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ABSTRACT 

In this technical report two methods are described to simulate a se-t 
of two correlated stationary and Gaussian processes with zero mean. The 
first method utilizes an exponential model with a uniformly distributed 
phase angle. The second method utilizes a trigonometric model with 
randomly varying amplitudes with Gaussian probability density functions. 
In both cases the simulation can be achieved on the basis of known power 
spectral density functions of each of the random processes and their cross- 
spectral density functions. The random variables in the expressions des- 
cribing the random process are generated with the use of established 
Monte Carlo techniques. 

The two methods are used for the simulation of two correlated stream 
wise turbulence components in the surface layer of the atmospheric bomdary 
layer. These two turbulence components are taken at two different points 
A and B such that the separation distance A B lies in the horizontal plane 
normal to the direction of the mean wind. 

Autocorrelation functions, spectra, cross-correlation functions, cross- 
spectral density functions and coherence functions are calculated numerically 
for each of the two sets of generated time histories and compared with the 
original spectrum functions and coherence function from which these time 
histories were generated. 
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I. INTRODUCTION 

~rigonometric series (Ref. I), filtered white noise (Ref. 2 ) ,  filtered 

shot noise (Ref. 3)  and correlated randm pulse trains (Ref. 4) can be 

used as models for simulation of a single stochastic process such as earth- 

quake waves. In order to simulate two correlated stochastic processes with 

arbitrary spectra, only the first method can be used. 

Under strong wind conditions the turbulence components in the 

atmospheric surface layer are mainly due to frictional effects. The 

streamwise component of the turbulence may under certain conditions be 

approximated by a stationary Gaussian process with zero mean over a time 

interval of 1/2 hour to 1 hour (Ref. 5 ) .  This technical report employs 

stochastic models for the purpose of simulating a set of spatially 

correlated turbulence time histories. Statistical quantities of atmospheric 

turbulence have been studied for various atmospheric conditions and qeneral 

empirical expressions for these quantities are becoming available. Based 

on this information two methods will be described in this report which will 

enable us to simulate the actual time histories. These simulation methods 

may be extremely powerful tools in the fields of weather forecasting and 

industrial aerodynamics for example. Since, two correlated stochastic 

processes with arbitrary spectra and coherence function can be simulated, 

the described methods may be applied to any physical phenomenon as long 

as the process can be assumed to be stationary and Gaussian. 



TI, EXPONENTIAL MODEL WITH UNIFORMLY DISTRIBUTED PHASE ANGLE. 

Assume that the random process %(i) can be expressed in the following 

mathematical form, 

The amplitude a is in general complex and symmetrical with respect to j 
j  

* 
a = a  anda = o  - j  o 

'le 

where a, is the complex conjugate of a and n is some large positive integer. 
3 j  

Fwcthermore,~ is a set of real variables representing the wave number 
j  

w i t h  

and Q represents the phase angles,each of which is assumed to be a random 
j 

variable? with a uniform probability density function over the range from 

zero to 2 ~ .  Also 4 is odd with respect to the index j  and consequently 
j  

4 = -  4 j  0 -- j 
i0. 

Let a .= A. e I, where A. and 0 . both are real, then 
1 1  I I 

It is allso assumed that the phase angles are statistically independent. 

With the above assumptions expression (1) can now be written as 

where A , ,  w and 0 are real and deterministic variables and 4 is a real 
J j  j j  

and rarlclom variable. Consequently, x(t) represents a random process. 

As a matter of fact, x(t) represents a stationary Gaussian process with 

zero mean as will be shown next. Consider the random process as an 



i n f i n i t e  ensemble of sample funct ions i then the  ensemble average o r  the  

expectat ion of  x ( t )  i s  defined a s  

+m 

E [ x ( t )  1 = J x p (x)  dx 
-a3 

where p(x)  i s  the  p robab i l i ty  dens i ty  function which i s  always a r e a l -  

valued, non-negative function.  The expected value of  x ( t )  i n  equation 

since it was assumed t h a t  4 .  had a uniform probab i l i ty  dens i ty  function 
3 

over the  range from o t o  27r. 

E [eimjl = E [COS 4 .  I + i E [ s i n  m . I  
3 7 - 

1 2'll = - 1 2 1 ~  2n cos m d$. + i -  
j 3 21-r 1 s i n  m j  dmj = 0 .  0 

Consequently, E [ x ( t ) l  = 0,  and x ( t )  has a zero mean value. 

