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Abstract

A large body of data has been acquired from five skin-ol-biting

spacecraft and from four earth satellites in goostationary orbits.

By radio propagation means we have obtained measurements of the

electron content from earth to each of these craft, tit various times

Ill 	 sequences spread continuously over the past 5.3 years.

Through processing and - I:A.sis it is possible to infer the electron

content of the solar wind along the radio path above the orbit of

the geostationary craft, effectively removing the influence of the

earth's ionosphere and magnetosphere from the derived result.

Dividing the interplanetary content by the spacecraft distance

yields the average free electron number density of the solar wind

along the radio path.

The density thus observed is of great potential scientific

6

value, both in the study of sh , unusual events and in the deriv^i-

tion of long-term statistical properties of the wind. For the latter

purpose, it is important to obtain a body of "clean" data and, in

the case of these data, the primary source of contamination can be

traced back through the processes and attributed to inaccuracy in

our estimation of tike ionospheric electron content along the line

of sight to the deep space probes. We have devised methods to improve

these estimations and trove trained personnel and written computer programs

which implement the known processes. Ttie running of the programs and

the associated manual and mental processing was still under way et the

conclusion of this project, as further data is still being; obtained

from deep space.
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We IIaVU de• rivecl Borne solar wind statistics by 'tle; -tic nrive interim

processes which are relatively inaccurate, and we can ,g ee tre ► ids.

Clearly we will only derive the Gull scientific benefit of these data

when the data processing and analysis are completed.

It is shown herein that the specific processing anti nnalysis

nre having a direct payoff in scientific terms. Two statistical

measurements are shown in their present form and it can be seen that

cleaner data will permit the derivation of trends indicating, smov ► 6

other things:

1. The variation of solar wind density with respect to the II-

year solar cycle.

2. The variation of density as a function of distance from the

Still, which now appears to differ from the 1/r2 variation

predicted by the mo.nt simplified theory.

3. The variation of density with sector structure, which has

been measured during times of the quiet suit 	 not during

the active period of our investigations.
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Int rcxl tic t iun

On Pioneers G, 7, 8, and D and on Mariner Vii, wu have placed similar

dual-f requeney receivers designed to provide measures of the solar wind

density. Because of the availability of ninny spacecraft, it has been

possible to obtain these data almost daily since December 1965. To per-

form measurements, phase-modulated signals at 99.8 and 923.3 b1liz are

transmitted from a 150 foot paraboloid antenna located near Stanford

and beamed toward the selected spacecraft. There the spacecraft receiver

and its associated processors measure the relative phase delay and group

delay of the signals for subsequent telemetry back to earth. The delay

differences are interpreted as a measure of the columnar content of elec-

trons along the line of sight and thus solar wind structural details are

revealed.

A portion of the measured content is attributable to electrons in

the earth's ionosphere and magnetospliere. The sum of these two contents

is referred tc here as "ionospheric content". This has been monitored

continuously by measuring the Faraday rotation of the polarization plane

of the signal from various geostationary earth satellites. Additionally,

In 1966, sparse data points were derived from observations of the passage

of orbiting Ionosphere Beacon satellites. A large proportion of the data

processing effort will be devoted to the use of these observations to

deduce the most likely ionospheric content versus time along the line of

sight to the sun-orbiting spacecraft, continuously during all hours of

operation. After the ionospheric portion of the content is subtracted,

the remaining interplanetary content may be divided by spacecraft dis-

tance to yield the spatial average of free electron number density along

the radio path in the solar wind.

These data are by themselves useful as an indicator of the solar

wind density and morphology. However, a linear column content is in-

herently ambiguous in the sense that one cannot determine how the den-

sity varies along the path. Consequently, these data are most useful

when combined with other indicators, particularly with measures of den-

sity and other wind characteristics flown on the same and on other space-

craft. 'Therefore, we conduct liaison with other spacecraft experimenters,

6
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Willi the objective of c .nhancing the utility of both their c:ata and our

dual-frequency data through cooperative analysis.

Spatial coverage of the meta

All participating spacecraft have been near the ecliptic plane,

staying within 0.3 A.U. of the earth's orbit. Most of this region leas

been explored by the experiment, largely by virtue of the fact that

the prime derived measurement is a spatial average of the density along

the entire path from earth to each spacecraft. figure 1 shows the tra-

jectories of the five probes; note that Pioneer 9 recently passed behind

the sun and, as a consequence, we obtained measurements along the line

of sight which goes much nearer the sun than any man-made hardware has

ever reached. (When this path was about 23 solar radii from the sun,

the experiment was rendered inoperative by the effects of scintillation

attributed to the outer corona.) The region within 1/2 A.U. of the

earth has been under relatively constant surveillance since early 1966.

