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summary 

Although it has been widely recognized t h a t  many compartmental systems are not 

"in steady state",  the lack of such assumption leads t o  mathematical difficulties 

i n  the solution of the  model. Such models are studied by numerical methods, f o r  

exanple by the andog computer, but closed solutions t o  the different  id. equations 

which would then permit parameter estimation are ra re .  

The present report  contains a compact analytic solution t o  the di-stributioorz 

theory of a par t icu lar  nonsteady s t a t e  model. The application of the  solu"r,ion i s  

then i l l u s t r a t e d  with biological  data. 

Introduction 

The concept of steady s t a t e  compartmental a n d y s i s  has gained wick acceptance 

i n  the modelling of biological passage or "clemance" . Compartmental. analysis 

proposes tha t  many biological. systems mw be divided in to  "c~mpartment~s" tkough 

which m a t e r i d s  are transferred, and the  steady s t a t e  provision specif ies  that 

t h i s  t ransfer  process i s  chazacterized by l inea r  kinet ics  (see e.g. Sheppwd. El962 I), 
The r a t e  of flow between any two compartments i s  described by an wiknow~?: t ransfer  

ra te  coefficient which according t o  l i nea r  kinet ics  i s  constant over time, These 

coefficients combine in to  a sums of exponentials function which then d.escrihe 

passage through the whole system. Data f i t t e d  t o  the  sums of exponentia;hs 2ue"l;ion 

estimate the r a t e  parameters of a compartmental model. 
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The lack of a detai led causative mechanism of t ransfer  motivated the  'bore 

r e a l i s t i c "  incorporation of stochastic behavior t o  the  above steady s t a t e  analysis 

 atis is and Hartley [1971]). The probabi l is t ic  considerations produced the same 

sums of exponent ids  "regression" function as before f o r  themeanvalue f w c t i o n ,  

but  a new estimation procedure was suggested i n  l i g h t  of the  s t ructure of stoclnas-lie 

e r ror .  

The present paper contributes a generalization of a stochastic conip artmental- 

model by including a form of nonlinear flow kinet ics .  Whereas steady s t a t e  a n d y s i s  

specif ies  a constant r a t e  coefficient,  or equivalently tha t  the l i f e t - h e s  of 

pa r t i c l e s  within compartments follow a negative exponential dis t r ibut ion,  the 

subsequent sections introduce the  more general gamma dis tr ibut ion of 1-5.f e t  imes , 

The report contains the  exp l i c i t  solution of only a par t icu lar  two conipartment model 

with such l i fe t imes as an answer t o  a prac t ica l  problem; a l a t e r  report  t r i l l .  spel i  

oil3 the complete generalization t o  an arb i t ra ry  n compartment system q d  w%ll show 

i t s  relationship t o  other biomathematicd models. 

A biological example i s  included t o  demonstrate vividly the  requj-remenflor 

nonlinear analysis on the bas is  of a ~ r i o r i  physiological considerations, Moreover, - 
subsequent analysis of the  da ta  a l so  i l l u s t r a t e s  the recognition of sucln a non-steady 

s t a t e  phenomenon. 

2. Application 

Physiologically,the assumption necessary fo r  l i nea r  kinet ics ,  or the constarl-t; 

r a t e  coefficient,  i s  the  "random appearance and disappearance of moleculesPP within  

the compartments ( ~ i l v e r s m i t  , e t  al. [1945]). Although some compartmentab systems 
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have been fo-ad t o  closely sa t i s fy  t h i s  s t ipulat ion (most notably the flow of 

potassium, K4*, betwee; blood plasma and red blood c e l l s ) ,  probably tile majority 6.0 

not, e i ther  because of incomplete mixing within the  compartment.^ or as a resldtooi" 

"age" dependency of the  par t ic les .  Hence the application of such a non-steady s t a t e  

modei would seemingly be as widespread as the use of the usual compartmental analysis 

which already encompasses a host of bio-medical f i e l d s  (see e.g. Shepad f19621). 

