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ABSTRACT

a

This report presents two mathematical models which describe,

to a certain degree of approximation, the main physical processes

that occur in liquid propellant rocket motors. A 'pancake' model

describes some of the gas dynamic processes in the transverse

(r-8) plane of a cylindrical chamber. Several attempts were made

to include the reacting drop combustion model in the pancake motor

but were not successful. However, the annular model is able to

describe gas dynamic and drop spray interaction processes in the

cylindrical space described by 8-z coordinates. Both models are

time dependent. However, the r -e model seeks to describe the com-

plicated nonlinear motion of gas dynamic waves in the spinning or

sloshing mode near the injector face of the motor. The annular

model seeks to describe the interaction of a reacting drop spray

with finite amplitude waves which move both tangentially as well

as axially. The annular model also includes the effects of a

converging-diverging nozzle on the flow field. The combustion

model, which is used in both the pancake and annular motors, is

evaporation controlled and is similar to other combustion cal-

culations which assume an evaporation controlled model.

i
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I.	 INTRODUCTION
a

The phenomenon of combustion instability in the liquid

propellant rocket system is characterized by cyclic variations

of pressure in the feed system and combustion chamber, or,

depending on the magnitude of the frequency, within the chamber

alone. Generally speaking,-frequencies greater than 1000 cps are

confined to the combustion chamber, while oscillations in the low

frequency range, say 400 cps, usually occur within the feedline

and chamber. The fundamental characteristic of low frequency

instability is the uniformity of the gas pressure throughout the

combustion chamber at every instant, since oscillations occur, as

a whole, about the mean or steady value of chamber pressure On

the other hand, the gas pressure inside the combustion chamber

is not uniform at any instant under non-steady conditions when
s

the frequency of gas oscillation in the combustion chamber is

sufficiently high, i.e., when the wave length of the oscillation

is of the same order as the length of the combustion chamber.

Historically, the low-frequency class of instability was first

recognized in Germany in about 1920. The high frequency mode of

instability, on the other hand, was first observed in 1941 because

the sophisticated experimental equipment required in high frequency

instability was not available earlier. Today, low frequency
r:

instability is rather well understood and comparatively easy =D

cure. It is the high frequency form of combustion instability

1
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that still concerns the designer. Under the conditions of.-.high

frequency instability, the combustion field experiences strong

pressure and velocity waves which couple with the combustion

process so as to make the entire interaction process self-

sustaining. As a result, the heat transfer rates become extremely

severe - so high that erosion of the injection plate and chamber

walls result with associated loss of structural integrity.

There have really been two serious attempts to understand the

instability process in the form of analysis. The model developed

at NASA by Priem and Guentert (1), which has subsequently been

extended and is reported in great detail in (2), is a numerical

procedure which attempts to describe the interaction of propellant

spray and combustion gas, considering mass, momentum and energy

transport. A differential model is assumed with as few simpli-

fying assumptions included as possible and it is then solved on

a digital computer. This mechanistic procedure can be compared

with the systems approach of Crocco and Gheng (3). This group

at Princeton University used the concept of time lag which was

originally used in stability methods in circuit analysis. The

Princeton group modified the time lag theory by introducing a

time-varying time lag which is dependent on the chamber pressure.

This theory differs from the NASA work basically in that it is a

linear theory, whereas the NASA model is nonlinear. A detailed

discussion and comparison has-been given by Priem (4) on the above
models including a lengthy bibliography on the subject.

2
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This report describes two mathematical models which use non-

linear analysis and which further seek to de.fine the relevant

physical processes that occur in a liquid propellant rocket motor.

The pancake model is used to describe the spinning or sloshing

mode of nonlinear wave motion near the injector face of a rocket

engine. However, this mode has certain limitations when coupling

the axial flux to an orthogonal two space dimension gas dynamic

calculation (i.e., the pancake model). Therefore, an annular model,

which couples the predominantly axial spray flux to the gas dynamic

field while omitting any radial effects, has been . constructed. The

annular model can handle time dependent mass and energy accumula-

tions in the combustor flow field because of the inclusion of a

converging-diverging nozzle. Hence, no a-priori assumption need

be made as to the constancy of the mass or energy in the flow field

(compare with Reference 1). Indeed, this model should demonstrate

the need for local (time-like) accumulation of energy in order for
	

S

the wave to build up from an initial perturbation Once a finite

amplitude oscillation has been sustained the assumption of constant

energy in the motor may be valid.

Since the Priem-Guentert model cannot consider the questions

of energy accumulation in wave formation and because it is one-

dimensional it cannot consider interactions of tangential and

radial waves and tangential and axial waves On the other hand,

the time lag theory of Crocco is linear and, therefore, cannot

examine the question of the 'wave structures when the amplitude

3



of the wave grows what limiting amplitude is reached for a par-

ticular initial disturbance in a given environment. These questions

can be answered with the two models developed and reported on here.

Hence, the question of wave structure in the transverse plane

is analyzed through the construction of the pancake model and the

question of stability of a motor when combustion couples to the

gas dynamic field, in the presence of a nozzle, is analyzed with

the help of the annular model. A sequence of calculations which

uses a more sophisticated version of the annular model has recently

been completed, Reference 7, by the first and third authors for

NASA. We suggest that the reader refer to this report for a more

complete discussion of the capabilities of the annular model for
use in stability analysis.

The numerical methods presented in this report are extensions

of an earlier report, Reference 5, to the Jet Propulsion Laboratory. 	 _!
t°

This report is divided into three general sections. The discussion

centers first on the fluid dynamic and computational aspects of

the pancake model including results. Secondly, the annular model

theory is presented with some numerical results and finally the

theory of the evaporation rate controlled droplet model is pre-

sented for 50/50 hydrazine/UDMH _fuel mixture with nitrogen tetroxide

as the oxidizer. The description of the computer programs are

given in the Appendix.

-	 Z
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II. FLUID DYNAMIC MODEL

A.	 General Nonlinear Differential Equations

The differential equations describing the motion of a com-

r	 pressible fluid in cylindrical coordinates can be written in

vector form as

aW + aF + aG + aH + S	 .at ar ae az

We use the notation of a vector in the mathematical sense not

in the physical sense. This allows great convenience in allowing

shorthand notation (associated with the use of vector notation)

when describing the conservation equations of fluid dynamics.

(1)

The source term,	 has five components corresponding to the rate

of production of mass, momentum and energyper unit volu^^e due to

combustion.	 In the section entitled 'Droplet Evaporation and

Combustion Analysis', we show how to compute this vector.	 The

vector W corresponds to the mass, momentum in the r, e and z

r` directions and total energy, all per unit volume. 	 The vectors F,

G, and H represent the flux of these quantities in the radial,

tangential and axial directions respectively.

In order to compute the time dependent behavior of W, which

has the components	 -

P u

W = r`
'	

pv	 (2)

A

p(e+ -3-,(u2+v2+w2))

5



r

the fluxes

Pu	 Pv	 Pw

Pu t +p	 Pvu	 Puw

F = r	 Puv	 G=	 Pv2 +p 	 H= r	 Pvw
	

(3)

P uw	 Pvw'	 Pw2+p

(E+p)L^	 (E+p)v	 (E+p)w

must be known. The pressure is p; the total energy is E (tree

fifth component of W). The velocity components in the radial,

tangential and axial directions are u, v, and w, respectively.

The vector S appears as a result of the transformation to cylin-

drical coordinates from cartesian coordinates. The components

of S are given by

0
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The first and fifth terms correspond -to the rate of generation of

mass and energy per unit volume due to combustion.	 One observes

that the sources of momentum generation have been set equal to

zero under the assumption that they are small.

Once the source term	 is computed, @W/at then can be obtained

if the divergence of the flux can be computed. 	 Since we are always

going to be limiting the calculation to a prescribed space-plane

and time (rather than include a true three-dimensional model by

allowing an additional degree of freedom) the two models to be
A•

presented will be limiting cases of Equation (1).

The solution to our problem involves satisfying Equation (1)

and the boundary condition specifying the vanishing of the normal

velocity at the boundary of a non-porous wall. 	 It is also assumed

that the function form ^=^(W) is specified.	 Section III of the

report gives the analysis used to derive the dependence of the

ti source terms	 on W and on the variables describing the behavior

of an evaporating droplet.

Since Equation (1) is nonlinear, no general principle can be

invoked to obtain a general solution satisfying this equation and

the associated boundary conditions for the mixed initial boundary

I:. value problem.	 However, a substantial degree of success has been
k=

1 "` achieved in solving reduced forms of Equation (1) by using finite
I

difference methods	 (see, for example, Reference 5),. 	 This involves

` the introduction of discrete coordinates overlaying the continuous

' domain of solution of Equation (1) and then writing down nonlinear

7
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algebraic equations defined at these discrete coordinates. Such

equations are called difference equations - approximations to the

original differential equations. These approximations can have

solutions which are arbitrarily close to the solution of the

differential equation (1) if the difference equations are stable

and are consistent with Equation (1). (Actually this statement

has only been proved for linearized forms of Equation (1).) The

difference between the solutions of the exact problem W(t+At) and

the numerical problem Yq (t+At) is proportional' to the truncation

error or accuracy of the difference scheme. The difference equa

tions that are used in the approximation to reduced forms of

Equation (1) are of second order accuracy. They will be discussed

in Subsections B and H where the pancake and annular motors are

discussed. If W represents a vector solution of the numerical

problem, then WP is defined on a lattice of net points in, the

four-dimensional space, the discrete points of which have the

coordinate labels ri t gj, 4  and tn.

Because of the slowness of even the most recent computing

machines, the solution of the four-dimensional problem, three

space dimensions and time, can only be achieved, in reasonable

economic limits, by first exploring suitable solution parameters

in the two space and time domain. Hence, the finite difference

solutions described in Subsections B and H can suggest therange

of parameters to be used in the complete three-dimensional time-

dependent problem. This preliminary investigation would insure

that just a few computer runs would be sufficient to ascertain

the gross behavior of the four-dimensional problem. This approach

8



seems to be a current limit for a solution to the complete problem

using such a complicated model.

It is interesting to note that the form of the differential

equations that are used to define the time-dependent problem,

must be in the same form as the physical conservation law. When

numerical integration is performed with the approximation to

these differential equations, the result will yield the correct

jump conditions across lines of discontinuities only when this

condition is satisfied. In other words, across lines or surfaces

of discontinuity the Rankine-Hugoniot conditions will automatically

be satisfied. Other forms of the conservation laws, i.e., other

forms of Equation (1), will, in general, not yield the proper jump

conditions across lines or surfaces of discontinuity.

To amplify these last remarks, consider a model form of

Equation (1)

ut + (F (u)) r	 0	 (6)

Let the flux vector F be given by	 r

F (u)	 ,u2,

Then Equation (6) is nonlinear and discontinuities will develop

in a finite time even if the initial data u(O,r) JrJ<- is smooth.

Let (p) signify the jump in the function p, then if there are

lines of discontinuity in the solution of Equation (6), the jump

9
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across such a discontinuity must satisfy

S{u} = -h{u 2 }	 (7)

The normal speed of propagation of the discontinuity is given the

symbol S. Now, however, multiply Equation (6) by u. Noting the

definition of F(u),  the resulting conservation equation is given

as
I

(Zu 2 ) t + (1/3u3 ) r = 0	 (8)

Hence, jumps in the solution across discontinuities arising in

the solution of Equation (8), subject to the same initial data

as Equation (6), must satisfy

S{u2 } = -{2V 	(9)

It is clear then, that the strength of the discontinuity, if

measured by, say the speed of the discontinuity S will, in general,

differ. This example shows that the value of the jump will be a

function of the form of the differential equation usedto generate

the difference equations (integral equations)	 Another example

can be obtained immediately from Equation (6) , i.e., carry out

the differentiation that is indicated in Equation (6) and divide

by u to obtain

(ln u,) t + ur = 0

10
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We have defined still another conservation law which obviously

has an associated jump condition which differs from Equation (7)

or Equation (9) and, therefore, is determined by the form of the

equation rather than the conservation law it is intended to

represent.

In the next subsection we consider a fluid dynamic model

(obtained as a result of the reduction of the dimensionality of

Equation (1)) in which the axial flow effects (z-motion) on the

motion of the fluid in the cross plane described by coordinates

r, 0, and t are neglected. This combustion chamber model 'is

called the 'pancake' motor.
t.

Actually,- it is not quite correct to say that the z-motion

is neglected. When rocket motors are built with nozzles having

large contraction ratios, then the velocity as well as the gradient

of the velocity in the combustion chamber will'be small compared

to motion in the transverse plane. Although this geometrical

configuration is usually not used in large scale combustors, there

1	 is some experimental evidence available in the literature against

which analytical data can be compared If time-dependent z.-motion

exists, its behavior is prescribed by assumed mechanisms. This

aspect is amplitied..in the next subsection.

B. Nonlinear Differential Equations For The Pancake Motor

If we assume that the contribution of the axial 'motion on

processes occurring in the transverse plane can be decoupled, the

differential equationdescribing such motion of a compressible

fluid can be written in vector form as

aw	 aF	 DG +S
at + ar + ae +s

{

ll
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Here, the source term, ^, has two non-zero components corresponding

to the rate of production of mass and energy per unit volume; the

momentum sources in the r and e directions are ignored. The four

vector, W, has components correspondina to the mass, momentum in the

r and e directions, and total energy, all per unit volume. The

flux of these quantities in the radial and tangential direction is

given by the vectors F and G, respectively. Since our model is

defined in a thin slab of thickness Az, we call our model the

pancake model. This model, by definition, implies that only four

components of W are necessary in the representation of the solution

to the problem, i.e., the axial compc oent of W (as given in Equa-

tion (1) ) is ignored.

The time-dependent behavior of W can be computed once the

divergence of the fluxes F (W) and G (W) are known. - The pressure

p, which appears in Equation (3), and the total energy E are
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r

Since there are replenishment (or source) terms in Equation

(10) which are given by Equation (5), some provision must be made

to allow this continual generation process to be balanced by a

convective flux leaving the thin slab of thickness Az. The solu-

tion vector, W, of the system, Equation (2), will decay if the total

mass and energy generation in the r-e cross plane is smaller than

the axial flux or W can blow up if the generation ^ exceeds the

axial flux Hz. A natural way to include such a description in

the model, while retaining the desired reduction to a three-

dimensional problem, is to associate this flux with either local

or global behavior of W in the r -6 plane. We now describe in

detail what we mean by this last statement.

Once the source term ^ and the divergence of the fluxes in

the transverse plane is computed, aw/at can then be solved for

if an approximation to the axial gradient can be computed. Since

the calculation is limited to.the transverse plane an additional

relation must be introduced in place of the time-dependent axial

I

momentum equation

(rpw) t + (rpwu) r + (pwv) 8 + (r (p+pw2)) z	 0	 (13)
h

We emphasize this point because ^(t) >0 implies tha 9W/9t will be

positive. Hence, unless the axial (z) component of flux is included

in the model, the solution vector W, or rather its integral over

the plane, will continually increase. If the calculation is to be

carried out to arbitrary time, this accumulation can become

13



arbitrarily large. It is certainly possible, in the complete

three-dimensional problem, for local accumulation to exist.

However, it would require a three-dimensional time-dependent

calculation to ascertain the extent of this mass and energy accum-

ulation. In the three-dimensional chamber the nozzle will be the

mechanism for flow adjustment when accumulation occurs.

One can make some assumptions which might lead to an approx-

imation of an adequate description of a two-dimensional pancake

model with a coupled flux in the axial direction (see Reference

(1)). In order to compute this flux, an additional relation is

required. Equation (14) is one such relationship that will allow

thecomputation of the divergence of the flux in the axial

direction, i.e.,

a rd d = 0at fJ W r 8	 (14)

The integration is over -the plane z = constant. Equation

(14) states that the associated conservation variables are con-

served over the entire plane not necessarily locally in time.

The average axial flux which satisfies Equation (14) is, using



8 H	 ITz (t) only.
az (16)

The bar over the axial derivative of the flux indicates that it is

an average value used throughout the chamber cross -section, i.e.,

The contribution of the inhomogeneous term S does not appear

since Equation (15) applies only to the first and fourth components

of H. Then Equation (10) may be modified so the net source term

can be written as

div (W,F,G,S) _ ,
az	

(17)

Here div is the generalized divergence operator in space--time and

can be represented by

div	 (o.^ ,ar,ae,1)	 (18)

The right member of Equation (17) is then considered to be

specified through Equation (15). The integration indicated in

Equation (15) can be simplified. Since Ge is periodic in e its

contribution to the integral is zero. The value of Hz , which

changes in time, is just sufficient to allow the total mass and

energy per unit volume, in the plane z = constant, to remain con-

stant independent of time. Some remarks on this procedure are

made in Section G where results for the pancake motor are given

C.	 Linear Theory Transverse Rotating Wave

By neglecting the right member of Equation (17) the resulting

system

Wt + Fr + G 6 + S = ; p	 (19)

15
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DpDt + po.q = 0 (20a)

can be "linearized so that an exact classical wave solution in the

domain Z (which we take as the unit disc) can be found. First,

we write system (19) in its component form. The continuity equa-

tion is

By subtracting the first component, i.e., the continuity equation,

premultiplied by the r(e) component of velocity from the r(6)

momentum equation, one obtains the two momentum equations in the

form

D—t = - 1 grad p + 1.— J
P	 pr

The vectors J and a are given by

q	 f v

The Lagrangian operator

(20b)

pv2
J - -puv

Dt _ ( ) t + u( ) r + r( )6

is the particle derivative in polar coordinates and

p . q =	 (ru) 
r + r: 

vg

is the divergence operator in these coordinates

In the absence of irreversible changes (heat conduction,

viscous effects, etc.) the fluid undergoes a reversible, adiabatic

change. The initial state of a fluid; can be connected to its

final state through

pp Y= constant for a particle	 (21)

16
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If the fluid is initially uniform, the constant in Equation

(21) is the same for each particle in the domain 4 . It is then

possible to replace Dp by a- 2Dp, where a is the sound speed. This

replacement is made in system (20). Linearization of the flow

field is now assumed so that a solution to the linearized form

of Equations (20) can be obtained about the quiescent state

uCO = vC0 = 0. Let p =p. + p' , p = p . + p' and a2 = 1'p ./p.. The

perturbation pressure is p' while the perturbation density is p'.

^.K Then system (20) can be given in terms of the perturbation

variables
Er

q
t
 = - 1	 grad p'

P 0

pt = - p . a 2 div q
CO

The total fluid velocity is, of course, the perturbation

velocity.	 The vector J in Equation (20), because it is quadratic

in the perturbed velocity components, has been neglected. Now,

it is clear that the vector q is given as the gradient of a scalar

function, in this case the perturbation pressure, p'.	 Because

the entropy is constant 	 Dx q = 0`.	 Then the existence of a

potential	 is implied such that q = grads i.e., the components-

: of q are given by

q 1

r

17
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since the operator

a	 1 a
grad= ar + r ae

Hence,

^t 
= -p 00 p	 or Ott	 p la Pt

and

(22a)

pt = - p er a2 02^	 (22b)

The wave equation in the domaindo can now be obtained from the

above basic equations of acoustic theory. After substituting

Equation (22b) into Equation (22a) the result is, of course, the

familiar form

Ott = a2o2	 (23)Co

In acoustic theory one usually expresses the solution of Equation

(23) as a series; each term of which corresponds to a particular

Fourier component of the wave motion. This is equivalent to

..	 r expressing a general solution in wave number space as a super-

position of Fourier harmonics One can also represent the solution

of Equation (23) as a sum of two waves, g l and 92
1

^ (x t)	 gl (a • x-amt) + g2 (a • x+a,, L)	 (24)

Equation (24) states that the solution can be given in terms of

a family of steady progressing incoming and outgoing waves traveling

at normal speed a. in the a' direction in the space of	 W.

18
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It has been shown (6) that in the case of fluid dynamic

problems,with the severe restriction of constant pressure but

still retaining nonlinear terms in velocity, exact solutions can

be obtained by using the functions g l and 9 2 . More important,

in this reference, a class of difference methods are generated

based on the above functions. Since Equation (23) is linear, the

solution can be built up by a superposition of these waves in
r

which the amplitude and phase may vary.

Solutions to Equation (23) can be easily obtained by

separation of variables. We write Equation (23), using the

definition of V 2 as

Ott = a2 (err+l +1 ^6e)	 (25)r r

and the associated homogeneous boundary condition

0	 (26)	
S

which expresses the fact that the normal velocity is zero on the

boundary where r=1. Since we consider Z, to be the unit disc,

normalization will be required when the radial component of the

solution is generated. Since Equation (25) is secondorder, the

function as well as its first derivative must be specified as

initial conditions. They are

^(r,6,0) _ ^ 0 (r,e)	 (27a)

19



t

r

and

q (r,e,t) I
t=O  

= -p CO-1P (r, e ► 0)
	 (27b)

We assume that the solution to Equation (25) has the

product form

^ = R (r) H(0) a±iKa.t
	

(28)

By substituting Equation (28) into Equation (25) the two resulting

ordinary differential equations which the functions R and H must

satisfy are:

d 2 
R + 1 dR + (K 2_n2 ) R = 0

dr2
	 r dr	 r2	 (29)



where in(Kr) denotes the Bessel function of the first kind of

"Order n and argument Kr.	 Solutions of Equation (25) can be built

up from a series which has, as a general term, the form

Jn(Kr)	 a±in6±iKamt

To satisfy the boundary condition given by Equation (26), we set

d—i(Kr) = 0 at r = 1

The relation defines a transendental equation defining the numbers

K.	 For n=1	 K=1.84118	 ...

We take the imaginary component of the A-component of the solution

given by Equation (31).	 This- ,corresponds to the previous traveling

wave solutions.	 With n=1, we then have the fundamental tangential

mode

a
=	 R eJl ( Kr)	 sin	 (Ka.t+e) 	(32a)

P	 _ 'YP. eJl (Kr)	 cos	 (Ka,t+e) 	(32b)

It is clear that the above result is of the same form as given

,. by Equation (24).	 The density is computed using Equation (21)

' and a is a dimensionless measure of the wave amplitude;	 it is

defined below.

