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PARAMETRIC A1vALYSIS

The following sections were prepared by the Hughes Aircraft Company in support of

the TV Broadcast Satellite Study contract..
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POWER CONDITIONING

	

1.1	 Power Conditioning Efficiency

Table A-1	 is a summary of data from various sources on power condi-

tioning efficiency. The first four entries reflect Hughes designs in-

tended for high voltage and high power, at a regulation of +1.0 percent.

The efficiencies associated with these designs range from 81 to 96 percent,

with the actual efficiency depending on the approach.

The first entry is an SCR Morgan-type pre-regulator followed by a

DC-DC converter. This ;approach involves more complexity and less efficiency

than any other.. The second is a transformer-rectifier circuit followed by

a vacuum-tube high-efficiency switching regulator. This approach offers

the highest efficiency, however, it suffers from heavier weight and poorer

transient response.

The third approach is a hybrid combining an SCR DC-DC converter with

a vacuum-tube switching regulator. It produces a reasonable 88 percent

efficiency with less weight penalty.

The fourth Hughes entry is an all-solid-state inverter with pulse-

width-modulated regulation. This offers the ultimate in low weight and

volume. It is also an example of high efficiency coupled with the modular

approach. This type of approach is quite attractive and can be adapted to

higher powers.

Table A-2	 compares representative high-voltage vacuum-tube and solid-

state switching devices.	 f:

Table A-1
The final two entries in	 were taken from data contained in

the GE Multikilowatt Transmitter Study, (Vol. II. FTR Phase I, Document 	 r

No, 68SD268, 10 June 1968,, Contract NAS 8-21886). Although many pertinent

w
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DESIGN EFFICIENCY DATA
APPROACH (PERCENT) SOURCE COMMENTS

SCR Morgan 81 Hughes Air - 13 KV ± 1 % at
type Pre-reg. borne/missile 1. 65 amps
(90) followed by electronics
DC-DC converter technology
(90)

+13 KV - 1% at
Transformer-Recti-
fier(98) followed ' 96 Hughes air-
by Vacuum-Tube borne/missile 1.65 amps.
switching regula- electronic s
for (98) technology

SCR DC-DC 88 Hughes/air- 13 KV + 176 at
Converter (90) borne/missile 1. 65 amps
followed by el ectronics
vacuum-tube technology
switching

Transistor 93 Hughes Ion 2 KV + 1% at 1. 0
Inverters with Engine amps, 8 inverters
pulse width modu- Technology in series.	 (Effi-
lated regulation ciency applicable

up to 2 KW/module)

Unknown 85 to 90 G.E. Up to 5 KW total
power

Unknown 80 to 83 G.E. Above 5 KW total
power

d'
i' rr rr^Fr

t
1

t
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Table A-1.

POWER CONDITIONING EFFICIENCY DATA SUMMARY
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Table A-Z.

COMPARISON OF SWITCHING DEVICES

DEVICE
TYPE

VOLTAGE
RATING,
VOLTS

CURRENT
RATING,
AMPERES

RELATIVE
SWITCHING
SPEED

Eimac 50,000 0.35 Fast
, 4 PR 250 (Continuous)

High-Vacuum
Tetrode

Solitron 300 60 Fast
SDT 8955
Transistor

Westinghouse 500 275 Slow
2N3888
SCR

General Electric 500 110 Slow
C154 E
SCR

General Electric 500 55 Slow
C54 E
SCR
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design details are not reported, the GE efficiencies correlate well with

similar Hughes experience. The GE efficiencies appear to be biased slightly

lower than the Hughes efficiencies. However, on the basis of all the Hughes

and GE data, it seems reasonable to expect efficiencies in the 90-percent

range, or at least in the high 80's.

1.2	 Protection Circuitr

High-power traveling-wave tubes, like other high-voltage devices,
i

may be expected to arc from time to time. The TWT can stand a moderate
E	

amount of energy from the arc, and if properly protected, will remain opera-

tional. The energy storage capacitor used in the output of the modulator

power supply often. has sufficient stored energy to permanently damage the

TWT if all of this energy enters into the arc. One means of protection

against this is an electronic crowbar circuit.

Crowbar Action

The electronic crowbar circuit protects the TWT by sensing when an

arc or other fault occurs. It then places an electronic short circuit
j;

across the power supply output. Within microseconds, it discharges the
is

stored energy of the output capacitor and removes the voltage from the

TWT to prevent damage to the tube. The short circuit path might consist
a

of an SCR and is designed to carry large currents during the initial crowbar

action. The modulator power supply should be designed to de-energize upon,
h

the initiation of a crowbar, and be capable of withstanding the short-

circuit load until then.

,'	 r
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Crowbar Sensing

Proper operation of an electronic crowbar requires sensing of TWT

currents at a point which will properly discern the arc currents. Since

the arc forms from the gun to the anode (usually connected to the body of

the TWT), the crowbar sensing should either be total current or anode cur-

rent. Collector current alone should not be used. If the anode is con-

nected to the slow-wave structure (body) of the TWT, sensing of the body

current may be used to give a more sensitive indication of arcs. This

also may be used to sense excessive interception of the electron beam

caused by excessive RF input, insufficient magnetic field or other reasons.

Crowbar Circuits

Some of the basic crowbar circuits that have been used in the past

are shown in FigureA ; l the crowbar acts as a high-current shunt across the

HV power supply. Figure shows an application. of an SCR used as the

operating element of the crowbar.

Protection of Gridded Traveling-Wave Tubes

The need for protection of the grids in TWTs has been demonstrated

by the failure of grids which were not properly protected. The desire for

high-mu, low-interception grids in TWTs requires the use of fine wires

close to the cathode surface. The resulting grids, while structurally
ti

?	 sound, may easily be damaged by arcing.

The mechanism of such a damaging arc is believed to be as follows:

For any of several reasons, an arc may develop between the anode

and the grid support structure:, which can withstand the moderate

energy of the arc.	 f	 t

2. The grid is rapidly carried positive with respect to the cathode.
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3. A point is reached where the grid-to-cathode voltage is

sufficient to initiate an arc between the grid wires and the

cathode surface.

4. The two arcs in series, between the cathode and anode, permit .

a high current to flow between the cathode and grid wires, which

can result in severe damage to the grid wires.

i

	

	 The most direct method of avoiding damage to the grid wires is to

introduce a spark-gap, or other means external to the TWT, which will

prevent the grid-to-cathode voltage from rising to a damaging level. The

breakdown rating on such a device should be roughly 50 percent greater than

the maximum negative grid bias or positive grid-to-cathode voltage. It

also appears desirable to introduce an arc-current-limiting resistor of

from 10 to 100 ohms in .series with the high-voltage supply. A spark-gap

should typically be connected directly between the grid and cathode of the
1

tube with the shortest possible leads. This device should break down within
!

1 µsec under a 1,500-volt pulse.
A-3

Figure is a block diagram incorporating both a crowbar and a spark

gap to protect the grid of the TWT.
!
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2. TELEMETRY AND COMMAND

2.1 Background

The T and C system suitable for the housekeeping functions for a

TV Broadcast Satellite can be roughly sized on the basis of the following

baseline description of the spacecraft and its mission.

1. The spacecraft is 3-axis attitude stabilized. (That is, no

spinning/despun interface exists for the T and C system, as

is the case for gyrostat-type spacecraft.)

2. The spacecraft is intended to be operational (rather than

experimental), which tends to reduce the T and C data load.

3. A fully redundant system is needed to meet spacecraft reliability

objectives.

4. The signal format need to allow only for non-real-time T and C. 	
,r

(That is, no exotic real-time transients need to be transmitted

either up or down.)

5. Compatibility with an appropriate ground complex must be decided

on. Specifically, the existing Intelsat ground complex is dom-

inantly shaped by the real-time control requirement that is

characteristic of a spin-stabilized spacecraft, i.e., it`is not
n

appropriate here. For the purpose of a first cut, a ground com-

plex similar to the NASA/STADAN/ATS facilities was assumed. It

seemed reasonably appropriate, and it was a convenient assumption 	 pry,

since there exists spacecraft hardware of known performance and

weight that is compatible with that ground complex.

A-11
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6. The spacecraft is large and complex, which tends to increase the

data load. For this reason, a central/remote concept is conven-

ient, i.e., a central unit provides signals to a series of de-

coders, or accepts signals from a series of multiplexers located

at the using function. This approach distributes the data collec-

tion and distribution tasks, which results in a flexible and ver-

satile system and reduces overall weight and cost. Specifically,

the remote multiplexer can accept varying ratios of analog and

digital channels. The remote decoder provides , command flexibility

in groups of 64 pulse and 4 magnitude commands. A sizable weight.

reduction is achieved, since each remote unit is connected to the

central unit by only three wires, as opposed to 60-70 wires for

the conventional approach.

2.2 Command Subsystem

A representative command group consists of redundant command receivers,

redundant demodulator/decoders, and eight sets of redundant remote decoders.

The subsystem is capable of accepting a standard NASA Pulse Code Modulation 	
l

(PCM) Instruction Command. The subsystem is completely redundant and capable

of executing 512 pulse commands and 32 8-bit magnitude commands via redun
A-3

dant paths. Figure is a block diagram of the command subsystem showing the

interconnection between units. Table - summarizes performance.
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Table A-3. Summary of Command Group Characteristics

Command Receiver
Carrier Frequency	 148 to 154 MHz
Noise Figure	 8 db
Sensitivity	 -105 dbm
Modulation Type	 AM/FSK

Command Demodulator/Decoder
Circuit Type Integrated Circuit
Bit Rate 128 bps
Word Length 61+ bits

Preamble 14 bits
Spacecraft Address 7 bits
Remote Decoder Address 5 bits
Command 5 bits
Complement of Spacecraft Address,

Remote Address, and Command 23 bits
Conclusion 1	 bits

Code Type Pal 1 and 0 plus clock
Number of outputs

Pulse 512
and

Magnitude 32

Number of Units for Full Redundancy
Receiver 2
Demodulator/Decoder 2
Remote Decoder 16

(assumes 64 pulse and
4 magnitude commands per unit)

Unit Volume (per unit; non-redundant)

i
Receiver	 35 cu. in.
Demodulator/Decoder 160 cu. in.

in.28 cu.Remote Decoder

4!

s
Unit Weight (per unit; non-redundant)

Receiver 0.8 lbs.
A.z Demodulator/Decoder 2.8 lbs.
t:

Remote Decoder 0.7 lbs,

Unit Power (per unit; non -redundant Standby Operate 
f

Receiver N/A 0.514
Demodulator/Decoder _N/A 2.5ta	 -,
Remote Decoder 0.2W LOW

.I

i,

t
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signal and pass it to the demodulator/decoder. The pulse code modulation

consists of two subcarrier frequencies in the 7 to 12-KHz band modulated

by a sinusoidal bit-synchronization signal of 128 Hz. The bit-synchroni-

zation signal is 50 percent amplitude modulated onto the data subcarrier:.

The PCM command demodulators receive the FSK/AM signal from both command

receivers. The demodulator asynchronously samples the command receiver

output, at a rate which guarantees a complete sample of each receiver out-

put during any command introduction time. A receiver lock circuitry causes

the demodulator to lock onto the first receiver to provide a valid output

when sampled. In the event of a command receiver failure, the receiver

lock circuitry will lock onto the operational receiver. The signal from

the receiver not being sampled is shunted to ground.

The input signal to the demodulator consists of two frequency-shift-

n

keyed subcarriers in the 7 to 12-KHz range; both amplitude modulated at

128 Hz. The AM/FSK audio input is passed through an input amplifier and

bandpass filter. The bandpass filter output is amplified and fed to the

FSK and AM demodulator and subcarrier level detector. The subcarrier level,

detector provides a logical one when it detects signal strengths at the

audio input greater than 1.0 volt rms and a logical zero for signal strenLrths

less than 0.5 volt ryas. Hence, the subcarrier level detector rejects hro-11-

band noise from the receiver, and data is valid only when the detector is
4

in the logical one state.	 l

The AM demodulator detects the 128-Hz sine-wave amplitude modulation
t

and provides a properly phased 128-Hz square wave for clock information.
3

The FSK detector consists of bandpass filters followed by limiters and

discriminators. From this the digital data is detected. The zero's, one's,

A-15



clock, and subcarrier-present signal is fed to the central decoder section.

The central decoder performs message checks on incoming digital data
i

and decodes the remote decoder address to select the destination of the

f

command message for further processing. The data format will consist of

a sixty-four bit word shown in Figure 
A-4 

Each command message word will

f	 contain the following information.
t
s

13 one 7 bit 5 bit 11 bit complement of	 J^
zero bit spacecraft remote command spacecraft address 	 zero
bits address decoder remote address and	 bits

command

Figure A-4. Command Word Format

The decoder will start processing digital data from its associated demodu-

lator once a subcarrier-level signal is received. The decoder must receive

at least 8 consecutive zeros followed by a message synchronization "one",

^, n

n

followed immediately by the specified spacecraft address. The spacecraft'

_address is externally selected by a program plug. If the specified address

is not found, or the message synchronization "one" is not detected after

sixteen zeros are received, the decoder will reject commands until a break
•	

r

in subcarrier returns it to a, standby state. The decoder will return to

a standby state if a break in da.ta subcarrier is'detected during receipt

of a command message. Further processing of the command will be inhibited

until reciept of a synchronization.-pattern.

The decoder will process the command if an initial decoder address

check passes. At the end of the 23 bits of command, a bit-by-bit-check

A-16	 {
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of the command message is made against the received complement bits. The
command will be rejected if any bit fails to check.

Once a bit-by-bit check passes, the remote decoder address is decoded.

The 11 bits of command information is reformatted into the following com-

mand frame shown in Figure and sent to the addressed remote decoder.

4 bit 1 bit 2 bit 8 bit 1 bit
sync mode magnitude command parity

address

1

Figure A-5, Remote Decoder Command Word Format

A synchronization pattern will, be generated by =•he central decoder prior

to sending the 11 bits of received data. A parity bit will be inserted on

the 11 bits of received data. The data to the remote will be transmitted

in bilevel manchester code and a third level executive state. The execute

state will follow the command word for automatic execution of the receit; a:1

data if all checks pass in the central decoder. Each redundant demodulator/

decoder has the capability to address 16 remote decoders, thereby providing

complete redundancy for the execution of 512 pulse commands and 32 8-bit

.magnitude commands. Each demodulator/decoder contains its own regulator

which provides several regulated voltages. In the event of an internal

failure current limiting will be provided to minimize power drain on thes	 g	 p	 p

spacecraft bus.

1
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2.3 Telemetry Subsystem

A representative telemetry group consists of a redundant pair of central

encoders and a number ( approximately 70) of redundant remote multiplexers

(Figure A-6). The central encoder addresses each of the remote multiplexers

in sequence and processes the telemetry data returning from them. The

remote multiplexers are located near the TM data sources, thereby reducing

the system harness weight. Performance of the telemetry group is summar

ized in Table A-4.

Each remote multiplexer is capable of accepting high-level analog and

bilevel digital data in various mixes as a function of pin programming at

the remote. The allowable data mixes or modes are: 1) 32 analog; 2) 14

analog, 16 digital; 3) 5 analog, 24 digital; 4) 32 digital. The remote

multiplexer time-multiplexes the data and provides a P-01 output data line

to the central encoder. The central encoder interrogates the remote ;nulti-

plexer v .A a single Manchester-coded (bi-phase) control line. Thus, the

remote multiplexer /central encoder interface consists of two wires, control

and PAM data.

The PAM analog and digital data from the remote multiplexers is processed

and synchronized by the central encoder which then generates a Manchester-

coded PCK output bit stream to the telemetry transmitters. Analog-to-digi-

g	 .^	 tal conversion of analog data is provided by the central encoder

Signal conditioning of temperature and pressure tranducers is provided

by means of a_constant-current generator which is located in the central

of

encoder and is switched out to those remote multiplexers requiring signal

F
N
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Table A-4. Summary of Telemetry Group Characteristics

Telemetry Transmitter
Carrier Frequency
Power Output

Telemetry Encoder
Circuit Type
Word Length
Frame Synchronization
Bit Rate
Code Type
Number of cords
Number of inputs

Analog
and

136 to 138 MHz
2 w

Integrated Circuits
8 bits
32 bits
400 bits per second
P M Code (NRZ-L)
COA

2 r0

Digital	 2000 bits

Number of units for full redundancy
Transmitter	 2
E d	 nnco er
Remote multiplexer

F

140
(assumes either32 analog inputs
or 32 digital bits per unit)

Unit Volume (per unit; non- redundant)
Transmitter 38 cu.	 in.

;.•	 ..
l Encoder 15,6 cu.	 in.

Remote Multiplexer 1, cu.	 in.

1
= Unit Power Consumption (per unit; non-redundant) Standby

-
Operate

Transmitter 0.4 W 6.OW

Encoder 0.2 W 1.0ia

Remote. Multiplexer 0.11W 1.0,E

Unit 'Weight (per unit; non-redundant)
Transmitter 1.0	 lbs.
Encoder 4 lbs.

1 Remote Multiplexer 0.3 lbs.

r

-.E A-20
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conditioning.

As in the command group equipment, current-limiting power

supplies are used to condition internal power for the telemetry

group equipment. The units described in the above configuration

of a representative telemetry and command subsystem for the TV

Broadcast Satellite have either been qualified for use on such

spacecraft as ATS-A through E and MIL-COMSAT Y or are currently

being developed for ongoing space programs particularly ATS-F

and -G. As a result, the data and performance summarized above

are quite firm.