Consider, for  example, the flow of i ron i n  the body. Iron, as w e l l  as many 

other elements, i s  incorporated in to  the red blood c e l l  "compartment" and thereby 

does not "disappear" i n  a "random" fashion but ra ther  i t s  disappearance i s  relaked 

t o  the l i fe t ime of the red blood ce l l .  Passage through membranes or or i f ices  are 

t n i c a l l y  time dependent also. This i s  i l l u s t r a t e d  a t  some length i n  t h i s  r e p o r t  

by the example of passage through the gastro- intest inal  t r a c t  of ruminant s ,  Data 

i s  conveniently available f o r  t h i s  l a t t e r  application but the techniques3 of course, 

would apply t o  dl similar time dependent systems i n  anyqfield.  

Blaxter El9561 proposed a two compartment model f o r  the passage of. p=ticLes 

through the gastro- intest inal  t r a c t  of ruminants, and the stochastic modellilig 02 

Matis and Hartley [1971] (henceforth denoted MH)~ a lso  confirms the adequacy of cbe 

two campatments. The r a t e  coeff ic ients  f o r  the passage of many substmceses, e ,g ,  

water soluble isotopes and small indigestible p l a s t i c  beads used as roughage 

substi tute,  are readily accepted t o  be independent of time with resul. tmt sxeady 

s t a t e  conditions. 

It i s  hypothesized, however, t ha t  the passage of hay pa r t i c l e s  proceeds qu.ite 

different ly inasmuch as such pa r t i c l e s  undergo physical, a l te ra t ion  associated with 

digestion i n  the rumen. Since the probabili ty of passage through the rumen orifice 

increases as the  p a r t i c l e ' s  s i ze  decreases, and i t s  s ize i s  i n  turn  a, f m c t i o n  of i t s  



'"el'in the rumen, age dependency of r a t e  coefficients airises i n  a n a r u r d  

manner &rough digestion. The incomplete mixing i n  the rumen due t o  the 

elongated paxt icle  s i ze  i s  also thought t o  contribute t o  time dependency, 

This report  assumes tha t  the l i fe t imes i n  the rumen follow a gmna 

probabili ty dis t r ibut ion.  Not only i s  the  gamma dis tr ibut ion a rich faroily 

of curves with the  desired range but i t s  choice w i l l  be supported experimentdall~r 

i n  subsequent consider a t  ions. 

In s m a r y ,  t he  physiology of the gastro-intestinal t r a c t  suggests zhe 

study of a two compartment model where gamma time dependency i s  iaeorpard~ed 

in to  the  f i r s t  compartment. The following section contains the full 

s ta t i s t ica l .  solution of the  above model, and the l a s t  section ,u~aLyzes daka 

from a passage experiment. 

3. Solution of Stochastic Model 

3.1 Partial. Different ial  Equation fo r  the Generating. Function 

Consider t h e  two compartment model of Figure 1, where the l i fe t imes 

i n  the first compartment are dis t r ibuted according t o  the gamma law ~ ( n  , i\, ) 
L 

and i n  the second according t o  the  exponential law ~ ( h  ). Let qi(0) be the  2 

known number of "labelled" pa r t i c l e s  introduced into compartment .i a% t h e  

0 and l e t  7 .  ( t )  be the  random variable specifying the number of particles in 
1 

compartment i a t  time t. The s t a t i s t i c a l  problem i s  t o  

Figure 1 

determine the probabi l i ty  dis t r ibut ion over time of pi(t)  f o r  i = 1, 2.  
- .  



According t o  well-known theory (see e .g. Parzan El962 I), a necessary- 

and suff ic ient  condition f o r  a random variable t o  be exponentially distributed 

i s  the s t ipulat ion tha t  the random variable "lacks a memoryt1, i,e, X i s  

exponent i d l y  dis t r ibuted i f  and only i f  the conditional probabili ty 

P(X > t + A t  I X  > t )  equals the unconditional probabili ty P(X :> ~t), 'This 

property enables one t o  t r e a t  all pa r t i c l e s  i n  compartment 2 d i k e  regardless 

of t h e i r  "time of arrival".  The t ransfer  probabi l i t ies  are t:hus independent 

of time and the same f o r  each of the (t) p a t i c l e s .  
2 

The gmna dis t r ibut ion of compartment 1 does not follow .the above 

steady s t a t e  theory, yet r ( n ,  A ) l i fe t imes may be generated by summing n 
1 

independent exponent ial random variables , each with parameter A This 
1" 

a r t i f i c e  transforms the - - system -. - of Figure 1 t o  tha t  of Figure 2, where n 

exponential subcompartments are embedded i n  compartment I, and thus much of 

the previous stochastic steady s t a t e  formulation and some of the  solzs'iioa: a e  

applicable t o  the present problem. 