The solution we seek to Equation 	 (25), i.e., Equation	 (32),

will satisfy the boundary condition of zero 'normal velocity at

h

F. j

4

I

r=1.	 In addition, the solution will also satisfy the initial

i
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conditions given by Equation (27) if we take for the initial value

of the potential, ^ o , the particular form

^o = aco eJn (Kr) sin (no)
K

(32c)

and for the initial value of the first derivative ^ t l t_0 the form

a /at = sa2 Jn (Kr) cos (ne) , n=1	 (32d)00

Finally, one observation: The solution is completely speci-

fied by satisfying only one boundary condition, i.e., u(l1t)=Or1r=1=0.

The specification that the normal velocity at the boundary must

vanish is carried over to the nonlinear problem.

Since the solution represented by system (32) is physically

the deviation from the uniform state, we can define a dimensionless

parameter, e, which, in effect, measures the maximum of this devia-

tion denoted by Pmax=P*,, i.e.,

e = - (P.+P*)	 = p*/ (p OYJ1 (K)) , K=1.841
YP 'OJl K

It is clear that e is determined by specifying the deviation from

the uniform pressure state at the point (r,e,t) = (1,7,0). The

solution can be written in terms of c if the pressure is normal -

ized by the quiescent pressure, p., i.e., the pressure at any point

on the disc	 is given by

P (r, e , t) /P.	 1+EJl (Kr) cos (Kart+e) 	(33a)
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If Equation (32a) is differentiated with respect to r, the

radial velocity is obtained:

u	
= EJl (Kr) sin(Ka.t+6) ,	 J _ 1 ( JO -J )	 (33b)a.	 1	 2	 2

The tangential velocity is obtained by differentiating Equation

(32a) with respect to e and dividing by r, i.e.,

v = EJ
l (

Kr) cos (Ka rt+e) 	(33c)a 00	 Kr

The singularity at r = 0 offers no difficulty since the identity

in (x)	 1	 J(x) + J(x)
x	 2n	 n-1	 n+l

shows •that v/a. is well behaved as x-}0.

The solution for the pressure field of this transverse

rotating wave, corresponding to the initial state at t=0. , is.g:i:ven

in Figure (1), with p*=300.001. For t>O the contour lines (isobars)

undergo a uniform rotation with rotational frequency f=2fr/Kam

corresponding to the first spinning mode, i.e., n=1. The plot of

the density field (by Equation 21) is similar. Figure (2) corre-

sponds to the initial velocity field computed from the orthogonal

components defined by Equations (33b) and (33c) 	 The magnitude of

f	
the vectors are proportional to the drawn length.

t'
.,	 The next two figures, Figure (3) and Figure (4) , show the

r	 pressure field and velocity field given by the system(33) at	 t

time t=.825 milliseconds. This time corresponds to the total
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integration time used for the finite. d-ifference 'cal:culation which is

described in the next section. Here we will compare'the .results of

a numerical calculation which indicates the convergence of the

numerical procedure used to integrate Equation (10) subject to

the initial conditions given by Equations (27a) and (27b). The

solution to this linearized problem will be characterized by

uniform rotation of the pressure and velocity field.

D.

	

	 Difference Equations, Boundary Conditions and Some Numerical
Results for the Pancake Motor

We seek a solution to Equation (1.0) by the method of finite

differences. Equation (10) is a conservation law including pro-

duction terms. The difference approximation to this equation will

be in conservation form and the accuracy will be second order.

The solution we seek will lie on the periodic space 0o defined by

t>,0, 0,8,<27 and 0,r,1. We introduce an orthogonal mesh which has

as points of intersection the coordinates

r i	i0r, 8 = joe, to = nOt, i,j,n = 0,1,21,

I`

s This set of net points, called on h, is -defined by the set

,^ 	 {r, 8• t ^i=0 1 ...• 	'=0 1	 n=0 1 ..
h	 i^ J ^ n	 ^ ,	 J- r	 ^	 }^ ^

a The approximation to W(r,e,t)y defined on the space 00 is

represented by V (ri , 8 , tn) =V 1 . defined on obn . The approximateJ	 7

solution of Equation (10), Vii, is written as a two step difference
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Step 2:

V(r i ,e j ,t+at) = V(r i ,e j,t)—	 i° t {F(V	 )—)7	 4Ar	 +l,j
F(V.i-1,^.

+F (Vi+2 j+2 ) -F (V 	 +F ( Vi+	 )
2 ► j- 2

_F(Vi-2
,j-  }	 4A	 ,^{G(Vi ,j+1 )-G(Vi -1)

d2 { 4 (B 
(Vi+2• j — 12- 

+B (V
i+2' + ),7 2

+B (Vi- 2, j+2) 
+B (Vi -2, j _ Z ) )

+2tS(Vi+l.j) +S(Vi_ l,j)) - (Vi,j) }	 (34b)

Here we have used the notation Vi,j V.	 and Vi	 V., j	 ,7	 1,3

and have set B=S-^._ The system (34) differs from the corresponding

difference equations
s

q	 given in Reference (5) by the inhomogeneous

terms B and S This is so because we now include a combustion

model with source and because in the cited reference the inhomo
rgeneous term S was inadvertently omitted,
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( V-w J 	 = O(Qt3)

Furthermore, system (34) is stable in the sense of linear stability
theory if the time step satisfies the inequality

47 t	 1	 1
A	 V2	 u +c

The local sound speed is c and the particle velocity is u while A

is the space step.	 This result was first obtained by Richtmyer
f

+ and has been born out in practical calculations.

The difference equations used (to approximate Equation (10))

.h- are, from consistency requirements, the analogue of the physical`
1 's

conservation laws. 	 Numerical integration carried out with ther .

above difference equations will result in a solution which, if

discontinuities appear, will automatically satisfy the Rankine-
.

Hugoniot conditions. 	 As we discussed in Section A, other difference

k equations will not yield the proper jump conditions across a finite

zone of rapid variation - which is the difference approximation to

the physical discontinuity.
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The boundary condition of zero normal velocity is satisfied

by using the reflection rules at the cylindrical wall. If the

subscript + denotes image points and the subscript - denotes

corresponding interior points then the reflection rules are given

by

(pr).+ = (pr)-

u+ = _u_

(AV) + = ( pv ) _	
(35)

p+ = p_ +2Ar (P) -
r

These conditions will yield a zero value of normal velocity. In

addition, we satisfy the condition that the pressure gradient in

the radial direction is balanced by the centrifugal force pv2/r

which is due to fluid motion in the tangential direction. In Car-

tesian coordinates, when the radius of curvature becomes infinite,

the above conditions reduce to the familiar forms

p+	
p-, u+ = -u_, v+ v_ and p+ = p_.

Since there is a singularity in Equation (10) at r=0, which

k	 is clue to the coordinate system chosen, the calculation at the

cen -ter is carried out in a local Cartesian coordinate system.

The generalized divergence of the flow field at r=0 is given in

Cartesian coordinates via the differential conservation law

aw . + a_F + acs	 (36)
at	 ax	 ay

i^

2'8
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in which the x-y components of momentum are related to the r-e

components of momentum by

x•-component: pu = p (u cos e -v sine)

y-component: pv = p(u sine +v cosh)

We transform f (r, e) 4f (x,y) and g (r, e) -}g (x, y) using the above

momentum transformations. The density and pressure are not

affected by the coordinate transformations.

We now wish to compute the divergence of the flux of mass,

momentum and energy at r=0 i.e.,

(IFI+
ax ay

r=0

If we consider a region R with boundary aR in the x-y plane

then, if aF/ax, and @G/@y exist, we have, at some point in R,

aF = Fdy/ xdyax fa R fa R

DG
ay 49 RGdx/ a Rxdy

where all the contour integrals are taken counterclockwise. For

this calculation aR is a circle of radius Ar and the contour

integrals are approximated by the sums
^	

N	 N
D 	 E (F	 ) (yj+1+Fjj +1 Yj) • E 1 (Xj+1+xj ) (y j+1 y j )ax	 j=1	 7-
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LG 	 E (Gj+1+Gj) (xj+l-xj) 
,N1 

(x +l+xj) (yj+1 y j )
jay	 j=1	 7 

(37)

Then, if we evaluate ^ at the origin, the solution can be advanced

by the equation

A
V (O,t+ot) = V (0,t) —At	 a + DG —

	 (38)
ax	 ay

Equation (38) will be second order accurate if the fluxes are time

averaged, i.e.,

F = -3 -2 (F (t•;-At) +F (t)) and G	 h (G (t+ p t) +G (t) )

These are exactly the fluxes used in Equation (37). Hence,

Equation (38) is second order accurate, consistent with the

accuracy attained at regular mesh points in the interior of the

combustion chamber.

At r=0, the density, energy, magnitude and direction of the

`	 velocity vector is known. The local radial and tangential velocity
.ar

	

	 components, in any direction 8, are obtained by projecting the

cartesian velocity vector at the origin onto and perpendicular

to Each ray 8 = constant. These values and those on the first

row are used to obtain the values of V at half mesh points, i.e.,

V(Ar/2, e, t). The values of V(3Ar/2, 8 ,t) are obtained by averaging

the function V at Ar and 2Ar. Using the given data at (er,e,t)

new values of'V=V(or,e,t+At) are obtained by using the two step
}

difference equations over the interval Ar/2<r<3^r, 0<8<27

i
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A test problem was-run using the pancake motor code (called

COMB). It consisted of the initial conditions given by Equations

(32c) and (32d) and boundary conditions given by Equation (35)

for the case where E = 3 -1. 10 -5 and *=0. The solution produced

by the numerical procedure described above yielded a solution

which conserves the original distribution but rotates it uniformly

in time - exactly what is predicted from linear theory. Figures

(5) and (6) show the numerical solution for the pressure and

velocity field at time t=.825. During this time the wave has

undergone 1.8 revolutions - the period is 460 millisec. If the

numerical pressure field is superimposed over the linearized

pressure field, Figure (3), the contour lines are virtually con-

gruent indicating good accuracy for the numerical method.

E.	 Convergence of the Difference Equations

It is to be expected, from approximation theory, that as the

mesh,on which the solution vector V is defined, gets finer and

finer, the solution vector will converge to the exact solution

of the differential equation, W. The truncation error for the

approximation used in this calculation is second order everywhere 	 t

(except for the evaluation of the interpolated data for the first

row calculation). We have carried out a finite difference cal-

culation to the exact linear solution on two meshes, the finer

one (all the results presented in this paper have been computed

using this mesh) containing 11 points in r and 36 points in e, and

the cca rs'e mesh containing 6 points in r a(nd A points in 6.

Figures ( 7) and ( 8) give the distribution of the pressure field
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and velocity field at a time of 0.825 for the coarse mesh. These

results may be compared to the fine mesh solution at approximately

the same physical time in Figures (5) and (6). It is clear that

some accuracy in the solution is absent using the coarse mesh.

The two calculations can be compared to the exact calculation,

given in Figures (1) and (2), to estimate the rate of convergence

of the numerical solution. We also include Figures (9) through

(11) to assist in estimating convergence of the difference method.

Here, the linear theory, coarse mesh and fine mesh pressure dis-

tributions at the boundary of the chamber are shown. The shape

of this distribution may be compared to nonlinear solutions in

the next section. The pressure distributions at r=0, R/2 and R

for O ! t SO.825 for the coarse and fine-meshes are shown in Figures

(12)and (13). The linear nature of the solution is shown by

the undistorted sinusoidal pressure distribution.

In this section we also show, in Figures (14) through (17)

the ability of the difference equations to approximate the exact

linear solution for the second tangential mode. The pressure and

velocity distribution at t=0, obtained by first solving for the

second root, K2,in the transcendental equation @J(Kr)/8r = 0 at

r=R and then using Equations (33a), (33b) and (33c), is shown in

the first two plots of this series The linear solution is char-

acterized by noting that sinceK 2> Kl the rotation speed of the

second tangential mode is higher than the first tangential mode,
t
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and since there is no wave coalescence,because nonlinear effects

are neglected,the initial distribution undergoes uniform rotation.

By comparing the initial pressure and velocity distribution with

that obtained after six hundred integration steps, the conservation

of the initial distributions is demonstrated. We also show the

pressure distribution on the boundary as a function of theta,

Figure (18), and the pressure distribution at r=0, R/2 and R for

OStSO .825 , Figure (19 ).. The latter f i-gure again substanti.ate.s. the

nonexistence of nonlinear gas motion since the sinusoidal distri-

bution is undistorted.

F.	 Finite Amplitude Calculation of the First Tangential Mode

In order to carry out a finite amplitude analysis, only one

parameter need be changed from the previous calculation.. That

parameter is the maximum initial pressure which, in this calcula-

tion, is 450 psia while the minimum initial pressure is 150 Asia

k

	

	 (or pressure ratio of 1.8)	 The velocity field at t=0 corre-

sponding to this pressure is given in Figure (20). Figures (21)

through (26) show in detail, the motion of the velocity field up

to 600 cycles of computation after every 100 steps of integration.

The final time corresponds to a value of time of 0.615 milliseconds.

'

	

	 From Figures (27) to (29) a plot of the velocity field each 600

subsequent cycles of computation is -sh-own. It is clear that

a) the velocity field does not remain symmetric

(see Figure (,28));

b) an induced flow is generated behind the

compression wave;
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C)	 the flow field is fully developed in about

one period of rotation.

Figures (30) to (39) show the contours of the pressure field

for this calculation every 100 integration steps up to 600 and

then every 600 steps. Figure (30) is the initial field at t=O.

It is clear, by scanning through these figures, that one observes

that

a) the pressure field steepens in the leading

edge of the compression pulse and spreads in

the region of the trailing edge;

b) this steepening is most pronounced in the

first half to three quarters of the first

period, but the solution appears to remain

continuous for all time,

c)	 a periodic (wt+27) continuous wave solution

seems to be the asymptotic (ti-) solution.

A total of about 5 3/4 rotations were computed

and are shown in this sequence of figures. The

pressure pulse has an almost constant amplitude.

These observed effects are. clearly nonlinear in nature. This is

substantiated by Figure (40) which shows the pressure distribution

as a function of time at r=O , ' R/2 and R.

Figure (41) shows the tangential pressure distribution at

the chamber wall shortly after the start of the calculation.

Figure (42) shows the wave shape wafter steepwning has occurred

because of nonlinearities. The wave has undergone almost one
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rotation. Figure (43) shows a streakline plot of a test particle

with initial coordinates of r=4.95 inches and a=0 0 . A streakline

is the path traced out by an imaginary particle which is moving as

a function of time. The cross lines indicate the four quadrants

of the motor. Even though the path appears elliptical, the line

does not close on itself and is moving in the direction of rotation.

The motion of a particle in the linear case, is a closed ellipti-

cal path so that the net motion is zero.

In a second calculation, in which ^=O=HZ , the maximum initial

pressure was raised to 590 psia while the corresponding minimum

pressure was 10 psia (a pressure ratio of 59). The base pressure

p=3010 psia with y=1.2. Figures (44) and (54) show the initial

states of the pressure (and hence, density) field and velocity

field for this calculation. As this series of plots shows,
	 I

Figures (44) through (63), the calculated history of those fields

differ quite markedly from the previous calculation because

a) a curved shock forms at the boundary. It is

strongest at the wall while decreasing in

strength as it curves inward towards the center

of the chamber (sss Figure (46)).

b) The shock propagates circumferentially so that

it is normal to the boundary.

c) Since there is no energy source the shock

decays quickly because of reflection at the

curved boundary ( see Figure (47)).
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The swirls seen behind the shock wave are due to numerical

oscillations which occur when high , order accuracy difference

methods (accuracy greater than one) are used. The strong discon-

tinuous behavior of the velocity field, in the neighborhood of

this wave, is clearly seen and may be used to help locate the

numerically smeared discontinuity (see Figure (56)).

It appears that if the pressure ratio (the maximum to minimum

pressure) in the chamber is above a critical value, the asymptotic

solution is reached, from the initial data, by first passing

through a portion of the solution which is discontinuous. If the

initial pressure ratio is below this value, the asymptotic solution

is reached through a sequence of states which exhibit continuous

states. We know that this critical pressure ratio lies between

the two values used for the finite amplitude calculations shown

here.

The reason a critical pressure ratio is required to achieve
a shock is due to the presence of a curved wall. In one-dimensional

flow, a shock wave evolves from an initial state which contains a

continuous compression wave of arbitrary amplitude. However,

when this normal shock propagates down a tube and strikes an

inclined wall reflectionoccurs so that the shock which travels

normal to the inclined wall is weaker than the original incident

shock. The curved wall can be considered to be a-continuous

sequence of inclined walls continuously weakening the progressing

shock. If the initial strength of the wave is such that nonlinear

coalescence (which causes steepening of the wave) cannot dominate

the continuous reflection process, the wave will remain continuous

even though it is a compression wave.
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Figures (64) through (68) show the pressure distribution at

the chamber wall for successive instants in time. The gradual

steepening of the initial wave (which is sinusoidal) is clearly

shown. Figure (69) shows the pressure versus time at e=0 and for

r=0, R/2 and R. The amplitude of the pressure pulse as it arrives

at the reference line a=0 is seen to be a strong function of the

radius with maximum amplitudes occurring at the chamber wall. The

pressure level of these pulses are about 1100-1500 psia while at

r=0, the pressure oscillates closely about the base chamber pressure

of 300 psia.

Figure (70) shows a streakline for a particle starting at the

point r=4.95 inches and 0=0 0 . The motion is complicated but, on

the average, the particle traverses the chamber in a circular path.

The particle has rotated through one quarter of the chamber while

the wave has made five rotations
A

G.	 Energy Release with Finite Amplitude Waves: Simple Energy Source

This calculation consists of adding an energy source term to

the energy equation. There is no associated mass source term in

j	 the continuity equation. The energy term is dependent on the

local pressure through the prescription

E = const (p-1) v , v = if 0<p<1
v = 1 otherwise	 (39)

For this calc-ulation -we turn on the energy source slowly,

i.e;., the actual term used in the difference equation is wE where

w is a monitonically increasing function of time t in the closed

interval 0<w<l. We take w to be the fraction of the first rotation

completed at time t during the first rotation of the wave and is

taken as unity for all subsequent rotations of the wave.
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as shown in Figure (44) with velocity field given in Figure (54).

Figures (71) through (73) show the development of the pressure

wave until .625 millisecs. There is no axial flux calculation

included for this case so that the energy and pressure will accum-

ulate. It is clear that the pressure structure which develops is

similar to the non-reactive case except that a peak pressure of

12900 psia is generated by the introduction of energy. The velocity

field, Figures (74) through (76), is also similar to the non-

reactive case. The maximum velocity for this calculation occurs

behind the wave and is approximately-7000 ft/sec. Of course, as

the calculation proceeds, the pressure amplitude continues to grow

reaching a value approximately forty times the reference pressure

while the maximum velocity reaches a value six times the reference

sound speed after just six hundred more cycles of calculation.

The constant in Equation (39) is proportional to the internal

energy in the transverse plane at t=0.

Figure (77) shows the passage of the pressure pulse followed

by a rapid rise in the pressure for all values of r Note the large

values of pressure represented on the scale.

Using Equation (39) a second calculation was completed in which

the axial flux was included (Run 3). It is clear from the last sec-

tion (Run 5) that unless energy is allowed to leave the system con-

vectively, the pressure (as well as the specific internal energy)

will 'continue to increase monotonically.- Program COMB was modified

to include, in an ,approximate way, a value for the axial flux of

energy.
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Several approximations were pried. The first method, and

perhaps the most obvious, involved the computation of the total

energy (and mass) contained in the r - e plane for each cycle of

computation

Consider Integrals I of the form

R 2^
I{W}=	 Wderdr	 (40)

0 0

where W is a vector valued function W=W(r,e). It is clear that

the domain of integration is defined for r and e over the closed

interval 0,<e,<2,r and 0,<r^R.

Introduce for the function W a function of the single variable

r via

2 7r

^ (W;r) = 
0

W(r, e) de 	 (41)

Then the double integral .(40)-r^becomes

R
I{W}=V{ jS (W;r) rdr	 (42)

0

Since the interval E01 R3 will, in general, have N+1 net

points that may be even, use of Simpsons rule cannot be considered

since the number of points for that algorithm must be odd. For

the case when an even number of net points is required to define

the integrals, the following procedure may be used. Let h be

the step size. Then split the integral into two parts so that

R	 3h f R
(43)

0'	 0	 3 h
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where

3h
^(W;r)rdr = 

3
h ^3V (W;h)+3S' (W;2h)+S' (W;0)

0

W (W;3h)] +e l , R'=rs

We have included the error term e l which is defined by

el - -80 

5 
^ (IV) M 0<E<3h

and the second integral is obtained by applying Simpsons rule, i.e.,

R	 h	 m-1
^ (W; r) rdr = 3 [V(W;3h)+V(W;R)+2  E S (W; 3h+2ih)

3h	 j=1

in-1
+ 4 E S(W;3h+(2j-1)h] +e2

j=1

with error term e2 defined by

e2	 R h4s (IV) m	 3h<^<R
180

It remains for us to evaluate S (W r) . A condition of

periodicity exists can W, i.e.,

W(e +2Tr)	 W(e)

The Euler-Maclaurin summation formula with h=he yields
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p-1e+phf
E W(e+jh) =h 	 W(T)dT -2 [W(6+ph)-W(e)^

j=0	 e

+h [W'(6+ph)-W'(0)]	
3

[W"' (e+ph)-W"'(e )l
.12	 120	 J

5+ h
30240	

1 WV (e+ph)-WV (6)] -...

Setting p=l and a=0 we obtain

hW(T)dT = hW(0) + h [W(h)-W(0 
-(h)2 

W' (h)-W' (0) +...
0	 2	 12

Due to periodicity the terms in the brackets cancel to zero if

the above formula is used over the entire a domain defined in

terms of the contiguous intervals (e i ,e j+l ) 0<j<N-1.