Next we w i l l  show t h a t  the  autocorre la t ion  function is  a function of 

time-lag only and the re fo re  x ( t )  i s  a s t a t ionary  process. The autocorre la t ion  

function of x ( t )  i s  defined by t h e  expectat ion of the  product of  x ( t + ~ )  

and x* (t) . Using exnression (1) 

and 
n i w . ~  n n 

E [x(t+T) X* (t) ] = C a a t  e ' + C  C 
j  =-n j I j=-n k=-n "j % 

( j=k) ( j  # k )  



Due t o  the  f a c t  t h a t  4 and 4 a r e  independent f o r  j # k 
j k 

Consequently, 

I t  can be e a s i l y  v e r i f i e d  t h a t  R ( r )  i s  an even and r e a l  function of r 
X 

s ince  

R (1-1 = R ( - r )  and R (T) = R*(T) x X X X 

Si:nce the  random var iab le  x ( t ) .  a t  a spec i f i ed  time i s  defined a s  the  

sum of n independent iden t i ca l ly -d i s t r ibu ted  random-variables, the  c e n t r a l  

l i m i t  theorem s t a t e s  t h a t  i f  n approaches i n f i n i t y ,  t h e  p robab i l i ty  

dens i ty  function of x approaches t h e  p robab i l i ty  dens i ty  function of  a 

Gaussia:n random var iable .  Consequently the  random process x ( t )  a s  

2efined by equation (1) represents  a s t a t i o n a r y  Gaussian process with a 

zero mean i f  n approaches in f in . i ty .  

The s p e c t r a l  dens i ty  function of x ( t )  can now be obtained by taking 

the  Fourier transform of R ( r )  using expression (3) 
X 

mere 6 ( w - w . )  i s  the  Dirac d e l t a  function o r  u n i t  impulse which has u n i t  
3 

area  concentrated above w=w s o  t h a t  f w  S (o-w .) do = 1.0 and S (w-w . )  = 
j -w 3 3 

f o r  w = w and zero f o r  wf w . This form of t h e  power spectrum i s  a 
j j 

sequence of  impulses,'which one would expect t o  obta in  because the  o r i g i n a l  

equation f o r  x ( t )  takes  only d i s c r e t e  values f o r  w .  The a rea  under each 



C 
impulse equals  t h e  a r e a  under S ( w )  i n  an i n t e r v a l  of length Aw (Figure I), 

X 

Consequently the  Fourier  transform can not  be continuous. However the  

power spectrum densi ty  functions of  a  physica l  random process x ( t 1  should. 

C 
be continuous and given by S ( w ) .  The d i s c r e t e  form of t h e  spectrum i s  

X 

given by 

w w  u - R  
where Aw = - 

n - 1  and w = w + (j-1) Aw. 
j  

A s i g n i f i c a n t  cont r ibut ion  t o  the  variance of  x ( t )  i s  obtained between the 

D wave numbers w (lower l i m i t )  and w (upper l i m i t ) .  Note t h a t  Sx (w) 
R u 

represents  the  s p e c t r a l  i n t e n s i t y  sC ( w . )  Aw a t  w = w . By comparison o f  
x 3  j 

equations (4) and ( 5 )  one concludes t h a t  

Consider now another s t a t ionary  Gaussian process with zero mean: 

n 
i ( w . t  + q . )  

Y (t) = C b .  e  3 7 
3 

(71 
j = - n  

which i s  defined i n  t h e  same way a s  x ( t )  except t h a t  b is  now r e a l ,  As 
j  

before,  q  i s  t h e  random var iab le  with a uniform probab i l i ty  dens i ty  
j  

function over the  range from zero t o  271.. It i s  assumed t h a t  $ i n  Eq, (1: 
j 

and TI i n  Eq. (7)  a r e  s t a t i s t i c a l l y  co r re la t ed .  According t o  Parzen, 
j  

(Ref. 6 )  t he  j o i n t  p robab i l i ty  dens i ty  function of $ and q  can be 
j j  

wr i t t en  as  

This expression is  a poss ib le  form of the  j o i n t  p robab i l i ty  dens i ty  f a n c t i o n  

function of  $ and n s ince  it s a t i s f i e s  the  p roper t i e s  of  the  d e f i n i t i o n  
j  j 

of  the  j o i n t  p robab i l i ty  dens i ty  function.  

