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ABSTRACT

In this technical report two methods are described to simulate a set
of two correlated stationary and Gaussian processes with zero mean. The
first method utilizes an exponential model with a uniformly distributed
phase angle. The second method utilizes a trigonometric model with
randomly varying amplitudes with Gaussian probability density functions.

In both cases the simulation can be achieved on the basis of known power
spectral density functions of each of the random processes and their cross-
spectral density functions. The random variables in the expressions des~
cribing the random process are generated with the use of established

Monte Carlo techniques.

The two methods are used for the simulation of two correlated stream
wise turbulence components in the surface layer of the atmospheric boundary
layer. These two turbulence components are taken at two different points
A and B such that the separation distance A B lies in the horizontal plane
normal to the direction of the mean wind.

Autocorrelation functions, spectra, cross—-correlation functions, cross-
spectral density functions and coherence functions are calculated numerically
for each of the two sets of generated time histories and compared with the
original spectrum functions and coherence function from which these time
histories were generated.
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NOMENCLATURE

Aj' ej Polar form of complex variable aj
a,, b., c., 4, Amplitude
s A R M P
axyj Real variable related to the coherence function
ny(w) Co-spectral density function
c . Covariance
Xy]
E[ 1 Expectation
£ Frequency
i v -1
i, k Positive Integer
k! Dimensionless coefficient
n Number of terms in series representation of the

random processes

(/) Conditional probability distribution function

P

p (/) Conditional probability density function
p ( ) Probability density function'

p () Joint probability density Ffunction
Qxy (w) Quadrature spectral density function
RX(T), Ry(T) - Autocorrelation function

R' (1) Autocorrelation coefficient

ny(r), Ryx(r) Cross correlation function

Sy(w), Sx(w) Power spectral density function
Sé(f) One-sided strong-wind spectrum
Sxy(w) Cross-spectral density function

t Time

At Time interxval

U,V,W Velocity components

u,w Mean velocity components
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u,v,w

Subscripts
2

u

Superscripts

C

D

Fluctuating velocity components
Reference velocity
Upper bound
Random process
1200¢
Ei
600w

WUl

Lateral separation distance
Phase angles

Coherence function
Dirac delta function
Drag coefficients
Density of air
Correlation coefficient
Standard deviation

Time lag

Shear stress

Wave number

Wave number interval

Lower limit

Upper limit

Continuous

Discrete

Complex conjugate

viii



I. INTRODUCTION

Trigonometric series (Ref. 1), filtered white noise (Ref. 2), filtered
shot noise (Ref. 3) and correlated réndom pulsé trains (Ref. 4) can be
used as models for simulation of a single stochastic process such as earth-
guake waves. In order to simulate two correlated stochastic processes with
arbitrary spectra, only the first method can be used.

Under strong wind conditions the turbulence components in the
atmospheric surface layer are mainly due to frictional effects. The
streamwise component of the turbulence may under certain conditions be
approximated by a stationary Gaussian process with zero mean over a time
interval of 1/2 hour to 1 hour (Ref. 5). This technical report employs
stochastic models for the purpose of simulating a set of spatially
correlated turbulence time histories. Statistical quantities of atmospheric
turbulence have been studied for various atmospheric conditions and general
empirical expressions for these quantities are becoming available. Based
on this information two methods will be described in this report which will
enable us to simulate the actual time histories. These simulation methods
may be extremely powerful tools in the fields of weather forecasting and
industrial aerodynamics for example. Since, two correlated stochastic
processes with arbitrary spectra and coherence function can be simulated,
the described methods may be applied to any physical phenomenon as long

as the process can be assumed to be stationary and Gaussian.



II. EXPONENTIAL MODEL WITH UNIFORMLY DISTRIBUTED PHASE ANGLE.

Assume that the random process x(t) can be expressed in the following

mathematical form,

n
X(“{Z) = % a, (l)

The amplitude aj is in general complex and symmetrical with respect to j
so that
*

a . = a, and a_ = o
| J o

%
where aﬁ is the complex conjugate of aj and n is some large positive integer.