We can now write for

2 Tr	 N-1

S (W r) =	 W (r; e) de = 2Tr E W (r, e . ) +e	 (44)

fo 	 N j=0

with error e defined by

e = h2m+2 27TCm w(2m+2) ( )	 0 <E<2ir

where the function W is assumed to have 2m+2 bounded derivatives

in the closed interval (0 , 27r] and is 27 periodic The above
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,formulae for S(W;r) is used in the integration routine in COMB

when computing the total mass and energy in the r,-= 8 plane. We

just apply Equation (44) to approximate Equation (41) which gives

the integrand of Equation (42). Applying the approximations given

for Equation (43) using this integrand, we can complete the

appoximation to the original integral I, Equation (40). Then,

to compute the divergence of the axial flux, aH/9Z, we compute I

at some time t and require

d I (t) _ 0
dt	 45

or, equivalently, I(t+T)- I(t)=0, T>0. If T=0t, the value of

I(t+T) is computed from the approximations to Equation (40) and

is compared with I(t). The axial divergence at any of the q mesh

points in 00 is just

H Z	 1 (I (t-+ T ) -I (t) )
q

It is seen then that the excess due to accumulation of mass

and energy is parceled equally so that, at each mesh point, there

exists a contribution to outflow which will exceed the inflow by

just the amount that is accumulated. It was found that this formu-

lation worked for-small amplitude pressure waves where small

spatial variations in the energy release exist. However, for

finite amplitude waves which initiate locally large influxes of

energy (due to the increased velocity field) this formulation
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fails to work. The reason is due to the fact that some regions

of the flow field have little reaction occurring. Yet, according

to this procedure, a relatively large axial outflow of energy is

required. If this occurs for a sufficient number of time steps,

the flow pressure (or density) gets quite small and can even

become negative locally. Indeed, this has been our observation.

It is clear that a weighting of the outflow according to the

inflow or a retardation of the outflow would be more desirable.

A retardation procedure was carried out for the simple

energy release model given by Equation (39). The results are

given in the following table. The energy that was input due to

the simulated combustion model was allowed to reside in the r,e

plane for one time step. It was then considered to contribute

to the axial flux. Each calculation started with a maximum

pressure of 590 psia and minimum pressure of 10 psia. In Table

I, the first column is an inert calculation with no energy term,

the second with the simple energy model including a retarded energy

flux term approximating the divergence in the axial direction.

Finally the third calculation is with the simple energy model but

no convective flux in the x or axial direction.

Table I Maximum Wave Amplitude (psia)

Cycle	 Inert Case 	 With Axial Flux	 Trapped-Case

	

_0	 590	 590	 590

	

600	 115-1	 1120	 4289

	

1000	 1150	 7922	 ^.

	

1200	 884	 1134	 12872
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The final row of data corresponds to approximately 3.27 rota-

tions of the wave and it is clear that by including the axial flux,

the rapid growth of the wave is controlled even while the energy

source supplies energy to the wave as seen by the excess pressure

over the inert case. Figure- (78) shows the pressure histu- ,may for

this case.

It was found, however, that for values of ten times the con-

stant in the energy law in Equation (39), the solution could not be

continued beyond 300 cycles. This value is consistent with a

physically real energy release near the injector. It is clear

that the evaluation of the axial flux is quite critical. To ade-

quately couple the axial dimension requires either a third dimension

or an annular model so as to mathematically pose the calculation

correctly.

A final sample calculation utilizing the pancake model with

energy addition as well as mass addition, incorporates the simpli-

fied/modified Godsave'analysis given in Section II of this report.

This calculation includes the interaction process between a tan-

gential pressure wave and a system of droplets (mean diameter=75u)

which_ evaporate and burn according to the simplified Godsave model

of droplet combustion For this calculation there is both an

energy source for the energy equation as well as a mass source

included in the continuity equation. However, the axial flux

calculation is not included.

The calculation is initiated by specifying the flow field at

t=0. For illustrative purposes we have chosen the one given in

Figures ('44') and (54) with the maximum (minimum)' pressure being
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590 psia (10 Asia). The calculation proceeds without energy addi-

tion for as long as it takes the wave to make one complete rotation.

Then the calculation incorporates Equations (34) through (41)

developed in Section II of this report for the evaporation and

combustion of the droplets. The energy and mass source is turned

on completely just as the wave is starting its second period of

rotation. Figures (79) through (86) give the fluid dynamic field.

for the entire run (number 6). The pressure and velocity distri-

bution at t=.525 ms. is shown just after the energy is switched

on in Figures (79) and (83). The large transient is clearly

evident and the wave is moving clockwise.

The next two figures, Figures (80) and (84), show the pressure

and velocity field after the energy and mass source terms have

been turned on and the wave has made two rotations. The mass and

energy addition, as the remainder of Figures (81) and (82) and

Figures (85) and (86) show, are smearing out the gradients in the

flow field. The solution is tending towards the linear theory

distribution shown earlier since the maximum pressure ratio, as

determined from Figure (82) is approximately 1.28, not a strong

perturbation from unity. In . Figure (87) we show the complete

pressure time history at the radial positions r=Q, R/2 and R. The

pressure levels are rising continually due to accumulation of mass

°and energy.

In the next subsection we describe the annular combustion

instability model which couples the energy release model to the

gas dynamic field without a°-priori outflow assumptions
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H.	 Nonlinear Differential and Difference Equations for the
Annular Motor

The differential equations describing the motion of a com-

pressible fluid in a cylindrical shell of fixed radius r with

coordinates a-z-t can be given, in vector notation, by the

differential equation

aW
+ 

1 aG	 aH	 9LnA
at r at + az + H* az (46)

As in the pancake motor, the vector W is a four vector, the compo-

nents of which are as defined before except that the radial,.momentum

is replaced by the axial momentum component. The vectors G and H

represent the tangential and axial flux of the conservation

quantities defining the vector W while the source term ^ has

already been described in the pancake model.

The term containing the logarithmic derivative of the area

variation, A(Z), corresponds to an approximate way of treating

small radial variations in the annular geometry. It is analogous

to the treatment of one-dimensional time-dependent flows which

include area variations. This term can also be considered as a

source term of flux proportional to the derivative of the logarithmic

variation of the area, A=A(z) the proportionality constant being

the flux

H* = H-p62-pu 6
i4
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This term allows us to treat, in a simple way, an annular

subsonic-supersonic nozzle which has, by definition, a radial

area variation. The reason for the introduction of such a term

will be discussed at greater length in the section on boundary

conditions but it is clear that converging-diverging nozzles exist

on real annular motors and should be included in the approximation.

We may differentiate G and H with respect to W and write

Equation (46) in the standard form for quasilinear partial differ-

ential equations, i.e.,

n-1
E AiWx +B=O	 (47)

i=0 	 1

We associate the matricies I. aG/aW and DH/3W with A O , Al and A2

respectively. In this notation our variables become xo=t, x1=6

and x 2=z while the inhomogeneous term is a specified function of

W, i.e.,

B = H* aLnA - ^	 (48)
_a z

t.E

In order to test the annular model without the complication

of Lhe droplet field, we first studied, numerically, _-a computational

scheme for a gas annular _motor. In this first step toward con-

struction of the complete annular model we must specify the flow
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rate at the injector face in terms of a nonzero value of the axial

gas velocity.	 Equation (47) will be the starting point for the

construction of a stable difference approximation of the subsonic

inflow boundary condition at the injector face. We must also con-

sider the boundary condition required at the exit plane of the

nozzle. This will be discussed in the following sections on

boundary conditions. Once the techniques developed in the gas

combustor are proven, the condition that u=0 on the injector face

will be used while the complete droplet model is added.

We seek a solution to Equation (46) by the method of finite

difference approximations. Equation (46) is a conservation law

and the difference approximation to Equation (46) will also be in

conservation form. The accuracy of the approximation will be

second order. The method will be essentially the same as that

adopted for the pancake motor.

On the periodic space #0 defined by t>0, 0,^e.<27, O< z<L, we

introduce a uniformly spaced meshor net which consists of the

points

6i = iA6, z j = jAz, to = nAt, i,j,n	 0,1,2

The set of net points 00 h is defined by

O&h ={el,z
7

. ,tnli=0,1 .... ;	 j	 0,1,...;	 n = 0,1,...} ,

The approximation to W (6 i rz
l
j,tn ) defined on the space 0o is repre 4.

sented by V (6 i , z . , tn )	 Vn defined on 6o h . The approximation
7	 i3

that is used is most easily written in two steps:

x}+
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Let Vn be the first predicted value. It is given by
ij

Vn	 =	 n-1	
+ Vn-1	 + Vn-1	 + Vn-1 ,	 (49a)i+^,j+h	 1Vi+l,j+1	 i,j+1	 i+l,j	 1 ► 7

At [G(Vn-
1+  .) - G cVi ► j) + G ( Vi+1,j+1 ) - G(Vi,j+1)ZoeAe	 ,7

	

At 
H(V i+l '+1 )	H (Vi+1, ') + H(Vn

-1 ) - H(V7)
2AZ	 ,J	 7	 1,J+1	 ,

At	 B ( Vn-1 .) + B ( V
n_1 ) + B (Vn_

l
	) + B (Vn- 1)

4	 1+1,3	 1,J+1	 i+1,7+1	 1,7 .1

The final value is obtained from

Vl = Vl- 1 - At rG (Vn-1 . ) - G (Vi -1 .) + G (Vn y	 ^,)► J	 ► J	 4Ae L	 1	 ^7	 ^7	 i+z,7+2

G (Vi_ ^, j+ ) + G (V -^ )	 G (Vi-
 

,j- z)	 (49b)

_ At	
n-1	 n-1	 -n	 ^n

[H (Vi +1 ) 	 H (vi -1 ) + HV + , + ) - H (Vi+3-, j- )4AZ	 ,7 	 ^ J

.'	 n

_ At

	

[ha (B (vi+ 	 ) + B (Vi+3-, '+ ) + B (Vi- 	 + )2 	 z J k	 h,J k

^n	 1 BLnA	 •

	

+ B (Vi - , j )) + 2 az 
lt1( H * (Vi,'j+1. ) +H* (Vi, j 1 ))	 *

(V i  J j

f
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The r3ystem of Equations (49) constitute the difference

approximation to Equation (46).	 One may verify that the System

(49) is indeed a second order accurate approximation to Equation

(46) by allowing SG = A1 6V	 and 6H = A2 6V.	 Here S corresponds to

a spatial difference operator in 6 or z and A1 , A21 which were

previously defined, are taken to be constant matrices. 	 Then

substituting Equation (49a) in Equation (49b) after using the

definitions for the spatial differences in G and H, the following

result is obtained

2	 2 2 n-1
Vi = V1^1 + At(A1+A2 )SVi , 7 + ^ t	 (A1+A2 )	 S V	 + Q'(At2)

fJ	 J	 2	 1fJ

+ terms (5r( A t - B )

This expression is the Taylor expansion for V about t=nAt in

terms of first and second order space operators 6 and 6 2 .	 This

shows that the difference approximation to the exact solution W

is second order accurate except for the inhomogeneous terms.

The periodicity condition in 6 on the solution V. i.e.,

V(6, z,t) 	= V(0+27r,z,t)

reduces the specification of the problem to findingboundary

conditions for the inflow and outflow conditions at z=0 and_z=L.

The theory is presented in the next section.

4
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I.	 Boundary Conditions, Injector Face (Z=0)

If we were to seek a solution in some domain,60 , where ,zJ<-

(rather than the finite interval O,<,z,L) boundary conditions would

not be required. For lzl<-, the differential problem is called

an initial value problem. However, since the range of z is finite

for the annular model, boundary conditions must be prescribed at

the endpoints, z=0 and z=L. The natural conditions at the

injector, z=0, are that the momenta m=pw and n=pv be prescribed

m(e,C,t) = mo

(50a)
n(e,0,t) = no

as well as energy

mo+no

p2(e ► oft)
+ e(e,0,t) + p(e,0,t)p-1(e,0,t) 	 Lo	 (50b)

The constant Lo is usually identified as the stagnation enthalpy.

The boundary conditions defined from Equations (50a) and (50b)

are used to simulate the boundary values that one would impose on

a gas injected rocket motor. Axial injection implies n o=0 and we

will only consider axial injection. Since we are prescribing

subsonic inflow, one variable cannot be arbitrarily prescribed on

the boundary. This is most easily seen by writing Equation (47)

in characteristic form, i.e.,

Wt + AlWe + A2Wz + B 0	 (51)
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Let P be a matrix whose eigenvectors are that of A 2 . Define V so

that W=PV and substitute for W in Equation (51) to obtain

(PV) t t Al (PV) e + A2 (PV) z +B = 0	 (52)

By carrying out the indicated differentiation one obtains an

equation for Vt:

Vt+P 1A2PVz	-P-1 [B+PtV+A2p ZV+Al(pv)e 1	 (53)

which is in the simple characteristic form. We obtained this

result by premultiplication of P -1 after the differentiation is

carried out. Now P -1A P=A is a diagonal matrix with $ i the elements

on the diagonal. This allows us to observe that differentiation

on the left hand side of Equation (53) is in the characteristic

direction

dz = S ,	 (54)
dt	 i

i.e., the total differential of V itself is the left member of

Equation (53):

Vt + AV Z dV/dt

The elements Si are the eigenvalues of A 2 which are linear

combinations of the particle speed w in the z direction and sound

speed c, i.e., w, w+c, and w-c. The direction w-c is left running

for w <c; hence this characteristic runs to the boundary 2=0 from

the interior z>0. The vector V has the components
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p + v - pc2

p + p cw
V

P - pow

p - v - pc 2

Hence the data p-pcw appears as a total differentiated quantity

in the direction w-c. In the direction w-c the differential

equation is given by

(F-pcW) t + (W-C) (p-pcw) z = -v ( p -pcw) e -pc 2 v e -w ( p c.) t -

- (w-c) ( p c) z -v ( pc ) e	 (55)

The .information p-pcw, on the boundary z=d, is then determined

by integrating Equation (55) using conditions in the interior of

the chamber. By solving Equation (55), the behavior of this

characteristic variable coupled with the other boundary conditions

will determine the complete time-dependent behavior at the injector

(t^, boundary.

	

f f 	One simple numerical approximation to Equation (55) is

_obtained by allowing

	

PC -	 [(PC) n-1 + (PC),
irk

rn-1	 n

	

v _	 tv1^0 + vi 1

Ft n_1	 n	 1

	

i	 w=	 L wi 0 + wa,l^

f
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We solve for the pressure by using forward differences for the

time and centered axial differences (e differences can be

centered) in Equation (55) via

pn
i 3 O

y pn-1 + 
pci.,0 (will-w	 1 ), + ^t (w_c} [Pn-1 -p n-1Az	 i3O

n-1 n-1 l - of n.-1 _ n- 1	 n	 _ n-- pc 
(wi 0 -w i,l ) ,J -^ 4^8 Cp i+1,0 p i-1,0 +p i+1,1 pi-1,1

^t n-1	 n-1	 n	 n+ pc v 4oe [W i+l r o wi-1,O+wi+1,l-wi-1;1
(56)

_ pC2 At vn-1 -v n-1 +Vn	 -vn
i+1,0 i-1 0 i+l 1 i-1 14oe	 ,

Now that the pressure is known at the advance time nAt on

the injector face, z=0, we may then solve for the density p from

Equation (50a), (50b) and the equation'of state, Equation (12).

Following this procedure we obtain for the positive root of the

resulting quadratic equation for the density,

p	 ^- -	 1 + 1
1+2Lo ( (1'-1)) 2 (m2 +n2 }]	 (57

-	 o 02 (Y 1} Lo	 Yp	 ,i

An iterative procedure could now be used by redefining the barred
s

quantities p and c in terms of the latest estimate of the density,

which is given above. Now that the density is known, as well as

the pressure, all the data required to advance -the -solution to

the next time level is known. The next section considers the

boundary condition at the 'plane of outflow where z ='L.
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J.	 Nozzle Exit Plane (z=L)

The simplest and perhaps the fastest way to compute a super-

sonic outflow condition is to impose the following condit i on on

all the outgoing characteristics facing the boundary (we assume,

without loss of generality, a positive slope (all q>0) when the

flow velocity is w>c): that the total variation along the char-

acteristic, of the function. V, is,-zero. This means that if at the

boundary =L of	 ry	 ^ , the flow is supersonic, then. all three

characteristics with slope w, w±c will intersect the boundary

when the characteristics originate from the interior of 	 Then

our prescription is equivalent to the statement that the boundary

data are completely specified by the interior flow field data.

Conversely, information specified at the boundary because of the

geometry of the characteristics can have an effect only on the

field to the right, or outside of

We insure that the condition at the boundary of 10 will be

supersonic by specifying a-schedule of area variation in the axial

direction, BLnA/Sz. At some arbitrary point, say z=k the chamber

length, the area decreases simulating a converging nozzle section.

At a section further downstrean, Q<zt <L the area then increases

up to the point_ z=L. The throat of our motor occurs at z=zt and

the diverging section, of length L-'at, produces a sufficiently
F

strong supersonic outflow condition The only conditions imposed

on _how to choose an area variation A-('-Z) is the requirement on the

steady state flow rate for the steady state operation of the rocket
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section to be unity for the desired rate of flow specified at the

injector. The area at the exit plane of the motor, A(z=L), is

chosen large enough so as to produce a Mach number on the flow

sufficiently greater than one. Even under transient conditions

the outflow must remain supersonic so that some experimentation

on how large an area on the boundary of 00 to choose may be required.

The "nozzle shape" chosen for this calculation is the parabola

A	 = 1-a (z-z Z )+R (z-zt) 2, a=1

The constant B was chosen so that the minimum area is reached at

1/3 (z L-z d

Then the boundary condition specified at z=L is just

W(e,L i t) = W(e,L-Az,t) .

This corresponds to zero order extrapolation of the original

function and is sufficient to produce smooth results. Any errors

that result in specifying W rather than V will decay rapidly in
the direction normal to the boundary of

This completes the discussion of the boundary conditions.	 4

The next section presentssome results of a calculation using

these boundary conditions in the annular motor.

56



Y

K.	 Results of a Test Case - Gas Annular Motor

The previously described theory was programmed and a test

case was run. We wanted to evaluate the rate of convergence to

the steady state solution starting from somewhat arbitrary initial

data. The initial data prescribed is

P = 1/1'

P	 1.
0< z<^,

w = 0.4

v = 0

P	 P (z)

P = P ( Z)
,,,<z^<L

w	 w (z)

v	 0

The exit Mach number was approximately two for the area

variation chosen. The exact dependence of the density, pressure

and velocity in the second interval was linear in z, the endpoint

values p (L) , p (L) and w(L) being obtained from one-dimensional

reversible flow tables at Y=1.2. Table II shows the convergence

of the solution at the exit plane of the combustor, z= z

Table II Gas Annular Motor Convergence Test

Pressure at z=z Q	 'Ite'ra-tion: Cycle' NUinb'er

1 .
/Y	

0

0.572.81	 200
0.52067	 400_
0.51894	 600
0.52048	 800
0.52018	 1000
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L.	 Results of a Test Case - Annular Motor and Complete
Droplet Model

The previous model descriptions in Section H and Section J

are used in this calculation. The previous treatment of the

injector boundary is not required for this calculation. Here, a

very much simpler condition is used, namely w(0,6,t)=0. To achieve this

condition, a set of virtual points z=-Az, 0,e<27, which is parallel

to the injector plane, take on the reflected quantities

P( —A z, e rt) = P(Az,e,t)
w(-Az,6,t) = -w(oz,e,t)

(58)
v(—oz,e,t)	 v(Oz,6,t)

E(-Az,e,t) = E(Az,e,t)

A test calculation without droplet evaporation and combustion

was carried out with the above injector boundary conditions. The

initial conditions imposed were the final results of the test case

in Section K. As one would suppose, the combustion chamber merely

evacuated since there was no source term while there was outflow

through the converging-diverging nozzle. The calculation was
'S

_terminated as the pressure dropped to 10 - 5 times its initial value

at the injector. The•solution remained stable and smooth through-

out the complete calculation.

Next, the droplet spray program was coupled to the annular

model. The equations used to describe the droplet motion, are

the conservation of mass and the momentum equations in the z and 6

direction

f
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>t'

dm ,	 .
dt	 -mF

dvl _ 3 CD p (ul-vl)Iul
-vll

dt	 8	 P 	 r (59)

a

r

dv2	 3
D p— (u 2 -y 2 ) ( u2-y2

dt	 8 C pR	 r

where m, = 4 Trp^r3 is the mass of the drop, p R is the drop density,
3

r is the drop radius, and p is the gas density. The axial and

tangential components of drop velocity are v l and v 2 ; the corre-

sponding components in the gas are u  and u 2 . A simple drag coef-

ficient correlation is used and it is dependent on the Reynolds

number through

CD = 27Re'0'.84

Equation (33) in Section III -C defines -mp in terms of the local

Reynolds and Prandtl numbers.