2.4 Cost of-Satellite-Borne T A C Equipment

A budgetary cost estimate for a T and C system as described

would be $850 K recurring spacecraft, plus $170 K non-recurring

(for system integration, tests, software, etc.).

I

f
k
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2.j Cost of T C Ground Eq_ uipment

stems Excluded:	 Site Cost
Site Preparation
Access Road
Utilities Access
Standby Power
Building
Air Conditioninc,
Crew Quarters
Transportation to ;aito(,)
Equipment Installation
(other than antenna)

Basic Capability of ;station: Antenna is semi-fixed, equatorial mount, push-
button control over f 10 degrees Az-El. Ho
tracking capability. Station is limited purpose,
intended only for TV Broadcast Satellite house-
keeping. (It is NOT intended to be a flexible
multi-purpose station.) heap time T i C capa-
bility (as is needed for spinner type spacecraft)
is not called for, nor is it provided. rre
programmed computer control for uplink or down-
link data (as needed for multiple-mission, multiple-
satellite capabilit;%) is not called for, ror is it
provided.

Equipment List (NOTE -- Costs are budgetary estimates only): 	 for one	 for two

Antenna, crossed-yagi type, similar to TACO 0-1365A,
including site work and cables to buildin ;, nt a
U.S, location (superv..sed by manufacturer of
antenna).	 60K	 110) K

Command Transmitter, similar to Collins 242 -C and
Exciter 242-F, with self-contained Power Supplies 	 47K	 94K

(*) i: r lemetry Recovery and Oi `splay, including telemetry
receivers (-C-1), in polarization diversity, s imil^ r
to DEI/Nems-Clark/ViLro, including trackin î  fil
terse divers .t-v combiner, discriminator; PD1
signal conditioner_, data simulator and com>>arator,
tape and graphic recorders, displays, TTY eadout:. 	 330K	 4800

( ) Command Generator Console

J NOTE that these items may be common to those use:., for satellite ground
checkout, in which case part of their cost may be included in
the satellite procurement.

v
A-22
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3.	 COST d UP-LINK GROUND TERMINAL

To provide a basis for cost estimates for the uplink trans-

mitting equipment, cost data were collected based on recent ex-

,{..

^.f

perience with the earth station at Itaboral, Brazil, and various

other ground terminals.

Table A-5	 gives the initial and annual operating costs for the

i

uplink transmitter.	 The initial transmitter cost includes power
Y

amplifier, power supply, and power conditioning equipment, display

and control equipment (allows for monitoring transmitter r-f out-

puts only, i.e., excluding baseband) heat exchanger, and exciter.

The power tubes are either traveling wave tubes (TWT) or klystrons

as indicated in the table. 	 TWT transmitters are capable of much

larger instantaneous bandwidths than klystron transmitters, but
r

TWT's are about one half as efficient as klystrons. 	 The annual

operating cost includes tube replacement based on continuous opera-

tion, 4,000-hour tube life, and an electric 	 power rate of 10^ pet' . . k'1

kildwatt-hour (this rate will be less for a U. S. station using
Z
F

commercial utilities).	 Other operating and maintenance costs are

not included since they are highly dependent upon the 'nature of the
`i'
t

labor used, the location of the ground station, and any peculiar r;

logistics problems that might be encountered.

The cost data presented for the uplink antennas in Table A-6

assumes average soil conditions and reasonable wind specifications;

(i.e., survival in 120-mph winds).	 All antennas are limited to

approximately .±50 motion on both axes.	 The antenna cost: includes t

A-23
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Table A -5. Transmitter

Estimated installed cost and annual operating cost .(replacement tubes

and prime power only).

ANNUAL
TUBE TYPE AND POWER OUT 	 INITIAL COST	 OPERATING COST

i
1

i

5 -KW TWT'

or
	

$ 100 K
	

9100 K

10 -IC4 Klystron

1-iCW TWT or Klystron 50 K $ 45 K

1
300-W TWT 31 K 22 K

20 --d TWT 7 K 5 K

*Because of a 2:1 ratio of efficiencies, these transmitters have identical
initial and operating costs.

f ,

z

A-24



Table A-6. Antenna

Estimated cost for complete, installed, limited--lntion cqua,torial- -noun}^

n?raholic reflector, subreflector rind feed.

') MATER (Feet)	 COS ( ^

u' $ 10 K

10' 15 K

18' 40 K

25! 5 K
is

30' 70 K

42 , 120 K

60 v
400 K

85 800 K

98 875 K

1

3 —`

7y(

3
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feed, drive motors; and mechanisms, but does not include servo

electronics.

Table 
-7 
lists costs for an uplink transmitter using a 5-kw

TWT or 10-kw klystron, and associated ground station equipment

without redundancy. Items (a) through (e) constitute a break-

down of the 5-kw TWT or 10 -kw klystron transmitter cost presented

in TableA 
.5 

The remaining entries in TableA^ are not included in

the transmitter costs of Table -5 since these costs do not vary

significantly with output power of the transmitter. Thus, the

total cost of items (f) through (k) is a fixed cost that must

'be added on to any of the transmitter costs in Table p. 5 In order

to arrive at the total hardware cost (not including building and

A-
facilities), the cost for an antenna (from Table 	 must also be

included, of course.

The cost of the building and associated facilities is highly

dependent upon location, terrain, weather conditions, and many

other factors. The cost of construction labor, for instance,
1

varies greatly with the location of the ground station. However,

some general cost estimates may be given. In the case of the Brazil

ground station, the total cost for site access, site preparation,

buildings, kitchen and office equipment, fuel tanks, wiring, plumb-
	

I

ing, and air conditioning was in the range $850 K to $1 M. Some

of this cost, however, arose from the need for wells, water puifi.-

cation, dormitories, street lights, and roads at that particular site, 	 f

Such costs would not be incurred for a U. S. site with access to	
1..

roads and commercial utilities. Costs for comparable buildings and
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associated facilities for a ground station in the U. S. might run

to about $200 K to $300 K in an area where minimum site preparation

is needed and where utilities are more accessible than at the

Brazilian site.

Table A-7. Ground Station Equipment ( No Redundancy )

a. Cooling System
This includes heat exchangers, but not
air-conditioning for the building.

b. Power Supply
Power conditioning equipments costs are
included.

r
3

f. Transmitter Display and Control Equipment 	 20K
j	 Baseband, including monitoring, patching f°

and display of audio, synch and color video.

g. Transmission line 	 100' at $10/foot	 1K
Includes labor, materials, and all fittings.

h,	 Synch Ge^ieratolr 	 5K	 i
Includes fou'r-output distribution system.

i.	 FM Modulators	 5K

J.	 Up-Converters (double conversion) 	 15K

k. Hardware for minimum orderwire capability	 7K

t
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C. Power Amplifier
Applies for 5-kw TWT or 10-kw klystron.

d. Exciter

e. Transmitter, R-F Display and Control Equipment

5K

33K

35K

7K

20K



4. UPLINK RECEIVER

4.1 Noise Density at the Satellite Due to the Earth

The main beam of a high-gain satellite receiving antenna will

normally be contained by the earth. Frbm the point of view of the

receiver, the earth may be considered a radio noise source. It is

important that the noise density at the satellite due to the earth

be known, so that its impact on the design of the uplink can be

ascertained.

The radio noise temperature of the earth	 as a hole	 has been

3	 given as 254°K1$ .	 An .earth temperature of approximately 2800  is

ordinarily used for gross system calculations. 	 Its importance de-

pends on its relative contribution to the overall system temperature.

Heretofore, the noise temperature of spacecraft receivers has been

high enough so that the effect of the earth contribution has been

small.	 It may be expected that by 1975 and beyond, satellite receivera

noise temperatures will be sufficiently low so that the earth tempera-	
.,

1a	 ture will be significant.	 In addition, as uplink antenna beams become

narrower (to accommodate ground transmitters having 'low ERP), the fine

structure of the earth noise sources may become increasingly important.

Indications are that the effective earth temperature varies only

very slightly between daytime and nighttime. 	 However, no hard data
if
,x

have been reported to confirm this.

;F A preliminary literature search revealed no significant informa-

tion on the fine structure of earth radio noise sources as received

2t

F +

by satellites.	 No scheduled experiments for.this purpose 1 6 were

f	 discovered.	 A mapping of the sea surface thermal temperature by 	 t:

Nimbus I for some parts of the world has been done 	 and indicates

.^

t
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the kind of information that might be required with respect to

radio noise. A study has also been done on the apparent radio

temperature of the sea at 19.4 GHz and 35. GHz at an altitude of 1.KM.

For a vertical angle less than 10 0 , the apparent temperature at 19.4 GHz

was approximately 1400K and at 35 GHz was approximately 1500K. A

preliminary study at Hughes Aircraft Company suggests a temperature

of approximately 50 0K in the 2. to 10. GHz range for sea water.

Radio noise mapping at UHF by means of aircraft 7 has been done

over some U. S. cities. Fine structure noise temperatures more than

50 ) 0000K at the frequencies of 226. MHz, 305. MHz and 3 69.MHz were

measured. It is of interest to note that the radio noise temperature

over Miami increases during the tourist season. Some limited measure-

ments by aircraft 19 were also made at higher frequencies.

Extrapolating radio noise measurements made by aircraft to the

noise seen by a satellite is a somewhat uncertain exercise. Practical

results must ultimately be obtained by means of direct measurement.

Some of the factors to be considered are the effect of the heaviside

layer, 1 ' 3 ' 6' 8 ' 9 ' 10 ' l3 
planet reflected extra-terrestrial noise, the

earth's magnetic field, and natural terrestrial sources such as light-

j	 ning in addition to man-made noise.

^	 An analytical radio noise model based on the ideas of radio 	 I

203 5)11,12,11+,15, J_(,21
astronomy	 was developed for possible use in

radio noise measurements anti their application. In Figure A-7 is

shown the satellite antenna with a beam of Q sterads. D is the dis-

tance between the satellite and the ea l_' th and it is assumed large
C

compared to all other dimensions. Noise radiation from the earth is

assumed to take place from a hypothetical hemispherical bump* on the

a
*Mathematical equivalent of a diffuse noise source_.
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earth's surface. The bump has a diameter equal to the beamwidth

intercepted on the earth's surface.

The noise density at the satellite is

2
PR = PS 

r2 for r < < D
D

Jr

(1)

where

PR = satellite noise density (watts/sq. meter)

PS = earth noise density (watts/sq. meter)

r = bump radius (meters)

D	 distance (meters)

The area on the earth intercepted by the beam is

nr2=D2n

Substituting (2) in (1) results in

(2)

pS
P -R

The extremely simple expression of Equation (3) relates the earth noise density
f

to the received noise density in terms only of the receiver antenna beam width.

A useful form of Equation ( 3 ) is

B	
P 

watts/sq. meter/sterad 	 (ZI)	
{

TT

where B is called the source brightness.
r-.

The analysis above is independent of the means whereby the noise at the

source is produced. A noise source could be a city where the noise is electricallyt

generated or the sun in which thermal effects cause the noise. It is sometimes

_ convenient to assume that all observed noise sources are thermally generated 	 kj„

regardless of the real mechanism, and thereby derive an equivalent temperature.
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This temperature, called the brightness temperature, is defined as the tempera-

ture of a black body source that matches the noise density of the observed data.

The Raleigh-Jeans formula is usually used at radio frequencies to relate

noise to temperature. It is

PS = 2n 2 T watts/square meter/HZ

where

k = Boltzmans constant (1.38 x 10 -^3 Joules/degree)

T = Temperature OK

^' = Wavelengths (meters)

When Equation (5) is substituted in (4) there results for the brightness
temperature

T - BX  o 
B	 2k

It must be remembered of course that the brightness temperature is fictitious

and is usually determined by measurement at a particular frequency. It can be

used as an equivalent temperature in noise calculations but only at the fre-

t^

i

(5)

(6)

quencies substantiated by measurement.

The implications-of the above relations become more evident when the

satellite antenna is described in terms of an isotropic antenna.

The capture area of an antenna is

IS	 2



t

The total noise power captured by the satellite antenna is therefore, from

Equations (3) and (7), using the relation M = 4n,

P ^2
PT = PR A

C
 = 

S17

	 (8)

Substituting the Raleigh-Jeans formula (Equation 5) in (8) results in

PT = 2 kT watts/HZ	 (9)

The total received power may contain random polarizations and it is some-

times assumed that they are eq,ai-likely. With this assumption, the total noise

power given in Equation (9) should be halved when the receiving antenna is

circularly polarized.

With the assumptions of Equations (1), (5) and (7), it is evident that

the total noise power captured by the antenna when exposed to a thermal noise

source is independent of the antenna beamwidth and the distance. It is a

function of the source temperature only. This relation is convenient to use

for astronomical purposes but should be used with caution when scanning the earth.

Large earth areas or the earth as a whole may contain a major source of

noise of thermal origin but noise generated by inhabited areas is of 'a composite

nature that should be determined by direct measurement.

i

i



t

1. Herbert H. Reed, "Noise Curves for High-Gain Antennas", Microwaves,

April 1967, p. 46

2. Donald B. Harris, "Microwave Radiometry", Part 1, Microwave Journal,

April 1960, pp. 41 -46. Ibid., Part 2, May 1960, pp . 47-54.

3. George G. Haroules, "Radiometric Techniques Applicable to the Measure-

meet of Solar Activity and Atmospheric Attenuation at Millimeter Wave

lengths", NASA TR R-306, April 1969

4. Lewis J. Allison and James S. Kennedy, "An Evaluation of Sea Surface

Temperature as Measured by the Nimbus I High Resolution Infrared

Radiometer", NASA TN D-4078, November 1967

5, Alex G. Smith and Thomas D. Carr, "Radio Exploration of the Planetary

System", D. Van Nostrand Company, Inc., 196+, pp. 33-3$

6. Leonard C. Humphrey, "Planet Reflected Extraterrestrial Noise", IEEE

Transactions on Radio Frequency Interference, March 1963, pp. 83-85.

7• George Ploussios, "City Noise and its Effects Upon Airborne Antenna Noise

Temperatures at UHF", IEEE Trans. Aerospace and Electronic Systems,

Vol. AES, No. 1, January 1968, PP• 41 -51	 1

8. George H. Millman, "Cosmic Noise Limits Long Range Radar", Space

Aeronautics, January 1961, pp. 124-129

9. E. N. Skomal, "Man-Made Noise,'Sources and Characteristics", Frequency,

January-February 1967, Pp. 1+-19.

10. James F. Lee, "Natural Interference in Space Systems .Electronic Design, 	
i

Augus t	 1 60g	 3 ^ , 9 ; PP • 90-93

i	
A-34



Correspondence IEEE Transactions on Microwave Theor y and Techniques,

September 1968, pp. 789-791

18.	 "Reference Data for Engineers", 1968, Howard W. Sams and Company, Inc.,

n

11. Wilbur L. Pritchard, "Microwave Aspects of Space Communications", Microwave

Journal, August 1963, pp. 52- 64

12. Hugh P. Taylor, "The Radiometer Equation", Microwave Journal, May 1967,

PP. 39-42

13. F. Horner, "Radio Noise in Space Originating in Natural Terrestrial

Sources", Planet Space Sci., 1965, Vol. 13, pp. 1157-1150

14. W.'L. Weeks, "Antenna Engineering", McGraw-Hill Book Company, 1968, pp.

301-307

15. J. A. Roberts, "Radio Emission from the Planets", Planet Space Sci.,

1963, Vol. II, pp. 221 -259

16. Jean R. Oliver and Harry L. Wolbers, "A Program Plan for Earth Orbital

Space Astronomy", IEEE Transactions on Aerospace and Electronic Systems,

Vol. AES-5, No. 2, .March 1969 PP• 212-252

17. Klaus Kuenzi and Erwin Schanda, "A Microwave Scanning Radiometer",

,	 Chapters 27, 34
J

19. A. H. Mills, "Final Report, Measurement and Analysis of Radio Frequency

Noise in Urban, Suburban, and Rural Areas", (General Dynamics, Convair 	 i.

Division,) 1969, NASA CR-72490.

20. A. Stogryn, "The Apparent Temperature of the Sea at Microwave Frequencies,"
1
{

IEEE Transactions on Antennas and Propagation, Vol AP-15, No. 2, March 	 .

1967, pp. 278-286.

21. Cornell H. Mayer, "Thermal Radio Radiation from the Moon and Planets," 	 ;.

IEEE Transactions on. Antennas and Propagation, Vol. AP-12, No - 7.__
j.

December 1 64+9 ^ PP• 902-913.

A-35



Report GDC-DCF 70-002

TELEVISION BROADCAST SATELLITE

STUDY

FINAL REPORT - VOLUME IV

TECHNICAL APPENDICES

Contract NAS8-21036

31 December 1970

APPENDIX B

NOISE AND TELEVISION SIGNAL QUALITY

Convair Aerospace Division

GENERAL DYNAMICS



I

B

NOISE AND TELEVISION SIGNAL QUALITY

1. 1 QUALITY AND GRADING OF TELEVISION PICTURES
The effect of random noise is familiar to most viewers of broadcast television
because of the appearance of 'snow' in monochrome pictures. In a satellite
broadcast system noise is added to the signal at various stages in the path from
the uplink transmitter through the satellite transponder and ground receiving
system.