Fuxthermore,wj is a set of real variables representing the wave number

with

and ¢j represents the phase angles, each of which is assumed to be a random
variable with a uniform probability density function over the range from

zero to 2m. Also ¢j is odd with respect to the index j and consequently

Cb"-j - (bjo
Let a = Aj elej, where Aj and ej both are real, then
3
A .=A,,6 . =-06, and A = o.
=3 J -3 J o

It is also assumed that the phase angles are statistically independent.
wWith the above assumptions expression (1) can now be written as

n
ty=22Z A, s .t + 06, + ¢, (2)
x{t) . 3 co (wj 3 ¢3.) '

where Aj, wj and Gj are real and deterministic variables and ¢j is a real
and random variable. Consequently, x(t) represents a random process.

2s a matter of fact, x(t) represents a stationary Gaussian process with

zero mean as will be shown next. Consider the random process as an

-



infinite ensemble of sample functions;then the ensemble average or the

expectation of x(t) is defined as
400
Ex(®)l =71 xplx) d

-0
where p(x) is the probability density function which is always a real-
valued, non-negative function. The expected value of x(t) in equation
(1) is

B [x(t)] = % a eteyt E[eid)j]

j=-n

since it was assumed that ¢j had a uniform probability density function
over the range from o to 2w.

£ (&%) = £ [cos ¢j] +1i E [sin ¢.]

1 2m .1
=57 I cos ¢j d¢j + i >

m

(ol VRS

sin ¢, d¢, = O.
d)j ¢j,

o

Consequently, E [x(t)] = 0, and x(t) has a zero mean value.
Next we will show that the autocorrelation function is a function of
time-lag only and therefore x(t) is a stationary process. The autocorrelation

function of x(t) is defined by the expectation of the product of x(t+T)

and x* (t). Using expression (1)
n i (wst + w.T + 6.)
E [x(t+1) x* (B)] = E[Z c et 5 d)j
j=-n
n ,
z aﬁ e_l (wkt * d)k)
k=-n
and ;
n , iij n n
E [x(t+1) x* ()] = T a, a* e + I X a, a¥*
j=-n 33 j=-n k=-n 3 ak
(3=k) 3 # k)
i(w.t - w t + w.T) i(d, - ¢ )]
e k ] E[e 3k



Due to the fact that ¢j and ¢k are independent for J # k
- fel(¢j - ¢k’]= o

Consequently,

n
RX{T) = E [x(t+1) 2x* (t)] = aj a* e 3 (3)

It can be easily verified that RX(T) is an even and real function of 7t

since

RX(T) = RX(-T) and RX(T) = R;(T)

Since the random variable x(t). at a specified time is defined as the
sum of n independent identically-distributed random-variables, the central
timit theorem states that if n approaches infinity, the probability
density function of x approaches the probability density function of a
Gaussian random variable. Consequently the random‘process x(t) as
defined by equation (1) represents a stationary Gaussian process with a
zero mean if n approaches infinity.

The spectral density function of x(t) can now be obtained by taking

the Fourier transform of RX(T) using expression (3)

+o e
. n .
- —i(ww.)T

S (W) = = R (D e *¥T gr =% : a a*fel( 8T 4
X 27 X 2m _ J 3

—~00 J==-n o]
oy

n

S, (W) = I a, a* S (w-w ), (4)
® j=-n J 3 J

Where § (w—wj) is the Dirac delta function or unit impulse which has unit

area concentrated above w=wj so that }m S(w—wj) dw = 1.0 and § (p-w.) = «
0 j

for w = wj and zero for w#f w.. This form of the power spectrum is a

sequence of impulses, which one would expect to obtain because the original

equation for x(t) takes only discrete values for w. The area under each

- -



. cC . . s

impulse equals the area under Sx (w) in an interval of length Aw (Figure 1).
Consequently the Fourier transform can not be continuous. However the
power spectrum density functions of a physical random process x(t) should

. . C R ,
be continuous and given by Sx(m). The discrete form of the spectrum is

given by
n
s ) = = s (W) 6 (w-w,)dw (5)
X . X J J
j=-n
w, -0
where Aw = ay and wj =W, + (§-1) Aw.