The computational procedure is as follows. Each mesh point

is initially assigned a droplet of arbitrary radius and velocity. 	 {

In practice this is accomplished by letting the drop radius

decrease linearly to one-tenth its initial value and the drop

velocity increase linearly from its injector value to the fluid

velocity.
q

For each time step the above kinematic equations, Equation

(59) are integrated using the initial droplet and gas dynamic
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data. New drops are introduced at the injector (the droplet

injection velocity is taken as a fixed constant). The computed

drop velocities are then used to obtain the new drop positions.

In general, the drops in the field ot r' will no longer be defined

at mesh points. However, the values of droplet mass, radius and

velocity are redefined at the mesh points by two-dimensional

linear interpolation. These values may then be used to compute
0

a new value of the source term ^ in Equation (49b). In the event

that the mass of the drop has decreased to .001 times its initial

injected value, ^ at that point is set to zero. The next two

tables give the initial distribution and the final converged

distribution values for a complete solution of the gas dynamic

equations coupled to the droplet model. The distributions shown

in Table IV are independent of time and represent a self-consistent

steady state solution to the coupled gas and droplet equations.

k



Initial. Data in Combustor

Table III - Complete Model of Annular Motor

time = 0

	

Velocity	 Mach
Density	 Pressure
	

(axial)	 Number

Injector	 1.50000E+00 1.25000E+00 0. 0.
1.50000E+00 1.25000E+00 9.52381E-03 9.52381E-03
1.00000E+00 8.33333E-01 2.85714E-02 2.85714E-02
1.00000E+00 8.33333E-01 4.28571E-02 4.28571E-02
1_.00000E+00 8.33333E-01 5.71429E-02 5.71429E-02
1.00000E+00 8.33333E-01 7.14286E-02 7.14286E-02
1.00000E+00 8.33333E-01 8.57143E-02 8.57143E-02
1.00000E+00 8.33333E-01 1.00000E-01 -1.00000E-01
1.00000E+00 8.33333E-01 1.14286E-01 1.14286E-01
1.00000E+00 8.33333E-01 1.28571E-01 1.28571E-01
1.00000E+00 8.33333E-01 1.42857E-01 1.42857E-01
1.00000E+00 8.33333E-01 1.57143E-01 1.57143E-01
1.00000E+00 8.33333E-01 1.71429E-01 1.71429E-01
1.00000E+00 8.33333E-01 1.85714E-01 1.85714E-01
1,000OOE+00 8.33333E-01 2.00000E-01 2.00000E-01
1.00000E+00 8.33333E-01 2.14286E-01 2.14286E-01
1.00000E+00 8.33333E-01 2.28571E-01 2.28571E-01
1.00000E+00 8.33333E-01 2.42857E-01 2.42857E-01
1.00000E+00 8.33333E-01 2.57143E-01 2.57143E-01
1.00000E+00 8.33333E-01 2.71429E-01 2.71429E-01
1.00000E+00 8.33333E-01 2.85714E-01 2.85714E-01
1.00000E+00 8.33333E-01 3.00000E-01 3.00000E-01
1.00000E+00 8-.33333E-01 3.14286E-01 3.14286E-01
1.00000E+00 8.33333E-01- 3.28571E-01 3.28571E-01
1.00000E+00 8.33333E-01 3.42857E-01 3.42857E-01

:k 1.00000E+00 8.33333E-01 3.57143E-01 3.57143E-01
1.00000E+00 8.33333E-01 3.71429E-01 3.71429E-01
1.00000E+00 8.33333E-01 3.85714E-01 3.85714E-01
1.00000E+00 8.33333E-01 4.00000E-01 4.00000E-01.y Nozzle	 9.29605E-01 7.63444E-01 5.52204E-01 5.56250E-01
8.47546E-01 6.83305E-01 6.96713E-01 7.08333E-01
7.6002,8E-01 5.99535E-01 8.33074E-01 8.56250E-01
6.72210E-01 5.17398E-01 9.61060E-01 1.00000E+00

Throat	 5.87944E-01 4.40577E-01 1.08064E+00 1.13958E+00
5.09785Eu01 3.71264E-01 1.19192E+00 1.27500E+00

_ 4.39168E-01 3.10438E-01 1.29517E+00 1.40625E+00
3.76650E-01 2.58193E-01 1.39069E+00 1.53333E+00
3.22168E-01 2.14051E-01 1.47888E+00 1.65625E+00
2.75256E-01 1.77216E-01 1.56017E+00 1.77500E+00
2.35226E-01 1.46758E-01 1.63499E+00 1.88958E+00
2.01293E-01 1.21734E-01	 - 1.70378E+00 2.000OOE+00
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Table IV	 - Complete Model of Annular Motor

time 18.37	 (1000 cycles)

Velocity Mach
Density Pressure (Axial) Number

Injector	 9.28150E-01 7.89215E- 01 0. 0.
9.13538E-01 7.73810E-01 6.41201E-02 6.35989E-02
9.12505E-01 7.75075E-01 1.09623E-01 1.08582E-01
8.89369E-01 7.51797E-01 1.83289E-01 1.81986E-01
8.63476E-01 7.30310E-01 2.49047E-01 2.47208E-01
8.27442E- 01 6.95029E - 01 3.25172E-01 3.23884E-01
7.83244E-01 6.57257E-01 4.01881E-01 4.00486E-01
7.32131E-01 6.071.99E-01 4.88423E-01 4.89592E-01
6.67104E-01 5.51.421E-01 5.94258E-01 5.96678E-01
5.81310E-01 4.'67778E-01 7.31957E-01 7.44868E-01
6.59025E-01 5.43878E-01 6.07480E-01 6.10439E-01
5.94234E-01 4.80373E-0i,, 7.09843E-01 7.20712E-01
6.49877E-01 '',.34865E-01 6.21127E-01 6.25006E-01y:
6.03343E-01 4.89272E-01 6.94590E-01 7.04118E-01

^r 6.43187E-01 5.28278E--01 6.31268E - 01 6.35859E-01
r. 6.09430E-01 4.95240E-01 6.84519E-01 6.93185E-01

6.38178E-01 5.23340E-01 6.38961E-01 6.44114E-01
.` 6.13856E -01 4.99604E-01 6.77233E - 01 6.85280E-01

6.34552E-01 5.19748E -01 6.44605E -01 6.50190E-01
6.16850E - 01 5.02598E -01 6.722.66E-01 6.79876E-01
6.31935E-01 5.17111E-01 6.48774E-01 6.54707E-01
6.18905E-01 5.04728E-01 6.68736E-01 6.76001E-01
6.30185E-01 5.152.56E-01 6.51774E-01 6.57975E-01
6.20278E-01 5.06288E-01 6.66095E-01 6.73039E-01
6.29106E - 01 5.13916E - 01 6.54036E -01 6.60582E-01
6.20872E ,-01 5.07275E-01 6.64070E-01 6.70660E-01
6.28991E - 01' 5.13251E -01 6.56029E -01 6.62963E-01
6.20202E - 01 5.07392E-01 6.61601E-01 6.67729E-01
6.31056E-01 5.14208E-01 6.59789E -01 6.67236E-01

Nozzle	 5.97427E - 01 4.79087E-01 7.27485E -01 7.41598E-01
5.91646E-01 4.67889E -01 7.66437E-01 7.86765E-01

a 5.23376E -01 4.02085E - 01 8.98350E -01 9.35627E-01
' 5.24841E-01 4.02182E-01 9.03470E -01 9,.42162E-01

Throat	 4 . 53790E-01 3.38652E-01 1.03487E+00 1.09357E+00
4.03407E-01 2.95989E-01 1.12696E+00 1.20102E+00
3.57834E-01 2.58922E-01 1.20921E+00 1.29768E+00
3.11213E-01 2.21971E-01 1.2.9833E+00 1.40339E+00
2.71992E-01 1.91872E -01 1.37 3 92E+00 1 . 49328E+00
2.33512E-01 1.62681E-01 1.45834E+00 1.59497E+00
2.03801E-01- 1.40907E-01 1.52101E+00 1.66985E+00
1.74090E-01 1.18918E -01 1.60507E+00' 1.77282E+00
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The oscillatory nature of the above steady solution is due

to the fact that the difference: scheme is not dissipative. For

the shortest component of the solution, wavelength of 2Az, the

amplification matrix has its largest eigenvalue lying on the unit

circle (see Reference (8)). This defect has been remedied by the

addition ofan artificial viscosity (see Reference (7)) .

The values in Table IV are changing by about 1 part in 1000

per 50 integration steps indicating that the solution has just

about converged. It is to be noted that this computation started

with a value of tangential velocity equal to zero. If it were

non-zero, i.e., an initial disturbance characterizing spinning

were present, then a steady st.EAe would take much longer to

achieve. Indeed, depending on the energy value of the spin, there

may be no steady state such as that presented in Table IV (see

Reference (7) ) .

In the next section a complete theory of a burning droplet

is presented and, as a result of numerical calculations using this

model, the model is simplified as shown in Section E.

We have arbitrarily continued the number sequence from the 	 P

gas dynamic analysis into the droplet analysis for the results

given in tables and figures and references but have restarted the

number sequence for equations.
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III. DROPLET EVAPORATION AND COMBUSTION ANALYSES

A. The "Complete" Model

The propellant system considered will be hydrazine (N2H4)/

nitrogen tetroxide (N 204 ). The oxidation behavior of this system

has been the subject of intensive investigation for a number of

years (References (9) through (18)). Recent evidence (Reference

(18)) suggests that at moderate pressures, hydrazine decomposition

occurs very close to the droplet surface, with the combustible

decomposition products (NH 3 and H2 ) partially oxidizing first

with NO, followed by complete oxidation with 0 2 . The two distinct

oxidation regimes result in the two-flame appearance characteristic

of N 2H4/N2 04 droplet combustion.

Since the rate-controlling chemical kinetic reactions were

believed likely to change under very low or very high pressure

conditions (the former is characteristic of high-altitude ignition,

and the latter of high pressure rocket motor operation), a complete
x

model of hydrazine droplet combustion would be one which includes

a detailed description of the chemical kinetics. If it is assumed

initially that the droplet undergoes spherically-symmetric, quasi-

steady-state burning at constant pressure in quiescent oxidizer

surroundings, and if it is further assumed that no viscous or body

forces are present, and, that thermal radiation can be neglected,

the three-dimensional, time-dependent spherical conservation

equations can be shown to reduce to
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1. Overall Continuity

dr (pr2v) = 0	
(1)

which i,f integrated between the droplet surface and any

arbitrary radial location becomes

Pvr2 . PsysrD 	 (2)

here v refers to the velocity of the droplet.

2.	 Spp*c' e^s' Contiriu.i'ty

1 (ar	
dYl -- d	 2 dyi	 = Sc R

D dr	 dr C r	 dr )	 1
(3)

r 2	 u

where 'a' is a dimensionless mass burning rates

a	 =	 PsysrD (4)
PD

Yi = mass fraction of species i,

Sc = dimensionless Schmidt number (p/pD),

Ri = rate of generation or disappearance of i,

D	 = the diffusion coefficient

The boundary conditions for equation (3) are that (a)	 the
a.

net mass .flux of all species 	 (excepting the fuel, N2H4) at the

droplet surface must equal zero:

_. dYl
at r = rD:	 r	 Y	 = dr	

i	 N2 H4
D

h (3a)
a	 (Yi - 1)	

= dYi^	
i _ N2x4 s

µ

rD	dr
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and (b) as r-*., the gas environment consists only of N 2 04 and its

decomposition products (NO2 , NO, and 02):

at r->-: Yi = 0, i = 1,2,3,4
(3b)

Yi = Y i r .; i = 516,718

The species numbering system is indicated in Table V. If the

N204 and its products are assumed to be in chemical equilibrium,

the Yi,c,) values are readily calculated.

TABLE	 V

Molecular Heat of Formation
Species Weight (kcal/mole)

1) N2H4 32 22.750

2) NH3 17 -11.040

3) H2 2 0

4 4) N2 28 0
r;

5)
..r

N204 92 2.170

6) NO2 46 7.910

7) NO 30 21.580

6) 02 32 0

9) H2O 18 -57.798
}
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3.	 Energy Conservation

1 /	 dT 1 d_ ( 2 dT

r	

_r22 ( arDcp dr Le - dr ` r cp
`ar))

dT E dYi - Sc HiRi dr cPii dr u i

(5)

where Le = Lewis number (pbcp/k)

k = thermal conductivity

c  = mixture specific heat EYicpi
i

Hi = enthalpy of species i

The appropriate boundary conditions are that (a) when the

temperature of the droplet is taken to be uniform and constant,

the heat conducted to the droplet must equal the heat required to

vaporize the fuel leaving the droplet:

at r	 rD:1	 c dT = a
Lr ` P d r	 rD L

and (b) as r-}-, the temperature approaches the rocket environ-

mental temperature

as r-+-: T-*T 	 (5b)

A series of species generation equations are-required (the

Ri terms). The actual chemical kinetic mechanism for N2H4/N204

is known to be enormously complicated, involving tens ..of species

and probably well over one hundred elementary chemical reactions

(Reference (19)). As an initial approximation to the actual chem-

ical kinetic mechanism, the sequence of ten overall (global) irre-

versible reactions shown in Tabie VI may be takeri to represent the

(5a) ,t
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kinetic mechanism. Sawyer (Reference (14)) has investigated each

. of these reactions, and his values for the individual. reaction

rate constants are given in Table VI. (It should be noted that

Sawyer observed no reaction between NH 3 and NO, and between H2

and NO, which reduces this kinetic mechanism to 8 overall, irre-

versible reactions.) Based on this kinetic mechanism, the Ri

terms may be written in terms of the reaction rate constants (km),

the gas density, and the species mass fractions and molecular

weights as shown in Table VII.

Assuming all gases to be ideal, the equation of state may be

written

P
P = Y	

(6)
ROT  Z i-1 Mi

Given the required thermochemical data (cpi,Hi,etc.),

Equations	 (1) ,	 (3) ,	 (5) ,	 (6)	 and the Ri equatio"	 ( Table Vii),

' r # with the associated boundary conditions lead to a system of equations

in which a number of functions 	 must take on particular values;

that is, this formulation leads to a multiple eigenvalue problem.'

' The physical necessity for multiple eigenvalues is a subject of

current research and debate (References (20) and (24)). 	 Wehner

(Reference (24)) argues that the second eigenvalue may be a kinetic

parameter to which the flammability limits are related. 	 (The
..t

first eigenvalue is the flame velocity in the theory of laminar,
one-dimensional, premixed flames, and is the surface mass flux,

4..

I
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1

p sys , in the droplet flame problem.) Williams (Reference (23)) 	 1

refutes Wehner's arguments for the existence of more than one

physical eigenvalue. In any event, the work of Campbell (Refer-

ences (20) through (22)) indicates the current inability to obtain

solutions to systems of equations of this type without a number

of additional simplifying assumptions. In the next section we

simplify the model of the flame surface so as to be able to compute

the evaporation rate while still retaining some aspect of the

chemical kinetic effects.

a

i
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V	 ,

TABLE` VI

REACTION ORDER REACTION RATE CONSTANT

1) N2H4-*NH3+kH2+ ZN2 1 1010.33 exp - 36,170
RT

E

2) N 2H4+4NO2-}6NO+2H2O 2 1015.83 exp 700_ 26RT

3) N 2H4+2NO-*2H2O+2N 2 1 1010.17 exp _ 39,600
RT

4) N2H4+02-*2H2O+N 2 1 109.91	 exp _ 37,200
RT

5) NH3 +.52.NO2 -*-	 0+2 20 2 1015.85 exp _ 33RT00

6) NH3+.3 O-*	 I2+2 20 - No reaction

7) NH3+jO2}zN2+2H2O 2 1014.61 exp 700_ 38RT

8) H 2+NO 2}NO+H2O 2 1021.5	 exp - 58,000
RT

9) H 2+NO-}H 2O+^2-N 2 - No reaction

10) H2+202}H20 1 1010.96 exp _ 38,200

RT
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TABLE' VI I

SPECIES GENERATION EQUATIONS

z
(a) Rl = -pal (kl+k2 PY6	 + k +k4

`	 3M6

(b) R2 = kl PY1 M2 - py2 	 k5 PY6 + k^ PY8
MI	 M6	 M8-

i

(c) R3 - X2k l pyl M3 - py3 ( k 8
 

PY6 + klo
Ml 	 M6

	

t	 (a) R
6	-pY6	4k2	

5
Pyl 

+ 5 k 
PY2 + k8 P Y 3

M1 	2	
M2	 M3

	

k	
(e) R7	 PY6M7 (6k2 pyl + 7 k PY2 + k PY3 	 2k pY M7

M6 	M1	
2 5
	

3
M2	 8 M3	

1 M
1

(f) Rg = - k4 PY1 M8 + 3 k7 p2 y2YS + ^,k	 py M8
1	 M2	 3 M3

j

(g) R  = 2 p Y1 M-9 k2 PY 6 +k 3 +k 4 +3- py M9 k PY6
Ml	 M6	 2 MZ	

5 M6
-yr

+k7 PyB _ + pY3 Mg (k PY 6 +k
M	 8	 1p)

	

.<,. 	 8	 M3	 M6

M
(h) R4 = PYl M Z 1+2k3 +k4 +hk^ p2y2y$ M4

F.	 l	 M2M8

µ

F

E,

F,

r:
r
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1.	 Details of the Analysis

Recently, Peskin (References (25) and (26) has obtained

^i

r

solutions to the problem of a fuel droplet burning steadily in an

oxidizing atmosphere by assuming, in addition to the assumptions

noted in the previous section, that (a) the reaction mechanism

could be adequately represented by a one-step, irreversible

reaction of the type:

vFF +v0 ^ vpp	 (7)

where the v i represent the stoichiometric coefficients, F is the

fuel, O the oxidizer, and P the product; (b) assuming the Lewis

number to be unity; (c) taking constant averaged values for the

specific heats, density, and heats of vaporation and combustion;

(d) assuming transport parameters independent of temperature and
t'

chemical composition; (e)- neglecting the energy transport due to

species diffusion (i.e., the term dT CZ cp dYl	 in equation (5));
i	 dr

and (f) by employing the modified flame surface approximation

discussed below.

F	 Although the analysis employs a number of assumptions, it

has the advantage of retaining some aspect of the chemical kinetics.

As a result, the feature of droplet extinction and re-ignition is

retained; a'feature which is of potential consequence in an unstable

rocket system wherein the droplets may encounter regions of expan-

sion and compression. Since droplet combustion analyses which
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assume diffusional processes to be rate-controlling neglect the

chemical kinetics entirely, the extinction-ignition feature is

absent. Such an approximation is discussed in Section C.

Employing the additional assumptions discussed above, the

species continuity equation

4	 1	 dYi_ d	 2 dYi 	_ Ri
:	

rr2 
arD dr 

dr 
r 
7	 pD

Y G 	 may be . written

dYi _	 i	 2	 MF(,l-NF)
a	 a(,2 	 = i in b N	 ry NF Yo] N°
d 	 do	 ! F]	 r
^	 M o	 L

	

o	 (8)

r 2
where n = r , b	 D B , g PA(T)e-E^R0T, and NF and No

rD	 D

represent the reaction orders with respect to fuel and oxidizer.

The ii term arises from the fact that
a

R v°M° R and = vPMP R ,ox vFMF F	 p - "FMF F
.^s

Thus, for the assumed one-step, irreversible reaction

-+N 2H 4 + NO2	 2H 2O + 3N 2	 (9

it	 -1, i2 = ( 23 /16) , i 3 _ (9/8) , and i4 	 (21/16) .

The simplified form of the energy equation (Equation 5) is

1 2 arD d^t (^pT) dr (r2 dr (cpT))) -1 i HiR	 (10)r2



i 1

Y

Introducing the notation t	 (T-
TOO)

/(Q/cp), and Q = Hl+i2H2+i3H3

+i 4H4 , Equation (10) becomes:

M(1 -NF)
N	 N

F 0adt _ d	 n2dt 	 _= 2b	 F
n	 '^ 	 o

f YF 7
[Yo]

M 0

Writing Equation (9) for the fuel, multiplying the resulting

expression by i2, then subtracting from it Equation (9) written

for the oxidizer, leads to:

J
ad.	 i YF-Y	 - d	 2 d	 ido	 2 r	 o	 dp	 n	 dry

Y -Y2 F	 o = 0)^ (12)

which can be integrated to yield:

2YF-Yo = c l+c 2 exp (-a/n) (13)

Subtracting Equation (9) for the fuel from Equation (11)

leads to
a

d2 da_
ate- ( t+YF) - 

a n n
	 T- (t+YF )) = 0 (14)i

which, when integrated, becomes:

YF+t-= c 3 +c 4 exp(-a/n) (15)

The boundary conditions, Equations (3a) , (3b) , ; (5a) and	 (5b) ,

reduce to:

at	 r) =1:	 d Y
k

=aYk ;	 k = O, P
d n ; =1 n =1

d	 YF l
waYF (' -a (12a)

n =l f n=l
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as n-*-: YF I	 =0

(12b)

Y (	 =Yk^^ k=O,P

In}°°

at n=1: dt 	 a
ddn	

_ Q

n=1

(14a)

as	 t`	 = 0

Insertion of the appropriate boundary conditions into Equa-

tion (15) and after algebraic manipulation, an expression can be

derived for the dimensionless mass burning rate:

1+ts-Q
a = In

	

	
I+	 (16)

1-YF^s-Q

where	 is	 t 
I Tj =1 

and YF,,s	 YF
^n=1

We now introduce the additional assumption that the flame

zone of finite thickness can be replaced by an infinitessimal one
r

represented by a Dirac-delta function located such that the fuel

and oxidant react stoichiometrically. As a consequence, the right-

hand sides of Equation (8) (written for the fuel) and (11)

become:

x	 n2b YF	 6 (n-n *)

where the asterisk refer to the values at the hypothetical flame

surface, and S` is the delta function. (Dote that the fact that
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No=O has been used in writing this term. The justification for

this is detailed in the next section.)