The earlier space raft, Mariner 5 and Pioneers 6 and 7, were t ,3t capable

of locking onto our radio signals beyond about 0.7 to 1 A.U., but Pio-

neers 8 and 9 can work all the way around their trajectories to the

farthest points beyond the sun.

Although not shown on the figure, Pioneer 6 has nearly completed

its first circuit of the sun and is once again within operating range;

at the time of this writing it is roughly at the location of the "8" in

the "Pioneer 8" label on Fig. 1, headed toward the earth. It works well

despite its relatively old age of 5.2 years. Consequently there will be

three paths under surveillance until mid-1972, those from earth to Pio-

neers 6, 8 and 9.

Time Periods Covered by Data

The on-board spacecraft data storage capability was not often used

for gathering this "cruise" data, and so the measurements have been taken

only when there was simultaneous transmission from Stanford and reception

4
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by some station	 in the Deep Space Network.	 The content is measured
along;	 tlse	 Stanford line of Sight and	 is unaffected by the content	 along;
the line of sight from the Spacecraft to the ea rt hhound telemetry re-
ceivers.

The times and places of interest have been summarized ill Fig. 2.
Each spacecraft is near the plane of the ecliptic, so that each follows

a path in the sky (as seen from the Stanford transmitter) which is much

like that of the sun, but at a different apparent "season" and "time of

clay". The time interval from spacecraft rise till set varies from about

10 to 14 hours per day, for exactly the same reason as does the length
of the day vary with the season.

Data are not available for all the time periods drawn on Fig;. 2

since the receivers or transmitters have often been inactive due to

conflicting schedules or to budgetary limitations. Nevertheless, the
data available do provide a good sampling of all the indicated areas
of the figure.

Figure 3 shows the relation of these data to the current solar

cycle. It can be seen that the data provide good indications of the

solar wind behavior when the sun is active and that the change from

quiet to active and back toward quiet has been continuously monitored.

However, the quiet solar wind has not yet been observed by this tech-

nique since the sunspot number has been above 40 during; all but a brief

portion of the Pioneer 6 observations. (The earliest 3 months' data are

difficult to interpret because of error incurred in subtracting the

ionospheric content from the measured total. This is a particularly

severe problem in relation to Pioneer 6 because the ionospheric content

monitoring; was comparatively crude in 1966.)

Specific Events vs Statistics of All Aieastsres

With data of this type, two different types of study are feasible:

(1) examination of isolated, unusual events, and (2) derivation of the

statistics of the ensemble. In practice, the statistical results are

the most difficult to extract because they are typically the end result

6
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of a coti,plex data redaction j)1,x-o-s; :Which mu.-A be cnrried (nit with a I I

the data. The l(lgi^ tic titsk of reaching this (-iid is at the limit of

the capability of the personnel, sinco tit(- group has been assembled

for gust this purpose and thus is not overequipped. In contrast, the

st udy of isolated events I-, easy, once t Ito events have been ident if ted

ns "unusual". The clur;ctiott of each event is typically 1088 than a day,

so the data can be processed in short order.

At the present time, budgetary limitations make it impractical for
us to carry ottt our reduction processing with the ensemble beenuse, if

we did this work, there would be insufficient funds remaining for us

to analyze the isolated events: I'he output of the experiment would

then cease. This is a trap easily fallen into; many past ex • ..'-•iments

have foundered in the data reduction :stage, and if we devoted our

available resources to processing, then it seems likely that this ex-

periment might similarly founder. There are many as-pects of the ob-

servational data which can be studied in isolated events, and sonic

gross statistics of the ensemble are being derived from data processing

by comparatively inexpensive interim processes. Nevertheless it is

clear that many statistical measures can only be extracted from the

ensemble after completion of the processing; which is now curtailed.

The Ionospheric Portion of Content

In a sense, the operation of this experiment is much like the

operation of a very large optical telescope: that is, we are able to

resolve smaller detail than that exhibited by the measurable da11a. The

limit on angiilar resolution of optical telescopes is imposed by inter-

vening atmospheric turbulence. The limit on our ability to resolve

detail in the solar wind content is imposed by the intervening .iono-
sphere which has it content comparable to the wind and which is in a

constant state of change. The Pioneer/Mariner measurement is unavoid-

ably the sum of the ionospheric plus the interplanetary contents, and

it is necessary to obtain an independent measure of the ionospheric

9
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portion so that it may be subtrnetuni to yield the desired diffure ,̂ Ic ► .

'There :t.-o imperfections in t he acquired ionospheric data and in the

processes used to derive tho correct value for subtraction, so that

the difference contains "noise" which masks detail; tlu.-., there is

loss of resolving power.