A significant contribution to the variance of x(t) is obtained between the
wave numbers wl (lower limit) and wu(upper limit). ©Note that Sz {(w)
represents the spectral intensity Sg (wj) Aw at w = wj. By comparison of
equations (4) and (5) one concludes that |

a, a* = SC (w.) Aw (&)
J X J

Consider now another stationary Gaussian process with zero mean:

n N
y(t) = I p. e (W5t + Ny 7
j

which is defined in the same way as x(t) except that bj is now real. As
before, nj is the random variable with a uniform probability density
function over the range from zero to 27. It is assumed that ¢j in Bg. (1}
and nj in Eg. (7) are statistically correlated. According to Parzen,
(Ref. 6) the joint probability density function of ¢j and nj can be

written as

a
1 xy]
P L, ML) = 1 .- . - 8
(<1>j nj) a2 { + T [<1>j m] [nj 71} (8)

This expression is a possible form of the joint probability density function
function of ¢j and nj since it satisfies the properties of the definition

of the joint probability density function.
e e




2m 2m

é é p (¢j, nj) d¢j dnj = 1.0
27
é P (¢j, nj) d¢j =p (nj)
27
and é P (¢j, nj) dnj =P (¢j).

Since all ¢j's are independent and all n,'s are independent, ¢j and nj

k

for j # k are also independent. Only when j = k are ¢j and n, statistically

k

correlated. Since p (¢_j, n_j) =p (- ¢j' -nj) we may conclude from

eguation (8) that

a . . = a .
Xy3 “XyJ-

The cross correlation function of x(t) and y(t) describes the general

dependence of the values of x(t) on the values of y(t) and is defined as

n . n .
. . - t+
E [x(t+T) y*(£)] = E [Z | gllwtteg TRy b e )
j=-n J k=-n
oY
n iwsT i{ds = n3)
B Ix(t+1) y*(£)] = = a. b, e g *'% T M)
J
j=-n
J=k
n n . .
+ I b a bk 1wyt + ©yT wkt) E [el(¢j nk)]
j = -« n kK = ~-n
i#£k
However,
. 2T 27
i{¢s - n.) i(d. - ns)
J = . .
E [e 3] L L e 73 37 P (45, ny) by dn,

After substitution of the expression (8) for the joint probability density

curve, one obtains



. a .
E [el(¢j - nj)] = X3

{2}
Tr2
Since ¢j and Ny for j # k are independent we have
g et My 2 5 1] £ 7K = 0o
for j # k (10}
Consequently the cross~correlation function for x(t) and y(t) becomes
n a,b, a___, .
lw'T £
E [x(t+1) y*(£)] = I s A e ] =R (1). (11}
s o= o 2 Xy
j=-n w
ny(r) does not necessarily have a maximum at T= 0 as was true for the
autocorrelation function, nor is ny(T) an even function. However,
ny(T) does display symmetry about the ordinate when x and y are inter-
changed; that means that ny(T) = Ryx(-T). Hence, the cross-spectral
density function of x(t) and y{(t), which is the Fourier transform of the
cross—correlation function, is in general a complex function and is given
by:
+00 -3
s (w) = L I R (1) e 7 ar : (12}
Xy 2m Ry
Substitution of Eq. (11) in Eg. (12) leads to
n a.b, a__,
S_(w = I L F s (w-w)) (13)
Xy j = - n m ]
which is a complex function and can be written
S (w) =¢C (wy -1 (w)
Xy xy QXY
. . ie,
Using the transformation aj = Aj e j
n
C (W) = I A, b, a (14}
Y j=-n —4J X § (w-w.) cos 8.
2 J J
n Ab, a .
and Qxy(w) = - I S A 1 S (w-w.) sin 8 (15)
j=-n 72



The real part of the cross-correlation function is called the co-spectral
density function and the imaginary part of the quadrature spectral density

function. Similar to the derivation of expression (6) it can be shown

that
CC' (w.) Aw = —= 3 x7] cos 6, (16)
ba% J

and QC (w,) Aw = - éifizi§li sin 9, 17
xY J ™ J

where the superscript C refers to the continuous spectrum functions.

