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SUMMARY

Full-scale wind -tunnel data for a low-wing, single-engine, light plane,
with up and down flap deflections and negative through positive propeller
thrust, are presented. These data are analyzed to determine the effects of
flap deflection, thrust and angle-of-attack on the longitudinal and lateral-
directional static stability, control effectiveness, and trim characteristics.

Although the interacting effects of these variables are strong and some-
times irregular, the factors limiting the use of large negative thrust are
probably loss of elevator effectiveness for longitudinal characteristics and

rudder effectiveness for directional characteristics.
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FULI~SCALE WIND TUNNEL TESTS OF A LOW-WING, SINGLE -ENGINE,
LIGHT PLANE WITH POSITIVE AND NEGATIVE PROPELLER THRUST
AND UP AND DOWN FLAP DEFLECTION

By Edward Seckel and James J. Morris

Princeton University

INTRODUCTION

Early in 1969, it was proposed by Princeton University to equip a light
single-engine aircraft for variable stability with separate control of lift and
drag by a modified lift-flap and a blade pitch control propeller.

The special flap would be the standard flap unit, but with the hinge
position altered, and provision for up as well as down deflections. In con-
tour and shape, the flap being the same as the aileron, the new hinge posi-
tion was chosen for convenience to be in line with the aileron hinge (see Fig-
ure 2). This expedient detail would greatly simplify the detail design of
hinge brackets, attachments, and the installation.

The blade pitch propeller was to be used for automatic control of thrust
to simulate arbitrary drag properties, including large drag, low L/D vehi-
cles. This would involve large amounts of negative thrust, and rapid changes
of thrust due to automatic command of the propeller pitch angle. ’

It was anticipated that both the up-and -down flap and the negative
thrust propeller would cause complicated and unpredictable aerodynamic ef-
fects which would interfere with their proper use in simulation unless at
least major interference phenomena could be identified quantitatively by wind-
tunnel test data. Accordingly, it was agreed with Langley Research Center
of NASA that the airframe, with the modified flap and propeller, would be
tested in the Full-Scale Tunnel to furnish the required data. An electric
motor was to be installed by the wind-tunnel staff to facilitate power control

in the tunnel, and simplify general operating procedures.



The wind -tunnel program was done in August and September of 1969,
with a group of graduate and undergraduate Princeton students assisting the
wind -tunnel staff. A very complete and definitive set of aerodynamic data
data was obtained, as would be required ultimately in the flight program.
The Princeton students, of course, benefitted tremendously by the experi-

ence and contact with research operations and personnel at LRC.

During the academic year 1969-70, a group of students at Princeton
extensively analyzed the wind -tunnel data to find basic aerodynamic para-
meters of the airplane and the various special controls, This data reduction
is scarcely complete - in fact, it will probably continue for special effects
through the life of several flight projects - but the substantial results so far

achieved are presented in this report.

The Light Single-Engine Airplane

The dimensional and typical inertial properties of the aircraft are
shown in Figure 1 and Table 1. Details of the modified flap are shown in the

accompanying large-scale drawing of the outboard flap section.

The Wind -Tunnel Program

The wind -tunnel tests involved some 365 runs - each "run'' consisting
of readings over a complete range of angle of attack from -4 to 22 degrees,
Among the 365 runs, there were variations in tail incidence (it)’ including
tail~-off; elevator angle (Ge); flap deflection (Gf); thrust coefficient (TC'),
including propeller -off; aileron deflection (éa); rudder angle (61_); and side-
slip angle (B).

A table of runs is given in Table 2 for detail reference. The scope
and shape of the tests conditions can better be appreciated, however, by a

short description of the test program.



The sets of conditions for the longitudinal parameters can best be de-
scribed in two parts. For a flap angle of zero degrees, 66 runs were made
using all combinations of 6 values of 'I‘C’ (nominally .215, .095, 0, -.05,
-.13, -.175), 2 values of i (¥5°), tail-off, and 5 values of &_ (17.9°, 0°,
-10°%, -17%, -23° for i -5° and 11.3°, 0°, -10°, -20°, -30° for i, = +5°).

For flap angles of +20°, +30°, 132 runs were made using all combinations
of 3 values of TC’ (nominally .215, 0, -.175), 5 values of Ge (17.90, Oo,
-10%, -17°, -23%), 2 values of i (#5°), and tail-off.