-5- 



Since all 4 's  a r e  independent and a l l  n 's a r e  independent, 
k ' j and rl 

j j 

for j f k a r e  a l s o  independent. Only when j = k a r e  $ and n s t a t i s t i c a l l y  
j k 

corre la ted .  Since p ( , n ) = p - , - . we may conclude from 
3 

e~uation (8) t h a t  

The cross  co r re la t ion  function of x ( t )  and y (t) describes t h e  general  

dependence of  the  values of  x ( t )  on t h e  values of  y(t) and i s  defined a s  

n n 
C 

i ( w j t  + w . r  - w k t )  I, 
3 i ( m j  - r l k I l  + C a b e  

j = - n  k = -  n j k 

j # k 

However, 

After s u b s t i t u t i o n  of the expression (8) f o r  t h e  j o i n t  p robab i l i ty  dens i ty  

curve, one obta ins  

-6- 



IT2 

Since + and 11 for j # k are independent we have 
j k 

E [e i((j -nk) = E ,,i@j1 E Le -inkl = O 

for j + k 
Consequently the cross-correlation function for x (t) and y (t) becomes 

n a.b a 
E [x(t+T) y* (t)] = C J j xyj e i w . ~  - 

J - R  (TI. 
j = - n  ~2 XY 

R (TI does not necessarily have a maximum at T= 0 as was true for the 
XY 

autocorrelation function, nor is R (T) an even function. However, 
XY 

R (T) does display symmetry about the ordinate when x and y are inter- 
XY 

changed; that means that R (T) = R T Hence, the cross-spectral 
xy Y x 

density function of x(t) and y(t), which is the Fourier transform of the 

cross-correlation function, is in general a complex function and is given 

by: 

1 +m - ~ W T  s (W) = - 
Rxy 

- r  e d-r 
XY 2Tr -m 

Substitution of Eq. (11) in Eq. (12) leads to 

which is a complex function and can be written 

i 0 Using the transformation a = A. e j 
j 3 

n A.b. a , 

and Q (w )  = - C 6(~-w.) sin 0 
XY j = - n  ~ r 2  J j 



Tke real  p a r t  of the  cross-corre la t ion  function i s  c a l l e d  t h e  co-spectral  

density function and t h e  imaginary p a r t  of  t h e  quadrature s p e c t r a l  dens i ty  

functio:n. Similar  t o  the  de r iva t ion  of expression (6) it can be shown 

that 
A.b . a  

Iz=j cos 0 cC ( w . ) A w =  IT 
XY I j 

C 
A.b. a 

and Qw ((w . ) A w  = - 3 7 xyj sin 
I IT j 

where the  supersc r ip t  C r e f e r s  t o  the  continuous spectrum functions.  

Solving f o r  a and using (6) one ge t s :  
xyj 

Using Idle d e f i n i t i o n  f o r  t h e  coherence function (Ref. 7 )  

one obta ins  

Wsinq e:~press ions  (16) and (17) one obta ins  

The procedure of s imulat ion of a s e t  of two cor re la t ed  s t a t ionary  

Gaussian processes x ( t )  and y ( t )  w i l l  be described b r i e f l y  using t h e  

so-called Monte Carlo method (see  Refs. 8,  9 and 1 0 ) .  Since two 



s t o c h a s t i c  processes with a r b i t r a r y  spectrum and coherence function can 

be produced, t h i s  method can be applied t o  any physical  phenomena as long 

as  the  process can be assumed t o  be a s t a t i o n a r y ,  Gaussian and has a zero 

mean. Using expressions (6) , (19) and (20) , A j t  b j  I axyj and 0 can be 
j  

obtained from the  given spectrum functions 

-1 
and 0 = t an  

j 

where j = 1, 2, 3 - - - - n. The l a r g e r  n ,  the  more p rec i se  t h e  random 

processes x ( t )  and y (t) can be simulated. 

The next  s t e p  i s  t o  generate a co r re la t ed  p a i r  of  random var iab les  

'j 
and n f o r  j  = 1, 2 ,  

j  - - - -  n from t h e  j o i n t  p robab i l i ty  dens i ty  

function ( 8 ) .  This expression i s  t h e  j o i n t  p robab i l i ty  dens i ty  function 

of two random var iab les  + and n each with a uniform probab i l i ty  density 
j j  

function over the  i n t e r v a l  from zero t o  2 ~ .  This can be done a s  foEBows, 

(see Refs. 8 and 9)  : 

Step 1. 

A s e t  of n independent random var iables  d i s  generated from a 
j 

uniform probab i l i ty  dens i ty  function over the  i n t e r v a l  from zero t o  one. 