Figure 2 

It should be noted tha t  often, as i n  the present application, the original 

compartments have a physiological interpretat ion but the n pseudo-corngar-tments 

merely generate desired l i r t ime  distributions.  

It i s  now convenient t o  define n + 1 random variables so that at t h e  

t the number i n  compartment 2 i s  N (t), the number iri subcompartment n i s  
1 

N 2 ( t ) ,  and so fo r th  u n t i l  the  number i n  subckar tment  1 i s  N n , l ( t )  Let 

~ ( ~ ~ 9  022 ..., 0 n+l ' t) be the cwnulant generating f'unction of these randm 

variables. Either the application of rules-of-thumb developed by Bai ley  



[1964] or reference t o  a detai led derivation by MH indicates the following 

equation f o r  the present model, 

with the i n i t i a l  condition 

3.2 Solution f o r ' t h e  Generating Function 

The l inea r  p a r t i a l  d i f f e ren t i a l  equation (1) subject t o  constraint (2)  

w i l l  now be solved v i a  chaxacteristic theory (see e.g. Ford [:1955 1) to 

establ ish the stochastic model. According t o  the theory, the ni2 chwaeter is t ic  

d i f f e ren t i a l  equations of (I), which w e  

del - -  - h p ( l  - e well 
d t  > 

de -8. + 0 
-&=\(1- e 1 

i-1 ) 
fo r  i = 2, . . ., n+l, ( 3 )  

and 
a ~ ( e , ,  ..., en+l. t > 

d t  = o ,  

must f i r s t  be solved i n  terms of n+2 independent in tegra ls  or "chmaeteris t ie  

curves", say pi(Ol, Q2, ..., 0 
n+l ' t )  = c. where c i s  a c o n s t a t .  The 

1 i 

re la t ion  I'(%, p2, .. ., pn+2) = 0, or  equivalently pn,-2 = ~ ( h ,  vki ...I 1 ?il*l .) 

where I' and cp are a rb i t ra ry  functions , i s  then t rue  and deternines the Paction 

e2, * * * ,  en+l, t )  when investigated i n  l i g h t  of the i n i t i a l  condit ion 



The l a s t  equation of (3) has solution K = en+* = pn+2(@13 e2, .. .' 611+12 t): 
and the f i r s t  n+l r n ~  be transformed t o  a system of non-homogeneous 1' ~ r l e  ax 

8 
i equations by the re la t ion  v. = e . These transformed equations are 

1 

and 

dvi - -  
d t  - A1 (vi - vi_l) for  i = 2, . . . , ncl  . 

Note tha t  the par t icu lar  solution v. = 1, f o r  i = 1, . . . , n+l, satisfj.ies che 
1 

above equations. 

In the previous work of MH the coefficient matrix of the complLment=y 

homogeneous system was assumed t o  have unequal eigenvalues. Since these 

eigenvalues are functions of the data, the assmption holds with probablli-:y 

I. The present system, however, d i f f e r s  i n  t h a t  n eigenvdues are known. equal 

by design. 

The complete solution t o  equations (4) i s  found by successive integration 

to be 

v = e  el 
1 = cle + 1 

and 
8 
i 'zt i-1 A t i - 2  

1 (-4, t l J  
t e 

- v . = e  = e  
1 'i-j j! i- 1 (5) 

j=O 

for 2 - < i - .< n+l . 

The n+2 independent integrals  are equated now by the functional relationship 



from whence t h e  function .cp may be i den t i f i ed  by t h e  i n i t i a l  condition, Solving 

f o r  8. i n  equations ( 5 )  when t = 0, and subs t i tu t ing  i n t o  i n i t i a l  condition 
1. 