Data on the subjective effects caused by various levels of noise upon
television pictures are essential in order to establish a reliable basis for the
specification of signal to noise ratio in connection with a satellite broadcast
system.	 i

The effect of random noise on color TV is similar to the variations of
luminance which occur on a monochrome picture, but with the addition of
variations in chromaticity (Ref. 1 and 2). Because of the smaller bandwidth 	 ?''
occupied by the chrominance signal the chromaticity variations have . a coarser
structure than the luminance variations. The luminance .signal is mostly
affected by low-frequency noise and the chrominance signal mostly by noise
around the chrominance subcarrier. The proportion of chromaticity variations
to luminance variations is thus greater for triangular noise than for flat noise. }

The output-noise-amplitude spectrum of an FM receiver is triangular 	 '.
because of FM discriminator characteristics,a cteristics, 4. e. , the higher the frequency of
noise energy the greater the corresponding discriminator noise output. In an ideal
AM system the detected noise response is essentially flat. In practice a signal
may be transmitted through multiple networks with differing response characteristics, f
thus the overall noise response encountered in actual practice is generally some- 	 z "
where between flat and triangular,_

r
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In order to account for variations in noise spectra and also to allow for the

fact that the visibility of noise is a function of frequency, it has become a standard

practice in the television field to measure noise with the aid of a weighting network,

(Ref. 3). It has been observed that equal amplitudes of noise at different frequencies

have different degradation effects due to the distribution in the picture and the

reaction of the eye. Generally, noise in the higher frequency region is more

tolerable to the human observer than that in the low end of the video baseband.

Frequency weighting from experiments and studies conducted at Bell

Telephone Labs in 1953 and 1961 are illustrated in Figure B -1 and listed in

Table B-1. The purpose of using these weightings for monochrome and color

TV is to make the subjective evaluation of various tyres of viewing material

independent of the shape and bandwidth of the noise. CCIR random-noise

weightings taken from CCIR recommendation 421-1 (Ref. 4:) are listed in

Table B - 2.
"Subjective tests of pictures impaired by distortion and noise provide

basic data for the design of television broadcasting systems but their- complex

nature is a source of difficulty. The results are affected by the many arbitrary

factors involved in choosing_ such features as the type of psychometric test, the

class of observers, the test picture and viewing conditions... " (Ref. 7. ).

The simplest form of quality-grading impairment testing is that in which
A

only a single intentional impairment is present and the principal variable is the

magnitude of the distortion 'or noise which is applied to degrade an otherwise
near-perfect dicture

r
In order to control the viewing environment and conditions most subjective 	 {

tests have been made under laboratory conditions. A program of this nature which

used a large and carefully selected sample of observers was the Television	 .
j

Allocations Study Organization, (TASO) which assembled a selected group of
.f^	 observers from colleges and community organizations, (Ref. 8
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The results of the TASO studies; which analyzed, measured and evaluated

the effects of random noise and other types of interference upon viewer satisfaction

with television pictures, have been widely used in the United States to define per-

formance requirements for video transmission systems. The estimated signal/

noise ratio desired as a function of the percentage of viewers rating a picture as

being of a certain quality or better is shown in Figures B-2 and B -3.

Tables B-3 through B-7 illustrate picture grading scales which list quality and

degree of impairment in various ways, (Ref. 7).

There appears to be doubt about the validity of using the data obtained by

means-of utilizing the nomenclature listed in several of the scales included in these

Tables. There is suspicion that several of the scales would not be suitable since

doubt is raised in the observers mind about what the scale is attempting to define.

k
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0.	 1.	 .	 .	 .	 .	 . -0. 3.	 . .	 .	 .	 .	 -0. 4. 	 .	 .	 . .	 -1.0

0.3.	 .	 .	 .	 .	 . -1.7. -1.0.	 .	 .	 . .	 -3.0

0.5.	 .	 .	 .	 .	 . -2. 8. .	 -1.4.	 .	 .	 . .	 -4.5

0.7.	 .	 .	 .	 . -3.6. .	 .	 -1.9.	 .	 .	 . .	 -5.8

0.9.	 .	 .	 .	 .	 . -4.4. -2.3.	 .	 .	 . .	 -7.0

1.0.	 .	 .	 .	 .	 . -4.7.	 . .	 .	 .	 .	 -2.5.	 .	 .	 . .	 -7.6

1.1.	 .	 .	 .	 . -5.1.	 . .	 .	 -2.7.	 . -8.2

1.	 3.	 .	 .	 .	 . -5. 8.	 . .	 .	 .	 .	 -3,	 1. -9.2

1.5. -6. 5. -3.5. -10.3

1.7.	 .	 .	 . -7.1.	 . .	 .	 .	 .	 -3. 8.	 . .	 -11.3

1.9.	 .	 .	 .	 .	 . -7.8.	 . .	 .	 .	 -4.4. -12.4

2.0^.	 .	 .	 .	 .	 . -8. 1.	 . .	 .	 .	 -4.7. -13.0

2.1.	 .	 .	 .	 .	 . -8.4.	 . .	 -5.0.	 .	 . -13.7

2.3.	 .	 .	 .	 .	 . -8. 9. 	. .	 .	 .	 .	 -5.5.	 .	 . -14.9

.2.5 . 	 .	 .	 .	 .	 . -9.5 .	 . .	 .	 .	 .	 -6.1.	 .	 . -16.o

2.7.	 .	 .	 .	 . -10.0.	 . .	 .	 .	 .	 - 6. 6.	 .	 . -17.2

2. 9 .	 .	 .	 .	 . -10.5.	 . .	 .	 .	 -7. 3.	 . -18.3

3.0.	 .	 .	 . -10.8.	 . .	 .	 .	 .	 -7.4.	 . -18.8

3.1. -11. 00 -7.2.	 . -19a 4

3.3.	 .	 .	 .	 . -11. 5. .	 .	 - 6.0. -20.5

3.5.	 .	 . -11. 9. 	. .	 .	 -5.5.	 . -21.5

3.7.	 .	 . -12.4.	 . .	 -5.6. -22.4

3.9.	 .	 .	 .	 . -12.8. .	 .	 -6.5.	 .	 . -23.4

4.0 .	 . - .	 .	 . . -13.0. .	 .	 .	 .	 -7.5.	 . -23.8

4.1. -13.2.	 . .	 .	 .	 .	 -8.6.	 . (-24.2)

4.-3.	 . -13.7.	 . .	 .	 -10.7.	 . (-25.0)

4.5.	 .	 .	 .	 . -14.3. .	 -13.2.	 . (-25.8)

^lr

.,4M 1

Table B-1 Monochrome and Color Weightings
(Ref. 5)

Frequency,	
1962	 1962	 1953

Monochrome,	 Color	 Monochrome,MG	 Db	 Db



Table B-2. Random Noise Weightings
(Ref. 6)

y

Number of Lines f	 (1)(MHz) Theoretical Weighting (dB), for
"White" noise	 "Triangular' Nosec

525
M(Canada and U. S. A) 6's 1	 10.2

525
M (Japan) 4 8.5	 16.3

625
B, C, G, H 5 8.5	 16.3

625
D, K, L 6 9.3	 17.8

819
F 5 8.5	 16.3

819
E 10 8.5	 16.3
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Table B-3 Bell Laboratories 'Impairment' Scale
(Ref. 7)

Comment
Numbe r

1	 Not perceptible
2	 Just' p erceptible
3	 Definitely perceptible, but only slight impairment

to picture
4	 Impairment to picture but not objectionable
5	 Somewhat objectionable
6	 Definitely objectionable
7	 Extremely objectionable

Table B-4 BBC 'Impairment' Scale
(Ref. 7)

Score

ot

1	 Imperceptible
2	 Just perceptible
3	 Definitely perceptible but not disturbing
4	 Somewhat objectionable
5	 Definitely objectionable
6	 Unusable

i

1,i;

Table _B-5 BBC °Quality' Scale ,
(Ref. 7)



Table g-6 TASO 'Mixed' Scale
(Ref. 7)

Number Name Description

1 Excellent The picture is of extremely high
quality; as good as you could desire

2 Fine The picture is of high quality providing
enjoyable viewing. 	 Interference is
perceptible

3 Passable The picture is of acceptable quality.
Interference is not objectionable

4 Marginal The picture is poor in quality and you
wish you could improve it. 	 Inter-
ference is somewhat objectionable

5 Inferior The picture is very poor but you
could watch it.	 Definitely object-
ionable interference is present

6 Unusable The picture is so bad that you could
not watch it.

i

Table B r7 Referred 5 Grade 'Ouality' Scale
(Ref. 7)

'tf
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The 'preferred' 5 grade quality scale has been used in England, (Ref. 7). The

adjectives in that scale are placed inside parantheses to emphasize the alphabetical

scale and to suggest that words were intended as hints rather than rigit,:_I definitions.

In the English test results shown in Figures B-4 and B-5 the mean score

(P5 in Table B-9) is obtained by assigning scores of 1. 0, 0. 75, 0. 5 and 0. 25, and

0 to the quality grader A to E respectively. The condition where P5 = .5 is

designated as the mid-opinion mark point. "The stepped curves represent the

opinion of a hypothetical median observer in the sense that each vertical transition

between two grades occurs at a level of impairment such that half the observers

are expected to place themselves in the higher grade(s) and half in the lower". (Ref.7.)

Three general methods have been used in the reduction of data characterized

by: (1) numerous observations and observers, (2) a number of reasonably close

spaced signal/interference ratios, (3) a choice of several merit ratings which

have been intended to constitute equal steps of subjective picture quality. The

cumulative frequency distributions was used to plot the data obtained during the

TASO studies. This method plots the data as the percent of observations which

rated the signal/noise ratio as the stated grade or better. This type of presentation

may be used to estimate the signal /noise ratio required to provide a given picture

quality to a specified percentage of the receivers.

The second method used averages the data of all quality ratings obtained,

assuming equally spaced ratings. According to Dean (Ref. 8) this method has

two disadvantages in that it is necessary to assume equally spaced quality ratings

and, secondly that the original distribution of grades cannot be recovered. The

mean observer presentation has the advantage that the plots are more easily

understood since the curves show poor grades correlated with low signal/interference

ratios and high grades correlated with high signal /interference ratios.

The third method was not used in the TASO studies though this method has

i

r

rrF r

r^

y^	 g	 g	 Pbeen used recently m the English studies. The English method considers specific
grades of service and uses a mathematical model to describe the relationship

between opinion distribution and mean score. The results of several test programs

conducted in England are shown in Figure B-4 and B-5.
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Table B-8 Signal /Noise Ratios, as Measured (Unweighted)
and After Allowance for the UK 625-Line Mon-
chrome Weighting

Marls Point
Unwei hted Weighted

Flat	 Triangular Flat	 Triangular Average

Midopinion 28.7 23.6 35.2 35.9 35.6

B /C Transition 30.8 25.1 37. 3 37.4 37.4

516 Unfavourable 32.6 26. 3 39. 1 38.6 38.8

A/B Transition 36.9 29.1 43.4 41.4 42.4

Table B-9. Signal/Weighted-Noise Ratio for Noise
in the Luminance Channel Alone

ps Mark Point dB

0. 500 Midopinion 34.1

0. 620 B /C Transition 35. 8

0.780 95% Favourable 38.6

0.859 A/B Transition 40. 6

! j, a

1

t _ ^



y..

1.0
z A

E-4 0.8 _ tt	 g _^..

t

t,,,l t

0.6
1.4 c

A , 	W

	

0.4	 t,
Ti	 ^

D	 ,t

Z	 0.2 
^H

E	 ~^
_	 O

	

20	 25	 30	 35	 40
signal/noise ratio, db

Z	 1.0	 `1	 1A	 signal/ chrominance -weighted -noise ratio, dB

O^^	 Z	 25	 30	 35	 40
to

0.8 a
O

1.0

F

`t^
oe

E-4

It j (ii)
C 0.6

0-4-

Z D

;

\

p
z

04

Z	
0.2 ^^ 0 0-2

0 E ^• Qa o
0 15	 20	 25	 30	 35	 Q	 25	 30	 35	 40	 45

SignallnOiSC ratio, db 	
signal/luminance-weighted-noise ratio, dB

{

Figure B-4 Average Result After Correction for	 Figure B-5 Flat Noise, Result After Correction
Residual Impairment (Monochrome) 	 for Residual Impairment

(i) Flat noise	 mean score; stepped curve refers to median
(ii) Triangular noise	 observer

mean score	 ------ proportion of unfavourable opinions
proportion of unfavorable opinions



A

Laboratory performed picture quality tests are made in the absence of certain

powerful influences, such as program interest and the associated sound, which nor-

mally tend to divert a viewer's attention from any technical imperfections that may

exist in a picture. Also, still pictures have been used extensively in a majority of

these grading tests and it has been observed (Ref. 7) that grading by the viewing

of still pictures results in the establishment of more stringent requirements than

those obtained in conjunction with motion pictures.

During the random noise tests used to establish the TASO grading results,

noise was combined with a high level RF carrier at the receiver RF input terminals.

The noise spectrum of the noise generator was flat within + 3 db over the TV channel

which was used during the tests. Furthermore, the noise spectrum was flat within

+ 1 db over the frequency band extending from the picture carrier 'to the color sub-

carrier. (No noise weighting was used).
Signal /interference ratios for various presentations were produced by main-

taining the desired signal at a constant level and varying the noise level. The signal/ 	 r_.
interference ratio used in the random noise tests was the ratio of RF rms signal

during sync peak divided by the rms noise voltage over a 6MHz channel.
No instruments were used during the TASO grading tests to simulate the

interference generated by automobile ignition systems, vibrators, shavers and
similar sparking devices.

Since automotive ignition noise appears to be the predominant constituent

of urban and suburban noise in the VHF and UHF bands, (Ref. 9), the combined

effects of impulse noise and random noise on picture quality must be considered

in order to obtain a realistic appraisal of the effects of quasi-impulsive noise
upon television picture viewing (Ref. 10).

Quasi-impulsive noise is an interference of an intermediate type between

two extreme types of noise, i. e. , thermal or white noise of irregular amplitude'

and shape with impulses following one another in such a manner that their effl6cts

overlap. The second type is impulsive noise, which consists of successive impulses

shorter in duration than the time constant of the receiver separated by intervals so

long that their effects do not overlap. The twa main types of quasi-impulsive inter-

ference are atmospheric noise and man-made noise. Man-made noise may, for

B-12
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certain periods of time, occur quasi -periodicsaly, with fairly constant shape and

amplitude. Such interference requires special methods of measurement, (Ref. I].)
i

and the prediction of its effects on receivers is difficult.

An AMVSB monochrome television picture is transmitted over the modulation

range, between 12. 5% and 75% of the maximum carrier voltage, with 12. 5% repres-

enting full white in the picture, and a level of 67. 5% representing black. The

synchronizing signal is transmitted by increasing the power of the tran^^nitter to

100% during part of the blanking interval between picture lines and frames.

Any impulsive noise such as that caused by ignition or lightning, added to

the signal arriving at the detector of a TV receiver causes, . in general, an increase

in the instantaneous voltage at the detector (Ref. 12). Some cancellation of.' the

signal may occur, but, provided that the radio and intermediate frequency amplifiers

have been designed so that no blocking occurs, reductions in the instantaneous value

caused by noise of the signal is negligible compared with increases. As a result,

impulse noise produces mainly black dots of very low visibility in the picture and

spikes exceeding the normal level of the sync pulse in the sync signal.

f	 If a noise spike is higher than the sync pulse, it can be removed completely
E
f	 from the sync signal by using noise gating and/or noise inverting circuitry.E

The variation of the video signal caused by variation of the received RF

signal may be reduced to a few percent of the total signal by using pulsed AGC
l	 which operates over the working range of the AGC circuit, 	 t

1	 1.2 FCC DEFINITIONS OF GRADE A AND B SERVICE CONTOURS (Ref. 13)

Grade A represents a specific value of ambient median field strength existing 30

feet above ground which is deemed to be sufficiently strong, in the absence of inter- 	 i

ference from other stations, but with due consideration given to man-made noise
j	 typical of urban areas, to provide-a picture which the median observer would classify

as of ''acceptable'' quality, assuming a receiving installation (antenna, transmission
kline, and receiver) considered to be- atypical of suburban or not too distant areas.

a,

This signal level is sufficiently strong to provide such a picture at least 90%'of the

time, at the best 70% of receiving locations. The grade A contour represents the

outer geographic limits within which the median field strength equals or exceeds the
I:

Grade A value. The specific values for Grade A ace 68 dbu (2. 5mV /m) for Channels.:

2 to 6, 71 dbu (3. 5 mV/m) for Channels 7 to 13, and 74 dbu (5. 0 v /m) for Channels
14 to 83.	 B-13
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Grade B represents a specific value of ambient median field strength
existing 30 feet above ground which is deemed to be sufficiently strong, in the.
absence of man-made noise or interference from other stations, to provide a

picture which the median observer would classify as of "acceptable" quality,
assuming a receiving installation (Antenna, transmission line, and receiver)}
considered to be typical of outlying or near-fringe areas. This signal level is
sufficiently strong to provide such a picture at least 90% of the time, at the best
50% of receiving locations. The Grade B contour represents the outer geographic
limits within which the median field strength equals or exceeds the Grade B value.

F	 The specific values for Grade B are 47 dbu (0.22mV/M) for Channels 2 to 6, .56 dbu
i4

(0.63mV/m) for Channels 7 to 13, and 64 dbu (1.6 mV/M for Channels 14 to 83).
it
'	 Although "acceptable" quality is not further defined in the background material
'F	 leading to, these standards, the assumed signal -to-noise ratio( S ) of 30 db would

nr
indicate a quality similar to that described by the Television Allocation Study
Organization (TASO) as Grade 3 or "passable" which is described as follows:
"The picture is of acceptable quality. Interference is not objectionable.