Now a s e t  of values of  + can be generated from 4 = 2 ~ d ,  f o r  j  = 1, 2 ,  
j j 1 





described i n  the  above paragraph. We can now proceed t o  c a l c u l a t e  a 

po in t  of t h e  random processes,  say a t  time t with 
1 ' 

n 
x ( t l )  = 2 C A cos (w + + € I  + $ . I  

j = 1  j j 1  j I 

Y (tL) = 2 C b. cos ( w  tl + q . )  
j = 1  I j  I 

Next, t h e  following po in t  of  the  random processes can be ca lcula ted  a t  

time t ,  e A t  and so on. The choice of  t h e  time i n t e r v a l  depends on "che 

value of the  upper s i g n i f i c a n t  wave number and should be chosen such that 

111. TRIGONOMETRIC MODEL WITH NORMALLY DISTRIBUTED AMPLITUDE 

Consider t h e  following representa t ion  f o r  the.random process 

n 
x ( t )  = C (a cos w . t  + b .  s i n  w . t )  

j = 1  j 3 3 3 

where t h e  c o e f f i c i e n t s  a and b .  a r e  independent random vs.riables, each 
j  I 

s e t  with the  same normal p robab i l i ty  dens i ty  function with standard 

devia t ion  o - and with zero mean. further more,^ and t a r e  de te rmin i s t i c  
X '  j 

representing the  wave number and time respect ive ly .  

I n  the  following sec t ion  it w i l l  be shown t h a t  expression ( 2 2 )  

represents  a s t a t ionary  Gaussian process w i t h Z e r o  mean. The expected 

value of  x ( t )  i s  
n 

E [ x ( t ) ]  = C { ~ [ a . ]  cos w . t  + ~ [ b . ]  s i n  w.t} 
j = 1  3 3 7 3 

s ince  E [ a . ]  = ~ [ b . ]  = 0 ,  E [ x ( t ) ]  = 0. 
I 3 



The autocorre la t ion  function f o r  x ( t )  becomes: 

n n 
E [ x ( t )  x ( t + ~ )  ] = C C E[a.a I cos w . t  cos w ( t + ~ )  + 

j = l  k = l  7 k 3 k 

E[a .b  I cos w . t  , s i n  w ( t+? )  + 
7 k 7 k 

E[b.b I s i n  w . t  s i n  w ( t+ ' r )  
7 k 3 k 

s i n c e  b .  and a a r e  independent f o r  a l l  values of j and k ,  one has 
:I k 

A l s o  

E La a I = E [b b ] = o2 f o r  j = k and i s  zero f o r  j # k. 
j k j k x j 

Consequently the  autocorre la t ion  becomes 

The autocorre la t ion  function R ('r) i s  independent of  time t and depends 
X 

on t he  time l a g  T only. Also, t h e  sum of a s e t  of  independent random 

var iables  with normal d i s t r i b u t i o n  gives r i s e  t o  another random var iab le  

with a normal d i s t r i b u t i o n .  Consequently, x ( t )  represents  a s t a t ionary  

Gaussia:n (normal) process with zero mean. 

T:ne power s p e c t r a l  dens i ty  function can be obtained by taking t h e  

Fourier  transform of R ( T )  
X 

Using ( 2 3 )  we have 

1 m 
I1 

o2 cos ( W  T) e 
-i w'r s (u) = - 

X 2lr I 
d'r 

-m j = 1  x j j 



s ( w )  = - 2 a, 

X 2 TT 0 I COS ( w . T )  C O S W T  d ~ .  
j = 1  x j  -m 3 

Introducing the  Dirac d e l t a  function 

-i (w-w,  ) T  rn 
~ T T  6 ( w - w . )  = I e -J d~ = 1 cos UT cos w . T  d~ 

7 -m -00 I 

m 
+ J s i n  UT s i n  w . T  d~ 

00 1 

Similar ly ,  

i ( w + w .  ) T 2~r 6 (w+w. = J~ e 1 d~ = fin' cos w~ cos w rdr  
3 -m -00 j  

m - J s i n  w~ s i n  w rd r  
-CO j 

Consequently, 

J m  cos w T cos wr dr  = IT { 6 W - w . )  + 6(w+w.)} 
-a3 j J I 

and the  power s p e c t r a l  densi ty function can be wr i t t en  a s  

This expression gives the  r e l a t i o n  between t h e  power s p e c t r a l  densi ty 

function and t h e  standard deviat ion a of  the  normal random var iables  
x j 

with zero mean a and b . 
j j  

Consider now another s t a t ionary  Gaussian process with zero meam: 

n 
Y (t) = C {c cos ( w . t  + a.) + d s i n  ( w . t  + a , ) )  

j = 1  j 3 J j  I I 

where the  coef f i c ien t s  c and d a r e  independent random var iab les ,  each 
j j 

s e t  with the  same normal p robab i l i ty  densi ty  function with standard 

deviat ion o and with zero mean. And a is  determinis t ic ,  representing 
~j ' j 

the  phase angle. The two s ta t ionary  normal processes a r e  corre la ted  i f  



there exis t s  a non-zero correlation between a and c and/or b and d . 
j  j  j  j  