Sclving for aij and using (6) one gets:

‘{[cf{y (wj)]2 w2 + [QS{Y (wj>]2 (bw) 2} 72

a?r. = or
*7J A.2 b.2
J ]
C
2 _ mtsxylwy) |2
vvi T C C
- S (w.) S (w.)
X ] Yy J
Using the definition for the coherence function (Ref. 7)
‘ C  (w.)
2 _ | SEy &y |2
Y (w.) = c c (18)
o] s. (w,) S (w.)
] Y
one obtains
a . =12 vy (w.) (19)
XY3J Xy 3
Using expressions (16) and (17) one obtains
C
_ Qxy (w.)
6 = tan {"‘ 'E——_"—'} (20)
c (w.)
Xy J

The procedure of simulation of a set of two correlated stationary
Gaussian processes x(t) and y(t) will be described briefly using the

so-called Monte Carlo method (see Refs. 8, 9 and 10). Since two
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stochastic processes with arbitrary spectrum and coherence function can
be produced, this method can be applied to any physical phenomena as long
as the process can be assumed to be a stationary, Gaussian and has a zero
mean. Using expressions (6), (19) and (20), Aj, bj, axyj and ej can be

obtained from the given spectrum functions

a, = 1/s% (w.)m0
j x %5
b, = 1/s€ (w.)Aw
j y 3
c

_ .2 S (w.) 2

=T = :
%xy3 [Ty 5 | T Yy ©5)

\/si (w,) )/ss (®,)

C
_ Q- (w.)
and 8, = tan - __§Z__l_
J c” (w.)
Xy J
where j = 1, 2, 3 _ _ _ _ n. The larger n, the more precise the random

processes x(t) and y(t) can be simulated.

The next step is to generate a correlated pair of random variables
¢j and nj for 3 =1, 2, _ _ _ _ n from the joint probability density
function (8). This expression is the joint probability density function
of two random variables ¢j and nj each withva uniform probability density

function over the interval from zero to 2m. This can be done as follows,

(see Refs. 8 and 9):

Step 1.

A set of n independent random variables dj is generated from a
uniform probability density function over the interval from zero to one.
Now a set of values of ¢j can be generated from ¢j = 2'ndj for j =1, 2,

3 n.

-



Step 2.
From equation (8), the conditional probability distribution function

of nj is given by

P (n./¢.) = /¢.) dn, =
n; ¢j ] P (n3/¢3) ny jc') ———L—P(d).) dnj
J
or after substitution
1 ®xv3 1
P mj/cbj) = "yt o (¢j -m (G ny - ﬂnj) (21)

Now another set of n independent random variables, ej with a uniform
probability density function over the interval from zero to one is
generated. When the random variable ej is equated to the conditional
probability distribution function, one can solve for nj when j = 1, 2,
3 _ _ _ _mn. Since this expression is quadratic in nj, two solutions

for nj will be obtained. However, the value of nj is chosen so that

o< mn, < u', where u' is the smaller positive value of 2m and

- 3
L . If a . > o the upper bound is automatically 27. The upper
a_ . xyj —
xY3
bounds are calculated from expression (21) for ¢j =271 and e, = 1.

The following procedure will be used to generate the timevseries
x(t) and y(t). Given are the power spectral density functions of each
of the two time series Si (w) and Ss (w) and their cross-spectral density
function Siy (w) - The significant part of these spectra between a lower

freguency w, and an upper frequency mu, is subdivided in n-1 intervals of

2
width Aw. The larger the value of n, the more accurately the time series

will be simulated. The continuous spectrum functions are evaluated at the

center of each interval such that wj =g, + (j-1) Aw. Using eguations (6),

%
(19) and (20), deterministic values for Aj' bj' aij and ej can be obtained
for j =1, 2 ___n. The random variables ¢j and nj are generated as

-]10=-



described in the above paragraph. We can now proceed to calculate a

point of the random processes, say at time tl’ with

n
x(t.) =2 I A, cos (W, + . + 6., + 9.)
1 L ST TS
p)
n
y(t.) = 2 I b, cos (w, t. + n.)
1 j=1 3 i1 g

Next, the following point of the random processes can be calculated at
time t, + At and so on. The choice of the time interval depends on the

value of the upper significant wave number and should be chosen such that

At <

8':1

u
III. TRIGONOMETRIC MODEL WITH NORMALLY DISTRIBUTED AMPLITUDE

Consider the following representation for the random process

w(t) = (a, cos w,t + b, sin w.t) (22)
3 J J |

e ™M

=1

where the coefficients aj and bj are independent random variables, each
set with the same normal probability density function with standard
deviation ox; and with zera mean. Furthermore,wj and t are deterministic
representing the wave number and time respectively.

