shows thab
‘ nt+l-j
t
L (A %) | | (10)
3, Dl n+1-J3)! , -

for 2 <j<n+1, and t‘he‘A1 cofactor is solved by expanding on its

5 DRl

first column to yield

n - i

: = (-1 ——) A, o 11
A1, n+l ‘ (-1) 153. (12 - Kl) i+l, ntl (11)

»

The combining of equations (9), (10), and (11) results in

SNt Sl : n - N (xlt)n"i n+l 6, (Ait}n+l"j 1
Che1 T € {ke - 1)(-1) ifl (A2 - xl) (n~i)1! +'j§2 (e 7~ 1) (n+1=-3)t)
- (12)

The cumulant generating function, then, for the series of n + 1 subcompartments

at time t is found‘frbm.'(6)/,'(7), (8) .and (12) to be



n+l ek ‘
K(8, 8,5 v0e5 8 5 t) = 1,(0) In [1 + kgi (e ™ = 1) p, ()]
(13)
o)
+1,(0) In [+ (e © - 1) p,; (£)]
where .
At B RS VA S € V5> Rl VAR
1 ; 1 1 2 1 .n
p,.(8) =e (1) = G———=) —y7 t e (=" >
1L | e Ay m M
ooyt Gy -
Plk(t)=e m fOI‘2_<_kfkn+la and
-t - A
2 1 n
p,(t) =e (—=)" .
21 Alz Al

3.3 Resultant Probability Distribution

This section‘shows that the c.g.f. in equation (13) characterizes a
multinomial distribution. The mean and variance éf the hﬁﬁber of particles
in any subcompartment, say the kth; are determined by first finding the
P marginal c.g.f., or K(0, ..., ek, cees

differentiating the marginal c.g.f. with respect to Gk. The above operabions

0, t), and then expanding and

show that the mean and variance of Nk(t), are

. ) ‘
ElN ()] = izi 1, (0) Pik(t)> and

2 : . o
viw (t)] =5 7;(0) p,, (8) [ -, (8)]
where p, (t) = 0 for 2 _<_ j <n+1. Inasmuch as these hold for all k and
any t, it is apparent that

Ofpﬁ@)<l

—
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for all i, j, and t. A similar argument where only a single ni(o) is non-
zero verifies that the sum

n+l
p. (£) = ¢ p. (%)
i, kel ik

is slso bound between O and 1 inclusive.

Let the number of particles departed from the system, i.,e. 7 (0) + 7_(0) -
. » i >
n+l n+l

v N,(t), be denoted N (t) and let p, (t) =1 - =
.y & o] io =1
that each term of the c.g.f. (13) has the form of a multinomial and that the

. N h
pij(t) ote then

pij(t) parameters satisfy the multinomial restrictions. Moreover since the
uniqueness property follows from the finite range (see‘e.g. Kendall and

Stuart [19637]), the following proposition holds:

Proposition. ILet an (n+#2)-vector, A(t), represent the number of particles
observed in the exterior and in each of the n+l subcompartments, i.e.

T " e i

A (%) = [No(t), Nl(t), Ng(t), cees Nn+l(t)]. Then A(t) is distributed as
the sum of two independent multinomial vectors, say Tl(t) and T2<t>= where
(t).

From the above proposition, one may determine the distribution of the

| Pi(t)’has parameters ni(o), and pio(t) through Pi,n+l

number of particles in each of the two original (physiological) compartments.
n+l
Recall thaﬁ nl(t) = i§2 Ni(t), nz(t) = Ni(t), and no(t) = No(t). The follow=-

ing corollary is then clear:

Corollary. The vector [ﬂo(t), ﬂl(t), nz(t)] is distributed as the sum of two

N+l
independent trinomials, the first with parameters nl(O), plo(t), 5 pﬁ%<t),
. 2 b
n+l -
and p.. (t) and the second with parameters 7,(0), p,,(%), St p (1), and (%)
AL | , | ) 207> 2 P2 21

The corollary supplies the mean value function and the covariance kernel

-of the ooservatlops over time, These in turn form the_basis,for estimating

the unknown M ?nd Ay parameters by least squares aléhg the lines of MH.