For aileron characteristics runs (@ from -4 to 22 degrees) were made

for five values of &_ (24.4°, 12.2°, 0°, -8.8°, -18.8°%) at 6 =6 =68,= =

TC' =0, and it = -5°. Runs were also made for three values of 6a (24.40,
12.2°%, 0°), at 2 values of 5, (#30°)for i, =-5°, § =6 = =T '=0.
f t e T c

The scope of the wind tunnel 'runs to determine the effect of yaw angle
and rudder inputs is more complex than that for the longitudinal or aileron
runs. The combinations are shown in the matrix below using three symbols
to indicate combinations of ¥ and Gr for different Tc' and Gf. The X
represents runs for 3 values of TC' (nominally .215, 0, -.175) for éf =0,
The + represents runs for 4 values of TC' {(nominally .095, -.05, -,009,
-.13), also for 5f = 0. Finally, the O represents runs for 3 values of TC'

(nominally .215, 0, -.175) and 4 values of éf (iZOo, i300). In all of these,

i, = -5°, 8 =6 = 0°. 6 (coq)
by
13.2 7 0 -9 -17.5
15 X X X
10 X X +0 X
5 X
Y (deg) 0 X X+0 X+0 X
-5 X
-10 b X+0 X
-15 X X X



In the actual tests the remote control of propeller blade pitch angle
was rather inaccurate and inconsistent - so that between runs at the same

nominal TC' there were considerable variations of actual T '. The true
c

values of Tc' were deduced in the data reduction by subtracting the overall
effective CD (with propeller operatmg) from a corresponding CDprop off
read in runs with the propeller removed. The variations of TC' within runs
greatly complicated certain aspects of the data reduction, as explained in the

next section.

Wind -Tunnel Data Reduction and Aerodynamic Parameters

The reduction of the basic wind -tunnel data is described and discussed
in the following paragraphs. The results are presented graphically in Fig-
ures 3 through 20.

Lift curve, Ci1, vs . - Lift curves, C_ vs a, for the five flap de -

L
flections tested, and for positive, negative, and zero thrust coefficients are

shown in Figures 3a, b, ¢. The lift increments due to flap deflection and
thrust are about what might be expected. The lift for 30° up flap is prac-
tically the same as for 20° up flap, and it may be concluded that for 30° up
deflection, separation occurs on the bottom surface, limiting the negative
lift increment. This may be caused prematurely by the protruding nose of
the flap at negative deflections. The shape is, and characteristics ought to
be, like those of a typical Frise aileron.

The lift curves of Figure 3, discussed above, are derived from fair-
ings of the test data points presented in Figures 16 (a to e). The latter are
done in carpet fashion, with the independent carpet variables a and TC' .
This was to facilitate the plotting and interpolations necessitated by varia-
tions in TC' from nominal, constant values. The magnitude of the TC'
scatter can be appreciated by observing the data pointg in the carpets. Some

scheme like this was quite necessary in order to regularize TC' in the final



data presentation. The scheme, however, is not really feasible near
Clinax and the stall, where the lift curves are quite irregular. In that
area, the curves of Figure 16 are less precise and shown dotted to indicate

reduced confidence.

Pitching Moment Stability, Trim and Control, Cm vs o and ée

The longitudinal static stability and trim of the light single -engine air-
craft are presented in the various parts of Figure 4, with Cm a function of
o and 6e . The graphs are presented in carpet style, to facilitate interpola -
tions. In the test program, the maximum elevator deflections were 23 deg
up and 17.9 deg down for i = -5° and 30 degrees up and 11.3 degrees down

t
for i = +50. There are fifteen of these carpets, for five flap deflections and

threet thrust coefficients,

Several important effects are visible in the various parts of this figure.
Most outstanding are the effects of power on the static stability, elevator
effectiveness, and linearity. The static stability, indicated by the slope of
Cm vs «a, is affected little in the range of forward thrust but it is reduced
by rearward (negative) ’thrust; and for the latter case the Crn curve is quite
nonlinear, corresponding to a strong variation of Cy,, with angle-of-attack
or lift coefficient. Cmg is of course strongly affected by Tc', being reduced
by negative thrust and increased by forward thrust. These effects are as-
sumed to be more-or-less directly related to slipstream effects.on the hori-
zontal tail.

The Cm vs o and ée carpets of Figure 4 are derived from fairings
of original data shown in Figures 17 (a to ii). The latter are carpets with
a and TC’ the independent variables, done that way to facilitate the inter-
polations required by variations in TC‘. They would be useful in further

interpolation for intermediate or uneven values of T '.
c



Stabilizer Effectiveness, C_m for two it , and Tail-off

Curves of C_m vs «a for it = i50, and tail-~off, are presented in Fig-
ure 5. There are fifteen of these, for five flap deflections and three thrust
coefficients. These curves, derived from the «, TC’ carpets of Figure 17
are used for the Cmit and € computations as described in the next sections.