The cova.riance C between two random variables a and c i s  defined as 
XY j j j 

Since a and b have the same standard deviation for  the same j ,  and the 
j j  

same i s  t rue for  the random variables c and d the covariance between 
j j  ' 

a and c must be equal t o  the covariance between b and d . The 
j j  j j  
correlation coeff ic ient  is  defined as 

and consequently 

The cross-correlation function between the random process i s  

n 
E [x (t) y ( t + ~ l  = C C E1a.c 1 cos(w.t)  cos (w t +w T + a ) + 

j=1 k=l 3 k I k k  k 

E[aj\l cos ( o . t )  s i n  ( w  t + w r + ak) + 
I k k 

E[b c I s i n  ( w . t )  cos (w t + w T + ar ) + 
j k 3 k k k 

Elbj%l s i n  ( w . t )  s i n  (w t + o r + 
7 k k Clk) 

Noting t h a t  E[b.c I = E[a 1 = 0 and 
1 k j% 

E[a c I = E[b 
3 k 

dkl = u a 
j  x j  y j  'xyj 

for  j = k 

and zero fo r  j # k the cross-correlation function becomes 

~ [ x ( t )  y ( t  + TI ]  = C a 0 cos ( w  T a.1 
j = 1  xj y j  'xyj j I 



In general, the cross-correlation function is not an even function of 

and its Fourier transform should be complex. The cross-spectral density 

function is defined as 

substituting expression (27) , 
n 

l C  
m - i ~ o z -  s (w) = - CT CT $ cos (w.r + a.1 e d~ (28) 

XY 27r j = 1  xj yj 'xyj -_ 3 3 

However, 

-iwr rn -iwr 
cos (w.r + a,) e 

-00 
d~ = cos a j cos w r e d? 

I 3 j -m j 

a, -iw~ - sin a. J sin w r e dr 
3 -a j 

and 

a -iw~ cW 

J cos (w.r + a,) e dr = cos a cos w.r cos WT dr f i sin 
-m 3 3 j -m J 

m 
a j sin w .T sin wr d~ 
j -m I 

Introducing the Dirac delta function, 

rn -iwr 
J cos (w.r + a.) e dr = 7r cos a ( 6(w-w.) + 6 (w+w.)I 
-m 3 3 j I I 

+ i n sin a { 6 (w-w,) - 6 (w+wj)i 
j J 

The co-spectral density function becomes 

I 
C (w) = 2 C CT 0 P cos 01.1 6 (w-w.) + 6 (w+o.) 3 
XY j = 1  xj yj X Y ~  3 3 3 

and the quadration spectral density function becomes 

1 
n 

Qxy (a) = - - C 0 CT P sin a (6(w-w.) - 6 (w+w.)) 
j = l  xj yj xyj j I 3 



The d i s c r e t e  form of t h e  power spectrum i s  given by Eq. (5) 

s" (w) = C 
x S: (w.1 6 (w-w.) A w  f o r  w > 0 

3 7 - 
j = 1  

w - w  
u R where ,Aw = - and w = w + (j-1) A w  
n-1 j R 

comparing with equation (24) we have 

Similarly:  

From t h e  expressions f o r  t h e  co-spectrum and quadrature spectrum 

C 
2 C  (w.1 A w = a  a  

XY I xj y j  'xyj 
cos a 

j 

and 

C 
2 Qxy (0 .1  A w =  - a  

3 
0 

x j  y j  'xyj 
s i n  a 

j 

From Eq. (31) and Eq. (32) 

C 
- 1 (w.) 

a = tan  - QxY 7 
j cC (w.1 

xy I 

and from Eqs. (311, (321, (29) and (30) 

The l a s t  expression shows t h a t  the  co r re la t ion  c o e f f i c i e n t  p between 
xy j 

t h e  random var iables  i s  i d e n t i c a l  t o  the  coherence function y (w.) of 
xy 7 



t he  two random processes x (t) and y (t) . 