Such an example‘is provided in the next section.
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3.4 Illustration for I'(2, A ) Lifetimes in Compartment 1

The results of Section 3 are illustrated for the compartmental model

represented by Figure 3. Suppose further that nz(o) = 0. Then the

r(2, a) | - [B(,) | -

Figure 3

generating function from (13) is

6

3
k(85 8,5 O, ) - 7;(0) 1In [1 + fl (e = 1) py (t)]
| At = A A -t -, 2
where Py (8) = - e T [Gmho) AE 4 Gt >1+e el
| 2" M A T 2" M
-klt
Plz(t) = e xlt, and
'.  ->\ 't
_ e 1

Hence the vector [ﬂo(t), nl(t), and nz(t)] is distributed as a trinomial with

ot

with parametgrs ﬂl(O), PlO(t)’ i§2pli(t), and pll(t). Moreover, defining Tn( )
to be the number of particles in either compartment 1 with I'n, Ri> lifetimes
: n+l
or in compartment 2, i.e. Tn(t) T N (t) the expected value of T (+; is
3 i=1
clearly % E[N ()], or
k=1

' ' A2 At a2
By (01 = 1y(0) [0 % o e gt e i - 20 -

( =)
AR o

(1)



In general, if ﬂ2(0) = O and the first compartment has F(ny‘kl) lifetimes,

it can be shown from (13) that

- R N A S (V1 LA S W B OV Ea B
R 1 1 1 1
5lr, ()1 = 1,00) [e 2 (—3=) e L~ . 3 ) 1} .
n 1 xg-xl 520 il 521 AB-Al n - J)I}

Yy, Analysis of Experimental Data .

This section applies the time dependent compartmental model of Section
3 to the application descr;bed in Section 2 and analyses data from a typlcal
experiment. Inasmuch as this section is intended to suggest a procedure
which could be broadly applied, the physiological arguments which support
the work below but are unique to this application only will be virtually
omitted.

Consider the data of Table I obtained from a passage experiment conducted
as follows. A sheep was dosed at time O with a radioactive tracer absorbed
onto héy particles. The feces were collected at approximately 6 hour intervals
and the'excreted fadioactivi£y was measured, Standardizing the total label

at time O to 1.0, the residual in the sheep at time t, denoted T(t), was

determined as recorded in Table 1.
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t 7(%) t T(t) t T(t)
0 1.000 , 66 L1134 132 .008
6 1.000 71 101 138 .008
13 1.000 78 LO7h 1hk .007
18 .987 84+ | .053 : 150 . 005
ol .913 90 .036 . 156 .00k
37 .578 96 .028 162 ,003
Lo A59 102 022 . 168 .003
L8 .349 108 .018 ‘ 181 .002
54 .252 11k .01k 186 .002
61 .195 120 .011 192 .000
126 .009
Table 1

Time vs. Fraction of Radloactlnty Unrecovered.

These data wereb first fitted to the modei originally suggested Dby
Blaxter et al. [19567] which in addition to two sequential steady state
compartments also contains a time delay parameter denoted by 7. Letting
£(t) represent the predicted residual amount in fhe sheep at time t, one

may write, in terms of’the previous discussion, .

£(t)

it

1.0 | . v "~ for t f T
and

f(t)v

it

E[Tn(t-%)] - k‘ for t > T',

In the present steady s’caﬁe model, the absence of time dependent fiow rates
is reflected by n = 1.