In order to obtain ionospheric content, we have made much use of

the signals from S.N i ► c• om and from three Applivd Technology Satellites

(ATS), observing the rotation of the plane of polarization which is

roughly proportional to the electron content along; the line of sight.

Several ground stations have been used, in order to sample the iono-

sphere over a wide geographic area. Conventional techniques are being;

used to convert this Faraday rotation into ionospheric electron content

and improved techniques :ire under study. Newly devised metl:cxls are

used to translate this value to the line of sight to the Pioneer or

Mariner spacecraft in rise. It has been found that these techniques

work fairly well when both lines of sight are at elevation angles

higher than about fifteen degrees from the horizontal. however,

more subtle analysis and conversion techniques are apparently needed

when low angles of observation occur. This need can be identified

because of the evidence of n diurnal component remaining; in the data

after subtraction of the ionosphere. There should be no diurnal vari-

ation in a true measure of the interplanetary content alone. When the

spacecraft are within roughly 0.5 A.U. and are at elevation angles

which are near the horizontal as seen from Stanf oixd, the ionospheric

component of the total content is so large that the derived interplan-

etary component becomes marginally accurate. Of course this source of'

error is inherently additive, so that the percentage degradation depends

on the magnitude of the interplanetary content. When the spacecraft are

new and still near the earth, the length of each line of sight is so

short that the interplanetaryinterplanetary content is at times only a few percent

of the measured total.

10



0

('ammeter-A ,listed ExIrnction OI the Colt:nuiar Content frcnu Telemet(-r(!d
1 ►ata	 --

While the dual-f requency data provide it measure of t he columnar

electron content, there are nevertheless 3 sources of diff iculty which

arise in any effort to extract it 	 to 	 vs time" tabulation

from the telemetcred data returning from the sun orbiters. These 3

features of the data will be illustrated by example, and the opt imu ► n

solution to the difficulties will be described.

There is actually no problem in overcoming these barriers if one

wishes to deal with only a small portion of the data, since manual

techniques have already been found to work well (with some computer

assistance). The problem arises when we contemplate the task of de-

riving the single-valued function of content versus time for the en-

tire body of data covering over 5 years. The manual process would

then be impractically cumbersome.

The three main sources of (tiff iculty are:

1. The fine structural detail of the content is contained in
the please path measurement, for which we have only a dis-
continuous and sometimes faulty measure of the derivative.
This is an unavoidable disadvantage of such a phase path

measure, which is actually derived from a precise compari-
son of the two radio frequencies arriving; at the spacecraft.

2. The content magnitude is determined from the group path mea-
surement, in which our spacecraft instrument response curve

is discontinuous and subject to variability as the signal
level varies. It has not been possible to remove all these

vagaries by computer, anal some human intervention and check-
ing is needed before final tabular results can be trusted.

3. Nenlinearities occur, principally in the earth's ionosphere.
They cause the phase and group path measures to lose their

simple prop-)rtional relation to the electron content.

An example which shows all 3 of these features of the data is given

oil 	 4 which consists of two plots of the same data at successive

stages of data processing. For this example we have selected an extreme

case of group path difficulty. This example is the first day of opera-

tion of Mariner V, and it was rendered especially difficult because the

11
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real-time teletype link to our transmitter was inoperable in the firt;t

hours of tine mission so that it was necessary to run "blind". This

means that the transmitter personnel could not monitor the total con-

tent in real time, as is usually d(me, and so they coulee not adjust

the modulation phase in the us>>al manner which places the signal at

the spacecraft in an optimum condition for group path measurement.

Consequently the transmitter personnel had to guess, and tile)' had the

worst possible luck! The group path measure oscillated up and down

from about 19:30 till midnight as can be seen by the oscillation of

the dotted curve on Fig. 4a. The oscillation is readily explained if

one examines the instrument response as a function of both modulation

phase and signal strength. 'i'iue situation can be avoided when real-

time data are available (as is usual) and even in this worst case the

correct content can be inferred after appropriate consideration.

The intermittent nature of the phase path inuasurement is illus-

trated by the discontinuous line segments on Fit;. 4a. These discon-

tinuities disappear when the derivative is optimally integrated, as

has been done in Fig. 4b. As long as the gaps in these data are short,

one can interpolate across the gaps without accumulating much error.

In this example the gaps are very short, but when signals are weaker

late in the mission, the receiver readily unlocks and the traps tend

to be longer. Furthermore, the please path data tend to contain errors

which are difficult to identify when the signal is weak. This is usu-

ally caused by the fact that we are counting the occurrence of wave-

front arrivals at the two transmitted frequencie , and sometimes the

spacecraft counter goes out of lock. There is no foolproof way to

eliminate all the out-of-lock data by computer, but a human can delete

most of it by inspectlun of the plots. This is tedious work, however.