The next  s t e p  i s  t o  generate independently, the  random var iables  a 
i 

and b from a normal d i s t r i b u t i o n  with zero mean and a s tandard devia t ion  
j  

0 = 4 2 s; ( w .  ) A W  and o = 4 2 sC ( W  . )  Aw respect ive ly ,  for  j = 1. x j I y j  Y I  

27 - - - -  , n. Again the  l a r g e r  n ,  the  more p rec i se ly  the  random processes 

x ( t )  and y ( t )  w i l l  be simulated. The next  s t e p  i s  t o  generate t h e  random 

var i ab les  c  and d from condi t ional  normal d i s t r i b u t i o n  derived from t h e  
j j  

following considerat ions.  Since a and c a r e  both normally d i s t r i b u t e d ,  
j  j  

the  j o i n t  p robab i l i ty  dens i ty  function of  a  and c i s  
j  j  

and the  p robab i l i ty  dens i ty  function of  a  i s  
j 

The condi t ional  p robab i l i ty  dens i ty  function of  c f o r  given a i s  j  j  

P (a,, c i )  



Consequently, the  condi t ional  p robab i l i ty  dens i ty  function of  ci f o r  given 
J 

o 
a is al:so Gaussian with mean p - 'j a and a s tandard devia t ion  
j X Y ~  oxj j 

o f 0  h-pkje Similar ly ,  t h e  condi t ional  d i s t r i b u t i o n  of  d f o r  given b 
~j j j 

0 

i s  Gaussian with mean p - y j  b and standard devia t ion  of 
xyj oXj j 

The random var iab le  c i s  generated from a Gaussian d i s t r i b u t i o n  with mean 
j 

CT 

P 
yj a --- and a s tandard devia t ion  of o J1-p2 

X Y Y ~  o x j  j y j  X Y ~  

SimiZar:Ly, the  random var iab le  d .  i s  generated from a Gaussian d i s t r i b u t i o n  
3 

0 
w i t h  mean p - 'j b and a s tandard devia t ion  of  o y j  J l-pkj 

xyj oxj j 

One can now proceed t o  ca lcu la te  a po in t  of the  random processes,  say a t  

time t with 
1 

x (*t ) = C 
1 

( a  c o s w  t + b . s i n w  
j = 1  j j l  I 

j '1) 

and y (5. = C { c  cos ( W  t + a , )  + d .  s i n  (w tl +ir.)l 
.L 

j = 1  j j l  I 3 j I 

using expression (33) and w = w + (j-1) Aw 
j 

W -W 
u R 

where A w  = --- f o r  j = 1, 2 ,  - - - -  n. 
n-1 

N e x t ,  tine following po in t  of  t h e  random processes can be ca lcula ted  a t  

time t, + A t  and so  on. Again the  choice of time i n t e r v a l  A t  depends 

on the  .value of t h e  upper s i g n i f i c a n t  wave number and should be such t h a t  



I V .  SIMULATION OF THE STmAMWISE STRONG-WIND TURBULENCE COMPONENT 

Let the  flow f i e l d  be homogeneous i n  t h e  hor izon ta l  plane and stationary 

with respec t  t o  time. The wind ve loc i ty  can be resolved i n t o  th ree  components, 

two i n  t h e  hor izon ta l  planelone of  which i s  along t h e  mean wind d i r e c t i o n  (x) 

and one is  normal t o  it ( y ) .  The t h i r d  component is  taken v e r t i c a l l y  upward 

( 2 ) .  The instantaneous components can be w r i t t e n  i n  forms of  a  mean and a 

f luc tua t ion ,  so  t h a t  

u ( z , t )  = U (2 )  + u ( z , t )  

v ( z , t )  = v ( z , t )  

w ( z , t )  = W (z)  + w ( z , t ) .  

The estimated s p e c t r a l  dens i ty  function of t h e  wind speed i n  the  

planetary boundary l aye r  f o r  t h e  e a s t e r n  United S t a t e s  is  given by 

van der  Hover (Ref. 11). It shows t h a t  t h e  " spec t ra l  gap" between 1 cycle 

per  hour t o  10 cycles p e r  hour may be used f o r  t h e  s t a b l e  est imation of 

- 
U and k f o r  a  sample function with a durat ion of about 1/2 hour. 

Under s t rong  wind condit ions,  t h e  mixing ac t ion  of t h e  mechanical 

turbulence tends t o  reduce the  atmosphere t o  a  state of  n e u t r a l  s t a S i l i t y .  

Consequently, the  turbulence near  t h e  ground i s  only due t o  f r i c t i l ~ n a l  

e f f e c t s  and w i l l  vary only s i g n i f i c a n t l y  w i t h  t h e  surface  drag and height  

above the  ground. I f  t h i s  i s  t h e  case ,  the  turbulence can be described as 

a random process which may be approximated by a s t a t ionary  Gaussian process 

with zero mean (Ref. 5) . 
I rent  Two cor re la t ed  longi tudinal  turbulence-components a t  two d i f f z :  

loca t ions  A and B a r e  simulated. The d i r e c t i o n  of  t h e  separa t ion  d is tance  

A B i s  normal t o  the  x coordinate i n  t h e  hor izon ta l  plane and consequently 

p a r a l l e l  t o  t h e  y coordinate. 