Although the observations are knowﬁ to be inte_rciepéndent and heteroskedastic, "
these phenomena are not sizeable ‘in light of the number of hay pe‘xr"ticles fed.
The largest' source of error in this experiment was thought to be the error
of meaourement and since. such errors are 1ndependent the ord:Lnary least
squares estlma.tlon procedure for nonl:.nea:r models of Hartley (19617 was |

employed.,



The parametef’estimates of the above data were A, = .1068, A, = LO5hk,
T=17.5, and a mean square error, 52, of 0.236 x lO-u. Though the overall
fit, as measured by s2,'is.well within acceptable limits for such experiments
in the past, the theoretical discussion of Section 2 suggests the search for
an even better model.

For this reason, and other. physiological reasons not here considered
(e.g. the excessive time delay estimate), the model with T'(2, kl) time
dependency in compartment 1 was considered. The data were fitted to equation
(14), where ﬂl(O)A= 1, by ordinary least squares with resulting estimates

2

A = 0.190 x 1o”u. Note that this

model, in addition to satisfying the theoretical considerations, fits

= 1751, A, = .0521, 7= 14,6, and s

better statistically as well,

This success led to the investigation of other members of the T'(n , ﬁlE

family, which results are tabulated in Table 2.

Gemma Function A o, | &€ x 10
(1, xl) : .1068 .05kk 17.5 .236
r(2, a) kA A751 | w0521 | 16 .190
T(3, &) | .2268 | .0513 | 12.6 185
T4y A | 2696 | L0520 10.9 | .186
rG5, ») .3070 .0508 9.3 .188
r(6, ) .3405 L0506 | 7.9 .190
(7, Ap) | .3713 L0505 | 6.7 .193

B | Table 2

Gamma, Functions vs. Parameter Estimates. |
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Note that T'(3, kl) minimizes s> for this isotope, and thus is accepted to
describe the passage. The estimated standard errors of i1ts parameters are

s, = 0.0106, s

A

= 0.0008, and s_ = 0.467 indicating high precision.
1

A

o) .

The incorporation of time dependency, in addition to minimizing sz,
may also contribute to the identificabtion of the abstract compartments.
In the present case, for example, the expected lifetime in the first

compartment is changed measurably. It may be shown that since the lifetimes,

X, in said compartment are distributed

n
A -XM\

' -1
£(X; n, kl) = 1T X e s
the expected value of X is

N

M

wX) = .
The mean lifetime in compartment 1 increases from 9,36 under the steady
state model to 13.23 for the present model.  This change generally Eecomeg
more marked as the time dependency phencmenon increases. Of course other
moments and indeed the whole distribution are often revealing.

In other applications where the systém is not sufficiently well
- understood to establishAtime dependency a priori, one can often indicate
its presence by the following procedure. The data is fitted to a model
containing at least twp consecutive‘and irreversible compartments by the
previous theory of MH. - Although such theory guarantees that the final
)‘i estimates for these compartments are unequal, gazmz;a. time 'dependency
‘will cause them to approach one another, Of cOurse, strict equality is
‘wﬂ@dﬂmeﬁwmmbw%d@@a@ﬁﬁﬁmMﬁm%hwﬁhamwﬁmt

inflation in error mean square.
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To illustrate this, the data of Table 1 was fitted to a three ilrreversible
compartment model with time delay. The parameter estimates were 2\1 = 1767,
A, = 173k, x3 = .0521, T = 14.6, and & = .198 x 1o”u. On the surface, this

model seems to be an acceptable alternative to I'(2, )‘l) above, however the

estimated standard deviations of the parameters, which are s

= .9793
A ?

S>\2 = .9437, s}\2 = .0011, and s_= Loz, rule\out the acceptance of the first
two compartments, Thus, though not accep‘ﬁable in its own right, the three
compartment model strongly suggeists the T(2, }\l) model .

In summary, thé data of Table 1 is best described by a two compartment
model with T'(3, {2268) lifetimes in compartment 1, T'(1, .0513)‘lifeﬁimes in
compartment 2, ahd a ‘time delay of 12.6. It is hypothesized that the models

of Section 3, with possible minor modifications, could be used profitably

in many different applications.
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