A few such bad points are shown on the bottom "rate plot" of Fig. 4a,

and they have been manually removed in Fig. 4b.

Finally, the nonlinear effect shows up toward the end of the day

at about 04:00. This is seen as a closure of the two curves on Fig. 4b.

If delay were linearly related to electron content, then both curves

would be proportional to the content and the two curves would be coin-

cident except for constant vertical displacement attributable to the

14
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unknown constant of integration. It can be seen on the figure that Elie

...0 eoup and phase curves could be thu:. matched f rum 01 :00 (when the group

oscillations cease) ()nly until 04:00. Thereafter, the nonlinearity

clianges 1 he relative shape of the cue ^ ► :,, decreasini- the apparent con-

tent of tale phase path measure and increasing; the content of the group

path measure. The best measure of content would be derived by translat-

ing the phase path down to produce a best fit between 01 :00 and 0.1:00.

The 3 kinds of difficulty mentioned relative to Fig. •1 are mani-

fested to some extent on each day's data. Usually, the nonlinearity is

wows than that illustrated, but the group path is better. The please

path plots of ten have large gaps, and then each segment of each phase

path curve must be manually positioned for a best fit within the array

of group path data points. This has been done with small amounts of

data but has not been .accomplished with all of the 5 years' observations.

The bad rate points are most frequent on the Mariner data where tile) , are
attributed to telemetry errors; there was not as much parity redundancy

built into the Mariner telemetry as there was in the Pioneer system. In

Pioneer, such bad points are less frequent and are almost all attributable

to the dual-f requency counter going into and out of lock, producing data

which ,just barely pass through the logical self-consistency tests which

have been built into our major computer data reduction program.

The solution to these problems demands participation by a trained

person- -the indications of erroneous data are too subtle (and often

unexpected) to be built into a computer program. 'Therefore we use the

"displayer" program which incorporates an optimal integration of the

phase path rats.. The operator fits the resulting curve to the group

path. We have added features which permit the operator to make correc-

tions or deletions to compensate for the 3 areas of difficulty cited

above. This task consists mainly of the deletion of the bad rate points,

fitting by observation of the group path and understanding its signifi-

cance, and the directed location of the optimum content curve at times

when the nonlinearity appears.
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Result z of S  Ild i(•^ of Isolated Events

Generally, analyses of these data Dave fallen into one of two

classes: studies of the nature of specific plasma events, and infer-

once from trends in long-term data.

An example of a specific plasma event study has recently been

completed by J. A, Landt and T. A. Croft using the data from Pioneer

6. Just when that spacecraft was at the limit of our operational range

(106 million km for that particular craft), there occurred one of the

largest and best-documented solar events, on July 9, 1966. The distur-

bance in the solar wind on this and on neighboring days has been the

subJect of many scientific papers, and was even the subject of a special

symposium which resulted in a special issue (volume 3) of the Annals of

the IQSY .

When we first reduced our data, it appeared that the SKEZ was in-

adequate to permit us to deduce the content on that day. However, a

later, more refined data reduction process revealed hints of the exis-

tence of a pulse in the plasma stream so large that its appearance had

misled the earlier investigator into believing that the rapid changes

in the data were a manifestation of noise.	 Still later, careful manual

data analysis has shown an extremely large plasma pulse, and this con-

tent integral was used, together with local solar wind density measure-

ments of other investigators, to determine ti,e shape of the plasma cloud

passing through our radio path. A paper has been published on the work

(Journal of Geophysical Research, Sept. 1, 1970) . This new data reduc-

tion technique subsequently served a valuable operational purpose during

the solar occultation of Pioneer 9.

We see plasma pulses quite often (once a week, more or less, depend-

ing on how one defines a "pulse") and can learn much about the sun from

trends in the occurrence and shape of these disturbances. We are in
liaison with other investigators who have local density measurements

from space, hoping to glean pulse structural information from a com-

parison of the line integral and spot densities, velocities, etc. Air.
Landt is working on his doctoral dissertation in this area.
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The statistics of puIscs will shed light, for exampIc, on thou

liypot lies is of' Ballif :u ► d .)ones (Milt, .July 1969) that Forbusl ► decreases

anti geomagnetic sloinns are actually caused by interplanetary streams

rather than by individual solar flares. Each of our pulses is caused

by passage through the line of sight of a stream such as Ballif and

Janes discuss or of a shell ejected by a flare. From morphology stud-

ies and from studies of the coincidence with storms and Forbush de-

crease:;, we should derive a good data base for testing this hypothesis.

