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ABSTRACT

The classical theory for Benard Convection of a viscous,
incompressible fluid layer confined between horizontal surfaces
is generalized to semi-bounded and unbounded fluids. Two
and three-layer models are solved numerically to give curves
of neutral stability in the Rayleigh number wavenumber plane.
For each model a family of neutral curves is given which is
parameterized by the static stability of adjacent layers of
fluid. The results demonstrate a destabilization of the
classical problem which is most pronounced at small wave-

numbers when the static stability of adjacent layers is neutral.




1. INTRODUCTION

It has been almost a century since Count Rumford discovered the phenomenon
of thermal convection. Numerous researchers have since contributed to our
present understanding of the subject. The classical.laboratory experiments
were performed by Benard and the classical‘théory is due to Lord Rayleigh.

Thermal convection has long been recognized as having an important dynamical
influence in the atmosphere. In this connection Satellite photography has pro-
vided us with eyidence of thermally generated cellsl’z. More recently sensitive
radar has been used as a probe to reveal patterns of cellular motion in clear
air3.

The stability theory for parallel shear flow has had a rather long and
controversial history. Only recently have some of the fundamentél difficuities
been resolved., Instead of the cellular motions of :hermal convection the most
unstable disturbances to parallel shear flow are two dimensional. When thermal
instability occurs in fhe presence of a "Subcritical”™ parallel shear flow an
interaction of mechanisms results in the generation of longitudinal rolls with
axes oriented in the direction of flow,

In their study of the stability of plane Poiseuille flow of a thermally
stratified fluid, Gage and Reid4 show that the stability boundary in the R, Re-~
plane recovers the classical results for Benard convection with rigid-rigid
boundaries as Re » 0 and the basic flow is removed from the problem, The reasov
that this classical result should be recovered is perfectly clear since the
boundary conditions employed in the characteristic value problem for the stabilit
of the stratified channel flow were consistent with the rigid-rigid boundary

conditions of the classical thermal problem.




I1f one considers, alternatively, the stability of a thermally stratified
boundary layer profile it is not clear whether any classically known result
will be recovered by the stability boundary in the R - Re plane as Re =+ 0.

In fact, when we recall that the upper "boundary condition" in the stability
theory for parallel shear flows of the boundary-layer type is really a bouadeéQ
ness condition, we notice a basic inconsisﬁency between the formulation of the
characteristic value problem for shear flow instability and the classical forx=-
mulation of the characteristic value problem for thermal instability. This
observation motivates’the reexamination of thermal convection theory with the
goai of developing a more general theory for semibounded and unbounded models.
In order to accomplish this objective we shall replace some of the classical
boundary conditions with matching conditions and the boundedness conditicns.

It is anticipated that the results of this study will provide the proper limits
for further studies on thermally stratified boundary layer and unbounded flows.
2, THE MATHEMATICAL MODELS

The mathematical formulation used in the models described below is similar
to that used by Cui*rie5 to study the effect of the heating rate on thermal
instability. The novelty here is to allow the fluid to extend to infinity re-
placing classical boundary conditions by matching conditions at an interface

and boundedness conditions at infinity.

The Two-Layer Model

Consider a statically unstable layer of viscous, heat-conducting, incompres
ible fluid bounded below by a free or rigid horizontal surface and above by an
infinitely deep layer of the same fluid, The vertical temperature gradient will

be specified to be constant in each layer and all properties of the fluld will b
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assumed horizontally uniform; the fluid extending to infinity in the horizontal
directions, Our goal will be to determine the curve of neutral stability and
to see how it depends on the static stability RU of the upper layer,

The eigenfunctions WQ(Z) satisfy the usual sixth~order equation

(p%-2%y3 W, o+ azang -0 , (2.1)

in each layer. In equation (2.1) WQ ig¢ the vertical perturbation velocity, a

is the horizontal wavenumber, D is the derivative with respect to the vertical

coordinate and R, is the Rayleigh number defined by

2
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R, = ~8Yg |y "
9, J—
K v
T . . .
where 3 1o 18 the temperature gradient of each layer and H is the depth of

the statically unstable layer. For the two layer models, then, there are two
Rayleigh numbers of interest: the positive Rayleigh number, R, of the staticall
unstable layer and the negative Rayleigh number RU of the infinitely deep static
stable layer of fluid,.