( 2 ) )  one has 

Comparing equations (6) and (7) shows t h a t  t he  arguments 8 1 through 9 nrL and  

t en te r  only through t h e  ui(Bij , . . . , t) = c i cmves,  hence equations 

( 5 )  must be solved f o r  el and i n  terms of an a rb i t r a ry  t .  

The equation 

-A1t 
i s  immediate, andCramerlsRule  y i e ld s  c = e , det  A, where A = (a. 

n+l 15 

i s  t h e  matrix defined as 
- - 

* 

where 1 4 i < n -6- 1. - - 

f o r  i < j 

where % "c: i <. n .a- E 
for i > j - and 2 z j q n ,  - - 

where 1 < i < n. + E - - 



- 

Thus defining A t o  be the cofactors of the A matrix, it f o l l o ~ r s  that 
i, 

- 1 t n - i - 1  8 
c = e 1 i 
n+l  x (e - 1 )  Ai, n+l e 

(9) 
i=l 

In solving f o r  these A. cofactors expl ic i t ly ,  it i s  kaedia"ce2;jr 
1, n+l 

clear  tha t  

and 

A generalization by induction shows t h a t  

f o r  2 - < j - < n t 1, and the q,, n+l cofactor i s  solved by expmding on i ~ s  

f i r s t  column t o  y ie ld  

. 
The combining of equations (g), (lo), and (11) r e su l t s  in 

The cumulant generating function, then, f o r  the se r i e s  of n + 1 subcompm%meni;s 

a t  time t i s  found from (6), (7)) (8) .and (12) t o  be 
I 
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ns-1- j 
-hlt (hit) 

plk(t) = e ( n + l -  j ) !  f o r  2 < k < n + 1 ,  - - and 

3.3 Resultant Probability Distribution 

This section shows t h a t  the c.g.f. i n  equation (13) characterizes a 

multinomial distribution. The mean and variance of the  number of particles 

i n  any subcompartment, say the kth, are determined by f i r s t  f inding the 

di f ferent ia t ing  the mazginal c.g.f, with respect t o  0 The above operations 
k ' 

show tha t  the mean and variance of N (t), axe 
k 

- 
where p (t) = 0 for  2 < j < n + 1. Inasmuch as  these hold f o r  all h ax-d 

2 j  - - 
any t, it i s  appaxent t h a t  

0 < p . . ( t )  < 1  ' - 1J - 



f o r  d l  i, j , and t. A similar argument where only a single T~ (0) is no"- 

zero ve r i f i e s  tha t  the  sun 

i s  also bound between 0 and 1 inclusive. 

Let the number of par t ic les  departed from the  system, j..e. ql(0) + ~ ~ ( 0 )  - 
ncl nt-1 - -- 

N. ( t ) ,  be denoted No(t) and l e t  pio(t) = 1 - p. . ( t )  . *hen 
1 i=l j=1 1 J  

t h a t  each term of the c.g.f. (13) has the form of- a multinom:ial and %ha-t the  

p. . ( t )  parameters sa t i s fy  the  mult inmial  r e s t r i c t ions .  Moreover since the 
1 J 

uniqueness property follows from the f i n i t e  range (see e .g. Kendall and 

Stuart  [1963 I), the following proposit ion holds : 

Proposition. Let an (n+2)-vector, ~ ( t  ) , represent the numbel: of par t ic les  

observed i n  the exter ior  and i n  each of the n+l subcompartmem-ts, iaee 

(t) 1. Then ~ ( t )  i s  dis t r ibuted as 

the  sum of two independent multinomid vectors, say r l ( t )  and r2(t) ,  where 

r i ( t )  has parameters qi(0), and pio(t) through pi,ntl ( t )  b 

From the above proposition, one may determine the dis t r ibut ion of tile 

nunber of paz t ic les  i n  each of the  two or ig ina l  (physiological) col-ipatrne:~ts, - 
n i l  

Reca3.l t ha t  ql(t)  = Z N i ( t ) ,  T 2 ( t )  = N1(t), and To(%) = No(%) The follow- 
i=2 

ing corollary i s  then clear :  

Corollary. The vector [T0(t), Tl(t), T2(t) i s  d is t r ibuted  as the  SUE of two 
n-bl 

independent trinomials, t he  f i r s t  with parameters \ (o) ,  ~ ~ ~ ( t ) ,  E g? + (T 
j=2 "-0 

n+l 
and pll(t) and the second with parameters , (0) , P 2 0 ( i ) ,  Z ~ ~ ~ ( t ) ,  m d ~ ~ ~ ( t ) .  

j=2 

The corollary supplies the mean value function and the covariance kernel  

of the observations over time, These i n  turn form the basis f o r  e s t i m t l n g  

' t h e  uidsnown Al ad h2 parameters by l e a s t  squares along the lines of 14H. 