The s p e c t r a l  dens i ty  function of  t h e  longi tudinal  turbulence- 

component can be estimated by using Davenport's empirical  strong-round 

spectrum (Ref. 12) . 
-2 

4K U 1  x2 S '  ( f )  = - 
U f [1+x2] 4/3 

where f is  the  frequency i n  cycles pe r  second. K is  t h e  drag coe f f i c i en t  

dependerit on t h e  surface  roughness and c i s  t h e  reference mean-velocity 
1 

near the ground a t  an e levat ion  of  10 m, so t h a t  the  shear  s t r e s s  near  the  

m 
- 

ground r ' = K p 5:. The parameter x = - 2 1200 
and J S'  ( f )  df = u . 

o u  

Using t h e  c i r c u l a r  frequency w ,  where w= 2Tn, expression (38) becomes: 

600 w Whe~e x' = - f o r  t h e  range 0 < w < m - 
Tr E7 

03 

so that.  J S; ( w )  du = 7 
0 

Hinze (Ref. 13) shows t h a t  the  auto-correlat ion c o e f f i c i e n t  R ' ( T )  = 

u(t1 ujt+.r) - and t h e  energy spectrum function S '  (n) a r e  Fourier  cosine 

L2 u 

transforms. Using the  f a c t  t h a t  R '  ( T I  and S' (n) a r e  even functions and 
U 

introducing the  auto-correlat ion function R ( T )  = R '  (r)  7 and t h e  

exponential form one obta ins  

and 



Now l e t  S ( w )  = 1/2 S '  ( a )  then 
U U 

and 

Expression (40) is  used i n  t h e  previous sec t ions  of  t h i s  r e p o r t  and. 

consequently expression (39) becomes 

Now Davenport's expression f o r  t h e  power s p e c t r a l  dens i ty  function 

corresponds t o  the  one a s  defined before. 

Ang and Amin (Ref. 5) suggest an empirical  r e l a t i o n  f o r  the  coherence 

function f o r  t h e  longi tudinal  turbulence components a t  two po in t s  separated 

by a d is tance  Ay p a r a l l e l  t o  t h e  y coordinate. 

I 

where k' i s  a dimension l e s s  c o e f f i c i e n t  between 20 and 25.  

The quadrature spectrum i s  zero when t h e  cross  spectrum i s  even- 

For t h i s  p a r t i c u l a r  case the  maximum cor re la t ion  between u and u i s  
A B 

expected t o  occur a t  a zero l a g  and consequently t h e  cross-spect ra l  density 

function i s  expected t o  be approximately even. Consequently it i s  assumed 

t h a t  the  quadrature-spectrum function,  
QxY 

(w)  , i s  zero f o r  a l l  w. 

Figures 2 and 9 show two s e t s  of  co r re la t ed  time s e r i e s  representing 

the  stream wise turbulence components based on Davenport's empirical  

strong-wind spectrum, the  exponential expression f o r  the  coherence function 

(Eq. 43) and a vanishing quadrature spectrum densi ty  function.  The t w o  

time s e r i e s  i n  Fig. 2 were obtained using t h e  exponential model with 



uni fo rmly  d i s t r i b u t e d  phase angle.  In  Fig. 9 t h e  two time s e r i e s  were 

obtained from the  tr igonometric  model with normally d i s t r i b u t e d  amplitude. 

I n  both cases the  number of generated random var iables  i s  600 (n = 600).  

Davenport's spectrum was evaluated a t  i n t e r v a l s  of Aw = .005236 rad/sec with 

a lower wave number cut-off of wR = 0.00377 - rad (0.0006 HZ) and an upper 
s e c  

wave number cut-off w = 3.14 rad/sec (0.5 Hz).  A l l  simulated turbulence 
u 

data were evaluated a t  A t  = 1.0 sec  time i n t e r v a l  i n  order  t o  avoid the  

e f f e c t  of a l i a s i n g .  The t o t a l  length of each of  the  simulated time s e r i e s  

i s  t h i r t y  minutes. The average reference ve loc i ty  a t  a l t i t u d e  of  10 m. was 

- 
taken t o  .oe U = 96.5 m/sec. The drag c o e f f i c i e n t  K was chosen t o  be 0.005 

1 

and the Latera l  separa t ion  d is tance  A y  was taken a t  5 meters. 

