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PREFACE

During the past ten years a new method of vibration analy-

sis, commonly called Statistical Energy Analysis (SEA), has been
developed to study the dynamic behavior of large, complex struc-
tures and acoustic spaces. This report presents a review of SEA
and a guide for its use. The authors hope that the presentation

will eliminate some of the confusion about SEA which has inhibited
its worthwhile use in many cases.
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LIST OF SYMBOLS

A = door area — rod cross sectional area in Appen-
dix A

Ap = plate area

A 1 ,A 2 = rod cross sectional areas

AR W = admittance of receiving system

AR,inf(w) = admittance of infinite beam

am = weighting factor

b = damping coefficient
b l0 ,b,,,b 20 ,b2 1 = damping coefficients of dampers at ends of rods

c o = acoustic wave speed — rod wave speed in Appen-
dix A

c  = beam bending wave speed

C I ,C 2 = damping coefficients of oscillator.

c i ,c 2 = rod wave speeds

Cmn = see Eq. 3.3-1.2-5

E = Young's modulus in beam equations
E = total energy

F = force applied to an oscillator

F(w) = complex amplitude of force at driving point of
structure

FBL = blocked force

Fblocked W = blocked force
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F = coupling force

Fn = see Eq.	 4.3-2

Fm = see Eq.	 3.3.2-6

f = force/unit length

f i ,f 2 = see Eq.	 3.3.1.1-3

fi (t) = plate mode i modal force

gm = see Eq. 3.2.1-22

G = gyroscopic coupling coefficient

G(xV xf ,w) = rod Green's functions

I = acoustic intensity

I = bending moment of inertia

I(ki,kx)
see Eq. 3.2.2-13

I(k2,ky)

j i ( w) = joint acceptance of i th mode

K 19 K 2 = oscillator spring stiffness

KC = coupling spring stiffness

k = oscillator spring stiffness

k o = acoustic wavenumber

kx ,ky = wavenumbern of simply supported mode in a panel

k, 3 k 2 = wavenumber space variables

L 12 L 2 = rod lengths

v



Report No. 2064
	

Bolt Beranek and Newman Inc.

M = oscillator mass

M = total number of modes in a rod in a given
frequency band

Mb = beam mass

Mc = coupling mass

MP = modal mass of plate

m = oscillator mass

m12m2 = mass of rods

mR = mass/unit length

N = total number of modes in a rod in a given
frequency band

n l (lw), n 2 (w) = rod modal density

P = acoustic pressure

Q = quality factor

Ri,RAD(w) = radiation resistance of the i th panel mode

S = surface area

SF(w)
= spectral density of the force applied by an

SF	(w)	 ideal force source
source

SF 	(w) = spectral density of blocked force
blocked

Sf (w) = spectral density of modal force fi
i

S P (x l , x 2 ,w) =cross spectral density of pressure

S P (k,w) = see Eq. 3.2.2-10
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t
E

SP N) = spectral density of pressure

SV(w}
= spectral density of the velocity of an ideal

S 	 (w)	 velocity source
source

S 
it (w) = power input spectral density

Trev = reverberation time

Um = rod modal amplitude

V = room volume

Vfree (w) = Free velocity

Vn = beam modal amplitude

VR (w) = complex velocity of receiving structure

VS (w) = complex velocity of source

v(x,t) = plate velocity at time t and position x
v(x,t) = beam velocity at time t and point x

vn = rod modal amplitude

x = oscillator displacement
xcl = location of coupling spring in rod 1

xc2 = location of coupling spring in rod 2

xfl = location of applied force in rod 1

xf2 
n locaticn of applied force in rod 2

z  = receiving structure impedance

ZS = source impedance
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Z I ,Z 2 = point impedance of rod

Z 09 Z 1 = rod end impedance in Appendix A

a = absorption coefficient

a = see Eq.	 2 -3

O p = damping coefficient

y = see Eq.	 4.3-7
A I , A 2 	 = see Eq.	 3.3.1.2-5

Am ,An = see Eq.	 3.3.1.2-5

E 1 , E 2 , em , en = energy in single mode or a single oscillator

) ,e n2) =E ll energy in a mode in rod 1 and rod 2, respec-
tively

n = dissipation loss factor

nm = modal dissipation loss factor

t)12= coupling loss factor

K = see Eq.	 3.3.1.1-3

ac = acoustic wavelength

X = see Eq.	 3.3.1.1-3

P - see Eq.	 3.3.1.1-3

I , 2	 = rod displacements

CER = see Eq.	 4.3-7

9 R = right running travelling wave displacement
amplitude

CL = left running travelling wave displacement
amplitude

7Tdiss = power dissipated

7rin = power injected

trans = power transmitted
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`' zrli = power transmitted from element 1 to element i

IT = power transmitted between two oscillatorsmn

n 12	 = power transmitted from rod 1 to rod 2

Ps = mass/unit area of panel

Pa	 = air density - rod density in Appendix A

= rod densityp	 ,p

^12	 = coupling coefficient

O m (x) = rod mode shape

i W = see Eq.	 3.2.2--9

* i (x)	 = plate mode shape

On (x)	 = beam and rod mode shape

w = radian frequency

W	 = beam natural frequenciesm

W  = critical frequency

w l ,w 2	= oscillator natural frequencies	 o

wm ,wn = rod natural frequencies

< >t = time average

< >	 = time average of	 in frequency band Awquantityt,,&w

< >en3 = average over an ensemble of structures

< >Aw average over frequency band Aw

< >L see Eq.	 3.3.1.2- 9
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Recent years have seen a continuing trend toward higher-

performance vehicles and larger, more complex structural

assemblies. This trend has brought with it a greater number

of problems associated with vibrations at high frequencies

well above the fundamental resonance frequency of the struc-

ture being studied. As a result, aerospace engineers and

research scientists have a great need for methods to predict

and understand the high-frequency behavior of large complex

structures.

Historically, the vibration engineer has focused his

attention on the low-Frequency range encompassing the first

few resonance frequencies of the structure being studied.

Thus, a large number of analytical. and numerical techniques

have been developed dealing with low-frequency vibration

problems. However, none of these techniques can deal simply

and effectively with a high-frequency vibration problem,

in which a large number of modes of vibration contribute

to the overall response of the structure.

I	 I

F k

The classical techniques of vibration analysis, which

have served well in studying low-frequency vibrations, are

valid, at least in principle, at all frequencies. However,

their use at high-frequencies is almost always impractical,

particularly when the excitation is random and distributed

over the structure.

The most commonly used classical technique of vibration

analysis consists of determining the natural modes of vibra-

tion, calculating the responses of these modes to the

specified excitation of interest, and superposing these
!	 ..

1
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responses to determine the total structural response. Use

of this technique to determine the response of a large struc-

ture to a high-frequency random excitation require- inordinate

amounts of computation because of the large number of modes

that must be included in the analysis. The computational re-

quirements can be met using a digital computer in most cases.

Thus, although the amount of computation required by this

classical technique was once the limiting factor in its use,
f

it is no longer, unless 'one is concerned with the cost of
L.

computer time.
r

A more inhibiting limitation in the use of the classical {

technique of vibration analysis arises from our inability to

calculate accurately the higher-order re:;, 1hance frequencies,

mode shapes and modal damping coefficients.	 These parameters

are much more sensitive to details of the structure than are

the same parameters for the lower order modes.	 Thus, one

must be able to describe the structural and material properties

and boundary conditions with great precision in order to be

able to perform computations involving the higher-order modes

meaningfully.	 The required precision cannot usually be achieved

because of manufacturing tolerances and other uncertainties.

Even when the properties of the structure are known almost

exactly, they are usually so complex that an exact calculation

of resonance frequencies, mode shapes, etc, is impossible.	
a

A similar situation exists in the field of room acoustics.

In the audio frequency range, a normal-sized living room

or office will have thousands of resonance frequencies -- a

concert hall may have millions of resonance frequencies. Also,

because of uncertainties in the location and amount of acousti-

cal damping in the room and because of the very complex shape

of the room due to the location of furniture, accurate prediction

1
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of the resonance frequencies, mode shapes and damping parameteers

is impossible. To solve his problems, the room acoustician has

used and helped develop statistical energy methods of vibration

analysis. The methods are statistical, not only because the

source of excitation is considered to be random, but more impor-

tantly, because the systems being analyzed are presumed to be

drawn from ensembles of systems with random parameters, i.e.,

resonance frequencies, mode shapes, etc. The methods identify

energy as the primary dynamic variable so that the fundamental

dynamic equations are simple. Once steady-state is reached, the

acoustical power injected into a room must equal the power dis-

sipated in the room plus the power transmitted to other rooms,

7r
in - 7rdiss + 7rtrans .
	 (1-1)

Combining the statistical and the energy approaches, we average

the terms in Eq. 1-1 over time, over the ensemble of systems and,

in the case of random excitation, over bands of frequency,

<Tr
in^' t,ens,Af	

<7T
diss^'t,ens,df. + <Tr trans > t,ens,Af '	 (1-2)

Equation 1--2 is the basis of the statistical energy techniques

of vibration analysis.

In the early 1960 1 s, R.H. Lyon and his colleagues at Bolt

Beranek and Newman Inc. began using statistical energy techniques

to study the interaction of sound fields and large panel struc-

tures.' Later they expanded their studies to include the inter-

action of connected structures. 2 It would be incorrect to say

that Lyon and his colleagues invented the statistical energy

approach, or even were the first to use the approach to study

the sound-structure interaction. They were, however, the first

to identify the fundamental principles on which a statistical

1
1
1
1
e
a
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energy analysis could be based and to remove much of the empiri-

cism that existed in the use of statistical energy techniques in

room acoustics.

To describe their way of looking at the dynamic interaction

of sound fields and structures, Lyon and his colleagues coined

the name Statistical Energy Analysis (SEA).	 A number of papers r

dealing 	 pwith SEA have attempted to construct a formal "method" of

analysis. -5	 These attempts are important to the development of

SEA as a useful tool in vibration analysis.	 However, it is im-

portant not to discriminate between the concepts of SEA and the

various methods of implementation of SEA for practical problems.
ea

In this report, an attempt both to review the concepts of SEA and

to suggest a formal method of analysis is made.	 The use of Sta-

tistical Energy Analysis (SEA) leads to statistical estimates of

the time-average energy in each mode of vibration. 	 In its simpl-

est and most commonly used form, SEA leads to the average model

energy -- the average being taken over time and over all modes

with resonance frequencies in a band Af. 	 For any continuous

homogeneous structure; e.g., panels or shells of constant thick-

ness, beams with uniform cross sections, etc.; the average modal

energy can be used to find the spatial-energy mean-square re-

sponse.	 most past uses of SEA have been limited to finding

spatial-average response of the structural elements making up the

complete assembly.	 This does not mean that the SEA approach is

limited to calculation of spatial-average responses. 	 Techniques

to calculate statistical estimates of peak response have been

suggested  and used on occasion.

Statistical Energy Analysis (SEA) has been used many times
^_ fto estimate the response of laboratory models of co mplex strut-	 -^p	 Y	 p

tures. For the most part the spatial--average vibration levels

predicted by SEA have agreed fairly well, within ±5 dB, with

D
u 0



i
I

-_._. ...	 .-.-	 .:.r.:.:.:as..re:rs^.!!i>i..A^_.yuiserr. ^-al.^-_t... _a.x:	 •..

Report No.	 2064	 Bolt	 Beranek and Newman	 Inc.
f

measured data.	 SEA has been used to predict the response of

plates and cylindrical shells e to an acoustic field, to predict

the sound transmission through walls, 9 to predict the vibration

transmission between connected plates, 10	to predict the vibration

" 11transmission from a shell to a connected instrument package,

to predict the vibration transmission in ribbed plates and shells,12

^'' and for several other problems . 13`18
E,

In spite of its reasonable success in predicting the re-P	 P	 g,.,..
spouse of laboratory models to a vibratory excitation, SEA is

not often used to predict the response of field structures.	 How-
v'

ever, a few applications have been made and are worthy of men-

tion.	 Franken and Lyon 19	have used SEA with success to predict

the response of the Titan launch vehicle to acoustic loads.	 Sevy

a d Earl 0	 have used SEA to predict the vibration trano,,n	 mission

to an internally mounted instrument package. 	 Mansour has used

164.21SEA to predict vibration transmission in the Mariner

Manning has used SEA to predict the noise reduction of the OGO-

NIMBUS shroud. 22	 And finally, Sawle,y has used SEA to predict

vibration transmission in a ship.23

The most extensive use of SEA has been to predict the vibra-

tion transmitted from an external acoustic field to a shroud en-

closed spacecraft model. 24	The model was quite simple but main-

tained the very basic properties of the OGO spacecraft.

FInSec. 2 of this report the concepts of SEA are introduced

by considering a simple problem from room acoustics.	 In solving

this problem, many of the empirical observations that initially

led to the idea of SEA are called on. 	 Then, in Sec. 3, a com-

plete discussion of the SEA concepts is presented.	 Section 4
illustrates the use of SEA b y studyingstud in	 the dynamic interaction

of two beams coupled by a spring. 	 And, finally, in Sec. 5 guide-

lines for the use.of SEA in solving particular problems are pre-

sented.	 References to more advanced uses of . SEA are given.	 An

appendix of the report gives a bibliography, of reports on SEA.

-- 5
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2.	 AN INTRODUCTORY EXAMPLE FROM ROOM ACOUSTICS

The use of statistical methods of analysis is common in room

acoustics. 25 	Indeed many of the concepts presently used to analyze
^^	 t

the dynamic behavior of complex structures were originally de-

veloped for acoustic spaces. 25 For this reason it is appro-
priate to introduce the basic ideas behind statistical energy

analysis (SEA) with a simple room-acoustics problem, even though

the solution of this problem considerably predates SEA develop-

ment.
}}

The problem which will be considered consists of two adjoining J

rooms connected by a door as shown in Fig. 1.	 A small air con-

ditioner in room 1 acts as a source of random acoustic noise. 	 The r
problem is to determine the sound pressure level (SPL) in the

rooms — first, with the door closed, and then with it open.

The rooms are considered to be typical of those found in

family living areas. 	 They are rectilinear. 	 But, since they

are filled with furniture, their shape as an acoustic space is

very complex.	 They will be assumed to be carpeted and to have a

typical amount of the wall area covered by drapery.	 The effect

of the carpet, drapery and upholstered furniture' Is to add damp- r

ing in a complex way.

I

It is assumed that the manufacturer of the air conditioner

has measured its radiated acoustic power in octave bands in an

anechoic chamber, and has supplied this data.

Clearly, there` area+ dumber of approaches which can be used
to solve the problem. However, it is necessary to point out

that use of the classical normal-mode approach would require that

one make a very simplified mathematical model for the problem.

The exact solution for this mathematical model couldrob bl bep a y

6
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found by expending a great deal of effort. But then the relevence

of this exact solution to the solution of the actual problem would

be questionable. The approach most commonly used by acousticians

to solve a problem of this type is a statistical energy approach.

