## General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)



## UNIVERSITY OF MARYLAND COMPUTER SCIENCE CENTER COLLEGE PARK, MARYLAND



# Simulation of a Single-server Model for a Paging Drum Channel System by 

Gee-yin Kwok

Table of Contents
Abstract

1. Introduction
2. The waiting queue
3. A single-server model
4. Formulation of the model
5. The simulation programs
5.1 Flow charts
5.2 Listings
6. Simulation examples
6.1 Example 1
6.2 Example 2
6.3 Example 3
7. Acknowledgement
8. References

Appendix A. Listing of the SIMULA simulation program
Appendix B. Listing of the FORTRAN simulation program


#### Abstract

A Single-server model is an abstract mathematical model which can be applied to many systems. This report presents the formulation of a single-server model which represents a Paging Drum Channel System. Simulation has been carried out by Frotran and Simula assuming uniformly distributed inputs.


## Simulation of a Single-server Model for a Paging Drum Channel System

1. Introduction

A single-server model is one where there is only one waiting list (queue). Although the model is simple, it can be abstractedly applied to many applications such as computer systems, service stations, input/output channels, paging drum channels, etc. If it models a computer system, then the waiting queue contains jobs to be processed. If it models a service station, then the waiting queue contains cars to be serviced. If it models a paging drum channel $P D C$, then the waiting queue contains paging requests PR's.
$\therefore$ The objective of this simulation, however, is to determeine the following: (a) the average waiting time for each PR arriving at the PDC system and (b) the total PDC system idle time which is essential in deciding whether the number of tasks should be decreased or increased.

## 2. The waiting queue

The waiting queue is represented by a two-dimensional array with indices $K$ and $J$. Index $K$ is the pointer to the $K$ th node in the queue, while index $J$ Indicates the field of the node to be taken for computation. Figure 1 shows the format of the $(I-1)^{\text {th }}$ node, the $I^{\text {th }}$ node, and the $(I+1)^{\text {th }}$ node in the waiting queue. Each node represents a paging request entry. However, the user must provide for the $I^{\text {th }}$ node the $P R$ arrival time, $\operatorname{NODE}(I, 2)$, and the $\operatorname{PDC}$ system service time, $\operatorname{NODE}(I, 3)$. For the $I^{\text {th }}$ node, $K=I$ and $J=1$, through 7. Similarly, for the $(I+1)^{\text {th }}$ node, $K=(I+1)$ and $J=1$ through 7. No link is required since the predecessor of $\operatorname{NODE}(I, J)$ is $\operatorname{NODE}(I-1, J)$ and the successor of $\operatorname{NODE}(I, J)$ is $\operatorname{NODE}(I+1, J)$, where $I>1$ and $J$ is the fleld index. According to this kind of data structure, computation of various statistics is very easily accomplished by using DO loops in Fortran and FOR clauses in Algol and Simula.


Fig. 1 Format of the (I-1)th node, Ith node, and (I+1)th node in the waiting queue

## 3. A single-server model

A picture of the single-server model for a paging drum channel is shown in Fig. 2. As a PR arrives at the single-server, it gets the service if there is no other one prior to $i t$, that is, if the single-server is free; otherwise, it enters a paging request queue.

Input parameters are (a) the PR arrival time and (b) the system service time for the PR. Simulation outputs are (a) the average waiting time of the $P R$ in the queue, ( $b$ ) total system service time, and (c) total system idle time.


Results: (a) average $P R$ waiting time in the queue
(b) total system service time
(c) total system idle time

Fig. 2 Block diagram of a single-server model for a paging drum channel

## 4. Formulation of the model

As shown in Fig. 2, a PR arrives at the PDC system, obtains the service, and leaves the PDC system. Table 1 shows the 13 entities (variables and parameters) in the simulation model, where the entities represent the vaxiable names in the simulation programs. For example, IALL represents the total simulation time while AVG represents the average $P R$ waiting time in the queue.