With respect to "city grade service, " no comparable statistics are included

in the aforementioned reference, (14) but presumably this would entail the same quality
of picture, which would be available to a higher percentage of locations and/or a
higher percentage of the time, in the face of an even poorer receiving antenna
and/or, more severe man-made noise limitation.

Thus i appearst ppe, rs that. the present picture quality which is generally available
in the U. S., assuming nominal receiving equipment, is equivalent to the TASO
grade 3 which is rated as being passable and described as a picture of acceptable
quality with perceptible interference which is net objectionable. ,

1.3 MAN-MADE. NOISE
Figure B-6 summarizes indigenous noise data which was obtained from several
recent study program final reports	 and other technical publications.	 g
Line (1)` in Figure B-6 is a plot of the maximum, urban indigenous noise level used in
the Jansky Bailey Report.	 The Jansky Bailey data was taken from the
ITTRadio Engineers Handbook. The other data shown in the figure was obtained r

B-14
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from the Sansky Bailey Report and other data compiled during feasibility studies

of satellite voice broadcasting which were conducted by G. E. and RCA and directed

by NASA. The noise levels shown in Figure B-6 are given in terms of equivalent

brightness temperature as seen by a half -wave matched dipole.

y

E

Conclusions which may be drawn from this survey are:

1. Automotive ignition noise is the probable predominant constituent of

ur.ban and suburban noise in the VHF and UHF bands.

2. The indigenous noise level varies with time. (Noise levels have been

observed to vary 16 db between peak traffic flow periods and quiet

periods during the evening)

3,	 Noise measurements obtained exhibit very high peak-to-rms ratios.

4. Average man-made noise levels may be reduced by 10 db or more if

automotive ignition noise is eliminated.

5. The results of antenna noise discrimination measurements conducted

by G. F. during the voice broadcast study indicate that a high antenna

(y3 db) elevated 450 from the horizon provides a reduction in man-made

noise of approximately one-half the antenna power gain.

6. Polarization effects upon noise levels observed appear to be insignificant.
7. For low noise locations the reception of man-made noise should tend

to increase

8. The effects of antenna height, location, orientation and shielding have not

been measured or analyzed to any significant extent with respect to

reception from synchronous orbit by small ground stations. (Ref. 15)

9. The division of noise levels into urban, suburban, and rural areas is

arbitrary. The noise level, in general, appears to increase with pop-

ulation density through this relationship has not been proven and appears

to be a poor description of the actual situation. The manmade noise,

level appears to be more closely associated with the proximity of auto-

motive throughfa es than to the number of people living in a given area



10.	 Man-made noise other than that due to automotive ignition is caused

primarily by rotating electrical machinery, electrical appliances,

power transmission lines and power stations. The noise levels

observed to emanate from high voltage transmission lines and power

stations increase during periods of high humidity or rainy weather.

When low noise amplifiers are used, noise from external sources becomes

a predominant factor in the determination of the system signal to noise ratio.

When this is the case it is desirable to consider antenna designs that reduce the

reception of noise relative to the desired signal. Thus one of the main objectives

to be accomplished in the design of a ground station antenna is to reduce the side

and back lobe levels as much as possible within the specified cost constraints.

Assuming an optimally designed antenna the second objective which should

be considered is that of obtaining a low noise installation. The use of shielding

provided 'by surrounding terrain and structures should be considered ill selecting

a location for a receiving antenna installation. If suitable shielding terrain or

structures are not available the use of pits, construction of walls or fences and

the use of suitable RF absorbent material should be considered for installations

where a high level ambient noise environment exists.

The amount of attenuation afforded by structures is shown in Figure B-7.

The data in Figure B-7 was taken from the RCA voice broadcast study final report

and represents the comparative signal loss between locations on the roof-top and

inside a building for a signal from a terrestrial transmitter. The values were not

corrected for the change in height and thus can only be used as a gross estimate

1	 I I.

of .noise shielding which might be obtained from various structures.

The use of natural terrain, earth walls, and excavated pits for the shielding

of communication satellite antenna from radio interference propagating at low

angle's has been considered by several authors, (Ref. 16). Care is taken to install

large communication antennas in low noise locations which utilize the natural terrain

for shielding. (The 210 foot Goldstone installation is a good example of this type

of installation). The use of this type of shielding to obtain isolation from man

made noise sources and interfering signals. may also be considered with respect

to small receiving stations operating in conjunction with a synchronous orbit TV

broadcast satellite. Isolation magnitudes on the order' of 40 db should be -obtainable

B -16
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by using pits. For a given pit the magnitude of shielding will increase slightly

with frequency in the upper UHF and microwave frequency bands, (Ref.. 16).
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Figure B-T. Attenuation Caused by Various Structures

(from RCA VBS)
s

1-4 MAN-MADE NOISE LITERATURE SURVEY

f	 1.	 Measurement and Analysis of Radio Frequency Noise in Urban,	 >_

Suburban and Rural Areas. Final Report, By A. H. Mills,

General Dynamics f Convair Technical Management P. Kuhns,

NASA LeRC, Contract NAS 3-9714, NASA,. CR.-72490, GD /C
AWV 68 -001,

Abstract:

Radio"frequen.cy noise wa s measured from the air and on the
ground in urban, suburban, and rural areas. The primary objectives

were to determine the characteristias of man-made as a`function of
}	 frequency, time of day and location and also determine the correlation	

b
-i	 -

a between the air and ground measurement results. (Test data has not}
c;

been evaluated)
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2.	 G. E. Voice Broadcast Mission Study, Volume II. Final Report

NASA Contract No. NASw-1475, July 14, 1967, Document No.

67SD4330,

Abstract:

xG. E. conducted a limited program to measure man-made noise.{	 j

The data obtained by G. E. agreed closely with other data which had
a

been obtained earlier. It was noted in the G. E. report that the ITT

and Hammar data was significantly higher than any other data. (The
j
I	 ITT data agrees closely to data which was obtained in downtown

,y

Washington, D. C. amidst traffic by W. Q. C riehlow of the Institute

for Telecommunication Sciences and Aeronomy)^	 y)

iA

	

	
The results of the G. E. Antenna noise discrimination measure-

ments indicate that a highain (y3 db) antenna elevated 45 0 from theg	
.horizon provides a reduction in man-made noise level of approximately

half the antenna power gain.

?.	 RCA Voice Broadcast Study, Final Report, Contract No. NASw-1476-

Prepared for NASA headquarters, May 1967.

RCA undertook a limited man-made noise measurement program

in support of the Voice Broadcast Study. The primary purpose of the 	 "F

test program was to determine expected levels of unintentionally

generated man-made noise in urban areas. The survey was conducted

at sites located in the New Fork City - New Jersey metropolitan areas.

Measurements were performed at three frequencies: 20 MHZ, 109

-MHZ and 800 MHZ. Both dipole and directive antennas were used in

the VHF and UHF measurements. The directive antennas were used

to determine if signal-noise discrimination could be obtained by virtue

of directivity.

The results of the directive antenna noise discrimination measure

ments indicated on a gross basis that a directive antenna pointed 45°

above the horizon will have a noise gain on the order of that of a dipole, 	 t i/
possibly less.
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4. Technical and Cost Factors that Affect Television Reception from a

Synchronous Satellite. Final Report, Contract NASw-1305, June 30

1966, Atlantic Research, Jansky and Bailey Systems Engineering Dept.

ITT Radio Engineer Handbook man-made noise data is presented

and converted to an equivalent brightness temperature. The study

considers a satellite in synchronous orbit and ERP's ranging from

30 dbw to 90 dbw. The look angle is assumed to be 43 0 from the

receiving site. In order to minimize the effect of a limited knowledge

of values of indigenous noise a 40 db range of noise level values was

considered.

In order to determine the relative effects on man-made noise:

suppression of directive antennas.,the solid angle over which this source

of noise was effective was defined to be the solid angle extending from
the horizon to lo o and 360° about the receiving antenna. The effect of

an antenna on the reception or suppression of man-made noise was

determined by calculating the average gain of the antenna in the direct-

ions bounded by the solid angle defined..

5.	 E. N. Skomal, "Distribution and Frequency Dependence of -Unintentionally

Generated Man-Made VHF/UHF noise in Metropolitan Areas", IEEE

transactions on EMC, Part I, September 1965, Vol.. EMC-7 NV-3

Page 263'- 278. Part II , December 1965, Vol. EMC-7 No. 4, Page

{

42 - 427.

- An analysis and evaluation of previously published metropolitan

area man-made noise data over the 200 to 500 MHZ frequency range was

performed. The conclusion was made that unintentionally generated

man-made noise in urban and suburban areas is impulsive in form and

random in occurrence. No reliable evidence of any existing correlation

between ambient noise level and population density was ;determined.

Skomal concludes that automotive ignition noise is the probable pre-
dominant constituent of urban and suburban radio noise in the VHF /UHF
frequency bands.G
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APPENDIX C

ANALYSIS OF FM/FM MULTIPLE VOICE CHANNEL TV TRANSMISSION

1. SUMMARY

The discussion on the following pages develops the equations

necessary for the analysis of FM/FM techniqu-es of transmitting

multiple voice channel TV signals. The result of this analysis

is summarized in one equation for input carrier-to-noise ratio

as a function of RF bandwidth in terms of all of the various

parameters of the modulation process. This equation can be

represented in the form of trade-off curves of predetection

carrier-to-noise ratio vs required RF bandwidth. From such

curves we can quantitatively determine the cost of including

multiple sound channels in terms of required bandwidth and

carrier power. The curves also give us a means of comparing..the

FM/FM single carrieer technique with other modulation schemes such

as AM-VSB and FM[FM with multiple carriers.



2. GENERAL DISCUSSION

The purpose of this memo is to give the appropriate equations

for one particular method of transmitting a TV picture with multiple sound

channels. While a number of methods for providing multiple audio channels

with the video channel for TV transmission are presently under considera-

tion for satellite TV links, the method described in this memo seems most

promising. 
[61 

It is assumed that the reader is familiar with frequency

modulation concepts and therefore basic FM equations such as those derived

in References [11, 121, 131, [41, and C51 will be used in this memo.

The method under consideration requires multiple sound sub-

carriers(one for each audio channel) placed at frequencies above the highest

video frequency. The composite baseband is then frequency modulated onto

, the main carrier for transmission. The following diagram illustrates the

baseband signal:

where

f = maximum video frequency
V
fsi = frequency (no modulation) of the 

ith 
subcarrier

1 2, ... , n

The n subcarriers are spaced with a , guard- band b g^between them and a guard	 ,.
band b between 'the lowest frequency in the audio band and the upper video_-

v
j	 frequency fV. Therefore, the total audio baseband , .bandwidth is

n-1

B$ n a +	 bgi	 (l^
L=1

} 	Tai

C-2
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where

ba =the audio bandwidth

bgi = guard band bandwidth between the i th and (+1)th 
channels.

The total baseband bandwidth is

B = video bandwidth + audio bandwidth

thus	 n-1

B = ( bv + fv ) + ( nb a +	 bg1)	 (2)
i=1

Since the sound channels should all be of the same quality, it

is reasonable to'take the audio bandwidth, b a, of each channel to be a
constant.

The following diagram illustrates the baseband frequency allo-

cation according to Equation 2.

6a '1

1.
	 6v	 ba

4^,	 f a
	 F'

This baseband is then frequency modulated onto the main carrier.

(at frequency fc )- for transmission via the satellite link. `The problem
that remains is to determine the video signal-to-noise ratio and the audio;

signal-to-noise ratio-in terms of the carrier-,to-noise ratio as a- function
of the various modulation parameters.

3. DETERMINATION OF V'I'DEO SIGNAL-TO-NOISE RATIO'

The signal-to-unweighted noise ratio at the output of the carrier
demodulator can be written in terms of the predetection carrier-to-noise

ratio by using the standard F11 relation	 h
a

C-3	
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^^	 2

^`	 3 ^'fv ERF

(RS v	 fv	 2fv	 N IN
where.

B
RF ` the RF carrier predetection noise bandwidth

Afv = the peak carrier deviation due to the video signal

Where it is assumed that 
(gN) 

is above threshold. This can be written
IN

in terms of the carrier-to-noise density ratio a-s

Afv 2 C
(4)

	

(-RS v 2 f
3 	SINv

The ratio ^fv/f
v
 is often referred to as a video deviation ratio, Dv, or

video modulation index. Equation 4 gives the average signal power to average

noise power ratio. We will, however, be interested in the peak-to-peak "picture"
power which is related to the average video signal power by

SS - 2 S -	 2 (8s)P	 P P	 rms

as is shown in Appendix A. Therefore,

(iS)picture4 (RS)v
and Equation 4 gives

S	 (nfv)2

	

6	 (5N 	 (fv^l	 IN

as the p-p picture power-to-rms noise power ratio. It should

be noted that ,̂ f ,is the peak deviation of the carrier due to the video f

portion only and that no noise weighting factors or preemphasis improvement

factors are included. 	 r

(3)



4. DETERMINATION OF AUDIO SIGNAL-TO-NOISE RATIO

At the output of the subcarrier demodulator ) the signal (test-tone)-

to-noise ratio is given by 131' C61, 171, 191

S — D 2 
D 2 BRF(C)	

6
a	 2 ci,	 si	 2fa NN	

IN

where

Dpi = deviation ratio of the carrier due to the i th audio
subcarrier

Dsi = deviation ratio of the i th subcarrier due to its
audio signal

fa = highest audio baseband frequency

BRF total RF bandwidth

Since for our system, the peak subcarrier deviation f si will be

small compared to the subcarrier center frequency f si for each of the audio

channels, then 131., [61 ; 1 71
D _ ^fc i
ci	 fsi

and	 Mh'

D _ fsi

si	 f
a

where pfci is the peak frequency deviation of the carrier due to the ith

subcarrier. Equation 6 can then be written
2S	 (/afci^	 (Afsi)

2
C	

{

a	 s A.a	 IN	 j

1.

The overall peak carrier deviation, Uf a, due to all of the audio!,

subcarriers,is in general a complicated function of the individual pfCi.	 t:

For multiple voice channels, of is usually taken to be the sum of the indi'
r

a	
y	

C 61 vidual 
^fci 

for a conservative analysis of the s ys tem. 	 This is probabl y
i,

the mostcorrect approach for the particular system under consideration since
^i

the frequency deviations in the n channels will be highly correlated (with

C-5 	 i _



a high probability, the deviations due to the individual subcarriers will

be at their peak values at the same times). This is also true since any
music and special sound effects will most likely be the same in all voice

channels. Furthermore, for some applications the voices on the n channels

will be different dialects of the same language. For some types of channels,

however an rms addition of the individual frequency deviations is appro-

priate	 and would probably provide a lower bound on Af a for our system
with a large number of relatively uncorrelated voice channels.

We will require that the deviation ratio D = 
afci 

be a con-q	 ci	 fsi
scant for all i•to ensure that the individual voice channels will be of

the same quality. Assuming that
n

f	 Afa =	 ^f

	

ci	 (8)

n i=l
!	 and since

^ci	 Afcf
Dci = f	 = i=1	 constant, all i	 (9)

si	 n

fsi

	

i=1	 •^,

then Equation 7 may be written

(A	 Of 2 f	 2	
F

S	 _^ ^si )	a	 C
(10)N a 	 (f)3	 n	 IN

a	 fsi

I	 i=1	 •

The next step is to determine the subcarrier-to'-noise ratio in
the 9', th channel in terms of the carrier - to-noise ratio. This may be ex-
pressed as 171

.	 2.
BRF, 	c i. C(7sq

 i	 4dfs,i	 fsi	 ZN



and therefore

SC _	 1	 D 2 C
 )N i

	^fsi c i	 IN
	 (12)

If we now take the bandwidth of the i th audio subcarrier channel

to be

b  = 2,nf si

then Equation 12 becomes

(^SC) - 2b	 Dc 12	 (13)
•	 i	 a	 IN

which agrees with [6]. For these relations to be valid, the peak subcarrier

deviation must be small compared with its center frequency.

5. DETERMINATION OF REQUIRED RF BANDWIDTH
The RF bandwidth required by the main carrier is

BRF - 2(6f + B)

by Carson's rule. Here cif is the peak frequency deviation of the carrier

due to the video signal and all of the audio subcarriers'and B is the total

baseband bandwidth as in Equation 2. Again we have the problem of deter-

mining the peak frequency deviation of a carrier when it is being modulated

by 'several. signals. For a conservative design, we can let Zsf = _f + /pfv	 a
which is used in Reference [61, and will give an upper bound on the R
bandwidth. If we are willing to tolerate overmodulation for a small frac-

tion of the time then the RF bandwidth can be reduced. The expense of

allowing overmodulation, however, is increased nonlinear distortion and

therefore increased crosstalk. References 131 and [ ' 47 discuss this problem
in further detail. For our analysis, we can use Equation 14 keeping in mind 	 st

that we are being somewhat pessimistic and will require a higher carrier-	 k

to-noise ratio as a result.