Following a statistical energy approach the governing equations

for the dynamic behavior of the two rooms are set out in terms of

energy and power variables. Each room is treated as an energy

storage system as shown in-Fig. 2. It will be assumed that the

problem is linear so that in each band of frequencies the source

injects acoustic power into room 1 which is either dissipated in

the room or transmitted to room 2. The power transmitted to room 2

is either dissipated in that room or transmitted back to room 1.

Under steady-state conditions the time average energies in the

two rooms stay constant. Then, one can write the governing equa-

tions for the rooms as a time-average power balance for each band

of frequencies. For room 1,

«in,so urce >t,Ow " <.diss,room 1 >t,Aw + 
<7r
tran$, 1 to 2>t,©w

(2-1)

where <w>t,dw signifies a time-average of the power w in the fre-

quency band Aw and ntrans,l to 2 is the net power transmitted
from room 1 to room 2. For room 2,

«trans, 2 to 1>t,aw s «diss,room 2 > t,mw '
	 (2-201

To solve these power balance equations one must first relate the

input power in each band of frequencies to known characteristics

of the source. Then, the power dissipated in the two rooms and the

power transmitted between rooms must be related to the acoustic

energy in each room. And, finally, after solving the power balance

8
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equations for the energy in the two rooms one must relate the

sound pressure level in each room to the energy. The power input

to room 1 will be found first.

On the basis of simple observation it has long been known
that the acoustic power injected into a large room in a band of
frequencies by a source of noise does not depend on the character-

istics of the room or the location of the source. A room can be
considered large as long as its dimensions are much greater than

an acoustic wavelength at the center-frequency of the band being

considered. Based on the above observation one can assume that the

air conditioner injects the same acoustic power into room 1 as

into an anechoic chamber. Then, one simply uses the manufacturers

radiated power data to give the power input in each octave band

of frequencies to room 1.

To continue with the solution of the problem the power dis-

sipated in each room must be related to the acoustic energy. Again,

appeal will be made to simple empirical observations which have been

made in acoustics. The power dissipated in a room depends on the
acoustic energy in the room and the amount of absorptive material,

such as carpet, drapery, etc., in the room. When a sound wave

impinges on an absorbing surface some of its energy is dissipated

and the remainder is -reflected back into the room. The ratio of the

energy absorbed by a surface to the energy incident on it is de-
fined as the absorption coefficient. In general, absorption co-

efficients depend on frequency, the angle of incidence of the
acoustic waves, the area of material, the way in which the ma-

terial is mounted and, of course, the properties of the material.

In a room with a typical amount of absorptive material the sound

waves travel around the room and are reflected many times before
their energy is absorbed. In addition, the acoustic waves inci-

dent on small reflecting objects are scattered into waves travelling

r
f

4
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In many different directions. One would expect the sound waves

impinging on a particular point in a large irregular room to come

from a large number of different directions. As a limiting case

the sound field in the room becomes diffuse. In a diffuse field

sound waves of equal energy density travel in all possible direc-

tions. The absorption coefficient of a material in a diffuse

field does not depend on either the exact location or orientation

of the material. This res>>lt is usually observed in typical

rooms, such as the ones being considered, and leads to the

common assumption that the sound field in a typical room is dif-

fuse. Techniques to measure diffuse-field absorption coefficients

have been established, and data for a number of different materials

and mounting configur "ions are available. One can use the measured

absorption coefficients for the materials in the room to obtain an

average absorption coefficient for the room. This average absorp-

tion coefficient is given by

a =	 Es i a i 	(2-3)

where a is the average absorption coefficient for the room, s is

the total surface area of the room, a  is the absorption coeffi-

cient of the ith segment of absorptive material, s  is the sur-

face area of the ith segment and the summation is over all absorp-

tive material segments in the room.

In a diffuse field the acoustic energy density is the same

at every location in the room. The time-average intensity (power

incident per unit area) in the diffuse field is simply given by27

c
<I> t = 1FV <E>t

	(2-4)

f

11
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where c o is the speed of sound, V is the volume of the room and

<E> t is the total time-average energy in the room. Combining Eq.

2-4 with the definition of a we can relate the power dissipated

in the room to its total time-average energy. The result is

C s _
0<7r

diss >t,Aw -47V a <E>t,Aw ( 2 -5)

where a is the value of the room absorption coefficient at the

band-center-frequency and <E>t 
Aw 

is the average energy in the

room in the frequency band Aw. Equation 2-5 can be applied to

either room 1 or 2 by assuming the acoustic fields in these rooms

are diffuse and by using the correct values for s, V and a.

As the third step in the analysis one must find. the acoustic

power transmitted from rooms 1 to 2. When the door is closed it

will be assumed that no power is transmitted between the rooms.

When the door is open the sound power incident on the doorway from

room 1 will be transmitted to room 2 while the sound power inci-

dent on the dcorway from room 2 will be transmitted back into
room 1. If one assumes that the sound fields in the two rooms are
diffuse then the power incident on the doorway from the two rooms

can be found from Eq. 2-4. The net time-average power transmitted

from room 1 to room 2 is given by

coA <El >t,Aw -
	 2
<E>t2Aw

4 [	 V 1	 2	 1
where A is the area of the door.

Now the power balance equations can be written. With the

door closed the result.becomes

12
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^._	 r' MI

c0sl

«in,source> t,Ow	 4V1- 
al 

<E1>t,Aw ,
	 (2_7)

and with the door open two equations result

_ c o s i -<IT
in,source >t,Aw	 7VI 

al 
<E1>tSAW

coA <E 1 > tS AW _ <E2 >t'A
+ —7— [ — V1	 V2	 (2-8)

and

caA <Ei
>tSAw - <E2>t Aw.. cos2 a <E >
V 1	 V2	 `TV 2	 2 t,dw •	 (2_9)

Equations 2-7, 2-8 and 2-9 can be solved quite-easily for the

time-average energies in the two rooms. To complete the solution

one must relate the energy in each room to the mean-square sound

pressure. Since it has been assumed that the acoustic fields in

the two rooms are diffuse, this step is quite simple. The mean-

square sound pressure in the diffuse field is independent of lo-

cation and is related to the total room energy in each frequency

band by the equation 27

Aoc^

<p2>tSAW = V <E>
t	(2-10)

From Eqs. 2-7 and 2--14 the mean-square sound pressure. in room 1

with the door closed is given by

1
t

z , it f^-..,
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^4 p c
<p2> 

I t , Aw - s ua <^in, source ^t , ew	 ( 2-11)

1	 I	 r

With the door open solving Eqs. 2-8 and 2-9 leads to

s1a1 + sial

2	 4poco	 A	 2

<pi 't,Aw -	 «	
s2a

in,source't,Ow	 slot	 seal	 (2-12)
s

i a i 1 + A + s

2a2

Similarly, one finds the mean-square sound pressure in room 2 to be

<p 2't,Ow	 s a <p 2 >t, Awe1 + 2 2
A

'

	

	 Considering ':he complexity of the problem, the solution is

quite simple and requires only the general properties of rooms 1

and 2 such as v,)!,.ime area of absorption material etc. B^	 P	 ^	 Y now

it is obvious t^_ the reader that this approach should be called

an energy approach. However, the reasons for calling it statis-

tical are not yet ci	 In carrying out the analysis it was

assumed that the input power did not depend on the exact location

of the.source or on the shape and dissipation in the room. It

was also assumed that the sound fields in the two rooms were

diffuse. Both of these assumptions are valid in a statistical

sense. One defines an ensemble of rooms with the same volume but

with random shapes and with the same amount of absorption but with

random locations for the absorptive material. Then, the ensemble-

average power input will equal the power input to an infinite

acoustic field. Similarly, if one averages over the ensemble

of rooms he will find sound waves coming from all directions

with equal energy density so that the ensemble-average sound

(2-13)

F

As

A

r^
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field will be diffuse. In future sections of this report the use

of statistics will be brought out more explicitly. It is hoped

that the simple problem discussed in this section serves to intro-

duce the important ideas behind Statistical Energy Analysis (SEA).
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3. FUNDAMENTAL CONCEPTS OF STATISTICAL ENERGY ANALYSIS
i

In this section the fundamental concepts underlying

Statistical Energy Analysis (SEA) will be discussed. The chapter

is divided into five subsections. In the first subsection the

derivation of a statistical energy model for interconnected

complex structures and acoustic spaces is discussed. The model

will be an energy model in that each structural element of the

complex assembly will be treated as a vibratory energy storage

element. The model will be statistical in that the resonance

frequencies, mode shapes, connection points, etc. will be treat-

ed as random variables. In the second subsection the use of SEA

concepts to calculate the power input to a complex structure or

acoustic space will be discussed. Then in Subsections 3.3 and

3.4 the use of SEA concepts to calculate the power transmitted

between connected structures and acoustic spaces and the power

dissipated in a complex structure or acoustic space is covered.

Finally, in Sec. 3.5 the power balance equations are written

in terms of the energies in each element.

L]

ti
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#	 ^	 r
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	 'r
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3.1	 The Statistical	 Energy Model

The first step in a Statistical Energy Analysis of the dy-

namic behavior of a complex structural assembly is the modelling

of the assembly by a number of interconnected energy storage ele-

ments, as shown in Fig. 	 3.	 This step is the most creative and

the most difficult part of SEA.	 Decisions of how to divide up

the	 the	 boxes,complete assembly into	 energy storage	 and which

paths of power exchange to include in the analysis require a

great deal of insight, which can only be developed by continued

use of SEA and comparison of the resulting predictions with data

from experiments or exposure of the structure to the actual en-

vironment.

1

	

	 A basic assumption in SEA is that the response of a connected

structure or acoustic space in a given frequency band can be de-

'	 scribed by the collective motion of the modes of each isolated

structure which are resonant in the band. The dynamic inter-

action between the structures and acoustic spaces is studied by
allowing the modes of the isolated structures to be coupled.

Thus, the modes referenced in this report are not modes of the

complete structural assembly.

In SEA one commonly assumes that the problems are linear so
that vibration in one frequency band cannot be connected into

vibration in another band.

On the tasis of these combined assumptions a power balance
for each frequency band will be formulated and in each band power

,A

exchange between modes with resonant frequencies in the band will

be studied.
z

I
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In many cases the energy storage boxes, are identical to

the physical elements of the complete assembly, i.e., acoustic

spaces, plates, shells, beams, etc. Then, the modeling required

for SEA is quite simple. Each energy storage box contains all

of the modes of a particular substructure which have resonance

frequencies in the band being considered. The modeling is even

simpler when the only paths of power exchange are between the

modes of touching structural elements.

Two complicating effects are fairlj common and must be

considered in setting up an SEA model. First, it is possible

for a structure or acoustic space to store energy in its resonant

modes of vibration and, at the same time, transmit power from

one adjoining structure to another through nonresonant motion of

the modes with resonance frequencies outside the band being con-

sidered. A problem of this type is shown in Fig. 4. In this

problem two rooms are separated by a thin partition. An SEA

model consists of three energy storage elements for each fre-

quency band of interest, as shown in Fig. 5. Element 1 contains

the resonant modes of room 1; element 2 contains the resonant

modes of the partition; and element 3 contains the resonant

modes of room 2. Two paths of power exchange can be easily

identified. Room 1 connects directly to the partition, so that

power exchange between the resonant modes of room 1 and the

partition clearly takes place. Similarly, power exchange be-

tween the resonant modes of the partition and room 2 takes place.

A third path of power exchange must also be considered for this

problem, as shown in Fig. 5. The resonant modes of room i. trans-

mit power directly to the resonant modes of room 2 through non-

resonant motion of modes in the partition which have resonance

F 1
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ROOM 1	 ROOM 2

THIN
PARTITION

FIG.4	 TWO ROOMS SEPARATED BY A PARTITION
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TRANSMISSION

I E
BY NONRESONANT PARTITION MODES

ROOM 1	 ^r PARTITION ROOM 2

(1) (2) (3)

diss, I diss, disc, 3

FIG.5	 ENERGY STORAGE ELEMENTS AND PATHS OF POWER EXCHANGE FOR
TWO ROOMS SEPARATED BY A PARTITION
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frequencies below the frequency band being considered. The

power transmitted by this third path often exceeds the power

transmitted from the resonant modes of room 1 to the resonant
modes of the partition and then to the resonant modes of room 2!

In considering the power transmitted by nonresonant modes we
ignore the small amount of power dissipation due to the motion

of these modes.

A second complicating effect is also common. In some cases,

the resonant modes of a single structural element must be divid-
ed into two or more energy storage elements, because they inter-

act differently with the modes of neighboring elements. For
example, if a beam couples two plates, then its torsional and
bending resonant modes must be put into separate storage elements
It is, of course, possible for a power exchange to also take

place between the torsional and bending modes. Other examples

of these two complicating effects are in the literature. 9,13y24

Once the complex structural assembly has been modeled by
a group of connected energy storage elements, the basic power

balance equations are written. Assuming steady -state conditions

the time-average power input to each element must equal the power
dissipated plus the power transmitted to other elements. For

the ith energy storage element, a power balance gives

i. }

it

0

<W in, 1>t,Ow 
a 

<Wdiss,l >t,aw + I <7r
li >t,Ow
	

(3.1-1)

where the summation is over all other elements. In the following
sections the use of SEA to compute each of these power quantities
will be discussed.

22 1
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3.2 Power Input

The calculation of vibratory power input from a source to a
receiving structure or acoustic space requires that one know both
some measure of the source excitation level and output impedance

plus the receiving system input impedance. The calculation is

made simpler when the actual source can be modelled by an ideal
force source (zero output impedance) or an ideal velocity source

(infinite output impedance). Simplifications also result when

the source can be modelled by a point source or by a line source.

However, even when the source can be simply described, for example,
as a point force source, the calculation of input power can be

complicated because of the need to know the exact input impedance
of the receiving system. Unless the receiving system is extremely

simple its input impedance will be a complex function of frequency

and the parameters of the system-resonance frequencies, mode shapes,

surface density, etc. In many cases of practical importance it

is impossible to predict or even measure the exact input impedance. 	 I

However, by using a statistical model of the receiving system, one
can avoid this dilemma and obtain quite simple expressions for the

input impedance which require only a general description of the

receiving system. Randomness is introduced into these statistical

models by considering such parameters as resonance frequencies,

mode shape, modal damping and excitation point as random variables.
Of course, in using a statistical model only statistical measures

of the power input can be obtained. For example, the average
power input to an ensemble of structures with randomly selected
resonance frequencies can be calculated. For any particular Mem-
ber of this ensemble of structures the power input will. not equal
the calculated average value. However, if the structure is so	 r

complex that the resonance frequencies cannot be predicted with
any accuracy, the ensemble-average power input will be the best

23
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estimate for the particular structure of interest. Confidence
in the accuracy of this best estimate can be derived from higher-

order statistical measures of the input power, such as the vari-
ance around the mean.

So far no specific mention of the temporal variation of the
power input has been made. In this report all variations in time

will be averaged out by using complex amplitudes for the case of

pure-tone excitation and spectral densities for the case of random
excitation. This limitation which is imposed on this work should

not be taken as a limitation in the use of statistical energy
methods of analysis>. Indeed, statistical energy methods have

been used very successfully in room acoustics to predict the
•

transmission of speech or music — highly transient sounds. g

In the sections to follow the power input from both point
and distributed-load sources to a variety of different dynamical

systems will be calculated. A very simple case will be dealt

with at first followed by cases of greater and greater complexity.