When R, > 0 the solutions to equations (2.1) can be written

2
° L@ (1) ,

W = T C exp { r z } (2.2)
3 , 2 2

‘ i=1

where rél) are the roots of
2 2.3 2 _ P

(rg - a )" + a~R2 = 0 {2.3)

The roots , of course, differ for each layer and the eigenfunctions and their

derivatives must be matched at the interface of the two layers.

ally




We obtain the characteristic determinant for the two layer model by
requiring simultaneous satisfaction of the lower boundary conditioms, the
matching conditions at the interface, and the boundedness condition at

infinity. The lower boundary conditions are
W=IW = (Dz—az)2 W=0 and W = DZW = (D2~a2)2 W=0 (2.4

for rigid and free boundaries respectively. The boundedness condition at
infinity requires that we reject the exponentially large eigensolutions in

the upper layer, If we denote the eigensolutions W

U WL, in the upper and

lower layers then the matching conditions are

wL(“) (+1) = WU<n) +1) (n=0,1,2, ..5) (2.5

where n represents the order of the derivative. The physical conditions
consistent with the matching of the eigenfunction and its first five derivatives
are the requirements of continuity of the vertical perturbation velocity,
horizontal perturbation velocities, stress, pressure, perturbation temperature,
and vertical derivative of perturbation temperature.

The infinitely deep upper layer can also be considered neutrally stable. If

this is done, the solution to‘eq. (2.1) becomes

*' (1) ~az (2) =~az (3) 2 ~az
WU = CU e + CU ze + CU z e (2

(4) +az (5) +az (6) 2 +az
+ CU e + CU ze + CU z e

The characteristic determinant is obtained as before by employing the solutions

of (2.6) instead of (2.2).
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Another special case is obtained in the limit Ru > ~ ®, when the eigen-
solutions of the upper layer vanish identically. It would then appear reason-

able to replace the matching conditions (2.5) by the boundary conditions
W+l = W(l)(+l) = W(z)(+l) =0 ’ (2,7)

With the boundary conditions of (2.7) the characteristic value problem reduces

to the solution of a 6x6 determinant.

The Three-Layer Models

We now turn our attention to the stability of three-layer umbounded models in
which an infinitely deep, neutrally or stably stratified layer of fluid also
bounds the statically unstable layer from below., The lower boundary conditions
are then replaced by matching conditions at the lower interface and the solutions
of the governing equation are required to satisfy a boundedness ésnditi@n at
minus infinity.

Congistent with the above model we have three bounded solutions in the
top and bottom layers and six matching conditions to satisfy at each interface.
As before, we wish to determine the curves of neutral stability in the wave-

number-Rayleigh number plane. These curves will be parameterized by the negati

D

Rayleigh numbers RT and RB of the top and bottom layers.
3., RESULTS OF THE COMPUTATIONS

Curves of neutral stability were obtained by searching for zerces in the
characteristics determinants for the two and three layer models. The determinant

were evaluated numerically with the aid of a "Math~Pack" subroutine supplied wi

the Univac 1108,




The Two~Laver Models

The results for the computations on the two-layer model are presented
in Figures 1 through 5 and Table 1. Figure 1 contains the results for the
stability of the two-layer model bounded above by a neutrally stable layer.

The curve of neutral stability for the rigidly bounded case is considerably
less stable than the cléssical rigid-free model, Destabil;zation is most
pronounced at small wavenumbérs. In fact the minimum Rayleigh number of 32

is approached asymptotically as the wavenumber approaches zero. The neutral
curve for the freely bouﬁded case is still less stable with apparently no
critical Rayleigh number being achieved. Both curves show greatest instability
at the smallest wavenumber.

Figures 2 and 3 show the stabilizing effect of an infinitely deep statically
stable layer above the unstable layer. Slight static stability has the same
effects on both freely and rigidly bounded models, With stratification there
exist critical wavenumbers and Rayleigh numbers which are shown in Table 1
and Figures 4 and 5 to increase monotonically with increasing static stability
of the upper layer. These critical values are consistently lower with the
free lower surface.

With é rigid lower boundary and statically stable fluid above the unstable
laver our two-layer model is somewhat similar to the models employed to investiga
penetrative therpal convection., Provided the upper layer is sufficiently stable
the presence of an upper boundary will not appreciably effect the stability.

For this situation we have demonstrated agreement between our results and those

. . 6
of Faller for penetrative convection .




The Three~Layer Models

Figures 6 through 12 and Teble 2 contain the results of the computations
for the three layer model. The general behavior of these models is the same
as the two layer models. When the top and bottom layers are neutrally stable;
there exists no critical wavenumber or Rayiéigh number and the curve of neutral
stability lies below that of the bounded models discussed above.

