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PREFACE

During the past ten years a new method of vibration analy-
sis, commonly called Statistical Energy Analysis (SEA), has been
developed to study the dynamic behavior of large, complex struc-
tures and acoustic spaces. This report presents a review of SEA
and a gulde for its use. The authors hope that the presentation
will eliminate some of the confuslon about SEA which has inhibited
its worthwhile use in many cases.
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LIST OF SYMBOLS

door area — rod cross sectional area in Appen-
dix A

plate area

rod cross sectional areas
admittance of recelving system
admittance of infinite beam

weighting factor

damping coefficient
damping coefficlents of dampers at ends of rods

acoustic wave speed — rod wave speed 1in Appen-
dix A

beam bending wave speed
damping coefficiznts of oscillator.
rod wave speeds

see Eq. 3.3.1.2-5

Young's modulus in beam equations
total energy

force applled to an oscillator

complex amplitude of force at driving point of
structure

blocked force

blocked force
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coupling force
see Eq. 4.3-2
see Eqn 3-3.2-6

force/unit length
see Eq. 3.3.1.1-=3

plate mode 1 modal force

see Eq- 3.2-1”22
gyroscopic coupling coefficient
rod Green's functions

acoustic intensity
bending moment of inertia

see Eq. 3.2.2-13

Joint acceptance of ith mode

oscillator spring stiffness
coupling spring stiffness

oscillator spring stiffness
acoustic wavenumber

wavenumbers of simply supported mode in a panel

wavenumber space variables

rod lengths
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oscillator mass

total number of modes in a rod in a given
frequency band

beam mass
coupling mass
modal mass of plate

osclllator mass
mass of rods

mass/unit length

total number of modes in a rod in a given
frequency band

rod modal densilty

acoustic pressure

quality factor

th

radiation resistance of the i panel mode

surface area

spectral density of the force applied by an
ideal force source

spectral density of blocked force
spectral density of modal force f‘i

cross spectral density of pressure

see Eq. 3.2.2-10
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spectral density of pressure

spectral density of the veloclty of an 1ideal
velocity source

power 1nput spectral density

reverberation time
rod modal amplitude

room volume
free velocity

beam modal amplitude
complex veloclty of receiving structure
complex veloclty of source

plate velocity at time t and position x
beam velocity at time t and point ¥
rod modal amplitude

osclllator displacement
location of coupling spring in rod 1

location of coupling spring in rod 2
location of applied force in rod 1
locaticn of applied force in rod 2

receiving structure impedance

source impedance
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point impedance of rod

rod end impedance in Appendix A

absorption coefflcient
see Eq. 2-3
damping coefficient

see Eq. 4.3-7
see Eq. 3.3.1.2-5
see Eq. 3.3.1.2-5

energy in single mode or a single oscillator

energy in a mode in rod 1 and rod 2, respec-
tively

dissipation loss factor
modal dissipation loss factor

coupling loss factor

see Eq. 3.3.1.1-3
acoustic wavelength

See Eq. 303-1-1"'3
see Eq. 3.3.1.1-3
rod displacements

see Eq. 4.3-7

right running travelling wave displacement
amplitude

left running travelling wave displacement
amplitude

power dissipated
power injected

power transmitted
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= power transmitted from element 1 to element 1
= power transmitted between two osclllators
= power transmitted from rod 1 to rod 2

= mass/unit area of panel
= alr density - rod density in Appendix A

= prod density

= coupling coefficient

= rod mode shape

= see Eq. 3.2.2«9

= plate mode shape

= beam and rod mode shape

= rgdlan frequency
= beam natural frequencles

= critical frequency

= oscillator natural frequencies

= rod natural frequencieg

= time average

= time average of quantity 1in frequency band Aw
= gverage over an ensemble of structures

= gverage over frequency band Aw

= See Eq. 3-3-102"‘9
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1. INTRODUCTION

Recent years have seen a continuing trend toward higher-
performance vehicles and larger, more complex structural
assemblies. Thils trend has brought wlth it a greater number
of problems assoclated with vibrations at high frequencies
well above the fundamental resonance frequency of the struc-
ture being studied. As a result, aerospace englneers and
research sclentists have a great need for methods to predict
and understand the high-frequency behavior of large complex
structures.

Historically, the vibration engineer has focused his
attention on the low-frequency range encompassing the first
few resonance frequencies of the structure being studiled.
Thus, a large number of analytical and numerical techniques
have been developed dealing with low-frequency vibration
problems. However, none of these techniques can deal simply
and effectively with a high-frequency vibration problem,
in which a large number of modes of vibratlon contribute
te the overall response of the structure.

The classical technliques of vibration analysis, which
have served well in studying low-frequency vibrations, are
valid, at least 1n principle, at 21l frequencies., However,
their use at high-frequencies is almost always impractical,
particularly when the excitation is random and distributed
over the structure.

The most commonly used c¢lassical technlique of vibration
analysis conslsts of determining the natural modes of vibra-
tion, calculating the responses of these modes to the
specified excitation of interest, and superposing these

I
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responses to determine the total structural response. Use

of this technique to determine the response of a large struc-
ture to a high-frequency random excitatlon require- inordinate
amounts of computation because of the large number of modes
that must be included in the analysis. The computational re-
quirements can be met using a digital computer in most cases.
Thus, although the amount of computation required by this
classical technique was once the limiting factor in its use,
it is no longer, unless one 1is concerned with the cost of
computer time.

A more inhibiting limitation in the use of the classical
technique of vibratlon analysis arises from our inabllity to
calculate accurately the hlgher-order reci nance frequenciles,
mode shapes and modal damping coefflcients. These parameters
are much more sensitive to detfails of the structure than are
the same parameters for the lower order modes. Thus, one
must be able to describe the structural and material properties
and boundary conditions with great precision in order to be
able to perform computations involving the higher-order modes

meaningfully. The required precislion cannot usually be achieved

because of manufacturing tolerances and other uncertainties.
Even when the properties of the structure are known almost
exactly, they are usually so complex that an exact calculation
of resonance frequencies, mode shapes, etc, is impossible.

A similar situatlon exists 1ln the fleld of room acoustiles.

In the audio frequency range, a normal-sized living room
or office will have thousands of resonance frequencies — a
concert hall may have milllons of resonance frequencies., Also,

because of uncertalinties in the location and amount of acousti-

cal damping in the room and because of the very cqmplex shape

of the room due to the location of furniture, accurate prediction
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of the resonance frequencles, mode shapes and damping parametei's
1s impossible. To solve hils problems, the room acoustician has
used and helped develop statistical energy methods of vibration
aralysis. The methods are statistical, not only becausélthe
source of excitation 1s conslidered to be random, but more impor-
tantly, because the systems belng analyzed are presumed to be
drawn from ensembles of systems with random parameters, i.e.,
resonance frequencies, mode shapes, etc. The methods ildentify
energy as the primary dynamic variable so that the fundamental
dynamlc equatlions are simple. Once steady-state 1s reached, the
acoustical power injected into a room must equal the power dis-
sipated in the room plus the power transmitted to other rooms,

"in = Maiss T "trans ° (1-1)
Combining the statistical and the energy approaches, we average
the terms in Eg. 1-1 over time, over the ensemble of systems and,
in the case of random excitation, over bands of frequency,

“Tin’t,ens,Af (1-2)

“Taiss t,ens,Af T “"grans’t,ens,Af °
Equation 1-2 is the basis of the statistical energy techniques
of vibration analysis.

In the early 1960's, R.H. Lyon and his colleagues at Bolt
Beranek and Newman Inc. began using statistical energy techniques
to study the interaction of sound fields and large panel struc-
tures.! Later they expanded their studies to include the inter-
action of connected structures.? It would be incorrect to say
that Lyon and his colleagues invented the statistical energy
approach, or even were the first to use the approach to study
the sound-structure interaction. They were, however, the first
to identify the fundamental principles on which a statistical
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energy analysis could be based and to remove much of the empiri-
cism that existed in the use of statistical energy techniques in
room acoustics.

To describe thelr way of lookling at the dynamic interaction
of sound flelds and structures, Lyon and his colleagues coined
the name Statistical Energy Analysis (SEA). A number of papers
dealing with SEA have attempted to construct a formal "method" of
analysis.?™® These attempts are important to the development of
SEA as a useful tool in vibration analysis. However, it is im-
portant not to discriminate between the concepts of SEA and the
various methods of implementation of SEA for practical problems.
In this report, an attempt both to review the concepts of SEA and
to suggest a formal method of analysis 1s made. The use of Sta-
tistical Energy Analysis (SEA) leads to statistical estimates of
the time-average energy in each mode of vibration. In its simpl-
est and most commonly used form, SEA leads to the average model
energy — the average beling taken over time and over all modes
with resonance frequencles in a band Af. For any continuous
homogeneous structure, e.g., panels or shells of constant thick-
ness, beams with uniform cross sections, etc.; the average modal
energy can be used to find the spatlal-energy mean-square re-
sponse. Most past uses of SEA have been limited to finding
spatial-average response of the structural elements making up the
complete assembly. This does not mean that the SEA approach is
limited to calculation of spatial-average responses. Techniques
to calculate statistical estimates of peak response have been
suggested® and used on occasion.

Statistical Energy Analysis (SEA) has been used many times
to estimate the response of laboratory models of complex struc-
tures. For the most part the spatial-average vibration levels
predictéd by SEA have agreed fairly well, within *5 4B, with
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: j measured data. SEA has been used to predict the response of
e plates’ and cylindrical shells® to an acoustic field, to predict
¥ the sound transmission through walls,? to predict the vibration

- transmission between connected plates,!® to predict the vibration

j transmission from a shell to a connected instrument package,!!
] to predict the vibration transmission in ribbed plates and shells,!'?
f g‘ and for several other problems.?!3-!®

In spite of its reasonable success in predieting the re-

sponse of laboratory models to a vibratory excitation, SEA is

not often used to predict the response of field structures. How-
ever, a few applications have been made and are worthy of men-
tion. PFranken and Lyon!? have used SEA with success to predict
the response of the Titan launch vehicle to acoustic loads. Sevy
and Earls?’ have used SEA to predict the vibration transmission
to an internally mounted instrument package. Mansour has used
SEA to predict vibration transmission in the Mariner '64,2!
Manning has used SEA to predict the nolse reduction of the 0GO-
NIMBUS shroud.?® And finally, Sawley has used SEA to predict
vibration transmission in a ship.??

The most extensive use of SEA has been to predict the vibra-
tion transmitted from an external acoustic field to a shroud en-
closed spacecraft model.?* The model was quite simple but main-
tained the very basic properties of the 0GO spacecraft.

In Sec. 2 of this report the concepts of SEA are introduced
by considering a simple problem from room acoustics. In solving
thls problem, many of the empirical observations that initially
led to the idea of SEA are called on. Then, in Sec., 3, a com-
plete discussion of the SEA concepts 1is presented. Section 4
i1llustrates the use of SEA by studying the dynamic interaction
of two beams coupled by a spring. And, finally, in Sec. 5 guide-
lines for the use of SEA in solving particular problems are pre-
sented. References to more advanced uses of SEA are given. An.

'appendix of the report gives a bibliography of reports on SEA.

o T G fEE N W TR S CSS e B
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2. AN INTRODUCTORY EXAMPLE FROM ROOM ACOUSTICS

The use of statistlcal methods of analysls is common in room
acoustics.?% Indeed many of the concepts presently used to analyze
the dynamic behavior of complex structures were originally de-
veloped for acoustic spaces.?® For this reason it is appro-
priate to introduce the basic 1ldeas behind statistical energy
analysis (SEA) with a simple room-acoustics problem, even though
the solution of this problém considerably predates SEA develop-
ment.

The problem which will be considered consists of two adjoining
rooms connected by a door as shown in Fig. 1. A small air con-
ditioner in room 1 acts as a source of random acoustic noise. The
problem is to determine the sound pressure level (SPL) in the
rooms — first, with the door closed, and then with 1t open.

The rooms are consldered to be typical of those found in
family living areas. They are rectllinear. But, since they
are filled with furniture, their shape as an acoustic space 1s
very complex. They will be assumed to be carpeted and to have a
typical amount of the wall area covered by drapery. The effect
of the carpet, drapery and upholstered furniture 1s to add damp-
ing in a complex way.

It is assumed that the manufacturer of the air conditioner
has measured its radiated acoustic power in octave bands in an

anechoic chamber, and has supplied this data.

* (g S i b o AR
Clearly, there are a’'Humber of approaches which can be used

to solve the problem. However, 1t 1s necessary to point out

that use of the c¢lassical normal-mode approach would require that
one make a very simplified mathematical model for the problem.
The exact solution for this mathematical model could probably be

. g e Ak it v e e e
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FIG,1

AIR CONDITIONER

ROOM 2

TWO CONNECTED ROOMS EXCITED BY AN AIR CONDITIONER
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found by expending a great deal of effort. But then the relevence
of this exact solution to the solutlion of the actual problem would
be questionable. The approach most commonly used by acousticlans
to solve a problem of thls type 1s a statistical energy approach.

Following a statistical energy approach the governlng equations
for the dynamic behavior of the two rooms are set out in terms of
energy and power varliables. Each room 1s treated as an energy
storage system as shown in-Plg. 2. It will be assumed that the
problem 1s linear so that 1n each band of frequencles the source
injects acoustic power into room 1 which is eilther dissipated in
the room or transmitted to room 2. The power transmitted to room 2
is either dissipated in that room or transmitted back tc room 1.
Under steady-state condltlons the time average energies in the
two rooms stay constant. Then, one can write the governing equa-
tions for the rooms as a time-average power balance for each band
of frequencles. For room 1,

<1rrin,source>t,Aw - <ﬂdiss,room 1>t,Aw * <1rtra.ns,l to 2>t,Aw
(2=1)

where <m>, Aw signifies a time-average of the power 7 in the fre-
3
quency band Aw and “trans,l to 2 1s the net power transmitted
from room 1 to room 2. For room 2,
=2 )
<1rtrans,Z to 1>t,Aw - <Trdiss,room 2>t,Aw * (2-2)
To solve these power balance equations one must first relate the
input power in each band of frequencles to known characteristics
of the source. Then, the power dissipated in the two rooms and the

power transmitted between rooms must be related to the acoustic
energy in each room. And, finally, after solving the power balance

e e |
1

fy
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equations for the energy in the two rooms one must relate the
sound pressure level in each room to the energy. The power input
to room 1 will be found first.