C-7
4
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6. SUMMARY OF ANALYTICAL RESULTS

The results of the previous discussion can be summarized in the

following equations

(1) From Equation 5

S	
( Af 2 C

4	picture	
(fv)3	 IN

or, in terms of the carrier RF bandwidth

.	 S	 (Afv)2	 C
_ 6	 _3 BN 	 ( f )	 RF (N)picture 	

IN
v

' (2) From Equation 7

(S-1)

(S-2)'

S (Af	 (^fsi)2

N ai
C

(f	 )2	 (f ) 3 	 ^1 IN	
(S-3)

â
si	 a

or in . terms of B,

(Af	 )2 W )2f

1

S

N
ai

i

(fsi)2

si	
B	

C'	
(S-4)

(f 
) 3 	 RF	

N INa
which can be written

( Af
	 2a) Af	 2S

(R)a3. -	 ^+ n B	 C
2	 (fa) 3 	 N INf

i=l
.

if

Af L1f°
n8 Dci - f	 =	 constant, all ,i

,. f
sl

1
1

C-8
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d

(3) From Equation 13
U

2
•	 SC	 1	 (Qf c ^)	 C

N i ^ 	 (fsi)2 

(^)Iil

which can be written in terms of BRF and b 

	

(

SC __ 1	
D 2 B

('N

C

F) i 2b 	 ci	 RF 	 IN

where

a

(S-b)

i

(S-7)

	Af	 Af

Dci	 n 	 = f 
ci 

= constant all i
si

fsi n

as in Equation S-5. In the remaining work, f s 	 £si will be used for

convenience.	 i=1

(4) Finplly the maximum RF bandwidth can be written as

BRF s 2(Qfa + Z^fv + B)

by Carson's rule.



r

7. APPLICATION OF RESULTS

In order to determine the important parameters for a given

signal format, we can specify the signal-to-noise requirements ( 
NS )	 (NS)a^ 	^^

and (.2.C-) and the signal format parameters (fa, fv) B. and f s 	.

n

I
fsi ) to give the desired system performance. The following sequence

i=1	 '

of equations may then be used to determine the necessary modulation parameters

(1) . Dividing equation (S-7) by (S-4)

j	 \ NCI	
2(fa)3

(N)	 3ba(Af )2
a

(S/N1
j	 2	 2	 3	 )a..(Ofs ) ba=3fa	 SCIN(

/SC\	 /S\	
_	 ._



F.

M'

3/2	 ( l	
2

N ll =	 f s 2b a gC! + f6 `N I.l	 vIN

	

	 is ture
BRF (BRF 2B)27

from which a curve of 
(N/ 

versus BRF may be obtained. Note that ba may
IN

be expressed in terms of fa , (N> , and 
(NCl 

from equation I and the assumed
a

relation between b and pf .
a	 s

N vF

I

which gives the solution for pfa as

( sc r

Of = f 2ba `N	 2
a	 s

BRF 
(9 ). _

N

(3) Solving equation (S-2) for 6f  we have

(SIN)	
1

,Lf = f 2	
picture 2

v	 "	 6B	 C'	 RF N)
IN

(^^) Finally, the bandwidth (worst case) is

BRF = 2 (,^,fa + Z^fv + B)

(II)

(III)

(IV)

For a given system, we can obtain trade-off curves of (C)

versus B	 from these four

a from	
equations. Substituting for Af and 	 N IN

RD.f	 (II) and (III) into (IV) and solving for 
(N/

NOl , we get
IN



8. EXTENSION OF PREVIOUS RESULTS

In the derivation of equation (I), it was tacitly assumed that the

audio deviation. ratio Afs/fa is large enough to guarantee

2.0A- fs < ba s2.2•Qf s 	 (A)

which is a fairly good approximation for audio deviation ratios larger than

10. This is based on the bandwidth required to pass all sidebands greater

in magnitude. than 10% -of the unmodulated carrier amplitude without attenu-

ation. For this same bandwidth criterion, Carson's rule is more accurate

and can be used for deviation ratios down to about 0.. ^. For our problem,

Carson's rule gives

b  = 2(Afs + fa)
	

(B)

more strict condition used in [57 is

b  = 2(Afs + 2f 
a)

	
(C)	

] ,FI

which gives the bandwidth required to pass all sidebands greater in magnitude

than j% of the unmodulated carrier amplitude.

Although any such relationship can easily be incorporated into the previous

results, it is assumed that the Carson rule bandwidth is adequate for our

purposes in the following derivation.

Equation (I) was obtained by dividing the equation

ISC
x \N / 2b	 f	 RF (NC )a	 s	 IN.1

by the relation

	

	 r;

L^f 2 /^f 2
(S1	 a	 s	

$	
C	 r3

\N/	 \}	 a	 £s	 f	 N N	 -^
ii	 8

I

C-12 .	
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which gives	
(S

^"f 2	 = 2 3 ( N)( s ) b a	 3 fa 
I SC

a	 ^D )

\N/

By setting b  = 2.26f s from (1) and solving for %if s , we get ( I) 'a:=

the real root. Similarly, we can let b 	 2(;^Sfs + fa ) from (2) and get a

cubic equation in /^f s .

^	 3	
2 - 

fa3 -

(1.1 	 + fa(r^;fs}	 3 R	 0	 (E)

(NS)
where the ratio	 a is denoted by R.

\N / f
This can be solved for Af s by substituting (x - ^) for ^f S and thereby

reducing the equation to

2 3f fJ a{ K 3 ( R _)	 ..	 0
1 (F)

which has one real root and two complex conjugate roots	 :)e are interes ►.(-

in only the real root of (F) which is given by

f	 1	 1

X 	
a	 R- 2+iR2 _ 1+R 3 t R ^- v 2 _ 4R3
6	 9 	 ^`	 9^l	 9	 (G)

from which

f	 1 Fn _. 2 ^. u2 _ 4 u I	 + I u _ 2_ Vu _ lea

^rvF^

f ',

^i



Thus, if the deviation ratio is not large, we must use equation (G)

or (H) rather than (I) to determine the audio subcarrier peak frequency

deviation. If R is large ( R>> 9), then (H) may be used as a good approxi-

ma Lion.

This result does not affect equation (v), however, since this gelatin n

was left in terms of b  to allow use of any bandwidth criterion such as (A),

( B ) , or (C) .

As an example, suppose we impose the following roquirements for a four

audio channel system (cf. reference [61)

\N)	 = 30 db
picture

(2 )
	

= 40 db
a

(
^^	 2(i db
N

f
a
	= T I)kHz

f	 4.2 MHzv.



a^

G

c	 __ 16.2 X 104l	 ^

` N IN	
BRF BRF-11),,

This relation is shown in figure C-1 for the given system parameters.

Once a carrier-to-noise ratio and RF bandwidth are determined from

curve, the modulation parameters Af and /',' can be co^^.putei from equattia	 .
(II) and (III).

t
._	

g

It
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Figure C-1. Input Carrier-to -Noise Ratio

Versus RF Predetection Bandwidth
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,APPENDIX D

LONG LIFE SUBSYSTEM ASSURANCE

1. RELIABILITY IMPROVEMENT MODEL
Generally three types of redundancy are assumed to be applicable to the TVBS:.
standby (e. g. , electrical and electronic black boxes with means of inactivating

or activating and switching out or in), active (e. g.-, attitude control or station

keeping propulsion components with extra thrusters and valving to prevent failure

in an uncontrollable thrusting mode) and voting (e. g., control logic). Obviously,,

some components are not feasible candidates for any type of redundancy, such

as solar arrays or large antennas. These components would have lower level

redundancy not being considered during this study phase, such as solar cell over-

capacity as required for satellite lifetime or redundant antenna feeds.

It is assumed that infant failures have been eliminated through thorough check-

out and component burn-in, end of life failures eliminated by adequate design life l:
or provisioning of replacements, and that component failures occur independently.

Therefore, system reliability is a function of a number of Poisson processes, that is,

component failure rates are constant and independent, thus, for standby redundancy

1
a At nc,l	 (PX  t) 1	 E



Xis component failure rateI
t is required satellite lifetime

n is the number of standby components

;s	 P is the probability of successful switchover and activation

{	 Rs is the reliability of the redundant combination.

1i Backup capability utilizing components of unequal failure rates is not considered,

because such possibilities have not been identified. For the active parallel case:
M-1 m

R =	 e-m -jet 1 -e- fit	 where}	 s	 )
`E	 J' o	 J

I
m is the total number in parallel

,e is the minimum number required.

It is assumed that failure of parallel units has no significant effect on failure rate

of surviving units. Voting redundancy is similar to the active parallel case but

the majority of an odd number of units is required.

In previous applications of the reliability improvement model, where reli-

ability was increased as a function of added weight, the weight increments con-

sidered were those due only to the redundant elements themselves. Since the
'f

synthesis model will result in a minimum cost baseline system addition of re-
4	 dundant elements has cost implications beyond the mere cost of the added element.

The added weight and power requirements changes the sizing of the attitude control

'	 and station keeping systems and prime power system. These changes result in
satellite cost changes beyond that due only to the added element.- Changes in weight,
volume and power are interrelated, requiring solution of three simultaneous

equations. These equations are readily obtained, by using the relationships derived
for the synthesis model . However, all candidate redundancies must be considered

to determine the one that provides the greatest reliability gain per unitcost. Another
complication is that some TVBS configurations would start reliability ,improvement
from a weight or volume boundary, requiring reduction in power capability to

f'	 accommodate redundancy. This would affect ground system cost, bringing in

E	 additional terms influencing 'costs, 	 y

o

D-2



The model complexity will be increased by at least an order of magnitude
by attempting to optimize redundancy. In order not to limit the number of per-

for,mance possibilities studied during the parametric phase it was decided to use

the yreliability improvement model later, when the number of concepts would

be limited. Otherwise, machine processing times would become prohibitive.

At that time the cost of added redundancy will be balanced against the expected

cost saving due to increased reliability. This will be calculated by multiplying

the expected number of satellite launches over the system lifetime by launch

cost. Expected satellite lifetime is

E tc= 
Jot 

r R  dt, where

t is satellite lifetime,c
R  is satellite reliability as a function of time,

t is scheduled satellite lifetime.r
Therefore, the expected total launch cost is

E C = C c isS)

where Cs is total launch costs during system lifetime,

C c is the cost of a single launch

i s is the required system lifetime.

2• RELIABILITY STUDIES

During the first half of this study it appears profitable to perform some of the

L typical reliability trade-off studies for the TVBS. In particular high-power

elements are an important area of consideration. A typical example is the high-

power output for the downlink. To begin with, the system life requirement can
possibly be met by:

I	
'

1. Launching a new satellite at the end of life of the output tube (s) of the
previous satellite. 	 i z

2. Operating multiple outputs in parallel at greatly reduced power levels_P 	 g	 P	 P	 P	 g	 y	 P	 i:.
per output device. 	 r

<1

3. Developing high-power long-life solid state output devices, 	 s

4. Switching out the output tube(s) at end of life and switching in

fresh tubes.

D -3
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I	 ^

Alternative 1, may have to be used, at least in conjunction with one of the

other alternatives. It is not attractive, because the high-power satellite will be

in the.larger size range, requiring greater launch costs. Alternative 3, is un-

likely to be achieved in the time span of interest, except perhaps with a great

deal of risk and large expenditures of funds. Alternative 4, may introduce pro-

blems in switching at high power levels, unless a means can be found to use the

switches in lower power circuits to switch the devices. So far, alternative Z,

looks the most promising, perhaps in conjunction with 4. This study will be

completed during the next reporting period, along with studies of other reliability

and, life improvement candidates considered typical.

Table D-1 contains preliminary TVBS component failure rates for various

alternative components. These will be refined by obtaining communication

satellite experience data, particularly for power and communications subsystems.

The failure rates are being Lea:ed in the selected trade-off studies for reliability and

life. The rates shown are based on component failure rates given in the Tri-

Service and NASA Failure Rate Data Handbook SP63-470, adjusted for satellite

environment. Rates at the low end of the given ranges were used, because of the

practices of parts screening and other extensive testing usually associated with

production of space systems. Also no maintenance will be performed on the satel-

lite components during most of the system lifetime, so that the higher reported
failure rates , of maintained systems -do not apply.
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Table D--1. TVBS Component Failure Rates

SYSTEM
Alternative Configuration

ELECTRICAL POWER
Solar Array
Nuclear Reactor

ATTITUDE CONTROL (NO REDUNDANCY ASSUMED)
Ammonia Resisto-Jet
Ion Propulsion
Water Electrolysis

STATION KEEPING (NO REDUNDANCY ASSUMED)
NH 3 Reesisto-Jet
Ion Propulsion
H2O Electrolysis
Nitrogen Cold Gas
Pe r oxide

6per 10 hrs.

4.8
2.4

7.6
12. 1
8. 1

7.6
12. 1
8. 1

15.9
15. 9

THERMAL CONTROL^f Passive —0.0 
y	 Fluid Pipe 0.1
5 UPLINK ANTENNA

Antenna 0.9

MULTIPLEXER
1 Multiplexer (2) 3.6	 t

TRANSPONDER
Linear Translator 25,4
Frequency Multiplier 25.4
Modulation Converter 43.1

 Demodulator -Modulator 39.4

OUTPUT STAGE is

Love Power (Included Under Transponder),
High Power 3.1 f

DOWNLINK ANTENNA
Rigid Dish 0. 9
PETA 0. 9
Phased Array 0.0

TELECOMMUNICATION ANTENNA;
Receiving Antenna 0.0

	 .

TELECOMMUNICATIONS RECEIVER
Receiver 41.6	 #`

COMMAND AND CONTROL UNIT
r	 i;

P

11
Unit 2.0

E

STRUCTURE r
Spacecraft	 D-5 0.0

i	
`
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3. LONG LIFE SUBSYSTEM ASSURANCE

A major area which tends to limit the lifetime of a communication satellite in the

kilowatt power output rang is the output stage. If satellite useful life is to be extended

up to ten years, it is necessary to provide output circuits that would be switched in as

each previous circuit reaches its end of life or otherwise fails. Twenty-five thousand

hours is projected to be the maximum guaranteed life achievable for microwave output

tubes in the kilowatt range in the early 1,970's. To achieve power outputs greater than

5 kw it is certainly desirable, if not absolutely required, to operate outputs simultan-

eously in parallel. In this manner both output overcapacity and derating of tubes will

contribute to significaotl ,- improve reliability.

The effects of various ways of configuring outputs on output lifetimes were examined

for two required power levels. The first level is 5 kw, to be provided by a minimum of

one tube, with of conservatively assumed average life at that level output of 15, 000 hours.

The second level is 25 kw minimum, using at least five tubes operating in parallel to

provide the required levels. These tubes also have an average assumed life of 15, 000

hours under these conditions. In both cases, to provide for extended satellite life, it is

assumed that the entire operating bank of output tubes is replaced by means of switching

at 15, 000-hour intervals. Actual design would provide for switching of individual tubes

as the output of each degrades to less than the allowable threshold. But the difficulty of

	

t	 determining valid tube life distributions is avoided by the assumption of an arbitrary

replacement interval. The satellite is assumed to transmit 24 hours a day. Tubes are

	

}	 switched in individually to replace tube failures at times other than end-of-life _Asa

simplifying assumption replacements of failures are replaced at the next scheduled bank

replacement time, regardless of the number of hours that they operate, except, of course,

when the replacement of the failure also fails. Although an order of replacement will

	

M >>'	 probably be specified in design, it is assumed that any previously unused tube can replace
any tube in use

D-6



Each tube has. a failure rate of 3.1 per 10 6 hours. The power supply that operates

only in conjunction with its tube has a failure rate of 1.8 per 10 6 hours. The switching

of a given tube, whether initiated via the command link or automatically on board the

satellite, has a probability of 0.996 of proper occurrence. These parameters are

based on sommunication satellite experience and are assumed to remain constant

during satellite lifetime.

In the case of the 5 kw output, operating one tube at a time without redundancy, six

tubes are required to achieve the possibility of a ten-year life. The probability of output

survival for ten years is 0.636. By operating two tubes in parallel at a time in an active

redundant configuration, the probability of survival to ten years is 0.994. However,

twelve tubes are required. The probabilities of survival for these two configurations, with

only enough banks to make survival to the given time possible, for any time to 90, 000 hours

are plotted in Figure D -1. Corresponding probabilities of survival of outputs designed for

90, 000 hours of life as functions of operating time are shown in Figure D-2. More active

tubes could be added, but it seems evident that further reliability gained in this manner

is not worth the additional cost and weights

Another possibility for the 5 kw case is to add extra tubes to be used only in the event

of failure of a tube operating singly. One standby tube added to the six required for ten-

year life results in a ten-year output reliability of 0.922. Three standbys raise reli-

ability over 0.997. Thus nine ti.bes can be usedto produce a reliability that exceeds that

e

of twelve tubes in the active redundancy case. Figure D-3 shows the probabilities of sur-

vival of outputs designed for a given time plotted for times up to 90, 000 hours for zero to
t

three standby ubes. Probability of survival of outputs designedy	 ty	 tp	 fined for 90, 000 hours of life 	 ^.

as a function of time is plotted in FigureD 4 for zero to three standbys.
r ,

Similarly, either active or staij,dby redundancy can be used for the 25 kw case. With-

out redundancy the probability of +output survival for ten years is 0.1.0. To achieve this

possibility of 10-year life six batks of five tubes each or a total of 30 tubes, are required.

One more tube operating in each;/bank improves reliability for any given mission length as 	 {

f	 D-7
1	 r



shown in Figure D-5. At ten years the reliability becomes 0.89. However, a 25 kw

output designed for six replacement cycles has a better chance of surviving four or

five cycles than the 5 lcw output, as seen by comparing Figure D - 6 with D - 2. Corres-

ponding effects of using zero to six standby tubes on output reliability are shown in

FiguresD-7 and D -8.1t is noted that four standbys produce more reliability improve-

ment than a sixth active tube per bank. This means that for a ten--year lifetime the

standby configuration using a total of 34 tubes has slightly greater reliability than the

active redundant design with 36 tubes.