The results of Figures 7 through 12 document the stabilizing effects of
the static stabiiity of upper and lower layers., Table 2 and Figures 11 and 12
show the montonic increase in critical values of Rayleigh numbers and wavenumbers
with increasingly stable stratification of the top and bottom layers.
CONCLUDING REMARKS

Part of the motivation for this work came from the desire to understand
the proper limiting situation for thermal instability in the presence of =z
shear flow as the Reynolds number of the flow approachés zeroc. Further motivatdi
for pursuing these models in detail was derived from the realization that the
boundedness conditions usually applied in stability investigations of boundary
layer profiles of parallel shear flow might provide a more realistic model for
applications to geophysical fluid dynamics. The use of statically stable layers
in place of boundaries make these models even more realistic for modeling local
thermal instability. The results of these computations would suggest that the
static stability of layers adjacent to an unstable layer could fundamentally

alter the stability of the unstable layer. Further computations have suggested

that the depths of these adjacent layers will also be important paraneters.
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Several authors have previocusly noted the destabilizing effect of
altering boundary conditions on the onset of thermal instability of the
classical problem. Sasaki7% in particular, has examined the effect of
partial or complete insulation of a boundary with gqualitatively similar
dynamical effects,

The stabilizing effect of boundaries on thermal instability is the
most basic result to come from the investigation of these simple models,
The lack of curvature in the neutral curve for the unstable laver bounded

above and below by infinitely deep layers of unstratified fluid suggests
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that the stabilization of small wavenumber disturbances is due to the

G

of boundaries. TFurthermore, the existence of a critical wavenumber at whic!

i

the Rayleigh number achieves a minimum on the neutral curve is due to
simultaneous stabilizing effects of boundaries, most pronounced for small

wavenumbers, and viscosity most pwonounced for large wavenumbers. That

i
(5N
i

boundaries are responsible for stabilizing small wavenumber disturbance

£

also consistent with the results of stability investigations of unbounded
P b - v X 8 2 2 9 ; g k]
parvallel shear flow. The work of Esch™, Tatsumi and Kakutani”, Tatsumi and

1 . . fas .
Gotoh @9 and Clenshaw and Elllotll demonstrate instability at low Reynolds

numbers and small wavenunbers for unbounded flows.
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TABLE 2

THE VALUES OF THE CRITICAL WAVENUMBERS,a AND CRITICAL RAYLEIGH NUMBERS
Rc’ ALONG THE CURVES OF NEUTRAL sTABILITY FOR THE THREE-LAYER MODELS

RL=0.6 R = -1 RL=—104
R a R a R, a R

C C C C c

...2 v
- -10 - - - - .801 92,57

-1 - - - - 1.00 105.5
~102 .378 16.67 681 25.26  1.67  “247.3
~10% .795 92.32  1.00 105.5  2.52 781.3
~10° 1.15 207.7  1.27 219.4  3.02 1343
~108 1.37 300.6 1.45 311.0  3.27 1684
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Captions for the Figures

Figure 1. The curves of neutral stability for a two layer model bounded above
by an infinitely deep layer of unstratified fluid and below by rigid and free

surfaces.,

Figure 2. The dependence of the curves of neutral stability of the two layer
model bounded below by a rigid surface on the Rayleigh number, RU’ of the upper
laygr.

(a) Ry, small

(b) RU large

Figure 3. The dependence of the curves of neutral stability of the two layer
model bounded below by a free surface on the Rayleigh number RU of the upper
layer,

(a) RU small

(b) Ry large

Figure 4, The variation of the critical wavenumber, a_, on the Ravlieigh number

Ry for the two layer model with rigid'and free lower boundaries.

Figure 5. The variation of the critical Rayleigh number, Rc’ on the Rayleigh

number RU for the two-layer model with rigid and free lower boundaries.

Figure 6. The curve of neutral stability for the three layer model with unstratis

fied layers above and below. TFor comparison the results of figure 1 are reprodu

Figure 7. The dependence of the curves of neutral stability for the three layer

model with RB=O upon the Rayleigh number RT of the top layer.
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Figure 8, The dependence of the curves of neutral stability for the three layer

model with RB = -1 upon the Rayleigh number RT of the top layer,

Figure 9, The dependence of the curves of neutral stability for the three layer

model with RB = --lO4 upon the Rayleigh number RT of the top layer.

Figure 10. The dependence of the curves of neutral stability for the three
layer model with lower boundary conditions W = DW = D2W = 0 upon the Rauleigh

number RT of the top layer.

Figure 11. The variation of the critical wavenumber a, for the three layer model
for several values of the Rayleigh number RB of the bottom layer with the Rayleigh

number RT of the top layer.

Figure 12, The wvariation of the critical Rayleigh number Rc for the three layer
model for several values of the Rayleigh number RB of the bottom layer upon the

Rayleigh number RT of the top layer.
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The computaticns reported in this technical note were

performed during the Summer of 1969. At that time the
author was unaware that similar work was being pursued else-

where. In particular the results reported here are in gen

agreement with results reported in:

Whitehead, J.A. and M.M. Chen, 1970: Thermal Stabil
and Convection of a thin fluld layer bounded by a Stably
Stratified region, J. Fluid Mech., 40, 549-576.

and

Oguva, Y. and H. Kondo, 1970: A linear stability of
convective motion in a thermally unstable layer below
a steble region. J. Meteor. Soc, Japan, 48, 204-215,