The activities (functional relationehips between variables and parameters) are defined by the following equations where $I$ is the index of page request in the waiting quaue:
a. For $\mathrm{I}=1$

The PR waiting time in the queue is 0 for the first PR:
$\operatorname{NODE}(1,4)=0$
(1)

The PDC system lale time is set to the PR arrival time:
$\operatorname{NODE}(1,6)=\operatorname{NODE}(1,2)$
The PR starting time is the sum of the $P R$ arrival time and the $P R$ waiting time:
$\operatorname{NODE}(I, 5)=\operatorname{NODE}(I, 2)+\operatorname{NODE}(I, 4)$
The PR finishing time is the sum of the PR starting time and PDC system service time for the PR:
$\operatorname{NODE}(I, 7)=\operatorname{NODE}(I, 5)+\operatorname{NODE}(I, 3)$
b. For $I>1$

The $P R$ waiting time is the difference between the $P R$ arrival time and the previous PR finishing time:
$\operatorname{NODE}(I, 4)=\operatorname{NODE}(I-1,7)-\operatorname{NODE}(I, 2)$
The PR starting time is the sum of the PR arrival time and the PR waiting time:
$\operatorname{NODE}(I, 5)=\operatorname{NODE}(I, 2)+\operatorname{NODE}(I, 4)$

Table 1 Entities of the Simulation Model

| Entities | Designation |
| :---: | :---: |
| IALL | total simulation time |
| NPR | number of $P R$ arriving during the simulation time interval |
| $\operatorname{NODE}(1,1) *$ | PR identification |
| NODE $(1,2)$ | PR arrival time (input parameter) |
| NODE ( 1,3 ) | PDC system service time for the Ith PR (input parameter) |
| NODE ( $I, 4$ ) | PR waiting time in the queue |
| $\mathrm{NODE}(1,5)$ | PR starting time |
| NODE ( $I, 6$ ) | PDC system idle time interval (time in terval between the Ith PR starting time and the ( $I-1$ ) th $P R$ finishing time) |
| $\operatorname{NODE}(I, 7)$ | PR finishing time |
| ISERVE | total PDC system service time |
| IDLE | total PDC system 1dle time |
| WAIT | total $P R$ waiting time in the queue |
| AVG | average $\ell \mathrm{R}$ walting time in the queue |

*I is the index of paging request.

The PR finishing time is the sum of the PR starting time and the PDC system service time for the PR:
$\operatorname{NODE}(I, 7)=\operatorname{NODE}(I, 5)+\operatorname{NODE}(I, 3)$
The PDC system idle tine interval is the difference between the PR starting time and the previous PR finishing time:
$\operatorname{NODE}(I, 6)=\operatorname{NODE}(I, 5)-\operatorname{NODE}(I-1,7)$
c. Foŕr $\mathrm{I} \geq 1$

Total PDC system service time is the sum of the service time for each PR: NPR
ISERVE $=\Sigma$ NODE $(I, 3)$
$I=1$
Total PDC system idle time is the difference between the total simulation time and total service time:

IDLE=TALL-ISERVE
Total paging request waiting time in the queue is the waiting time for each PR:

NPR
WAIT $=\quad \Sigma \quad \operatorname{NODE}(1,4)$
$I=1$
Average $P R$ waiting time is the total $P R$ waiting time divided by the number of $P R^{\prime} s$ :

AVG=WAIT/NPR

## 5. Simulation programs

The single-server model for the paging drum channel has been simulated by SIMULA and FORTRAN on the UNIVAC 1108.

### 5.1 Flow charts

The flow charts of the SIMULA and FORTRAN simulation programs for the single-server model are presented in Figs. 3 and 4. The boxes fn the flow chart are numbered and explained below:

Box 1 describes initialization; the number of PR's NPR and the length of the total simulation time interval IALL are read in from card.

Box 2 is for inftializing the index for PR(I), total system service time ISERVE, total $P R$ waiting time WAIT.

Box 3 assigns PR identification $\operatorname{NODE}(1,1), P R$ arrival time $\operatorname{NODE}(1,2)$, and the PDC system service time $\operatorname{NODE}(1,3)$. These characteristics are read in from card.