Interim Data Processing to Recover Ensemble Properties

Because of limited funds, we have devised a number of inexpensive

methods for continuing the study of the long-term properties of the

interplanetary medium. Generally these fall into a single class; we

examine the reduced group delay data and then obtain samples at sonic

low rate. The stress lias been on Pioneers 8 and 9 since their data

are 'c leaner" . The differences among the three methods 'n use stem

primarily from their different sampling rate.

The lowest sampling; rate is about 1/day, comprised of one inter-

planetary content value hand-selected from the real-time plots produced

by the transmitter operating; crew. This particular data form is useful

as a gross aid in spotting major trends in the solar wind; the increas-

ing density as Pioneer 9 approaches occultation is the most obvious

trend in these data; relative noisiness among spacecraft and 27-day

repetition effects are also clear. There is some hint in the last few

months before occultation that the solar wind may spread as, say R-1.9

rather than as R-2 but a better measure of this possibility has been

derived from liourly data (described next) and it clearly points to the

need for full data processing if the true exponent (or other functional

relationship) is to be derived from these data.

The next more detailed body of data has also been obtained from

manual inspection of the group path plots produced in real time by the

transmitter crew. Hourly points have been selected in such a manner

that linear interpolation between the points will most closely match

17
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the indicated content-time curve. Furthermore, some obvious ionospheric

effects (lave been rvn ►oved by :appropriate corrections to these h(,urly

points. Six pages of such data are plotted on Fig. 5. For six solar

rotations following 20 October 1968, there was a paucity of data duce to

the launch of Pioneer 9 and the preferential coverage of that spacecraft

by the tracking network. Until it became quite distant (A A.U. ), we

could not achieve reasonable accuracy in this interim data form ► because

the error in the ionospheric determination was so large relative to Iii..

interplanetary content. When we can afford to complete the p-0cessi.,-g

of these data, we should rescue one or more rotations' measurements from

this gap in time. As an interim measure, we simply ignore periods like

this when spacceraf t are near the earth.

One of the goals of our future efforts will be the recovery

of these data which are effectively "lost" at the present time. The object

of the pI nnned processing and analysis is the production of clean data

points for each minute. All statistical inferences drawn from these data

should be much less contaminated by error if the data base is of the high

quality that we wish to produce.

There are a number of visiale defects in Fig. 5 and a few examples

will be pointed out: (a) Consistent daily trends in Pioneer 9 in April

1969 are surely ionospheric, as are similar trends in Pioneer 8 for

September 1970. Other similar errors abound but these cited examples

are readily seen becauso they persist from clay to day. (b) Rapid fluc-

tuations are not well resolved, and yet trends at the beginning and end

of each short data string are needed to deduce what happened in the gaps.

See mid-May 1969 and late January 1970 for examples. (c) Data strings

which endure for only an hour or so are poorly represented by only one

or two points; the trends would be useful if they could be more adequately

resolved. Sonic days' runs are represented by a single point which pro-

vides no indication of trends during these short runs. A careful study

of the 1968 data led to the judgment that the trends are a useful guide

to interpolation across data gaps, even when data strings are quite short.

These defects have led us to search for a means of achieving higher

time resolution (more points than one per hour) at low cost and to this

end we have begun to generate "Group Only" (GO) cards, the third interim

18
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data form. liy computer, we average t liv group path measurement for eucl ►
four minutes and subtract the ionosphere to produce an interplanetary

content value once each 4 u ► inutes. Fifteen stich points iit onto one

card (one hour's data) , ► nd thus ►►ne can store approximately a year's

data in a single box of cards. This not only eases the logistic cost

and effort but reduces the cost of computation too. The GO cards stif-

fer primarily from the continued presence of ionospheric errors because

of lack of analysis. Also, the group delay suffers from nonlinearity

in the ionosphere to a greater degree than does the phase delay. Fi-

nally, the GO cards are somewhat inferior to the hourly points due to

the absence of human intervention which permitted recognition and re-

jection of obvious errors in the hourly data. Nevertheless the high-

rate trends are more fully represented by GO cards.