3.2.1 Point sources

In many problems of practical interest the source of vibra-

tion or sound can be modelled by a point source. As a general

rule a source of vibration can be considered to be a point source

if the area over which it acts on the receiving system is small
compared to X 2 , where A is the wavelength of the resulting motion

in the receiving system. The error introduced into the calcula-

tion of input power by modelling a source by a point source will

be less than 1 dB (26%) if the largest dimension of the contact
area icy less than a quarter-wavelength of the resulting motion

in the receiving system. Since the wavelength of vibration varies

with frequency for most systems, the criteria for treating an

actual source as a point source depends on the frequency range

r
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of interest.	 For example, a 6 in. diameter loudspeaker

can be treated as a point source in the frequency range below

0 Hz	 If one	 re willing	 e	 r	 o	 dB or less^5	 we	 w	 1	 g to accept an error	 f 3	 s

this frequency range could be extended to 1000 Hz.

." Examples of actual sources which can usually be treated as

point sources include small sound generators, point-drive mechani-

cal shakers and, in some cases, the mounting supports of vibratingp	 g
equipment.

General Formulation of Input Pourer

A formulation of the input power from a point source to any

receiving system can be accomplished with complete generality by
^ dL using mechanical impedance theory. 	 Following this approach, the

driving--point impedance of the receiving structure, Z R , is defined

to be the complex force amplitude at the driving point when the

velocity is specified to be V R 
= eiwt.	 Similarly, the source

impedance, Z S , is defined to be the complex force amplitude of

the source drive point	 he	 ive poi	 when	 is velocity is specified to be

VS = eiwt and the source is deactivated.	 The driving-point

impedance of the receiving system and the source will usually

be frequency dependent.

With these definitions of impedance, the force generated by

a pure-tone source when it is driving the receiving structure can

be given by one of two formulas.	 First, it can be given by

F(w) = F blocked (w) - ZS (w)VR (w)	 (3.2.1--1)

t where we have assumed eiwt dependence, F(w) is the complex ampli-

tude of the force acting on the receiving structure, V R 
(w) is the

complex amplitude of the receiving structure and Fblocked (w) is

0
:1 E7	 ^5

a6	 1
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the complex amplitude of the force generated by the source when

its driving point is held motionless. When the blocked force is

not known, but the complex amplitude of the driving-point velocity

produced by the source when it is generating no force is known,

we use the formula,

F(w) = ZS (w)CVfree( w) - VR(w)]	 (3.2.1-2)

where Vfree (w) is the free.velocity. The velocity at the driving
ti

	

	
point can be related to the force acting on the receiving struc-

tune, F(w), by the driving-point impedance of the receiving

structure,

V R (W) = F(w)	 (3.2.1- 3) ZR w

For a pure tone the time-average power transmitted to the receiving

system is given by

<7r	 = 2 Re F(w)VR(w)	 (3.2.1-4)

where Re signifies 'Real Part Of". Thus, the time-average power

input to the receiving structure becomes

__ 1	 a	 1	
2

<
^in't	 2 I Fblocked	 ZS(W)+Z R w	 Re ZR(w)

or if Vfree is known,

Z (w}	 z1	 z	 S<
^in't	 2 ^ Vfree 1	 ZS w +ZR w	 Re ZR(w)

where	 signifies "Magnitude 4f".

(3.2.1-5)

(3.12.1-6)
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When the source generates a random force or velocity, spectral
densities must be used. Then the time-average power input in a

band of frequencies, Aw, is given by

<7r
in> t

' Aw - 
f	 dw S 7 in (w)) Aw

(3.2. 1-7)

where S
yin 

(w) i.s the input-power spectral density. From

Eq. 3.2.1-5 one can write the input-power spectral density as

S	 (w) = SF (w)
min	 blocked

1	 a

Z w +Z w	
Re ZR(w)

S	 R
(3.2.1-8)

where SF 	 (w) is the mean-square blocked -force spectral
blocked

density. A similar extension of Eq. 3.2.1-6 when the mean-square

free-velocity spectral density is known is obvious.

Point Force and Velocity Sources

The source impedance of an ideal force source is zero so

that the force generated by the source is not affected by the

motion of its driving point (see Eq. 3.2.1-1). It follows that

the power input from a random point force source is given by
Eq. 3.2.1-8 with ZS (w) = 0,

S,	 (w) = SF 	(w) Re AR (w)	 (3.2.1-9)
in	 source

where AR (w) is the admittance of the receiving system defined to

be AR (w) = 1/ZR(w).

= 'I	 I
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The source impedance of a velocity source is infinite so that

the velocity of the drive point is not affected by the force acting

on it. The input-power spectral density for the velocity source

is given by

S 7 (w) = SV 	(w) Re ZR(w)	 (3.2. 1-10)
in	 source

The expressions for power input from point force and velocity

sources are much simpler than the general expression for a point

source. However, unless the receiving structure is very simple,

the required driving-point impedance or admittance is still quite

difficult, if not impossible, to predict. In the following sec-

tions it will be shown how the use of a statistical model for the

receiving structure leads to very simple results. Finally, it

will become apparent that the use of a statistical model allows

one to replace the driving-point admittance or impedance of the

actual receiving system by the driving-point admittance or imped-

ance of an equivalent infinite receiving system. Since the use

of infinite system impedances for finite system impedances has

not yet been shown for the completely general case, this result

will be demonstrated by means of an example. Then a result for

the general case will be hypothesized.

it

t	 f

Power Input to a Simple Oscillator
a

The simplest case which can be considered is the power input

from a point force source to a simple one-degree-of-freedom

oscillator. The input admittance of the simple oscillator is

AR(w)	 M	 2_W	
(3.2.i--11)

(Ww 2 —w + inw0w]

A

2$
y
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L

where M is the mass of the oscillator, w o is its resonance fre-

quency and n is its dissipation loss factor. From Eq. 3.2.1-9

and Eq. 3.2.1-11 one finds the input-power spectral density to be

nw2w
S (w)	 = S	 (w)	

1 °	 (3.2.1-12)
Tr In

F	 M (wo -w 2 ) 2 + n2w2w2

As would be expected, theP	 ^ input-power s ectral density has aP	 Y

large peak near w - w o , when the damping loss factor, n, is small.

ForF r the c	 ih	 cas e 	 n which ithe excitat ion force spectral density

w is white — has a constant value SF 	for all frequencies — one can
O

obtain a very simple result for the overall input power. 	 This

result is

SF
SSA0 dw 	 S^	 (w) = 2	 M

o
	(3.2.1-13)

in in

where A signifies a definition. Note that the input power depends

only on the level of the excitation and the mass of the oscillator.

This simple result will be used often in future sections and allows

one to obtain simple results for very complex problems.

The result given above by Eq. 3.2.1-13 tells nothing about

the frequency distribution of the input power. However, from

Eq. 3.2.1-12 it is apparent that approximately 70% of the overall

input power is in the frequency band w .o - nwo to m o + nwo . Since

most of the power input takes place in this frequency band, one

commonly uses Eq. 3.2.1-13 to predict the power input from a band-

limited random force as long as the bandwidth includes the region

w 0 - Tjw 0 to W  + 
nw0.

I
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Power Input to a Beam

The calculation of power input from a point force source to

a beam is more complicated than the above calculation. However,

the end result will be very simple.

The equation of motion for a beam is given by

EIa''v + a 2 v +6 av 1 of
Miz ax 4 	 at e	 p at mR at (3.2.1-14)

where v(x,t) is the velocity at point x and time t. EI is the

bending stiffness, mR is the mass per unit length, 0p

is the damping coefficient and f(x,t) is the force per unit

length acting on the beam at point x and time t. To find the
driving-point admittance, one assumes that the force per unit
length is a pure-tone point force with e iwt time dependance so

that

af
at = iw6(x-x,)e

iwt (3.2.1-15)

where 6 is the Dirac Delta Function and x o is the point of appli-
cation of the point force. Then the beam velocity is expanded

in terms of its normal mode shapes.,

v(x,t) = I 
Vn*n(x)eiwt !	 (3.2.1-16)

n

where Vn is complex amplitude of the nth mode velocity and *n(x)

is the normal mode shape. The mode shapes are assumed to be nor-

malized such that

fL dx * x (x) = L (3.2. 1-11)



1

1 Re AR(w) = I amgm
m

(3.2.1-21)
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where L is the length of the beam. If the expansion for v(x,t)

is substituted into the equation of motion, multiplied by &W
and integrated over the length of the beam, one finds

1	 iw*m(x0 )
Vm	

Mb w 2 -w 2 + irk w wm	 m m

(3,2.1-18)

where Mb is the total mass of the beam, w  is the resonance fre-

quency of the mth mode and n  is the modal dissipation loss fac-

tor, wmnm = 0p. It follows from Eq. 3.2.1-18 that the driving-

point admittance can be written as

*2 ( x )
AR(w) = Mb	 2 - z + 0	 (3.2.1-19)

M w	 w	 in caw
m	 m m

The real part ^f the admittance, which governs the input power to

the beam, can now be written as

1	 w2wmnm*2 (xo )
Re AR (w) = M	

2 2 2	 2 2
m 

2	
(.3.2.1-20)

b m ( wm-w ) + r1mww

It is well-known in classical vibration analysis that the

response of a structure can be represented by a superposition of

modal responses. Equation 3.2.1-20 shows simply another statement

of this result. The real part of the admittance is the weighted

sum of the real parts of the admittance for each mode the

weighting factor being the square of the mode shape at the point

of application of the force. With this representation in mind

one can write Eq. 3.2.1-20 as

1
1
1
1

1
31
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where am is the weighting factor, *m (X ), and gm is the real part

of the modal admittance without the weighting factor am

wan

gm =	 m	 (3.2,1-22)
b (w 2—w 2 ) +n 2 

2w2
m	 mwm

If one were to consider'the idealized problem of a beam with

simply-supported load conditions and viscous damping the func-

tions am and gm could be computed exactly. The real part of

the admittance for this idealized case would appear as in Fig. 6a

with peaks occurring at regular intervals of frequency. The

height of the peaks would be governed by the values of n  and

am with am being a periodic function of /7.

Unfortunately, the regular pattern shown in Fig.6a is rarely

observed for an actual beam, particularly at high frequencies,

due to boundary conditions which vary with frequency in a seem-

ingly random manner. The resemblance between the plot in Fig. 6b

and a sequence of random pulses in time from a random pulse

generator is evident. Lyon 28 has used this resemblance as

basis for finding statistics of the power input. Following his

approach, one defines an ensemble of beams in which the resonance

frequencies and the point of application of the source are random

variables. The function Re AR(w) for a number of different mem-

bers of the ensemble is shown in Fig. 6c. The concept of the

ensemble average impedance at w can now be introduced, as well as

the . variance and other higher order statistics of Re ARM.

In an actual situation in which the resonance frequencies or

the source point is not known the ensemble average value of

Re AR (w)is used as a "best" estimate. Confidence in this best
estimate for the beam being considered depends on the variance

across the ensemble.

i
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Re {A (W)}

V"Wmmw

FIG.6a	 REAL. PART OF THE ADMITTANCE FOR A
BEAM WITH SIMPLE SUPPORTS

Re {A (W)}

IL

FIG.6b	 REAL PART OF THE ADMITTANCE FOR A
BEAM MITH REALtST1C BOUNDARY CONDITIONS
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FIG.6c	 REAL PART OF THE ADMITTANCE FOR AN ENSEMBLE OF BEAMS
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Lyon assumed that the separation between resonance fre-

quencies has a Poisson distribution and that all points on the

beam are equally probable as points at which the source is

connected. Without going into his exact calculations his final

results are given below. The ensemble average of the real part

of the admittance for light damping is

<Re 
AR^w)>ens = 

-.I—
 nb(w)
b

(3.2.1-23)

where nb (w) is the modal density (the ensemble average number of

resonance frequencies per unit frequency). The modal density of

the beam is

L
nb (w) 	 2^rr eb w	 (3.2.1-24)

where cb (w) is the bending wavespeed in the beam,

ab(w) = wr

Rt
(3.2.1-25)

where EI is the bending stiffness of the beam. Combining Eqs.

3.2.1--23 through 3.2.1-25 one finds that

<Re AR :. y ens - Re AR inf(w)
	

(3.2.1-26)

where 
AR,inf is the real part of the input admittance of an

infinite beam,

Fie AR:	
_ 1

inf - m cY. b
(3.2.1-27)
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It is clear from Eq. 3.2.1-26 that the ensemble average input

admittance of a finite beam is equal to that of an equivalent
infinite beam. This result is very useful since the admittance

of an infinite beam depends on parameters typically known wit"'"

good accuracy.

The variance of the real part of the input admittance has

also been found by Lyon .28 His result shows that this variance

depends on the amount of modal overlap, i.e., the number of

modal resonances in a modal resonance bandwidth. The larger

this number the lower the variance.

When the excitation is band-limited noise one must average

the pure-tone result given by Eq. 3.2.1-23 over the band. Since

the modal density is not strongly dependent on frequency, one can

average the value of the real part of the admittance over the

band Aw by

<Re AR(w)> ens ^w - 2m nb(wc)	 (3.2.1-28)

where w e is the band-center frequency.

As for the pure-tone case Lyon 28 has again calculated the

variance. For this case the variance is smallest for large

numbers of modes in the excitation bandwidth, Ow. This result

and that for the pure tone case are consistent since high "modal

overlap" implies many modes responding to a pure tone.

When the source is a paint velocity source one uses

Eq. 3.2.1-10 to predict the time-average power input. This

equation requires the real part of the input impedance. To

1I

D

9
I
1
0
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find this impedance the same approach used to find the real

part of the admittance is followed. The result is

<Re ZR(w)>ens ' Re ZR inf(w)	 (3.2.1-29)

where ZR,inf is the impedance of an infinite beam.

Generalization of the Power Input from a Point ,Source

The previous section was restructed to the calculation of

power input to a beard. This restriction was made in order to

simplify the discussion. The method of calculation used can be

easily extended to the problem of power input to a generalized

multimodal system. In his work Lyon 28 considered the problem of

computing power input to plates and acoustic spaces. In the

previous section his results were used for computing power input

to a beam. Here it is assumed that these results can be used

for any multimodal system. Thus, to compute the time-average	 .,
power input from a point force source the real part of the
admittance of the infinite system is used in Eq. 3.2.1-9 to
get

S 7in (w) = SF (w) Re AR,inf(w)	 (3.2.1-30)

where 
AR,inf is the admittance of the equivalent infinite system.

Similarly, to compute the time-average power input from a point

velocity source one uses the infinite system impedance in
Eq. 3.2.1-10 to get

S 7in (m) = SV(w) ate ZR,inf(w)
	 (3.2.1-31)
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where ZR,inf is the impedance of the equivalent infinite system.

The impedances of a large number of different systems are available

in the literature.