In the following section it will be shown that expression (22)
represents a stationary Gaussian process with "zero mean. The expected
value of x(t) is

n
Elx(t)] = I {Efa.] cos w.t + E[b.,] sin w.t}
3 J J J J

=1

since E[aj] = E[bj] = 0, E[x(t)] = 0.

-11-




The autocorrelation function for x(t) becomes:

n
- + =
Elx(t) x(t+1)] ? E[ajak] cos wjt cos wk(t+r) +

(t+T) +

b \
EL jak] sin wjt cos mk

Ela,b. ] cos w.t sin w, (t+1) +
Jk ]

k

E[bjbk] sin wjt sin wk (t+1)

since bj and a, are independent for all values of j and k, one has

E[bjak] = E[ajbk] = E[aj] E[bk] = Q.
Also
2 . . :
E{ajak] = E[bjbk] = ij for j = k and is zero for j # k.

Consequently the autocorrelation becomes

Elx(t) x (t+1)] =

™M

02. cos (W, T).= R (T1). (23)
=1 X3 3 X
The autocorrelation function Rx(f) is independent of time t and depends
on the time lag 7T only. Also, the sum of a set of independent random
variables with normal distribution gives rise to another random variable
with a normal distribution. Consequently, x(t) represents a stationary
Gaussian (normal) process with zero mean.

The power spectral density'function can be obtained by taking the
Fourier transform of RX(T)

[=2]

1 -iwT

S (w = o= I R (1) e dt
-0
Using (23) we have
n .

‘ o -

SX«n\ = %? I ) Gi. cos (w, T) e T g1
‘ —e 5 =1 3] J

-12-



oxr

2

[+e]
o_. g cos (wjr) cos wt drT.

XJ

1
Sy W = ==

e ™M 3

-00

Introducing the Dirac delta function

o] - —
2 S(w-w.,) = [ e o mj)T dT1 = T cos wT cos w,T 4ar
j 00 -0 j
«©
+ J Sin T sin w,T dt
o ]
Similarly,
1 s )
2m 5(w+wj) = J° el(w+wj)T dtr = Tw cosS WT COS u, tdt

(=]
- J sin wt sin w., TdT
—c — J

Consequently,

{: cos wj T cos wr dr =7 { & w~wj) + 6(w+wj)}

and the power spectral density function can be written as

_ 1
Sx(w) )

(A

02.'{6 (w=w,) + & (w+w.)} (24)
1 % j 3

This expression gives the relation between the power spectral density
function and the standard deviation ij of the normal random variables

with zero mean aj and bj.

Consider now another stationary Gaussian process with zero mean:

n
y(t) =L
j=1

{c, cos (w.t + o.) + d, sin (.t + a.)} (25)
] J ] 3 J ]

where the coefficients cj and dj are independent random variables, each

set with the same normal probability density function with standard

deviation Gyj' and with zero mean. 2And uj is deterministic, representing

the phase angle. The two stationary normal processes are correlated if

-] 3=



there exists a non-zero correlation between aj and c¢. and/or bj and 4d..

The covariance nyj between two random variables aj and cj is defined as

C . ==Ela, c,]
®y] J 3

Since aj and bj have the same standard deviation for the same 3j, and the
same i1s true for the random variables cj and dj’ the covariance between
a, and cj must be equal to the covariance between bj and dj' The

correlation coefficient is defined as

nyj
o . = (26)
X g _.0_.
v X] Y3
and consequently
Ela,c.] = El[c.d.] = ., 0. .. 0.
J ] 33 pXYJ %] X]
The cross-correlation function between the random process is
n n
= + + +
Elx(t) y(t+T] ; b) E[ajck] ccs(wjt) cos (mkt W, T ak)
j=1 k=1
i + +
E[ajdk] cos (mjt) sin (wkt Wy T + uk)
i t + + +
Ejbjck] sin (wjt) cos (wk wkT ak)
i i t +
E[bjdk] sin (wjt) sin (wk + wkT ak)
Noting that E[bjck] = E[ajdk] = 0 and
E = Efb, =0 ., 0. . for j = k
[ajck] [Jdk] %3 “y3 Pxy3 J
and zero for j # k the cross-correlation function becomes
n
Elx(t t + =7 o . O_. . cos (w, T + a,)
x{e) ye+ Dl =1 xi °vi Payi j j
j =1
= R (1) (27)