As described above, three interim data forms are serving as a basis

for study of long term trends. The full processing

for a few days of special interest, because of fund

we will describe results derived anti re-;ults expect,

time to time those aspects of the studies where the

these interim forms are serving to limit the use of

vent its use altogether.

is currently reserved

limitations. Next

'ad, pointing out from

fault., inherent in

the data or to pre-

ApFlications of These Observations

The stress in this section is on examples of physical reasoning

which are based upon the measurements illustrating why it is important

that we resume the processing of the data. Only a few examples are

given, selected largely on the basis of their adaptability to represen-

tation in a short description or in a single figure. We have studied

many other, different aspects of our data not described here and we

consistently find that a primary limitation is the lack of full analysis
'	 of the past data. In particular, the ionospheric error causes artifi-

cial systematic trends that are difficult to work with.
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Using; the hourly density points we have averaged over complete

solar rotations to minimize the effect of' density variations- due to

corotating structures which are so apparent in } g ig. 5. 'Phis concept

of averaging deserves some comment, since it is a temporal average of

a spatial average and is thus doubly averaged. Such a process is

needed if we are to study the mean density of the solar wind because

the density is so variable that a single point measurement is of lit-

tle use as a guide to the mean. Even the time average of measurements

taken at a point in space would not be as good as these data. For

example, if our radio path is taken to a Pioneer that is at 1 A.U.

from both the earth and f re-:i the sun (so that the earth-sun-spacecraft

triangle is equilateral), then the measurement that we take at any mo-

ment is averaged much as if it had been derived from point density

averaged for over 4 days. Therefore, when we take the time average of

our spatial average, we have a near optimum representation of the mean.

We believe that most of the "noise" left in such data is attributable

to the fact that we have not cleaned yip our data through adequa't'e anal-

ysis.

A series of 1-rotation averages are plotted in rig. 6 for two

spacecraft over the last 2.5 years during the pericxl of declining

solar activity. Notice that there appears to be a decline in the

averaged averages from a value of perhaps 8/cm 
3
down to a present

value of roughly 7/cm
3
. This trend is weak, however, because the

variance is significant relative to this variation in the mean. When

we do this same plot using fully analyzed data, it should be possible

to discern the way in which the mean varies with solar activity. Sim-

ilarly notice the 1-year averages shown by horizontal lines. The

Pioneer 9 value is 0.8 electrons/cm 3 less than the Pioneer 8 value

in the same year. Since the Pioneer 9 path was much closer to the

sun during this period, we suspect that perhaps the density falls

off less rapidly than 1/R 2 and in fact our preliminary analysis in-
f

dicates that an exponent of 1.9 would roughly equalize these means.

Physically this may be an indication that, over the long run, the

solar wind slows down as it recedes from the sun or, alternatively,

there is some trend for the wind to converge away from pure radial
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flow in the direction of the! Molar equator. If wo clean tip these data

t I ► ruugh but ter analysis such :is we hope to conduct ) we cony be :able to

determine the functional relatiun between density and helioevi ► t ric•

distance and thus discriminate between various; hypotheses U.S to the

cause of these differing means. Until we can reduce the variance,

however, it is clear that the difference between 6.3 and 7.1/cm3 is

not a convincing indication of a trend .

Numerous investigators, notably J. M. Wilcox, have found trends

for greater activity in the solar wind ,just after passage of a sector

boundary . Through private communication with Wilcox we are attempting

to find correlations between wind density and sector structure; one

aspect of our work in progress is shown in Fig. 7 which shows a super-

posed epoch analysis of tilt; type which has become conventional in this

work. There is, indeed, seen to be an increase in density following;

the sector crossing and, in other similar data not included here, we

have found that the insertion of ra. ►dom timing errors will destroy the

correlation. Thus we suspect that the high peak seen 0.5 day after the

sector crossing is a positive sign of the suspected relationship. How-

ever, we cannot claim to provide a usef Ltl measurement of the size of

this effect because we are using tunanalyz,.:d u: to which are clearly in-

adequate. Notice that the density actually undergoes a 24-hour oscil-

lation with Subsidiary peaks at about 1.5 and 2.5 days. This is not

reasonable since no known solar wind phenomenon exhibits a 24-hour

period; the ionosphere does, though, and so it is thought that these

large variations in the derived averages can Fig. 7 are caused by er-

roneous estimation of the ionospheric component which has been sub-

tracted front 	 Pioneer-measured total content prior to this super-

posed epoch analysis. Thus we see another scientific application of

the data hindered by the incomplete processing.

It would be interesting; to run auto- and cross-correlation studies

of our data to determine the period of revolution of the solar wind over

a time of several y ears. Similar studies by Wilcox (and also, .1 Stan-

forcl, by Professor It. N. Bracewell) have shown that the 10th or 20th

harmonic of the 27-day period seems to settle to a single value regardless
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of how ono chooses to select the Bala. Shorter-l-rin observations show

variations as, for example, Wilcox's data show differential rotation

when the data are selected from different solar latitudes. `I'heso unex-

pvcted trends arc s thought to indicate the presence of ail 	 so-

lar structure that rotates as a rigid holy at the rate indicated by the

Mgh harmonics. Discontinuities deep within the sun may then convect

upward from the rigid core and in the process acquire different statis-

tics in their character over the short term. So far the only data which

we Have in the needed quantity are the hourly data. There is seen in

this data much evidence of corotating patterns but there is such large

error that, so far, we have not felt that the required correlation cal-

culations were sufficiently likely to produce results that we could risk

spending the funds to do the computations. If the data were fully pro-

cessed, however, it would clearly be worthwhile to run the correlation

calculations.