On the basis of simple observation it has long been known
that the acoustic power injected into a large room in a band of
frequencies by a source of nolse does not depend on the character-
istics of the room or the location of the source. A room can be
considered large as long as its dimensions are much greater than
an acoustic wavelength at the center-frequency of the band being
considered. Based on the above observation one can assume that the
air conditioner injects the same acoustic power into room 1 as
into an anechoic¢ chamber. Then, one simply uses the manufacturers
radiated power data to give the power input in each octave band
of frequencies to room 1.

To continue with the solution of the problem the power dis-

. sipated in each room must be related to the acoustic energy. Agailn,
appeal will be made to simple empirical observations which have been
made in acousties. The power dissipated in a room depends on the
acoustic 2snergy in the room and the amount of absorptive material,
such as carpet, drapery, etc., i1n the room. When a sound wave
implnges on an absorbing surface some of 1ts energy is dissipated
and the remainder 1s reflected back into the room. The ratio of the
energy absorbed by a surface to the energy incident on it is de-
fined as the absorption coefficient. In general, absorption co-
efficients depend on frequency, the angle of incidence of the
acoustic waves, the area of materlal, the way in which the ma-
terial is mounted and, of course, the properties of the material,

In a room with a typical amount of absorptive material the sound
waves travel around the room and are reflected many times before
their energy is absorbed. 1In addition, the acoustic waves inci-
dent on small reflecting obJects are scattered into waves travelling

10
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in many different directions. One would expect the sound waves
{é impinging on a particular point in a large irregular room to come
-~ from a large number of different directions. As a limiting case
the sound fleld in the room becomes diffuse. In a diffuse field
sound waves of equal energy density travel in all possible direc-
tions. The absorption coefficient of a materlal in a diffuse
fleld does not depend on eilther the exact location or orientation
of the material. This resnult is usually observed in typical
rooms, such as the ones being considered, and leads to the
common assumption that the sound fleld in a typical room is dif-
fuse. Techniques to measure diffuse-field absorption coefficlents
have been established, and data for a number of different materials
and mounting configur "“lons are avallable. One can use the measured
absorption coefflcients for the materials 1n the room to obtaln an
average absorption coefficient for the room. This average absorp-
tion coefficient 1is given by

E

-m e R

o =

N o

s, 0, (2-3)

where a is the average absorption coefficient for the room, s is
the total surface area of the room, Oy is the absorption coeffi-
cient of the ith segment of absorptive material, sS4 is the sur-
face area of the ith segment and the summation is over all absorp-
tive material segments 1ln the room.

i MU NN W

In a diffuse field the acoustic energy density is the same
at every location in the room. The time-average intensity (power
incident per unit area) in the diffuse field is simply given by?’

¢
0
<I>t = W <E>t | | ) (2=4)

11
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where c, 1s the speed of sound, V 1s the volume of the room and
<E>t is the total time-average energy in the room. Combining Eq.
2-4 with the definition of a we can relate the power dissipated
in the room to its total time-average energy. The result is

c,8 _

Taiss”t,ae - GV ¢ <E>¢ A (2-5)

where a is the value of the room absorption coefficient at the
band-center-frequency and <E>t,Aw is the average energy in the
room in the frequency band Aw. Equatlon 2-5 can be applied to
either room 1 or 2 by assuming the acoustic flelds in these rooms
are diffuse and by using the correct values for s, V and a.

 -1 As the third step in the analysis one must find the acoustilc
power transmitted from rooms 1 toc 2. When the door is closed it
will be assumed that no power 1s transmitted between the rooms.
ii; When the door is open the sound power incident on the doorway from
i room 1 will be transmitted to room 2 while the sound power inci-
dent on the dcorway from room 2 will be transmitted back into

room 1. If one assumes that the sound fields in the two rooms are
diffuse then the power ilncident on the doorway from the two rooms
can be found from Eq. 2-4. The net time-average power transmitted
from rocom 1 to room 2 is given by

<
a s 2 S By b (2-6)
2 t,Aw -~ & v, v,

where A 1is the area of the door.

Now the power balance equations can be written. With the
door closed the result becomes

12
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“Tin,source’t,pw = IV, %1 <E1>t,Aw > (2-7)

bsioe

and with the door open two equations result

B

b c,.s
. 61 —
n =
] } < in,source>t,Aw EV1 %y <E1>t,Aw
1T c A|<E > <E_ >
g L S 00 B2t aw (2-8)
- 4 v, v,

ocmas]

and

oo

4 V1 - V - 4V e, <E2>t,Aw . (2-9)

c,A [<E1>t,Aw <Ez>t,Aw] _CyS, _
2

o

e M 0NN MR W WS =N X
A
o
~
\'4
ct

1" ]
£
S
<
A
t
v
ot

Equations 2-7, 2-8 and 2-9 can be solved quite easlly for the
time-average energies in the two rooms. To complete the solution
one must relate the energy in each room to the mean-square sound

pressure. S8ince it has been assumed that the acoustic fields in
the two rooms are diffuse, thils step is quite simple. The mean-

square sound pressure in the diffuse field is independent of lo-
cation and is related to the total room energy in each frequency
band by the equation27

(2-10)

From Egs. 2-7 and 2-10 the mean-square sound pressure in room 1
with the door closed 1is given by

R
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2 upoco
<p?>
P t,Aw - <"Tj.n,s',oux'cc-:->1:, Aw (2-11)
! 519, '
With the door open solving Egs. 2-8 and 2-9 leads to
5,6, §,G,
4o ¢ it s )
<p2> = 00 s 272
17t , Aw s in,source” t,Aw s O s.a (2-12)
o . 11 171
11 1+ + =
A s 0
2 2

Similarly, one finds the mean=-square sound pressure in room 2 to be

2 =

<p2>t,Aw = (2"'13)

—_ 2
s a <p1>t, Aw®
1 + ?Az

Considering the complexity of the problem, the solution is
quite simple ard requires only the general properties of rodms 1
and 2 such as volume, area of absorption materlal, etec. By now
it 1s obvious t¢ the reader that this approach should be called
an energy approach. Hnwever, the reasons for c¢alling it statis-
tical are not yet cl=air. In carrying out the analysis it was
assumed that the input power did not depend on the exact location
of the. source or on the shape and dissipation in the room. It
was also assumed that the sound fields 1n the two rooms were
diffuse. Both of these assumptlions are valid in a statistilcal
sense. One deflnes an ensemble of rooms with the same volume but
with random shapes and with the same amount of absorption but wita
random locations for the absorptive material. Then, the ensemble~
average power lnput will equal the power input to an infiniteé
acoustic field.: Similarly, if one averages over the ensemble
of rooms he will find sound waves coming from all directions
- with equal energy density so that the ensemble-average sound

14
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field will be diffuse. In future sectlons of this report the use
of statlistics will be brought out more explicitly. It 1s hoped

that the simple problem discussed in thls section serves to intro-
duce the important ldeas behind Statistical Energy Analysis (SEA).

15
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3. FUNDAMENTAL CONCEPTS OF STATISTICAL ENERGY ANALYSIS

In this section the fundamental concepts underlying
Statistical Energy Analysis (SEA) will be discussed. The chapter
1s divided into five subsectlons. In the first subsection the
derivation of a statistical energy model for interconnected
complex structures and acoustlc spaces 1s discussed. The model
willl be an energy model in that each structural element of the
complex assembly will be treated as a vibratory energy storage
element. The model will be statistical in that the resonance
frequencies, mode shapes, connection points, etc. will be treat-
ed as random varlables, In the second subsection the use of SEA
concepts to calculate the power input to a complex structure or
acoustic space wlll be discussed. Then in Subsections 3.3 and
3.4 the use of SEA concepts to calculate the power transmitted
between connected structures and acoustic spaces and the power
dissipated in a complex structure or acoustic space is covered.
Finally, in Sec. 3.5 the power balance equations are written |
in terms of the energlies iIn each element.

16
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3.1 The Statistical Energy Model

The first step in a Statistical Energy Analysis of the dy-
namic behavior of a complex structural assembly 1s the modelling

of the assembly by a number of interconnected energy storage ele-
ments, as shown in Fig. 3. This step is the most creative and
the most difficult part of SEA. Decisions of how to divide up
the complete assembly into the energy storage boxes, and which
paths of power exchange to include in the analysis require a
great deal of insight, which can only be developed by continued
use of SEA and comparison of the resulting predictions with data

from experiments or exposure of the structure to the actual en~
vironment.

A basic assumption in SEA is that the response of a connected
structure or acoustic space in a given frequency band can be de-
seribed by the collective motion of the modes of each isolated
structure which are resonant in the band. The dynamic inter-
action between the structures and acoustic spaces is studied by
allowing the modes of the isolated structures to be coupled.

Thus, the modes referenced in this report are not modes of the
complete structural assembly.

In SEA one commonly assumes that the problems are linear so
that vibration in one frequency band cannot be connected into
vibration in another band.

On the baslis of these combined assumptions a power balance
for each frequency band will be formulated and in each band power
exchange between modes with resonant frequencies in the band will
be studied.

17
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In many cases the energy storage boxes are identlcal to
the physical elements of the complete assembly, i.e., acoustilc
spaces, plates, shells, beams, etc. Then, the modeling required
for SEA 1s quite simple. Each energy storage box contains all
of the modes of a particular substructure which have resonance
frequencles in the band being considered. The modeling 1s even
simpler when the only paths of power exchange are between the
modes of touching structural elements. '

Two complicating effects are fairly common and must be
considered in setting up an SEA model. Pirst, it is possible
for a structure or acoustic space to store energy in its resonant
modes of vibration and, at the same time, transmit power from
one adjoining structure to another through nonresonant motion of
the modes with resonance frequencies outside the band being con-
sidered. A problem of this type 1s shown in Fig. 4. 1In this
problem two rooms are separated by a thin partition. An SEA
model consists of three energy storage elements for each fre-
quency band of interest, as shown in Fig. 5. Element 1 contains
the resonant modes of room 1l; element 2 contalns the rescnant
modes of the partition; and element 3 contains the resonant
modes of room 2, Two paths of power exchange can be easily
identified. Room 1 connects directly to the partition, so that
power exchange between the resonant modes of room 1 and the
partition clearly takes place. Similarly, power exchange be-
tween the resonant modes of the partition and room 2 takes place.
A third path of power exchange must also be considered for this
problem, as shown in Fig. 5. The resonant modes of room 1 trans-—
mit power directly to the resonant modes of room 2 through non-
resonant motlon of modes 1n the partition which have resonance

19
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"in,1

TRANSMISSION BY NONRESONANT PARTITION MODES

l

T
ROOM I_-I ™o PARTITION Tos ROOM 2
- >
(1) {2) (3)
'Eliu, 1 vdia. 2 "disa, 3

FIG.5 ENERGY STORAGE ELEMENTS AND PATHS OF POWER EXCHANGE FOR
TWO ROOMS SEPARATED BY A PARTITION
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frequencies below the frequency band being considered. The
power transmitted by this third path often exceeds the power
transmitted from the resonant modes of room 1 to the resonant
modes of the partition and then to the resonant modes of rocom 2!
In considering the power transmitted by nonresonant modes we
ignore the small amount of power dissipation due to the motion
of these modes.

A second complicating effect is also common. In some cases,
the resonant modes of a single structural element must be divid-
ed into two or more energy storage elements, because they inter-
act differently with the modes of neighboring elements. For
example, i1f a beam couples two plates, then 1ts torsional and
bending resonant modes must be put into separate storage elements
It 1s, of coursé, possiblé for a power exchange to also take
place between the torsional and bending modes. Other examples
of these two complicating effects are in the literature.®’'®’2?"

Once the complex structural assembly has been modeled by
a group of connected energy storage elements, the baslc power
balance equations are written. Assuming steady-state condltions
the time-average power input to each element must equal the power
disslpated plus the power transmitted to other elements. For
the ith energy stcrage element, a power balance glves

et~

“Fin,17t,80 = “Taiss,17t,80 T L <M117¢, A0 (3.1-1)

- where the summation is over all other elements, In the following
sections the use of SEA to compute each of these power quantities
will be discussed.

22
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3.2 Power Input

The calculation of vibratory power input from a source to a
recelving structure or acoustic space requires that one know both
some measure of the source excitatlon level and output impedance
plus the receiving system input impedance. The calculation 1s
made simpler when the actual source can be modelled by an ideal
force source (zero output impedance) or an ideal velocity source
(infinite output impedance). Simplifications also result when
the source can be modelled by a point source or by a line source.
However, even when the source can be simply described, for example,
as a point force source, the calculation of input power can be
complicated because of the need to know the exact input lmpedance
of the recelving system. Unless the recelving system is extremely
simple its input impedance wlll be a complex function of frequency

and the parameters ¢f the system~resonance frequencles, mode shapes,

surface density, etc., In many cases of practical Importance it

is impossible tu predict or even measure the exact input impedance.
However, by using a statistical model of the receiving system, one
can avoid this dllemma and obtailn qulte simple expressions for the
input impedance which require only a general description of the
receiving system. Randomness is introduced lnto these statistical
models by consldering such parameters as resonance frequenciles,
mode sﬁape, modal damping and excltation polint as random variables.
0f course, in using a statistical model only statistical measures
of the power input can be obtalned. For example, the average
power input to an ensemble of structures with randomly selected
resonance frequencles can be calculated. For any particular men-
ber of this ensemble of structures the power input will not equal
the calculated average value. However, if the structure is so
complex that the resonance frequencies cannot be predicted with
any accuracy, the ensemble-average poWer input will be the best

23
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estimate for the particular structure of interest. Confildence

in the accuracy of this best estimate can be derived from higher-
order statistical measures of the input power, such as the vari-
ance around the mean.

So far no specific mention of the temporal variation of the
power input has been made. In this repovrt all variations in time
wlll be averaged out by using complex amplitudes for the case of
pure-tone excitation and spectral densitles for the case of random
excltation., This limitation which is 1lmposed on this work should
not be taken as a limitation in the use of statlistical energy
methods of analysis. Indeed, statlstical energy methods have
been used very successfully in room acoustics to predict the
transmission of speech or music — highly transient sounds. ’

In the sections to follow the power input from both poilnt
and distrlbuted-load sources to a variety of different dynamical
systems wlll be calculated. A very simple case will be dealt
with at first followed by cases of greater and greater complexity.