. Such an example i s  provided i n  the next section. 



3.4 I l lu s t r a t ion  f o r  r (2,  ) Lifetimes i n  Compartment 1 
1 - 

The r e s u l t s  of Section 3 axe i l l u s t r a t e d  f o r  the  compartmentai. model 

represented by Figure 3. Suppose fur ther  t h a t  7 (0) = 0. Then the  
2 

Figure 3 

generating function from (13) i a  
-- 

3 i K($> e2> 0 t )  = ~ ~ ( 0 )  I n  C 1 - f -  Z (e - 1) ~ ~ ~ ( t ) l  3 ' k=l 

-A1* - hl 2 2 
where pll(t) = - e [ ( 1 hit 4- ( 

A2 - hl X2 - hli 

Hence the  vector [~,(t), q(t), and 'Q2(t) 1 i s  dis t r ibuted as a trinomial w i t h  
'3 
3 

with parameters ~ ~ ( 0 )  , p10 (t) , X pli(t) ,  and pll(t). Moreover, defining T n (t) 
i=2 

L etirirae s t o  be the  number of pa r t i c l e s  i n  e i the r  compartment 1 with r (n ,  A , )  s ii" 
nc l  

or i n  compartment 2, i .e.  T,(t) = Z ITi(%) the expected viLue of ~ ~ ( i )  i s  
? i=l - 

clear ly I: E [ N ~ ( ~ )  1, or 
k=l  



In general, i f  %(o)  = 0 and the f i r s t  compartment has ~ ( n ,  hl) l i f e t u i e s ,  - 
it can be shown from (13) tha t  

4. Analysis of Experimental Data 

This section applies the time dependent compartmental model sf Section. 

3 t o  the  application described i n  Section 2 and analyses data  from a t y p i c a l  

experiment. Inasmuch as  t h i s  section i s  intended t o  suggest a procedure 

which could be broadly applied, the  physiological arguments which support 

the work below but axe unique t o  t h i s  application only w i l l  be v i r tua l ly  

omitted. 

Consider the  data  of Table I obtained f ron  a passage experiment conducted 

as follows. A sheep was dosed a t  time 0 with a radioactive t racer  absorbed. 

onto hay par t ic les .  The feces were collected a t  approximately 6 hour i n t e r w d s  

and the excreted radioact ivi ty  was measured. Standardizing the t o t a l  labell 

a t  time 0 t o  1.0, the  residual  i n  the  sheep a t  time t, denoted ~(t), was 

- determined as recorded i n  Table 1. 



Table 1 
Time vs. Fraction of Radioactivity Unrecovered, 

These data were f i r s t  f i t t e d  t o  the model or iginal ly  suggested bjr 

Blaxter e t  al. El9563 which i n  addition t o  two sequential steady state 

compartments a l so  contains a time delay parameter denoted by T,, Letting 

f ( t )  represent the  predicted residual amount i n  the  sheep a t  time t, one 

mag write, i n  terms of the previous discussion, 

f ( t )  = 1.0 f o r  t < T - 
and 

f o r  t > T . 
I n  the  present steady s t a t e  model, the  absence of time dependent f l ow  rakes 

i s  ref lected by n = 1. 