It can be seen from the tail-off curves that without the horizontal tail,
the effects of power (forward thrust) are destabilizing, the wing-fuselage
combination being more stable at negative thrust. This effect of thrust ap-
pears to be greatest at down-flap deflections, almost disappearing at large

up-flap positions.

Elevator and Stabilizer Effectiveness as a Function of Power

Cmg and Cmit are shown as a function of TC' in Figure 6. The for-
mer is derived from the o, 5e graph of Figure 4 and the latter, of course,
directly from the i

t
meters with angle-of-attack and flap deflection, but they are small over the

curves of Figure 5. There are variations of both para-

' stand

useable range of CL and not very regular. The variations with Tc
out as the principal trend. The values shown in Figure 6 may be considered
averages which apply approximately for all ¢ and éf. Particular values,
needed accurately, can be deduced readily from the source carpets as de-
scribed above,

It is interesting that both Cmg and Cmit are strongly influenced by
TC’ in the manner to be expected due to slipstream effects on tail efficiency.

The effect, however, is only about 37 percent of what would be predicted by
the simple momentum formula

S oo
D* ¢

The two parameters appear to be affected to the same extent by Tc‘,

maintaining a constant ratio over the range of T ', The ratio, of course,
c



is the relative elevator effectiveness

Effective Downwash Angles

Effective downwash angles, derived basically from Figure 5 using the
difference between tail-on and tail-off Cm , and the local Cmit are pre-
sented as functions of ¢ and TC' in Figure 7. There are five parts, corres-
ponding to the various flap deflections tested. These graphs are actually de-
rived from fairings of the calculated ¢ values which are included for refer-
ence in Figure 18.

The variations of ¢ with o, and the effects of TC' and 6f are inter-
esting and worthy of further study. Superficial examination indicates, for
Gf = Tc’ = 0, a downwash factor %% = ,38 at low angle-of-attack. It appears
to reduce as ¢ increases, which is somewhat unexpected since the tail is
initially above the wing wake. The trend, however, is quite clear, being
stronger for down-flap deflections; and weaker, or slightly reversed, for
up-~flap positions. The effects of forward thrust are seen to increase %i— R
and those of negative thrust to decrease it and cause a strong nonlinear

variation with @ . These details are well worth further study and compari-

son with the predictions of Silverstein and Katzoff in Reference 1.

Static Trim, C vs C
m L

Curves of Cm vs CL for various 6e are shown in Figure 8. There
are fifteen parts, for the five flap deflections and three thrust coefficients,
They are derived from the Crn vs o, 6e of Figure 4 and the CL vs a of
Figure 3.



This form of the stability and trim data is the most useful for calculat-
ing the allowable CG range from the point of view of stability and trim. Al-
though these interpretations are not complete at this fime, certain facts can
be seen easily by inspection. Effects of thrust on stability and control effec-
tiveness, and nonlinearity at negative thrust, are most visible. Casual in-
spection indicates that the principal limitations would be on trim and maneu-~
verability at negative thrust. The reduced control effectiveness, especially
at high CL ,» would create some control problems in that condition, with re-
strictions on CG range.

Another important matter is also visible - the trim changes due to flap
deflection and thrust. The trim change ACm or Aée at a constant CL is of
interest for piloting the basic single-engine aircraft; but for design of the
simulation artificial stability system, the ACm at constant o is of more
significance. The latter, more directly visible in the C‘m vs @ curves
(Figure 5), have not been evaluated, in detail, as yet. It is apparent, how-

ever, that they are large and important.

Maneuvering Stability, N‘m

The effect of thrust on maneuvering stability is shown in Figure 9. The

maneuver point is estimated by the formula

The formula involves, of course, the slope of the curves of Figure 8,
and an estimate of the pitch damping effect represented by the second term.

The figure indicates some possible stability problems at high negative
thrust. The larger difficulty for that case, however, is probably the re-

duced control power previously identified.



Directional Stability, Cn vs P

Yawing moment coefficient, Cn’ versus yaw angle, ¥, and thrust co-
efficient, TC', is plotted in the form of carpets for variﬁous angles of attack

and flap angle, 6_= 0, in Figure 10, This form of the carpet is useful for

the interpolationsfnecessitated by the uneven values of TC' in the test data.
It also directly displays, by its slope, the directional stability, C% .