-14-~



In general, the cross-correlation function is not an even function of T

and its Fourier transform should be complex.

function is defined as

1 0 ~1iWT
S = -
(w) o Lm RXy (t) e dt

Substituting expression (27),

I

e OO

n
S (W) = — I o .. 0. .
Xy 2m _ x]J Y3 pXY]
3 =1
However,
{m cos (ij + aj) e_le dt = cos
© .
- sin o g sin W,
I e 3
and
;w cos (w,T + a.) e T at = cos o,
J J J

-_CO

o]

3

-0

Introducing the Dirac delta function,

w0 -iwT

-0

The cross—-spectral density

I

-—00

T

o]

J

-0

-1WT

cos (w,T + a.) e ar
J J
-iwT
cos w, T e dart
J
-iwT
e drt

cos w.T cos wr 41t + 1 sin
J

a, [ sin ij sin wt dt

[ cos (w,T + o.) e dt =1 cos a, { §lw~w,) + § (whrw,)}
J J J J J

+1imsinoa, {§ (wv~w,) - § (whw,)}
J 3 J

The co-spectral density function becomes

1
ny(w) =3

B

=1 X3 Y] xy)

: —w.) + 8 (wta,
o o} p . cos uj{ § (w wj) 8 (w wj)}

and the gquadration spectral density function becomes

1 n
(w) = - = I g . O, .
QXY 2 j=1 X] Y] DXYJ
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sin a. {8 (w-w.) - & (wtw.)?
J J J
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The discrete form of the power spectrum is given by Eq.

D . c
SX {(wy = SX (w.) § (ww,) Aw
j=1 3 3
wu_m2
where Aw = ) and wj = uolQ + (3-1) Aw

comparing with equation (24) we have

o, = l/ 2 s€ (w.) Aw
xJ X 3j

Similarly:

o . = 2 sC (w.) A
v l/ y(wj v

From the expressions for the co-spectrum and quadrature spectrum

C
2 C (w.) Adw= 0 . o_. .
xy 3 xi “yi Pxy3
and
2 QC (w,) Aw= -0 g
xy xj vi Pxyj

From Eg. (31) and Egq. (32)

and from Egs. (31), (32), (29) and (30)

{ct ? € y?
C . + .
pz e (wj)} { Qxy (w])
*YJ s o s€

x 3 Ty Y

The last expression shows that the correlation coefficient o

the random variables is identical to the coherence function vy

_16..

cos o.
J

for w i_O

. Sin a.

J

Xy

(w.)
J

(5)

(29)

(30)

(31)

(32)

(33)

(34)



the two random processes x(t) and y(t).

The next step is to generate independently, the random variables a,

and bj from a normal distribution with zero mean and a standard deviation

o .=7vV 258C (0,) Adw and o
%3 X 3

, =V 2 sC (w.) Aw respectivel for 3 = 1,
v3 y 3 P ¥ J

2, ; N

Again the larger n, the more precisely the random processes
x(t) and y(t) will be simulated. The next step is to generate the random

variables cj and dj from conditional normal distribution derived from the

following considerations. Since aj and cj are both normally distributed,

the joint probability density function of aj and cj is

1 1 a.?
P (a., c.) = exp{- mz——T ELZ
J Y3 xvJ
2pxyj a, c, cj2
. 2X¥) 3 J .
g . 0. Tz (35)
X3} Y] Y3
and the probability density function of aj is
1 a2
P (a.) = ————— exp - 2 (36)
14 20 .
2T ij %3
The conditional probability density function of cj for given aj is
Pla., c.) 1
P (¢c./a.) = J ) =
] ] P(a) v 21 O . 1% 1-—p2 .
] Y3 Xy
1 OYj 2 (37)
exp ( ~ (c. ~p . =—=— a,)
2(1-p2 xy3 o_. 3
2 0 ,4(1 L) J
vi Py xJ
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Consequently, the conditional probability density function of c. for given