Because our measurement is a spatial average, it is possible to

determine whether the larger content fluctuations in our observations

are caused by spatial or temporal variations in the solar wind. In

practice the ,judgment cannot always be made, partly because of contam-

inating ionospheric error, partly because of the intermittent nature of

our measurement, and partly because some variations can be attributed

to either cause with equal credibility. In the cases where we can de-

termine the flow patterns, However, it appears that our data offer unique

evidence of the gross overall flow patterns of the wind. This kind of

reasoning has been described by Croft (Radio Science, January 1971) and

will only briefly be summarized here. Consider Fig. 8 which shows the

positions of the three operating Pioneers in late 1970, together with

an Archimedes spiral of a steady flow at 400 km/s. If we hypothesize

that there is a steady source of plasma on the sun ejecting a narrow

stream, then the flow pattern would appear to be the spiral revolving

at a 27-day rate. Its effect on our measurement would be proportional
	

V

to the product of the stream density and the distance along our path

within the stream. Imagining such a rotating spiral, one can see that

the stream would enter the path to Pioneers G or 8 and cause the content

to increase, staying high for the time required fox the spiral to reach
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tile earth. This increase would be relit ivoly unovo-1)t ful; careful cal-

culnt ions show that. the content would start high and then gradually 111)(1

steadily diminish to a lowo-r value as the strain approaches 	 llow-

ever, with Pioneer 9 the situation Is (ivalitatively different; the first

encounter of the stream is broadside so that the length of the path in

the stream is	 initially vory large. After a short period the enclosed

path length decreases rapidly until the stream encounters the earth.

After that, the content stays low for many days while the stream rotates

g round to hit Pioneer 9. Consequently we would find the de1)sity to be

very impulsive for Pioneer 9, but leas so for Pioneers 6 and 8. I'll is

conclusion would not follow if one assumed instead that the predominant

flow pattern is outwardly expanding spherical clouds of increased plasma

density. Neither would it follow if one assumed that irregular shapeless

"blobs" of plasma are the dominant travelling forms. From such arguments,

quantified, we can deduce the general flow patterns. This effort, too,

will be much more fruitful after the basic data are finally analyzed.

Other potential work of scientific value could be cited, but it can

be seen from thQ above examples that much remains to be gained from a

continuation of analysis of the existing data and from continued reduc-

tion of raw data from the Pioneers.

Submission of Data to the 'NSSDC Data Bank

We Have provided to the NSSDC a complete history of all the Pioneer

results (for Pioneers G, 7, 8 and 9) up to (late in December 1968 and we

provided two complete revisions up to date in February 1960 and in Sep-

tember 1969. These include hourly samples of the total content measured

over the duration of the flights of all Pioneer Spacecraft while they

are in range of our transmitter. These data provide NSSDC users with a

good picture of the events in space, together with a comprehensive sum-

mary of the times and places where further data are available.

In November 1970, we prepared a revised version of these data which

contain the latest runs from Pioneers 8 and 9. We have set up a system

with the data bank whereby these revisions can be easily accommodated,

32



0

since it is vXpocted that new data will be cont inually n ► • ► • iving for

some time to colna t : ► nd sinco we expect to make gradual small improvv-

menus	 in one r intorpi,etatiom of the older dzi t a .

The y Novomber 1970 suhmission to the hank was much more fully pro-

vvssed than the earlier content	 data;	 w( , had subtracted the ionospheric

portion of the mrasurem(mt, and then divided the interplanetary content

by the earth-spacecraft distance to yield average path density. It was

felt that bank users would probably not have accurate spacecraft trajec-

tories readily available, so in addition we normalized all average den-
2

sities to 1 A.U., assuming for the purpose that the wind spreads as 1/It

Thus the user of the data bank can discern the significance of our data

even if he only has a rough idea of the spacecraft locations at various

past times.

Sumir.a t ion

Analysis of these data adv: ►nces man's knowledge in four broad areas:

1. It leads to a better understanding of the sun, through insight

into the outflow of solar plasma and the relationship of flow

characteristics to other solar features observed either via

spacecraft or from earthbound observations.

