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CHAPTER I

INTRODUCTION

Data processing is very 'important when analyzing

physical problems. N.A.S.A. engineers contracted with

Lockheed programmers to write a computer program which gives
r

frequency information and statistical quantities for experi-

mental data. The original N.A.S'.A. program,_which used the

 large storage facilities, was written for use on a Unvac

1108 computer. The program discussedin,the following
^w

material is the modified version of the original program.

Since Tennessee Technological University's computer storage 	 a

y^ is limited, the amount of data which can.be processed by the.

program has been reduced. 	 Also, N.A.S.A.'s computer compiler

was altered for their specific engineering problems. 	 Thus,

several routines had to-be-modified and rewritten in order to
r.

be compatible with Tennessee Technological University's IBM

360/40 compiler.	 The thorough investigation of the program

and the N. A.S.A. program documentation_[1967] lead.to the

development.of this documentation so that other engineers can

use the program with minimum effort.

The need for the analysis of random signals occurs in

many complex problems of every field of study. 	 Some examples

of when this need may occur are:	 studying the temperatures

}
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of unstable combustion processes, analyzing the economic

t.,_

	

	 potential of an average family in a small town, calculating

the stress and strain of a bridge during rush hour traffic,

M	 or determining the effects of a family's income on each

-'-	 individual's accomplishments. It is easily seen that ther;

data from each of the above categories will not be easily

expressed by a mathematical formula. This kind of data is

generallyexpressed by approximate mathematical methods.

W	 Many years have to be spent learning the detailed mathematical
a

relations necessary to observe the varied qualities of this

data. The sameeneral analytic techniques will resolve theg	 Y	 q

IT data from all major areas of study.

Over simplification of a complex process has lead

i '

	

	 many times to erroneous results. When data points are plotted,

some type of a curve can generally be passed through these

points. This graph will show the designer how the process

4	 varies atp	 given 	 Px^ g îven points 	 at ven times. In man reports

small variations in data points are neglected, and these

^x points are plotted as smooth curves. The loss of information

often encountered by-smoothing-of the data curves will be cut

to a minimum when the data is processed by the computer
i

r,	 program describedin the following material.

With exception of a few general tests of-the data, it

is not necessary to have any knowledge of the complex mathe-

matics involved in,the calculations. The first consideration

is the meaning of a random signal A signal is random if its

value at.one instant does not depend on the value at any
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other instant. This type data is the most difficult of all

data to analyze. Since the data is to be a single random

signal, various assumptions must be made to obtain valid

results. One assumption which should be made is that the

process is ergodic.	 This means that the time averages for

one set of data equal the averages for all other sets of data

from that process= As an example of this, consider the speech

analysis of the word "data." In order that this process be

ergodic, every time the word is said it must be said iden-

tically to the previous statement of the word, This means

that-the-data sample analyzed must be a good representation

of every other data sample. Another equally important

assumption is the-stationarity of the process. Random data

is stationary in the strict .sense if its statistics are not

t	 varied-by a shift in the independent variable's origin.

This means that quantities such as the mean and standard 	 k

deviation do not vary when looking at different sections of

the process. Such assumptions are normally made without any

depth of-thought, but such assumptions must be mentioned when

dealing with random processes=

The first operation performed by the computer program

is to read the data. This is accomplished by reading the

data from a magnetic tape or punched cards. Many times the

input data has inherent.noise superimposed on the true signal.

Therefore, the next operation is often the application of a

digital filter. The programmer must select the range of

frequencies; contained in the ;noise. This determines the
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selection of a low-pass, band-pass, or high-pass filter.

f^Y

	 This filtering process is accomplished by selecting various

weighting functions for the input signal which will free the

data of the unwanted noise.

^x

I

I[

If frequency information is desired for a signal, the

Fourier Analysis becomes an important tool. A Fourier Series

is a sum of many sinusoidal functions of differen-t magnitudes

and frequencies which when added together in a series will

give the original waveform. The method of obtaining the

various frequency components is the most unique feature of

this program. A computer algorithm devised by Cooley and

Tukey [1965] is the formula applied to the data. This tech-

nique saves valuable computer time by cutting the total

number of operations to a minimum. This technique is termed

the "Fast Fourier Transform" and has been shown to be a major

break through in the computation of frequency information.

Another_ important quantity needed, when frequency

information is desired, is the power spectral density. This

function gives the amount of power of the signal concentrated

at any certain frequency. Notice that the term "power" in

thiscase is somewhat _ambiguous. As an example, consider,the-

"	 temperature of a flame in unstable combustion. Power in this

case could be the number of B.T'.U.'s released from the flame,

or it could be just the square of the temperature. This term

can have an engi.neeri;ng significance, or it can dust be an

abstract quantity giving only a weighted relationship with

frequency. The density function is defined as the power perr
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unit cycle of the signal. The actual value of the function
is the power within a small bandwidth about a given frequency.

The traditional method of calcination involves the cosine

transform of the autocorrelation function. This program by-

passes the traditional method by altering the Fourier ampli-

tudes. When the Fourier amplitudes are given, the power

spectral density simply becomes the square of these coeffi-
cients. This function is recorded in a table and in a plot

by an output subroutine.

Frequency information provides the specific behavior

of a given function. Many times, however, general information

'about the data is needed. For instance, what is the average
amplitude of the function over a particular time-period? An

X
example of this would be "a speaker giving a lecture. If -a

need arises to analyze the speakers voice,.a frequency

analysis might be required. If this need changed to the
recording of his lecture on a tape recorder., the statistical

values are more important. The operator of the tape recorder

is interested inthe _average loudness of the lecture. It is

easily seen that both frequency based and statistically based

information are important, and their pertinence depends upon
the specific application of this information.

In order to provide a general computer program,
i

statistical quantities are - calculated for the user's informa-

tion, The expected value is the first calculation performed.

This value is simply the average or mean value over a given

region or a time period.. A second quantity, the standard
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deviation, gives numerical insight as to how the function

varies. This calculation gives information concerning the

average displacement from the mean value. Higher order

statistics are also calculated to aid in the data reduction

process.

When looking at a graph of data points, many times it

is not obvious if a process has repeated itself. This is

especially true when dealing with random data. A function

which could relate to the programmer how well the process is

repeated is called the autocorrelation function. An example

of its importance is shown by the previous example of a

lecture being taped on ,a recorder. Looking at a plot of the

statistical quantities and frequency components of the man's
voice would not show if he only said one sound 500 times or

s if he said 500 different sounds. The autocorrelation function

will result in a numerical value between.0 and 1 	 where 1 i

corresponds to a perfectly correlated signal.	 If the man said

one sound 500 times the function value would be approximately
equal to 1, but if the man said 500 different sounds, the

.; function value would be equal to 0. 	 It can be concluded from

this that if he said 250'dfferent sounds and one sound 250'

times, the function value would be 1/2.	 This function is

invaluable:; when evaluating the repeatability of a process.

Each of the particular evaluations mentioned above have

specific values when reducing data, and only the programmer

can determine which is more useful to his application.



CHAPTER II

PROGRAM IMPLEMENTATION

Before using this program it is essential to know how

to input.your•data, how to control the basic data processes,

and how to interpret your results. Since the program is

designed for general data processing, the input data may have

various forms and meanings. Likewise, the results will be as

varied as the input data. Also, the results required for an

individual data reduction can use any or all of the available

processing units. A general explanation--will be given in the

following material,of how changing the input data and the

control parameters will effect the results.

The first consideration is the method of handling the

data.	 Data taken from real processes is generally in

continuous form.	 Since the digital computer will handle onl Y r

-, discrete quantities, the firstoperation required by the

programmer is to sample the data at specific points or

specific times.	 This may be-accomplished by having an
r 

s,r

individual measure the function value at specific points or

by using elaborate electronic sampling techniques. 	 In either

case a basic theorem must be used to determine wh ere the
function is to be evaluated. 	 Shannon proved that in 'order to

I:
completely reconstruct-a signal theorem II-1 must be applied.

^' 7
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Theorem II-1: The function must be sampled at least

twice during the period of the highest frequency component

(J. S. Tou [19591).

When using Shannon's theorem, select the highest .frequency

component which is of interest in that particular application.