3.2.1 Point sources

In many problems of practical interest the source of vibra-
tion or sound can be modelled by a point source. As a general
rule a source of vibration can be considered to be a point source
if the area over which it acts on the recelving system is small
compared to )\?, where ) is the wavelength of the resulting motion
in the recelving system. The error introduced into the calcula-
tion of input power by modelling a source by a point source will
be less than 1 dB (26%) if the largest dimension of the ccntact
area 13 less than a quarter-wavelength of the resulting motion
in the receiving system. Since the wavelength of vibration varles
with frequency for most systems, the criteria for treatling an
actual source as a point source depends on the frequency range

2y
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of interest. For example, a 6 in. diameter loudspeaker

{g can be treated as a polnt source in the frequency range below

: 550 Hz. If one were willing to accept an error of 3 dB or less

- this frequency range could be extended to 1000 Hz.

.- Examples of actual sources which can usually be treated as

r - point sources include small sound generators, point-drive mechani-
ﬁ cal shakers and, 1n some cases, the mounting supports of vibrating

equipment.

General Formulation of Input Power

A formulation of the 1lnput power from a point source to any
recelving system can be accomplished with complete generality by
uslng mechanlcal lmpedance theory. Following this approach, the
driving-point impedance of the receiving structure, ZR’ is defined
to be the complex force amplitude at the driving point when the
velocity is specified to be Vp = e ®*. similarly, the source
impedance, ZS’ is defined to be the complex force amplitude of
the source drive polnt when its veloclty is specified to be
VS = eiwt and the source 1s deactivated. ?he driving=-point
impedance of the recelving system and the source will usually

be frequency dependent.

R

EE

Wlth these definitions of impedance, the force generated by
a pure-tone source when it is driving the receiving structure can
be given by one of two formulas. First, it can be given by

F(w) = Fioekeql®) -'zs(m)vR(w) (3.2.1-1)

where we have assumed eiwt dependence, F(w) 1s the compiex ampli-
tude of the force acting on the receiving structure, VR(m) is the

complex amplitude of the receiving structure and F (w) 1is

blocked

oo B
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the complex amplitude of the force generated by the source when
its driving polnt 1s held motionless. When the blocked force 1s
not known, but the complex amplitude of the driving-point velocity
produced by the source when it 1is generating no force 1is known,

we use the formula,

F(w) = Zs(w)[V (w) - VR(m)] (3.2.2.=2)

f'ree

where V (w) is the free velocity. The velocity at the driving

free
point can be related to the force acting on the receiving struc-
ture, F(w), by the driving-point impedance of the receiving
structure,

VR(w) = 7 (&) ° (3.2.1-3)

FFor a pure tone the time~average power transmitted to the receiving

system is given by

<my >, = 1 Re F(0)VE(w) | (3.2.1-4)

n

where Re signifies "Real Part Of". Thus, the time-average power -
input to the recelving structure becomes

=1 2 1 2 ;
“Tin’t = 2 Fblockedl 75 (@) +Z (@) Re Zp(w) (3.2.1~5)
or if Vfree is known,
' ' 1 2 Zs(w) 2 6
<1l'in>t = 'é' Ivf_'ree! zs(m).l,ZR(m) Re ZR(&)) (3:2.1— )
where | | signifies "Magnitude Of".
26
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When the source generates a random force or velocity, spectral
densities must be used. Then the tlme-average power lnput 1in a
band of frequencles, Aw, is given by

=l aws  (w (3.2.1-7)

“Tin’t,Aw
jAw

where S_ (w) is the i1nput-power spectral density. From
in

Eq. 3.2.1-5 one can write the lnput-power spectral density as

2

1
S (w) = 8, (w) Re Z,.(w) (3.2.1-8)
Tin Fblocked ZS(B)+ZR(a) R
where SF (w) 1is the mean-square blocked-force spectral
blocked

density. A similar extension of Eq. 3.2.1-6 when the mean-square
free-veloclity spectral density 1s known 1is obvious.

Point Foree aqnd Veloeity Sources

The source impedance of an ideal force source is zero so
that the force generated by the source 1is not affected by the
moticn of 1ts driving point (see Eq. 3.2.1-1). It follows that
the power 1input from a random point force source is given by

S (w) =8 (w) Re A_(w) (3.2.1-9)
“in Fsource R

where AR(w) is the admittance of the receiving system defined to
be AR(w) = 1/ZR(w).

27
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The source impedance of a velocity source 1s infinite so that
the veloclty of the drive point 1s not affected by the force acting

on it. The idnput-power spectral density for the veloclty source
1s given by

S (w) = S (w) Re Z.(w) . (3.,2.1-10)
Trin Vsource R

The expressions for power input from point force and velocity

sources are much simpler than the general expresslion for a point
source. However, unless the receiving structure is very simple,
the required driving-point impedance or admittance 1s still quite
difficult, 1f not impossible, to predict. In the following sec-
tions it will be shown how the use of a statlistical model for the
recelving structure leads to very simple results. Finally, it
will become apparent that the use of a statlstical model allows
one to replace the driving-polnt admittance or impedance of the
actual receiving system by the driving-point admittance or imped-
ance of an equilvalent infinite receiving system. Since the use
of Inflnite system impedances for finite system impedances has
not yet been shown for the completely general case, this result
wlill be demonstrated by means of an example. Then a result for
the general case will be hypothesilzed.

Power Input to a Simple Oscillator

The simplest case which can be considered 1s the power input
from a point force source to a simple one-degree-of-freedom
oscillator. The input admittance of the simple oscillator is

1 iw
A(w) = = : (3.2.1~11)
R M [w2-w?+ inw,w] :

28
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where M 1s the mass of the oscilllator, w, is 1ts resonance fre-

quency and n is 1its dissipation loss faector. From Eq. 3.2.1-9
and £q. 3.2.1-11 one finds the ilnput-power spectral density to be

2
nw wo

1 (3.2,1=-12)

M (wg_wz)z + nzwzwg |

Sﬂin(w) = Splw)

As would be expected, the input-power spectral density has a
large peak near w - W, when the damping loss factor, n, is small.

For the case in which the excltation force spectral density

is white — has a constant value SF for all frequencies — one can
0

obtain a very simple result for the overall input power., This

result is
Sp
0A A © T 0
S S [T dws. (w)=3m— (3.2.1-13)
1rin 0 “in 2 M

where 4 signifies a definition. Note that the input power depends
only on the level of the excitation and the mass of the oscillator.
This simple result will be used often in future sections and allows
one to obtain simple results for very complex problems.

The result given above by Eq. 3.2.1-13 tells nothing about
the frequency distribution of the input power. However, from
Eq. 3.2.1-=12 1t 1s apparent that approximately 70% of the overall
input power is in the frequency band w, = nw, to w, + nw,. Since
most of the power input takes place in thils frequency band, one
commonly uses Eq. 3.2.1-13 to predict the power input from a band-

limited random force as long as the bandwidth includes the region

w, = Nw, to w, + nw,.
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Power Input to a Beam

The calculatlion of power input from a polnt force source to
a beam is more complicated than the above calculation. However,
the end result will be very simple.

The equation of motion for a beam 1is glven by

EI 3% , 3%v ., o 3v .. 1 af
mz ax"l 3t2 . P at mg‘ ot

where v(x,t) 1s the veloclity at point x and time t, EI is the
bending stiffness, m, 1s the mass per unit length, Bp

1s the damping coefficient and f(x,t) 1s the force per unit
length acting on the beam at point x and time t¢. To flnd the
driving=-point admittance, one assumes that the force per unit

length is a pure-tone polnt force With‘eiwt time dependance so
that
8L = 108(x-x,)et"® (3.2.1-15)

where 6 1s the Dirac Delta Function and X, Is the point of appli-
cation of the point force. Then the beam velocity 1is expanded
in terms of its normal mode shapes,

v(x,t) =} Vnwn(x)eiwt R (3.2.1-16)
n

where V_ 1is complex amplitude of the nth mode velocity and ¥ (x)
is the normal mode shape. The mode shapes are assumed to be nor-
malized such that

[r dx ¥*(x) = L (3.2.1-17)
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where L is the lengtlh of the beam. If the expansion for v(x,t)
is substituted into the equation of motlon, multiplied by wm(x)
and integrated over the length of the beam, one finds

1 iwwm(xo)

Vm =M

b Wy, =W + inmwmw

where M, 1s the total mass of the beam, w, 1s the resonance fre-
quency of the mth mode and Ny is the modal dissipation loss fac-
tor, wn = Bp- It follows from Eq. 3.2.1=18 that the driving-
point admlttance can be written as

v (x)

z2_2.*.
m W W inmwmw

_ iw
AR(w) = ﬁ; .(3.2.1-19)

The real part ~f the admlttance, whilch governs the input power to
the beam, can now be written as

w2w n vi(x, )
Re Ap(w) = Ml ] —2ILT °2 — (3.2.1-20)
b m (wm-w )¢+ npWlw

It 1s well-known in classical vibration analysis that the
response of a structure can be represented by a superposition of
modal responses. Equation 3.2.1-20 shows simply another statement
of thls result. The real part of the admittance 1is the weighted
sum of the real parts of the admittance for each mode — the
weighting factor being the square of the mode shape at the point
of application of the force. With this representation in mind
one can write Eq. 3.2.1-20 as

Re Ap(w) = El amgm {(3.2.1-21)

31
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where a  1s the welghting facter, w;(xo), and g 1s the real part

of the modal admittance without the weighting factor an,

w3n
m (3.2.1-22)

= 1
€m Mb 2

2_,.2 2,2,
(wm w?) + et

If one were to consider the 1ldealized problem of a beam with
simply-supported load conditions and viscous damping the func-
tions a, and & could be computed exactly. The real part of

the admittance for this ldealized case would appear as 1n Fig. ba
with peaks occurring at regular intervals of frequency. The
helght of the peaks would be governed by the values of N and

a_ with a_ being a periodic function of Y.

Unfortunately, the regular pattern shown in Fig.6a is rarely
observed for an actual beam, particularly at high frequenciles,
due to boundary conditions which vary with frequency in a seem-
ingly random manner. The resemblance between the plot in Fig. 6b
and a sequence of random pulses in time from a random pulse
generator is evident. Lyon?°has used this resemblance as
basis for finding statistices of the power input. Following his
approcach, one deflines an ensemble of beams in which the resonance
frequencies and the point of application of the source are random
varlables. The function Re AR(w) for a number of different mem-
bers of the ensemble 1s shown in Fig. 6c., The concept of the
ensemble average impedance at w can now be introduced, as well as
the variance and other higher order statistics of Re AR(w).

In an actual situation in which the resonance frequencies or
the scurce point is not known the ensemble average value of
Re Ap(w) is used as a "best" estimate. Confidence in this best
estimate for the beam being considered depends on the varlance
across the ensemble. o ’
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Re {A(w)} 4

L/MAM(/__*
Vw

FIG.6a REAL PART OF THE ADMITTANCE FOR A
BEAM WITH SIMPLE SUPPORTS

re{aw} ¢

l-yy__-JﬂLJ[l1T&-.Jz{il&-—lllyy---—-.»
Vo

FIG.6b  REAL PART OF THE ADMITTANCE FOR A
BEAM WITH REALISTIC BOUNDARY CONDITIONS
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| | /
NN W,
o Vdt SN
- K A ‘ y 1 /\ A

Re {A(w)}

FIG.6¢c  REAL PART OF THE ADMITTANCE FOR AN ENSEMBLE OF BEAMS
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Lyon assumed that the separation between resonance fre-
quencies has a Poisson distribution and that all points on the
beam are equally probable as polnts at which the source 1s
connected., Without going into his exact calculations his final
results are given below. The ensemble average of the real part
of the admittance for light damping is

= -
<Re AR(w)>enS = 2Mb nb(w) ) (3.2.1=23)

where nb(w) is the modal density (the ensemble average number of
resonance frequencles per unit frequency). The modal density of

the beam 1is

nb(w) = E?Efray (3.2.1=24)

where cb(w) is the bending wavespeed in the bean,

cg(w) = w‘/%i (3.2.1-25)

where EI 1s the bending stiffness of the beam. Combining Egs.
3.2.1-23 through 3.2.1-25 one finds that

/ = -
<Re AR‘w)>ens Re AR,inf(w) (3.2.1=26)

where AR 1nf is the real part of the input admittance of an
3

infinite beam,

- 1
Re AR,inf = EE;E; . | (352.1-27)
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It is clear from Eq. 3.2.1-26 that the ensemble average input
admittance of a finite beam i1s equal to that of an equivalent
infinite beam. This result i1s very useful since the admittance
of an 1nfinite beam depends on parameters typically known with
good accuracy.

The variance of the real part of the input admittance has
also been found by Lyon.28 Hls result shows that this varlance
depends on the amount of modal overlap, i.e., the number of
modal resonances in a modal resonance bandwidth. The larger
this number the lower the variance.

When the excitation is band-limited noise one must average
the pure-tone result given by Eq. 3.2.1-23 over the band. Since
the modal density 1s not strongly dependent on frequency, one can
average the value of the real part of the admittance over the
band Aw by

= T -
<Re AR(w)>ens,Aw = 2m2 nb(wc) (3.2.1-28)

where w, is the band-center frequency.

As for the pure-tone case Lyon?®has again calculated the
variance. For thls case the variance 1s smallest for large
numbers of modes in the excitation bandwidth, Aw. This result
and that for the pure tone case are consistent since high "modal
overlap" implies many modes responding to a pure tone.

When the source is a point velocity source one uses
Eq. 3.2.1-10 to prediet the time-average power input. This
equation requires the real part ¢f the input impedance. To
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find this impedance the same approach used to find the real
part of the admittance is followed. The result is

<Re ZR(m)>enS = Re ZR,inf(w) (3.2.1-29)

where ZR inf is the impedance of an infinite bean.