Box 4 checks if the current $P R$ is the first PR or not. If it is the first $P R$, the $P R$ waiting time is set to 0 since there is no $P R$ prior to and
it. This is shown in Box 7. If it is not the first PR, go to Box 5 where the $\operatorname{PR}$ waiting time $\operatorname{NODE}(1,4)$ is computed by subtracting the $P R$ arrival time $\operatorname{NODE}(1,2)$ from the previous $P R$ finishing time NODE (J.-1,7).

Box 6 checks if $\operatorname{NODE}(1,4)$ is negative. If it is negative, $\operatorname{NODE}(I, 4)$ is set to 0 since in this case the previous PR has left the PDC system when the current PR arrives.

Box 7 In Box 7, the PR waiting time $\operatorname{NODE}(I, 4)$ is set to 0 .
Box 8 In Box 8, the PR starting time NODFSI,5) is computed by adding the PR waiting time $\operatorname{NODE}(1,4)$ to the $P R$ arrival time $\operatorname{NODE}(1,2)$.

Box 9 In Box 9, the PR finishing time is computed by adding the PDC system service time $\operatorname{NODE}(I, 3)$ to the $\operatorname{PR}$ starting time $\mathcal{N O D E}(I, 5)$ which is the time when the current PR is serviced.

Box 10
Box 11

Box 12
Box 13

Box 14

Box 15

Box 16
and
Box 17
E x 18
Box 19

Box 20
and
Box 21
Box 22
Box 23
Box 1 Checks if the current $P R$ is the first $P R$ arriving at the PDC system. If the current $P R$ is not the first $P R$, the current system idle time $\operatorname{NODE}(1,6)$ is computed by subtracting the previous PR finishing time $\operatorname{NODE}(\mathrm{I}-1,7)$ from the current $P R$ starting time $\operatorname{NODE}(1,5)$. Checks if the computed PDC system idle time $\operatorname{NODE(I,6)}$ is negative. If it is negative, $\operatorname{NODE}(I, 6)$ is set to 0 and the current PR waits until the previous PR leaves the PDC system. If it is the first $P R$, the PDC system idle time interval $\operatorname{NODE}(1,6)$ is equal to the first $P R$ arrival time $\operatorname{NODE}(1,2)$ since so far no PR has been serviced.
is then returned to box 3 .

In box 20 and 21 , the average $P R$ waiting time AVG is computed. In box 22 , the total simulated time IALL in seconds is printed. In box 23, the total PDC idle time IDLE is computed by subtracting the total PDC service time ISERVE from IALL.

Box 24, In these three boxes, total PDC system idle time IDLE, total Box 25, and Box 26 PDC system service time ISERVE, and average PR waiting time AVG are printed.

### 5.2 Listings

The SIMULA simulation program is in Appendix $A$ and the FORTRAN simulation program is in Appendix B.



Fig. 4 Flow chart for the simulation programs (Page 2)

## 6. Simulation examples

Three examples are presented in this section to illustrate the simulation of the given PDC system with different input parameters. The paging, requests are aseumed to arrive according to Uniform Distribution in the following examples.

### 6.1 Example 1

The input data for example 1 is shown in Table 2. In this example, the $P R$ arrival rate ( 80 second interval) is higher than the PDC system service rate ( 100 second $g / P R$ ). The computer print-out is shown in Fig. 5. The first $P R$ arrives at time 80 , waits no time, gets service at time 80 , and leaves the system at time 180. The last PR arrives at time 800 , waits 180 units of time, gets service at time 980 , and leaves the system at time 1080 . Thus, the PR's are queued up as they arrive at the system. The average PR waiting time is 90 time units, while the total PDC system idle time is 80 time units. Thus, the number of tasks should be decreased.

### 6.2 Example 2

The input data for example 2 is shown in Table 3. In this example the $P R$ 's require various system service time ranging from 60 to 90 time units. The computer print out is shown in Fig. 6. The first PR arrives at time 80 , waits no time, gets service get time 80 and leaves the system at time 170 . The last PR arrives at time 800 , waits 10 units of time, gets service at time 810, and leavez the system at time 910. Thus, some PR's must wait in the queue and some do not have to wait. The computed average PR waiting time is 4 time units while the total PDC system idle time is 180 time units.