This is not necessarily the highest frequency component

contained in the data. A digital filter is provided to

eliminate the unwanted higher frequency components. This

will allow a slower sampling rate if the data is immediately

processed by the filter. The Fourier series of a signal

yields a value at a frequency of 0, and a series of _numbers

which correspond to frequencies of nfo, where n = 1, 2, 3,

• • and f  = fundamental frequency. The fundamental

frequency in a given set of data is dependent upon the number

of data points provided. This dependence is shownby the

A,

I

formula fo = T where T = total time involved in the data

record.	 The total time involved is given by the sample rate

` multiplied by the number of samples.	 Since the number of

samples which can be analyzed by this program is Limited to

f 8192,;it'may become an advantage to use the minimum sample

rate predicted by Shannon's Sampling Theorem. 	 Now that the
t

data has been placed in a usuable form, it may be fed into

the computer by punch cards or magnetic tape.	 This data is	 t
4 _

read by a subroutine called VREAD.	 The input data must have

one data point followed by the corresponding time value then

another data and time point, etc. 	 Notice at this point that

z^
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the data record can be all data values, and VREAD will

reformat the data such that a data value and a time value

will be in series.	 A series of control cards tells VREAD the

chosen sequence for thedata (see Table II-2).	 The data

record is now ready to be processed by the program.

The data analysis is accomplished by a series of

subroutine programs.	 Each subroutine will be executed if and

only if a main program calls it.	 The main program is named

VIBN3.	 This section contains all the necessary CALL _state-

Ir
ments which are needed to execute the individual subroutines.

These CALL statements are controlled by IF statements which

simply compare a control parameter to a given quantity, and

if they compare correctly the subroutine is then executed.

r -1Table II gives the name of the subroutine and its individual

function in the program.

a
Table II-1 shows that these are eight plain sections

C

to the program.	 These basic units are CARDS, VREAD, FILTER,

DFILT, VIBA, PLTSTS, CONVO, and OUTF.	 The subroutine CARDS

is	 the first	 When thealways executed as	 operation.	 control

parameters are read from the card reader by CARDS, they begin

to guide the execution of VIBAN3.	 The various paths to be

a: taken are shown in Figure II-1.	 This diagram illustrates the

order in which each subroutine is called.	 The flow chart

will give an idea of how each subroutine fits into the overall

ensemble. =	 The section called VIBA does the frequency analysis

portion of the program. 	 PLTSTS is a set ofroutines which

will do-a statistical analysis on the input data.	 The
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TABLE II-1

Definitions of Subroutines

VIBAN3 is the-name given to the entire group of subroutines
which do the data analysis.

1. VIBN3 is the main program which controls the execution
of the individual subroutine sections.

2. CARDS is a subroutine which reads and writes the
control card values. These values control all options
available to the program user.-

3. VREAD reads and reformats the data into a full length,
record with alternating data points and time points.
It then stores the data for further processing. VREAD
reads the data in lengths of 128 data points.

4a. FILTER computes a set of digital filtering weights for
filtering of the composite frequency data.

b. DFILT applies the filtering weights to the data
values computed.in FILTER.

5. VIBA is a subroutine which controls two subroutines
used in the frequency analysis. The Fourier series
is computed when VIBA calls the subroutine RFORT.
VIBA then converts the Fourier Series to the Power

1	
- ,	

h	 l h`Spectra Density and t en saves al t is information
on a magnetic disk.

a. RFORT is a one dimensional finite Fourier
transform routine. It calls the complex
transform routine FORT and makes the necessary
adjustments for the complex numbers.

b. FORT computes the complex Fourier transform
for the input-data.

6. PLTSTS is a . subroutine that controls three smaller
subroutines used in the _statistical analysis. It
computes the complete statistics and the probability
density. These are then plotted by ,a subroutine,	 ti
SPLOT.

a. SUM1tiIT computes the sums needed for the first,
second, third, and fourth moments

b. PROBL generates the probability density.

_.._	
t
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autocorrelation function is calculated in the section called

CONVO. The majority of the results is printed out by the

subroutine called OUTF. At the end of the execution of OUTF

the entire analysis has been accomplished.

The control parameters are probably the most important
figures to be placed in the program by the user. If these
values are given wrong or misinterpreted the analysis will be

inaccurate. Included with these control parameters are groups

of process information. An explanation of this information is

given in Table II-2. As can be seen.from the table, the
required number of data cards for a specific input is thirteen.

All cards must be present even if they are blank.
The amount of output will be dependent upon the values

placed on the control cards The maximum output will result

in seven tables and five plots. The first table should
contain all the control parameters discussed earlier, The

information will be a 1next i	 plot of the input data with each
value presented in a table which follows the plot. All the
calculated statistical quantities will be presented in.a

table :which follows the input data plot. An individual plot
and table of values will be given for the autocorrelation,

-a
the power spectral density, and the root mean square ampli-

tudes. By varying the values on the first data card, the	
k

output can be changed from one or more of the above plots or	 3

tables to ',:all of the plots and tables

The plots of the power spectral density function and

the root mean square amplitudes have a frequency axis with
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TABLE 11-2

Control Parameters**

Card Variable	 Card
Number	 Name	 Identification	 Format Columns

^, 1 IOPl > 0, to plot input data 11 1
1 IOP2 >-.O,, to compute and plot

probability density and
statistics Il 2

1 IOP3 > 0, to compute and plot
autocorrelation Il 3

1 IOP4 > 0, to compute and plot
P.S.D. Il 4

1 IOP5 > 0, to compute and plot
R.M.S. versus frequency Il 5

1 IOP6 not used, use = 0 Il 6
1 IOP7, > 0, to plot Gaussian pro-

bability density 11 7
1 IOP8 > 0, to plot Rayleigh pro-

bability density Il 8
1 IOP9 > 0, to apply 'the digital

filter T1 9
IOPlO > 0, to plot P.S.D.	 in

decibels referenced to
variance Il 10

1 IOPll 0 Fourier transform coef-
ficients and P.S.D. -will
be output on Unit 12 Il 11

1 IOP12 not used,.use	 0 11 12
1 IOP13 > 0, delete the data listing

from the plot Il 13
1 IOP14 < 1,, read input data from

punch cards
> 1 1 read data from magnetic

ta 	 Unit 10.
0 ,Phan (smooth) the data

Il 14
1 IOP15 Il 15
1 FC1 lower filter cut-off fre-

quency (low pass) F6.0 23-28
1, FC2 upper filter cut-off fre-

quency (if band'pass) F6.0 29-34
1 F T 1 lower filter terminating

frequency (low pass) F6.0 35-40
1 FT2 upper.filter terminating

frequency (if band pass) F6.0 41-46
1 PERROR

IFORT
desired percentage error

1 (used in VREAD)
F6.0

15
47-52
53-57

NT.B number of data points 15 58-62
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TABLE II-2

(continued)

Card CardVariable
Number Name Identification Format- Columns

1 NMB number of pieces of infor-
,F

mation per time space.
Note:	 Time space means
one data value and
associated time. I5 63-67

1 NWP word number of the data
= 0	 time value must be
calculated
= 1, data value preceeds - a
the time value

2, time value__preceeds
the data value I5 68-72

2 , ATITLE title for input data plot .18A4 1-72

3 BTITLE titles for probability
density plots 18A4 1-72

4 CTITLE title for autocorrelation
plot 18A4 1-72

5 DTITLE title for power spectral
density plot 18A4 1-72

$ ETITLE title for R.M.S. versus
frequency plot 18A4 1-72

7 ID any desired problem iden-
tification 12A4 .1-48

8 IDATE current date 2A4 1-8
8 ITAPE tape number

.
2A4 10-17

8 I'R = 12.8 because VREAD reads
data records in units
of 128 14 18-21

1-
9 BW desired bandwidth for

power spectrum BW > 2 •
(Fundamental Frequency) F10.0 1-10

9 SAMPLE sampling frequency F10.0 11-20
9 CUTFRE cut-off frequency to stop

P.S.D. plot, IF blank
CUTFRE=SAMPLE/2 e 0 is

used F10.0 21-30

7^
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(continued)