2

Generalization of the Power Input from a Point Source

The previous section was restructed to the calculation of
power input to a beam. This restriction was made 1n order to
simplify the discussion. The method of calculation used can be
easily-éxtended to the problem of power input to a generalized
multimodal system. In his work Lyon?®considered the problem of
computing power input to plates and acoustic spaces. In the
previous section his results were used for computing power input
to a beam. Here it is assumed that these results can be used
for any multimodal system. Thus, to compute the time-average
power 1nput from a point force source the real part of the
admittance of the infinite system is used in Eq. 3.2.1-9 to
get

S“in(w) = SF(w) Re AR,inf(w) (3.2.1-30)

where AR inf is the admittance of the equivalent infinite system.
3

Similarly, to compute the tilme-average power input from a point
velocity source one uses the infinite system impedance in
Eq. 3.2.1-10 to get

S, (w) = Sv(w) Re 2 (3.2.1-31)

(w)
Tsn R,inf
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where ZR inf 1s the impedance of the equivalent infinite system.
L ]

The impedances of a large number of different systems are available

in the literature.

Wher the source is nelther a force nor a veloclty source but
has a finite nonzero source lmpedance the use of Eqs. 3.2.1-30
and 3.2.1-31 is restricted to cases .of modal overlap, i.e., cases
in which the average separation between resonance frequencies is
less than the damping bandwldth. Scharton?®has studied the prob-
lem of power input from sources of finite impedance. The reader

should refer to his work for more detailed informatlon.

3.2.2 Power input from distributed sources

The problem of computing the time-average power input from
a distrlibuted source is much more complicated than that from a
point source. With a distributed source one must take into
account not only the match in frequency between the source and
the driven-system modes but also the spatial match between the
source and the driven-system mode shapes. Examples of distri-
buted sources include acoustilic flelds, fluctuating aerodynamic
pressure flelds and some distributed equipment mounting founda-
tions. As for the point source, simplifications can be made if
the source can be treated as elther a distributed pressure or
velocity source.

To 1llustrate tne computational technique the power input
from an acoustic field to a thin plate will be considered.
Generalizations to more difficult problems will be clear.

The fluctuating pressure on the surface of a plate in an
'acbustic field is thé sum of a blocked preséure ~ the pressure
when the plate is restrained from moving — plus a radiated pres-
sure — the pressure resulting from the'motion of the plate. The
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radiated pressure can be further divided into a component in
phase with the plate velocity — radiation damping — and a com-
ponent out-of-phase with the plate veloecity — fluid loading. For
most problems 1in air the radiation damping will be small compared
to the mechanical damping in the plate and the fluid loading will
be small compared to the surface density of the plate. Then, the
radiated pressure will be negligible and the acoustic fleld can
be considered as a pressure source. Even when radiatlon damping
must be included in the analysis, 1t 1s possible to treat the
acoustle fileld as a pressure source and include the radaiation
damping with the mechanical damping in terms of a total damping
loss factor.

The power input from the acoustic field to the platz is
given by ;

<My = jA dx <p(x,t)v(x,t)>, (3.2.2-1)
where p(x,t) is the acoustic pressure on the plate, v(x,t) is the
plate veloclity and A is the area of the plate. If one expresses
the plate velocity in terms of its normal modes, Eq. 3.2.2-1 be-

comes

<My de = g <vi(t)fi(t)>t (3.2.2-2)

where vi(t) is the velocity of the ith mode and fi(t) is the
modal force given by

£, (8) = [, ax p(x,%) ¥, (x) | (3.2.2-3)

where wi(g) is the mode shape. From Eq. 3.2.2-2 it can be seen

that the power input is the sum of the power 1inputs to each mode.
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If the acoustic field is random and its spectral density is
fairly flat over the band Aw, one can appeal to the power input
calculation for a single oscillator to write

N Se

<T, > = %w 71 (w, ) (3.2.2-4)
in t,Aw i 2 Mp i e

where the summation now is over all modes with resonance frequen-
cies, wy, in the band Aw, Mp 1s the modal mass of the plate and

Sf (wi) 1s the mean-square modal force spectral density for the
i
ith mode. The relationship between Sf and the mean-square pres-
i

sure spectral density of the exciting pressure field has been
defined to be the joint acceptance, Ji(w), which 1is?°

(3.2.2-5)

T 1 NAm
<w1n>t,Am = 3 ﬁ; Sp § Ji(mi) (3.2.2-6)

where Sp is assumed to be flat over the band Aw.

The Joint acceptance for each mode of an idealized mathema-
tical model of the structure can be calculated. Since the reso-
nance frequencies and shapes of the first few modes of an actual
structure can be computed fairly accurately, thls mode by mode
approach makes good sense at low frequencies. However, at high
frequencies confidence in the prediction of resonance freguen-
cies and exact mode shapes falls off rapidly. In addition, the
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number of modes which must be included in the mode-by~-mode cal-
culations becomes very large. For these reasons a statistical
approach is called for.

Using a statistical approach, an ensemble of plates 1is de-
fined in whilich the resonance frequencies are random variables.
For this analysis, however, the mode shapes will be taken as non-
random sin kxx sin kyy funetions. 1In many cases it would also be
desirable to make the mode shapes random. But, unfortunately,
the calculations for this case have not been worked out. The
error introduced by using sin kxx sin kyy functions for problems
in which the boundary conditions are not simple supports is be-
lieved to be small, less than +3 4B.

The ensemble average number of modes with resonant frequen-
cles in a band Aw 1s given by the modal density. Thus, the en-
semble average power input in the freguency band Aw can be writ-
ten

-1

m
<Trin>t,Aw,ens T2 Mp Sp np(m) Aou(‘ji>13w,ens (3.2.2-7)

where <Ji>Aw,ens is the average joint acceptance — the average
being taken both over the band Aw and over the ensemble. To cal-
culate the average joint ac~septance, one calculates the joint
acceptance for a sin kxx sin kyy mode shape and then averages

the result over the band Aw and the ensemble,

The joint acceptance for a particular mode is given by

Ji (m = 1{!{! dx, dx, S, (x ,x,,0;) ¥;(x) ¥;(x,) (3.2.2-8)

2
P p PP
where S (xl,x s0y )} 1s the cross-spectral density of the pressures
at x, and X, - Equation 3.2.2-8 can be put into a form more
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suitable for the required averaglng by Fourier transformation.
Defining the followling transforms f

4 1 -1(k-x) _
Py (k) = 5= i] dx ¥,(x) e (3.2.2-9) sl
p Lo
and fl i
A 1 +i(keA) .
sp(g_,w) = 5= [[ da Sp(g_c_,y-{l_,m) e T = = (3.2.2-10) a ;
one can write Eq. 3.2.2-8 as {}
) N l ) ) X
3% (w,) - - j'j dk S (k,uy) | (k)| (3.2.2-11)
p p )
where S (k,w) 1s the wavenumber-frequency spectrum of the excit- s
ing pressure field and |iDi(k)|2 is the magnitude squared of the A
transform of the mode shape. The function Iwi(£)|2 for a sin kxy N i
sin kyy mode has the form i
2 __1 2 2 -
19, () |% = ~ A TG Lk ) |2 [Tk, k)| (3.2.2-12) ']
27 )
where I is giveﬁ by {1
1 Lx -1k, x ]
I(k, k) = E;-fo dx sin kX e . (3.2.2-13)
The function I can be éasily evaluated for a number of different

values of kx and kl.

Smith and Lyon3' have shown how to average the functions
|I(k,,k,)}* and II(kzz,ky)-I2 for the modes of a plate with reso-
nances in the band Aw. In their work Smith and Lyon compute
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radiation resistances. The radlation resistance is related to
the joint acceptance by the equation

p.c k2A?

Ri,rad(wi) = _i_%F&_E Ji(wi) (3.2.2-14)

where Ri q is the radiation resistance, k, is the acoustic wave-

number o% Wy and p,c¢, 1s the characteristic impedance of the
acoustic media. Smith and Lyon have found the average value of
Ri,rad(wi) over the band Aw and the ensemble for diffuse acoustic
excitation. The reader is referred to thelr work or equivalently
to the work by Maildanik’ for specific results. For plates which
are large compared to an acoustic wavelength, we can approximate
he ensemble average radlation resistance of modes with resonance

frequencles in a given band Aw by the expressions

<Ri,rad>ens,Am = p,c,A for w > 2w, (3.2.2~15)
and
1 14 W
<Ri,rad>ens,Aw = ;? (E;) PeCoAcP for w < —
(3.2.2-16)

where w, is the cepritical frequency given by

L (3.2.2-17)
We = ET > "o

A, 1s the acoustic wavelength at w,, p is the perimeter of the
plate, Ps is the mass per unit area of the plate, and EI 1s the
bending stiffness of the plate. The radiation resistance in the
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region between wc/2 and 2wc depends in a complex way on the plate
parameters. For practical purposes 1t 1s reasonable to assume a
smooth transition from Eq. 3.2.2-16 to Eq. 3.2.2-15 in this re-
gion.

3.3 Power Transmitted

The calculation of the power transmitted between two oscil-
lators has been studied in detail.?!»3:*25232 Tt nas been found
that 1f the two osclllators are forced with independent white
noise the power flow between them 1s proportional to the differ-
ence in thelr total energles or

Ton = Omn(Ep=€p) (3.3-1)

where ¢mn is, by definition, the factor of proportionality.

The case of the coupling of two multimodal systems 1s less
clearly understood. In this sectlon two general techniques that
have been successfully applied to coupled multimodal systems will
be presented. To simplify this presentation the two techniques
the "mode approach" and the "wave approach" will be used to solve
a problem with two rods vibrating longitudinally and coupled to-
gether with a spring.

It should be emphasized that the above two techniques are
not the only ones applied to coupled multimodal systems. New-
1and®?3323% has developed a technique for measuring the coupling
coefficient from the shift in natural frequency that occurs when
two systems are coupled together. Gersh?®?°*®*5 has applied some
techniques from control theory (Liapunov's principle) to deal
with the strong coupling case. However, the wave approach and
the mode approach have received somewhat more attention in the
literature and as a result are, at present, on a somewhat firmer

basis.
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3.3.1 Mode approach

The mode approach to the calculation of power transmitted
between multimodal systems was the first technique applied.! It
has the advantage that the chain of assumptions inveolved in the
calculations 1s falrly clear but 1t has the dlsadvantage of being
cumbersome. The coupled modal equations must be derived and then
rather extensive manipulations must be performed on the resulting
coupling factor. 1In the next section the coupling coefficient
for two coupled oscillators is derived and in the followlng sec-
tion the result 1s extended to multimodal systems.

3.3.1.1 Two couptled oscillators

If two simple oscillators as shown in Fig. 7 are coupled to-
gether and each is driven by a white noise force, the two forces
being statistically independent, it can be shown that the time
average power flow from the first osclllator to the second is di-

rectly proportional to the difference in thelr time average total
energles

) . (3.3.1.1-1)

Tie = ¢, (g,-¢,

The coupled equations of the two oscillators in Fig. 7 may
be written

1 . . 1 .
(M1 tf Mc)x1 + bxxz + (K1+Kc)xl + Mcxz-sz—ch2 = F,

1 . 1 “
(M2 + E’Mc)xz + b,x, + (K2+Kc)x2 + I Mcxl—Gil-ch1 =F, .

(3.3.1.1-2)
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FIG.7  TWO COUPLED OSCILLATORS

46




; Report No. 2064 Bolt Beranek and Newman Inc.

Note that there 1is gyroscopic, inertia and stiffness coupling.
The last form of coupling is somewhat uncommon with simple mass-
spring oscillators but the coupled equatlons that result when two
contlnuous systems are coupled together often contain terms of
the form Mc/u (X,+¥%,) (inertia) and Gk (gyroscopic) as well as
stiffness terms. '

1::. s

-

| Dnn

We now write Eq. 3.3.1.1-2 with new coefficients

E X, 0+ Ak + mfx1 + % [uk,-vk,-xx,] = f,
E X, + A%, + mixz + A[uiz—yxz-xxz] =f, (3.3.1.1-3)
ﬁ where
D, b,
E A, = M, +M /8 4, = M, +M_/T
, _ KK, , | KK
Y1 T WA/ Y2 T M AW /B
B M +M /4 M /4
A2 = M1+MC/ po= C -
2 M /0 [(M,+M_/H) (M, +M_/4) 1"
_ G _ Kc
Yo 4 4y T 4 4)1"
LM +M,/74) (M, +M,/4) ] [(M,+M,/8) (M +M,/4)]
F, F,
£, = M M /% £, = M+ 7T

Scharton and Lyon_5 have calculated the coupling coefficient
in Eq. 3.3.1.1-1 for the coupled equation of Eq. 3.3.1.1-3 and
have found it to be

2]
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2 4 b 2 2 2 - 2 2 2
LA w0 4+ 8, (8 wi+d wi)] + (Y2+2uk)[A wi+d,0l] + k*(A +4))

¢ =
12 (1-p2)[(wi-w3)? + (8,+4,) (8 w2+A 0})]

(3.3.1.1-4)

The result in Eq. 3.3.1.1-4 1z always correct independent of the
strength of the coupling. The validity of Eq. 3.3.1.1-4 does depend
however, on a somewhat special definition of the engeries in Eq.
3.3.1.1-1. For example, €, 1s the energy that weggg,result if M, in
Fig. 7 were held statlionary and M, was allowed to move under the
action of the applied force. €, 1s defined similariy. These en-
ergies then contain terms assoclated with energy in the coupling

elements as well as in the oscillators themselves.

It will be found as the coupled modal equations of coupled
continuous systems are examined that under sultable assumptilons
equations of the form of Eq. 3.3.1.1-3 will result. Use of
Eq. 3.3.1.1-4 will then yileld an equation for the power flow be-
tween any two modes of the coupled system.

3.3.1.2 Extension to multimodal systems

For the two oscillator cases 1t has been shown 1ln the previous
sectlon that power transmitted is proportional to the difference
in energy of the two oscillators and the proportionality factor
was calculated in terms of the properties of the two oscillators
and the coupling between them. The somewhat peculiar definition
of the total energy of each oscillator (ecoupling elements are
included) used in the previous sectlon can be relaxed somewhat if
the coupling 1s light. In that case oscillator energy can be de-
fined in terms of the oscillator elements not inecluding coupling
elements.! It remains to apply these results to many oscilla-
tors coupled together as in a multimodal system. In order to
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O 2
[Tn R

1llustrate thilis applicatlon, the specific example of two rods

- vibrating longitudinally and coupled together with a spring will
hé be used (see Fig, 8).