Although the observations are known t o  be interdependent and hetero~kedastic~ 

these phenomena are not sizeable i n  l i g h t  of the number of hay par-ti cles fed,  

The la rges t  source of e r ror  i n  t h i s  experiment was thought t o  be the e r ro r  

of measurement and since such er rors  are independent, the ordi~zary least 

squares estimation procedure f o r  nonlinear models of Hartley [1@1] was 

employed. 
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The pasmeter  estimates of the above data were ), 1 = .1068,, h 2 = .0521.?i-, 

2 -4 
T = 17.5, and a mean square error ,  s , of 0.236 x 10 ~hough the overall 

2 
f i t ,  as  measured by s , i s  well within acceptable limits fo r  such experiaents 

i n  the past,  the theore t ica l  discussion of Section 2 suggests the search f o ~ "  

an even be t t e r  model. 

For t h i s  reason, and o ther  physiological reasons not here considered 

(e.g. the excessive time delay estimate), the  model with r(2, ;dl) t h e  

dependency i n  compartment 1 was considered. The data were f i t t e d  to equation 

(14)) where ~ ~ ( 0 )  = 1, by ordinary l e a s t  squares with resul t ing estimates 

-4 
hl = .1751, h = .0521, T = 14.6, and s2 = 0.190 x 10 . Note that this 2 

model, i n  addition t o  sat isfying the theore t ica l  considerations, fits 

bet te r  s t a t i s t i c a l l y  as  well. 

This success l e d  t o  the investigation of other members of the r ( n  ki) 

family, which r e su l t s  a re  tabulated i n  Table 2. 

Table 2 
Gamma Functions vs. Parameter Estimates. 



Z Note tha t  ~ ( 3 ,  hl) minimizes s for t h i s  isotope, and thus i s  accepted to 

describe the passage. The estimated standard er rors  of i t s  parameters axe 

s = 0.0106, s = 0.0008, and s T =  0.467 indicating high precision. 
hl 3 

The incorporation of time dependency, i n  addition t o  minimizii~g s", 

may also contribute t o  the ident i f icat ion of the  abstract compartments, 

In the present case,. f o r  example, the  expected l i fe t ime i n  the  first 

compartment i s  changed measurably. It may be shown t h a t  since the rii.fetilmes, 

X, i n  said compartment are dis t r ibuted 

the  expected value of X i s  

The mean l i fe t ime i n  compartment 1 increases from 9.36 under ithe steady. 

s t a t e  model t o  13.23 f o r  the  present model. This change generally becomes 

more marked as  the time dependency phenomenon increases. Of cowse other 

moments and indeed the whole dis t r ibut ion are often revealing. 

In other applications where t h e  system i s  not s ~ f f i c i e n t l ~ y  wel l  

understood t o  establ ish time dependency 2 pr io r i ,  one can often indicate 

i t s  presence by the following procedure. The data i s  f i t t e d  t o  a model 

containing at l e a s t  two consecutive and i r reversible  compartments by the 

previous theory of MH. Although such theory guarantees tha t  the final- 
- 

A. estimates f o r  these compartments are unequal, gamma time dependency 
1 

w i l l  cause them t o  approach one another. Of course, s t r i c t  equsility i s  

avoided since it would cause degeneracy. of the ME models with a result mt 

i n f l a t ion  i n  e r ror  mean squaze . 



To i l l u s t r a t e  t h i s ,  the data  of Table 1 was f i t t e d  t o  a three 5rreversi.bLe 

compartment model with time delay. The parameter estimates were h 1 = *1767> 
-4 

= .1734, h = .0521, T = 14.6, and s2 = .198 x 10 . O n  the surface, this 
2 3 

model seems t o  be an acceptable al ternat ive t o  r (2 ,  A ~ )  above, however the 

estimated standaxd deviations of the pmameters, which are s = *9793> 
A1 

= .9437, s = .0011, and s T  = ,422, ru l e  out the acceptance of the first 
12 \ 

- 

two compartments. Thus, though not acceptable i n  i t s  own r ight ,  the three 

compartment model strongly suggests the ~ ( 2 ,  hl) model. 

I n  s m a r y ,  the  data  of Table 1 i s  best  described by a two compmtlizer~t 

model with r(3, .2268) l i fe t imes i n  compartment 1, r(l,  .0513) 1ifei;i:mes i n  

compartment 2, and a time delay of 12.6. It i s  hypothesized t h a t  the models 

of Section 3, with possible minor modifications, could be used profitably 

i n  many different  applications. 
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