When the source is neither a force nor a velocity source but

has a finite nonzero source impedance the use of Eqs. 3.2.1-34

and 3.2.1-31 is restricted to cases,of modal overlap, i.e., cases

in which the average separation between resonance frequencies is

less than the damping bandwidth. Scharton 29 has studied the prob-

lem of power input from sources of finite impedance. The reader

should refer to his work for more detailed information.

3.2.2 Power input from distributed sources

The problem of computing the time-average power input from

a distributed source is much more complicated than that from a

point source. With a distributed source one must take into

account not only the match in frequency between the source and

the driven--system modes but also the spatial match between the
source and the driven-system mode shapes. Examples of distri-

buted sources include acoustic fields, fluctuating aerodynamic

pressure fields and some distributed equipment .mounting founda-

tions. As for the point source, simplifications can be made if

the source can be treated as either a distributed pressure or
velocity source.

To illustrate the computational technique the power input
from an acoustic field to a thin plate will be considered.
Generalizations to more difficult problems will be clear.

The fluctuating pressure on the surface of a plate in an
acoustic field is the sum of a blocked pressure -- the pressure

when the plate is restrained from moving - -plus a radiated pres-
sure -the pressure resulting from the motion of the plate. The

ii
I

i
I,3

tj t

j
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radiated pressure can be further divided into a component in

phase with the plate velocity - radiation damping - and a com-

ponent out-of-phase with the plate velocity - fluid loading.	 For

4 most problems in air the radiation damping will be small compared

to the mechanical damping in the plate and the fluid loading will

• be small compared to the surface density of the plate.	 Then, the

Y:
radiated pressure will be negligible and the acoustic field can

be considered as a pressure source. 	 Even when radiation damping

must be included in the analysis, it is possible to treat the

acoustic field as a pressure source and include the radiation

damping with the mechanical damping in terms of a total damping

loss factor.

The power input from the acoustic field to the platc  is

bygiven

<Tr
>t	

=	 f	 dx <p(x,t)v(x,t)>t	 (3.2.2-•1)
in A

where p(x,t) is the acoustic pressure on the plate, v(x,t) is the

plate velocity and A is the area of the plate.	 If one expresses

the plate velocity in terms of its normal modes, Eq.	 3.2.2-1 be-

comes

<7rin>t - i <v
i (t)fi (t)> t 	(3.2.2-2)

where vi (t) is the velocity of the ith mode and fi (t) is the

modal force given by

fi (t) = fA dx p(x,t) ^i (x)
	 (3.2.2--3)

where *i (x) is the mode shape. From Eq.	 3.2.2-2 it can be seen

that the power input is the sum of the power inputs to each mode.
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VIf the acoustic field is random and its spectral density is

fairly flat over the band Aw, one can appeal to the power input

calculation for a single oscillator , to write

NAw 
7r Sfi

<^in>t Aw	 2 M	 ( wi )	 (3.2.2-4)
'	 i	 p

where the summation now is over all modes with resonance frequen-

cies, w i , in the band Aw, Mp is the modal mass of the plate and

S  ( wi ) is the mean-square modal force spectral density for the
i

ith mode. The relationship between S 	 and the mean-square pres-
s

sure spectral density of the exciting pressure field has been

defined to be the joint acceptance, ,j i (w), which is 30

Sfi (w )

Ji(w)A Sp w	
(3.2.2-5)

In terms of the joint acceptance one can write the input power as

_	 1	
NAw

<^	
1

in^t Aw	 2 M S	 £ i i (wi )	 (3.2.2--6)
'	 p p i

where Sp is assumed to be flat over the band Aw.

The ,joint acceptance for each mode of an idealized mathema-

tical model of the structure can be calculated. Since the reso-

nance frequencies and shapes of the first few modes of an actual

structure can be computed fairly accurately, this mode by mode

approach makes good sense at low frequencies. However, at high

frequencies confidence in the prediction of resonance frequen-

cies and exact mode shapes falls off rapidly. In addition, the

a
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number of modes which must be included in the mode-by-mode cal-

culations becomes very large. For these reasons a statistical

approach is called for.

Using a statistical approach, an ensemble of plates is de-

fined in which the resonance frequencies are random variables.

For this analysis, however, the mode shapes will be taken as non-

random sin k x x sin k y 
y functions. In many cases it would also be

desirable to make the mode shapes random. But, unfortunately,

the calculations for this case have not been worked out. The

error introduced by using sin k 
x 
x sin k 

y 
y functions for problems

in which the boundary conditioner are not simple supports is be-

lieved to be small, less than ±3 dB.

The ensemble average number of modes with resonant frequen-

cies in a band Aw is given by the modal density. Thus, the en-

semble average power input in the frequency band Aw can be writ-

ten

<Tr w	
1

, 0 , ens = 2 MP
S	 n	 (w)	 q w<J	 > t

	
(3.2.2-7)p	 p	 i Aw , ens

where <,j i 
> is the averageL1w,ens joint acceptance — the average

being taken both over the band Aw and over the ensemble. 	 To cal-

culate the average ,joint ac^eptance, one calculates the joint

acceptance for a sin k xx sin kyy mode shape and then averages

the result over the band Aw and the ensemble.

The joint acceptance for a particular mode is given by

j2 (W ) =	 1 ffff dx dx S (x x w )	 (x )	 (x ) (3.2.2-8)
S A 2 A A	

—i —2 p --i ' —2 ' i	 i --^	 i —^

P P P p

where Sp ( X Ii , x 2swi ) is the cross-spectral density of the pressures

at x, and x 2 . Equation 3. 2.2 . 8 can be put into a form more
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suitable for the required averaging by Fourier transformation.

Defining the following transforms

i (k) Q 2^r 
If dx *,( x) e-

i(k-X)	 (3.2.2-9)
A

p

and

Sp(k'w) ' AT f  dA.Sp(x,x+A,w) a+i(k-A)	 (3.2.2-10)

one can write Eq. 3.2.2-8 as

CO

^i(Wi) = 1 
1 	 ff dk S(k'wi)^i(k) I2

S	
(3.2.2-11)

p p,^A

2
 (2n) 2 -_00

p

where Sp (k,w) is the wavenumber-frequency spectrum of the excit-

ing pressure field and 1^i(k)12 is the magnitude squared of the

transform of the mode shape. The function 10 i (k)1 2 for a sin kxy

sin kyy mode has the form

J^i (k)1 2 = — I— Ap II(k i ,kx )1 2 1I(k 2 ,ky )1 2	(3.2.2--12)
(27r )2

where I is given by

1 Lx	-ikix
I(k i ,kx ) = L fa dx sin kXX e	 (3.2.2-13)

X

The function I can be easily evaluated for a number of different

values o f k  and k1.

Smith and Lyon" have shown how to average the functions
JI(kl,kx)12 and JI(k 2j ky )1 2 for the modes of a plate with reso-

nances in the band Aw. In their work Smith and Lyon'^compute
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we - EI (3.2.2-17)
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radiation resistances. The radiation resistance is related-to

the joint acceptance by the equation

p c k2A2

Ri,rad(wi) = 
o ono	

J i ( wi )	 (3.2. 2-14)

where Ri,rad is the radiation resistance, k o is the acoustic wave-

number of w  and p o c o is the characteristic impedance of the

acoustic media. Smith and Lyon have found the average value of

RJ rad(wi) over the band Aw and the ensemble for diffuse acoustic

excitation. The reader is referred to their work or equivalently

to the work by Maidanik 7 for specific results. For plates which

are large compared to an acoustic wavelength, we can approximate

4-he ensemble average radiation resistance of modes with resonance

frequencies in a given band Aw by the expressions

<Ri,rad'ens,Aw " 0 0 0 0 A	 for w > 2w 	 (3. 2.2-15)

and

1	 w ^/2

<Ri,rad^ens,aw - 7r2 w^ 	 POCO Cp for w < 2

(3.2.2-16)

where we is the critical frequency given by

A c is the acoustic wavelength at w c , p is the perimeter of the

plate, p  is the mass per unit area of the plate, and EI is the

bending stiffness of the plate. The radiation resistance in the
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region between we/2 and 2w  depends in a complex way on the plate

parameters. For practical purposes it is reasonable to assume a

smooth transition from Eq. 3.2.2-16 to Eq. 3.2.2-15 in this re-

gion.

3.3 Power Transmitted

The calculation of the power transmitted between two oscil-

lators has been studied in detail. i'3'`''s, 32 It has been found
that if the two oscillators are forced with independent white

noise the power flow between them is proportional to the differ-

ence in their total energies or

?Tmn = ^mn(em-en)

where ^mn is, by definition, the factor of proportionality.

The case of the coupling of two multimodal systems is less

clearly understood. In this section two general techniques that

have been successfully applied to coupled multimodal systems will

be presented. To simplify this presentation the two techniques

the "mode approach" and the "wave approach" will be used to solve

a problem with two rods vibrating longitudinally and coupled to-

gether with a spring.

It should be emphasized that the above two techniques are

not the only ones applied to coupled multimodal systems. New-

land' ,33-,14 has developed a technique for measuring the coupling

coefficient from the shift in natural frequency that occurs when

two systems are coupled together. Gersh 32 ' 3s has applied some

techniques from control theory (Liapunov's principle) to deal

with the strong coupling case. However, the wave approach and

the mode approach have received somewhat more attention in the

literature and as a result are, at present, on a somewhat firmer

basis
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r . 3.3.1	 Mode a pp roachr ^

The mode approach to the calculation of power transmitted

between multimodal systems was the first technique applied.	 It

has the advantage that the chain of assumptions involved in the

calculations is fairly clear but it has the disadvantage of being

cumbersome.	 The coupled modal equations must be derived and then

y rather extensive manipulations must be performed on the resulting

coupling factor.	 In the next section the coupling coefficient

for two coupled oscillators is derived and in the following sec-

tion the result is extended to multimodal systems.

. 3.3.1.1	 Two	 coupled	 oscillators

If two simple oscillators as shown in Fig. 7 are coupled to-

gether and each is driven by a white noise force, the two forces

being statistically independent, it can be shown that the time

average power flow from the first oscillator to the second is di-^

rectly proportional to the difference in their time average total

energies

7x12	 012 (E;-e2}r:y

J
The coupled equations of the two oscillators in Fig. t may

be written

1
M 1	 +	 Mc

) ..
x l	 + b l x l	 +	 (K1+Kc }x1 	+	 M e x 2 -G* 2 -Kc x 2 

s 
F1

1	 1..	 ,.M2 +	 Mc x 2 + b 2 :k2 +	 {K 2 +Kc )x 2 +	 Mcx l -G3C 1 -Kc x l	F2	 .
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•

FIG.7	 TWO COUPLED OSCILLATORS

46



r

1 ,

Report No. 2064	 Bolt Beranek and Newman Inc.

Note that there is gyroscopic, inertia and stiffness coupling.

The last form of coupling is somewhat uncommon with simple mass-

spring oscillators but the coupled equations that result when two

continuous systems are coupled together often contain terms of
0.

the form MCA ( x i +x 2 ) (inertia) and GEC (gyroscopic) as well as

stiffness terms.

We now write Eq. 3.3.1.1-2 with new coefficients

x i + A i i 
+ wix i + 

L CuX 2 —Y* 2 -Kx 2 ^ = fi

x2 + D 2 7C 2 + W2x 2 + A[ux 2 -Yx 2 - K x 2 ] = f 2	 (3.3.1. 1 -3)

where

bi
d i 

= M1+Mc

Ki+Kc

wi 
_ Mi+Mc-

X2 
= Mi+MCA

M2M2+Mc//44

Y	
G	

1/
P M1 +Mc/4)(M2 +Mc/4)]

Fi

f i - Mi+Mc/44

b2
D 2 = M2+Mc

K2+K^
c^ 2 =2 Mi

M + Me/T

MCA

[(M1+Mc/4)(M2+Mc/4)]i/2

K
K =	 c	 1/ZC(M1 +Mc/^) (M2+MC/4)7

F2
f 2 - Mi+Mc

Scharton and Lyon s have calculated the coupling coefficient

in Eq. 3.3.1.1-1 for the coupled equation of Eq. 3.3.1.1-3 and

have found it to be
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U [A 1 W 2 +A 2 W 1 +A 1 A 2 (A 

W
22+A W 2 )]  + (y +2jjK)LA 1 W 22 +A 2 W 2 ] + K (A1 +6

^12	

( 1-p2)C( W2_W2 	 2) 1	 2 +,Q	 2+ {^ +^){^ W	 W}]	 .1	 1	 1 2	 2 1

The result in Eq. 3.3.1.1-4 i,_ always correct independent of the 	 r

strength of the coupling. The validity of Eq. 3.3.1.1-4 does depend 	 A

however, on a somewhat special definition of the engeries in Eq.

3.3.1.1-1. For example, e l is the energy that wou„^..result if M 2 in
Fig. 7 were held stationary and M 1 was allowed to move under the

action of the applied force, 82 is defined similarly. These en--

R

	

	 ergies then contain terms associated with energy in the coupling

elements as well as in the oscillators themselves.

It will be found as the coupled modal equations of coupled

continuous systems are examined that under suitable assumptions

equations of the form of Eq. 3.3.1.1- 3 will result. Use of
Eq. 3.3.1.1-4 will then yield an equation for the power flow be-

tween any two modes of the coupled system.

3.3.1.2	 Extension	 to multimodal	 systems
0

For the two oscillator cases it has been shown in the previous

jsection that power transmitted is proportional to the difference

;x	 in energy of the two oscillators and the proportionality factor

was calculated in terms of the properties of the two oscillators

and the coupling between them. 	 The somewhat peculiar definition

of the total energy of each oscillator (coupling elements are

included) used in the previous section can be relaxed somewhat if 1.^

the coupling is light.	 In that case oscillator energy can be de-

fined in terms of the oscillator elements not including coupling

elements.'	 It remains to apply these results to many oscilla-

tors coupled together as in a multimodal system. 	 In order to

.	 4a
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illustrate this application, the specific example of two rods

vibrating longitudinally and coupled together with a spring will

be used (see Fig. 8).

The equation of motion for a longitudinally vibrating rod

may be written

— C2 a 	 +	 a	 f{x,t)
ax 2	 at 2	 pA

(3.3.1.2-1)

where ^ is the displacement in the x direction along the length

of the bar, p is the density, A is the cross-sectional area, t is

the time, c is the wave speed, and f(x,t) is a force per unit

length.
Referring to Fig. 8 one may express the resulting equations

of motion for the two bars

bar 1

a 2 1	 a21	 F1	 Kc
c 2 	 d ( x—x ) + P	 6 (x-x ) C ( x , t ) -	 ( x   

at e 	 1 a x 2	 p, A l	 fl	 1A	 c 1	 2	 C 2	 1	 c 1 3t)]

	

.. _...10.	 (o,t) 6(x) - bbii- k(L
r t) 6(x-L,)

	

p1A1	 1	 p1At

(3.3.1.2-2)

bar 2

a2t	 92^	 x	 F
.^ — c2 --- ^ 

p A 
8(x—x c^ ) C^z(xc2^t)-^^(xci,t)] + p a(x^-x f2)

W	 W2 2

- --2°- * 2 (o,t) ^(x) - 21- i (L ,t) 6(x-L2)

	

p 2A 2	 p2A2 2 
2

(3.3.1.2-3)
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L^

L2

FIG.8	 COUPLED RODS IN LONGITUDINAL MOTION
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where the effect of the coupling spring and viscous dampers at the

end of the beam have been included as external forces, K  is the

coupling spring stiffness, and b z0 , b ii , b..., and b 21 are the

damping coefficients of the viscous dampers.