The equation of motlon fcer a longitudinally vibrating rod
may be written

2 2
; _ez 228 3%k fix,t) (3.3.1.2-1)
: 3x2 3t 2 pa

romeem
oy

where £ is the displacement in the x direction along the length
of the bar, p is the density, A is the cross-sectional area, t 1is
the time, ¢ 1s the wave speed, and f(x,t) 1s a force per uni¥b
length.,

Referring to Fig. 8 one may express the resulting equations
of motion for the two bars

[=d 0|

bar 1
{—1 aggl . 3251 F1 c
_;;-2- - cl 2 = 91A1 G(X-xf1)+ 'E"I"A" G(X_XCI) [E;z(xczst) - E"l(xc l’t)]
3y - —t—)-i-i'-- £ (o0,t) 8(x) - -b-f-l- E(L,t) 8(x-L,)
¥ Py A, "1 77 P14, ! v
(3.3.1.2-=2)
bar 2
: ,
) 52 , 3°E, K

F2
01,t)] + " 6(x-xf2)

C
PLA G(X-XCZ)[ga(xcz,tyél(X P27 ,

2

s
oF
ct
(3]
[ L
Q
b

b b

20 s 21 s '
= oA, E(008) 80 - g B (L) S(x-L,)

3 (3.3.1.2-3)
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where the effect of the coupling spring and viscous dampers at the
end of the beam have been 1lncluded as external forces, Kc is the
coupling spring stiffness, and b, , , b, , b, , and b,, are the
damping coefficlents of the viscous dampers.

It 1s assumed that 51 and £2 can each be expressed as a serles
of orthogonal functions as follows

£,(x,8) = ] u (t) ¢ (x)
m

E,(x,t) = IZI vo(t) ¥ (x) | (3.3.1.2-ka)
where

3%¢

—8 o _ g2

ax? “n n

3%y

n _ - 2 -

- Kn wn (3.3.1.2-4p)

and

L
= - 1f m=n
L,
Jo by ¥ dx = 0 1f m # n
_ L,
= = iIfm=n (3-3-1.-2"1‘0)
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Because all coupling, forcing, and damping have been included
as forcing terms in Egs. 3.3.1.2-2 and 3.3.1.2=3, the mode shapes
requlired here are specifically the modes shapes for a free-free
rod, i.e.,

nwx
Y, (x) = cos 1:: n=1, 2, ...
_ mmx _
¥ (x) = cos T m=21, 2, «..

Thus 1n terms of the total problem (mode shape and forcing
terms) the resulting boundary conditions are the proper ones.

Using Eq. 3.3.1.2-4a in Eq. 3.3.1.2-2 and Eqg. 3.3.1.2-3,
simplifying the result by the use of Eq., 3.3.1.2-4b, and applying
the orthogonality condition of Egq. 3.3.1.2~4c by multiplying the
equation by the appropriate orthogonal function and integrating
the result over the appropriate length, one obtains

' w{ o 2 - -

8 um + Amum + wmum Acmnvn Fm

.:T‘ Y o 2 - -J:n = -

g Vot A v, Yoy, - FCu = G (3.3.1.2-5)

where

m,

L {b1°[¢m<0)12 + by, (6 (L)1 }

AR A
ety PRI S P LI

. s {bzotw;(O)Jz + b, [y (L,)]12 }
n m,

ml = plclAl

mz'* p.c. A
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2K
2 o A2p2 c 2
wl cle + oy [¢m(XC1)]
2K
w? =

22 C 2
n Csz + rnz [wn(xcz)]

2K ¢ (Xg 1)U, (X0 5)

mn (mlmz);é
m, |3
A= [—-l.'.]
m2
2F1 2Kc . k#n ) L#m
P = TF:'¢m(xf1) + m, ¢m(xc1) £ kaktxpz) - g u£¢£(xc1)
., kagm b (4, (0)1% + b [ (L )]* .
i m, k
2F, 2Kc k#n L#m
Gy = m, ¢n<xfz) - TF: wn(xcz) % kak(xcz) - E uz¢2(x01)
s kfn bzofwk(o)]z + b.“[th(Lz)]z .

" m, k

If one assumes that F, and F, are white, that the um's and-

vn's are statistically independent and that the summation terms
in the Fm and Gn terms each have a spectrum that is flat compared
to the admittance spectrum of the mth and ntk modes, respectively,
then the results of Scharton and Lyon® can be directly applied
by substituting the appropriate values from Eq. 3.3.1.2-5 into

the expression for the coupling coefficient of Sec. 3.3.1.1
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by = “mn_Cn*tn) : (3.3.1.2-6)
(w:l-wrzl)z + (Am+An) (A _w2+A_w?) J

mn mn

From Eq. 3.3.1,2=6 one can find the power transmitted between E
any mode in rod 1 and any mode in rod 2 |

. (1) _ (2) |

“mn - ¢mn Em - En (303.1-2-7) !

where eél) 1s the energy of mode m of rod 1 and séz) 1s the energy [1
of mode n of rod 2, To obtain the total power transmitted between ’
the two rods one must sum over all modes in both systems §]
N M 8

= (1) (2)] ‘

nm ]

In general one 1s dealing with a particular band of frequency -

and thus the summations refer to all the modes with resonant fre- oy
quencles in the band of interest, assuming of course that damping

is light enough to allow resonant modes to dominate the response.

If one knows the resonant frequencies and mode shapes of
both systems well enough, it is possible to apply Egs. 3.3.1.2-6
and 3.3.1.2-7 directly and sum over the known modes. In general,
at nigh frequency one does not know the modal properties that
well — not to mention the fact that the numbers of modes involved
may be so large that calculations using Eq. 3.3.1.2-8 will be
qulte tedious. In order to avoid these difficulties, one takes a
statistical approach and assumes that the particular systems
under consideration are members of an infinite ensemble of systems.
It is desired then to find an "average" coupling factor, ¢, for
the ensemble. The_definition of the ensemble has purposely been

r b
"

L 1
| IV

"
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left very loose here. In general the purpose behind averaging
¢.n of Eq. 3.3.1.2-6 1s to end up with a ¢ that 1s independent of
the propertles of any particular mode such as natural frequency
or mede shape. In order to accomplish this different kinds of
averaging will be required for different systems.

For the particular system under discussion here the follow-
ing form of averaging is appropriate

1. One assumes that there is a uniform probability that
the coupling spring is attached at any point along the
length of rod 1 and an independent uniform probability
that the spring is attached at any point along the
length of rod 2. The average value of the coupling
coefficient then becomes

<¢p__> = . “ dx = dx _, ¢ (3.3.1.2-9)
mn_ L Lle . cl . c2 "'mn ° terET

2. One assumes that the natural frequencies of the two rods
are randomly distributed. To deal with this situation
properly two cases must be considered: '"well separated
modes" 1n the receiving system (rod 2) and '"modal over-
_lap" in the receiving system.

For the case of "well separated modes" one assumes that given
the natural frequency, W s of a mode of rod 1, there is a uniform
probability that the natural frequency of a mode in rod 2 1lies
between Wy - l/2n,(w) and w, + 1/2n,(w) [n,(w) = L,/nC,, 1s the
modal density of rod 2]. Because the modes are well separated,
i.e., the modal bandwidth A 1s much less than the modal spacing
1/n(w), it 1is further assumed that one mode in rod 1 is coupled
to only one mode in rod 2, or
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dw_ ¢ | (3.3.1.2-10)

mm+l/2n2(wm)
n *‘mn

g ¢mn = nz(wm)

wm—l/2n2(wm)
where the summation over n refers to summing over all modes 1n
rod 2 1n the frequency band of interest,

For the case of "modal overlap" where the modal bandwidth is
greater than the spacing between modes one assumes that in the
frequency band of interest, Aw, there 1s a dense array of modes
in rod 2 with a uniform probability that a natural frequency lies
at any point in Aw. Because of the modal overlap condition one
can no longer assume that one mode in rod 1 is coupled to only
one mode in rod 2. For thls reason then, one calculates an aver-
age coupling factor for a mode in rod 1 to a single mode in rod 2
and multiplies the result by the number of modes in rod 2 in Aw or

w,. - Aw/2

w  + Aw/2
Z ¢mn = [nz(w )Aw]l:f% j m dwn ¢mn] (3.3.1.2-11)
m

where the first term in brackets 1s the number of modes 1n Aw in
rod 2, the second term in brackets 1s the average coupling co-
efficient for a mode in rod 1 to a mode in rod 2 in the band Aw
and w. becomes the center frequency of the band.*

If Aw in Eq. 3.3.1.2-11 is greater than the modal bandwith
of a mode in rod 2, then the limits on the integration can be

¥To be strictly correct the calculation of the average coupling
factor in Eq. 3.3.1.2-11 should also contain an integration over
Wm Since the mode of interest in rod 1 could have its natural
frequency anywhere in Aw. However, if the modal bandwidths are
much less than Aw, the Integral over w, is approximately the same
for all wpy except near the ends of the band. Thus no averaging
in wy, 1s required.
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changed to -» to +», The same change in limits on the integra-
tion in Eq. 3.3.1.2-10 1s possible Yecause of the assumption of
well separated modes. As a result, the two results are the same

E ¢mn = 2 - dmn ¢

mn

where the factor of 1/2 is due to the fact that ¢mn 1s an even
function of W, and the lim.ts of integration should actually have
been expanéed only from 0 to «,

Carrying out the above integration using contour integration
and assuming that the modal bandwidth A is much less than the

center frequency w one obtailns

K2L
Jo =3 —2 . (3.3.1.2-12)
n mlmzcaw2
Equation 3.3.1.2-8 then becomes
M M N :
- (1) (2)
T2 = (g ¢mn) % e - g g don Ep ¢ (3.3.1,2-13)

Equation 3.3.1.2-13 can)be further simplified if one assumes that
(2
n

the summations over e are negligible compared to the summa-

()
tions over Em

. T, = (Z ¢mn) E, (3.3.1.2-14)
n

where E, 1s the total energy of rod 1 in the frequency band of
interest. Equation 3.3.1.2-14 would be valid if, for example,
wlth a very soft spring coupling the two rods only rod 1 were
forced.
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If the above is not valid, one often assumes that the coupl-

ing between modes within rod 2 is very strong and that each mode,

2
eé ), has the same energy

E
Eé?—) - "1'\12' (3.3.1.2-15)

where E, 1s the total energy of rod 2 in the frequency band of
interest and N 1s the number of modes in rod 2 in that band,
Eq. 3.3.1.2-13 then becomes

ME
M
M, = (E ¢mn) E, - g} —NZ- = (z ¢mn) (El - EEZ) .
(3.3.1.2-16)

For a narrow frequency band M = n,(w)Aw and N = n, (w)Aw
where Aw is the bandwidth of interest and n, and n, are the modal
densities of rod 1 and rod 2 respectively, Eq. 3.3.1.2-16 becomes

1 2

E
T, = (Z¢mn) nl(gT - H:) . (3.3.1.2=-17)
Using the appropriate expression for (z¢mn), Eq. 3.3.1.2-12, in
Eq. 3.3.1.2-17 one can calculate the total power flow between

rod 1 and rod 2 without specific knowledge of the natural fre-
quencies or mode shapes. Of course this particular problem is
simple enough thét an exact closed fo.m solution is possible (see
Appendix A). Use of this exact solution will be made in a later

section.

It is often useful to have an upper limit for the average
coupling coefficient. To obtain this 1imit it is assumed that the

modes of the two rods have the same natural frequencies. It is
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also appropriate to choose the maximum possible value for C in

mn
Eq. 3.3.1.2-6, 1.e., the amplitudes of the twoc mode shapes at the
coupling points are taken to be unity HE—
(c2 ) 2K2
(Z ¢mn) - —mmax 2 c . (3.3.1.2-18)
n max (Am+An)w m,m,w? (b, +b, +b, +b,, )

Use of Eq. 3.3.1.2-18 in Eq. 3.3.1.2-14 or 3.3.1.2-17 will
give an upper bound on the power transmitted between the two rods.
This result 1s strictly valid only for the "well separated mode"
case. For the "modal overlap" case a possible means of getting
at the answer would be simply to multiply Eq. 3.3.1.2-18 by
n,(w)(A +A ) or the number of modes in rod 2 contained in the
combined modal bandwidths of a mode in rod 1 and a mode in rod 2

or

2
4KZ L,

L ¢ -
(n M Inax ™M c,mw?

(3.3.1.2-19)

Although we have formulated the power flow problem in terms
of an average coupling coefficient it is more common in SEA to
use a coupling loss factor analogous to the damping loss factor.
The coupling loss factor is related to the average coupling co-
efficient by the equation

wn,, * g bmn (3.3.1.2-20)

4

where N, is the coupling loss factor and w is the center fre-
quency of the band being considered. Using the coupling loss
factor the basic power flow equation becomes
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E, E,
Since the power flow from 1 to 2 equals minus the power flow from
2 to 1 we have the basic relationship

n,n, =n,n, . (3.3.1.2-22)

This relationship allows some flexibillity in using either n,, or
N, - Note, however, the n,, does not equal n,, .

3.3.2 MWave approach

In recent years a different approach to the calculation of
power transmitted has been developed. This technique, which will
be called the "wave approach" in this report, does not depend on
knowing the coupled modal equations of the coupled system and, in
fact, does not even mention the word mode in the process of cal-
culating the coupling loss factor, N,s It has been demonstrated
in many cases®*?®*® that the coupling factor calculated by the
wave approach 1s the same as that calculated by the mode approach.

The principle outlined 1n Seec. 3.2 that the impedance of a
finlte system becomes that of the infinite system glven a broad
enough frequency band and/or a high enough modal density is the
basis of this approach. To¢ illustrate its application the coupl-
ing factor for the coupled rod problem of Sec. 3.3.1.2 will be
derived here.