Thus, the number of tasks may be increased.

### 6.3 Example 3

The input data for example 3 is shown in Table 4. In this example, PR arrival rate ( $\lambda$ ) is set equals to $P R$ service rate ( $\mu$ ) at the PDC system. The drum utilization factor of the PDC system is $\rho \equiv \lambda / \mu=1$. The computer print out is shown in Fig. 7. The first PR arrives at time 80 , waits no time, gets service at time 80 , and leaves the system at time 160 . The last PR arrives at time 800, waits no time, gets service at time 800 , and leaves the system at time 880. Thus, no PR has to wait while the total PDC system idle time is minimized. Therefore, the average PR waiting time is 0 time unit and the total PDC system idle time is 80 time units. Consequently, the number of tasks may be increased.

Table 2 Input data for example 1

| Paging Request <br> Identification | Paging Request <br> Arriva1 Time | System Service Time for <br> the Paging Request |
| :---: | :---: | :---: |
| 1 | 80 | 100 |
| 2 | 160 | 100 |
| 3 | 240 | 100 |
| 4 | 320 | 100 |
| 5 | 400 | 100 |
| 6 | 480 | 100 |
| 7 | 560 | 100 |
| 8 | 640 | 100 |
| 9 | 720 | 100 |

Total Simulation Time $=1200$
Total Number of $\mathrm{PR}=10$.

total simulated time $=1200$ Seconds
TOTAL SYSTEM IDLE. TIME $=200$ TOTAL SYSTEM SERVICE TIME $=1000$
average waiting time in the queve
90.000 C SECONOS

Table 3 Input data for example 2

| Paging Request <br> Identification | Pa ding Request <br> Arrival Time | System Service Time <br> for the Paging Request |
| :---: | :---: | :---: |
| 1 | 80 | 90 |
| 2 | 160 | 90 |
| 3 | 240 | 50 |
| 4 | 320 | 50 |
| 5 | 400 | 60 |
| 6 | 480 | 60 |
| 7 | 560 | 70 |
| 8 | 640 | 720 |
| 10 | 800 | 90 |

Total Simulation Time $=1200$
Total Number of $\mathrm{PR}=10$,

total simulated time $=1200$ seconde
TOTAL SYSTEM IOLE TIME $=480$
TOTAL SYSTEM SERVICE TIME $=720$
averiage baiting time in the queue $=$

Table 4 Input data for example 3

| Paging Request <br> Identification | Paging Request <br> Arrival Time | System Service Time <br> for the Paging Request |
| :---: | :---: | :---: |
| 1 | 80 | 80 |
| 2 | 160 | 80 |
| 3 | 240 | 80 |
| 4 | 320 | 80 |
| 5 | 400 | 80 |
| 6 | 480 | 80 |
| 7 | 560 | 80 |
| 8 | 640 | 80 |
| 10 | 800 | 80 |

Total Simulation Time $=1200$
Total Number of $P R=10$.
f

time

## 7. Acknowledgement

The author wishes to express his thanks to Professor Yaohan Chu for his inspiring advice, helpful suggestions, and guidance; to his wife Marion Kwok for her patience and encouragement; and to Miss N. Nowell for her typing of the entire manuscript.