= Card Variable Card
Number Name Identification	 Format	 Columns

9 ANALOG analog law-pass filter cut-
+` off (highest frequency

contained in the data)	 F10.0	 31-40

(note) card 10 can be left blank
* and all values will be

determined by the pro-
,e

gram

F 10 FRQ(1) lowest frequency for P.S.D.
_plots F10.0 1-10

10 BWTH (1) bandwidth for first fre-
quency interval F10.0 11-20

10 FRQ(2) first frequency at which
BWTH(l) will apply F10.0 21-30

10 BWTH (2) bandwidth for second fre-
quency .interval F10.0 31-40

10 FRQ (3) first frequency at which
BWTH 2	 will( )	 11 apply F100 -41 50

10 BWTH(3) bandwidth for third fre-
quency interval F10.0 51-60

10 FRQ (4) first frequency at which
BWTH (,3) will apply F10.0 61-70

10 BWTH (4) bandwidth for fourth_ fre-
•>	

s
w quency interval F10.0 71-80

11 NTIME number of time slices to
. be processed (number.

start and stop times`+	 a
NTIME < 16 I6 11-16

12 BTIME(1) start time #1 F9.0 9-17	 x
12 BTIME (2) start time `#2 F9.0 , 18-26
12 BTIME(3) start time #3 F90 2.7-35	 t

12 BTIME(4) start time #4 F90 36-44
12 BTIME (5) start time _#5 _ F9.0 45-53

up to 16 times may be de-_e
cards like this.

a11CARD	 defines how many
values to read. Continua-
tion cards are _6 (F9.0)
leave the last fields
blank
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TABLE II-2

(continued)

Card	 Variable Card
Number	 Name Identification Format	 Columns

13	 ETIME(1) stop time #1 F9.0	 9-17
13	 ETIME(2) stop time #2 F9.0	 18-16

up to 16 times may be de-
fined use same format as
CARD 12

** revised table from N.A.S.A. Report [1.967)

k.

}

f

1
,f



discrete frequencies only. These points are multiples of the

`	 fundamental frequency. If the power spectral density is

needed for a particular frequency, and that frequency occurs

*'.	 between two frequencies on the plot, an interpolation can be
.r,

made to obtain the desired quantity. An alternate approach

would be to increase or decrease the total time of the data

record which would alter the fundamental frequency. By doing
a ^rew;

this the function could be found for any particular frequency.

It is readily concluded that by altering the sampling rate,

the total time, and the control cards almost an y form of out-

put.can be found.

r3
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CHAPTER III

MATHEMATICAL FORMULAS USED WITHIN THE PROGRAM

The VIBAN3 program is-a computer program which will

reduce all forms of data into meaningful quantities.. For

many years.mathemat cians have been developing methods and

various formulas which yield numbers that give meaning to

large volumes of data. The VIBAN3 program uses many such

formulas to obtain .a few series of numbers which giveclues

to understand the complex data. The output of this program

is a set of plots and tables giving information such as the

frequency components and statistical quantities. Since the

r	 program must use these formulas to reduce the data, an out-

line of the mathematics used is presented in the remainder of

this nhanter:
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N (At) (f	 -t	 cf ) > 3	 for 0.5% accuracy
-

s

	

4 y 	 where: At = time increment.between samples

	

..	
ft = terminating frequency of the filtered data

F fc = cut.-off frequency for high end of band
a

N = number of weights-necessary

	

EM: w+ 
	 "xe

(Note: The difference in.. ft and f^ '--determines the

slope of the filter roll-off.)

A maximum value of N = 600 is allowed by program limitations.

	

Fill; 	 The N filter weights are computed for a low- ass filter with

	

g	 p	 p

a cut-off frequency f 	 The weights in the time domain,
S

h (nAt) arr:

- sin (Wt nAt) + sin ( Wc	 nAt)

h	 (nAt)
2nAt

^

r

w
s

7T 
2	 - (Wt	

We ) 
2

(nAt) z

where:era...	 W	 2^tfe o

Wt	 2wfo

a

f If a band-pass filter is required; that is f	 0, N filterc

weights are also computed for

^

a low-pass filter with-a cut-off

i frequency of f  The weights in the time domain, h2(nOt),
2

are

sin (Wt nAt) + sin (Wc	 nAt)

h { iAt)_ _
2 2nA:

2^r	 - (Wt	 - We ) (nAt ) 2
2	 2
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h (j At)

j=-N

n - 1, 2 1 3, • • •, 21M + 1
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where: Wt = 2 Tr f t
2	 2

W	 = 2 7rf
c-	 c

2	 ^

ft = minimum frequency of the data
2

f  = cut-off frequency of low-end of band
2.

Now 2N + . l values of h are producedby taking h(-nAt)	 h(nAt)

and h(0) = (fc + ft ) . Then-the weights are normalized by the

sum of-all 2N + 1 values; that is,

h (nqt) h.(nAt)

If . f	 0, the band-pass filter weights are computed by
c

2
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FOURIER ANALYSIS

The frequency analysis is the . most.unique feature of

this program. Since digital analysis is to be used, the

continuous data must be digitized or,sampled. This process

is one operation which the program user must perform upon.

his data.	 The sampled data will completely represent the

continuous data, if the data is sampled at least-twice during

L- the period of the highest.frequency component. 	 In the sub-

routines RFORT and FORT, the Fourier analysis is applied to

the filtered input data. 	 Since digital techniques are to be

used, the standard Fourier transform must be converted to

This	 called the discrete Fourier trans-digital form.	 form is

form (DFT).	 The discrete Fourier :transform is tota lly

k.
a

analogous to the continuous. Fourier transform.	 The discrete

Fourier transform is given by the following equation.	 k

N-1
Ar	 Xk a x..p	 (-, 2 7r j rk/N

:r
k= 0

s. where;	 Ar = the DFT coefficient

Xk	 sampled data points

IL
-z, r.	 p,	 1,	 2 1	 N-1

(Note:	 The values of Xk can be complex, and the values

of Ar• are almost always complex.)-- 	 y

The inverse discrete Fourier transform is used for reconstruc-

ting the data if the Fourier coefficients are known. 	 This
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reconstruction is called the Fourier synthesis and is given

in the following equation:

N-1
X k = NAr exp (2 7r j r k/N )

r=0

where: k = 0, 1, 2 • a •, N-1

Both forms of the above equations are programmed such that

either can be used according to the desired result.

The fast Fourier transform (FFT) is a method for

efficiently computing the discreteFourier transform of a

time series (discrete data samples). The efficiency of this

method is such that many problems can now be obtained more

economically than in the past. It may be useful to point

out that the FFT not only reduces the calculation time, but

it reduces round off error since the number of required

u

calculations is cut substantially.

Suppose a time series has N samples such as X  as

shown in Figure III -1 (G-AE Subcommittee [19671). If this

series is broken into two separate series such as Y  and Zk,
t.	 .

they would appear as shown in Figures 'III-2a and III-2b
j

(G-AE Subcommittee [19671). Y k is composed of the even

numbered points (X
0	 2	 k

	

X X	 °), and Z is composed of
^ 

the odd numbered points (X 1 , X X	 •). These functions

can be written as

Yk X2k 	

k	 0, 1, 2,	
N _ 1

Zk - '2k+1
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'	 I 1	 ^ ^	 1.
	

^	 ^	 I	 I	 I	 ^	 I	 I

''	 I I	 (	 f I	 '	 I	 I	 I	 ^	 ^	 I	 I	 I

0 1 2 3 4 5 6 7 8 9 1011 12 13 1415
Figure III-1. Original Sampled Signal

Zk

k

,i

k
_ l	 3 5 7	 9	 11 13	 15
Figure III-2a. Odd Numbered Samples

Yk

f

IL k
0	 2 4	 6 8	 10	 12 14	 t

Figure III-2b. Even Numbered Samples

_y
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Since Y  and Z  are sequence of 2 points each, they each have

a discrete Fourier transform. Their transform is given by

N _ 1

Br = 2 C,	 Ym exp ( - 27tjrm/(N/2) l
M _ 0

N . 1
2

Cr =	 z  exp [-27rjrm/ ( N/2 ) ]
m -- 0

where: r = 0, 1, 2, °	 • (2 - 1)

The DFT of the sum of two functions is the sum of the DFT of

the two functions. Therefore', the discrete Fourier transform

of the original data is given in the -following equation in

terms of odd and even numbered points.