Using the total power flow equation of Sec. 3.3.1.2

| | E, Ez) | (3.3.2-1)
. = Wwn n w— oy amroun 3. o O
12 12771 nl 1'12 | |
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one generally assumes for the purpose of derivation of N, that
the second term in parentheses 1s negligible compared to the
first. Such an assumption is valid if the modal density n, of
the second system 1s much larger than the first or if the coupl-
ing is light and system 1 is the only source of excllation for
the second. In any event, under this assumption Egq. 3.3.2-1 be-
comes

™ = wun,.. E, . (3.3.2-2)

Calculating = and E the

12 1°?
coupling loss factor.

then, enables one to find n,,,

The time-average power flow from ro: 1 to rod 2 (see Fig. 8)
may be written

- 1 :
T2 = 5 Re{chg}

where Fc i1s the force amplitude in the coupling spring and ég is
the complex conjugate of the amplltude of the velocity in rod 2
at the point of attachment of the coupling spring. Using the
point impedance of rod 2, Z,, one may write

4 |F2|
T, = — Re{zl,z,-}. (3.3.2-3)

It is desirable to express F, in terms of a quantity easily
relateable to the energy in rod 1. For this reacon Fc is expressed
as the sum of the force that would be required to hold the point
of attachment of the coupling spring rigidly, FBL’ and the force
due to the motion of that point, Fm -

Fo = Py, + Fp -
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The force Fm may be written

where Z, 1is the point impedance of rod 2 and é: i1s the veloclty
in rod 1 at the point of attachment of the coupling spring. The
total coupling force, Fc’ applled to rod 1 is applied equally and
oppositely to the coupling spring such that

where Z; is the impedance of the coupling spring attached to
rod 2 but separated from rod 1.

Combining Egs. 3.3.2-3, 3.3.2=-4, 3.3.2-5, and 3.3.2-6 leads
to an expression for the power flow in terms of FBL

Z
1+

8 -

i

F_2
T = [B§ i l 7

: Re{fl;;} . (3.3.2-7)

2

[N |

[ ]

Clearly 1if FBL can be expressed in terms of the energy of
rod 1, use of Eq. 3.3.2-1 will lead to an expresslon for Nype

To this end assume that a right running traveling wave of
amplitude £, is incident on the coupling point in rod 1 and that
that point 1s held rigidly. It can be easily shown, then, that

Fee®| = 5] (5]

In reality it is equally llkely that a left running wave lis
incident on the junctions from the right. Assuming that this
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wave has the same amplitude as the right running wave but 1s
uncorrelated with it leads to

|Fa1?| = 2|z2| 1€, 1% . (3.3.2-8)

If the coupling is 1ight, the energy contained in rod 1
due to the action of these two unccrrelated traveling waves
may be wriltten

E, = p,A L |£3] (3.3.2-9)

where p, is the density of rod 1, A its area, and L, its length.

Combining Eqs. 3.3.2-1, 3.3.2-7, 3.3.2-8, and 3.3.2-9 and
solving for n,, leads to

23] | 21 |
2 1

wn‘ = Re s . (3.302-10)
12 plAlLl ZI+Z; Zz*

It can be easily shown that 1f the two rods are taken to be
inflnictely long,

Z, = 2p,c A,

4, = 2p,c,A,

J Kc/m Z2
Z, + Kc/w

and Z; =

where ¢, 1s the wave speed 1n rod 1; P,» C,» and A, are the den-
sity, wave speed, and area of rod 2, respectively; and Kc 1s the
stlffness of the coupling spring.
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In the case of light coupling (Kc/m << Z., Za) Eq. 3.3.2-10
becomes

H
H

=
=
~
[
=
»
=

c
wn,, plA T > Jp.c.A —— (3.3.2-11)

[P

The result in Eq. 3.3.2-11 1s exactly the same as that cal-
culated by the mode to mode technique of Sec, 3.3.1.2 for the two
cases examined there. Substitution of Eq. 3.3.2=11 1into

Eq. 3.3.2-1 enables one to calculate the power transmitted be-
tween the two rods.

Yy

Note that 1n the calculation of n12 1t was assumed that in

S

Eq. 3.3.2~1 the second term in parentheses was negligible compared
to the first whereas now the entlre equation 1s to be used to
calculate power transmitted.

Note that the wave approach as presented here is the approach
most commonly found in the literature. It is often much simpler !

to apply than the mode approach though it is much harder to justify
the chaln of assumptions yielding the result.

To conclude, the assumptions that are the essence of the
wave apprcach are stated below.

1. All impedances are taken to be those of the iInfinite system.
As in the above example the lmpedances of the finite rods
were taken to be the impedances of infinlte rods. However,
it should be noted that i1f the rods had been coupled at the
end, the seml infinite rod impedances would have been used. -
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For the purpose of deriving the coupling coefficient the
power transmitted 1s taken to be proportional to the energy
in the driving system or

" = wnle

12 1

where 1 denotes the driving system.

To calculate the energy in the driving system as well as the
blocked force (where force is here meant 1in the general
sense of a moment, stress, pressure, or force) one assumes
that the response of the driving system consists of a series
of uncorrelated traveling waves incident from all possible
directions. For example, in the middle of a rod there are
Just two possible directions; 1n a plate waves can be inci-
dent on a point from any of 360°; and in an acoustic space
one usually assumes a diffuse pressure field (waves incident
from all angles), although other fields such as grazing or
normally incident should be used when appropriate. If the
coupling spring were at the end of the rod, waves could only
be incident from one direction; if the coupling point were
at the end of a panel, waves could only be incident from any
of 180°, etec.

Careful application of the above three assumptions should lead to

proper calculation of power transmitted for many different classes

of coupled systems.
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3.4 Power Dissipated'
Definition

In previous sections we have somewhat arbitrarily separated
the power leaving a continuous medium (structure, acoustic space,
ete.) into two categorles, power dissipated and power transmitted.
In some cases 1t 1s scmewhat ambiguous as to how one distinguishes
between the two types of power. Clearly the power leaving a con-
tinuous medium due to damping (conversion of mechanical to thermal
energy ) where the damping may be due to interface friction, fluid
viscosity, turbulence, mechanlcal hysteresis, or electromagnetic
hysteresis 1s classiflied as power dissipated. The ambiguity occurs
when one has two continuous media in contact such that power can
flow between them, a panel and acoustic space f'or example. Is such
power to be classified as transmitted or dissipated?

In many cases the measurement techniques for damping answer
the question for the investigator. For example, in the measure-
ment of panel damping in air one measures both the power lost to
internal dissipation as well as the power radlated to the surround-
ing acoustic medium. Thus in calculating the response of the panel
in contact with the same acoustic medium where the damping measure-
ments were taken, to excitation other than that in the medium, one
would treat the power radiated to the acoustic medium as added
damning.

In other cases the nature of the problem itself makes the
classification clear. If three media are in contact such that
power can flow between any two, then, to classify the power flow
between any two as dissipative may lead to difficulties. For ex-
ample, if one, a priori, classifies the power flow from medium 3
to medium 1 as dissipative, this inherently assumes that insignif-
icant poWer is incident on medium 3 from medium 1. If medium 2
1s driven and it turns out that more power flows from medium 2 to

- 66
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medium 1 to medium 3 than flow directly from medium 2 to medium 3,
then, the above classification of power would be incorrect and
would lead to incorrect conclusions. Clearly, then, when the di-
rection of power flow 1s uncertain, one had best classify the
power flow as transmitted. On the other hand if two medla are
interacting, and the first is the only source of power for the
second, then, to classify the power flow between the two as dissi-
pative would cause no difficulties unless, of course, one were
interested in the response of the second medium. However, 1f one
measures damping of a medium whlle it is coupled to a second me-
dium, care must be taken not to extrapolate that measurement to
situations in which the first medlium 1s coupled to a different
second medium. For example, damping measurements made on a plate
in air will be significantly different from measurements made on
that same panel in the vacuum of outer space. As a further ex-
ample, damplng measurements made on a component 1n a structure will
be different 1f made on that same component in a radically differ-
ent structure. This 1s not to say that damping measurements in-
volving coupling to other medla cannot be extrapolated. 1In actu-
ality as long as the receiving medium is similar to that for which
the measurement was performed, extrapolation of the measurement 1is
usually acceptable. For example, the damping measured on a panel
in two different rooms would be essentially the same if the rooms
were of similar size and had similar absorptive material on the
walls.

Analytical Representation

For purposes of analysis 1t 1s generally assumed that the
power dissipated by a continuous medium, Taiss? is proportional
to the energy, E, in that medium
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Tiiss & E (3.4-1)

a valid assumption for linear systems.

In fact, early measurements of dissipation 1n materials showed
that the cocefficient of proportlonality in Eq. 3.4~1 varied 1lin-

early with frequency. For this reason a loss factor n, a constant,
was defined such that

In the case of a damped second order oscillator satisfying the
following equation

mX + bk + kx = F (3.4-2)

where m is the mass, b the viscous damping coefficient, k the
spring constant, and F a stationary random force applied to the
mass, one can multiply both sides of Eq. 3.4-2 by x the velocity
of the mass, take the time average, and obtain

L] - = .2
<PFx> = ﬂdiss b<x<>

At resonance, one obtains
Tiiss = WNE (3.4-3)

where n = b/wnm (wn = vk/m the natural frequency) and E 1s the
total energy of the oscillator which at resonance is twice the
kinetic energy since there kinetic and potential energy are equal.

Equation 3.4-3 1s commonly used to analytically represent the
power dissipated from a continuous medium for any dissipation mech-
anism. The loss factor n which 1s generally a function of frequency
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is one of a great many representations. The damping ratio, ¢, and
the amplifications at resonance, Q, are related to n as follows:

n=2; = % .

Unfortunately, at present, analytical calculation of the loss
factor n 1s not possible except 1in a few speclal cases. Radiation
damping of panels!?’ can now be calculated with some degree
of confidence and with "applied damping treatments" where suffi-
cient data exists reasonable calculation of n can be made. 1In
most cases, though, one must rely on measurements or educated
guesses.

Measurement Technique

In the field of viscoelastlclity where damping is modelled by
allowing the relevant material moduli to be complex, there are
many techniques for measuring damping. Whille differing in detaill
all of these techniques use a small material sample with special
simple geometry. Such technigues are not particularly applicable
to structural damping where friction at mechanical Joints may
dominate internal material dissipation as the damping mechanism.
For this reason two techniques commonly used to measure damping
at high frequencies will be briefly mentioned here.

In the following dlscusslon it 1s assumed that the medium of
interest has been 1solated from all other interactive media. For
example 1n the case of a panel interacting with an acoustlec space
one would ideally like to place the panel in a vacuum though this
is seldom possible. One can of course leave the medium of inter-
est coupled to other medla but it should be realized that the loss
factor that one obtains 1in the case 1s not the loss factor of the
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medium of interest but a combined loss factor which 1s a compli-
cated function of the loss factor of each of the media and the
effects of the interaction between the media. Thils combined loss
factor is often called the "total loss factor".

From Eq. 3.4-3 one technique immediately suggests itself.
Measure the time average power injected into a medium which by a
simple power balance 1s equal to Tyigg® Measure the time average
energy of the medium and use Eq. 3.4-3 to calculate n. The mea-
surement of energy in a resonant structure usually consists of a
measurement of the space-time-average velocity squared. The
measurement, of power Injected is somewhat more difficult and 1n
the case of a structure involves time averaging the product of
the point force applied and v = velocliy at the point of appllca-
tion. All these measurements are usually done in frequency bands.
In prineciple thils is stralghvforward but in practice involves the

use of some rather sophisticated equipment. A typical setup 1s
shown in Filg. 9a.

From the definition of power jinput to medium

T = ?{: : (3.4-4)

A simpler technique is suggested. From Egq. 3.4-4 1t 1s clear that
when the excltation to a continuous medium ceases the rate of
change of the energy is equal to the power dissipated. Combining
Eq. 3.4-4 and Eq. 3.4~3 one obtains

%% -~ wnkE = 2

which has a solution

E=Eet . | (3.4-5)
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One simply excites the medium of interest with white noise
filtered 1n a band, turns off the excitation, and measures the
rate of decay of energy in the medium in that band. Specilalized
instruments exist (decay rate meters, graphic level recorders
with templates, etc.) that greatly simplify this measurement. Use
of Eq. 3.4~5 then ylelds n, the loss factor.

A commonly defined quantity used with thils type of measure-
ment 1s the reverberation time, TREV’ defined as the time for the
amplitude E in Eq. 3.4-5 to decay 60 dB or

nf

T = 0

REV 2.2
where fn 1s the center frequency of the band of interest. This
type of measurement 1s used almost exclusively in acoustics due
to the difficulty encountered in measuring acoustic power input
to an acoustic space. A typical setup for measurement on a struc-
ture is shown in Fig. 9b. PFor an acoustic space one simply uses
a microphone in place of the accelerometer and a loudspeaker in
place of the shaker.

Rules of Thumb

In the absence of measurements there are rﬁles of thumb for
the value of the loss factor. Structures (noc damping treatment)
have loss factors typically of the order of 1072, 1In rooms the
reverberation time can be calculated from values of th- absorption
coefficient or the walls2® Values for absorption coefficients

for many different wall treatments can also be found in the
literature. ¥
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3.5 The Power Balance Equations

In the previous sections the power variables required for
the SEA calculatlions have been related to the energy of the
coupled multimodal systems being considered. With these relations
cne can write the power balance equation for a particular system
as

E E

i 1
<Trin>t,Aw,ens = § wny g M1 <HI°t,Aw,ens - <nJ>t,Aw,ens

E (3-5—1)

+ wni,diss < 1>t,Aw,ens

where the summation is over all connected systems., By writing
a power balance equation for each system a set of algebralc
equations 1s obtained which can be solved for the energiles in
each system.

Finally, one must relate the time-average energy of each
system to the response variables of lnterest. Since the time=-
average kinetic and potentlial energles are equal for the resonant
response of a system, thils step is quite simple. The mean~square
velocity of the structure averaged over location is given by

<E>

2 t,Aw
>1;,2_c_,Am = _-ﬂl‘-— (305"2)

where M is the total mass of the structure. The mean-square pres-
sure in an acoustic space averaged over location is given by

<V

2 PoCs |
<p >t,£’Am = —v— <E>t,Am (3'5-3)

where V 1s the volume of the space.