It is assumed that ^, and ^2 can each be expressed as a series

of orthogonal functions as follows

E l (x,t) = I um(t) m(x)
m

2 (x,t) _	 vn( t ) n (x)
n

where

20 

M

ax 2 	 m m

a2^ n- - K2ax2 -
	

n n

and

Li 
Om On dx = 0 if m # n

0

-L1 ifm=n

L
2

^,M *n dx= 01fm #n
4

L2
- -Tifm=n

(3.3 .1.2-4a)

(3.3.1.2-4b)

(3.3.1.2-4c)
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Because all coupling, forcing, and damping have been included

as forcing terms in Eqs. 3.3.1.2-2 and 3.3.1.2 -3, the mode shapes

required here are specifically the modes shapes for a free-free

rod, i.e.,

	

n W = cos L	 n = 1, 212

	

&W = cos L	 m = 1, 2, ...
i

Thus in terms of the total problem (mode shape and forcing

terms) the resulting boundary conditions are the proper ones.

Using Eq. 3.3.1.2 -4a in Eq. 3.3.1.2-»2 and Eq. 3.3.1.2-33

simplifying the result by the use of Eq. 3.3.1.2-4b, and applying

the orthogonality condition of Eq. 3.3.1.2-4c by multiplying the

equation by the appropriate orthogonal function and integrating

the result over the appropriate length, one obtains

ILIm + Amum + wmum - AGmnvn = Fm

to 
+ Qnvn + wn^rn 	m- A Cmnu = Gn

where

w 2 b io [^m (0)] 2 + b il [^m(L1)]2
m	 m 

A = 2
b2o [*n(o) ] 2 + x'21 [ *n ( L 2 ) ]2

n	 m2

m l = PICIAI

m2 = P 2C 2A2

(3.3.1.2-5)
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2K
wm = ciKm + m [0m (xcl)]2

2K
W 2 =C2 K 2 +	 e C^ (XC2 ) ]2m 2

C	
2KCOm(xC 1 ) *n (x c 2)

mn	 ( m 2 )2

M

l

2

2F 1 	2K	 k#n	 k#m

Fm - m 0m (xfl ) + m ^ (XC1 1 I V' -O (xc2 )	 uxot (Xcl)k

- 
2 k#m 

b 14 Co
k (G) 1 2 + b 11 COk(L1) 72 u

	

k	 ml	 k

2F 2 	2Kc
1 
k#n	 — X#m

Gn 	 m 'n (x f 2 ) ` m	 n(XC21	 vk*k(XC2)	 Ukok(XCl)2	 2	 k

- 
2 k#n b 2a 

[Vk (0)] 2 + b11 C*k(L2)]2

	

k	 m2	 v k

If one assumes that F 1 and F 2 are white, that the um 's and
vn 's are statistically independent and that the summation terms

in the Fm and G  terms each have a spectrum that is flat compared

to the admittance spectrum of the mth and nth modes, respectively,

then the results of Scharton and Lyon 5 can be directly applied

by substituting the appropriate values from Eq. 3.3.1.2-5 into

the expression for the coupling coefficient of Sec. 3 .3.1.1
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7r 12	 mn I 	 Enn m
(3.3.1.2-8)

O	 s	
mn	 m n	 (3,3.1.2-6)

mn	 (wm-wn)2 + (Am +An ) (amen+ammo)

From Eq. 3.3.1.2-6 one can find the power transmitted between

any mode in rod 1 and any mode in rod 2

IT 	 = ^mn [sml ) - sn2 )1
	 (3-3-1.2-7)

where c (l) is the energy of mode m of rod 1 and sn 2) is the energy

of mode n of rod 2. To obtain the total power transmitted between
the two rods one must sum over all modes in both systems

In general one is dealing with a particular band of frequency

and thus the summations refer to all the modes with resonant fre-

in the band	 interest,	 dampingquencies	 of	 assuming of course that

is light enough to allow resonant modes to dominate the response.

If one knows the resonant frequencies and mode shapes of 	 [J 1

both systems well enough, it is possible to apply Eqs. 	 3.3.1.2-6

and 3.3.1.2-7 directly and sum over the known modes.	 In general,

at nigh frequency one does not know the modal properties that

well — not to mention the fact that the numbers of modes involved

may be so large that calculations using Eq. 3.3.1.2-8 will be

quite tedious.	 In order to avoid these difficulties, one takes a

statistical approach and assumes that the particular systems

under consideration are members of an infinite ensemble of systems.

It is desired then to find an "average" coupling factor	 forS	 p	 B	 ^ ^,

the ensemble.	 The definition of the ensemble has purposely been
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left very loose here. In general the purpose behind averaging

Omn of Eq. 3.3.1.2-6 is to end up with a ^ that is independent of

the properties of any particular mode such as natural frequency

or mode shape. In order to accomplish this different kinds of

averaging will be required for different systems.

For the particular system under discussion here the follow-

ing form of averaging is appropriate

1. One assumes that there is a uniform probability that

the coupling spring is attached at any point along the

length of rod 1 and an independent uniform probability

that the spring is attached at any point along the

length of rod 2. The average value of the coupling

coefficient then becomes

L	 L

<0mn >L	 L L	 i dx
cl 	2 dxc2 ^mn	 (3.3.1.2-9)i 2 fo	 o

2. One assumes that the natural frequencies of the two rods

are randomly distributed. To deal with this situation

properly two cases must be considered: "well separated

modes" in the receiving system (rod 2) and "modal over-

lap" in the receiving system.

For the case of "well separated modes" one assumes that given

the natural frequency, wm, of a mode of rod 1, there is a uniform

probability that the natural frequency of a mode in rod 2 lies

between w  - 1/2n 2 (w) and w  + 1/2n 2(W) [n 2(W)= L 2 /nC 2 , is the

modal density of rod 21. Because the modes are well separated,

i.e., the modal bandwidth A is much less than the modal spacing

1/n(w), it is further assumed that one mode in rod 1 is coupled

to only one mode in rod 2, or

6
D
D
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w +1/2n (W
n (w )	 m	 m dw	 ( 3. 3.1.2-10)

M_
^mn	 z m fW -1/2n z m(w )	 n mn '^

:a

where the summation over n refers to summing over all modes in

rod 2 in the frequency band of,interest.

For the case of "modal overlap" where the modal bandwidth is

greater than the spacing between modes one assumes that in the

frequency band of interest, Aw ., there is a dense array of modes

in rod 2 with a uniform probability that a natural frequency lies

at any point in Aw. Because of the modal overlap condition one

can no Zonger assume that one mode in rod 1 is coupled to only

one mode in rod 2. For this reason then, one calculates an aver-

age coupling factor for a mode in rod 1 to a single mode in rod 2

and multiplies the result by the number of modes in rod 2 in Aw or

w + Aw/2

^mn n 2 (wm )ew] 6w	
m	 dwn Omn	 (3,3.1.2-11)

n	 wm - aw/2

where the first term in brackets is the number of modes in qw in

rod 2, the second term in brackets is the average coupling co-

efficient for a mode in rod 1 to a mode in rod 2 in the band Ow

and wm becomes the center frequency of the band,*

If Ow in Eq. 3.3.1.2-11 is greater than the modal bandwith

of a mode in rod 2, then the limits on the integration can be

*To be strictly correct the calculation of the average coupling
factor in Eq. 3.3.1.2-11 should also contain an integration over
wm since the mode of interest in rod 1 could have its natural
frequency anywhere . in Aw. However, if the modal bandwidths are
much less than Aw, the integral over wn is approximately the same
for all wm except near the ends of the band. Thus no averaging
in wm is required.
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changed to -w to +w. The same change in limits on the integra-

tion in Eq. 3.3.1.2-10 is possible because of the assumption of

well separated modes. As a result, the two results are the same

n2(w} 
o0

E ^mn = 2 f 00 dwn O mn
n

where the factor of 112 is clue to the fa6t that 
0 m is an even

function of w 	 and the lim-ts of integration should actually have

been expanded only from 0 to co.

Carrying out the above integration using contour integration

and assuming that the modal bandwidth A is much less than the

center frequency w one obtains

K 2 L

^mn - 2	 c 2
(3.3.1.2-12)

n	 mlm2c2w x

["!v	
Equation 3.3.1.2 - 8 then becomes

J

..10	 M N	
(2

7r	

I_ 

I12	 n mn m m
	

m n mn n
(3.3.1.2-13)

Equation 3.3.1.2-13 can be further simplified if one assumes that

the summations over en 2) are negligible compared to the summa-

tions over em	 t

-^i2	 mn E 1 (3.3.1.2-14)^ 
0	 n

where E i is the total energy of rod 1 in the frequency band of

interest. Equation 3.3.1.2-14 would be valid if, for example,

with a very soft spring coupling the two rods only rod 1 were

forced.'

[I
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If the above is not valid, one often assumes that the coupl-

ing between modes within rod 2 is very strong and that each mode,

E: 
(n2) 

has the same energy

	

s (2)	 E2
n	 N	

(3-3-1.2-15)

where E 2 is the total energy of rod 2 in the frequency band of

interest and N is the number of modes in rod 2 in that band,

Eq. 3.3.1.2-13 then becomes

	

M E 2	 ,^
_	 _	 ^_

i2	
( I 

^mn	 E 1 -	 N -	 `mn	 E- P1 E z

(3.3.1.2-16)

For a narrow frequency band M = n 2 (w)Aw and N = n2(w)Aw
where Aw is the bandwidth of interest and n l and n 2 are the modal

densities of rod 1 and rod 2 respectively, Eq. 3.3.1.2-16 becomes

X13 = CEO ) nl El - E2 	 (3-3-1.2-17)mn 	 01	 n 2

Using the appropriate expression for (Z^mn ), Eq. 3.3.1.2-12, in

Eq. 3.3.1.2-17 one can calculate the total power flow between

rod 1 and rod 2 without specific knowledge of the natural fre-

quencies or mode shapes. Of course this particular problem is

simple enough that an exact closed fo..L-:a solution is possible (see

Appendix A). Use of this exact solution will be made in a later

section.

It is often useful to have an upper limit for the average

coupling coefficient. To obtain this limit it is assumed that the

modes of the two rods have the same natural frequencies. It is
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also appropriate to choose the maximum possible value for C mn in

Eq. 3.3.1.2-6, i.e., the amplitudes of the two mode shapes at the

coupling points are taken to be unity

2	 2

	

(c mn ) max	 2Kc
^mn	 —	 -	 (3.3.1.2-18)

n	 max	 (Am+ A n) w2 	 mIm2w2 ( b 10 +b ll +b 20 +b 21)

Use of Eq. 3.3.1.2-18 in Eq. 3.3.1.2-14 or 3.3.1.2-17 will

give an upper bound on the power transmitted between the two rods.

This result is strictly valid only for the "well separated mode"

case. For the "modal overlap" case a possible means of getting

at the answer would be simply to multiply Eq. 3.3.1.2-18 by

n 2 (w)(Am+An ) or the number of modes in rod 2 contained in the

combined modal bandwidths of a mode in rod 1 and a mode in rod 2

or

4Kc	 L 2

	

^mn	 m m	 2	
(3.3.1.2-19)

n	 )max	 1 2 c 2 7rw

Although we have formulated the power flow problem in terms

of an average coupling coefficient it is more common in SEA to

use a coupling loss factor analogous to the damping loss factor.

The coupling loss factor is related to the average coupling co-

efficient by the equation

wn 12	 n ^mn
	 (3.3.1.2-20)

where n12 is the coupling loss factor and w is the center fre-

quency of the band being considered. Using the coupling loss

factor the basic power flow equation becomes
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= WTI 121nln E1 - 112

E2

12	
(3.3.1.2-21)

Since the power flow from 1 to 2 equals minus the power flow from

2 to 1 we have the basic relationship

11 12 n 1 = 11 21 n2 •

	 (3.3.1.2-22)

This relationship allows some flexibility in using either n 12 or
n 21 . Note, however, the 1112 does not equal 1121.

3.3.2 Wave approach

In recent years a different approach to the calculation of

power transmitted has been developed. This technique, which will

be called the "wave approach" in this report, does not depend on

knowing the coupled modal equations of the coupled system and, in

fact, does not even mention the word mode in the process of cal-

culating the coupling loss factor, n,2. It has been demonstrated
in many eases 5 ' 3 ' 6 that the coupling factor calculated by the
wave approach is the same as that calculated by the mode approach.

The principle outlined in Sec. 3.2 that the impedance of a

finite system becomes that of the infinite system given a broad

enough frequency band and/or a high enough modal density is the

basis of this approach. To illustrate its application the coupl-

ing factor for the coupled rod problem of Sec. 3.3.1.2 will be

derived here.

Using the total power flow equation of Sec. 3.3.1.2

IT	
s 

W71 
nl E  - E?	 (3.3.2-1)

111
	 n2
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one generally assumes for the purpose of derivation of n12 that

the second term in parentheses is negligible compared to the

first. Such an assumption is valid if the modal density n 2 of

the second system is much larger than the first or if the coupl-

ing is light and system 1 is the only source of excilation for

the second. In any event, under this assumption Eq. 3.3.2-1 be-

comes

Tr 12 = 
41n

12 E 1 •

	
(3.3.2-2)

Calculating iT 12 and E 1 , then, enables one to find n 12 , the

coupling loss factor.

The time-average power flow from ro l to rod 2 (see Fig. 8)

may be written

X12 - 2 Re1Fc 2 ^

where F c is the force amplitude in the coupling spring and	 is

the complex conjugate of the amplitude of the velocity in rod 2

at the point of attachment of the coupling spring. Using the

point impedance of rod 2. Z 2 , one may write

Tr	 = I 

Fc 

I Re 1
12	 2	 z J

(3.3.2-3)

It is desirable to express F  in terms of a quantity easily

relateable to the energy in rod 1. For this reason F  is expressed

as the sum of the force that would be required to hold the point

of attachment of the coupling spring rigidly, F BL , and the force

due to the motion of that point, Fm

Fc = FBL + Fm .
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fl
(3.3.2-7)
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The force Fm may be written

	
F '^

Fm	 Z I ^ I
	

(3.3.2-5)

where Z 1 is the point impedance of rod 2 and t1 is the velocity

in rod 1 at the point of attachment of the coupling spring. The

total coupling force, F c , applied to rod 1 is applied equally and

oppositely to the coupling spring such that

Fc = Z2 t 1	 (3.3.2-6)

where Z2 is the impedance of the coupling spring attached to

rod 2 but separated from rod 1.
	

ij
Combining Eqs. 3.3.2 -3, 3.3.2- 4, 3.3.2-5, and 3.3.2-6 leads

to an expression for the power flow in terms of FBL

F

Clearly if FBL can be expressed in terms of the energy of

rod 1, use of Eq. 3.3.2-1 will lead to an expression for n12.