N _ 1
2

Mr Ar = [ Yk exp	 (-2rrjr/N) (2k)	 - Zk exp (-2?rjr/N) (2k + 1) l0

4
where: r= 0, 1, 2,	 m	 N

2
'

or

.. N
2

l

Ar = L	 [ Yk exp	 (- 4 7t j rk/N )_ k 0

N
1 ^

x + exp	 (-27jr/N) [Zk- exp	 (-4 7T jrk/N) l	 rY
A.
	
V

^

by substitution

a

A

Ar = Br ± exp ( -27rjr/N) Cr where 0 < r < 2—
au

--
1

Rai[



f
26

When values of r become greater than 2, the DFT of B r and Cr

repeat periodically the values taken on when r <2. Therefore,

a substitution of r + 	 for r will yield the following results.

[ -2 ^ j (r + z) IN) CrA N = Br + exp
r+2

where: 0 < r < N2

which reduces to

A N = Br - exp (-27jr/N)C rr

2
where: 0 < r < N2

The discrete Fourier transform for N points is given by

A 	 Br + exp (-2wjr/N)Cr

4

A	 N = Br - exp (- 2 7r j r/N) Crr 

2	 t

where: 0 < r < 2

The above property allows the program to calculate only fir

and not the remaining 2- points.	 This reduces the output to

only 2 complex-numbers for a transform of N points.,

The following signal flow chart in Figure III -3 (G-AE

Subcommittee [19671) shows the method of solving for the

R
Fourier coefficients for eight input data points. 	 The signal

flow chart shows that the outputs of the discrete Fourier

transform sections are either Br or Cr ,	 These coefficients
UJ are then added as the equations indicate. 	 The coefficient A0
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is composed of Bo + exp (-2trj [0 ]/N) Co . This reduces to 
A 

Leo + Co which would be the first terra of the Fourier coeffi-

cient. For simplicity of notation exp (-2nj/N)r will be

denoted as Wr . With this simplification, an example would be

the coefficient A 	 is equal B	 + W I C o
7	 3	 3

I
The next- step in the fast Fourier transform is the

reduction of each of the two DFT sections.	 Since the original

N point data set was divided into two 2 point sets, it is

easily seen . that each of these smaller sets can be subdivided

into two 4 point sets. 	 This applies theorem III - l.
L;

Theorem .III-1.	 The DFT of the sum of two functions

6 is the sum of the AFT of the two functions.

The signal flow graph shown. in figure III -4 (G-Air Subcommittee

[19671)	 il?ustrates. this principle-.

The fast Fourier transform continues this	 rocess

until there are no.groups of data points left to be broken

`i down,.	 At this point theorem 111 -2 is applied.	 l

. . Theorem III -2 .	 The _ discrete Fourier transform of a
4 ^:

one-point function is simply the function value itself.

= 1 With this version the length of the input data must be some	 r

integer power of 2. 	 The program accomplishesthis byr .	 „ r

appending zeroes at the ' end of the data if it is not of =proper-

length.	 There exist other forms of the FFT, _ but this -program

uses the base 2 algorithm. 	 For an example of the complete,,

Fast Fourier Transform, a data set of 8 points, N = 2 3 _ 8,,

3
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K

is Fourier transformed in the

TL Figure III -5 (G-AE Subcommitt,

that-all operations have been

and complex multiplications.P	 P

signal flow graph shown in

ee [196 7 1). It is easily seen

reduced to complex additions

The number of multiplications

r and additions per step (breakdown) is equal to N, and the

number of steps (breakdowns) taken is equal to N log e N.

This is a substantial reduction from the DFT analysis which

requires N2 operations.

A small problem has occurred in the order of the

input data. Due to the method of breaking the points down,

the data has been shuffled.	 Certain variations can be made

in the signal flow graphs which will result in proper orien-

tation of the input-output_informaton. 	 If all the nodes on

the'horizontal-level with A 	 in Figure III -5 are interchanged

with all the horizontal nodes of A , and all the nodes on the

level of A	 are interchanged with A^, then the flow graph is

altered as shown in Figure III-6- (G-AE Subcommittee [19671).

This flow graph is Cooley's [1965] original description of

p the algorithm.	 There are certain other variations of the

Rk.
I

signal flow graph which result in better input-output forms,.
f	 #^

t
but these variations require large: memory units; therefore, 	 €'

k" they were not considered in this evaluation.

The purpose of the fast Fourier transform 	 :s the..	 ^
x

economical evaluation of the discrete T.Pourier transform.	 Astt .

was shown earlier the calculations are cut from N	 to N log	 N
'

z
operations where N is the number of data points. 	 This reduc-

tion in-the number of calculations results in-the saving of
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expensive computer time. The G-AE Subcommittee report [1967]

compared the DFT and the FFT by programming there on the IBM

7094 computer. The program was to evaluate 8192 data points,

N 2 13 = 8192. It was reported that the DFT took approxi-

mately half of an hour to compute, whereas, the FFT took
:< W about five minutes. The chart below shows the ratio of the

standard evaluation to the FFT evaluation.

N points N2/N log N1{'

2 5	=	 32 6.4
2 e	 64 10.6

28	 =	 256 32.0
210	 =	 10 2.	 :.a 102.4
2.z	 = 4096 341.0
2 13 = 8192 630.0

Since- the number of Operations have decreased, , the

L round-off error-becomes smaller. The ratio of the resulting

,,. errors is simply sNQ
	 N .	 Withg a quick reference to the

2
evaluation chart, one can readily see why the error is much

d smaller. The fast Fourier transform is well worth the
effort spent in its derivation.

POWER SPECTRAL DENSITY,.-

The power spectral density function is defined as the

power per unit cycle in a signal This meal's the power in a

frequency band about a discrete frequency f i . The standard

method of calculating the power spectra is the use of the
cosine transform of the autocorrelation function. A "raw"

}y

E
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13 ^	

estimate, Gx (f), of a true power spectral density function is

defined for an arbitrary f in the range ` f < fc by

I`.
M-1

Gx (f) = 2h [ Ro + 2 r Rr cos (—) + Rri cos ( ff)
r=1	 c	 c

where: h =interval between samples

Rr = estimate of autocorrelation function at lag r

m = maximum lag number

f  = (1/2h) is the cutoff frequency

This complicated equation is normally used since the Fourier

transform is very hard to evaluate. However, this computer

program evaluates the Fourier transform easily. The power

spectral: density is now determined by _taking the square of

the Fourier coefficients and then dividing it by the band-

width, BW.

fi+2w
P  (BW)	 A^ tf

i	 f=fi-2W
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It is also noted that the technique of hamming or hanning is

used to smooth the power spectral density function. The

smoothing technique used in this program is given by:

G a = 2 (G o + G^)

1	 1	 1G	 G	 +k = k_1	 2 G +k	 .Gk+l

Gm = 2 ^Gm_ l + Gm)

where: k= 0, 1, 2, • o • , m-1.

Gk = raw power spectral density function

m = maximum lag number

One helpful result of the power spectral density is the

ability to plot the root-mean-square amplitude versus

frequency. This plot will give us the information as to what

the main frequency components are. The following equation is

used in determining the values for such a plot..

AMP  = G x BW

where: k= 0, 1, 2,	 , m

Gk,x = power spectral density function

BW bandwidth

m = maximum lag number

This plot is most valuable when making a frequency analysis

of a particular signal

References have been-made to bandwidth and maximum

^i
y

;;

^,^ . .

Mx
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lag numbers. Some explanation is needed about these various

quantities. The frequencies which can be analyzed by the

Fourier analysis are totally specified by the length of the

data values and the sampling rate. These values are selected

before this program is used since the program accepts only

digital data. An external program or machine must convert

the analog data into digitized quantities. The maximum

frequency which can be represented is limited to ^^ where At

is the time between samples. The lowest frequency or funda-

mental frequency which can be recognized is equal to k where

T is the total time interval for all the data points. These

quantities must , be known to determine the bandwidth of the

power spectral density function. The narrowest-bandwidth

which can be used is

Bw	 2fn,

where: f p	the fundamental frequency.
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where: f  = maximum frequency analyzed by the power spectral
density

Each of these values are dependent on the length of the data

segment.and the sample rate of the digital converter.