Peskin (Reference (25)) shows that a solution to Equation (8)

with this right-hand side is given by generalized function theory

as

b* * *2 __a/n	
1-ea/n for n>n*	 -a/n

	

Y	 ^- Y n e	 +1-e	 (17)

	

F	 a	 F	 1-ea/n* for n <n*

Therefore, for n =n* and YF=YF , Equation (17) becomes:

	

*	 ( 1-e-a/n* )

	

F	 1+a n*2 (1-e-a n* )

	 (18)

Now when Equation (17) is solved at n=1 where YF=YF,s , and

Equation (18) is used, the result is

_ a* 
n *2 

(e-a) 
(1-ea/n* ) (1 -e a/iI*)	 _ -a

	yFps	 + 1e
b*	 *	 (19)

1+^ n 2 (1-e`a^n *
{	 a
'd

From the difference between Equation (8) written for the fuel

and the oxidizer, and using the appropriate boundary conditions,

the following- expression is obtained for rt*

	

TI*	 1 
Y \ a+Y

In
Yo (-) a-a+oYF , s

m
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From the sum of Equation (8) (written for the fuel) and (11),

again subject to the appropriate boundary conditions, the following

expression can be derived for t*:

t* _ (YF,s+ts)(e-a/n* -1 	 (1_e-a/n*)

e-a-1	 l+a r^
*2

 (1-a-a/n* )	 (21)

in which Equation (18) was also used.

Finally, using the result of the next section, b* can be

written:

r 2

b* -	 r1.2 x 1010•exp(-26,800/RT*)^ 	 (22)

Equations (16) , (19) 	 (20)_, (21) and (22) constitute five

equations in the five unknowns a, YF, s , n*, T*, and b*. (Unlike

`• Peskin (Reference (25) and	 (26)), we are not interested here in

` species and temperature profiles surrounding the droplet, but in

the mass burning rate, a; as a consequence, the equations developed

above are particularly suited to this purpose.)

i 2.	 The Rate of the N2H4/N2O4 Reaction

In order to apply the previous modified flame surface analysis,

realistic estimates must be obtained for the reaction rate constant,

• k=A(T)exp( -E/RT), and the reaction orders, NF and No, corresponding

to the N2H4/N2O4 reaction.	 These can be obtained from a one-

dimensional, finite-rate analysis of the oxidation process, using

.K the simplified chemical kinetic mechanism deduced from Sawyer

(Reference (14)) .	 This method is formulated in the following manner.
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As mentioned above, the flow equations are written for one -

dimensional, constant pressure, inviscid flow along streamtubes,

with the following additional assumptions:

a. Negligible diffusion normal to the flow direction,

leading to a uniform mixture of (gaseous) species

at any streamwise point. Therefore, the oxidation

is taken to be 'reaction-controlled'.

b. The flow is steady and adiabatic.

C.	 The initial concentrations of the oxidizing

species are obtained in accordance with the

following reaction equation and with the

assumption of chemical equilibrium:

N 204 -^ -a N.204 + b NO2 - c NO + d 02	(23)

With these assumptions, the relevant equations are:

Energy Conservation

dh	 (24)
d—t = 0; h = constant

^	 x
where h includes sensible and chemical enthalpy.

Species Conservation

dY
= r	 (25)

p dt	 i

Equation of State
3

M
p	 R	 (26)

w ;: c

-	 x



4

Auxiliary Equations

h = E Yihi	 (27)

M = E Yi -1
	

(28)
i Mi

The enthalpy terms are taken to be linear in form:

hi = Ai+cpi(T-TREF)
	

(29)

where the reference temperature was chosen to be 1000 0K.	 Values

for D i and cpi were obtained from the data of Reference (27).

It should be emphasized that this premixed, homogeneous gas-

phase analysis is designed to supply an appropriate representation

of the overall	 (global) oxidation reaction rate, for use in

Equations	 (8) and	 (11).	 It is not, of course, a representation

of the processes occurring around the fuel drop, where a counter-

flow diffusion flame exists, as described by Equations 	 (.8)	 and	 (11) .
i

r ' Results are presented in Figure (88).	 Defining the ignition

delay time (tID ) qualitatively as the time required for the prin-

cipal oxidation reactions to occur, Figure (88) yields the

' anticipated result that t ID is a strong function of the initial

mixture temperature.	 On the other hand, these results indicate

that in the range examined, tID is nearly independent of the

Y pressure.	 As can be seen, at the higher pressures, the second-

Y
order reactions (which become more significant at higher pressures)-
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produce an initial partial oxidation which results in a slight

temperature increase. However, a leveling-off period is seen to

subsequently occur, followed by the principal, first-order oxida-

tion processes which drive the reaction to completion.

As a result, the reaction may be said to be first-order, with

ignition delay times (taken from Figure (88)) as shown in Figure

(89). In this latter figure, T i is the initial mixture temperature.

The approximate straight line behavior of In tID when plotted

against reciprocal initial temperature is in accordance with

elementary chemical kinetic theory which predicts a function of

the form

tID = a • ,exp (E/RTi)

where a is a constant and E is an overall activation energy. From

Figure (89) E was determined to be about 26,800 calories/mole.

As an initial estimate, the pre-exponential factor in the

overall reaction rate constant was chosen to be the average of the

pre-exponential factors for the N2H4 oxidation reactions as deduced

by Sawyer (Table VI). From this and the result obtained above,

the initial estimate of the overall reaction rate constant was

k 	 1.2x1010 exp(-26,800/RT)	 (30)
j
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To check this estimate, results using Equation (30) were

checked against results obtained using the complete streamtube

analysis.	 The comparison was made at high pressure (20 atm), where

the first-order approximation and Equation (30) would be least

accurate.	 The results are shown in Figure (90), with the stream-

tube result labeled 'exact'. 	 The global model does not, of course,

predict the initial reactions or the leveling off period after the

initial second-order reactions have occurred, but the general

behavior and the delay time appear to be reasonable. 	 Although

the result for this particular case could have been improved by

adjustment of the pre-exponential factor in Equation (30), this

was felt to be unwarranted, and Equation (30) was selected as a

. suitably accurate overall reaction rate constant for inclusion

in the modified flame surface analysis.	 This result is reflected

in that analysis through Equation (22), and the fact that N o was

taken equal to zero.

;r
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C.	 The Diffusion-Controlled Flame Analysis

For the purpose of comparison with the previous analysis, a

diffusion flame model was developed. Introducing the rate of dis -

appearance of the fuel

.o
mf 	psys (4TrrD)	 (31)

Setting Q=QT , where QT is the heat of reaction per unit mass of

fuel and oxidizer consumed, while using the definition of is

(ts=cp(Ts-T) /Q), and the fact that Le=1, and noting that YF,,s=1

for this elementary diffusion flame model, Equation (16) reduces to

mo
 - 4TrrDk 

In	
1+cp(TW-Ts)+Yo,^ ^ f s AHR	 (32)

F	
c 
	 L

where QT= (Yojco^fSAHR), Yo,00 is the mass fraction of oxidizer in

the chamber gases, ^ is the fuel-oxidant equivalence ratio, f s is

the stoichiometric fuel-oxidant ratio, AHR is the heat of reaction

per unit mass of fuel, and the superscript zero on the mf term

indicates that this is the fuel mass flux in a stationary environ-

ment; that is, in the absence of forced convection effects.

Written in a slightly modified form, Equation (32) is frequently

referred to as the Godsave equation.

In_ order to extend this equation to account for the fact that

there will, in general, be a"differenc •e in velocity between the

droplet and its surroundings, it will be assumed that the mass flux

dependence can be represented by the expression of Agoston, Wise,

and Rosser ( Reference ('28))
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mo = 1+0.276 (;e) (Pr) 1/3
m	 (33)

F

where Re = (2 p ^rD) l u-v l /p ^ and Pr = cp. p ^/k c. .

In this manner, the components of the ^-vector of the hydro

dynamics code can be written (assuming no drag force interactions

for the pancake or annular model):

mF (1+ ^ f )
s

0
= N	 (34)

0
._ _ Lo



Q was calculated from the enthalpies obtained from Equation

(29); L was obtained from the Clausius-Clapeyron equation using

the vapor pressure data in Reference (29); in going from a to mF,
k was obtained from Reference (29) and c  from Reference (30).

Results are shown in Figures (91) , (92) , and (93) . In

Figure (91), the results are compared with the previous results

obtained from the Godsave analysis (Equation (32)) and the exper-

imental results of Reference (31) . As can be seen, the current

analysis yields results which are about 80% higher over most of

the range of rD than the corresponding Godsave value. This is

due, at least in part, to the values chosen for Y o w and D, as

well as the differences inherent in the two approaches. It is

interesting to note, however, that the line corresponding to

T=1035 0K, p=300 psia (Curve B) passes right through the experi-

mental points of Reference (31). Unfortunately, Reference (31) r

does not indicate the level of-pressure at which these experiments

were conducted, leaving this possible correlation unresolved

However, the Linear dependence of the burning rate on droplet

diameter is retained by the modified flame surface analysis, in

accordance with theexperimental results.

Figure (92) contrasts the ambient temperature dependence of

this analysis and the Godsave analysis for the particular conditions

noted. It can be seen in Figure (92), that the Godsave analysis

yields a very.weak,.almost linear ambient temperature dependence.

84



r r

Most experimental work indicates a stronger, nonlinear dependence.

The modified flame surface analysis does yield this latter type

of dependence. It may be justifiably said, however, that the

difference between the two analyses at these particular conditions

are not sufficiently great to warrant using the current analysis

in the pancake or annular computer program. In partictilar, no

evidence of extinction can be seen down to ambient temperatures

near the boiling point of the fuel. If this same result is dis-

covered at other values of the ambient pressure as well, this will

constitute ample justification for the use of the simpler Godsave

analysis.

The effect of ambient temperature on the values of YF,s' n*

and T* are shown in Figure (93). The value of YF ,, s-;1, as T.

increases, in accordance with the assumption of the Godsave

diffusion-flame approximation (YF ,s=1). The hypothetical flame
t'

surface moves away from the droplet as T. increases; this stems

from the fact that in order to sustain a stoichiometric combustion

process, the flame location must move away from the flame surface

where a larger quantity of fuel vapor (YF,,$ ) is being produced.

Finally, T* exhibits a linear dependence on T.

.	 t.

4
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E.	 The Reduced Godsave Analysis

Preliminary runs which coupled the complete Godsave analysis

to the fluid dynamics program indicated that the running times

were excessively long. (Roughly, five times slower than with the

elementary energy term previously used.) As a consequence, the

results obtained from the Godsave analysis were used to formulate

the following simplified version of this analysis:

The weak, almost linear, temperature dependence of the dimen-

sionless mass burning rate can be approximately expressed as

a300 = (3.73 x 10-5 )(T.) + 1.855
	

(35)

where a300 is the dimensionless burning rate at a chamber pressure

of 300 psia. The pressure dependence of the mass burning rate, ap,

is approximately given by

0.0108
= p °°	 (36)

a300	 300
F

Once ap is computed, the burning rate in stationary ,sur-

roundings is obtained from

•o	 2Trk d am	 37ti	 F	 L PcP

where dL is the drop diameter, and the thermal conductivity and

specific heat are functions of the liquid drop temperature

The drop temperature, TL, which is the boiling temperature

at the chamber pressure, can be obtained to a good approximation
t

from the integrated Clausius -Clapeyron equation
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n

In --- P _ (8.7 x 103)	 1	 _ 1	 (38)
2131	 1176	 TL

where p is in psia, TL is in °R, and the critical point condi-

tions are 2131 psia, 1176 0R.

Knowing TL ,k is obtained from a linear curve fit of the

data in Reference (14) :

k	 1	 (-8.33 x 10
-5 ) 

(T
3600	

L-460) + 0.21071	 (39)

and cp is obtained from Reference (15):

cp = 0.138 + 0.527 x 10-3 TL - 0.120 x 10 -6 T L 2	 (40)

From mF, the burning rate in the convective environment is

then obtained from Equation (33):

mF	
= 1 + 0.276 (Re)	 (pr) l/3	 (41)

.:o
mF

Under the engine conditions of interest, the following con-

stant values are reasonable

Prl/3	 o.6

L  = 540 Btu
lbm

La	 178.2 Btu
lbm

Q	 12,400 ltu
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where LF is the latent heat of the fuel, L o is the latent heat

of the oxidizer, and Q is the heat of reaction. The appropriate

terms in the ^-vector of the fluid dynamics program may now be

obtained (Equation 34) .

t
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IV. CONCLUSIONS AND RECOMMENDATIONS

The conclusions reached from the computations carried out

thus far are that a stable convergent numerical method has been

constructed which can analyze nonlinear liquid propellant rocket

stability. The pancake model and the annular model are two dis-

tinct codes which can analyze nonlinear wave motion in r-e-t space

and a-z-t space respectively. In the pancake model we have

observed:

1. Linear tangential waves do not coalesce while

maintaining a constant rotational period. These

results are, of course, not new but can be

predicted from the nonlinear computer program.

2. Nonlinear tangential waves having an amplitude

of approximately 1100 Asia on a base pressure

of 300 Asia have a completely different structure
1

from linear waves and, indeed, may even become

shock-like depending on the initial pressure

ratio. Interestingly, the period of wave 'rotation

for the nonlinear problem is close to the period

for the linear problem.

3. Large induced velocity fields are generated by

the nonlinear compression spike and appear behind

the wave front.
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the wave amplitude is larger than the nonenergy

r

case.

5. Only when outflow is constructed does there

appear to be any hope of achieving asymptotically,

t-*00 , a finite wave amplitude rather than a solution

which blows up.

6. The ability to construct outflow conditions for

the pancake model simulating the effect of a

converging-diverging nozzle, in steady flow,

along the lines which are described in the

Priem-Guentert instability model were not

successful for finite waves. The method,

modified for two space dimensions, seemed to

work for limited integration time only with
S

infinitesimal finite amplitude waves; the

solution eventually became unbounded.

7. The annular model however. can compute the



11

8.	 Steady one-dimensional flows have been obtained

with the annular model as asymptotic, t-•-,

solutions. The complete gas dynamic and droplet

evaporation model was solved as a coupled system.

No additional calculations were performed with

this model.

In conclusion, we feel that the pancake model can be used to

describe, with good accuracy, the transverse motion of finite

amplitude waves in rocket motors but without coupling with a

combustion model. A-priori assumptions on energy and mass accum-

ulations necessary to solve the problem fail to yield physically

realistic solutions.

The annular model can be used to yield stable solutions

without the introduction of such assumptions. The annular model

program can, therefore, compute time-dependent coupled gas dynamic

and droplet combustion problems for a two-dimensional rocket motor, 	 t

As a result, the annular model should be further developed

to beused with baffles and, in conjunction with the pancake
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PANCAKE MOTOR COMPUTER RUN CONDITIONS

Maximum
Run	 Base Pressure	 Initial Pressure Energy Model 	 Mesh Size

(psia)	 (psia)

1	 300	 300.0001	 None	 11 x 36

2	 300	 450	 None	 11 x 36

3	 300
	

590	 Simple Model	 11 x 36
with Axial
Flux

4	 300
	

590	 None	 11 x 36

5	 300
	

590	 Simple Model	 11 x 36
without
Axial Flux

6	 300

7	 300 (second
tangential mode)

8	 300

590

300.0001

300.0001

Godsave Model 11 x 36
without
Axial Flux

None	 11 x 36

None
	

6 x 18

One of the above run numbers appear on each figure heading

of the figures associated with Section II of this report. This

helps to identify, in each figure, the conditions that characterize

the data shown in the figure.

r

. 	 t
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ISOBAR
1
a

5
e

7
a
9

1 u

11.
12
16

14
15

17
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19
20

PkkSSURE (PSI )
299,999

299,999
299,999
?99,999
299,999
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300,000
3U0.0u0
3009000
300,000
300, o o n
300,000
300,00n
300,000
300.000
300001
3U 0,c)0 1
300, (301
300,00.
300, 001

PA: ,JCAKE ;,")T(;k-1

	

Pf-'^{= F=HE:F FNF wCF	 PHESSUH&	 =	 3 () 0 , 0 0 PST
Ail F'=REF F HPNCk SOUND SPEECm . 3498o5 FT /SPC
P	 = GHAME !=R HAL I US	 *4583n FEET
TREF=ijEFFHENCE TIME_k/ARFE 9 10001310 SEC

T/THE Fz l 6o2Y407

ISO8AH.	 Pk^--SSUHF/PRF,-F

	

1	 1.000

	

2	 1.00Q

	

3	 1,000

	

4	 1.000
,00n

a	 1 n00

	

r	 ^.^oo
1.000

	

9.	 1.000

	

1t)'	 1.000

	

11	 10000

	

12_	 -1.000

	

13	 1.Ono

	

is	 1.1100

	

15	 11000

	

1 6 	 1.000

	

17	 1.00(1

	

1d	 1,OOQ

	

19	 1, 000

	

20	 1.n00
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PANCAKE HOTOR-6
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ISOHAH	 PRESSURE(PSI)
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3 1, 000
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9 1	 00n
I I	 non
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19 1,000
20 1,000
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{ PANCAKF	 MOTOR -7

T=	 0 9 000	 MILLISECONDS

` ISOBAR	 PRESSURE(PSI)
{ 2990999

2	 1 99 9993 299!999

4	 299,999
5	 299,999
6	 300	 coo
7	 300,000
8	 300,000

;. 9	 300,000
10	 300, n 00
11	 30n,0oo
12	 3001000
13	 300,000
1.4	 30 0,000
15	 300,000
16	 300;001
J.7	 300,001.
18	 300, 001
19	 300$ 001

;.
20	 3 00900 1

PANCAKE MOTOR-7

PRFF=REFFRFNCE PRESSURE	 a	 300600	 PSI
ARFF'=REFFRENCE	 SOUND SPE'EAm	 3498,5	 FT/SEC
R	 =CHAMBER	 RADIUS	 ,45830	 FEF..T
TRFF=RFFFRENCE TTMEu R /AREF z , Oo O1310 	 S EC

T/TRFFz	 0,00000

ISOBAR	 PRESSURF/PREP
1	 11000
2	 1,00 0
3	 1,000

4	 1,00 0

5	 1 ,0006	 1,000

7'-	 1,000
8	 1,000
91,00010	 1,000

{3
i, nQ0

42	 1,00o
13	 1,000

^: 14I , 0 o0
15	 11000.
16	 1,00 0

k

t
17	 1000 0
18	 4,,000
19	

11000

20	 1,000
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PANCAKE	 MOTOR -7

Ts	 825	 M1 LL ISECCNnS

ISCOAR	 PRESSURE(PSI

1	 299,999
2	 299, 999
3	 2991 Q90
4	 299,999
5	 299,999
6	 300,000
7	 300,000
S	 300,000
9	 300,00n

1.0	 3001000
11	 3000 noo
12	 300,000
113	 300,000
14	 300,00n
15	 300,000
16	 300 tool

k. 17	 300,00i
3 0 0 1 0 01.

19	 3 00 ,001
0	 300,n01

PANCAKE	 M0.TVR*7

PRF.F=REFERENCE	 PRESSURE	 =	 300,00 PSI

ARFF=REFFRFNCE SOUND SPEEDc	 3498,5 FT/SFf;
R	 =CHAMBER	 RADIUS	 =	 ,45830 FEET
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T/TPEF=	 6929407
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4	 , 00 0
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7	 1, 000
a n	 11 non.. ^' O O

to	 ^,00a
1	 1,000
1,2 1^a0013	 1loon f,.
14	 1,000
15 ,aoo

1.7	 , 000
i$	 1,000z
19	 5,000
20
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T=	 u # UUU m ILL 1-^ECCnn'

I SMSAH	 FaHtSS(JiiF. (PSI )
1	 1.5q,^^p0
2	 9.65 f 7r9
3	 1	 79
4	 1,971,568

<  5 	 2.1 .i f 1^^
F

b	 288947

7	 244, 737
d	 2x0.526

27 6 f 31b

10	 2y2f 1. 05
11	 3079895
12	 323166'4
13	 339,474
14	 355.263
15	 3710053
16	 3e648 42

17	 4'02o632
1.6	 418	 4 21
l y	 434 q 211.
20	 450 o n00

HANCAKt WITUR-2

PliFF'=KEF EHFNCE	 PRESSURE	 =	 .S'10	 Q R p 	 I
AHE-F =KF F• h.	 -i4CE	 SOUND	 SPEED=	 3498 f 5 FT/SEC
R	 'CHA,'4bER	 NAU I US	 —	 r `(5h 3 0 WEFT
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5 711.;;
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I ObAH	 PKL-SSUHL- (PS 1 )
1 I e U 1;576

3	 21 2 ^s g0
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24413 U3
t^	 260l2bh
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3	 9742

	

4	 j 744
F14Fi

6
7 1951

	

8	 1003

	

S	 1 O55

	

lU	 1;107

	

11	 11159

	

12	 1, 212

	

13	 1,264
	1;4	 11316

	

15	 i,sdS
lb 1#420

	

17	 1 47?.