To this end assume that a right running traveling wave of

amplitude C ; is incident on the coupling point in rod 1 and that

that point is held rigidly. It can be easily shown, then, that

I FBL 21 ' 
IZ 2 1 1,21;

In reality it is equally likely that a left running wave is

incident on the junctions from the right. Assuming that this

62

D
D
D
1

1
1
1



. 1

1

	

Report No. 2064	 Bolt Beranek and Newman Inc.

wave has the same amplitude as the right running wave but is

uncorrelated with it leads to

^ FSL2 1 
= 21 Z2 111 1 1 2 	(3.3.2-8)

If the coupling is ?ig.ht, the energy contained in rod 1

due to the action of these two uncorrelated traveling waves

may be written

E 1 = P IA 1 L 1 1t11	 (3.3.2-9)

where pl is the density of rod 1. A its area, and L i its length.

Combining Eqs. 3.3.2-1, 3.3.2-7, 3.3.2-5, and 3.3.2-9 and

solving for n12 leads to

	

1Z 2
1 	 Z }r 	 2

1	
2	

1	 (3.3.2-10)w^12 = p1A1L1	 Z +Zt	
a Z2^

1	 2

It can be easily shown that if the two rods are taken to be

infinitely long,

Z 1 = 2p1C1A1

Z 2 = 2p2c2A2

Kc/	
2

c^ Z

and Z2 = Z 2 + J Kc/w

where c 1 is the wave speed in rod 1; p 2 , c 2 , and A 2 are the den-

sity, wave speed, and area of rod 2, respectively; and K C is the

stiffness of the coupling spring.

F,
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In the case of light coupling (K c/m « Z 1 , Z 2 ) Eq. 3.3.2-10

becomes

	

K 2	 K 2L z
w^lz	 p	

c	 s 2	
c	

(3.3.2-11)A
1 1

L	
2	

2p
1 W	 z

c 
2

A 
2	 2 

mlm2c2

The result in Eq. 3.3.2-11 is exactly the same as that cal-

culated by the mode to mode technique of Sec. 3.3.1.2 for the two

cases examined there. Substitution of Eq. 3.3.2-11 into

Eq. 3.3.2-1 enables one to calculate the power transmitted be-

tween the two rods.

Note that in the calculation of n12 it was assumed that in

Eq. 3.3.2--1 the second term in parentheses was negligible compared

to the first whereas, now the entire equation is to be used to

calculate power transmitted.

Note that the wave approach as presented here is the approach

most commonly found in the literature. It is often much simpler

to apply than the mode approach though it is much harder to justify

the chain of assumptions yielding the result.

To conclude, the assumptions that are the essence of the

wave approach are stated below.

1.	 All impedances are taken to be those of the infinite system.

As in the above example the impedances of the finite rods

were taken to be the impedances of infinite rods. However,

it should be noted that if the rods had been coupled at the

end, the semi infinite rod impedances would have been used.

l
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' 2.	 For the purpose of deriving the coup Zing coefficient the

power transmitted is taken to be proportional to the energy

in the driving system or

•^ ^
rr	 =	 Ewn

12	 12	 1
a

a

i where 1 denotes the driving system.

3.	 To calculate the energy in the driving system as well as the

blocked force (where force is here meant in the general

sense of a moment, stress, pressure, or force) one assumes

that the response of the driving system consists of a series

of uncorrelated traveling waves incident from all possible

directions.	 For example, in the middle of a rod there are

,dust two possible directions; in a plate waves can be inci-

dent on a point from any of 360 0 ; and in an acoustic space

one usually assumes a diffuse pressure field (waves incident

from all angles), although other fields such as grazing or

normally incident should be used when appropriate. 	 If the
_.

coupling spring were at the end of the rod, waves could only

 be incident from one direction; if the couplin g,	 p	 g point were
at the end of a panel, waves could only be incident from any

Of 1$0 0 1	etc.

..:ti`. Careful application of the above three assumptions should lead to

proper calculation of power transmitted for many different classes

of coupled systems.

J

b _l r
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3.4 Power Dissipated

Def i ni ti on

In previous sections we have somewhat arbitrarily separated

the power leaving a continuous medium (structure, acoustic space,

etc.) into two categories, power dissipated and power transmitted.

In some cases it is scmewhat ambiguous as to how one distinguishes

between the two types of power. Clearly the power leaving a con-

tinuous medium due to damping (conversion of mechanical to thermal

energy) where the damping may be due to interface friction, fluid

viscosity, turbulence, mechanical hysteresis, or electromagnetic

hysteresis is classified as power dissipated. The ambiguity occurs

when one has two continuous media in contact such that power can

flow between them, a panel and acoustic space for example. Is such

power to be classified as transmitted or dissipated?

In many cases the measurement techniques for damping answer

the question for the investigator. For example, in the measure-

ment of panel damping in air one measures both the power lost to

internal dissipation as well as the power radiated to the surround-

ing acoustic medium. Thus in calculating the response of the panel

in contact with the same acoustic medium where the damping measure-

ments were taken, to excitation other than that in the medium, one

would treat the power radiated to the acoustic medium as added

damning.

In other cases the nature of the problem itself makes the

classification clear. If three media are in contact such that

power can flow between any two, then,.to classify the power flow

between any two as dissipative may lead to difficulties. For ex-

ample, if one, a priori, classifies the power flow from medium 3

to medium 1 as dissipative, this inherently assumes that insignif

scant power is incident on medium 3 from medium 1. If medium 2

is driven and it turns out that more power flows from medium 2 to

66
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medium 1 to medium 3 than flow directly from medium 2 to medium 3,
then, the above classification of power would be incorrect and
would lead to incorrect conclusions. Clearly, then, when the di-
rection of power flow is uncertain, one had best classify the

power flow as transmitted. On the other hand if two media are

interacting, and the first is the only source of power for the
second, then, to classify the power flow between the two as dissi-

pative would cause no difficulties unless, of course, one were

interested in the response of the second medium. However, if one

measures damping of a medium while it is coupled to a second me-

dium, care must be taken not to extrapolate that measurement to

situations in which the first medium is coupled to a different

second medium. For example, damping measurements made on a plate

in air will be significantly different from measurements made on

that same panel in the vacuum of outer space. As a further ex-

ample, damping measurements made on a component in a structure will

be different if made on that same component in a radically differ-

ent structure. This is not to say that damping measurements in-
volving coupling to other media cannot be extrapolated. In actu-

ality as long as the receiving medium is similar to that for which
the measurement was performed, extrapolation of the measurement is

usually acceptable. For example, the damping measured on a panel

in two diffierent rooms would be essentially the same if the rooms

were of similar size and had similar absorptive material on the

walls.

Analytical Representation

For purposes of analysis it is generally assumed that the
power dissipated by a continuous medium, 1rdiss, is proportional

to the energy, E. in that medium
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Trdiss « E	
(3.4-1)

a valid assumption for linear systems.

In fact, early measurements of dissipation in materials showed

that the coefficient of proportionality in Eq. 3. 14 -1 varied lin-
early with frequency. For this reason a loss factor n, a constant,

was defined such that

7rdiss = wnE

In the case of a damped second order oscillator satisfying the

following equation

mx + b:k + k x = F
	

(3.4 -2^,

where m is the mass, b the viscous damping coefficient, k the

spring constant, and F a stationary random force applied to the

mass, one can multiply both sides of Eq. 3. 14-2 by x the velocity

of the mass, take the time average, and obtain

<Fx> = ndiss = b<X2> .

At resonance, one obtains

ndiss = wnE
	 (3.14-3)

where n = b/wnm (wn k m the natural frequency) and E is uh e

total energy of the oscillator which at resonance is twice the

kinetic energy since there kinetic and potential energy are equal.

Equation 3.4 -3 is commonly used to analytically represent the

power dissipated from a continuous medium for any dissipation mech-

anism. The loss factor n which is generally a function of frequency
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Is one of a great many representations. The damping ratio, ^, and

the amplifications at resonance, Q. are related to n as follows:

n = 24 s 1 .

Unfortunately, at present, analytical calculation of the loss

factor n is not possible except in a few special cases. Radiation

damping of panels'" can now be calculated with some degree

of confidence and with "applied damping treatments" where suffi-

cient data exists reasonable calculation of n can be made. In

most cases, though, one must rely on measurements or educated

guesses.

Measurement Technique

In the field of viscoelasticity where damping is modelled by

allowing the relevant material moduli to be complex, there are

many techniques for measuring damping. While differing in detail

all of these techniques use a small material sample with special

simple geometry. Such techniques are not particularly applicable

to structural damping where friction at mechanical joints may

dominate internal material dissipation as the damping mechanism.

For this reason two techniques commonly used to measure damping

at high frequencies will be briefly mentioned here.

In the following discussion it is assumed that the medium of

interest has been isolated from all other interactive media. For

example in the case of a panel interacting with an acoustic space

one would ideally like to place the panel in a vacuum though this

is seldom possible. One can of course leave the medium of inter-

est coupled to other media but it should be realized that the loss

factor that one obtains in the case is not the loss factor of the

t
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(3.4-5)

medium of interest but a combined loss factor which is a compli-

cated function of the loss factor of each of the media and the

effects of the interaction between the media. 	 This combined loss

factor is often called the "total 'loss factor".

From Eq. 3.4-3 one technique immediately suggezts itself.

Measure the time average power injected into a medium which by a
I

simple power balance is equal 
tondiss' 

measure the time average

energy of the medium and use Eq.	 3.4-3 to calculate n.	 The mea-

surement of energy in a resonant structure usually consists of a

measurement of the space-time-average velocity squared.	 The k`F	 '^

measurement of power injected is somewhat more difficult and in

the case of a structure involves time averaging the product of

the point-force applied and 	 velocity at the point of applica-
#.

tion.	 All these measurements are usually done in frequency bands.

In principle this is straigh'vforward but in practice involves the

use of some rather sophisticated equipment. 	 A typical setup is

shown in Fig. 9a.	
0

From the definition of power input to medium

_ 3E	 (3.4-4)
at

A simpler technique is suggested. From Eq. 3.4-4 it is clear that

when the excitation to a continuous medium ceases the rate of

change of the energy is equal to the power dissipated. Combining

Eq. 3.4-4 and Eq. 3.4-3 one obtains

dEdt - wnE = 0

which has a solution
0
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,K

One simply excites the medium of interest with white noise

filtered in a band, turns off the excitation, and measures the

rate of decay of energy in the medium in that band. Specialized

instruments exist (decay rate meters, graphic level recorders

with templates, etc.) that greatly simplify this measurement. Use

of Eq. 3.4-5 then yields n, the loss factor.

A commonly defined quantity used with this type of measure-

'	 ment is the reverberation time, T REV-,
	 as the time for the

REV
amplitude E in Eq. 3.4-5 to decay 60 dB or

^r

1j

T _ 
71 n

REV	 2.2

where fn is the center frequency of the band of interest. This

type of measurement is used almost exclusively in acoustics due

to the difficulty encountered in measuring acoustic power input

to an acoustic space. A typical setup for measurement on a struc-

ture is shown in Fig. 9b. For an acoustic space one simply uses

a microphone in place of the accelerometer and a loudspeaker in

place of the shaker.

Rules of Thumb

In the absence of measurements there are rules of thumb for

the value of the loss factor. Structures (no damping treatment)

have loss factors typically of the order of 10 -2 . In rooms the

reverberation time can be calculated from values of th ,  absorption

coefficient of the walls ZS Values for absorption coefficients

for many different wall treatments can also be found in the
literature . 37

1
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FIG.9b	 TYPICAL SET UP FOR MEASURING LOSS FACTOR
WITH THE DECAY RATE METER

7.3
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3.5 The Power Balance Equations

In the previous sections the power variables required for

the SEA calculations have been related to the energy of the

coupled multimodal systems being considered. With these relations

one can write the power balance equation for a particular system

as

i	 Ei	 E<7T in > t,Aw,ens	 wni,i ni ^n > t,aw,ens - <n >t.Aw.ensi	 ^

+ wtl i,diss <Ei>t,Aw.ens
	 (3.5`1)

where the summation is over all connected systems. By writing

a power balance equation for each system a set of algebraic

equations is obtained which can be solved for the energies in

each system.

Finally, one must relate the time-average energy of each

system to the response variables of interest. Since the time-

average kinetic and potential energies are equal for the resonant

response of a system, this step is quite simple. The mean-square

velocity of the structure averaged over location is given by

where M is the total mass of the structure. The mean-square pres-

sure in an acoustic space averaged over location is given by

Po e^ 2	oap 
>t,X,AW	 V CE >t,Ow

where V is the volume of the space.

(3.5-3)



Report No. 2064	 Bolt Beranek and Newman Inc.
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4.	 COMPARISON WITH AN "EXACT" CALCULATION

It will be instructive at this point to compare the approx-

imate calculations in previous sections with an exact calculation.

Fortunately, the coupled rod system already studied can be solved

exactly in closed form as is demonstrated in Appendix A, using; a

Green's function approach based on the single rod configuration

of Fig. 10. However, some caution must be exercised when making

this comparison, for all of the previous approximate calculations

are averages over an ensemble of coupled rods. In making; an

"exact" calculation one must necessarily look at a particular

member of that ensemble. As a result, the degree of agreement

between the exact ar-1 approximate solutions will depend on such

things as the standard deviation of the quantity of interest

across the ensemble. Lyon 2e has estimated standard deviations

of this kind for a few particular cases but such calculations are

beyond the scope of the work here. Instead, all that is desired

is the development of some confidence in the approximate calcu-

lations presented here. This is best accomplished by comparing;

the exact solution of a particular system with those approximate

calculations.

The problem to be examined is shown in Fig. 11 with two rods

vibrating longitudinally and coupled with a linear massless s pringg	 g	 y	 p 	 _

at the ends. Rod 1 and only .rod 1, is forced at the end where

it is coupled. The values of the quantities of interest are

P i c 1 A 1 = p 2 c 2 A 2 = 590 lb/sec/ft

L  = 17 ft

L = 14.2 it
2

C 1 = c 2 = 6800 ft

Kc = 59 lb/ft
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Two values for the damping coefficient of the dampers at the
ends of the rods are taken. To simulate the 'model overla p " case

the damping coefficients are all taken to be the same and equal
to 324 lb/sec /ft. The "well ,-separated mode" case is simulated
by again taking all the damping coefficients to be the same but
this time equal to 32.4 lb/sec/ft.

9



G
fE

6

Report No. 2064
	

Bolt Beranek and Newman Inc.

4.1 Power In3ected

The exact calculation of power injected into rod 1 is

shown in Figs. 12 and 13 for the two values of the damping

coefficients mentioned above. The locations of the peaks in

both figures show the locaticin of the natural frequencies of

the modes in rod 1, since because of the light coupling, rod 2

has practically no influence on rod 1.