## 8. References

1. Coffman, E.G., Jr., "Analysis of a Drum Input/Output Queue under Scheduled Operation in a Paged Computer System", Princeton University, Journal of the ACM, Vol. 16, No. 1, January 1969, pp. 73-90.
2. Kwok, G., "Simulation of a Paging Drum Channe1", Technical Report TR-155, NGR-21-002-197, University of Maryland, College Park, Maryland, May 1971.
3. Pardo, O.R., "A Virtual Memory System Design", Technical Report 71-144, Computer Science Center, University of Maryland, January 1971.
4. Yeh, J.W., "An TOCS A1gorithm for Microprogramming", Technical Report, 70-124, NGR-21-002-206; University of Maryland, College Park, Maryland, July 1970.
```
    IRIJN AA,OOT-11-768,KWOKK.
    *AlmgrtS incs,inCs
        GTMIILA RFGYN
        COMMFNT SIMUI.ATION DF A MATHFMATYCAL MODFL OF A D\capC UNDFR IOCS***S
        COMMFNT PAGING RFQUFSTS ARF STORED TN A HAROWARF QUFUF $
        COMMFNT TOTAI. PNC SYSIFM SERVICF TIMF क
        INTFGFR ISERVF&
        COMMFNT TOTAI. SIMULATION TIMF $
        INTFGFR TAT.LS
COMMFNT NUMBFR OF PAGING REQUFSTS IN THF QUFUF $
        INTFGFR NPDS
COMMFNT INDFX FOR THF PAGIAIG RFOIIFST $
        INTFGFR T &
COMMFNT TOTAI. PNC SYSTFM INLF TIME क
        INTFGFR YII.FS
        RFAL WAPTA
        RFAL AVGF
        RFAL X$
        INTFGFR ARRAY NODF(1..10, 1.071$
        FORMAT F1 (A,14,I4)$
        FORMAT F?(A, 13,I3,[3) $
COMMFNT PR MFANS PAGING-IN OR PAGING-OUT RFQUEST $
COMMFNT NODE(I,1) IS PR ID
                NODF(I,?) IS PR ARRIVAL TIMF
                        NODE(1,3), IS POC SYSTFM GFRVICF TIMF FOR THF PR
                        NODF(I,4) IG THF .PR WATTTNG TTME IN THF QUJFUF
                        NOME(I,5) IS THF PR STARTINO TTME
                        NODE(I,6) IS THF PNC SYSTFM IDLF TIME
                NODE(I,7) IS THF PR FINICHING TIME $
COMMFNT PRINT TITLFS
    WRITE(' SIMULATION OF A PDC SYSTEM PROCESSING PAGING REQUESTS'IS
    ISFRVF=OS
    WATT = O.OS
COMMENT INPUT RFQUEST CHARACTERISTICS &
    RFAD(TAL.L,NPR, F1) &
COMMFNT GFNFRATING 1O NONFC FOR THF 10 PR'S $
    FOR I = { STFD I UNTTL NDR IO RFGIN
COMMFNT INPUT PR-ID, ARRIVAL TIMF,SYSTFM SFRVICE TIMES
    RFAD (NODF(T,T),NODF(T,?),NODF(T,3), F?)$
COMMFNT COMDUTE WAITTNTG TINF S
    IF I NFQ 1 THFN GO TOL1, $
    NONF(I,4)=n S
    m0 TO L17%
L11 - NODF(1;4)=NOMF(Im4,7) - NOnF(1,2) $
COMMENT NO WAITING IF THE NIFFERFNCF IS NEGATIVE S
    IF NODE (T,4) LSS 0 THFN NODF(I,4)=0 $
COMMFNT PR STARTING TYMF &
L13.NODE(J,5)=NODF(I,2) + NODF(I,4)S
COMMFNT PR FINTSHING TIMF &
    NODF(T,7)=NIONF(T,5) + NOMF (I,3) $
    IF I NFO { THFN GO TO LT4 $
COMMFNT COMDIITF INITIAL SYCTFM INLF TYMF S
        NONF (1,5)= N\cap\capF (1, 2) &
```