,t
In general the standby redundant configurations require fewer tubes than those with

s active redundancy. This conclusion is always true where effects of switching can be

f#	 ignored, because in standby redundancy the redendant element-- are not stressed until

li	 used. In the calculations of survival probabilities switching reliabil.ities were taken into

#1	 account. However, because each tube that operates must go through a switching cycle,

=f the switching does not work peculiarly to the disadvantage of standby units. The actual
f

unit switched is the tube power supply, which in turn energizes or de-energizes the tube,

which begins or ceases operation, respectively.
r

1
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APPENDI:K E

DYNAMICS ANALYSIS

1. GENERAL

A subsystem trade study was perforne d between the most promising propulsion

devices for attitude control and station keeping. Of the approaches considered, the

ion propulsion system seems most appropriate, and the sizing equations were es-

tablished from the characteristics of this system.

The major source of attitude control perturbation at synchronous orbit is solar

pressure. All other steady-state forces are one to two orders of magnitude lower.

Trades, therefore, were based on frontal area and offset of center of pressure of the

solar arrays.

x A back-up system, having higher thrust levels meets the requirements for initial

orientation of the satellite, stabilization during docking maneuvers, and stabilization

during low orbit assembly and check-out (if required).
4

2. TVBS DYNAMICS CONSIDERATIONS

REQUIREMENTS

UP TO FIVE-YEAR LIFETIME
ANTENNA POINTING TOLERANCE DOWN TO f 0.1 DEG.
COMPLETE NORTH—SOUTH & EAST-WEST STATIONKEEPING
SUN ORIENTATION OF SOLAR ARRAYS
POWER REQUIREMENTS UP TO 100 KW

KEY TECHNOLOGIES
ACTIVE CONTROL SELECTION
SOLAR ARRAY, ANTENNA, SATELLITE VIBRATIONS
SOLAR ARRAY ORIENTATION DISTURBANCES 	 I
CSM DOCKING LOADS	 is
COMPONENT RELIABILITY 	 t"
MEASURE SMALL VEHICLE ANGULAR RATES	 .:

The requirements listed above have major influence in the design of the attitude

control and station keeping_ subsystem. Fine year life time signifies that propellant
E-1
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weight will be significant, and north - south drift which could have been left un-

corrected for a shorten mission will be a factor. The antenna pointing accuracy

required establishes need for precise attitude sensing and control, a problem com-

plicatedl by the large sun-oriented solar panels.

3. RELATIVE ACTI VVE CONTROL INPULSE (LB. -SEC.)

f

STATIONKEEPING

NORTH-SOUTH

DOMINATES

LIFETIME,
SATELLITE WEIGHT
ARE KEYS

ONE SYSTEM FOR
STATIONKEEPING
(TRANSLATION)

ENVIRONMENT

SOLAR PRESSURE ON
ARRAYS DOMINATES

(AM) IS KEY
LJET

(AM) AREA M OM ENT

ABOUT CG

CP-CG OFFSET 20/-

ACS LIMIT CYCLING
POINTING TOLERANCE &
STRUCTURAL VIBRATIONS
DOMINATE

TIGHTER POINTING IS
ASSOCIATED WITH
LARGER, MORE
FLEXIBLE STRUCTURES

L J - JET ARM

JETS MOUNTED ON

'SATELLITE BODY

(USUALLY)
ANOTHER SYSTEM FOR ENVI'RONME'NT, ACS

(ROTATIONAL)

it F.

The relative order of magnitude of control impulse needed to satisfy require-

ments for a five-year life time satellite are;

t	 1. Station keeping

2. Correction of Environmental distrubances
tt
	

3. A.SC limit cycling

North-south drift control dominates the station keeping impulse requirements,

Uncorrected N-S peak drift is 0.8 deg per year. Of the environmental effects, solar

torque dominates in the synchronous orbit. Solar panels of 10, 000 sq. ft. may be used.

i	 Solar torque is estimated by assuming a CG^-CP offset for each panel of 2% of the panel's

center to satellite CG distances

ACS limit cycling operation is influenced by pointing tolerance and structural vi-

bration. The larger, more flexible satellites generally require more accurate pointing,
K4	 E-2
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which complicates the selection of limit cycling parameters.

4. VEHICLE ORIENTATION

. With the factors that affect vehicle orientation; large sun-oriented arrays

dominant station keeping impulse requirements, and large satellites with close

pointing tolerance, three approaches to attitude control were considered. These

are:

Multispi.n - The satellite has a significant spirming mass; with a despun

sun oriented segment (array), and a despun earth oriented segment (antenna). This

approach makes station-keeping complicated because of the difficulty of directing the

thrust through the C.G. of the vehicle.

Sun Oriented The main body of the satellite and solar arrays are oriented

toward the sun. On this platform, the earth oriented antennas are mounted and con-

trolled. Antenna, pointing to the required tolerance is difficult.

Local Vertical The main body of the satellite, and the antenna is locked

to and controlled in yaw about the local vertical. The solar arrays are relatively

fixed in space, rotating 360 degrees with respect to the satellite body each day. The

power decrease .resulting from the solar arrays pointing out of the ecliptic is acceptable.

The selected approach for vehicle system sizing is the orientation to local vertical.

This approach greatly simplifies station keeping and makes possible use of low thrust,

high duty cycle ion propulsion for station keeping as well as attitude control.



5. TYPICAL SYSTEM

PITCH

SORS-
;OLAR & HORIZON SENSORS, RATE" GYROS,

RF INTERFEROMETER*, STAR TRACKER*

TROL

'RANSLATION & ROTATION THRUSTERS, INERTIA WHEEUS)*

%R ARRAY ORIENTATION

OTATION ABOUT PITCH AXIS, BY DIRECT LINEAR CONTROL
ATELLITE YAW ROTATION PROBABLE FOR UNI—BEAM CONCEPTS

OPI LOT

:OMPENSATION FOR STRUCTURAL VIBRATION, DETERMINE

MALL ANGULAR RATES OF ORDER( 1 ) EARTH RATE
50

*OPTIONAL

The typical system has two large solar arrays, rotatable in pitch, mounted on op-

posite sides of the rim of the large antenna. Sensors include solar and horizon sensorA .

and rate gyros. Determination of antenna orientation using RF interferometers and

ground beacons is a likely option for tight control. Use of star trackers is less likely.

Control devices include thrusters for station keeping and for rotation about three

axes. Optional are inertia wheels about pitch only or about all three axes.

Solar array orientation is about pitch axis, using a direct linear drive control of

the type being studies by Hughes and Westinghouse.

t
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COLD GAS
HYDRAZINE
HYDROGEN PEROXIDE
RESISTOJET
WATER ELECTROLYSIS
ION PROPULSION

> 0.02

> 0.001

> 0.01

0.01 - 0.00001

10 - 0.1

0.01 - 0.000001

6. ACTIVE CONTROL DEVICES

THRUSTERS
	

THRUST LEVEL
	

WEIGHT	 ISP	 POWER RELIABILITY
(LB.)
	

(SEC.)	 (Wl

HEAVIEST 60 1	 BEST

HEAVY 235 1

HEAVY 160 1

MODERATE 350 20

MODERATE 360 20	 ?

HAS HIGH 4,,500 - 9,500 1,000
CONSTANT WT.

Thrusters considered are shown above with their characteristics.

Thrust level is to be kept low to minimize vibration excitement. Ion propulsion

weight includes that for necessary solar ceiUs and power conditioning.. This constant

weight is lifetime independent. Propellant volume as well as weight becomes exces-

sive for all but ion propulsion for the heavier satellite, longer lifetime cow epts. Power

requirement is significant only for ion propulsion, Reliability is best for the heaviest

system, the high thrust cold gas, and is questionable for water electrolysis,

Inertia wheels are the indicated momentum exchange device for this large, slowly

moving satellite. No weight savings occur, but wheels provide lower variable torques,

oansing less vibration excitement. A single wheel may be provided for the high dis-

turbance pitch axis or three wheels provided for all axis control.

Five year wheel reliability is a problem. Thrusters sizes for speedy wheel de

saturation are larger than desirable for all thruster control. Thruster backup for wheel

failure may therefore require an additional ACS thruster set.

i

Yr 4hr

j

!
E'

{ h

C i

{



I

7. ACS THRUSTER SE LE CTION

600

/;?I

RESISTOJET
H 20;

_

FOR 5 YR. CROSSOVER IS (AM)/LJET = 1.5 x 104

SELECT

ION PROPULSION ABOVE, RESISTOJET
BELOW CROSSOVER

300

ACS
JETS &
PROPELLANT
(LB.)	 100

60

s

CROSSOVER POINT DECREASES WITH SHORTER'

LIFETIMES, BECAUSE MUCH ION PROPULSION

WEIGHT IS LI ET ME INDEPENDENT
30

5	 10	 25	 60
(AM)/L JET (1,000 SQ. FT.)

CONCEPT	 G	 E,F
POWER (KW)	 7	 50

The selection is made on, the basis of weight, power and volume. Power is con-

verted to weight, using solr array and power conditioning characteristics, and is

included.

ACS propulsion and propellant subsystem weights are compared for the resistojet,

electric hydrolysis, and ion propulsion, for five year lifetime. The area moment to

jet arm ratio os the independent variable. Concept C. 7KW, has 0.5 x 104 sq. ft. and

4concept E and F, each 50 KW, have 6.0 x 10 sq. ft. Above the crossover point of

1.5 x 104 sq. ft. ion propulsion is selected and below the resistojet is used..

The crossover point decreases with shorter lifetimes. Much ion propulsion 31ib

system weight is for associated solar cells and power conditioning equipment, which is

lifetime independent. Ion propulsion power can exceed one KW; typical power values

for other control are twenty wafts.

Other ACS component weights are not included in the figure. Total ACS weight is

dominated by the propulsion and propellant subsystem, mhich can be nearly 1% of	 }'



5-YR. RESISTOJET-___ ,/ ♦j
H20

r	 /Or /^► 	 -ION

I ^ I

1,000

STATION-	 8Q0
KEEPING

JETS &
PROPELLANT,
(1_13.'1	 600

V

8. STATION KEEPING THRUSTER SELECTION

3,00(

FOR 5-YR. ION PROPULSION
CONSIDERABLY LIGHTER ACROSS
ALL CONCEPT WEIGHTS

USE ION PROPULSION ABOVE
ABOUT TWO YEARS, RESISTOJET

BELOW - CROSSOVER IS
SATELLITE WEIGHT DEPENDENT

EXCESSIVE PROPELLANT VOLUME

OF NH 3 , H 2 O IS TRADEOFF

FACTOR

100

60
1	 2.5	 5	 10	 25	 50

TOTAL SATELLITE (1,000 LB.)

CONCEPT WEIGHT RANGE

The selection is made primarily on a weight -basis, although the excessive propellant

volumes of NH3 and x20 are factors.

Station keeping propulsion and propellant subsystem weights are compared for resisto-

jet, electric hydrolysis, and ion propulsion, for five year lifetime. Total satellite weight

is the independent variable. Station keeping weights are 2 17o, 10%9 17%, and 21% of total

satellite weight for ion, hydrolysis, resistojet, and hydrazine. Ion propulsion is clearly

lighter across the entire range of concepts for five year life.

A crossover occurs for shorte r lifetimes due to ion system fixed weights. R,esisto

jet vs hydrolysis weight differences are significant for station keeping, but are small r.
for ACS.	 i
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9. OJPERATIONAL CONSIDERATIONS

i

TWO ARRAYS
	

FOUR ARRAYS

VERY STIFF IN PITCH	 WEAK IN PITCH

VERY WEAK IN ROLL, YAW	 STIFF IN ROLL, YAW

MOST OPERATIONAL DISTURBANCES IN PITCH

CONSIDERABLE ROLL-YAW COUPLING AS ARRAYS VIBRATE

TRANSLATION DISTURBANCES 	 ROTATIONAL DISTURBANCES

EXCITE SYMMETRIC VIBRATIONS	 EXCITE ANTISYMMETRIC VIBRATIONS
2.25 f sYm 	(anti	

ACS JETS, WHEEL(S), SOLAR ARRAY ORIENTATIONS

SOLAR PRESSURE TORQUE

DOCKING, STATIONKEEPING

There are two practical vehicle configurations which provide for rotation of the

solar arrays about the pitch axis; one has two large arrays with their major axes

aligned along the pitch axis, the other has four smaller arrays extending out from the

pitch axis as shown above.

The two arrays are very stiff in pitch and very weak in roll and yaw. The four

i arrays are weak in pitch (but not as weak as two in roll and yaw) and stiff in roll and	
r

yaw. Most operational disturbances occur in pitch because of array pitch axis rotations

and solar torque characteristics. However, considerable roll-yaw coupling exists for

either configuration as the arrays oscillate in bending. Consequently, selection of the

best arrangement requires a detailed examination of each approach.

Translational disturbances excite the first symmetric bending mode. Rotaional

disturbances excite the first anti-symmetric mode, whose frequency is about' 2.25 times

the symmelàcic frequency. E-8

;I



s

Pa a

10.	 TYPICAL ACS CHARACTERISTICS

ARRAY FREQUENCY,

sue-_

i

ARRAY FREQUENCY MUST BE ABOVE
BOTH CRITERIA FOR 0.1 0 POINTING

CRITERION A (HOW MUCH CAN ARRAY BE EXCITED
& MAINTAIN POINTING)

FREQUENCY
(CPS)

(STIFFNESS,
RIGIDITY)

FOR PERTINENT
VIBRATION

i

r

_ f

a
a

r

CRITERION B ( HOW FAST MUST VIBRATIONS
DAMP TO PREVENT COUPLING)

CONCEPT POWER (KW)
(SIZE, LENGTH,,WEIGHT)

ARRAY FREQUENCY CALCULATIONS ARE ACCURATE

CRITERIA DEPENDENT ON VARIETY OF ASSUMPTIONS & CONCEPT SPECIFICS
SOLAR ARRAY WEIGHT, ASPECT RATIO, STIFFENING

SATELLITE INERTIA, THRUSTER LEVEL, POINTING TOLERANCE

ACS TORQUE, DEAD ZONE, DRIFT VELOCITY, BURN TIME

Modal frequencies for the pertinent vibration are plotted above vs array power.

Frequency is a measure of stiffness or rigidity. Power is related to array size, length,

wei ght, etc.

The solid line is the actual array struct ural frequency. This must exceed both the

criteria used to estimate array vibration effects on antenna beam pointing.

Criteria A considers how much a vibration can be excited without degrading pointing

about a specific axis. The ACS rotational impulse is dependent upon maximum solar torque

and desired limit-cycle operation, and is fixed for a specific concept sizing. Thus criteria

A establishes the minimum frequency necessary to obtain the desired single axis pointing.

Smaller satellites experience lower solar torque values and hence lower frequencies for

criteria A.
i

Criteria B examines howuickl a ^^; oration must dam 	 tq ' y	 pin order. to avoid appreciable

interchannel coupling. Smaller configurations are rotated faster by the rotational im-

pulses sized for the associated lower solar torque because inertias decrease faster than

do the solar torques with decreasing satellite size. Bence, smaller satellites will damp

faster and experience higher frequencies for criteria B.

E'-9
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11.	 FOUR -ARRAY CONFIGURATION - PITCH CONTROL

}

ANTI,SYMMETRIC MODAL 	 DRIFT VELOCITY,
FREQUENCIES	 BURN TIME

0.100	
-51.0 x 10

SATELLITE
ARRAY	 DRIFT	 -5

0.050	 VELOCITY 0.5 x 10
(RAD./SEC.)

i -5 EARTH ROTATES AT
0.025	 \	 0.25x10	 6.6X10-5

^	 y CRITERIARAD./SEC. ,
THRUSTER

(CPS) 0.010	 BURN TIMEh

,(SEC.)

0.0050	 CRITERIA A ^^/ 	 500

/
0.0025	 ; /	 250

-^♦C

ASPECT RATIO	 5:1
0.00101	 100

f 10	 25	 50	 100	 10	 25	 50	 100
POWER (KW)	 POWER (KIM

ARRAY FREQUENCY	 SMALL DRIFT VELOCITY,

SAFELY ABOVE CRITERIA	
BURN TIME EXCEEDS ARRAY
MODAL PERIOD

The pitch channel is the key channel for the four-array configuration. The above

data is for a thrust level of 1.2 milli-lbf. , generated by .either a resistojet or ion pro-

pulsion system. The limit cycle characteristics are set by the assumption that maxi-

mum angular displacement, p	 (^ B, 'is 0.02 deg. during thruster pulse time.

The array frequency is observed to be safely above both criteria. Note that the

array length width (aspect) ratio is 5:1.,'`

- The satellite drift velocity and thruster burn time are also shown. Since the once

per day earth rotation rate is 6.6 x 10 -5 radians/second, it is clear that very small

vehicle rates must be attained and measured. Accurate rate determination is a,potential

3
1

problem area.