[o JRRE)
aj is also Gaussian with mean pxyj EZl aj and a standard deviation
XJ

of ij /l-piyj » Similarly, the conditional distribution of dj for given bj

o}

is Gaussian with mean p | A b, and standard deviation of
xy] ij J

The random variable cj is generated from a Gaussian distribution with mean

g

0. Ll a. and a standard deviation of o, /i—pz .
Xy UX, J Yyl Xyl

[

Similarly, the random variable dj is generated from a Gaussian distribution

with mean p . = b. and a standard deviation of o . V¥ l-p2 .
Xy]1 0 . ] Y] Xy

One can now proceed to calculate a point of the random processes, say at

time tl with

n
x(t,) = X (a. cos w. t. + b, sin w. t.)
3 3 3 3 o1

n
and y({t.,) = I {c. cos (w. t. + a,) + 4. sin (w. t. +a.)}
3 J j o1 J 3 i

using expression (33) and wj = w, + (§-1) Aw

wu—wg
where Aw = for § = 1, 2, n.
n_l O

Next, the following point of the random processes can be calculated at
time t, + At and so on. Again the choice of time interval At depends

on the value of the upper significant wave number and should be such that

-18-



IV. SIMULATION OF THE STREAMWISE STRONG-WIND TURBULENCE COMPONENT

Let the flow field be homogeneous in the horizontal plane and statiocnary
with respect to time. The wind velocity can be resolved into three components,
two in the horizontal plane, one of which is along the mean wind direction (x)
and one is normal to it (y). The third component is taken vertically upward
(z) . The instantaneous components can be written in forms of a mean and a

fluctuation, so that

U (z,£) = U (z) +u (z,t)
A% (Zrt) = v (Z,t)
W (z,t) = W (z) +w (z,t).

The estimated spectral density function of the wind speed in the
planetary boundary layer for the eastern United States is given by
van der Hover (Ref. 11). It shows that the "spectral gap" between 1 cycle
per hour to 10 cycles per hour may be used for the stable estimation of
U and W for a sample function with a duration bf about 1/2 hour.

Under strong wind conditions, the mixing action of the mechanical
turbulence tends to reduce the atmosphere to a state of neutral stability.
Consequently, the turbulence near the ground is only due to frictional
effects and will vary only significantly with the surface drag and height
above the ground. If this is the case, the turbulence can be described as
a random process which may be approximated by a stationary Gaussian process
with zero mean (Ref. 5).

Two correlated longitudinal turbulence-components at two different
locations A and B are simulated. The direction of the separation distance
A B is normal to the x coordinate in the horizontal plane and consequently

parallel to the y coordinate.

-19=



The spectral density function of the longitudinal turbulence-
component can be estimated by using Davenport's empirical strong-round

spectrum (Ref. 12).

2 2
_ 4K U3 %

£ [1+x2] 4/3

s' (f) (38)
u

where f is the frequency in cycles per second. KX is the drag coefficient

dependent on the surface roughness and U

1 is the reference mean-velocity

near the ground at an elevation of 10 m, so that the shear stress near the
2

20 F ana T osr (o) af = W’

]
Ul

ground t' = K p E%. The parameter x =

Using the circular frequency (, where w= 2Tn, expression (38) becomes:

2
U- 2
s, w = 221 x 4/3
w (1+x" 2) /
where x' = 608_w for the range 0 < w < ®
T U1
so that j S! (W) dw = W?

Hinze (Ref. 13) shows that the auto-correlation coefficient R' (1) =

u(t) uit}E}

w2

and the energy spectrum function Sé (n) are Fourier cosine

transforms. Using the fact that R'(t) and S& (n) are even functions and

introducing the auto-correlation function R (t) = R' (1) u? and the

axponential form one obtains

Sé (w) = ;w R (1) e YT ar and

3 [

—~00

/2 ;7 s (W T aw

R{T)

It
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Now let S {(w) = 1/2 8' (w) then
u u

S == "R (1) e 4r and (40)
u 27 L
R (1) = Iw Su @ 7 aw (41)

Expression (40) is used in the previous sections of this report and

consequently expression (39) becomes

= 2
U
s () =172 s' (@ = £X1 3
u u w (1+x'2)

x'2

(42)

Now Davenport's expression for the power spectral density function
corresponds to the one as defined before.

Ang and Amin (Ref. 5) suggest an empirical relation for the coherence
function for the longitudinal turbulence components at two points separated

by a distance Ay parallel to the y coordinate.