PROBABILITY MOMENTS

If information dealing with time averages and other

functions of time are desired, statistical quantities are
used. Such quantities, which' are termed probability moments,

are calculated in this program. These moments tell how the

process varies as a function of time.

The first moment is called-the expected value. This

quantity gives the average or mean value of.the' function and

is given in the following equation.
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The form most often seen is the positive square root of the

	

^.	 above equation. The positive square root is called the

	

=P	 standard deviation and is given in the following equation.

1	 zS =	 N_1 i 
NJ

 
(Xi - X)

This equation has been altered for the computer analysis.

The altered equation used in the program is given by

S =	
N-1

N
Xi NP

i=1

The third moment called the skewness coefficient is found by

the following equation,

SK	
1 N

[Xi X]
;', NS 3 _i=1
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expanded into the form shown below

N_ N	 _ N	 _
K -	 X4 - 4X G X -3 + 6X 2	X^ - 3NX''

The quantities listed above reveal detailed informa-

tion about the variations.of the data. A small value for the

variance coefficient would tell usthat the data was not too

oscillatory, but a large value for this quantity would lead

to a conclusion that the data varies rapidly. Each of the

remaining coefficients will lead to similar conclusions.

1
a	 a

THE PROBABILITY DENSITY AND THE CHI-SQUARE TEST
A

i
The chi-square goodness-of -fit test compares the

probability density calculated for the given data values to a	 {

..
,

standard Rayleigh and Gaussian density.	 This comparison is

made so that the-program user will know if his process is

nearer a-Gaussian type process or a Rayleigh process. 	 The
^a rt

first calculation needed is to compute the probability density

for the given data. 	 The program approximates f(x), the

probability density,i as the number of observations-and the

percentage of data in each of K class intervals.	 The number

of class intervals K is chosen such that,K = 3 log N, wkerd N

equals the number of data points and K truncates the value to

an integer.	 The Gaussian (normal) probability density func-

tion is calculated using the following equation.

.. [ 
-X1

_AX

	

e
(Xi) S
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where: i = 1, 2 1 3 , . • _ , K

S standard deviation

Xi = midpoint of i th class interval

AX = class interval width, Xi+l - Xi

K = number of class intervals

The Rayleigh density function is computed by the following

equation.

^(X ) _ DY a [-Y,/2Z2]
1	 2Z2

y	 where: i = 1, 2, 3, 	 K
h i

K number of class intervals'
T	 s

AY. width of class interval 
Yi-^l	

Y.

_-midpoint of i h class intervalYi 
N

Z^	 variance estimator, 
N	

X
^=l

N = number of data values.

Xi	 data values	 k.

The chi -square goodness-of-fit test can now be applied. By

placing the calculated density function and one of the
r

theoretical density functions into the test, it can be

determined if the data is a close fit  to the theoretical

density. This is accomplished in the following formula.

2	
K [P (Xi ) - f (Xi) ]

	

..	 X
i=1	

,f 
Xi	 ry

where	 K number of class intervals

thXi = °midpoint of i. class interval
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r

I	 ,ti

P(Xi ) = function fitted at Xi as Gaussian or Rayleigh

probability density curves

f(Xi ) = probability density of data values

The region of acceptance is

X2 < X 2(n , (x)

wherePn= number of degrees of freedom

a= percent confidence level

X 2(n,a) is read in as-tabulated values by the subroutine CHI.

With . use of all the formulas mentioned, a large amount of

engineering information is determined about a set of data

values.

AUTOCORRELATION FUNCTION

The autocorrelation function produces numerical

values which relate the repeatability of the process. The

autocorrelation is defined as the average lagged productsge 1a_gg P

of the data values and is calculated for a displacement rh

by the formula shown below.

. N-r
1Rr Rx (rh^	 XnXnx N_r	 +rn-1

r and r _ 0,	 1,	 2,	 • , m
:i

where:	 r = the lag number

m = the maximum lag number

X	 the nth data value
n

.T



40

Xn+r _ the (n+r) data value

N = the number: of data values

The above equation show: that to find one lagged product,

(N'-r) products and summations must be performed. For large

values of N it can be easily seen that many calculations must

be made. In an effort to by-pass the many calculations

involved in,such an evaluation, mathematicians have applied

the convolution theorem to the formulae This theorem is

shown in the equation below.

N-1	 N 1 	1 2TrjRk j

X .X .+R = N r Ak e
J=0 7 J	 k=O

where: Ak = the Fourier transform of Xk

S k = lad number

To find each R the factor of N can be removed and replacedr

by_ Nlr . The values of Ak are simply the power spectral

density values The autocorrelation function simply becomes

the inverse Fourier transform of the power spectral density

function. The formula used °.in the program to determine the

autocorrelation is given below.,'

Rr 	 Zr [NN/(N-r))
t

where: r 0`, 1, 2 3j,	 e MP-i•	
thZr is the Fourier inverse of the r squared Fourier

ILF coefficient of the data

.r
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NN = the first power of two greater than or equal to

t ^:	 ( N+MP )

N = number of data points

MP = number of autocorrelation lags

The autocorrelation function is normalized by dividing by	 y

R Q . This function is maximum when the shift is equal to zero,

therefore the normalized function value will be 0 < Rr < 1.

The meaning of this is if Rr = 1, the data repeated itself

exactly after time equal to r.- Likewise if R _ 0, it can bex-
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CHAPTER IV

EXAMPLES OF PROGRAM USAGE

_	 s

In order to make this documentation more effective,

two examples for which the results can be analytically

verified will be considered. The first example will be the

sum of two sine waves of different frequencies. The second

example will be the analysis of a square wave. Hopefully,

these two examples will provide some basis for setting up a

similar problem and interpreting its result.

EXAMPLE 1

x+ The mathematical representation of the sum of two

sine waves of different frequencies is:

X(t)	 = 75.0 sin 27r [25] t + 75.0 sin 2w [100] t

M Obviously, the expression means X(t) is composed of a sine

wave with a frequency of 25 cycles per second and.-an ampli-

tude of 75 units plus a sine wave with a-frequency of 100

u cycles per second and an amplitude of 75 units. 	 The first
0

step 'in analyzing X(t) is to digitize it, which simply means

to evaluate thefunction at a-'series of specified intervals.

F Since the signal X(t) has not been digitized, the sampling

frequency and number of data points are arbitrary. 	 Table IV-1'

42
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TABLE IV-1

Procedure for Digitizing Data

1. Decide upon a fundamental frequency which will give the
desired plot.

2. The fundamental frequency determines the total amount-of
time for the data.

Total Time = 1/f zero
where: f zero = fundamental frequency

3. Apply Shannon's Sampling Theorem to find the minimum
sampling frequency.

f	 2f h
where: f h = highest frequency in- data

4. Convert the determined sampling frequency to a sampling
period.

T	 1/fs	 s

where: Tsampling period (seconds)s

f sampling frequency	 (C-p,-S-)s

5.	 Determine the number of data points to satisfy the values
above.,

Total Timesamples
T
s_

6.	 Adjust the number of samples to equal the next higher
power of 2.

7.	 Using the adjusted # of samples, recompute the new sampling
period4

rx
Total Time

Ts # samples

8.	 Convert the sampling period into new sampling frequency.

^; f	 l/Ts

fil
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.; shows a method which can be used to select tiese variables.
a

The values calculated from this-method can be used to fill

f out the control cards.
IF

;. Step 1:	 This step involves selecting, a fundamental frequency.

: The frequency axes for the power spectral density function
YeY`

and root mean square amplitudes are composed of integer

.4 y multiples of the fundamental frequency.	 If particular

frequencies are of interest, then select the fundamental

frequency to be an even divisor of those particular frequen-

cies.	 The frequencies 25 and 100 are important in this

example, therefore., a fundamental frequency of-5 cycles per

second is selected.

Step 2:_	 The fundamental frequency, f. 	 determines thezero

total time span of the data and is found byz

' Total Time	 l

fzero
:..

H
Total Time =. 0.2 second

^- Step 3:	 Shannon's sampling theorem states that the sampling

_
frequency must be twice the highest frequency component

.. contained in-the data.
t

f	 = 2f	 but f	 = 1:00h	 hs

f	 200 samples/second
s

To obtain a more thorough set of data points, increase the

sampling frequency.
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Let	 fs = 1000 samples/second

Step 4: The sampling period is defined to be the inverse of

the sampling frequency. 	 ;4
g.