Figures 4 and 10 show the  hystograms of t h e  amplitude of t h e  simulated 

time s e r i e s  and a r e  approximately Gaussian i n  nature.  However, both s e t s  

show a non-zero mean-value which can be a t t r i b u t e d  t o  t h e  sample length.  

With increased sample length t h e  mean value w i l l  approach zero. The 

ca lcula ted  standard devia t ion  t u r n s  out  t o  be of  t h e  order  of 2.6 m/sec i n  

a l l  four cases.  Since Davenport's spectrum seems t o  be independent of 

a l t i t u d e  the  ca lcula ted  standard devia t ions  w i l l  a l l  be of  the  order  o f  

2 - 6  m/sec, which can be a t t r i b u t e d  t o  the  short-comings of  t h i s  emperical 

r e l a t i o n  f o r  the  s p e c t r a l  dens i ty  function.  

Figures 4 and 11 show the  ca lcula ted  auto-correlat ion functions f o r  

t h e  simulated turbulence data .  For a time-lag T = 0 of course, t h e  variance 

of the trrne s e r i e s  which i s  the  square of  t h e  standard devia t ion  must be 

obtained., For a l l  four time s e r i e s  t h i s  requirement was extremely well  

satisfied* A s  a r u l e  of thumb, it i s  considered t o  be des i rab le  t o  keep 

the maar im~am time l a g  l e s s  than one-tenth of t h e  sample s i z e  (Ref. 7 ) .  



In figures 5 and 12 the calculated cross-correlation function 2-s shown. 

Since it was assumed that the quadrature spectrum for the two sets of turbulance 

data vanished for all w, the cross-correlation function must be symmetrical. 

such that R T = R 1 .  By comparison of the sets of cross-correlation 
XY YX 

function this requirement seems to be adequately satisfied. 

Figures 6 and 13 show the calculated spectral density function and 

Davenport's emperical spectrum from which the time series were obtai-ned, 

For the first method the agreement is very good but for the second awtbod 

the agreement seems not so good. However, the degree of agreement depends 

on the particular sample realization of the time series. One must keep in 

mind that the calculated spectrum function is strictly an estimator of the 

strictest definition of the spectral density function. 

Figures 7 and 14 show the calculated cospectra and quadrature spectra. 

The calculated quadrature spectra should theoretically be zero for all. 

frequencies. However, because of the relatively small sample length (30 min.1 

of the time series one may expect non-zero values for the quadrature spectra 

at low frequencies. 

The coherence functions for the two sets of simulated turbulence data 

are shown in figures 8 and 15. By nature of the definition of the coherence 

function, one may expect large deviation from the emperical expressi-on for 

the coherence function. It must be remembered that the results given in this 

report are based on a single set of sample realizations of relatively short 

duration. Consequently, the calculated functions are simply estimators of 

the required statistical quantities. The accuracy of these estimators can 

be improved by using more sample realizations or evaluating the random 

processes for a longer sample time. 



Based on the above results for the two different methods, no significant 

differences can be found. However, the simulation technique utilizing the 

trigonometric model with normally distributed amplitudes is more adaptable 

to the simulation of many correlated random processes simultaneously. 
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F i g .  1. Schematic sketch of the continuous and discrete sDectrum 
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F i g ,  3. I-lystograms of amp1 i tude of time ser ies  of Fig. 2 .  Dashed 
curve represents the normal probabi 1 i ty density function 



Fig. 4. Calculated autocorrelation. functions of time ser ies  of  Fig. 2 
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Fig. 5 ,  Calculated cross-correlation functions of time ser ies  of Fig. 2 



Davenport ' s  spectrum 

FRED 

Fig.  6. Calculated spectra of time ser ies  o f  Fig. 2 
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Fig. 7. Calculated co-spectrum and quadrature spectrum 
of time series of Fig. 2 
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- Empirical Coherence Function. 
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F i g .  8. Calculated coherence function of time ser ies  o f  Fig. 2 





Fig. 10. Hystograms of amplitude o f  time ser ies  of Fig. 9 
Dashed curve represents the normal. probability density func t i on  
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Fig. 11. Calculated autocorrelat ion functions o f  time s e r i e s  of Fig. 9 
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Fig. 12.  Calculated cross-correlation, functions of time series o f  F i g .  9 
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Davenport's spectrum 

F ig .  13. Calculated spectra of time ser ies  of Fig .  9 
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Fig .  14. Calculated co-spectrum and quadrature spectrum of t ime  ser ies  
o f  F ig .  9 



,-, Empi ri cal Coherence Function 

F i g .  15.  Calculated coherence function of time ser ies  of Fig. 9 
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