	

itI	 1 524

	

1 9	 1,577

	

2U	 14629

143



y

_	 -" 1 — ^—

,

i

PHNCRKE MOTOR-2

Q
	

PRESSURE ISOBARS

cz
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LID	 .•
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=	 f
LJ ~^

bi
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IAK
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a-

'-^ .Od	 -.5 .Qa	 -3 .^Q	 --1.00	 1.00	 3.00 9.00	 2.OQ
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PANCAKk PIC'TUH-2

T:	 ,304 MILLISE-(;no

i

I SOtiAH	 P^stSSUH (PS I )

	

l	 206 p 2eP

	

S	 240 320

	

4	 ?_:2 1159
i	 5	 274 9,597

_	 b	 25G,^+3^:^
31n,^+7:^

	

cs	 340 512

	

S^	 X362 ^ 55p

	

] U	 :iO4, "5EA

h65

	

i..	 450,703

	

14	 472141

	

15	 494,780

	

17	 5wti. t1C

	

I b	 560 1894

	

1.'t	 5t2  sa33	 '

	

>U	 bU4 971,

PANCAKb WITON -2

	

I^KE F=EZE~F F^F i^lCE	 F' E^^4^ihtE	 311 0 e U 0 PS I
Aii F = Kt`F l Kf:NC	 SOU ►`'U !)PEEL=	 FT /SFC
N	 :LHA11bv-= i HAU I US, 	 =	 q 45830 FEET

	

1 kE:F'=RF-F F•kH4F- 	 T I Mlzaf / AHED	 0	 0 %31n SEC

T11 k t F = . 2 . 3 j 0G
.a

ISOUAH	 PHt;SStJh F--/PRF F

	

1_	 t fa c" 1

694

Y	 3	 ,76H

	

5	 1915 

	

6	 , 5+ E 8

	

1	 1 , <) 0 2
d

	

9	 1,`208

	

lu	 1*252

	

11.	 1'., 355

	

12	 1', 429

	

1.3	 1'0502

	

14	 1 `'7bh	 15	 1`4 649	 l
-.	 16	 l;, 7 2 3

	

17	 1j796
1 -H70

	

19	 1,943

	

20	 21017
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PHNCHKE MOTOR-2
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—3-00	 0	Od	 1.'Od	 1DC^	 3.a^,	 S.M

RRD I RL D I S TRNCEC I NCNES

T-	 s4 06 MILLISECONDS
]Figure 34	
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PANCAKt MOTOR-,

To	 1406 MILLISECONDS

I SObAR	 F f-,bs5 H E (PS I

1	 20 3 , rtuI
1	 2250$64
S	 243, 9;27
4	 2630990
5	 2e4  , (153
6	 304' 116

$	 314	 242
-364	 3p4

lu	 U4o361

11	 4U4943n
12	 4 249493
13	 4440 556
1 4	 464v619
15	 484 t 6d2
16	 SU4o745
17	 5,4-40t3U"I

564	 933
r'r 2U	 584, 996

F'ANCAKk	 MOTCP•ie

PHff'z	 -F FRENCE PHESSURF	 a	 3mu o pn PSI
AKEf mREF'ERFNCE SOUND $PEEL=	 3498 9 5 FT/SF.C;
R	 mf:HAMHF R RAU I US	 =	 0 45830 FEF T
TRE.F

-
uREF'ERi-NCE	 TIM FsH /ARFF=.000j3in SEC

T/TRH	 F x	 ' 3 o1U147a;
}Vs

ISObAH	 PKESSukE/FREE
'^. 1	 , 67 9

2	 j746

4	 ^KB
5	 ,947
6	 1,014

ti 8	 111479	
10 214

14	 10281,
^- 11	 134$

12	 1	 415
13	 11482
1;4	 1,549
1;5	 1 x626
16	 1. 682
7	 1074418	 18816

19	 3^H	 3
20	 1095Q
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PANCAKE MOTOR-c

PRESSURE 180BRR5
tD
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5	 ^i

f . 1.

ca
<-t	

^i	
tl

CE©
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2—J .d6	 ^o .i^^J	 -3 .00 -1-00	 1.00 	 3.00	 0.00	 7.00
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Figure 35
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PANCAKE mnl*oH-2

Ta	 t511 MILLISECONDS

ISOBAR	 FRL-SSUHF(PST)
I	 2Q 3 9 903
2	 228o874
3	 254t785
4	 2789696

3 i a	 518
7	 353, 42 A
8	 378,339
9	 4 03,25n 

4 k 8 	1
11	 453oQ7?
12	 477,963
id	 502,894
14	 527o805
15	 552t7lb

577,60 7
17	 602o536

6279449
65 2 ,  359

20	 677927 ►

PAHCAKE	 MQ'TOH-2

PfiEF=HFF ' FRFNCE	 PRESSURE	 V0000 PSI
AHFF=H^FEHFNCE	 SOUND SPEFL m	3498,5 FT/SF-C
R	 =CHAMbFR HAUIWS	 445830 FEET
TRf--FmHEFERf.-NCE	 TlilF- mi '/OEF = 9 0011310 SEC

7/'i	 3s89977

IS06AH	 FHcSq.IJf%F/PkEF

2	 ,763

4	 v929
5

7	 1*176

9	 1,344
1,	 427

12	 1,593
6 7 6

14	 x759 
1!5 	 I, 842
16	 1, 925
17	 2 , 008 

1. d 	 21091
1,9	 2 ,17 5
2u	 2o258
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NA ['4CAK,	 MO TOR-2

To	 g 6v1	 MILLIS ECONDS

ISOWAH	 PHtSSUHF^ (PSI)

1	 ?12,'23
2	 233 	 7n
3	 ?5,5	 018
4	 276	 066
5	 297,113
6	 318,161
7	 339,?_p9

360, 56
9	 341,304

1,U	 4U2t352
11	 423,:399
12	 444,447
13	 AC5,495
14	 466547
15	 5U7,li9t1

.	 16	 5^8+^37
1.7 549,665
1.a	 F5700733
19	 591x780
2U	 612,E

HA14CAKE	 MDTOH-,^

PHFF = fl FFFRENCL FRE$8UHE	 =	 3n u , o n PSI
AH bF. =HFFEHF-NCE	 SOUNU	 SP2FLz	 3498 0 5 FT/SEA

it	 =CHAMBER HAUIU5	 S	 045830 FEET
THFF =H EF'ERkNU; T I ME=H/ ARFF = o 00 01 310 SEA 

	 .

T/T:KrE s	 4, W"91

IS OBA R 	 FRESSOHE/PHFF
1	 ,710
z	 ,780

4	 9t0

5	 X990
6	 1,0

61
y

7	 1,;	 31
1 ,201

9	 1,;271
1U	 1,341

F	 it	 1 x;411
1'Z	 1 ^ 4 X31

13	 1,;552
14	 1,622

15	 1th9?
1.6	 11762
1:7	 1 032 
1 e	 190 z
19

'
	1,973

20	
2e04
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PPNCRKE MOTOR-2

PRESSURE ISOBARS
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Figure 37
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HANCAKt: MOTOH-;d

Tm	 1 1 2,52 MILLISECONDS

IS08AH	 FRi:SSURE(psi)

1	 1780783
2	 1.959488
15 	2129192

6	 262o3U5
7	 279t U U 9

2951 714
9	 3120418

lu	 329	 I' - 2
11	 315,826
12	 3629531
113 	379,235
14	 3951939
15	 412,644
16	 4k9o348
17	 416	 052
18	 4 6 2 757 
V	 479o461

hU	 4Y 6 	1. 6 5

PA(llj.CAKL-	 WITOR-2

P q - FcHEFERENCL-	 PRESSORF.	 3iolor PS 
AHEF=HEPEHF-NCiz	 SQUNQ	 SPEED=	 3498,5 FT/SEC
R	 ' cGHAMSER	 RAUJUS	 45830 FEET
THEFwHEFEHF:NCE	 TlM'^xH/AFEFco0U q 131n SEC

T/TREPs	 9,4U473

ISOkI A R	 PRtS S UHF/PREF
1	 9 5 96
2	 o652
13 	 o707
4	 0763
5	 M19

6	 , H 7 4
7	 1930

913 6

1U	 1,097

12
13	 1,264
14

^6	 1@431
17	 11487
18	 115 4 3`

2u	 1	 1554
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\•/	 ^`	 .fir

1	
lam/

X00	 ^a :Op	 - 3 .(Ja	 —1.0^	 1.00	 3 . d^	 6.00	 ? . DO
RRD I RL D I STRNCEC I NCHES l
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• y

PANCAKE MOTOR-2

Ts	 2.467	 MILLISECONDS 

ISOBAR	 PRESSURE(PSI)
1	 185.283
2	 200.258 I
3	 215.232
4	 230.207
5	 245.101
6	 260.155
7	 275.130
8	 290.104
9	 305.079

10	 320.053
11	 335.027
12	 350.002
13	 364.976
14	 379.951
is	 354.925
16	 409.899
17	 424.874
is	 439.848
19	 454.823
20	 469.797

PANCAKE MOTOR*2

PREF=REFERENCE PRESSURE 	 *	 '300000 PST
1 AREF=REFERENCE SOUND SPEEDs	 3498,5 FT/SEC

R	 :CHAMBER RAOIWS	 w	 .45830 FEET
TREFsREFERENCE TIME:R/AREF • .0001310 SEC

T/TREFA 18.83099

ISOBAR	 PRESSURE/PREP` .p A
1	 .618
2	 X668
3	 .717
4	 ,767
S	 .817
6.8677	 .917

8	 .967
9	 1.017

i0	 1.067
11	 1.117
12	 1.167
0	 1.217..	 ? 14	 1.267y$

1.315
ib	 1,366

., 17	 1.416a_
ie	 1,466
1.9	 1.516
20	 1.966
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PRNCHKE MOTOR-2
PRESSURE RT RRD IRL D ISTRNCE OF 	 5.50 INCHES

R
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V

. QO 60.00	 120.00	 180.00	 240.00	 200-00	 3160 .x'

RNGLE C DEGREE

T`	6511 MILLISECONDS
Figure 42
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PRNCRKE MOTOR-9

PRESSURE ISOSRRS

ti
1

co
L

z

cr .^

Q.

r

fl

-^ao -6.00 ^3 .00 -i .aa	 L .00	 .ao m.000
RRDIRL DISTRNCECINCNES) ,

T-=	 0.000 MILL ISECONDS

Figure 44
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PANCAKE MOTOR*4

Tx 0,000 MILLISECONDS

ISOBAR	 PRESSURE(PSI)
1 1 01000
2 40.5 26
3 71.053

.4 101, 579
5 132,105
6 162 , 632
7 193.0$
8 223,684
9 254,21i

10 284,737
11 315,263
12 345,789
13	 376.316
14	 406x842
15	 437,368
16	 467,895
17	 499.421
18	 528e947
19	 5591474
20	 990,000

PANCAKe MOTOR"4

PREF=RPFERENCE PRSSSURE	 n 	 300.00 PSI

AREF u RSFERENCE SOUND SPEFDR	 3498 , 5 FT/SEC'
R	 =CHAMBER RADIUS	 s	 ,45830 FEET
TREFoREFERENCE	 TIMFxR / A.REF v .e0ei3jo SEC

T/TREE=	 0,00000

7
ISOBAR	 _PRESSURE/PREP

1	 v033
2	 ,13 5
3	 ,237,r
4	 ,339

,t 5	 .440
6	 .542
7	 ,64a
8	 .7465
9	 .847

10	 ,949

12	 10153
e^ 13	 1925 4

14	 I,356
1

13	 1.438
`r 16	 1,960

1'T	 lo661
18	 1.763

! 19	 IsA65
20	 1* 967
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PRNCRKE MOTOR-4

PRESSURE ISOBARS
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z

L)Qzrr `
a	 '
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o	 _
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Q
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PANCAKE MOTOR-4

T•	 .082 MILLISECONDS

ISOBAR	 PRESSURF(PSII
88,935

	

2	 124t83i

	

3	 x.60,728

	

4	 196t625

	

5	 232,521

	

6	 268 i 418

	

7	 304314

	

8	 340,?11

	

9	 376tio7

	

10	 412,004

	

11	 447,900

	

12	 483,797

	

13	 519;693

	

14	 9551590

	

!S	 991,486

	

16	 627,383

	

17	 663,279

	

18	 699,176

	

19	 735,072

	

20	 770,969

PANCAKE MOTOR*4

	

PREF D REFERENCE	 PRESSURE	 . 300v00 PSI
AREFoRE'FERENCE SOUND SPEED* 3498 9 9 FT/SEC
R	 • CHAMBER RADIUS	 . ,4583Q FEET'

	

j	 !	 TREFPREFERENCE	 TIME n R /AREF n e00013j0 SE6

T/TREE' n 	 ,62629

ISOBAR PRESSURE/PREP
µ

i ,296
s

2' '4is
3 ,536
4 , 655
5 ,775
b ,893
7 1,014
8 1, x,34
9 x,,254

to 1,373
it 1,493
12 1,613
13

l 732

14 1,852
15 1,972
16 2,091
1.7 2 9 Zit
18 .2t331
19`, 2	 4S0'
20 2 * 970'>
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PANCAKE MOTOR"4

T-	 t163 MILLISECONDS

ISOBAR	 PRESSURE(PSI)

	

1	 114,541

	

2	 152,611

	

3	 190,680

	

4	 228,750

	

5	 266,819

	

6-	 304,889

	

7	 3429958

	

8	 381,028

	

9	 419,097

	

10	 457 ,9.67

	

11	 495,236

	

12	 533,306

	

13	 571,375

	

14	 009,445

	

15	 647,514

	

16	 685,584

	

17	 723,653

	

18	 761 * 723723

	

19	 799,792

	

20	 837,862

PANCAKE MOTORR4

	

PREFPREFERENCE	 PRESSURE	 300,00 PSI
AREF=REFERENCE SOUND SPEEDS 3498 0 5 FT/SEC
R	 sCMAMBER RADIUS	 S 1 45830 FEET
TREFaREFERENCE TIME=R/AREF c ,00013i0 SEC

T/TREF x 9.,24509

ISOBAR
A

PRESSURE/PRFF
1 .382
2 ,509
3 ,63b
4 ,762
S 1889	 k.
6 1016
7 19143
8 1.270	 r.
9 1,397

10 1,524
19. , eS51
12 9,.778
13 _19905
14 2,031
15 2,x.58

b 2,285
17 2,412
18 2,539
19 2,666
20 2,793
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PRNCRKE MOTOR-4

PRESSURE I SOBRRS0

f.r

j	

^-
`7

t	 1,

r	 `	 14

UCI

cr-..,,

a	 s.^
CtCl
	 -^

^	 l
C^+ 

^.aa	 --^.00	 --3ao	 -iaa	 L.oa	 3.oa	 sna	 ^.oa
RA.D-I RL D I STRN CE C T NCHES

T	 245 MILLISECONDS
Figure 4
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PANCAKE MOTOR-4

T:	 j245 M I L;L I SECONDS

ISOBAR	 PRESSURE(PSI)
1 140,707
2 203,986
3 267,265
4 330,543
5 393.822
6 457.i01
7 920,379
8 583,658
9 646,937

i0 710,215
11 773,494
12 836,773
13 900	 QSi
14	 963,330
15	 1026.609
16	 1089,887
17	 115 3 , i 6 6
18	 1216,445
19	 1279,724
20	 13439002

PANCAKE	 MOTOR•4

PREF=REFERENCE PRESSURE	 •	 300,00 PSI
AREF•REFERENCE SOUND SPEED• 	 3498,5 FT/SEC
R	 •CHAMBER RADIUS	 •	 ,45830 FEET
TREF a REFE'RENCE	 TIME E R/AREF n ,000131.0 SEC

T/TREE=	 1,86735

ISOBAR	 PRESSURE/PREP
1	 +469
2	 .680
3	 .891
4	 1,502
5	 1.313

-6	 1.524
7	 19735
8	 1 t 946
9	 2,156

10	 2,367
11	 2.578
12	 2,789

14	 3,211
15	 3,422
16	 3,633
17	 3,844 .i8	 49055
1.9	 4,266
20	 4,477
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PANCAKE MOTOR-4

PRESSURE ISOBARS

ti
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cr-

0r
5-?.DO	 -5.00	 -3.a0	 —1.00	 1.Otl	 3.^0	 S.OQ	 1.^^

RADIAL DISTA1JCEf INC}-fES^

T=	 .334 MTLLTSECONIIS
Figure 48
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PANCAHE MOTOR-4

To	 0334	 MILLISECONDS

ISOBAR	 PRESSURE(PSI)
1	 115^A5 i
2	 168,970

. 3	 222,089 l
4	 275,209
5	 328,328
6	 381.447
7	 434.567
8	 487,686
9	 $40.805

10	 993,924
11	 6 47, 044
12	 700,163
13	 753,282
14	 806,402
15	 889,521
16	 912,640
17	 965,760
18	 1018,879
19	 1071.998
20	 11259117

PANCAKE	 MOTOR-4

RREFwRRFERENCE PRESSURE	 s	 300.00 PSI
AREFoREFERRNCE SOUND SPEED= 	 3498,5 FT/SEC
R	 =CHAMBER RADIUS	 s	 , 45830 FEET
TREFoRBFERENC 'E TIME =R/AREFa , 0001310 SEC

T/TREE=	 2,54805

ISOBAR	 PRESSURE/PREP

1	 .386
2	 .963
3	 ,74Q
4	 ,917
5	 1,094
6	 1.271

' 7	 1.449
8	 19626
9	 1,803

10	 11980
11	 2 ,15 X

.. 1-2	 2,334
13	 2,911

-14	 2,688
15	 29965
16	 3,Q42
17	 3.219
18	 3.396
19	 31,973
20 	 3,758
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PANCAKS MOTOR,+!

PREFaREFFRENCE PRESSURE	 a 3Q0,00 PSi

AREFsREFERENCE SOUND SPEED: 3498,5 FT/SEC
R	 =CHAMBER RADIUS	 n * A5830 FEET
TREFxREFFRENCE TiME a R / AREF n , OO61310 SEC

^ 4

T /Tt]CCa	 "! 799751
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PANCAKE MOTOR-4

PRESSURE I50BRRSQ

Q

r
r
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O	 ^'41_

? •00	 -5.00	 3 XO	 -1,00	 1.00	 9.00	 G.00	 ? l00
RF1D I A.L D ISTANCE C INCHES

T=	 4517 MILLISECOND

Figure 50	
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PANCAKE MOTOR-4

Tz	 j 517 MILLISECONDS

ISOBAR	 PRESSURFIPSI'

	

1	 x,23,450

	

2	 177.535

	

3	 23,,620
`	 4	 285, 705

	

5	 339,790

	

6	 3930875

	

7	 447,960

	

8	 502.045

	

9	 556,130

	

10	 610,215

	

11	 664,301

	

12	 718,386

	

13	 772,471

	

14	 826.556

	

15	 880,641

	

16	 934.326

	

17	 988.811

	

r	18	 10429896

	

19	 1096.981

	

20	 1151,066

PANCAKE MOTOR-4

	

PREF=REFERENCE	 PRESSURE	 n 300 0 00 PSI
AREF=RRFERENCE SOUND SPEEDO 3498 # 5 FT/SEC
R	 =CHAMBER RADIUS	 n 945830 FEET
TREF=REFERENCE TIME=R/AREF w ,0001310 SEC`

T/TREE : 3,94745

RE/PREPISOBAR	 PRESSU

	

f	

.412

	

2	 ,592

	

3	 ,772

	

4	 ,952

	

5	 1133

	

6	 1,313

	

7	 1,493493

	

8	 1,673

	

9	 1,85a

	

10	 29034

	

11	 2.214

	

12	 2,395

	

13	 2,575

	

Y	 14	 2,755

	

k	
15	 2,935

	

16	 3,x.16

	

17	 3,296

	

18	 3,476

	

19	 39657

	

20	 3,837
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PRNCRKE MOTOR-4



',	

R

}

PANCAKE MOTOR-4

Ts 1,087 MILLISECONDS

ISOBAR	 PRESSURE(PSI)

	

1	 115,495

	

2	 172,677

	

3	 229,860

	

4	 287,042

	

5	 344,224

	

6	 4011407

	

7	 458,589

	

8	 515,771

	

9	 572,954

	

10	 630,136

	

it	 687,318

	

12	 744,501

	

13	 8012683

	

14	 858,865

	

15	 916,048

	

16	 973,230

	

17	 1030,412

	

18	 1087,595
M	 19	 11449777

	

20	 12019959

PANCAKE MOTOR-,4

	

PREF s REFFRENCE	 PRESSURE	 a 300,00 PSI

	

AREF4REFERENCE	 SOUND SPEEDR 3498,5 FT/SEC 	 x
R	 =CHAMBER RADIUS	 in ,45830 FEET
TREF g REFERENCE TIME 2 R/AREF' s .0001310 SEC

T/TREE* 8029882

ISOBAR	 PRESSURE/PRFF"

	

1	 ,385

	

2	 t976

	

3	 ,766

	

4	 .957

	

5	 1,147

	

6	
1,338

	

7	 1,929

	

8	 1,719

	

9	 x.,910

	

10	 2,100	
rLL

	i1 	 2,295

	

12	 2,482

	

13	 2672
A	

14	 2,863
a	

15	 3,053	 t
	16 	 3,244

	

17	 30435

	

18	 3,625

	

19	 31816

	

20	 4,007

X77
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PRNCRKE MOTOR-4

PRESSURE I S08RRS0

N

t

^^	 1	 1

z 1
cr- ..;,

C''^'^ 	 Y

cr

}

o	 µ

131?.aa	 -saa	 3.aa	 1.00	 l.ao	 ao	 s.ao	 ^.a
R.RD I RL D I STRNCEt INCHES

T- 1,611  MILLISECO ND
Figure 52
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PANCAKE MOTOR"4

T; 1 # 611 MILLISECONnS

ISOBAR	 PRESSURE(PSI)

	

1
	

115,467

	

2
	

155,925

	

3
	

196,382

	

4
	

236,840

	

5
	

277,298

	

6
	

317,755

	

7
	

358,213

	

8
	

398,671

	

9
	

439,128

	

10
	

479s586

	

11
	

520,044

	

12
	

560,501

	

13
	

600,959

	

14
	

641,417

	

15
	

681,874

	

16
	

722,332

	

17
	

762,790

	

18
	

803,247

	

19
	

843,705

	

20
	

884,163

PANCAKE MOTOR-4

	

PREF=REFERENCE	 PRESSURE	 s 300.00 PSI
AREF_REFERENCE SOUND SPEED= 3+498 * 5 FT/SEC
R	 CHAMBER RADIUS	 ,45830 FEET

TREE=REFERENCE TIMEmR/AREf=.0001310 SEC

T/TREE; 12,29963

ISOBAR	 PRESSURE/PRFF

	

1	 .385

	

2	 ,520

	

3	 ,655

	

g	 789	 ;<

	

5	 o924

	

6,	 1.'059

	

7	 1,194

	

8	 1',329

	

9	 1,464

	

10	 1I, 599

	

11	 1, 733

	

12	 1.86s

	

13	 2.003

	

14	 2. 1,38

	

15	 2,273{	
16	 2,+408

	

17	 2 543

	

18	 2,677

	

19	 2,812

	

20	 2,947
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PRP:C9KE MOTOR-4

PRESSURE ISOBRRS

Z7cm

C1;1 1

r

Q I {.

c r-^

CE

a
_CD  —1 . D	 r .Oa	 .00	 5.00	 9. la-5_110	 —:3 .00

RRD I RL 01, TRNICE ( I_NCHES

T-	 2,168 MILLISECONDS
Figure 53
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PANCAKE MOTOR"4

To	 2,168 MILLISECONDS

ISOBAR	 PRESSURE(PSI)

1	 179 ,265 1
2	 238,772
3	 298,278

_	 - 4	 357,784

5	 417 ,29i
6	 476,797
7	 536,303
8	 595,809
9	 655,316

10	 714t822
11	 774,328
12	 833 , 835
13	 893 , 341
14	 952,847
15	 1012,353
16	 1071,860
17	 li3i,366
18	 1190,872
1 .9	 1250.379
20	 1309,885

PANCAKE MOTOR-4

PREF=REFERENCE PRESSURE	 =	 300.00 PS I

AREF=REFERENCE SOUND SPEED = 	 3498,5 FT/SEC
R	 =CHAMBER RADIUS	 =	 ,45830 FEET
TREE=REFERENCE TIME=R/AREF=000013j0 SEC

T/TREFw 16,59067

ISOBAR	 PRESSURE/PREP
1	 ,.598

:r 2	 ,796
3	 .99+4
4	 1.193
5	 1,391
b	 1, 569
7	 1 9788
8	 11986 
9	 2,1$4

t
10	 2x383
11	 2.581

. f 12	 2,779
I. 13	 2,978

14	 3,V6
15	 3,375 ti

1;. 16	 3.573
r.