Using the approximate techniques of Sec. 3.2 yields for

the power injected into rod 1

= L^7T in	 2 Re Z 
1
I

Where Z 1 is the impedance of a semi-infinite rod. Because

of the damper at the end of the rod and because the rod is

forced at its end,Z 1 must be modified to include the impedance

of the damper. Therefore,

z
7T in -	 2 Re T73 1 1

A 1+ b
1D	

(4.1-1)
1 

Eq. 4.1-1 is compared with exact calculations averaged over

a 200 Hz band in Figs. 12 and 13.* The agreement is excellent

and should give the reader some confidence in the results of

Sec. 3.2.

*This averaging in frequency over a 200 Hz band is equivalent to
forcing the system with white noise, measuring the quantities
of interest in 200 Hz bands, and normalizing the result to 1 Hz
bandwidths.
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4.2 Power Transmitted

The power transmitted from rod 1 to rod 2 and the energy

in rod 1 (here twice the kinetic energy which is the total

energy only at resonance) for the case of well-separated modes

are shown in Figs. 14 and 15 and the same quantities for the

case of modal overlap are shown in Figs. 16 and 17.

For both cases the energy in rod 2 is negligible (of the

order of 100 dB below the energy in rod 1). Figure 14 is of

particular interest since it shows clearly the characteristics

of the two rods. At 1200 Hz the two rods have the same natural

frequency and the power transmitted is high. As the frequency

is increased to 1400 and 1600 Hz,the separation between natural

frequencies of the two rods increases, as can be seen in the

figure, and the power transmitted decreases. The pattern in

frequency shown in Fig. 14 will repeat itself and is one reason

the particular simple geometry of Fig. 11 was chosen. The same

pattern though somewhat less distinct because of the high

damping is found in Fig. 16 for the modal overlap case.

In any event the power transmitted from rod 1 to rod 2

can be written

7r 12 
= an 12. E l	( 4.2-1)

Since the energy in rod 2 is negligible. Using Eqs.

3.3.1.2-12 or 3.3.2-11 one can calculate n12 and hence the power

transmitted.
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The 200 Hz average of the power flow in Figs. 14 and 16

is compared with the approximate calculation of Eq. 5.2-1 in

Figs. 18 and 19 respectively. The energy in E I in that approxi-

mate calculation has been taken as the 200 Hz average of E  in

Fig. 15 ( -47dB) for Fig. 18 and as the 200- 11z average of •i, i in
Fig. 17 (-57dB) for Fig. 19. The approximate calculations are

seen to be somewhat low in Fig. 18 for the "well-,separated model,

case though a much broader frequency band must be used to average

the exact calculation before too much can be said. Taking a

1200 Hz averaging bandwidth the approximate results at 1200 Hz

were found to be about 6 dB low. This can be attributed to the

fact that 4 ?.? coupling for the example here is at the ends

where the amplitude of the mode shapes is always 1. Changing

Cmn in Eq. 3.3.1.2-12 to reflect this raises the approximate

result in Fig. 18 a factor of 4 or 6dB in agreement with the

broadband averaged exact result.

The upper bound calculation using Eq. 3.3.1.2-18 for n iz
is also shown in that figure. Clearly it correctly bounds the

power transmitted for the averaging bandwidth. For much

narrower averaging bandwidths the bound is found to become about

2 dB low at 1200 Hz where the modes in the two rods coincide in

frequency.

The same comparison as above for the "modal overlap" case

Is shown in Fig. 19. The approximate calculation is seen to be

between 1 and 4 dB below the 200 Hz average of the exact

calculation. However, the upper bound calculation using nit

from Eq. 3.3.1.2-19 and the approximate calculation using 
nit

from Eqs. 3.3.1.2-12 or 3.3.2-11 are found to nicely bracket

the exact solution in that figure.
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4.3 Power Dissipated

As will be demonstrated in a later section the ratio of en-

ergies in the two rods required a knowledge of the power dissi-

pated in rod 2 or equivalently the dissipation loss factor, n2.

The power dissipated in a structure must usually be measured.

However, the simplicity of the dissipation mechanism in the ex-

ample makes an approximate calculF.tuion of the dissipated power

relatively simple. As a result we will demonstrate how the modal

technique and the wave technique can be used to calculate power

dissipated in rod 2. From Sec. 3.4 one may write

Tr
diss,2 	 wn 2 E 2 '

	
(4.3-1)

Using the modal technique one requires the modal equations

for rod 2 of Sec. 3.3

mnvn + mnAnvn + wnvn = Fn	 (4.3-2)

where Fn = (Gn + 1/k Cmnum)mn

m  = m2/2.

By multiplying Eq. 4.3-2 through vn and averaging in time one

obtains

<Fnvn> = qmm^<vn>
	

(4.3-3)	
La !

0 1,-
where the left hand side of Eq. 4.3-3 represents the total power

injected into mode n of rod 2 and by a simple power balance the

right hand side must be the power dissipated. From Sec. 3.3 one

can readily see that A n is a constant for all n and that mnvn is

the total energy of mode n of.rod 2. Summation over all modes in

the frequency band of interest in Eq 4 .3-3 yields

I

0
0
D
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'2
^diss , 2	

L1nEmn<vn> = AnE 2 (4.3-4)

where E. is the total energy in rod 2 in the frequency band of

interest. Combining Eq. 4 .3- 4 and Eq. 4 .3-1 and the expression
for An in Sec. 3.3 one obtains 	 {

Wn 
2	 n	 m2

For the wave technique an approximate calculation is also

possible. Consider the motion on rod 2 to be made up of a wave

traveling to the right and to the left. Considering the inter-

action of the rod with the dashpot on the right-hand side one can

write for the time average dissipated power

I&2I
^diss 2 = 2 

Re{F 
ER} - 

c^ ?b 21 —--
	 (4-3-6)

where 
CER 

is the displacement amplitude at the right end of the

rod and F is the force applied to the rod by the dashpot with

damping coefficient b 21 . This displacement amplitude can be	 a 

easily calculated by assuming that the rod is semi-infinite and

that there is a single traveling wave of displacement amplitude

^R approaching the end of the rod from the left and, then,

matching boundary conditions at the end of the rod. After doing

this one obtains

where
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2(b21 +b 20 )
wn 2 = m2

( 4- 3-10)

1
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1-b 21 /P2c2A2
Y 

= 1+b 21 P2,2A2

A similar set of equations may be written for the left-hand

side of the rod in terms of the left running wave displacement

amplitude ^ L . Combining Eq. 4.3-6 1 Eq. 4.3-7 and Eq. 14.3-1 and
further assuming that b21 '< P 2 c 2 A ` * one may write

7r
diss,2	 wn2E2 = 

2w2(b 21 1C21 + b 2o 1E2	 (4'3-8)

Assuming t-at the two waves are equal in magnitude but un-

correlated t}- ^;otal energy in rod 2 may be written

E 2 - P 2 A 2 L 2 w 2 1U1
	

(4.3-9)

Substituting Eq. 4.3-9 into Eq. 4.3-8 and solving for wn 2 one

obtains

Note that the result using the modal technique is the same

as that using the wave technique.

It remains to use the result in the power balance equations

to calculate the ratio of the energies in the two rods.

*Note that this assumption is not strictly valid for the strongly
damped case; however, the error introduced is small on a decible
scale and may be neglected.
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4.4 The Power Balance Equations and Energy Ratio

The power balance for the two rods is quite simple

Tr
12 	 Trdiss,2

or

nl
WTI
	

E^ - p2 
E 2 = WTI 2E2

Because E 2 is much less than E 1 this equation may be simplified to

Combining the equation with Eq. 3.3.2-11 and Eq. 413-10 yields an

expression for the ratio of the energy in rod 1 to that in rod 2.

These energies are of course directly relatable to the space time

average velocity squared in each rod or

' zE i = m^ <t2
>x,t

•2E 2 = m< >2	 2 x't .

The ratio of the wo energies is plotted in Figs. 20 and 21

for the well separated mode case and the modal overlap case, re-

spectively. For both cases the exact calculation is found from

a 200 Hz bandwidth average of twice the time average Kinetic

energy in rod 2 divided by this same average energy in rod 1.

The approximate calculation using Eq. 4.4 -1 are also shown in

these figures where n22 is defined in Eq. 3.3.2-11. The upper

go
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bound approximate calculation is formed by using the upper bound

calculation for n12 in Eq. 3.3.1.2--18 for the well separated mode

case and Eq. 3.3.1.2-19 for the modal overlap case. .Figures 20

and 21 are seen to be quite similar to Figs. 18 and 19 in which

the power transmitted is displayed, and all statements made con-

cerning the agreement of exact and approximate calculations in

Figs. 18 and 19 (see Sec. 4.2) apply here. As in Fig. 19 a broader

averaging bandwidth in frequency would have improved the agreement

in Fig. 20.

These examples clearly point out that given a sufficiently

broad measuring bandwidth and sufficient care in applying the

techniques, SEA calculations can be applied with confidence.

However, it should be borne in mind that SEA results are statis-

tical in nature and as a result any particular member of the en-

semble may not agree completely with the SEA result despite a

very broad measuring bandwidth. The problem studied here is a

clear example of this.

A further caution should be mentioned here, namely, that all

of the work presented in this section has been for "weak" coupl-

ing. This means that the natural frequencies of the two rods do

not change significantly upon being coupled together. Figure 114

clearly illustrates this, for each peak in the power flow corre-

sponds to a natural frequency of the uncoupled rods.

k

1
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The potential user of Statistical Energy Analysis (SEA) must
..i

understand the basic underlying concepts before he can hope to

treat his particular problem of interest. 	 We assume that the

reader hasained this basic understanding b	 reading the firstg	 g	 Y	 g

four sections of this report.	 It is then useful to conclude by

to thegiving some guidelines	 use of SEA.	 These guidelines will

help the reader organize his attempt to solve any particular prob-

lem using SEA.	 They will also help the reader decide when to use

SEA and what to expect.

Statistical Energy Analysis is most useful in solving vibra-

tion and acoustic problems in which many modes of vibration con-

tribute significantly to the response variable of interest.

Problems in which displacement is the response variable of inter-

est tend to be less amenable to the SEA approach than problems in

which acceleration is of interest, since in most cases many more y
modes contribute significantly to the acceleration than to the

displacement.	 Also, problems with acoustic or small-scale aero-
dynamic pressure fluctuations as the dominant source of excita-
tion are more readily treated using SEA because these types of

excitation usually excite many modes of vibration quite strongly.

Finally, problems involving acoustic spaces and/or large plate

and shell structures are more readily treated using SEA than

problems involving beams and/or small structures, since the

former have many more resonant frequencies in any given band than

do the latter.

There are a number of reasons why SEA is more useful for

problems involving many modes. 	 SEA is a statistical approach —

the statistics	 gt tistics bein	 taken over an ensemble of structures and

acoustic spaces in which the resonant frequencies and mode shapes
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are random variables. Like any statistical approach the ensemble

average quantities can be used with resonable confidence for one
member of the ensemble only if the variance of the quantity across
the ensemble is small. Thus, ensemble average response estimates

obtained using SEA can be used with confidence for a single mem-
ber of the ensemble only if the variance of the response across

the ensemble is small. Unfortunately, most papers dealing with

SEA do not clearly define the ensemble. Furthermore, the calcu-

lation of variance has been accomplished only for a few very

simple problems. Since a quantitative estimate of variance can-

not be made, we must be content, at least for the present, to

offer some qualitative guidelines.

The few analytical calculations of variance that have been

made, plus a large amount of experimental data, indicate th z t the

variance of the response across the ensemble of structures and

acoustic spaces decreases as the number of modes contributing to

the response increases. Thus, the average response over an oc-

tave band of frequencies for wideband random excitation will have

less variance across the ensemble than will the response at a

single frequency for pure-tone excitation. Similarly, the aver-

age response in a given band of frequencies for a :large structure
or acoustic space will have less variance across the ensemble
than will the response for a small structure or acoustic space
which will have fewer resonance frequencies in the band. And,

finally, the spatial average response of a structure or acoustic

space will have less variance than the response at one paint,

since many modes can contribute to the spatial average response
while only those with antinodes nearby can contribute signifi-

cantly to the response at one point.

As a practical matter, applications . of SEA should be limited

to cases in which many modes of vibration contribute to the

D
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response. Most uses of SEA have been to calculate spatial-

average responses averaged over one-third octave or octave bands

of frequencies. Results from numerous experiments show that these

spatial average response estimates* usually agree within ±3 dB

with the data from a particular structural configuration as long

as each energy storage element in the SEA model has at least

five (5) modes in each frequency band being considered. This

requirement can always be met by averaging the response estimates

over sufficiently wide bands of frequency. Narrow band or pure-

tone predictions can be obtained using SEA, but they will not be

accurate estimates for a particular configuration unless the

structures and/or acoustic space are very large. The practical

necessity to limit the use of SEA to problems in which many modes

contribute to the response means that this method of analysis is

not useful in studying the frequency range at and near the first

few resonance frequencies of the complete structural assembly

(so-called system resonances).

The advantage in using SEA over more classical techniques

lies in the fact that exact resonant frequencies and mode shapes

are not needed. In many cases of practical interest the bound-

ary conditions and damping mechanisms in a structure or acoustic

space are so complex that it is impossible to predict with any

accuracy the resonant frequencies and mode shapes. In such a

case it does not make sense to use an analysis technique which

.requires exact information as to these quantities.

Although SEA does not require exact information as to reso-

nant frequencies and mods shapes, it does require the user to

define, at least implicitly, an ensemble in which the resonant

*We mean here spatial-average response averaged over the ensem-
ble of structures and acoustic spaces.
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frequencies and mode shapes are randomly distributed with known

probability distributions. In most applications to date resonant

frequencies are randomly distributed so that the spacing between

resonant frequencies is a Poisson process. The mode shapes are

typically taken as those of a specific structure or acoustic

space which is felt to be representative of the ensemble average

structure or acoustic space. It is, of course, possible in using

SEA to choose any distribution for the resonant frequencies and

mode shapes. However, deviating from the common assumptions above

woiuld represent an advance in the state-of-the- art.
The advantage described above can become a disadvantage for

those problems in which the resonance frequencies and mode shapes

are well-known. In this case, it does not make sense to use SEA

since more accurate solutions can be obtained using the more

classical methods of analysis.

The key steps in solving a vibration problem using Statisti-

cal Energy Analysis are:

1.	 Divide the complex structure into energy storage elements;

2. Determine the paths of energy exchange;

3. Write the power balance equations;

4. Compute the required input powers, coupling loss factors,

damping loss factors and modal densities;

5. Solve the power balance equations for the energies of each

element;

6. Relate the energy to the response variable of interest

The most difficult steps above are steps 1, 2 and 4. Each of

these steps requires a good understanding of SEA and an intuitive

feel for the dynamic behavior of the system being studied.
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Although specific rules for accomplishing the above steps cannot

be given, some guidelines can be set out.