 ..%4_._

r = h
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4. COMPARISON WITH AN "EXACT" CALCULATION

It will be instructive at this point to compare the approx-
imate calculations 1in previous sections with an exact calculation. ;
Portunately, the coupled rod system already studied can be solved »
exactly in closed form as is demonstrated In Appendix A, using a
Green's functlon approach based on the single rod configuration
of Fig. 10. However, some caution must be exercised when making
this comparison, for all of the previous approximate calculations
are averages over an ensemble of coupled rods. In making an
"exact" calculation one must necessarily look at a particular
member of that ensemble. As a result, the degree of agreement
between the exact ari approximate solutions will depend on such
things as the standard deviation of the quantity of interest
across the ensemble. Lyon?® has estimated standard deviations
of this kind for a few particular cases but such calculations are
beyond the scope of the work here. Instead, all that 1s desired
is the development of some confidence in the approximate calcu-
latlions presented here. This 1s best accomplished by comparing

the exact solution of a particular system with those approximate
calculations.

L,
g
§

The problem to be examined is shown in Filg. 11 with two rods
vibrating longitudinally and coupled with a linear massless sopring
at the ends. Rod 1 and only rod 1, is forced at the end where
it is coupled. The values cf the quantities of interest are

p,¢,A; = p,c,A, = 590 lb/sec/ft

|
|

17 £t

14.2 £t

e
i

c. = ¢, = 6800 £t

59 1b/ft .

=
it
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FIG.10 ROD IN LONGITUDINAL MOTION
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Two values for the damping coefficient of the dampers at the

ends of the rods are taken. To simulate the
the damping coefficlients are all taken to be
to 324 1b/sec/ft. The "well-separated mode"
by again taking all the damping coefficients
this time equal to 32.4 lb/sec/ft.

g :

"model overlap" case
the same and equal
case is simulated
to be the same but
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4.1 Power Injected

The exact calculation of power injected into rod 1 is
shown in Figs., 12 and 13 for the two values of the damping
coefficients mentioned above. The locatlons of the peaks in
both figures show the locaticn of the natural frequencies of
the modes in rod 1, since because of the light coupling, rod 2
has practically no 1nf1uence on rod 1,

Using the approximatg technliques of Sec. 3.2 ylelds for
the power injected into rod 1

)l R
n 5 Re 7

1

Ty

Where Z, is the impedance of a semi=-infinite rod. Because
of the damper at the end of the rod and because the rod is
forced at 1ts end,Zl must be modified to include the impedance
of the damper. Therefore,

|F?| 1
= Re . (4,1-1)
in 2 p:°1A1 + blo

m

Eq. 4.1-1 is compared with exact calculations averaged over
a 200 Hz band in PFigs. 12 and 13.% The agreement is excellent
and should glve the reader some confidence in the results of
SeCO 3020

¥This averaging in frequency over a 200 Hz band 1s equivalent to
forcing the system with white nolse, measuring the guantities
of interest in 200 Hz bands, and normalizing the result to 1 Hz
bandwidths. '
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4.2 Power Transmitted

The power transmitted from rod 1 to rod 2 and the energy
in rod 1 (here twice the kinetic energy which is the total
energy only at resonance) for the case of well-separated modes
are shown in Figs. 14 and 15 and the same quantities for the
case of modal overlap are shown in Figs. 16 and 17.

For both cases the energy in rod 2 i1s negligible (of the
order of 100 dB below the energy in rod 1), Figure 14 1s of
particular interest since it shows clearly the characteristics
of the two rods. At 1200 Hz the two rods have the same natural
frequency and the power transmlitted 1s high. As the frequency
is increased to 1400 and 1600 Hz, the separation between natural
frequencies of the two rods lncreases, as can be seen in the
figure, and the power transmitted decreases. The pattern in
frequency shown in Fig. 14 will repeat itself and is one reason
the particular simple geometry of Fig. 11 was chosen. The same
pattern though somewhat less distinet because of the high
damping is found in Fig. 16 for the modal overlap case.

In any event the power transmitted from rod 1 to rod 2

can be written

T, = wn,, E, (4,2-1)

Since the energy in rod 2 1s negligible. Using Egs.

3.3.1.2-12 or 3.3.2~11 one can calculate nla'and hence the power
transmitted.
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The 200 Hz average of the power flow in Figs. 14 and 16
is compared with the approximate calculation of Eg. 5.2-1 in
Figs. 18 and 19 respectively. The energy in E, in that approxi-
mate calculation has been taken as the 200 Hz average of E1 in
Flg., 15 (=474B) for Fig. 18 and as the 200 Hz average of £, 1n
Fig. 17 (-57dB) for Fig. 19. The approximate calculations are
seen to be somewhat low in Fig. 18 for the "well-separated mode"
case though a much broader frequency band must be used to average
the exact calculation before too much can be said. Taking a
1200 Hz averaging bandwldth the approximate results at 1200 Hz
were found to be about 6 dB low. This can be attributed to the
fact that *.z coupling for the example here 1s at the ends
where the amplitude of the mode shapes 1s always 1. Changing
Cmn in Eq. 3.3.1.2=-12 to reflect this ralses the approximate
result in Flg. 18 a factor of U4 or 6dB in agreement with the

broadband averaged exact result.

The upper bound calculation using Eq. 3.3.1.2-18 for Ny,
is also shown in that figure. Clearly 1t correctly bounds the
power transmitted for the averaging bandwidth. For much
narrower averagling bandwidths the bound 1is found to become about
2 dB low at 1200 Hz where the modes in the two rods coinecide in
frequency.

The same comparison as above for the "modal overlap" case
is shown in Fig. 19, The approximate calculation is seen to be
between 1 and 4 dB below the 200 Hz average of the exact
calculation. However, the upper bound calculation using n,,
from Eq. 3.3.1.2-19 and the approximate calculation using N,

from Egs. 3.3.1.2-12 or 3.3.2-11 are found to nicely bracket
the exact solution in that figure.
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4.3 Power Dissipated

As will be demonstrated in a later section the ratio of en-
ergies in the two rods required a knowledge of the power dissi-
pated in rod 2 or equivalently the dissipation loss factor, n,-.
The power dissipated in a structure must usually be measured.
However, the simplicity of the dissipation mechanism in the ex-
ample makes an approximate calculsition of the dissipated power
relatively simple. As a result we will demonstrate how the modal
technique and the wave technlque can be used to calculate power
dissipated in rod 2. From Sec. 3.4 one may write

= wn E_ . (4.3-1)

1Tdiss,2 272

Using the modal technique one requires the modal equations
for rod 2 of Sec. 3.3

as . .2 = -
m v, o+ mnAnvn + WV Fn (4.3-2)
where Fn = (Gn + 1/) Cmnum)mn
mn = m2/2.

By multiplying Eq. 4.3-2 through &n and averaging in time one
obtains

<Fnﬁn> = Anmn<§;> (4.3-3)
where the left hand side of Eq. 4.3-3 represents the total power
injected into mode n of rod 2 and by a simple power balance the
right hand side must be the power dissipated. From Sec. 3.3 one
can readily see that A 1s a constant for all n and that mnﬁﬁ is
the total energy of mode n of rod 2. Summation over all modes in
the frequency band of interest in Egq. 5.3—3 ylelds
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- oy & -
Taiss,2 - Anzmn<vn> = AnEz (4,3-4)

where E, is the total energy in rod 2 in the frequency band of
interest. Combining Eg. 4.3-4 and Eq. 4.3-1 and the expression
for An in Sec. 3.3 one obtains

2(b20 +b21 )

wn, = A = i . (4.3-5)

For the wave technique an approximate calculation is also
possible. Consider the motion on rod 2 to be made up of a wave
traveling to the right and to the left. Consildering the inter-
action of the rod with the dashpot on the right-hand side one can
write for the time average dissipated power

BN

Tdiss,2 gt = Wb, —5— (4.3-6)

where EER is the displacement amplitude at the right end of the
rod and F 1s the force applied to the rod by the dashpot with
damping coefficlient b, - This displacement amplitude can be
easily calculated by assuming that the rod is semi-infinite and
that there is a single traveling wave of displacement amplitude
ER approaching the end of the rod from the left and, then,
matching boundary conditions at the end of the rod. After doing
this one obtains

where
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l'bzl/pzczAz
Y = "
1+b21/p2a.2A2

A similar set of equations may be written for the left-hand
side of the rod in terms of the left running wave displacement
amplitude £, . Combining Eq. 4,3-6, Eq. 4.3-7 and Eq. 4.3-1 and
further assuming that b, << p,c,A * one may write

diss,?2 wanz = 2w2(b21|£§| + bzo|5£|) . (¥-3-8)

Assuming t*at the two waves are equal in magnitude but un-
correlated tr- “0tal energy 1n rod 2 may be written

E, = p,A,L0*|EZ] (4.3-9)

Substituting Eq. 4.3-9 into Eq. 4.3-8 and solving for wn, one
obtains

2(b,, +b,, )
wn, = ————" . (4.3-10)

m,

Note that the result using the modal technique is the same
as that using the wave technique.

It remains to use the result in the power balance equations
to calculate the ratio of the energies in the two rods.

¥Note that this assumption is not strictly valid for the strongly
damped case; however, the error introduced is small on a decible
scale and may ke neglected.
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4.4 The Power Balance Equations and Energy Ratio

The power balance for the two rods is quite simple

Tiz = Mqiss,?

or

n,
wnlz(Ez = H: Ez) = wn,E, .

Because E2 i1s much less than E1 this equatlon may be simplified to

=3

12

. (4.4-1)

I.'!II NIIJ
[}

-
=

2

Combining the equation with Eq. 3.3.2-11 and Eq. 4.3-10 yilelds an
expression for the ratio of the energy in rod 1 to that in rod 2.
These energles are of course directly relatable to the space time
average veloclity squared irn each rod or

= 2
E, = m1<€1>x,t
-2
= <E2> .
Ez m Ez X,t

The ratio of the .wo energies is plotted in Figs. 20 and 21
for the well separated mode case and the modal overlap case, re-
spectively. For both cases the exact calculatiocn is found from
a 200 Hz bandwidth average of twice the time average kinetic
enefgy in rod 2 divided by this same average energy in rod 1.
The approximate calculation using Eq. 4.,4-1 are also shown in
these figures where nt? is defined in Eq. 3.3.2-11. The upper
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bound approximate calculation 1s formed by using the upper bound
calculation for Ny, in Eq. 3.3.1.2-18 for the well separated mode
case and Eq. 3.3.1.2-19 for the modal overlap case. Figures 20

and 21 are seen to be quite similar to Figs. 18 and 19 in which

the power transmitted is displayed, and all statements made ccn-
cerning the agreement of exact and approximate calculations in
Figs., 18 and 19 (see Sec. 4.2) apply here. As in Fig. 19 a broader
averaging bandwidth in frequency would have improved the agreement
in Flg. 20.

These examples clearly point out that given a sufficiently
broad measuring bandwidth and sufficient care in applying the
techniques, SEA calculations can be applied with confidence.
However, it should be borne in mind that SEA results are statis-
tical in nature and as a result any particular member of the en-
semble may not agree completely with the SEA result despite a
very broad measuring bandwidth. The problem studied here is a
clear example of this.,.

A further caution should be mentioned here, namely, that all
of the work presented in this section has been for "weaqk" coupl-
ing. This means that the natural frequencies of the two rods do
not change significantly upon belng coupled together. Figure 14
clearly illustrates this, for each peak in the power flow corre-
sponds to a natural frequency of the uncoupled rods.
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»

5. GUIDELINES FOR THE USE OF STATISTICAL ENERGY ANALYSIS

The potential user of Statistical Energy Analysls (SEA) must
understand the basic underlylng concepts before he can hope to
treat his particular problem of interest. We assume that the
reader has gained this baslc understanding by reading the first
four sections of this report. It is then useful to conclude by
giving some guidelines to the use c¢f SEA. These guidelines will
help the reader organize his attempt to solve any particular prob-
lem using SEA. They will also help the reader declde when to use
SEA and what to expect.

Statistical Energy Analysis is most useful in solving vibra-
tion and acoustic problems in which many modes of vibration con-
tribute significantly to the response variable of interest.
Problems in which displacement is the response variable of inter-
est tend to be less amenable to the SEA approach than problems in
which acceleration is of interest, since in most cases many more
modes contribute significantly to the acceleration than to the
displacement. Also, problems with acoustic or small-scale aero-
dynamic pressure fluctuations as the dominant source of excita-
tion are more readily treated using SEA because these types of
excitation usually excite many modes of vibration quite strongly.
Finally, problems involving accustic spaces and/or large plate
and shell structures are more readily treated using SEA than
problems involving beams and/or small structures, since the
former have many more resonant frequencies in any given band than
do the latter.

There are a number of reasons why SEA is more useful for
probléms involving many mcdes. SEA 1s a statistical approach —
the statistics being taken over an ensemble of structures and
acoustic spaces in which the resonant frequendies and mode shapes
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are random variables. Lilke any statistical apprcocach the ensemble
average quantities can be used with resonable confldence for one
member of the ensemble only 1if the variance of the quantity across
the ensemble 1s small. Thus, ensemhle average response estimates
obtained using SEA can be used with confidence for a single mem-
ber of the ensemble only 1f the variance of the response across
the ensemble 1s small. Unfortunately, most papers dealing with
SEA do not clearly define the ensemble. Furthermore, the calcu-
lation of variance has been accomplished only for a few very
simple problems. Since a quantitative estimate of variance can-
not be made, we must be content, at least for the present, to
offer some qualitative guidelines.

The few analytical calculations of variance that have been
made, plus a large amount of experimental data, indicate fthst the
variance of the response across the ensemble of structures and
acoustic spaces decreases as the number of modes contributing to
the response increases. Thus, the average response over an oc-
tave band of frequencies for wideband random excitation will have
less variance across the ensemble than will the response at a
single frequency for pure-tone excitation. Similarly, the aver-
age response in a given band of frequencies for a large structure
or acoustic space will have less variance across the ensemble
than will the response for a small structure or acoustic space
which will have fewer resonance frequencies in the band. And,
finally, the spatial average response of a structure or acoustic
space will have less variance than the response at one polnt,
since many modes can contribute to the spatial average response
while only those with antinodes nearby can contribute signifi-
cantly to the response at one point. |

As a practical matter, applications of SEA should be limited
to cases in which many modes of vibration contribute to the
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response. Most uses of SEA have been to calculate spatial-
average responses averaged over one-third octave or ontave bands
of frequencies. Results from numerous experiments show that these
spatial average response estimates¥* usually agree within 3 dB
with the data from a particular structural configuration as long
as each energy storage element in the SEA model has at least

five (5) modes in each frequency band belng considered. This
requirement can always be met by averaging the response estimates
over sufficiently wide bands of frequency. Narrow band or pure-
tone predictions can be obtalned using SEA, but they will not be
accurate estimates for a particular configuration unless the
structures and/or acoustic space are very large. The practical
necessity to limit the use of SEA to problems 1n which many modes
contribute to the response means that this method of analysis is
not useful in studyling the frequency range at and near the first
few resonance frequencies of the complete structural assembly
(so-called system resonances).