E-10	 ;;



CONCLUSIONS
1, IMPROVED ANALYSIS

REQUIRED

2, CONSIDER LOW-TORQUE
INERTIA WHEELS

3, DESIGN CHANGES IN
ASPECT RATIO,
STRUCTURAL MEMBERS
INCREASE STIFFNESS

4. FOLDOUTS ACCEPTABLE
ALL CONCEPTS WITH
DESIGN CHANGES

oeB = 0.0050

0,0050

(CPS)
0,025

0.010

0,0050

ARRAY —

CRITERION B

RITERION A

r

120 1VVO-ARRAY CONFIGURATION - YAW CHANNEL

ANTISYMMETRIC MODAL FREQUENCIES

ASPECT
RATIO 5:1

0,0010L
10 25	 50 100	 10	 25	 50 100

POWER (KW)	 POWER (I<W)

MARGINAL MOST	 NOT ACCEPTABLE>50 KW
POWER LEVELS	 MARGINAL 30 TO 50 KW

ACCEPTABLE{30 KW

This data is for the yaw channel of the two-array configuration. Thrust is set at

3.2 milli-lbf. for the yaw channel because the area moment is larger than for the pitch

channel discussed previously. Two values are assumed form 
®B' 

0.02 and 0.005 deg.
	 1

Observe that .frequencies for criteria A and B vary with opposing changes in power level,

therefore improvements in concept are not necessarily possible which will lower the	 f

criteria frequencies. 	 I

Smaller displacement means a smaller rotational impulse and smaller resultant

vehicle drift velocities. Tighter restrictions must be placed on rigidity to prevent array

vibrations; from overpowering this smaller rate. Thus criterium A goes up in fre-

quency. Since the drift rate has been decreased, longer limit-cycle periods results.

More time is available for damping, and criterium B goes down.

The 0.02 degree data is marginal at most power levels, since array frequency is

only slightly above the criteria. The 0.005 degree data is not acceptable above 50 KW,

marginal at 30 to 50 KW, and acceptable below 30 KW. „	 I
Improved analysis is required because frequency differences are often smaller

than the effects of analysis ,assumption. Considerations should begiven to low torque

f	 ;
v,
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inertia wheels. Wheels can be commanded to supply that torque currently necessary,

while thrusters must be sized by maximum solar torque.

Design changes in array aspect ratio and the individual panel edge member

structure can increase over-all stiffness. Data such as is shown next leads to the

conclusions that fold out solax arrays are acceptable for all concepts; design improve-

ments are necessary for higher powered two-array configurations.

13. ARRAY ASPECT RATIO AND STIFFENER EFFECTS

POWER FOR 4 ARRAYS = 100 KW

POWER FOR 2 ARRAYS = 50 KW

ALL FOLDOUTS HAVE 2 BY 2-FT.
PANELS WITH EDGE STIFFENERS

PRIOR DATA USED 5:1 ASPECT RATIO
& WEAKER EDGE STIFFENER

POINTING CRITERIA ARE ASPECT
RATIO & ARRAY WEIGHT DEPENDENT.

EDGE STIFFENER DATA

EI =2.08 X 10 6 LB,- IN? -°--

WT =0.42 LB./FT.
El 3.6 X 10 5 LB.-IN. 2
WT = 0.192 LB./FT.

0.5

0.25

f	 0.10
(CPS)

0.05 FIRST MODE	 ♦♦ 	 ^♦
ANTISYMMETRIC	 ^♦

0.025 SYMMETRIC

0.010

0.006
0.25 .50	 1.0	 2.5	 5	 10

ASPECT RATIO

Nominally shaped fold-out arrays have a 5 to 1 aspect ratio. An array com-

	

n _1
	 prises a series of panels of two sq. ft. each. Each panel has edge beam stiffeners;

nominal EI is 3.6 x 105 lb-inch2. Frequencies increase with decreasing aspect ratios

and increasing stiffness. Weight penalties result from the stiffer edge beams. Design

	

s
	 and deployment difficulties increase as the aspect ;ratio is decreased below 4;1 into

the region 3:1 to 2.5:10



0.025

ITERION 8-

0.010

(CPS)
0.0050

0.0025

RITERION A----

0.0010

0.00050
r/

b/

S

14. FOUR-ARRAY ROLL-OUT CONFIGURATION

ANTISYMMETRIC MODAL FREQUENCIES

10	 25	 50 100
POWER (KW)

0 A B=0.00 50

V

0.00025 '	 -I	 '
10	 25	 50 100

POWER((KW)

CONCLUSIONS
CRITERIA ABOUT SAME AS
FOLDOUTS BUT ROLLOUTS
WEAKER
TORSIONAL FREQUENCIES
SAME ORDER AS BENDING
MAXIMUM PRACTICALARRAY
SIZE PROVIDES ABOUT 40 KW
TOTAL POWER
ROLLOUTS CANNOT BE USED
FOR LARGER POWER CONCEPTS

_	 - N

WIDTH, EACH OF 4 ARRAYS = 15 FT

Pitch is again the key channel, and thrust is set at 2.0 milli-lbf.

The launch vehicle dimensions restrict drum length. (array width). A 15 ft.

width is used for each array, with aspect ratio varying with the length requirement

for specific power levels. This results in increased solar torque and corresponding

thruster level.

Criteria A and B are shown for two A &B values. The criteria are close to

the values of fold-out criteria, but roll-outs are weaker in out-of-plane bending.

Further roll-out torsional frequencies can be the same order of magnitude as bending

frequencies.

Design changes in array stiffener beams (actually tubes) have been examined,

There are practical limits on the size and weight increases. 	 .

Maximum practical roll out array size provides about 40 KW total power with

four and substantially less with two arrays. Roll outs can not be used for the larger
^s

power concepts.	 {ts4

E-13



TWO FOLDOUTARRAYS
ANTENNA
MOUNTED

0.159 CPS
FIRST
SYMMETRIC
MODESs

/
r	 _

0.0159

i
♦

0.00159

m

U_

1,000
Uj
2 50 0o

Z
v
w 100m
0	 50
0

d
10

0	 20 40 60 80 100

POWER (KM

r o

I

15. ARRAY ROOT BENDING MOMENTS

The dominant array bending moment

occurs at the root due to CSM docking.

Data is shown for four fold out arrays

mounted on the antenna rim. Likely

closure velocities are 0.15 fps, with

satellite weight (less arr ays) of 32, 000 lb.
Maximum loads are several thousands

ft-lbs. This requires strengthening the

rotation tube at the array root. The

diameter necessary to handle bending

moments could reach six inches. No

significant vehicle weight change results

1

a	 because the tubes are relatively short.
3

Consequently, docking loads on the fold-outs are acceptable.

However, some satellite concepts have arrays mounted on long supporting members

to cleax the antenna. These loads are not likely to be acceptable for the larger-antenna,

higher-power configurations.

'	 Roll outs are assumed to be retracted prior to CSM docking.

Station keeping loads are minimal. A one-lb. thruster would cause only 20 ft-lb,
i	 of moment. For the planned thruster levels, there is no possible structural damage for

Eany concept in an configuration.
^	 y ^

16. DYNAMICS TECHNOLOGY SUMMARY

Attitude control system and station keeping functions are affected by the recommended

local vertical orientation and the solar panel arrays' single-degree-of-freedom rotation
about the vehicle itp' irh axis. Selected ACS thrusters are ion propulsion for larger configu
rations and longer 'lifetime concepts;pts; other use resistojets. Station keeping thrusters

selected are ion propulsion for satellite lifetime above two years and resistojets below.
a

The crossover point is satellite weight dependent. Inertia wheel(s) are optional no weight 	 r

savings accrue but control generated disturbances are smaller,, Sensors most likly will.
be horizon and solar scanners, and rate gyros. A probable option is an RF interferometer,
and a star tracker is a less likely option.

E-14
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Control-structural vibration interaction studies concerned the solar arrays

effects with respect to 0.1 degree pointing, emphasizing configurations with larger

power. Roth fold-out and roll-out arrays are below stress level in the launch environ-

ment. Fold-outs can be used to the maximum desired power levels; but some array

design changes may be necessary for two-array configurations. Roll-outs are limited

to about 40 KW total power. CSM docking loads are acceptable on antenna-mounted

fold-outs after simple local stiffening. Satellite body mounting is unacceptable for the

larger-antenna, higher-power concepts. Roll-outs are assumed to be retracted for

docking.

Other key technologies areas are 1) achieving satisfactory component reliability

for five year lifetime and 2) measurement of small vehicle angular rates.

i_:
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g	
STRUCTURAL VIBRATION - POINTING CONTROL INTERACTIONS

a
j
i
i

t

It is found that attainment of +0.1 degree TV beam pointing is compatible

with sun-oriented solar arrays, with limilied. design improvements for the fold-
i

	

l
	 out type and with the roll-out type utilization being restricted in maximum

power.

This ability to meet pointing requirements under the complication of

large highly flexible continually sun oriented solar arrays is achievable be-

cause of five factors. These arec.

1. The permissive environment at synchronous altitudes-

2. Utilization of low level thrusters

	

t }	
3. Absence of any vehicle maneuvering requirements

	

!t	 4. Accurate pointing orientation measurements ., nand

5. Direct linear drive controlling solar panel orientations.

The initial operational phases of ejection, insertion into orbit at

desired longitude, attitude acquisition and antenna and array deployment are

`	 feasible. Examination of these phases is not necessary for this systems study.

a	 Included in this section is an examination of possible damage to the

solar arrays by CSM docking.

i

,
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1 ATTITUDE CONTROL SYSTEM PERFORMANCE

1.1 RIGID BODY LIMlT CYCLE OPERATION

Solar panel vibration effects on TV beam pointing are investigated by

considering limit cycle operation. Idealized rigid body limit cycle operation

is shown on the phase plane plot of Figure V-- I, , The vehicle .remains wittkin

the desired pointing tolerance, +41k- Actual TV yaw tolerance is looser than

for roll or pitch, being very broad for a uni-beam. Roll. and pitch tolerances

will be nearly identical for most beams. Phase plane trajectory is a parabola

during thruster operation. The vehicle moves through the angle.® gg in the
-k

first half of the burn, and retreats AAg in the second half. Subsequent to
-k	 •

burn, the vehicle drifts through the angle Z ^^k a-t- angular rate e31k

The angular acceleration during burn is;

.a

gk	 r Pk

Burn time is determined from

with

IBMdM

k	 ^	 k

a►a Fie

The angle change during burn.. A 	 will be established as a fraction

of pointing tolerance, 40C , depending on the error budget.

F_2
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The drift rate is
	 0

6MIk
 it 1961C

The drift time is

T =	 19, )	 4b.
^Pk	 61% 

V6 k 0

Smaller drift rates and burn times result in pointing errors within the

pointing tolerance; larger drift rates and/or burn times cause pointing

errors to exceed the tolerance. Analysis examines the situation in which

errors are equal to the tolerances Q	 and 0 19C,
k .
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1.2 SOLAR PANEL VIBRATION DISTURBANCE OF LIMIT CYCLE OPERATION

Analysis model obtains the array angular momentum with respect to vehicle

coordinates due to vibration. Only the first antisymmetric mode is examined,

and the half mode shape is assumed parabolic. Thus the angular moment of each

of the two or four individual arrays is given by'

(Cai	 . ) 
sin ^jA

ki	 MAK OQV%	 e

I being zero at burn termination.

It is also assumed that the inertia and angular momentum of each individual

array with respect to a specific vehicle axis are identical. This follows from

symmetery for each concept. Thus the total solar panel array angular momentum

is

sk	 JI-6 (4")

and

X^
	

NP T

t

,w

.F.

Np being number of individual

arrays.

An expression is developed for	 , under the assumption that thruster	 (:

burn time is longer than modal period.. Vibratory angular momentum is thus duer

to a constant acceleration.	 l

This expression is not valid for the two array configuration pitch channel,
a	

.

because those individual arrays are on both sides of pitch axis. Since this

flexibility is extremely strong, little need is foreseen for the valid formula.

The single axis situation is shown in Figure F-2,

F -5
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The generalized force at node i for mode JA,

0'	 - = ^
j4j )

ww Y .
+ Ra)

and	 ^e
OM-1 ,fir ( Xi 4.- Qq \ Yi,4' ) 4"

1

omitting the axis index k.

Assuming half of mode shape of a uniform density beam 	 is re-

presented by a parabla.=normalized to one at tip,

^j

Converting expression for	 to a continuous model, C'	 erq

force for the beam is	
JAI

^

x,e.aC
me	 0

Q	 tE4 94 1 e4 - 1
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a

L

	For the uniform density beam witZp ara°bolicp 	 mode shape

 ;Le

0

The maximum deflection of node i (ie at Xi)  is

»^^x. _ YjL	 ^_ y

Y4:	 A Asp,
YW 4

and the maximum velocity of node i is•
Ots"s9y

	i ^, ,	 t

limb'

73

I

The angular momentum due to mode 	 is assumed to approximate the

total, and

donL k 	 ZIPA*	
;L (X 4-12,4) oQ ^C

IC
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= . e Mpg ;L

VA*jC	 A

2	 M	 ,e 4-

noting that

is*,

pitch for two arrays.

The approximate forms

8 Mpg A/s	 and

TA	 -yam
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d

/0 0Checking units, J should 'tae ft.1b.96c. Since p is rad/sec2,  i slugs,

and 1^% ft.  and t!J ra.d/s a c, we have

^S
/sec.

x sl,, x ^t =,rte•	s,a^•

Noting slugs are lb see 2/ft, one obtains

! 
•

i	 Cer •

a,



1.3 THRUSTER LEVEL

The low level ACS thrusters are sized by the maximum solar torque.

These are resistojet, ion propulsion, and water hydrolysis. Higher level

thrusters are sized near their practical minimum. Hydrazine is assigned 	
i

0.010 lbs.

An assumed CG-GP offset of 2% is used.

Cigm) x a of
^hc	 1

`'	 Zowl

4.	 9 (A10%)

ACS propellant sizing calculations used a more conservative approach,

multiplying2;,, by (1 + 1/ 	 ). There the maximum torqu, is 6.83 X 10-9 (AM)

and thrusters are sized by T = 1.70 X 10 8 (AML T),
Here

}	 ^xf-r LTry' • a9^s	 $off.	 F

With typical value of 0.2,.x for DC
ACS

u	 ,

LOO
g	 Ain`

ITT	 r

	Checking units, the 1.00 X 10
-
8 carries the units of 	 Hence TAT

2has the units of (lb/ft . ) X ft. 3/ft, which are lbs, as desired.
F-11
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VESICLE DRIFT VELOCITY WITH SOLAR ARRAY VIBRATION

This simple analysis asssumed antennas to be rigid and solidly attached

to satellite body. Antenna vibrations should be examined, particularly for

the antenna supports of concept D.

Therefore the antenna beam orientation drift velocity is

^S% (^ wow el k +

where i^ P C^ is the antenna angular rate due to solar array oscillations.sk
The antenna angular momentum due,to array vibration must equal corres-

ponding array momentum, except for a phase shift, yielding

Alp
Is	 JA^	 S h	 41'^ e

K	 Mr4x

f

1.4



1.5 TWO CRITERIA ON VIBRATIONS

It is necessary to develop criteria on allowable vibratory response and

it is convenient to express them in terms of minimum frequency for the solar

array first antisymmetric mode. Criterion A establishes conditions for satis-

factory pointing in the k channel, whose thrusters excited the vibrations.

Criterion B establishes conditions for prevention of coupling the vibratory,

errors into other channels and/or coupling with subsequent k channel thruster

operation.

Criteria A is a restriction on ratio between rigid body rate and vibration

caused maximum rate:

NP Zk
Ise,,

where the modal index ^^^ , denoting first

and FA is a factor selected by intuition.

Criteria B is a. requirement that vibr

k

anti symmetric mode has been dropped,

Nominal FA values is r2.

ition magnitude damp to a fraction of

its original value while satellite drifts between successive thruster firings:

e
-j 4x%;t

Nominal F  value is taken to be 03 f)

These expressions are next to be manipulated into relationships for

minimum modal frequency. Noting that Jk includes Q) in its denominator,



where	 rk j is frequency independent.
Algebraic simplifications can be introduced to simplify the formuLEL and

the calculations.

The W expression for the approximate model is, for example

/s> A IqP MP

Computations of the individual steps yields values for various physical parameters,

providing insight into the physical situation, and is therefore recommended.

Criteria B becomes

Damping ratio j must be estimated and it is representative of solar array

dam-ning in a zero g field. Such damping is not precisely known; estimaates

are in the range 0.005 to 0.02. Nominal value was taken to be 0.02, which is not

particularly conservative.



J^

1.6 SAMPLE NI mmcAL CALCULATION

Data is shown for a 100 KW four fold out solar array antenna mownted

pitch axis. Basic configuration data is in Table ;F-1.

TABLE	 F -1.

SAMPLE CASE, 4 ARRAY FOLD-OUT CONFIGURATION DATA 	 Pitch

area moment (AML) 1.24 X 105 ft.2
j'L'T roll

area moment (AMYL) itchP
1.12 X 105 ft.2

thruster jet arm L
JET

5.0 ft.

satellite less array ISB
,52inertia pitch f . ; v2.16 X 10	 slug

solar array inertia (all) IP
6	

2

1.30 X 10	 slug ft.
L

f

pitch

' no. of arrays NP 4

pointing tolerance 40 	 .001745 radians	 (0.1 deg)
burn drift

`GB	 .000349 . ( .02 deg)

mas s of one array NIP 	 77.7 slugs (2500 lbs.)
l

CG to array base RA 0*ft.

total array power IOQ KW

individual array length, 112 ft.

width, pitch 22.4 ft.

duty cycle
DCACS 0.2

array CP-CG offset 2, is

criteria factors FA, FB doom 

de

r , 1/ 3) i 2)1

damping  factor .02

# * array base is approximately at pitch axis on four array configuration

c

F -15



Thruster levels are sized by the maximum solar torque among all three

channels. Roll channel is the largest here;

[(I

I 

T)

	

	 0.:a* KIP Vkq K f 00 X I ^% oZ 4 9 A (0

S	 V-3T ^^^r = ^. 00 X its '1^9 I. -A4 x to	 L 2f
=x t x S	 —^	 tZ.16 Pk 10 ,	 see

ASk 	 ^'''Q''T Vic.