Completion of the first step requires two successive divi-

sions. First, the complex structural assembly under consideration

must be divided into structural subelements, i.e., acoustic

spaces, plates, shells, beams, rings, instrument boxes, etc. In

most cases this first division is fairly obvious. However, some

confusion can occur. Short connecting beams or shells used to

,loin two larger structures may have only a few resonances over

the entire frequency range of interest, thereby, invalidating our

practical limitation on the use of SEA requiring that each struc-

tural element have at least five resonant frequencies in each

frequency band of interest. In this case it is best to treat the

large structures as energy storage elements and to include the

effects of the connecting structure in the calculation of.the

coupling loss factor between the two storage elements. The con-

necting structure can in many cases be modeled simply as a spring

connection.

A second case in which some confusion can occur is when two

structural elements are very intimately coupled together. The

question arises as to whether the twu subelements should be

treated separately or together as one energy storage element.

The two elements can always be treated separately and the concept

of equipartition of energy, which will be discussed later in this

section, used to define the modal energies. However, some care

must be used in defining the substructure moves when the coupling

is very large. The substructure modes must be selected so that

the motion of the coupled substructures in a given band of fre-

quencies can be described accurately by a combination of responses

of the substructure modes which have resonant frequencies in the

band. For example, consider two beams joined at their ends at
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right angles. Modes of' each beam obtained for simple supports

cannot be used to describe the motion of the coupled beams since

these modes have no moment at the end of each beam, where they

are coupled together. For this problem, it is necessary to use

boundary conditions for each beam which allow both a moment and

angular velocity. Many other cases of this type exist. Fortu-

nately, however, use of the wave approach (see Sec. 3.3.2) for

calculating a coupling loss factor automatically insures that the

motion of the junction between two substructures is accurately

described.

In many cases, a second division of the total assembly is

required. The power transfer calculations of Sec. 3.3 require

that each mode in an energy storage element have approximately

the same energy. If a group of modes in a particular substruc-

ture is much more strongly excited or damped or is more strongly

coupled co modes in other energy storage elements, then it will

probably have a different energy and should be placed in a sep-

arate energy storage element. For example, it is usually neces-

sary to separate bending; and torsional modes of a beam into dif-

ferent elements. Similarly, in studying the vibrations of a beam

on a plate it may be necessary to divide the plate modes into a

set which is well--coupled to the beam modes and a set which is

not, depending on whether we can assume that all modes in the

plate with resonance frequencies in a given band have the same

energy.
Step 2 in SEA is to determine the important paths of energy

exchange. As a general rule, the power exchange between any pair

of energy storage elements containing modes from substructures

which are touching should always be included. In addition, the

power exchange in a frequency band between resonant modes of non-

touching structures through nonresona.nt modes of an intervening

a
D
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structure should be considered.	 None of these indirect paths are

the most important paths of energy exchange. 	 For example, the
b

transmission of sound in a frequency band from one acoustic space

to another through an intervening structure is usually through

thenonresonant modes of	 structure which have resonant frequen-

cies below the band of interest.

The third	 SEA	 the	 balancestep of	 — writing	 power	 equations

Is very simple and needs no further discussion.

The fourth step of SEA — calculations of the input powers,

coupling loss factors, damping loss factors and modal densities —

requires the	 technical	 Forgreatest amount of	 effort.	 many prob-

lems the SEA user can appeal to results published in the litera-

ture.	 To help the reader toward this end Appendix B of this re-

port lists published papers which give expressions of potential

use in SEA.	 When it is necessary to compute new expressions the

following guidelines will be helpful.

Problems in which a power input must be calculated can be

divided into two categories.	 First, when the excitation is dis-

tributed over the entire structure it will be necessary to com-

pute the power input to each mode of the structure and then to

average the resulting expression over the selected ensemble of

structures.	 The use of ,point acceptance expressions to compute

the power input from a distributed pressure field to a plate or

shell is a good example of such a calculation.	 Second, when the

excitation is localized the impedance approach discussed in

Sec.	 3.2.1 can be used.	 The excitation can be considered as

localized if it is distributed over at least one less dimension

than the structure or acoustic space.	 For example, a point ex-

citation on a beam, plate, or acoustic space, a line excitation

on a plate or acoustic space, and a distributed surface pressure

in an acoustic space can all be considered as localized.
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When it is necessary to compute a coupling loss factor the

authors recommend using the wave approach presented in Sec. 3.3.2,

since they have found this approach to be the simplest and most

general technique. It is also possible to compute a coupling loss

factor directly from the coupled equations of motion if the coupl-

ing is small enough that a perturbation technique can be used.

Use of the mode to mode calculations for cases of high coupling

is not recommended.

In many cases of high coupling we can simplify the problem

by appealing to the concept of equipartition of energy. The

energy interaction equations show that if the coupling loss fac-

tor between two groups of modes is large in comparison to the
damping loss factors of each group, then the two groups will have

the same average modal. energy - equipartion of energy. Since

damping loss factors are usually quite small, this concept can
often be used to eliminate the need to calculate a coupling loss

factor. It is sufficient to say that it is large compared to the

damping loss factors;

The calculation of damping loss factors for a new problem is

always difficult. Unless a special damping treatment is in use

it is impossible to analytically compute the damping loss factor.

Empirical prediction techniques can be used with some success but

are often not as accurate as one would wish. Measurement is per-
haps the best method of calculation, but the structure being

analyzed is often not yet constructed. Finally, when it is neces-

sary to compute a modal density, the reader should refer to the 	 fl
references ire Appendix B.

	

Yi	 Ster, 5 c,f SEA -- solution of the power balance equations -

	

.`.?	 requires 'l-hat we solve a number of linear algebraic equations.
rg

If the number of energy storage elements in the analysis is small

this can be done quite simply. When large numbers of elements
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are involved it Ts usually possible to make simplifications so

that the solution is still easily accomplished., 	 but even when
M

such simplifications are not possible the linear equations can be

easily solved with the help of a digital computer.
x

The final step of SEA is to relate the modal energies of

each energy storage element to the response variable of interest.

Assuming that the systems being studied are lightly damped and

that the analysis bandwidth is in octaves or narrower, this step

is quite simple.	 In a lightly damped system excited at one or

more of its resonances by a band of random excitation, the time-

average kinetic energy is equal to the time-average potential

energy.	 Thus, we can obtain either the mean-square velocity of a

structure or the mean--square stress through the total t1me-

avers a energy	 f the structure. 	 When the band of excitation isg	 gy

narrow (octave band or less) we can find the mean-square acceler-

displacement by	 dividing theation or	 multiplying or	 mean-square

velocity by the band center frequency squared.

The	 in	 the firstguidelines presented above 	 conjunction with

four chapters of the report should help the reader in using SEA.

Many specific rules and formulations important to SEA have been

left out for the simple reason that they have not yet beE	 com-

pletely developed.	 The authors hope that a continued interest in

SEA will someday lead to more explicit formalizations of many of

the concepts discussed in this report.
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APPENDIX A. GREEN'S FUNCTION SOLUTION TO THE

COUPLED ROD PROBLEM

It is possible with the coupled rod problem of Fig. 11 to

derive a closed form solution using Green's function techniques.

For the problem here,

Longitudinally forced

Z 1 where G is defined

at x due to a unit h

the Green's function G (x V x
f) w) for a rod

and terminated with known impedance Z o and

as the complex amplitude of the displacement

armonic force of the form e +iwt applied at
xf . For the case of Fig. 10 one obtains

±ik(x -x )
G(x E , xf , w) =A'le	 f + a  cos kx + a 2 sin k x

(A-1)

where the plus sign is for x  < x f , the minus sign is for x  > xf,

k is w/c o , and c o is the longitudinal wave speed in the rod. The

quantities A, a l , and a. are defined as

A ' =	 1	 `
;F	 21wpacoA

Z^	 -	 -ik(L-x f )	 Za	 -	 iZl	 •-ikxf

	

1 e	 +	 1	 cos kL + 	 sin kL ep 4 C O A	 p^GOA	 pac4A
al	

Z0 + Z1	 Z4Zi
cos kL + i	 + 1 sin kL

P c0A	
I(POCOA)a

-	 iZo	 Z,	 -ik(L-xf)	 Zo	 iZl	 -ikxf
.,,	 -1 e	 -	 -1	 cos kL-sin kL)e

	

p o c aA p 0 c 0 A	 pncoA	 )(POCOA
a2	 -	 Z +Z	 Z Z

p 

o 

c A 
cos kL + i	 + 1 sin kL

0 0 1(pocaA)

(A-2^
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where p 0 is the rod density, A is the cross sectional area of the

rod, and L is the length of the rod.

Using this Green's function one can calculate the relevant

characteristics of the coupled rods of Fig. 8. Specifically

the power transmitted between rod 1 and rod 2, the power injected

into rod 1, the energy in rod 1, and the energy in rod 2, are of

interest.

By superposition the displacement in rod 1 at x cl may be

written

EI(Xcl) = F G I (xcl' Xf ) - FeGI(Xcl'Xcl)

where G I refers to the Green's function of rod 1 and F  is the

force applied by the coupling spring which may be written

F  = kC EE I (xcl )	 E 2 (Xc2 )] -	 (A

The quantity E 2 (xc2 ) is the displacement in rod 2 at the point of

attachment of the coupling spring which may be written

c2z (x ) = Fc 2 c2
G (x , c2)) .	 (A-5)

The time averaged power transmitted from rod 1 to rod 2 can be

expressed in terns of F  and t 2 ( xc2 ), the velocity in rod 2 at

xc2 as follows

<7r12 > = 2 Re 	 aFcle2 ( X C2) 
]*)

where [ J* means complex conjugate and

['2 (xc2)* _ -it^G2 (xc2'xc2)Fc
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Combining Eqs. A-3 through A-7 one obtains

^ I F 	 G I(xcl'xf)	
2

< ^12 >t ^ 2 
F	

1	 Re{-iwG^(xc2'XC2}}
k
c + G1(xcl'xcl) + G2(xc2'xc2)

(A-8)

The time averaged power injected into rod 1 by the force F can be

written

<7Tin>tRe F[^ (xf )1 a 	(A-9)

.
where [ E1 (xf )	 _ -iw[F*G*(x f xf ) - F*G*(xf,xcl).

Combining Eqs. A-3 through A-5 with Eq. A-9 the power in-

Jected becomes

G*(xf'xcl)G*(xcl'xf)
<7T > t 	 2 I F 2 } Re -^iw G'* (x

f' xf ) - 1
kc + G I cl'xcl) + G2(xc2,xc2)

(A-l0)

By integrating the velocities of the rods along theiv length

the time average kinetic energies of the rods can be derived

<E > _	 1
1 t - QOA1	 I

f	
^1(x)12 dx

	L Z	 .
<E 2 > t = p 0 A 2

	

	 + 2 (x) 2 dx	 (A-11)
o.____2

where E 1 and E 2 are twice the kinetic energy (the total energy at

resonance) for rod 1 and rod 2, respectively. The velocities in
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A^

w

Eq. A-11 can be expressed in terms of the Green's function of the

two rods and the applied forces as

E 1 (x)	 = iw[FGl(x,xf;^
- FeG^(x,xcl)^

i 2 (x) = ire FcG2( x,xc2)	
(A--12) JI

From E s. A-	 through A-q	 3	 g	 5 and E s. A -12 and A-11 these energiesq	 g
can be expressed

F2	
L1

G1(x,XCl)	 Gi(xcl,xf)	
2 E

A	 dx<E i > t 	 2	 p o	 f G	 ( x, x	 )	 --
o

i	 f	
1+ G	 (x	 x	 )+ G	 (x	 ,x	 }k	 i	 cl , cl	 2	 c2	 c2
C L

(A-13)

F2	

L2

Gi(xcl,xf)	 G 2 (x,xc2 )	 2<E >t =	 2	 p A	 dx
2	 0

°

1	
/^

+ VI	 (x 
cl , 

xcl ) 
+ u 2 (x c2 '

x e2 )k i
1

(A-14)

Equations A-8, A-10, A-13, and A»14 allow for exact calrul ati.on of

the relevant characteristics of the coupled system..

w
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ant Acoustic Fields", J. Acoust. Soo. Amer., 34:6, p,,,). 809-
826 (plate to an acoustic space).

3. T.A. Scharton and R.H. Lyon (1962), "Power Flow and Energy
Sharing in Random Vibration", J. Acoust. Soo. Amer., 34,
pp. 623-639 (beam to beam).
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4. R.H. Lyon (1963), "Noise Reduction or' Rectangular Enclosures
with One Flexible Wall", J. Acoust. Soc. Amer., 35:11,
pp. 1791-1797 (plate to small acoustic space).

5. R.H. Lyon and E. Eichler (1964), "Random Vibration of Con-
nected Structures", J. Acoust. Soc. Amer., 36, pp. 1344-
1354 (plate to beam connected at a point, plate to plate
connected along an edge).

6. J.E. Manning and G. Maidanik (1964), "Radiation Properties
of Cylindrical Shells", J. Acoust. Soc. Amer., 36:9,
pp. 1691-1698 (cylindrical shell to an acoustic spay,;.

7. P.W. Smith and R.H. Lyon (1965), Sound and StructuraZ Vibra-
tion, NASA CR-160 (plate to an acoustic space).

8. R.H. Lyon and T.D. Scharton (1965), "Vibrational — Energy
Transmission in a Three Element Structure", J. Acoust. Soc.
Amer., 38, pp. 253-261 (beam to plate connected at a point).

9. E.E. Ungar, N. Koronaios, and J. Manning (1967), "Applica-
tion of Statistical Energy Analysis to Vibration of Multi-
panel Structure", AFFDL-TR-67-79 (plate to plate across a
beam) .

10. F.J. Fahy (1969), "Vibration of Containing Structures Ex-'j
cited by Sound in the Contained Fluid", J. Sound Vib., 10,
No. 3, pp. 490--512 (plate to acoustic space).

11. J.E. Manning (1970), "A Theoretical and Experimental Model
Study of the Sound Induced Vibration Transmitted to a Shroud
Enclosed Spacecraft", NASA CR-112+13 (cylindrical shell
to an acoustic space, plate to an acoustic space, beam to
beam connected at a point).

12. S.H. Crandall and R. Lotz (1971), "On the Coupling Loss
Factor in Statistical Energy Analysis", J. Acoust. Soc.
Amer., 49:1, pp. 352--356 (beam to beam).

PAPERS GIVING CALCULATIONS OF MODAL DENSITY

1. M. Heckl (1962), "Vibrations of Point-Driven Cylindrical
Shells", J. Acoust,, Soc. Amer., 34:10, pp. 1553-1557
(cylindrical shells).
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2. V.V. Bolotin (1963), "On the Density of the Distribution of
Natural Frequencies of Thin Elastic Shells", J. AppZ. Math.,
27, No. 2 1 pp. 538-543 (cylindrical shells, spherical shells).

3. F.D. Hart (1965), "Statistical Methods in Sound and Struc-
tural Vibration Analysis", NASA Report No. LWP-169 (beams,
plates, acoustic spaces).

.0
4. J.P.D. Wilkinson 41968), "Modal Densities of Certain Shallow

Structural Elements", J. Acoust. Soo. Amer., 43, No. 2,
pp . 245-251 (shell segments).

5. H. Runieds (1969), "Modal Densities of Spherical Shells",
Paper No. 5138 given at 40th Symposium on Shock and Vibra-
tion (spherical shells).
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