17	 3.771

18	 39970
a

19
	 4.68

h,
20	 4.366
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PRNCRKE MOTOR-4

VECTOR .26 INCHES LON9
	VELOCITY FIELD

2SOO-00. VRLUEG s	 900.00 ARE .06 INCWG LON&.
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CE:
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f	 f

RPDIRL DISTRNCECINZHES^

T= 0.000 MILLISECONDS-
Figure 54
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PRNCRKE MOTOR-4

	

ED	 VELOCITY FIELD
	VECTOR .26 INCHEG LONG	 2SOO -t0O . VRL'JES	 600-00 ARE .06 thCHES LONG.
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Figure 55
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PRNCRKE MOTOR-4

VELOCITY FIELD

	

VECTOR .2S INCHES LONG = 2S00 .00. VAUJES	 800.00 ARE .06 INCWa LONG,
1
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Figure 57
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PRNCRKE MOTOR-4

VELOCITY FIELD
Cl VECTOR	 .2S IhiCHES C®NR	 2500.00 .	 'VRLUES s	 600.00 ARE .06 INCHES CONS.
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PRNCRKE MOTOR-4

VELOCITY FIELD
	VECTOR .25 INCHES LONG	 2500.O0.. VRUJES s600.00 ARE .06 INCHES L_0ING
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T` 1.611 MILLISECONDS
Figure 62
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PRINCRKE MOTOR-^
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PRNCRKE MOTOR-^
PRESSURE AT RADIAL D ISTRNCE OF	 6.60 INCHES

..t

...

a ^Q
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.; w 1

i

° C7p
X1.00 6Q .t10	 120.00	 1e0 00	 Of  .00	 900-00	 3f^tl a 'i

R.NGLEC DEGREES l

T`	 m.1 63 MILLISECONDS 
Figure 65
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Figure 66
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Figure 67
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PANCAKE MOTOR-4
PRESSURE AT RADIAL. QISTANCE OF 5.50 INCHES
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PRNCRKE MOTOR-4
STRERKLINE

1
C 1

'	 i
4D

11

f w^ l

Q

ca
t

t cr
I

rD

r

86
c^

-,? -6.00	 - 3 .QQ	 -1-00	 . C1Q	 3.01	 S. i]0	 2.1(1

RR I Rr D I STRNCE C I NCHES

T`	 2a.168  M.I LLISECOND
Figure 70

198



1

r-- —0

4

PHNCHKE MOTOR-5

PRESSURE ISOBeRSn
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PANCAKE MOTOR-5

T=	 , 4 4 7 MILLISECONDS

ISOBAR	 PRESSURE(PSI)

	

1
	

677.406

	

2
	

867.490

	

3
	

1057,574

	

4
	 1247-658

	5
	

1437.743

	

6
	

1627.827

	

7
	

1817 :911

	

8
	

2007.995

	

9
	

2198.079

	

10
	

2388.163

	

^.1
	

2578,247
	12

	
2768.331

	

13
	

2958-415

	

14
	

3148,500

	

15
	

3338.584

	

16
	

3528,668

	

17
	

3718.752

	

is
	

3908.836

	

19
	

4098.920

	

20
	

4289,004

PANCAKE MOTOR-5

	

PREF=REFFRENCE	 PRESSURE	 = 300.00 PSI
ApEF= REFERENCE SOUND SPEED= 3498.5 FT/SEC
R	 CHAMBER RADD IS 	_ . 45830 FEET
TRE-T =REFERENCE TIME=R/AREF nn01310 SEC C

T/TRFF= 3.40925

ISOBAR	 PRESSURE/PREP

	1 	 2,258

	

2	 2.892

	

3	 3. 525

	

4	 4.159

	

5	 .4.792
	6 	 5.426 47 6.060

	

E3	 6.693

	

9	 7.327

	

1.0	 7.961

	

11	 8.594

	

12	 9.228

	

1.3	 9. 861

	

14	 10.495

	

1.5	 11.129

	

16	 11.762

	

17	 12. 396

	

18_	 13, 029

	

19	 13,663

	

20	 14.297
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Figure 72
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PANCAKE MOTOR-5

T=	 .583 MILLISECONDS

ISOBAR	 PRESSURF(PSI)
1	 1468.762
2	 1808.382
3	 2148.nn1.
4	 2467.620

'fF 5	 2827.239
' 6	 3166.858

7	 3506.477
8	 3846.096

E 9	 4185 .71.5
10	 4525,334
11	 4864. 953
12	 5204,573
13	 5544.192
14	 5883.811
15	 6.223.430
16	 6563.049
17	 6902,668
1.8	 7242.287
19	 7581.906
20	 7921.525

. PANCAKF MOTOR-5

PREF=REFERENCE PRFSSIJRF	 =	 300.00 PSI
AREF =REFFRENCE SOUND SPEED=	 3498.5 FT /SEC
R	 =CHAMBER RADIUS	 —	 .45830 FEET
T'REF=REFERENCE	 TIM E- = R/AREF = .0001310 SEC	 a

T/TRI-:F=	 4.44888

ISOBAR	 PRESSURE /PREF

1	 4.896
t 2	 6.028

3	 7.160
4	 8.292

;:. 5	 9.424
6	 10,556

` 7	 11,688 -

A	 12.820
9	 13 , 952

10'	 15, 0 8 4
i	 16.217
12	 17'.349
1i	 18.481
1a	 19.613
15	 20.745
16	 21.877
17 	 23.009
1:A	 24.141
19	 25.273
20	 26.405

-a02
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PRNCRKE MOTOR-5

PRESSURE ISOBARS
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Figure 73
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PANCAKE MOTOR-5

T=	 .6j•:5 MILLISFcONDS

ISOBAR	 PRESSURE(PST)
1	 2626.082

Aw 2	 3165-320
3	 3704.558
4	 4243.796
5	 4783.034
6	 5322,272
7	 5861-510
8	 6400.748
9	 6939,986

10	 7479-224
It	 8018.462
12	 8557.700
13	 9096.938
14	 9636.1, 76
15	 10175-414
16	 10714-652
17	 11253-890
18	 11793,128
19	 12332.366
20	 12871.604

PANCAKE	 MOTOR-5

PREF=REFPRENCE PRESSURE	 300.00 PSI
AREF=REFPRFNCE SOUND SPEED=	 3498,5 FT/SEC
R	 =CHAMBER RADIUS	 .4583o FEET
TREF=REFFRENCE	 TIME=R/AREF=.0001.31.0 SEC

T/TRPF=	 4,77236

ISOBAR	 PRESSURE /PREP
1	 8.754
2	 10-551
3	 12.349
4	 14.146
5	 15.943
6	 17-741
7	 19.538
8	 21.3.36
9	 23-133

10	 24-931
11	 26,728
12	 28.526
13	 30.323
14	 32.121
15	 33,918
16	 35.716
17	 37-513
18	 39.310
19	 41.108
20	 42.905

ib4



PRNCRKE MOTOR-5

	

0	 VELOCITY FIELD
	C	 VECT©R- .0^ INCHES LONG - 4000.00. VRWES	 960.00 PP,,E .06 INCHES LONG'.

NIS

Ilk

	

:Ztn	 de
it

ca

ct

Or

t

ti

w

Z

I

C

t_

	

^	 t	 ,

	

^^	 I1

--^ oo	 ^ -6 -no	 -3.00	 _1.oa	 t .00	 3 Ao	 s.00	 2-no
RRD I RL D I STRNCE C I NCHES

T	 .447 MILLI SECONDS
Figure 74
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PRNCRKE MOTOR-5

VELOCITY ,FIELD
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PANCAKE MOTOR-6

o"
	 PRESSURE ISOBRRS

a
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RRD IRL O rSTAEC INCHES

T	 . 525 MILLISECONDS
Figure 79
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PAf•• CAKE r.1 n T r k-6

T_	 , 5P-5 M I U I SECQNP,S

I S )bAR	 PRE:SSURF (PSI )

	

1	 291,949

	

2	 3480403

	

3	 404,857

	

4	 461,311.

	

5	 517,765

	

6	 574 ,219

	

7	 630,673

	

8	 687,127

	

9	 743,581

	

^.n	 soo,n35
.1, 856,480
1.2.	 9120943

	

i;3	 9699397

	

1.4	 10250852
5 1062j306

	

0	 11381 76n

	

1.7	 1195,214

	

16	 1251j668
j 9	 1308s122
<'C 1364l576

P Ai\I CA'-'F NF^T"R-`ci

	

PRFF=R A F FRF PIrE	 PF2FCtiSiJHE	 —	 300.0n PSI

	

ARFF= RFFF•^RP ?J ('F	 S11 1.ND SP F.F..II=	 3498,5 FT/SFC

	

{'	 =G'iAMBF"n, f"	 1DIliS)	 =	 945830 FFPT
T F'.FF=R'=F F'RF1`l e,'FF T I illf = P/ARFF=. n o n1310 SE.0

r

a

T /T ?F F = 4,00677

1 S(HAR	 P'E:SSURE /PREP

	

1	 ,973
1.,161

';	 ^^	 1 ,. 3 5 0

	

4	 1,538

	

5	 1,726

	

0	 11914

	

- 7	 2;10?_
2, 29 0

	

4	 2,479

	

U	 2,667
	^.1	 2, 855

	

12	 11043

	

3	 3,231	
K

	._4	 3,_420

	

1.5	 3`,608

	

1.6	 3,796

	

17	 3,984

	

1.8	 4,172
19	 4,360

	

20	 4 ,549

^^1
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PRNCAKE MOTOR-6

PRESSURE ISOBARS



ol

PANCAKE M"D, T R-6

T= 2 ,228 HILLISECONDS

TSIHAR	 PRESSURE(PSI)

	

1	 1924,651

	

2	 1994,453

	

3	 2064, 254

	

4	 2134,056
	5 	 2203,857

	

6	 2273,659

	

7	 2343,461

	

8	 2413,262

	

9	 2483,064

	

10	 2552,865

	

11.	 2622,667

	

1.2	 2692l469

	

13	 2762o270

	

14	 2532,072

	

J.5	 290l o873873
	16	 2971,675

	

17	 3041,477

	

1.8	 3111,278278

	

1.9	 3181, 08O

	

'0	 3250,881

PANCA K E MOTOR-6
1

	

PRPF=RP.-FFREN'F	 PRFSS(,JRE	 =	 300 0 00 PST
ApPF =REF FRENCF SOU`^ I D SPEEDc 3498,5 FT /SFC
R	 C'aAHBER RADIUS	 —	 , 45830 FEFT
TRF'F=R F-F PREMCF• T I NR P /ARP F= 1 0 0 013 1 o SEC

T/TRF.;:F=	 9, 37127

TSOBAR	 PRESSURE/PREP

I	
_	 1 6j416
	2 	 6,648

	

3	 fi, H81	 r.

	

4	 7,114

	

5	 7,346

	

6	 7,579

	

7	 71812

	

H	 8,044

	

9	 302.77
	10	 8,510

	

l	 8,742.

	

_1:2	 8o975
	13	 9,208

	

,4 	 9' , 4 4 0

	

1.5	 9g673
	-16	 9,90

	

17	 101138

	

18	 10,371

	

19	 101604

	

20	 10 ,83b
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PANCA'CF MOTCR-6

Ta J. , 984 h' I LL I SFCWS

I SC?yAR	 PRESSURF (PSI )

	

1	 4286liol)

	

2	 43591135

	

3	 4432,160

	

4	 4505,186

	

5	 4578,21i

	

6	 4651,237237

	

7	 4724,263

	

a	 4797,288

	

4	 4870,314
	10 	 4943,340

	

1.1	 5016v365

	

12^	 5089t391

	

1.3	 5162,417

	

14	 5235,442

	

15	 53OA,468

	

1. 6 	 5381 , 493

	

17	 5454,519
	18 	 5527l545

	

1.9	 5600,570

	

f:0	 5673, 596

P4!,iCAKF MOT(" R - 6

	

PPFF'=RFFPREN("F	 PRESSURE 	 c 300,0n PSI
A R PF= R rFF R EN "E SOU N D SPEED= 349A,5 FT /SA=G
p	 =C ► 3AHHFR RADIUS	 -	 145830 FEET
TPFF=RrFFRENCE TII,,fF=k/AREF z ,non1310 SEC.

T/TRFF'= i5,14i66

IS tl k3AR PPESSURE/PREF
1 14,287
2 14 j53(l
3 14,774
4 15,017
5
6

15,2,61
15 05 04

7 15 , 748
8 15,991
9 16,234

1_U 160478
11 16,721

:. 12 16t965
13 17,208
14 17,451Y£
15 17,69 5
16 17,93A
1.7 181182
1 8 1A, 425
IQ 18,669`
20

18.912
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PANCA !`F. MOTO R - 6

T= 2.761 M j ^ L I SECONDS

ISl)BAR	 PRESSURE(PSI)

	

i	 6738,050

	

2	 6837,767

	

3	 6937,483

	

4	 7037,200

	

5	 7136,916

	

6	 7236,632

	

7	 7336$49

	

8	 7436,065

	

9	 7535 , 781

	

i0	 7635,498
I' l l 	7735j214

	

1.2	 7834o930

	

13	 793406,47

	

1.4	 80340363

	

1.5	 8134, 079

	

16	 8233,796

	

^ 7 	 8333,512
+	 16	 6433o228

	

1.9	 8532, 945

	

20	 8632,661

i
PANCA KE MOTOR-6

	

PR7 F=R 11=F PRFNCE	 PRESSURE	 3o C , 0 n Psi
AREF=REFrR1-.NrE 50L)i',1D SPEED= 3498,5 FT/SF C

R	 =CHAM8FR RADIUS	 = ,45830 FEET
TREF=REFcRFMrL T1HEcR/ARFFQ,ogo1 31n SEC

T/TREE= 21g07631

ISOBAR	 PRESSURE/PREP
k	 1	 22,460

	

2	 22,793

	

3	 23,x.25

	

4	 23,457	
k

	

5	 23,790

	

6	 24,122

	

7	 24,45a
8	 24,787
9	 25,119

	

-10	 25, 452
25,784

12	 26,116
',3	 26,449

	

1. 4	 26o7 81
l5	 27,114
16	 27,446
17	 27,77 8
18	 28,1,11
19	 28,443
20	 28,776

X17
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PANCAKE MOTOR-6

VEC`7DR _25 114CHES LONG =	
VELOCITY FIELD
250 00 _ VALUES	 1$0 ..00 ARE M"' INCHES LONG.

1

Ny

it

.µ.	 rte" ^+r ti ^^	 'M

--^

jr

Jr

jr

ZD

r. s.+	
fl	 t

^^dD	 - .ate	 ^3 . f0	 --Z .0.0	 1.OQ	 3 .D	 Xo
z^^TGE^ IIN^' HESi

-	 2 MI LL ISECONDS

Figure 83
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PRNCRKE MOTOR-6

VELOCITY .FIELD
	VECTOR -,2S INCHES LONG	 250.00. VALUES s	 60.00 ARE .06 INCHES LONG.n	 1

i

fry 	IL 	 1 `+

Na

LLJ

On

Co

	

ar	 ♦ 	 a	 ^``	 ,tea
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r	 l

^,-
f

	

^.	 ,r

i
1 ^ -04	 -0.00	 ^3 .C1{^	 ,2.00	 1.00	 - 3...00	 5 . Q0	 ? , a0

RaD T^RL D T S^ANC^C I t^'L`^-f^S ^

	

T	 1.984 Mr LLISECONDS
Figure _85
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FIG. 88. TEMPERATURE — TIME
HISTORIES FOR THE
N2H4 /N2 04 REACTION
AT I s 10, 20 ATM.
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APPENDIX

A. DESCRIPTION OF THE COMPUTER PROGRAM COMB

COMB is the main program. It partially controls the storage

and shifting of data for the computed values of fluid properties.

It also calls other routines for the setting up of data at

boundary points, the center point calculation, numerical display

of fluid properties along selected rays, testing for completion

of the run, outputting of data onto tape, etc.

After COMB has read in some of the data, the remaining data

is read in by.subroutine INITAL.- INITAL then non-dimensionalizes

the variables and computes certain values which remain constant

throughout the run. The initial values of the variables are then
I

either read in from a tape, which may have been created by a pre-

vious run or subroutine BESFCT is called. BESFCT computes the

initial values in terms of Bessel and trigonometric functions

which are solution of a linearized form of the equations.

If the initial values were not read from tape, COMB calls

subroutine CHARGE which adds the reflection points at the boundary

to the mesh. Subroutine CONVRG is then called to determine the

proper stepsize Information necessary for future generation of

pressure and velocity plots is then written onto tape 2. Sub-

routine PRTOUT then prints the initial data along selected rays.

Values of the data at the next time step are now calculated.
i

First, subroutine_ MVPNT is called to find the new position of a

229



.Y4 i

r

'particle' moving in the (r-6) plane. The new values on the first

row are then calculated by FRSTRO. The vectors F and G are computed

by subroutines VECTFR and VECTRG, while VECTRS computes S-^. The

values on the other rows for the first step of the two step inte-

gration process are computed by QUAD 1. The vectors F, G, and S-^

for these values are then computed by TEMPFW, TEMPGW and TEMPGW,,

respectively, while the final values are calculated by subroutine

GENPT. Subroutine CENTER is then called to obtain the new center

point and the reflection points at the boundary are obtained by
r,

calling CHARGE.

The values at the new time step are then tested for insta-

bilities and CONVRG is called to obtain the n_ew stepsize. The

values of pressure at r•=O, RJ2 and R are then computed. When the
I

input number of cycles have elapsed, the values necessary for

plotting the moving 'particle' and the pressure as a function of

time are written onto tape 2. A test is made to see if the problem

is over. If so, plotting information is written onto tape 2.

PRTOUT prints the flow field along selected rays, and restart

information is written onto tape 3. If the problem is not over,

tests are made to see if a printout or any of the plots are wanted

at this time step or if restart information is to be written onto

tape 3 and then the entire process is repeated for the next time

step.

Y
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B.	 INPUT PREPARATION

There are basically two types of input data, integer and

decimal. An integer is a number without a decimal point which

must be .right adjusted in its field. A decimal is a number with

a decimal point which may be followed by an exponent of the form

E±n. The in represents the power of 10 by which the number is

to be multiplied and n may consist of up to three digits. The +

may be omitted if n is positive and the E need not appear if

either + or - is present. A description of the necessary input

cards for both programs follows:

Card Columns Type Description

1 1-5 Integer <0 end of input deck.

0 .find starting conditions on

tape 1.

>0 generate starting conditions

	

6-10	 Integer	 =0 t.^o not save conditions on tape 3.