Ts	 fs

Ts = 0.001 second/sample

Step 5: The number of data points to be.evaluated is deter-

mined-by the following formula.

# samples = Total TimeTs

# samples = 200 samples

Step 6	 The number of data points sho:u;',.d-' be equal to some

integer'power of 2, therefore, the number of samples should

be adjusted to agree with this.



function X(t) is to be evaluated every 0.0007812 seconds.

This evaluation was made by a Fortran computer program which

was placed in VIBAN3 	 to provide the program with direct data.

The control parameters must now be defined to tell the program

what to do with the data (see Table II-2 to fill out Table

IV-2).	 These parameters are selected as,indicated in Table

IV=2 and placed on punch. cards. 	 The control cards are then

placed between the last. two delimeter- cards.	 The-program can

be-now	 executed.

The outputof the program will be exactly as requested

by. the control parameters.	 This will _consist of a. plot of the
:^

..
t

data, measured probability density, autocorrelation function,

power spectral density, and root mean square-amplitude.

some of	 are quite	 only	 mostBecause	 these . -Plots	 lengthy,	 the

important pieces of information -are revealed in this report.

This will include a portion of the autocorrelation plot and

the root mean square plot.	 Some-of the other examples will.,

present other pieces of information because they are more
,t  t

meaningful to those examples.	 It is noted at.this point that

these plots are not from the 'computer 'but are condensed hand-

drawn versions of the original computer plots.

ILL
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TABLE IV-2	
u

Selected Control Parameters for Example-.1
	

s

4

d	 .

Card 1

Name Value Reason for Its Selection

IOP1 5 Needed the data values plotted
IOP2 5 Needed the statistical analysis
IOP3 5 Needed to see where data repeated itself 	

Y.

IOP4 5 Needed to see where the power is
concentrated

IOP5 5 Needed R.M.S. values at particular
frequencies.

IOP6 0 Not used in program anymore
T IOP7 0 Was not interested-in,the probability	 j

density
- IOP8 0 Was not interested in;the probability-

density
FIF IOP9 0 Do not apply the filter
i` IOP10 0 Was not interested in logarithmic P.S.D. -

plot
Y

IOPll 0 No need to output values on Unit 12
IOP12 0 Not used in program anymore.
IOP13 5 Did not want .a listing of the data after-the plot5 r

IOP14 0 Read data from punch cards
IOP15 5 Do not han (smooth) the data

(sine waves are smooth)'
FC1 Blank Leave blank.because the filter.is  not	 i

used
FCZ Blank Leave blank because the filter is not

used
7.;. FTI Blank Leave blank because the filter is not

used
FT2 Blank Leave blank because the filter is not

. used	
F

PERROR 0.0 Wanted 0% error
IFORT` 1 Needed to organize the data values

:r NTB 256 Number.of data values.used.in-this
example

NMB 2 Amount°of information per time space

M

NWP 2' The data value followed the time value	 r.

Card 2

ATITLE X(t) _ 75 sin 27r(25)t + 75 sin 2'r(100)t	 ,.

Card 3
VA

BTITLE X (t)	 _. 75 sin 2 Tr (25) t + 75 sin 2 'x('100) t

w



TABLE IV-2 (continued)
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Name	 Value	 Reason for Its Selection

Card 4.

CTITLE

Card_ 5

DTITLE

Card 6

ETITLE

Card 7

ID

Card 8

IDATE,
ITAPE

IR

Card 9

X (t) = 75 sin 27r (25) t + 75 sin 27(100)t

X(t) = 75 sin- 27r(25)t + 75 sin-2fr(100)t

X (t) = 75 sin 21T (25) t + 75 sin 27r (100) t

Mike Forehand --- Example 1

4-29-71	 The date which the program ran
No Tape.	 The tape reader was not used

128	 Because VREAD reads data in increments
of 128 sections

BW 10.0 BW > 2.0 (fundamental frequency)
SAMPLE 1280.08 Sampling Frequency
-CUTFRE- Blank The program will find the maximum

f frequency for the 	 plot
ANALOG Blank Not needed in,this evaluation

Card 10

Blank When card 10 is blank the program finds
the correct bandwidths

Card 11

NTIME 1 dataOnly processing one set of	 5

Carte

BTIME 0.0 Starting time for data set

Card 13

ETIME 0.19922 End time for data set (Note:	 256
samples only goes to time 0.19922
not 0.2 as discussed earlier)
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The autocorrelation function shows how the data

repeats itself.	 If repetition occurs, the autocorrelation

value is equal to 1, if the data does not repeat itself, then

the value is 0.	 By looking at Figure IV-1 it can be seen

that the process X(t) repeated itself at a time of 0.03969

seconds.	 This almost corresponds to the period of the 25

y cycle per second sine wave which should be expected.	 The

- time did not correspond exactly to the period of the 25 cycle

per second signal because the plot is only a digital repre-

sentation of the continuous plot.	 If 0.04 seconds had

appeared on the time axis, the value of the autocorrelation

function would have been-exactly 1.0 instead of the value

0.995752. The computer plot repeats itself every 0.03969

seconds. Because of space limitations, the plot was truncated

, 	 r at 0.07315 seconds. Common knowledge of the cyclic nature of

'	 sine waves reduces the splendor of this plot. However, if the

±! process had been considerably more complex, the autocorrelation

function might become magnificent by showing the process was
,

repeating itself.

Any original data set can be approximated by summing

'	 several sine waves of various frequencies and amplitudes. The

root mean square plot shows the frequencies and root mean

square amplitudes of each component. Figure IV-2 shows that

two ;major frequencies make up the data. These frequencies are

25.099 cycles per second and 100.398 cycles per second which

is exactly as was anticipated. The amplitudes of the waves

are 48.99423 and 48.09558,, respectively. The root mean square

F

r  	
a,

r	 _
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frequency
cycles/sec

0.0 25.09 50.19 100.39 150.59 2.00.79 250.99 301.19

Figure IV-2. R.M.S. Amplitudes Versus Frequency

351.39 401159 451.79

Ln
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amplitude of a sine wave is defined to be (v212) multiplied

by the magnitude of the wave. Each of the sine waves used in.

the input-had a magnitude of 75 which corresponds to a root'

means uare amplitude of 53.025. This corresponds closely toq :	 P	 P	 Y

the computer results when considering that the plot is a

digital representation of a continuous plot. These two plots

would-have defined the process X(t) if it had been.unknown.

This program will aid many engineers by defining specific

parameters in their areas of study.

EXAMPLE 2

The problem to be analyzed is described mathematically

by Y(t) _ 1 for n < t < nzl and Y (t)	 -1 for n21 < t < n + 1-	 -

where n = 0 1 1, 2,	 •. This-problem is nothing more than

a square wave with a period of 1 second and an amplitude of 1

`'^	 unit. The parameters for digitizing the data can be found by
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Step 4: Because step 3 could not be applied, the sampling

period is arbitrary.

Step 5 and 6: Find the number of data points contained in

the record. Since all previous values have been arbitrary,

the number of samples can be chosen arbitrarily. Let:

# sample = 1024.	 -

Step 7: The final sampling period can now be found by the

following formula.

T _ total Time

	

s	 samples

	

Ts	 0.003906 second

Step 8:_ The sampling frequency can now be found using the

result of step 7_,

f  = 256 samples/second

A process for digitizing the data must be selected. In this

case a computer subroutine generated the data and punched out,

a set of data cards Table IV-3 lists the control parameters, j

and why each value was selected. These values are punched on
cards and then placed in front of-the data cards. The control
parameters and the data should be placed between.the last two

delimeter cards. As in Example _1, the entire computer output

is not shown in this document - because of its large size.