The advantage 1n using SEA over more classical techniques
lies in the fact that exact resonant frequencies and mode shapes
are not needed. In many cases of practical interest the bound-
ary conditions and damping mechanisms in a structure or acoustic
space are so complex that it is impossible to predict with any
accuracy the resonant frequencies and mode shapes. In such a

~case 1t does not make sense to use an analysis technique which
‘requires exact information as to these quantities.

Although SEA does rot require exact infofmation as to reso-
nant frequencies and mode shapes, it does require the user to
define, at least implicitly, an ensemble in which the resonant

¥We mean here spatial-average response averaged over the ensem-
ble of structures and acoustic spaces. ‘
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frequencies and mode shapes are randomly distributed with known
probability distributions. In most appllcations to date resonant
frequencies are randomly distributed so that the spacing between
resonant frequencies 1s a Poisson process. The mode shapes are
typically taken as those of a specific structure or acoustic

space which 1s felt to be representative of the ensemble average
structure or acoustic space. It is, of course, possible in using
SEA to choose any distribution for the resonant frequencies and
mode shapes. However, deviating from the common assumptions above
would represent an advance in the state-of-the-art.

The advantage described above can become a disaavantage for
those problems in which the resonance frequencies and mode shapes
are well-known. In this case, 1t does not make sense to use SEA
since more accurate solutions can be obtained using the more
classical methods of analysis.

The key steps 1in solving a vibration problem using Statisti-
cal Energy Analysis are:

1. Divide the complex structure into energy storage elements;
2. Determine the paths of energy exchange;
3. Write the power balance equations;

., Compute the required input powers, coupling loss factors,
dampling loss factors and modal densities;

5. Solve the power balance equations for the energies of each
element;

6. Relate the energy to the response variable of interest.

The most difficult steps above are steps 1, 2 and 4. Each of
these steps requires a good understanding of SEA and an intuitive
feel for the dynamic behavior of the system being studied.
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Although specific rules for accomplishing the above steps cannot
be given, some guidelines can be set out.

Completion of the first step requires two successive divi-
sions. First, the complex sfructural assembly under conslderation
must be divided into structural subelements, i.e., acoustic
spaces, plates, shells, beams, rings, instrument boxes, etc. 1In
most cases this first division is fairly obvious. However, some
confusion ean occur. Short connecting beams or shells used to
Join two larger structures may have only a few resonances over
the entlre frequency range of interest, thereby, invalidating our
practical limitatlon on the use of SEA requiring that each struc-
tural element have at least five resonant frequencies in each
frequency band of interest. In this case it 1s best to treat the
large structures as energy storage elements and to include the
effects of the connecting structure in the calculation of the
coupling loss factor between the two storage elements. The con-
necting structure can in many cases be modeled simply as a spring
connection. |

A second case in which some confusion can occur is when two
structural elements are very intimately coupled together. The
question arises as to whether the twou subelements should be
treated separately or together as one energy storage element.

The two elements can always be treated separately and the concept
of equipartition of energy, which will be discussed later in this
section, used to define the modal energies. However, some care
must be used in defining the substructure moles when the coupling
is very large. The substructure modes must be selected so that
the motion of the coupled substructures in a given band of fre-
quencles can be described accurately by a comblnaticon of responses

of the substructure modes which have resonant frequencies in the

band. For example, consider two beams Joined at thelr ends at
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right angles. Modes of each beam obtalned for simple supports
cannot be used to describe the motlon of the coupled beams since
these modes have no moment at the end of each beam, where they
are coupled together, For this problem, 1t is necessary to use
boundary conditions for each beam which allow both a moment and
angular veloeclty. Many other cases of this type exlst. Fortu-
nately, however, use of the wave approach (see Sec. 3.3.2) for
calculating a coupling loss factor automatlically insures that the
motion of the junction between two substructures is accurately
described.

In many cases, a second dlvision of the total assembly is
required. The power transfer calculations of Sec. 3.3 require
that each mode in an energy storage element have approximately
the same energy. If a group of modes in a particular substruc-
ture is much more strongly exclted or damped or is more strongly'
coupled ¢o modes in other energy storage elements, then it will
probakly have a different energy and should be placed in a sep-
arate energy storage element. For example, it 1s usually neces-
sary to separate bending and torsional modes of a beam into 4if-
ferent elements. Similarly, in studying the vibrations of a beam
on a plate it may be necessary to divide the plate modes into a
set which is well-coupled to the beam modes and a set which 1is
not, depending on whether we can assume that all modes in the
plate with resonance frequencies in a given band have the same
energy.

Step 2 in SEA i1s to determine the important paths of energy
exchange. As a general rule, the power exchange between any pair
of energy storage elements contalning modes from substructures
which are touching should always be included. 1In addition, the

- power exchange in a frequency band between resonant modes of non-

touching structures through nonresonant modes of an lntervening
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structure should be considered. None of these indirect paths are
the most important paths of energy exchange. For example, the

L O L RN S
wi ™ .

transmission of sound in a frequency band from one acoustic space
to another through an intervening structure is usually through

ot

nonresonant modes of the structure which have resonant frequen-
cies below the band of interest.

Hveew f

The third step of SEA - writling the power balance equations —
is very simple and needs no further discussion.

G e

The fourth step of SEA — calculations of the input powers,
coupling loss factors, damping loss factors and modal densities -
requires the greatest amount of technical effort. For many prob-
lems the SEA user can appeal to results puklished in the litera-
ture. To help the reader toward this end Appendix B of thils re-
port lists published papers which give expressions of potential

- )
s bl

B g g

use in SEA. When it 1s necessary to compute new expressions the
following guidelines will be helpful.

} Problems in which a power input must be calculated can be
| divided into two categories. First, when the excitation is dis-
' tributed over the entire structure it will be necessary to com-

pute the power input to each mode of the structure and then to
average the resulting expression over the selected ensemble of
structures. The use of jolnt acceptance expressions to compute
the power input from a distributed pressure field to a plate or
shell is a good example of such a calculation. Second, when the
excitation is localized the impedance approach discussed 1n

Sec. 3.2.1 can be used. The excitation can be considered as
localized 1if 1t is distributed over at least one less dimension
than the structure or acoustic space. For example, a point ex-
citation on a beam, plate, or acoustic space, a line excitation
on a plate or acoustic space, and a distrlbuted surface pressure
in an acoustic space can all be consldered as localized.
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When 1t is necessary to compute a coupling loss factor the
authors recommend using the wave approach presented in Sec. 3.3.2,
since they have found this approach to be the simplest and most
general technique. It 1s also possible to compute a coupling loss
factor directly from the coupled equations of motion if the coupl-
ing is small enough that a perturbation technique can be used.

Use of the mode to mode calculations for cases of high coupling
is not recommended.

In many cases of high coupling we can simplify the problem
by appealing %o the concept of equipartition of energy. The
energy interactlion equations show that if the coupling loss fac-
tor between two groups of modes 1s large in comparison to the
damping loss factors of each group, then the two groups will have
the same average modal energy — equipartion of energy. Since
damping loss factors are usually quite small, this concept can
often be used to eliminate the need to calculate a coupling loss
factor. It is sufficient to say that it 1is large compared to the
damping loss factors:

~ The calculation of damping loss factors for a new problem is
always difficult. <Unless a speclal damping treatment is 1in use
it 1s impossible to analytically compute the damping loss factor.
Empirical prediction techniques can be used with some success but
are often not as accurate as one would wish. Measurement is per-
haps the best method of calculation, but the structure being
analyzed 1s often not yet constructed. PFinally, when it is neces-
sary to compute a modal denslity, the reader should refer to the
references 1n Appendix B.

Step 5 ¢f SEA — solution of the power balance equations -
requires <that we solve a number of linear algebraic equations.
If the number of energy storage elements in the analysis is small
this can be done quite simply. When large numbers of elements
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are Involved 1t is usually possible to make simplifications so

that the solution is still easily accomplished. bBut even when

such simplifications are not possible the linear equations can be

easily solved with the help of a digital computer.

The final step of SEA 1is to relate the modal energies of
each energy storage element to the response variable of interecust,

Assuming that the systems belng studied are lightly damped and

that the analysis bandwidth is in octaves or narrower,

this step

is quite simple. 1In a lightly damped system exclted at one or

more of its resonances by a band of random excitation, the time-

average kinetic energy 1ls equal to the time-average potential

energy. Thus, we can obtain either the mean-square velocity of a

structure or the mean-square stress through the total

time~

average energy of the structure. When the band of excitatior is

narrow {(octave band or less) we can find the mean-square acceler-

ation or displacement by multiplying or dividing the mean-square

veloelty by the band center frequency squared.

The guidelines presented above 1n conjunction with the first

four chapters of the report should help the reader in
Many specific rules and formulations important to SEA
lef't out for the simple reason that they have not yet
pletely developed. The authors hope that a continued
SEA will someday lead to more explicit formalizations
the concepts dilscussed in this repor?.
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APPENDIX A. GREEN'S FUNCTION SOLUTION TO THE
COUPLED ROD PROBLEM

It is possible with the coupled rod problem of Fig. 11 to
derive a closed form solutiocn using Green's function techniques.
For the problem here, the Green's function G(xg, Xps w) for a rod
longitudinally forced and terminated with known lmpedance Z, and
Z, where G 1s defined as the complex amplitude of the displacement
at xg due to a unit harmonic force of the form eH'““t
Xp For the case of Fig. 10 one obtains

applied at

iik(xg-xf)

= At
G(xg, Xps w) =A {e + o, cos kxE +a sink Xy }

(A-1)

where the plus sign is for xg < Xps the minus sign is for x, > X

2 £
k is w/co, and ¢, 1s the longitudinal wave speed in the rod. The

quantities A, o, and o, are defined as

A' = — 1
2iwpocoA
Z, -1k (L-xg) Z, 1z, ~1kx
- 1le + - 1 cos kL + sin kL}e
P,C A PoC A PoCoh
% = - Zo¥Z, Zo%, |
iy cos kL + 1 + 1] sin kL
PeCy (DOCOA)2
iz yA -ik(L-x.) Z iz -ikx
0 o _1)e £ _ " _ cos kL-sin kLje !
PeCeA \ PpC A PaCyh PoCoh
o, = - 7 7, T 7.7, —
5K ©OS kL + 1 + 1| sin kL
Py (p,c,A)?

(A-2)
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where Py is the rod density, A 1s the cross sectlonal area of the
rod, and L is the length of the rod.

Using this Green's function one can calculate the relevant
characteristics of the coupled rods of Fig. 8. Specifically
the power transmitted between rod 1 and rod 2, the power injected
into rod 1, the energy in rod 1, and the energy in rod 2, are of
intérest.

By superposition the displacement in rod 1 at X,y may be
written

gx(xcl) =F Gzcxcl’xf) - FcGl(xcl’xcl) (A-3)

where G1 refers to the Green's functlion of rod 1 and Fc 1s the
force applied by the coupling spring which may be written

F, = kc[El(xcl) - Ez(xcz)] . (A-4)

The quantity gz(xcz) is the displacement in rod 2 at the point of
attachment of the coupling spring which may be written

gz(xcg) = FCGZ(XCZ’XCQ) . (A~5)

The time averaged power transmitted from rod 1 to rod 2 can be
expressed in terms of Fo and éz(xc2), the velocity in rod 2 at
X,o as follows

<r,> = % RelP_[E,(x,,) 1%} (A 6)

where [ ]* means complex conjugate and

[£,(x,p) 1% = ~1ud8(x,p,%,,)FY - | (A=T7)
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Combining Eqs. A-3 through A-7 one obtains

Gl(xcl’xf)

NLIVEI % |F2 | T p o Re{-in:(xc2,x02)}
K; + 1(xc1’xcl) 2 xc2’X02)

(A-8)

The time averaged power injected into rod 1 by the force F can be
written

[

<My ,>t = 5 Re F[él(xf)]* (A-9)

where [gl(xf)]* = -im[F*Gf(xf,xf) - Fng(xf,xcl)].

Combining Eqs. A-3 through A-5 with Eq. A-~9 the power in-~
jected becomes

¥
G (xpsX 1 )G (X, q,Xp)

1 2
<t, > =% |F?| Re{-1lw|G*(x_.,x,) -
innt 2 R S 1 % *
kc + Gi(xcl’xcl) + Gz(XCE’XCQ)

(A-10)
By integrating the velocities of the rods along their length

the time average kinetic energies of the rods can be derived

L .
= 1 2
<Bi>p = 0,4, f |Ex(x)| dx

0 2
L 2 L] 2
<E, > = p,A, J |&,(x)|? dx (A-11)
' 0
2

where E1 and_E2 are twice the kinetic energy (the total energy at

resonance) for rod 1 and rod 2, respectively. The velocities in
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Eq. A-l11l can be expressed in terms of the Green's function of the
two rods and the applied forces as

él(x)

1wfFG, (x,x5) = F G (x,x,,)]

£,(x) = iuw FcGz(x,x (A-12) i]

02) '

. iy
Lt

From Eqs. A-3 through A-5 and Eqs. A-12 and A-11 these energies
can be expressed

£

L - 2
2 1 G (x,x ) G (x_,,x,)
<E > =.LE_1 p A ax| ¢ (x,x.) - 1 cl 1 Tel’"f _ |
1t 2 . ! £ L+ G (% 1,%.4) + G (X ,,%x ) ]
- 0 k. 1 7el’ el 2 "e22%c2 3
(a-13) )
|F2 | b G, (xg15%p) G, (X,%,5) ‘ 3
<E,> = Y50 A dx| - b
0 E; ¥ Gl(xcl’xcl) + hz(xc2’xc2)

(A-14) -
Equations A-8, A-10, A-13, and A-14 allow for exact calculation of ]

the relevant characteristics of the coupled system.
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