0	 -6

This is very small. Earth rate (once/24 hi; for exnmple, is 6.6 x 10-1

rad/sec.

k
2.

 ̂ • 3g xt9 6	 wo= V67 see,,

Note that the duty cycle under this condition is 5p `- !ll6'7 50.1%, wbile

20% was assumed at beginning.

The maximum angular momentum due to any one of the four panels is, by



The corresponding maximum vehicle (antenna under analysis assumptions)

rates are

0
r°^.1 ^i !t 1^S 	^ 1	 4^^ ^ 1

and

4	 S ^ ^c^ o "^	 /. ono x —7...—	 _	 110

Criteria A is then

W 5` (451)f ,c 13. f,6 9c 10
SID

x. f0 f	 ` x.1'F x 10x s
UO	 .0377.rad/sec,	 .00600 cps
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1.7 SOLAR TORQUE DISTORTION OF IDEA IMD LIMIT CYCLE

Solar pressure on the solar arrays alters drift time, affecting

Criteria B.

Drift velocity is not constant, as assur-°d in the idealized rigid

body limit cycle, because solar torque accelerates or decelerates the satellite.

Acceleration decreases drift time, allowing less time for damping the ACS

thruster vibration excitement and criteria B requires higher modal frequencies

(stiffer arrays).
•s

The maximum solar torque acceleration, i95T* for a channel, is
6% j

^S ®t..
x	 j? 4- XP

and a previous result is

.o
Acceleration value used,	 , is a fraction, F'SV of maximum,

Orr	 Gs-r.	 FS-r -^

nominally 
FST is r/2,



For cases in which solar torque alteration of the limit cycle is

small.. the square root value approaches Ate. Then significance is lost in the

subtraction. A satisfactory expression is obtaine4 using the binomial expansion.

0 9 — 0.6	 '.	 1&
4,

C^
of

s,
	 for eg„r.small.
}

	

	

Numerical results, using the previous example and FaT ` .707, are

now given.
•a	 ••

FSr 
e5r so`

s" 	r* X	 re 4- Zip

FST yc 4.00 ^c^o""'	 o. ^ ^ x x ro 9 s^ x^o^wowmow

	

_	 ♦-	 ^o

s ^ *' =P	 [ SZ x eD 6
y

1. D* K o,.9 raft.
11114C

•i

This (? s not small. The accurate formula gives

w-x.39 K10



I(

f ;

Y s•^ a.

Recalling that Criteria B is

the minimum frequency is increased by 1167948 = 1.232 times. This is from

.00986 to .01217 cps.

Utilization of the approximate drift time formula yields an

erroroneous number because eST is not small.

JG .. @I x I.3 96 K 10"3
X.

X to x 6. 396 x 10'3 
Zp

(a. X" X 10 ^a

^^ 6'^- 2.°x'7 =7o sl.•e
which is too low a valve.



2 SOLAR ARRAY ORIENTATION DISTURBANCES

The effects on pointing accuracy due to a solar array orientation

were estimated for a mechanism utilizing direct shaft torquing and continuous

linear control. These Wezts are insignificant except for the largest armys

consZdered, being of the slime order as the limit cycle criteria at 100 KW.

2.1 ARRAY ORIENTATION MECHANISM

The solar arrays are oriented towards the sun by rotating them abolAt

the vehicle pitch axis at earth rate. This is a major ACS disturbance despJ f e

the low angular velocity because the arrays have large inertias.

A recent study of solar array orientation for earth-oriented satellites

by *aghos has examined the mechanism technology (Reference 	 2). Continuous

linear control was chosen as being most compatible with the flexible arrays

in avoiding repetitive modal frequency excitation. The specified mechanis,-.

is n°arless, using direct shaft torqueing.

2.2 MODEL OF MONEN­7UM TRANSFER

A reaction torque is exerted on the satellite as the mechanism

Y°s a

rotates the solar arrays;. This reaction disturbance is to be prevented from

reducing pointing accuracy b;,r the ACS torquers. These torquers may be either

thrusters or momentum devices. Momentum devices will more effectively re-

duce the reaction torque disturbances.

Mechanism operation excites array vibrations, and these vibrations	 I

disturb the limit cycle -ts has been previously discussed. Momentum devices

are potentially capable of reducing the effects of array vibrations on pointing. - 	 -

The potential exists because the devices are directly controlled and respond

much faster than the arrays oscillate. The analysis does not explore this

potential, taking the conservative approach of requiring antenna motions due'

to array orientation disturbances to be well within mission pointing tolerances,
i'

All angular momentum due to array vibration is ` assigned to the
i	

first anti symmetric mode by the model. The solar array rotation velocity,
F -21
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j

=1

f

^F

,t

Idr
i

I

w OL(t), following mechanism operation ., is	 46

w	 ^ : w. f Ae WO (COS "3594 e
where Wt is earth rate, av is fractional maximum error e

maS^ 
end I BM  are the

solar orientation mechanism control frequency and. da-rtping ratio. Nominal

value for 0v is taken to be . 05.

The mechanism will be reasonably well 'ramped an3 theWsOL variation
for the impulse calculation can be approximated by

Ube	 Cos %ASSA	 I;M

The solar mechanism torque, &SMI is
rsr	 S&W.

mac-

r 3 	 , sue.. :,	 az c ,
T'

The momentum change applied to the arrays,	 is
T

f M
°f_ 	 -;MC -



Since the control is much faster than the array first anti-

symmetric mode (YAM * ^,- ), the momentum transfer occurs as an impulse.
1

2.3 MODEL FOR FREQUENCY CRITERIA

Next analysis step is to relate the momentum transfer to the solar

arrays with the mission pointing tolerance. The relationship can not be in

termsof drift velocity, 19 D, as was done for limit cycle operation. This is

because solar orientations occur randomly with respect to the ACS torquer

operation which establishes the limit cycle.

The angular momentum transferred to the arrays is manifested by array

motion at maximum vibration velocity and by perturbed satellite motion when

vibration velocity is zero (maximum vibration deflection). Thus
a	 ^

=sls ®s8Z 19p	 = ^osw► x	 P	 sty ;^	 P
so

I
®s8	 _ P A KDr uDc

then

94519sw^

The frequency criteria is

P >	 K 0w'
/s	 61s9 S•a^	 i

I	 is

with 8	 being determined by mission requirements.
Siilo!	 4̀

Only pitch frequencies are subject to this criteria, because the only
•	 _	 i

array orientation is in pitch. Only the four solar array configuration is of

F-23
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interest, because . array inertia about pitch axis for the two array config-

uration is low. Note that pitch is the axis of weakest array structure for the

four array configuration, and that limit cycle criteria on structural rigidity

are obtained for that axis.

2.4 TYPICAL RESULTS

A sample calculation is illustrated using the data of Table F- 1.

and .05 for Ov and .03 deg. (5.23 X 10 -4 radians) for ®SjS
Sw►

I . 3D K 10 6 x t n O.Ow X6.6 CIO-rt. * %	 = 0.07CO ^,4,1^,
Z. It x tos x 5:a3 x 10"+

Corresponding results across the configuration power range are

shown in Table F-2. 	 The frequency minimum sharply decreases with de -

creasing power because array moment of inertia sharply decreases.

Limit cycle derived minimums for 100 KW were found to be .00600 cps

for Criteria A and .00986 cps for Criteria B. Since criteria B rises with
lower power, array orientation is concluded to effect rigidity requirements

only at the highest power levels. A more detailed examination is recommended

at those higher power levels X because of gross approximations in this analysis.

0

TABLE F-2,

FREQUENCY MINIMUM CRITERIA DUE TO ARRAY ORIENTATION.l
array configuration, pitch channel
Oky	 OS	 0 403 Ac

Poorer Fre%uency Minimum
K^1. rad sec cps
100 .076 .012	

,.

50 .019 .0030

25 oo47 .00075

to .00076 .00012	 -

F-24



3.0 CSM DOCKING IDADS FOR SOLAR ARRAYS

Both manned and urriarned TV satellite concepts are being investigated.

The solar arrays are the wa.kest vehicle structure and l-,herefore most sus-

ceptible to structural damage caused by the CSM docking impact.

Roll out type arrays are readily retractable. It is assumed that they

will be retracted prior to docking. The more rigid fold out arrays are not

retractable as currently designed and this feature could be implemented only

with considerable difficulty. Therefore it is assumed that fold out arrays

will be fully deployed duping docking operations.

The two array is more susceptible to damage than the four array config-

uration because the array segments are larger and more flexible. Damage

susceptibility is maximum when the docking impact is perpendicular to the

plane of the solar arrays, exciting the lateral out of plane bending modes.

Since the array plane rotates in pitch once each day, array flexibility alone; the

docking impact direction varies. Thus the impact can but not necessarily will

occur at a time of maximum damage susceptibility.

The analysis is conducted for a two fold out type arm, , configuration w th

impact perpendicular to array plane.

.t

	

	 Docking impact excites the symmetric modes of the solar array-vehicle-

antenna structure. These modes have lower frequencies than the antisymmetric,

modes excited by ACS operation.

Bending moment due to impact is obtained as a function of maximum array
	 I

tip deflection. Two models are used to predict tip deflection, one based on 	1

an energy model and one based on an impulse model. Root bending moment is tbcn
	t

computed from tip deflection.

Two assumptions are basic to the tip deflection models. Both are valid J.n

this situation;. 1) The modal periods are taken to be long with respect to tre

docking impact time duration. 2) Tip deflection must be a reasonable dis-

placement for the array size. The model is subject to unacceptable errors
F-25	
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for deflection greater than array half length.

3.1 ENERGY MODAL APPROACH: ARRAY TIP DEFLECTION CALCULATION

Prior to docking, the CSM at mass Ml has a velocity Vl, relative to the

satellite vehicle less solar arrays, of mass M
2 . Conserving linear momentum,

A I V	 ,v ^ ^M +M ti, Vz

with the array mass being neglected with respect to satellite vehicle mass.

Following the approach of Reference	 3, the docking energy loss which must

be dissipated in the docked structures is

am 
11	 2-	 M,..

The energy going into array vibration, 46sw. , is thus bounded,

The approximate model of the array segments is that the first mode shape

is parabolic and that the vibration can be represented by V damped harmonic

oscillator of mass equal to the first mode general ,mass, tin, located at

array tip.

The first mode kinetic energy is.	
Z

where dtip is maximum tip deflection, feet and the general mass for a parabolic

shape is one fifth the structure mass. Since most vibration energy will be in 	 i

the first 'mode, an approximate relationship is obtained by considering'

F-26
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all energy to be i in first mode. Then

O ^ Sow GOP ^^ ^ r6,^a ('•` rn^s /

and

	

t	 ^ 0 Sot,. ^^ P
o	 'ow

	

d	 r-
t

3.2 IMPUISE MODEL APPROACH: ARRAY TIP DEFLECTION CALCUTATION

The impulse model applicability is based on the dockin g impact time

duration being short with respect to period of the significant modes.-The

imrilse applied is

AA g M2. V,	 am	
40k, 4,

OM. +Mss► 	

qr^



r
__- '`:m

Since 3 	 Z vZ

3.3 CALCUTATION OF ARRAY TIP DEFLECTION

A docking velocity of 0.15 fps is represerteti.ve. XI is 700 slugs, 1^,., is

taken to be 32 J. 200 lbs (1000 slugs) .

Then

V	 O	 A e'	 D0 61 07  FPs.
1000 ---7607®®

aria

6 t.. 
(o

raw
®	

•	
T1/^A

i

{

The energy going into array vibration is bounded by 4 .63 ft. lbs ., arid

i	 d t b ^+assume	 o	 e	 ft. lbs.

k7
At:N,,

s

Each of the two arrays weighs 5000 lbs . (154- s Lugs) fqr 100 KW	 and has
A

a ,first mode general mass of 31 .1. slugs,

F-28
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i,

r	 ^

The energy model predicts maximum tip deflection of

now

iL "A,
044 	 C

The impulse model predicts maximum tip deflection of

aQ • —	 —	 fr W
	 •

Both models are conservative. Actual solar array tip deflection will be

smaller than that predicted for either model. The energy model yields smaller

maximums across the conceptual range of power requirements and vehicle weights

as well as for these results for maximum power and weight. Therefore the

energy model is used.

Tip deflection data vs power for specific modal frequencies are shown in

Figure F "-,2,	 Array frequency has been computed to be .116 rad/second at

100 Ed, increasing to 438 rad/second at lOKW for the two array configuration.

Thus tip deflections are well below the array half length bound, Ytip is 3.09 ft.

at 100 ICW_ Prr_
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3.4 ROOT BMING MOMENT MODEL

An expression is derived for the root bending moment of an array, as

a function of tip deflection, array segment length, and first symmetric mode

frequency.

The previous assumptions apply. The moment is assumed to be due to the

first mode and the first mode shape , of an array segment is assumed to be

parabolic.

Thus the tip normalized mode shape is

XZ
Y	 ;1,0oe z

The force due to acceleration of an array length element is

(X)yc^^= ^c^W;,rcx^dcX
= x vi:, ^' jz '̂  d x

(X)

and the moment about the array root is

XZ dX

t
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tA-

1

r.

f `,
r'

_^ I

3.5 ROOT BENDING CILLC :;NATION

The two array configuration has each array weighing 5C00 lbs. and being

158.5 ft . long for 100	 of power, noting the nomI nal 5:j aspect ratio. Then

f

Ford= 1.0, dt,ip = .36 ft. from Figure F-2,	 andI 	 61A
6Mr (0.36) (0.94) (►)`'^ ^`S°- S714

ac ^ z o	 . •C^,

which is one point on the docking bending moment curves.

For the anticipated .116 rad/sec. at 100 KW, dtip is 3.09 ft. and

Zors,$lam	 3• ' x o.91r	 .r^^)	 -z

These bending moment values are not likely 	 cause appreciable difficulties

for antenna rim solar array mountingsr Local stiffening would be required for

a

a



or tube will break. Noting that Q~ ax is 104 psi for aluminium,

r`t ;P . 796  inch3 .

For r = 4 inch, t > .05 inch,

for r 2 inch, t	 .20 inch, which are reasonable numbers. Since the

tube is short, weight incresses are low.

A detailed calculation of internal array stresses due to CSM docking

impact bending moments is advisable. Local stiffening of the array itself

might be required.

Bending moments will be higher for concepts which mount the solar arrays

directly to the main satellite structure with the long tube necessary 'to

avoid array shadowing by the antenna. Appreciable weight increases could re-

sult from the required stiffening. Fortunately the satellite mounted array

concepts are usually low power^d and therefore have relatively small bending

moments.
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!+ NOMENCLATURE

AI	 area inertia,, inch

AM	 solar array total.area moment, total area times distance vehicle
GG to CP of array portion on one side of axis of interest, ft3

bending moment, inch lbs.

bending moment about array root, ft. lbs.

center of gravity

center of pressure

beam deflection, ft.

duty cycle fraction

BM

BMr

CG

CP

d

DC

energy dissipated in docking, ft. lbs.

docking energy dissipated in solar arrays, ft. lbs.

frequency, cps

inertia reaction force, lbs.

docking force, lbs.

factors used in criteria A. B.

factor in solar torque alteration of limit cycle, FST,'0

complete solar panel array inertia about vehicle k axis, slug ft.2

vehicle inertia (complete satellite less solar arrays) about



M2

MPl

vt
Ni

NP

OV

PSOL

Q

r

RA

t

t

T

T

V1

V2

w

satellite less solar array mass, slugs.

individual array mass, slugs.

generalized mass of mode J, slugs.

number of nodes

number of individual arrays in a configuration, nominally two or four

fractional maximum error (maximum error expressed as a fraction of
steady state value)

solar pressure at earth orbit, lbs. per ft. 2, nominally 9.85 X 10 8.

:generalized force, nominally lbs.

tube radius, inch

CG to array, base distance perpendicular to k axis, ft.

time, seconds

tube wall thickness, inch

thrust, lbs .

period, seconds

CSM velocity before docking, fps

CSM and satellite velocity after docking, fps

individual array width, ft.

x ;t.	
t

1

- X longitudinal distance along beam, ft.

Y mode shape, normalized to one.at  maximum

antenna orientation, rate due to vibration; radians, rad/sec.

structural damping
S

1ddtt

e k	 ^.At rigid body :angle, .rate, a2d acceleration about vehicle k axis;
1 radians, rad/sec, rad/sec

A As Allowable vehicle angle change during ACS thruster burn, radians
,y

419g- mission pointing requirement tolerance, radians z?,

beam running density, slug/ft. ii
;
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stress,. Psi

torque, ft. lbs.

thruster torque about k axis, ft. lbs .

phase angle, radians

^k k̂ antenna orientation angle, rate; radians, rad/sece

frequency, radians sec.

(4e earth rate, 6.6 X 10"5 radians sec.

*(X) linear density at X. slugs/ft

mi	 lumped mass at node i, slugs



A

ACIS

B

D

Ek

i

JAl

is

k

kl

m

P

SB

SM

SOL

ST

tip

SUBSCRIPTS

antenna

attitude control system

thruster burn portion of limit cycle

vehicle drift portion of limit cycle

pointing error tolerance for k axis

index for lumped parameter node

index for mode

first anti symmetric mode

first symmetric mode

index for vehicle axes; 1 denotes roll, 2 pitch, 3 yaw

one individual solar array

maximum

solar array

satellite body

solar orientation mechanism

solar

solar torque

array tip
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