fa TO LT5 क
COMMENT SYSTEM IDLE TIME WHEN THF JOB ARRIVES（ACCUMULATED TIME）S
L14 ．．NODF $(I, 6)=\operatorname{NODF}(I, 5)-\operatorname{NODE}(I-1,7) \$$
COMMENT NO ADDED SYSTEM IDLE TIME IF THE DIFFERENCE IS NEGATIVF\＄
IF NODF $(I, G)$ LSS 0 THFN NODF（I， $61=0 . \$$
COMMFNT PRTNT TNTFRMFDIATF RFSULT $\$$
LI5 ．WRTTF（ $P R-T \cap=1, ~ N O \cap F(I, I) \| \$$
WRTTF（：PR ARRTVAL TTMF $=1, N O D F(I, 2) \mid \$$
WRITF（＇DDC SYSTFM GFRVICF TIMF＝ $1, \operatorname{NODF}(1,3)) \$$
WRITFI＇PR WATTING TIMF $=1, \operatorname{NONF}(1,4) 1 \$$
WRTTF（＇DR STARTING TIMF＝＇，NONE（I，5）$\$$
WRITF（1 PDC．SYSTFM TOLF TYMF $=1, \operatorname{NODF}(1,61) \$$
WRITF（＇DR FINISHINr，TIMF＝！NODE（I，7））$\$$
WRITE（1 $* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *!) ~ s$
COMMFNT STATISTICS GATHFRING $\$$
COMMFNT TOTAL．PDC SYSTFM SERVICE TIME $\$$
ISFRVF $=I S E R V F+\operatorname{AnOF}(1,3) \infty$
COMMFNT COMPIJTF TOTAL PR WAITING TIHIF
WAIT $=$ WATT＋NONF $(T, 4)$ \＆
FNO＊
COMMFNT COMPIITF AVFRAGF PR WATTING TIMF $\$$
$X=$ NPR
$A V G=W A T T / X \$$
WRITF（＇TOTAL SIMULATFD TTMF TS＇，IALL，＇SFCONDS＇IS
COMMFNT TOTAL PDC SYSTFM INLF TIME $S$
IDLF $=$ IAL．L－I．SFRVF \＆
WRITE（＇TOTAL PDC SYSTFM IDLE TIME TS＇，IDLE）\＄
WRITE（＇TOTAL PDC SYSTEM SERVICE TIMF IS＇ISERVE）$\$$
WRITE（＇AVERAGE PR WAITTNG TIME IN THE QUEUE $=1, A V G, 1$ SECONDS＇）\＄
FNOS
－MAP
－XOT
120กกก10
1080100
FIRST JOR
2160100
3740100
4370100
5400100
6480100
7560100
8640100
9770100
$1080010 n$
LAST JOB
$1 \times \cap T$
19nกักาの
yornnon
2tannan
2740050
4370050
$540 \cap$ On 6
64800.60

7560070
8640070
0770000
108nnnon
$1 \times 0 \mathrm{~T}$
17nonnin
10annen
フ1Aกก8ก
＊ク40ngn
43 วnnen
$540 \cap \cap$ กロ
648กกดค
75ィロกロの
RG40nR
a 7 クnngn
1ロタกกロดก
－FTN