Yy (w) =exp { - (43)

where k' is a dimension less coefficient between 20 and 25.

The quadrature spectrum is zero when the cross spectrum is even.
For this particular case the maximum correlation between Uy and uy is
expected to occur at a zero lag and consequently the cross-spectral density
function is expected to be approximately even. Consequently it is assumed
that the quadrature-spectrum function, Qxy (w) , is zero for all w.

Figures 2 and 9 show two sets of correlated time series representing

the stream wise turbulence components based on Davenport's empirical

strong-wind spectrum, the exponential expression for the coherence function

(Eg. 43) and a vanishing gquadrature spectrum density function. The two

time series in Fig. 2 were obtained using the exponential model with
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uniformly distributed phase angle. In Fig. 9 the two time series were
obtained from the trigonometric model with normally distributed amplitude.

In both cases the number of generated random variables is 600 (n = 600).

Davenport’s spectrum was evaluated at intervals of Aw = .005236 rad/sec with
a lower wave number cut-off of wy = 0.00377 gi%- (0.0006 Hz) and an upper

wave number cut-off wu = 3.14 rad/sec (0.5 Hz). BAll simulated turbulence
data were evaluated at At = 1.0 sec time interval in order to avoid the
effect of aliasing. The total length of each of the simulated time series
is thirty minutes. The average reference velocity at altitude of 10 m. was
taken to be Ul = 16.5 m/sec. The drag coefficient K was chosen to be 0.005
and the lateral separation distance Ay was taken at 5 meters.

Figures 4 and 10 show the hystograms of the amplitude of the simulated
time series and are approximately Gaussian in nature. However, both sets
show a non-zero mean-value which can be attributed to the sample length.
With increased sample length the mean value will approach zero. The
calculated standard deviation turns out to be of the order of 2.6 m/sec in
all four cases. Since Davenport's spectrum seems to be independent of
altitude the calculated standard deviations will all be of the order of
2.6 m/sec. which can be attributed to the short-comings of this emperical
relation for the spectral density function.

Pigures 4 and 11 show the calculated auto-correlation functions for
the simulated turbulence data. For a time-lag T = O of course, the variance
of the time series which is the square of the standard deviation must be
okbtained., For all four time series this requirement was extremely well
satisfied. As a rule of thumb, it is considered to be desirable to keep

the maximum time lag less than one-tenth of the sample size (Ref. 7).
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In figures 5 and 12 the calculated cross—correlation function is shown.
Since it was assumed that the quadrature spectrum for the two sets of turbulance
data vanished for all w, the cross-correlation function must be symmetrical
such that ny (t) = Ryx (t). By comparison of the sets of cross~correlation
function this requirement seems to be adequately satisfied.

Figures 6 and 13 show the calculated spectral density function and

Davenport's emperical spectrum from which the time series were obtained.
For the first method the agreement is very good but for the second method
the agreement seems not so good. However, the degree of agreement depends
on the particular sample realization of the time series. One must keep in
mind that the calculated spectrum function is strictly an estimator of the
strictest definition of the spectral density function.

Figures 7 and 14 show the calculated cospectra and quadrature spectra.
The calculated quadrature spectra should theoretically be zero for all
frequencies. However, because of the relatively small sample length (30 min.)
of the time series one may expect non-zero valués for the quadrature spectra
at low frequencies.

The coherence functions for the two sets of simulated turbulence data
are shown in figures 8 and 15. By nature of the definition of the coherence
function, one may expect large deviation from the emperical expression for
the coherence function. It must be remembered that the results given in this
report are based on a single set of sample realizations of relatively short
duration. Consequently, the calculated functions are simply estimators of
the required statistical quantities. The accuracy of these estimators can
be improved by using more sample realizations or evaluating the random

processes for a longer sample time.
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Based on the above results for the two different methods, no significant
differences can be found. However, the simulation technique utilizing the
trigonometric model with normally distributed amplitudes is more adaptable

to the simulation of many correlated random processes simultaneously.
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Fig. 3. Hystograms of amplitude of time series of Fig. 2. Dashed
curve represents the normal probability density function
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Fig. 10. Hystograms of amplitude of time series. of Fig. 9
Dashed curve represents the normal probability density function
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