I
=n>0 save every nth cycle on tape 3.

2	 1-40	 Any alphanumeric information to
i

be printed on plots.

s
3	 1-5	 Integer	 Total number of mesh points on each

ray including center point and re-

flection point- at boundary.

	6-10	 Integer	 Total number of rays.

2.31



Card Columns	 Type	 Description

4	 1-5	 Integer	 Total number of cycles for case.

	

6-10	 Integer	 Number of cycles between edited

printouts.

	

11--15	 Integer	 Number of cycles between writing

of plotting information on

tape 2.
16--20 Integer =0 no printout of W.

y^0 printout of entire W vector

whenever edited printout appears.

:f
21-25 Integer =0 no plot of linearized solution.

' ^0 plot of solution of linearized

equations whenever plots of

f
nonlinear equation obtained.

' 26-30 Integer =n>O plot tangential pressure

f: distribution every n cycles.

i<
;M =0 no plot.
1

31-35-- Integer Value of radius at which tangential

pressure plot to be made. 	 This is

given by mesh point number from 2

for first row to 1 less than the
number on card 3 columns 1-5 for

the boundary.

- 36-40 Integer Number of cycles between streakline

plots of 'particle' moving in

r - e plane and pressure vs'. time

plots.
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Card Columns Tempe Description

4 41-45 Integer Number of cycles between points	 {

retained for streakline plot

and pressure vs. time plots.

5 1-10 Decimal Safety factor for time stepsize.

11-20 Not used

21-30 Decimal >0- factor to control magnitude

of simple forcing function.

=0 use droplet evaporation forcing

'
}a

function.

<0 set forcing function to zero.

31-40 Decimal r coordinate of 	 'particle' to be

tracked.

41-50 Decimal 6 coordinate of	 'particle' to be

tracked.

µ 51-60 Decimal Droplet density used in evaporation

model.

3 6 1-14 Decimal Specific heat ratio	 cp/cv=y.

r 15-28 Decimal Pressure-sure in chamber in	 sia.

29-42 Decimal Maximum amplitude of a pressure_

disturbance in Asia,

43-56 Not used.

57-66 Decimal Chamber radius in feet.

4
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Card Columns	 Type	 Description

7	 1-14	 Decimal	 Molecular weight of fluid in

chamber.

	

15-28	 Decimal	 Stagnation temperature.

	

29-42	 Decimal	 Root of derivative of first

order Bessel function to be

used in generating initial

data.

The entire sequence of cards may be repeated in order to

run several different cases. However, no more than one case

should use an input tape-or an output tape.

C. DESCRIPTION OF OUTPUT FROM COMB

i
The printed output consists first of various input and

calculated values that remain: constant throughout the program..

Properties of the flow field are printed along the rays 6=0, 7T,

7/2 and 3fr/2. These are the density', radial velocity, tangential

velocity, internal energy, pressure and Mach number. If printout

of the entire W vector is requested these values are printed in

the order of row of constant radius.

l
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D.	 DESCRIP'T'ION OF PLOT PROGRAM COMPLT

The plot program produces plots of the information on tape 4

using a CALCOMP type digital incremental plotter. It uses a

standard subroutine package to-generate the actual plots (or a

tape to be used with the plotter). A set of subroutines for

producing contour and vector plots is also used. These subroutines,

in turn, use the standard plot package.

Five basic types of plots are produced. The first is a plot

of pressure isobars which is produced by using subroutine CONTOUR.

The pressure levels m1-y be equally spaced values between the minimum

and maximum pressure, or they may be input values. The isobars are

plotted as radial distance ininches against tangential angle in

degrees. Each isobar is marked with a number which increases with

increasing pressure. The program produces a printed page which

shows the pressure corresponding to each isobar number. Both

dimensional and non-dimensional values are given.

The second type of plot is of the velocity vector field. The

foot of the vector is located at the point of given radial distance

in inches and tangential angle in degrees. The length of the vector

is proportional to the speed at that point. The scale of vector

length in inches to speed in ft/sec is printed at the top of the

plot

r
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The third type of plot is of the pressure in psia at a given

radial distance as a function of tangential angle in degrees.

The fourth type of plot is of pressure in psia against time

in milleseconds. Several graphs appear on each plot. These graphs

are of the pressure at the radial distances r=0, R/2 and R.

The fifth type of plot shows the path of a 'particle' moving

in the r-6 plane.

All of the plots have the title associated with each run

printed across the top. The time of occurrence in milleseconds

is printed at the bottom of the contour, vector and pressure vs.

angle plots.

E.	 INPUT PREPARATION FOR 'PROGRAM COMPLY

Card	 Columns Type Description

1	 1-5 Integer <0 end of input deck.

=0 produce pressure vs. angle plots.

>0 do not produce pressure vs.

: angle plots.

6-10 Integer =0 produce pressure vs. time plots.

>0 do not produce pressure vs.

time plots.
1

11-15 Integer =0 produce plot of moving 'particle'.

>0 do not produce plot of moving

'particle',

16-20 Integer Number of cycle numbers at which

some plot is desired.

21-25 Integer First cycle number at which a

plot is desired.
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Card	 Columns Ty]e Description

1	 26-30 Integerg Second cycle number, repeated eachY	 P

five columns for the number

specified in columns 16-20.

2	 1-5 Integer Number of pressure isobars to

be plotted.

6 -10 Integer =0 plot number of isobars specified

in columns 1-5 at equally spaced

values between the minimum

and maximum pressure.

=n>0 plot isobars of n input values

of pressure in addition to the

minimum and maximum pressure.

11-20 Decimal Radial distance in inches corre-

sponding to seven inches of plot.

21-30 Decimal Speed in ft/sec corresponding to

0.25 inches of plot for vector
f 3

plots.

31-40 Decimal Value of pressure in-psia at

origin of pressure vs. angle plot.

41-50 Decimal Value of pressure in psia corre-

sponding to seven inches for

^s pressure vs. angle plot.

W "»

.-
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Card Columns Tyke Description

2 51-60 Decimal Value of pressure in psia at origin

for pressure vs. time plots.

	

61-70	 Decimal	 Value of pressure in psia corre-

sponding to two inches for

pressure vs. time plots.

	

71-80	 Decimal	 Time in milleseconds corresponding

to seven inches of plot.

3	 1-10 Decimal Pressure level of first isobar.

11-20 Decimal Pressure level of second isobar.

Repeated for all isobars, eight to a card. Card 3 should not

appear if equally spaced values are calculated by the program.

The entire set of input cards maybe repeated for each

file on tape 4.

F. PROGRAM LISTING AND CARD DECKS

Organizations desiring a program listing or a duplicate card

deck may request same from:

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103

Att: TIDD, Jack G. Jackson, Jr.

All such requests should reference JPL Contract No. 951946.
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TOTAL TIMER 7,73584E-01 	 NUMBER OF CYCLES= 100	 NUMBER OF REVSE ,22	 TIME STEP n 7 4 73329E-03	 REAL TIME•	 78.918

SOLUTION ALONG THE RAY THETA n 0

RHO U V INT ENERGY PRESSURE MACH NO,

8,89897E-01 3.47413E-Oi 6.83279E-n2 4,06944E+o0 7.24276E-01 3.58273E-01
8,69102E n 01 3.62783E-01 7.i78939-n2 4.05102E+o0 7,04i49E-01 3,75039E.01
8,52661E-01 3.73	 ''8E-01 7,5874iF,02 4.03600E+00 6,88268E-01 3,86929E-01
8,43368E-01 3.71790E-OS 7,91097E-n2 4,02709E+00 6,79264E-0i 3,86644E +D1
8,43618E-01 3,56014E-01 7,95150E«n2 4.02719E+00 6,79481E-01 3.71050Fa0l
8,56688E-01 3..20766E-01 7,87296E"n2 4.03989E+00 6,92185E-ol 3,35429E-01
8,84563E-01 2.66729E-ni 7.51i755-n2 4.06682E+00 7,1947?E-01 2,80486E-01
9 9 16992E-01 1,97047E-01 7,19057mrin2 4.09748E+00 7,51471E-Ui 2.11520E -01
9,48715E-01 1.29678E-01 6,751575"n2 4.17616E+00 7,82909E-01 1.46917E -01
9,63389E-01 6.17693E-02 6.41169Er02 4.13677E+00 7,97063E-01 8,93516E-02

9,42272E -01 -1,78821E-ii 6,79070E-n2 4.26744E+00 8,04218E-Oi 6.71004E -02
7,88228E-01 -6,17693E-02 7,83651E«o2 5.06163E+00 7,97943E-0i 9,05322E*02

SOLUTION ALONG THE RAY	 THETA	 a	 PI

RHO U v INT ENERGY PRESSURE MACH NO,

8,89897E-01 -3.47413E-01 -6,83279E-n2 4.OA944E+00 7,24276E-01 3.58273E,0i
9,14542E -01 -3.24404E-ni -6.30998E-02 4,09127E+o0 7,48327E-01 3,33515E-01
9,39406E-01 -2,98402E-01 -5,718475-n2 4.11349E+00 7,72849E-01 3.05790Ee01
9,65326E-01 -2.69675E-01 -5.1943i5-n2 4.13672E+00 7,98656E-01 2.75625E-01
9,89899E-01 -2.395o9F-oi -4.63473E-02 4.15781E+00 8,23162E-01 2.44213E-n1

r S,Oi364E+00 -2.05762E-0i -4,in483E^02 4.17793E+00 8,46984E-01 2.09533E-01
1,03247E+00 -1.69889E-01 -3,57583P-n2 4.19349E+00 8,6593nE-0i 1.73056F-01
i,o4590E+00 -1.29807E-0i -3,i3965E-02 4.2n470E+00 8,79538E-oi 1.32944E -01
1,05403E+00 -8.63361E-02 -2.71079--02 4.211t6E+00 8.8.7742E-01 9,Onl44E-02
1,05884E+00 -4,11345E-02 -2,40800--n2 4.21366E+00 8,92319E-01 4,73978E-02
i.07848E+00 -2,7052,1E-11 -1.786665-n2 4.13467E+00 8191A33E-01 1.79356E-02
8,66324E-01 4.11345E-02 -2.9431i--n2 5.15082E+00 8,92456E-0i 4,54911E-02

SOLUTION ALONG	 THE RAY	 THETA =	 PI/2

RHO U v INT ENERGY PRESSURE MACH N0,

i^

8,89897E-01 6.83279E-02 -3.47413-*nl 4.06944E+00 7,24276E-01 3,58273E-01
9,47907E-01 6.05745E-02 -3,47750--01 4.12147E+00 7,81353E-01 3,54916E-01
1,01320E+00 4,85853E-02 -3,47803_-01 4,i7737E+00 8,46504E-01 3,50730E"01
1,08457E+00 3.37960E-02 -3,44857=-n1 4.235?3E+00 9,18683E-01 3,43693E-01
i,i6138E+00 1.96398E-02 -3,37374--01 4.29385E+00 9,97362E-01 3.32902E +01

== i.23776F+00 5.71519E-03 "3,26715=-0i 4.34862E+00 10765iE+00 3,19856E-01
+1 31391E	 00. 96 E-0-2,80	 8	 3 -3 ,12587-c-01 E+04,40062	 0 1,15641E+00 3 . 0 4176E -01,

1,37942E+00 -8.37495E-03 -2,962655-01 4,443n5E+00 1,22577E+-00 2.87017F-01
1,43459E+00 -7,88746E-03 -2,77115--ni 4,47766E+00 1,28472E+00 2.67427E -01
1,47232E+00 -5,03026E-03 -2,56671_-oi 4,49859E+00 1,32467E+00 2,47068ER01
1,45784E+00 2,86567E-in -2.42240	 -n1 4,61136E+00 1,34452E+00 2.30264EmOi
!.204621:+00 5,03026E-03 -3.13709=-Di 5.5P774E+00 1.34622E+00 2,70931F.-01

SOLUTION ALONG THE R/tY	 THETA	 = 3*21/2

RHO U V INT ENERGY PRESSURE MACH- NO,

8,89897E-01 -6.83279E-02 3,47443--ni 4.06944E+00 7,24276E-Di 3.58273E-01
8.4033 4 E-Oi -7,29089E-02 3.39973--ni 4.0?363E+00 6,76238E-01 3-,5382.9ErOl
7.98015E-01 -7.41660E-02 3,30306=-n 3,9931:35+n0 6,35719E-01 3.46242E-01
7,62857E-01 -7.22222E-02 3,i9264E -ni 3.96684E+00 6,02175E-01 3,36323E-01
7,33254E-01 -6,73541E-02 3.063147 -ni 3.91547E;00 5,74207E -01 3,23536E-D1
7,10585E-01 -5,88750E-02 2.91539E -ni 3,89055E+00 5,52913E-01 3.07798E-01
6,92406E-01 -4.98483E-02 2,75249 m ni 3.8702pE+oo 5,3595nE-01 2.9n243F+01
6,80989E-01 -3.76235E-02 2.57271--ol 3,85710E+00 5,25329E-01 2,70241E-01
6,73383E-01 -2.59388E-D2 2.38440--ni 3,Be8i0E+00 5,18249E-01 2-.49578Ew0l'
6,70713E-01 -1,30808E-02 2,18433=-ni 3.84359E+00 5,15589E-D1 2,27836E-01
6,89708E-01 -5.39250E-10 1.89818E-ni 3.74117E+00 5,16D63E-01 2.'003226*0-1-
5,48765E-0i 1.30808E-02 2.66974E-01 4.76252E+00 5,22701E-01-- 2.50015E+01

TOTAL,TIMEs 1,5354?86E +oo	 NUMBER OF CYCLES= 200
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SAMP,4f 0 ct-fP 6e f°I? PAo6t A4	 00.11

PANCAKE MOTOR-2

TOTAL NUMBER OF CYCLES FOR THIS CASF=2400 	 NUMBER OF CYCLES BFTWEFN PICTURES= 100

GAMMA	 CHAMBER PRESSURE PULSE PRESSURE	 PULSE DURATION	 CHAMBER RADIUS
PSI'	 PSI	 SEC	 FT

1,2000000E +00 3.0000000E+02	 4,5000000E+02	 7.0000o00E-Oi	 .4583

MOL WEIGHT	 CHAMBER TEMPERATURE

2,3000000E+01 4,7200000E+03

REDUCED PRESSURE REF SOUND SPEED REF DENSITY 	 DELTA R	 DELTA THETA	 PRESSURE AND INTERNAL ENERGY RATIO OF PULSE

8,3333333E-Oi	 3,4985451E+03	 i.3625i44E-01	 i3O000000E-01	 1.7453293E-01	 i.5000000E+00	 7,5000000E♦00

REP TIME SCALE=	 .131f
MILLI`SEC

rr,rapt ,^a+► ,► *rr	 a * +a^^r► * ^**,a^ t ,^^.t,► * ^^.er ,r,au,r END OF INITI_I7ATION PHASE ^► w^r^+rr .^,► ^r^^^trz # f,rr,r * ^„asr,r*.r#^^t ,rrf^aa,^^.rw#^,^,r+rrs*^r
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-1.14i'97E-09 3.58044EOni
0. 3.56529E -ni
0. 3,520010Ewni
0. 3.114562E-01
0. 3.343liEoni
0. 3.21430Ewoi
0. 3.06133E-01
0. 2.88672Eb61
0. 2.69335E-Di
0. 2.48434Ewni
0. 2,26304E*ni
0. 3,03642Emnl

SOLUTION ALONG THE RAY THETA s PI

SOLUTION ALONG THE RAY THETA n PI/2 i

,

A

a

RHO U V TNT ENERGY PRESSURE MACH NO,

1.00000E+00 3,58044E-01 1.79022E-09 4.16667E+00 8,33333E-0i 3.58044Ew01
1,00000E+00 3.53503E-01 6.39934EwiO 4.16667E+00 8,33333E-01 3,53503ER01
1,00000E+00 3.40008E-01 6.31822Ee10 4,16667E+00 8,33333E-01 3.40008Ew01
i.00000E+00 3.17940E-01 6AS454E-i0 4.16667E+00 8,33333E-01 3,17940E-01
1,00000E+00 2,87919E-01 6.00056EmiO 4.16667E+00 8,33333E-01 2,87919E-01

v

TOTAL TIMER 0,
	

NUMBER OF CYCLESR	 0	 NUMBER OP REVSs n,00	 TIME STEP n 7;697SiE-03	 REAL TIME•	 19053

SOLUTION ALONG THE RAY THETA n 0

RHO
	

U	 V
	

TNT ENERGY
	

PRESSURE
	

MACH NO,

1,00000E+00
9,33912E-01
8.68586E-01
8.05689E-01
7,46892E-01
6.93826E-01
6.48030E-01
6,10883E-01
5.83537E-01
5.66832E-01
5.61231E-01
4.63772E-01

4.16667E+00
4.Si008E+00
4.05090E+00
3.99045E+00
3.93043E+00
3.87292E+00
3.82039E+00
3.77555E+00
3,741i3E+00
3.71946E+00
3.71208E+00
4.62982E+00

8;33333E-01
7,67690E-01
7,0371iE-01
6,43nl3E-01
5,87122E-01
5,37427E-Oi
4,95145E-01
4,61284E-01
4,36617E-01
4,21661E-01
4,16667E-01
4,29436E-01

3,58044E n 01
3.68975E-01
3.57004E-01
3.52087E-01
3.44211E-01
3.33397E-01
3.19706Ew01
3.03256E+01
2.84241E-01
2.62946Ew01
203976DE.O1
2.88054E-01

RHO
	

u	 V
	

INT ENERGY
	

PRESSURE
	

MACH N0,

1,00000E+00
1,06523E+00
1,12804E+00
1,18699E+00
1,24075E+00
1.28817E+00
1,32824E+00
1,36016E+00
1,38331E+00
1.39731E+00
i,40198E+00
1,14326E+00

2.43288E-09
1.26901E-09
1.22056E-09
1.14134E-09
1.033,57E-09
9,00279E-10
7,45204E*10
5.726BOE-10
3.87516E-10
1.94851E-10
1.41377E -l8
-1.94851E-10

3.58044Ewni
-3.56529E -ni
-3.52009E -ni
•w3.44562Een1
°-3.3431iFwnl
.03.21430E -Oi
w3.D6133Ewni
-2.88672Ew01
2.69335Em01
2.48434E+n1

•-2.26304EkIni
—3.03642Fw01

4.16667E+00
4.2i966E+00
4.26828E+00
4.3i199E+00
4.35037E+00
4.383i2E+00
4,41005E+00
4.43in5E+00
4.44603E+00
4,45500E+00
4.45797E+00
5.52881E+00

8,33333E-Oi
8,98977E-01
9,62956E-0i
1,02365E+00
1407954E+00
1,12924E+00
1,17152E+00
1,20538E+00
1.23005E+00
1,24501E+00
1,25000E+00
1,26417E +00

3,58044E-01
3.54283E-01
3.47794E-01
3,387066.,01
3.27177E-01
3,i3393Ew01
2,97565Ew01
2,7992BE•01
2.60736E-01
2.40260Ew01
2,18785E-01
2,63597E+01

1.00000E+00 2.50788E-01 5.76935S*	 O 4,16667E+00 8.33333E-01
1,00000E +00 2,07589E-01 5,49478EeiO 4.16667E+00 8,33333E-01
1,00000E+00 1,59530E-01 5,18138E-10 4.16667E+00 8,33333E-01
1,00000E+00 1.07949E-01 4.83430E•iO 4.16667E+00 8 33333E-01
1,00000E+00 5.42789E-02 4.45915E -10 4.16667E+00 8,33333E n Oi
S,0-0000E+00 3.93829E-10 4,06193Evi0 4.16667E+00 8,33333E-01
8.18i82E-01 -5.42789E-02 5.45007E+i0 5,09259E+00 8,33333E-01

2,50788E-41
2, 07589E+01
1,59530E-01
1,07949E-01
5,42789Em02
5.65768E-10
4.90972E+02

SOLUTION ALONG THE RAY	 THETA	 s 3*PI/2

RHO U V INT ENERGY PRESSURE MACH NO,

t
1,000005+00 -3.5804`46-01 -3.07553Esn9 4.16667E+00 8.33333E-01 3,58044E-01
i.00000E+0o -3.53503E-01, -1.9i960E-09 4.16667E+00 803333E-01 3,53503E-01
3,0000-0E+00 -3.40008E-01 -1.89547E-09 4.16667E+00 8,33333E-01 3,40008E-01
i3O0000E+	 0 -3.17940E-01 -1.85536E"09 4,16667E+00 8,33333E-01 3,17940E-01
1,00000E+00 -2,87919E-01 -1.80017E-09 4.16667E+00 8,33333E-Oi 2,87919E-01
5.000`00E+00 -2.50788E-01 -1.7306iE-09 4.16667E+00 8,3J333E-01 2.50788E-01
1,00000E+00 -2,07589E-01 -1.64844E -n9 4.16667E+00 8,33333E-0i 2.07589En01
i.00000E•00 -1.59530E-01 -1.55442Ew09 4.16667E+00 8,33333E n 01 1.59530E-01
1.00000E+00 -1,07949E-Oi -1.45029E-09 4.16667E+00 8,33333E-01 1,07949E•61
1,00000E+00 -5,42789E-02 .1.33775E•09 4.16667E+00 8,33333E-01 5,42789E*02
1.00000E+00 -3.93829E-10 91.21858Ewn9 4.16666E+00 8;33333E-01 1,26064E+09
8,18i82E-0i 5.42789E-02 -1.63502EPn9 5.09259E+00 8,33333E-01 4,90972E-02

TOTAL TIMEn 7,7358351E-01	 NUMBER OF CYCLES n 100
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