## APPFNDIX R. LISTYNG OF THF FORTRAN SIMULATION PROGRAM *****************************************************

```
IRIIN <く`30,ON1-11-76R,KWOK, 1, ?n
IFOR,IG CHI,CH?
    OTMFNSTON NONF(1\cap,7)
C DR IG DAGTNG RFOUFST SFRVICFN RY THF DNC
C AInNF(I,1) IS PR IN
C NODF(1,2) IS PR-ARRTVAL TYMF
C. NODF(I,3) IS SYSTFM GFRVICF TIMF FOR THE PR
C NODF(I,4) IS THF PR WAITING TIMF IN THF WAITING QUFUF
C NODF(I,5) IS THF PR STARTYNG TTMF
C N\cap\capF(I,G) IS THF SYGTFM IDLF TIMF
C NODF(I,7) IS THF PR FINTSHTNG TYMF
r PRTNT TITLF
        WRTTF(R,G)
        1 FORMAT( YHI, 3OX,'SYMIJLATION OF A CHANNFL',//)
        WRITF( h,O)
        2 ~ F O R M A T ( I H O , ' ~ P R ~ I D ~ A R R I V A L ~ Y I M F ~ S Y S T E M ~ S E R V I C E ~ T I M E ~ P R ~ W A I Y I N ~
        1G TIME PR STRATINF TIMF SYSTEM.IDLE TIME FINISHING TIME',/)
        TSFRVF=n
        WATT = 0.0
C TNOUT 
C TOTAL SIMILLATTON TYME IN SECONINS
        RFAO! 5s, \I| &ALLg NOT
    1OY FORMAT( T4,T4)
r GFNGRATTNG 1O,NOAFS EOR THE 1O PROT
O ASSIGN CHARACTFRTSTITS TO FACH PR
    n\cap 1\cap T= 1,NPR
C INPUT OR ID, ARRIVAL TIMF, SYSTFM SFRVICE TTMF
    RFAD(5,100)(NONF(1,J),Jx 1,3)
    1O\cap FORMAT( 1%,13,12)
c. WATTING TIMF
        IF( I NF. 1) mO TO P1
        NOMF(1,4)=0
        (0) TO 13
    11 NODF(1.4} = NODF(I-1.7) - NOOF|1,2)
        A\cap WAITIANG IS NFCFSGARY IF THF DIFFFRFNCE IS NEGATIVF
        IF( NO\capF(T,4).LT. n) NONF(T,4) = 0
        DR GTARTTNG TTME
    13 NODF(I,5)=NONF(T,71 + NONF( 1,4)
        PR FINIGHING TIMF
        NODF(I,7) = NONF(I,5) + NONF(T,3)
        IF( T .NF. 1) GO TO 14
C. COMPUTF INITIAL SYSTFM INLF TIMF
        NODF(1,G)= NODF(1,1)
        GO TO 15
        SYSTFM INLE TIME WHFAI THF DR ARRIVFS
        14 NODF(I,G) = NONF(T,51 - NO\capNF(I-9,7)
        NO SYSTFM IDLF TIMF IF THF DIFFFRFNCF. IS NFGATIVF
        IF( NO\capF(T,G).LT. त) N\cap\capF(t,6)=0
        PRINT TNTFRMFDIATF RFSULTS
    15 WRITF( A,3)(NODF(I,J) ,Jx1,7)
        3 FORMAT(1HO,2X,I2,10X,I5,10X,I5,10X,I5,20X,I5,10X,I5,10X,I5)
```

```
C STATTSTIC FATHFRING
C COMDUTF TOTAL SYSTFM SFRVICF TTMF
        IGERVF = YGFRVF + NONF(T,2)
    C COOMDIITF TOTAL WAYTYAIR TTMF
        WATT = WAYT + N\cap\capF(T,4)
        1\cap ('ONTYNUF
        COOMDIITF AVFRAGF WATTYNIS TYMF
        X=NPR
        AVFG = WATT /X
        WRTTF(G,5) TALL
        5 FORMAT( IHO,5X,ITOTAL SIMULATFO TIMF = ', T5,' SFCONOS'1
        COMMPUTF TOTAL SYSTFM IDLF TIMF
        InLF = IALL- ISFRVF
        WRTTF(G,G) \NLF
        A EORMAT(1HO,5X,'TOTAL SYSTFM ITLE TTMF = 1,Y5)
        WRTTF(G,T) \GFRVF
        7 FORMAT(1HO,5X,'TOTAL SYGTFM SFRVTCF TYMF=1,I5)
        WRTTF(F,R) AVra
        Q FORMAT(1HO,5X,'AVFRARE WAITINC TYMF IN THE QUFUF = ',FI4.4, '.SFCO
        1NnC:!
        9 FORMAT(1HO, 11O(***))
        FNIN
    -MAP
    - XOT
12000010
        10&\cap100
        FIRST PR
        91*に10n
        2)4n1nn
        42クロ1กn
        54nn!nn
        *49ninn
        75A\cap10n
        R64n100
        07クก9กn
    1\cap8\capกリกn
    -XOT
19n0กn10
        T080na0
        7160nan
        7ク4nก50
        42つ0050
        54\capOn{n
        G49\cap\capA\cap
        75Rヘの7ロ
        8640\cap7n
        07つn@an
    1ngnnnon
- XOT
9700nn90
        10タกดดด
        3160\capタ0
        2)4nnan
        4*クกnタก
        44nnnon
        f49nngn
        7finOMRN
        ga4^nRO
        a7วnnon
    108!nngn
IFIN
```