2. Since the solar wind is the medium through which the sun af-

fects the earth in diverse ways, analysis of these data will

lead to more knowledge of the action mechanisms. Similarly,

these studies will better our understanding of how the wind

affects the other bodies in the solar system.

3. It is already apparent that solar wind observations have given

a great impetus to plasma physics studies, since the wind

serves in effect as an excellent "laboratory" wherein phenom-

ena occur that could hardly be reproduced in any man-made

laboratory. In this indirect manner solar wind studies bene-

fit many realms of astronomy and other areas of application
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of pla!,ma physic!; knowledge, slime of which show proms.-;C of

hoing of great practical value to man (e.g.. lesion).

'I'll(- decrense of group velocity and tile increase of phase

velmity il ► rourl ► tliv action of free electrons in the solav

wind provide the met; - ► ism through which we make these

measurements. Thvy also affect S and X radio signals in

the ."Iniv 111,1111101. and we h: ► ve measured wind fluctuations that

would seriously degrade sp ►teecraf t tracking accuracy. III-

sight gleaned from these data will provide (anti are provid-

ing) impetus to implement systems and procedures for trnek-

ing outer-planet probes that will alleviate this problem.

Such efforts can be optimized only if we understand the

character of the actual propagation medium, and our data

are the best in existence for the study of this problem.

1.
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5 Fig. 1	 Paths of five spacecraft carrying the special dual
frequency receiver, projected unto the ecliptic plane
and shown iii th^^ frame that rotates with the earth.

	

7 Fig. 2	 Times available for measurement, when the spacecraft are
in range and above our horizon.

	

n Fig. 3	 Relationship of the spacecraft data intervals to the
current solar cycle. (Sunspot numbers were obtained from
the NOAH Solar-Geo physical Data, volume 317, number 1.)

12	 Fig.)ia A "compressor p lot" showing all available data points for
pass 1 of Mariner V. (Plot produced by a computer program
which subsequently "compresses" the data into a compact,
convenient form.	 Top: Electron content vs. time, ill
which the dots are derived from group path measurement
and the line segments are derived from integration of the
phase path rate measurement. Middte: Modulation history
and A50 ) A42 3 which are the amplitudes of the 2 frequencies
as measured at the spacecraft. Bottom: The phase path
rate, i.e. the slope of the line segments shown in the top
portion of the figure.

	

13 Fig. ) }b	 A display of the compressed (Iota after partial manual
processing. Notice that. many erroneous spikes in the
rate have been removed.

	

19 Fig.5a	 Average density of the solar wind along the line from earth
to Pioneer 3. Short line segments show average inter-
planetary electron number density along the path to
Pioneer ^. To obtain this, the ionospheric content was
subtracted from the measured total content and the re-
maining interplanetary content wa s divided by the distance
from earth to the spacecraft. Shading between line segments
is provided to aid visual pattern perception. One point per
hour is plotted.

	

20 Fig. -)b	 Ott this and the succeeding !;pages is shown density averaged
concurrently along two poths in the solar wind: The density
from earth to Pioneer 3 is plotted upward, and the density
from earth to Pioneer 9 is plotted do%^nward.

21 Fig.5c

22 Fig-5d

23 Fig.5e

2!1 Fig.5f
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Figure caps ions; (continued)

Pa ge

27 Fig. 6 Solar wind density averaged in space over the radio path
and in time over a complete solar rotation for each
plotted point. Density is normalized to 1 A.U. ;issuming
that it varies as 1/R2 , in order to minimize the largest
source of long-term variation. Notice that the density
seems to be decreasing since 1069 as the sun becomes
quiet. Also the 1-year average is 7.1 for Pioneer 9 and
only 6.3 for Pioncer a. This inequality is under study;
it has been noted that normalization assuming density
varies as 1/R I. 9 leHds to nearly equal averages, acid such
a governing relation has many implications of scientific
importance.

29 Fig. '7 Density vs. Time after sector crossing as found by super-
posed epoch analysis, showing the largest peal: at 0. 1) day
in agreement with other observations (1968 observations) .
This wort: is in progress in a ,joint effort with J.M. Wilcox.
Some refinement of the analysis will improve this result
slightly, but contamination by ionospheric error must be
minimized before trends can be clarified to any significant
degree. (Notice the 21i-hour periodicity which is probably
a consequence of ionospheric error.)

31 Fig. 8 Spacecraft positions in late 1970 just after loss of content
with Pioneer 9 due to interplanetary scintillation in the
solar corona. Because of the relative locations of Pioneers
6 and 8 ) it has been possible to subtract the 6 content. from
the £3 content to obtain the content a'ong the line between
6 and 3. well away from earth.
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