However, the printed statistics, the measured probability
density, and the power spectral density function have been
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TABLE IV-3

Selected Control Parameter for Example 2

Name Value Reason for Value Selected

Card 1

IOP1 5 Needed a plot of the input.data,
IOP2 5 Needed the probability density and

- statistics
IOP3 5 Curious about the autocorrelation
IOP4 5 Needed the Power Spectral Density
IOP5 5 Curious about R.M.S. plot
IOP6 0 Not used in program at-this time
IOP7 0 Did-not need a GaussianP lot
IOP8 0 Did not need a Rayleigh plot

7 IOP9 0 Did not need a filter
IOP10 0 Was not interested in logarithmic P.S.D.
IOPll 0 No need to output_,.information on Unit 12

-x IOP12 0 Not used in program at this time r`
{ IOP13. 5 Delete data values from plot output

IOP14 0 Read input data from punched cards
IOP15 0 Han (smooth) the data
FC1 Blank The filter was not used

s FC2 Blank The filter was not used #tf
FT1- Blank The-filter-was not used f
FT2 Blank The filter was not used

f! PER. 0.0 0% error desired i
IFORT 1 Controls some data shuffling
NTB 1024 Number of data points-

f NMB 2 Number of words stored pe r time space
'. NWP 2 Data value is the-second word in. the t

.; time space ,;

Card 2
1

j ATITLE Square Wave With a Period of 1.0 cycle/second -`

Card 3 C^,

BTITLE Square Wave With a'Period of 1.0 cycle/second
.1

Card 4 r
:. w

C;TITLE, Square Wave With a Period of 1.0 cycle/'second

Card 5 1.

DTITLE* Square WaveWith a Period of 1.:0 cycle/second

Card 6

ETITLE Square Wave With a Period of 1.0 cycle /second ,.

Card 7

ID Mike Forehand --- Example 2
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J.
TABLE IV-3	 gcontinued)

Name Value Reason for Value Selected

Card 8
IDATE 5-3-71 Current date of.the computer run
ITAPE

LR
No Tape
128

The, , data was read on punched cards
VREAD reads records of 128 words long

Curd 9
BW 0.5 2	 (FUndamental Frequency)

^. SAMPLE- 256.0 Sampling frequency
CUTFRE Blank If-left-blank CUTFRE=SAMPLE/2-.0
ANALOG . Blank Not used in this evaluation_

Card 10
Blank If-card 10 is left	 the-.bandwidths.	 .blank

are selected by the program

Card 11

NTIME 1 Only one data set processed

Card 12
BTIME 0.0 The process starts at 0 seconds

t Card-13

ETIME	 3.999	 The process ends at 4.seconds

a

t;

7

i

t

i

J}
7
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hand plotted using the intormaton from the computer plots.

Statistical values give information about how the

input,data values vary with respect to time. These values

are printed in Table IV-4a

TABLE IV-4

Statistical Parameters for a Gaussian Probability Distribution

PROBLEM -- Mike Forehand -- Example;2

Li TIME INTERVAL -- 0.0 to 4.000

DATE PROCESSED  5-3-71

TAPE NUMBER,-- NO TAPE

NUMBER OF-DATA VALUES -- 1024

Maximum Data Value .	 1600000 Minimum Data Value. 	 . 1.00000

Mean..	 .	 .	 .	 .	 .	 .	 .	 0.00000 Standard Deviation. 	 . 1.00049

Skew	 .	 0.00000 Kurtosis	 .	 .	 .	 .	 .	 . 0.99805

2.5% Confidence Level	 30.19099 5.0% Confidence Leve1.27.58710

CHI Square .	 .	 .	 .	 . 18674.52734 Degree of Freedom 17.

Coefficient of Variation	 e 1.000488

The above-table shows that the maximum data value is 1.0, the

d t	 1-1 0	 d th	 d t	 1 th

a-

^I

minimum	 a a va ue ^s	 , an	 a average	 a a va ue,	 e

mean, is 0.00000.	 The standard deviation is 1.00049.	 This

implies that the signal . varies on the average of 1.00049 from

ti,,.e mean which should be anticipated because the process.Y(t)
i;

a is a square ware.	 The skew and kurtosis are the third and

fourth probability moments. 	 The-e.quantities are mathematical

terms which have very little physical meaning. 	 The remaining

parameters are-quantities comparing the measured probability 	 3

density to that of a Gaussian, probability density. 	 The number
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of degrees of freedom determines which: value to pick out. _of a

chi-square table for the specified percent-confidence levels.
r

The 2.5 percent'and 5.0 percent confidence levels are tabulated

quantities found in the chi.-square tables. 	 These numbers

should be compared to the quantity CHI-Squared	 If CHI-Square

is-less than the 2.5 percent confidence level, then the process

ir has a Gaussian distribution within that percentage. 	 A similar

analysis can be applied for the 5.0 percent confidence-level.

Therefore, it is quite obvious that this square wave.does.not

have a Gaussian distribution.	 Another table exists in the

program output which compares the process.to a Rayleigh distri-

bution.	 The , procedure to determine-if the measured probability

has a Rayleigh distribution is identical to th.e,above procedure

for the Gaussian distribution.	 The coefficient.of variation

is a number found by dividing the mean into the standard

r, deviation.	 A large number would show that the data .Ls very 	 i

erratic .,, but ,a small number would mean the data had only a

' few rapid changes.	 These statistical quantities relate useful

; information about the .variations of the process being analyzed.	 n

' The probability density function determines-the

possibility of-obtai.ning a particular value of the original
r

-,

:' 3 process.	 The Figure IV-3 shows the measured probability of-a	 k
a'

particular value occurring for the process. 	 it is obvious
ry

t from the plot that only two values occurred during the
a _

complete set of data. 	 These two values are 00950`0 and

7 -0..9500, and the corresponding probability of each is	 ;f

5.0000095 and 5.0000095, respectively. Each value of the

x
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abscissas has a range, plus and minus a constant, associated

with it therefore, the value 0.9500 also contains the proba-

bility of the value 1.0. The'probability density function
Fi

gives a.good indication of the randomness of the process.

The power spectral density function provides informa-

tion about the amount of power concentrated at-a given

frequency. As can be seen from Figure IV-4, the majority of

the power is contained in,the low frequency components;
however, some power remains at the higher frequencies. The

Fourier analysis of a square wave indicates that an infinite

sum of sine waves of decreasing amplitude and increasing

j

	

	 frequency will result in a waveform.exactly like the square

wave. The-mathematical expression-of the Fourier series for

a. square wave is

	

F t - 4	
sin n7t

	

- 
7r	 n	 0.5
n-1,3,5,•..

The amplitudes of -this expression are not equal to the power

spectral density amplitudes, but it is easily seen that the

amplitudes of the power spectrum do decrease similar to those
I.	 of the Fourier series. The power spectrum peaks occur at the

.E

same frequencies as indicated in-the Fourier series. This
plot is very important in determining the frequency components

of an input signal

t	
r
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Figure IV-4, Power Spectrum
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CHAPTER V

ANALYSIS OF A DIGITAL FILTER

The application of this data analysis program to a

real problem will illustrate the potential value of this

piece.of computer software More and more of these canned

programs will appear in the years to come. The ease of

using this program makes data processing become a simple task.

The problem posed in this chapter is how effective will a

particular digital filter be when it must filter random

Gaussian noise. Without this program many long hours would

be required to calculate mathematical values and.then make

statements about the input signal and the output signal.

With the aid of.this program, only fifteen or twenty minutes

is . needed to prepare the program for processing. Approxi-

mately ten minutes are required for the program to be run on
r

an IBM 360/40 computer, then the answers are ready for the

programmer to make his conclusions.	 The results of the

program allow definite statements to be made about the data.

IT-
characteristics."

Allen R. Atkins [1971] developed -a mathematical model r

of an existing bandpass filter.	 This mathematical model was

programmed for the computer and subjected to random Gaussian

noise, and the output was recorded on punch cards.	 It is

61

.
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C

desired to analyze the input and output signals and draw a

conclusion about the filter and its effectiveness. The data

was already in the digital form. The sampling period was

0.002 seconds which gives a sampling frequency of 500 samples

per second. In order that the lengthy computer output could

be redrawn and included in,this document, the total number of

data points was selected to be 256.	 This makes the final

time equal to 0 . 512 seconds.	 If space had not have been a

factor, the number of data points chosen would-have-been

approximately 4096 or 8192 values.	 This would probably give
3

a:stationary data set.	 If 256 data points gives a stationary

record, then inclusive statements can be-made about the

filter.	 Table V-1 .lists the control parameters for the input
I

and the output signals since both signals were to be ' processed

a r identically.	 The resulting plots included . in this document

are the input and output data plots, the :input and output 	 `.

q
autocorrelation plots, and the input and output root mean

square amplitude plots

The first	 the filter input data	 ?set of plots are

rA shown in Figure V-1, and the filter output data _shown in	 '

Figure V-2.	 Figure V-1 shows that the signal is definitely-

a random process.	 However, the filter output in Figure V-2
ii

is shown to be a smooth sinusoidal waveform with;a decreasing
r

amplitude.	 Since the output is a smooth process, a conclu-

$ion can be made that the filter is working.

The autocorrelation function of the input and the

output .is recorded in,Figure V-3 and Figure V-4, respectively.



.	 ' x

x	 y
i

1
I

63

TABLE V-1

Selected Control Parameters for the Filter Problem

Name	 Value	 Reason for Value Selected

Card 1

IOPl 5 Needed a plot of data values
IOP2 0 Statistics and Probability not needed
IOP3 5 Needed autocorrelation function
IOP4 5 Needed power spectrum
IOP5 5 Needed R.M.S. amplitudes
IOP6 0 Not used in the program anymore
IOP7 0 Gaussian probability not needed
IOP8 0 Rayleigh probability not needed
IOP9 0 Do not filter the data
I0P10 . 0 Log P.S.D. plot not needed
IOPll 0 No need to output values on Unit 12
IOP12 0 Not used in the-program anymore
IOP13 5 Did not want a Listing of the data

31,

after. the plot !
IOP14 0 Read the data from the punch cards ;l

-° IOP15 0 Han (smooth) the data
FCl Blank Leave blank because internal filter is :!

not used
FC2 Blank Leave blank because internal filter is

not used
FT1 Blank Leave blank because internal filter is

not used
FT2 Blank Leave blank because internal filter is

r not used
x PERRO.R 0.0 Wanted 0% error
' IFORT 1 Needed. to organize the data values

NTB 256 Number of data values used in this a
example

NMB 1 Amount of information per time space
NWP	 -- 0 Time value was not with the-data values

Card 2

ATITLE Analysis of a Digital Filter

Card 3
t

BTITLE Analysis of^_a Digital Filter

Card 4
`	 t

CTITLE Analysis _of a Digital Filter r
Card 5

DTITLE- Analysis of a Digital Filter
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TABLE V-1 (continued)

Name	 Value	 Reason for Value Selected

Card 6

ETITLE	 Analysis of a Digital Filter

Card 7

ID	 Mike Forehand— Chapter V

Card 8

IDATE 5-4-71 The-date which the program ran
ITAPE No Tape The tape reader was not_used

e IR 128 Because . VREAD reads data in.increments
of 128 sections

Card 9
BW 1.95306 2	 (Fundamental Frequency)

SAMPLE 500.0 Sampling frequency.
CUTFRE Blank The program will find the correct value
ANALOG Blank Not used in,this evaluation

Card 10
a:

Blank When card 10 is blank the program finds
r the correct bandwidths

^{	 I

a, Card 11
NTIME 1 Only one data set processed

Card 12

BTIME 0.0 Starting time for the data set

Card 13

j ETIME 0.512 End time for data set
f

j.

h

r

7
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This function gives information about the repeatability'of-a

signal. Obviously Figure V-3 shows that the input data never

repeats itself. The first large peak shows that the input

signal is only perfectly correlated when the time shift, T,

equals zero. The smaller peaks show that the signal is
slightly similar at various lag times. The autocorrelation i

r
plot of the output signal, Figure V-4, is considerably	 i

different. This plot shows that the output is very cyclic in
nature and repeats itself at regular intervals. These-inter-

vals of-time-are 0.03984 seconds which corresponds closely

to the period of a.sine wave with 25 cycles per second
r

frequency. The regular repetition of the autocorrelation

plot fosters the conjecture that the output of the filter

consists primarily of a,sinusoidal wave with a frequency of

25 cycles per second.
The root mean square amplitude plot will reveal any

frequency components contained in the data set.. Figure V-5

reveals the frequency components of-the filter input, and Pf

7
Figure V-6 shows.the frequencies contained in the filter

r-

output.,	 The-filter input is random Gaussian noise which is
i	 composed of many frequencies of varying amplitudes which can

be confirmed by Figure V-5.	 Both the amplitudes and the

frequencies of these..components are continually changing.'

For this reason Figure V-2 appeared to be a sinusoidal wave
of-varying amplitude.	 The magnitude of the 25 cycle per

`second component varied exactly as the output of the filter.
It is noted that the root mean square plots will only show

Alf
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the average magnitude during the time span of the data.

Figure V-6 shows that the filter output consisted of the sum

of sinusoidal waves with frequencies of 23.52972 to 27.45132.

An educated guess based on the plot of Figure V-2 would be

that only one sine wave existed, and the bell shaped curve in.

Figure V-6 is due to the hanning (smoothingl, process. 	 If this

guess is true, the filter is definitely a narrow bandp ass

unit.	 It-would be very interesting to see Figure V-6 if the

data were not hannad..

IT



CHAPTER-VI

CONCLUSIONS

The modified version of the VIBAN3 	 program offers an

economical method of analyzing random sets of-data. 	 This

program will analyze 16 sets of data where.each set contains

8192 points.	 The computer output includes plots and tables

of the input data, the general statistics, the`probability

density, the autocorrelation function, the power spectral

density, and the root mean square frequency components.

Standard mathematical:techniques are employed to determine

the general statistics and the probability density. 	 The

standard procedure for finding the basic frequency components

is to find the autocorrelation function then take the inverse

Fourier transform.. This results in the power spectral density	 i

which is then converted into the Fourier frequency-components. 	 ?
_

This program saves time in evaluating the discrete Fourier

transform,by the fast Fourier transform method. This method

is so fast that the total evaluation time is decreased if the
f.k	

+

Fourier frequency components are found first. The power-,

spectrum can be evaluated by squaring these coefficients, and	 r

-3	the autocorrelation is found by taking the inverse discrete
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several hundred, Typical execution times of the program on

the IBM 360/40 computer are eight minutes for 256 data points

and fifteen minutes for 10,24 data points. These unique

digital-techniques are proven to be effective in data analysis.

The accuracy of this procedure is dependent..upon the

amount of data analyzed. It was found that even-though the

data had been digiti.ed properly, errors could be detected

when the entire number of data points was relatively low.

For instance, in Example 2 of Chapter , IV the total number of

data points was selected to be 256, which were evenly distri-

buted in one cycle of the square wave. The autocorrelation

plot was found to be in error .. This plot should vary linearly

between +1 and -1 in 0.5 seconds. The autocorrelation plot

was found to have a curved shape, and the power spectral

density had similar erroneous values._ The problem was due to

the small number of data values. Therefore, it was decided

to increase the number of data points to 1024 by increasing

the overall `time span of the data and maintain the same

y sampling frequency.	 This corrected the errors in Example-2.
f

It:is noted	 that the increase in the total time span of the

data lead to a finer grid for the power spectrum.	 This-would

not occur if the-number of data values were increased by

sampling faster since the fundamental frequency is not

changed.	 Therefore, when-increasing the number of data

values to obtain better results, two methods are available.

The first is the increase of the sampling frequency which

will change the autocorrelation plot but-will not alter the
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power spectrum. The second method increases the total time

span of the data and should alter both plots. The me'Chod

chosen will depend upon the physical problem being analyzed.

A recommendation for future work would be to obtain

a binary card deck which would,eleviate the long program

compilation time. Other points to consider for future

evaluations will depend upon the current computer size. With

the IBM 360/40 computer, this program has evolved close to

its maximum capability. If Tennessee Technological University

obtains a new computer, several program modifications may aid

in.data analysis. For-instance, the addition . of a subroutine

to generate a one-third octave plot, would lend additional

information about the frequency characteristics of the input

a s b	 ti a whi h performsdata	 Also,,	 u rou	 n	 c	 p	 orms the cross correlation
I

would prove valuable when-processing several sets of data

consecutively.	 Analog plots would make the program complete.

Atpresent the-program must make . digital plots using the

computer printer, however, a continuous•plot would present..

the output in a-neater form.	 These modifications wouldr ^

require additional computer equipment. 	 This evaluation shows.

that digital processing of numerical data can be accomplished'

accuratehy and-rapidly.
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