For the flap deflected cases, 6f = +20, +30 degrees, there were data
points at only three yaw angles. For TC’ interpolation, the different carpets,
C]f1 vs a and TC‘ ,» were preferable. These are given in Figures 19a through
d. In these cases the directional stability was reckoned by the difference of
Cn between points for = 10 deg and ¥ = -10 deg.

The directional stability, Cn¢’ resulting from the two sets of carpets,
is shown itself in carpet form as a function of angle of attack and flap deflec-
tion in Figure 11. There are three parts for negative, zero, and positive
thrust.

it is seen that Cn¢ is strongly affected by all three variables: «, éf’
Tc1 . The values range from . 0010 to . 0030 per degree - all probably in a
satisfactory range for the speed and inertia of the light single-engine air-
craft. What is not shown, however, is the nonlinearity of Cn vs § for the
high angle of attack, negative thrust cases. This can be seen in the carpets
of Figure 10. In the worst cases the directional stability is actually near
zero for a small range of sideslip angles. This kind of nonlinearity might

be quite troublesome in simulation work with the airplane if the correspond -

ing combinations of flight variables were to be traversed.

Rudder Effectiveness, Cn vs 61_

The rudder effectiveness is shown in Figure 12 by the carpets of Cn
vs (Sr and TC’ . There are three parts corresponding to combinations of &

and 6f for a wide spread of directional stability, Cn‘b . Again, this manner



of plotting facilitates the interpolations and fairing required by the varidtions
inT ',
c
The derivative, Cnér , is shown in Figure 13, based on the carpets. It

is plotted against Cn¢ representing different combinations of &, &_; and for

f
the negative, zero, and positive thrust. It is seen that the directional sta-
bility is not a good correlating parameter, at least for differences of thrust
coefficient, TC' . At any rate, there is a general strong effect of TC' in the
expected direction, so that at large negative thrust the rudder effectiveness

is very much reduced.

Dihedral Effect, C& vs ¥

The variations of rolling moment coefficient, CL , versus ¢ and TC'

are shown in carpets in Figure 14, similar to those for Cn' There are three

parts, for variations in ¢ for 8§, = 0. The slopes, C’L‘l’ , are of course the

f
dihedral effect.
For the intermediate flap angles, where data were only taken at three

$ , the carpets have @ and TC'

as abscissa. They are Figures 20. Here
the C‘sz is calculated from the points at § = +10 deg.

The dihedral effect derivative, C&lp , is shown as a function of o and
6f in Figure 11, where there are the three parts for negative, zero, and
positive thrust. Only at zero thrust is C{/zp more-or-less independent of
angle-of-attack and flap deflection. Its value there is about . 0017, corres-
ponding in effective dihedral angle exactly to the true dihedral of 75 degrees!
With positive or negative thrust, however, the effective T" varies from zero
to as much as 25 degrees. The trends and the effect of flap deflection are
what would be expected from slipstream-flap interactions. With large thrust

coefficients, the variations of C’f’ib with o and 6f are strong - but they are

quite regular except where wing stall or flap separation are involved.

10



Plots of C{, vs ¥, as in Figures 14 are reasonably linear in all cases

not involving stall. The regularity of the C, function is a favorable feature

<

for simulation work, where the interactions of o, & and TC’ could be

f 2
compensated quite easily by coupling in the automatic command of aileron

deflection.

Roll Control, C, vs 6a

<
The aileron effectiveness is shown by Figure 15, C& vs Ga . The
curve drawn is an average one for all combinations of « , éf, and TC' .

Short of wing stall, the effects of variations in those parameters are very
small, and no attempt is made to show them separately. The general effec-
tiveness of the ailerons is, of course, a feature favorable for variable-sta-~

bility flight simulation.
CONCLUSIONS

Analysis of full-scale wind -tunnel data for a low-wing, single-engine,
light plane, with both up and down flap deflection and over a full range from
negative to forward propeller thrust, indicates the following:

1) The negative lift effectiveness of the flap deflected upward is
limited to deflections between 20 and 30 degrees. The negative lift incre-
ment is less with negative propeller thrust, and more with positive thrust.

2) There are strong interactions between flap deflection and propeller
thrust effects on pitching moments. These will affect both the static sta-
bility and trim of the airplane. At large negative thrust, the effects are
large and irregular.

3) At large negative thrust the elevator effectiveness is greatly re-

duced, and appears to be a limiting factor for longitudinal characteristics.

11



4) Directional stability is strongly affected by flap deflection and pro-
peller thrust and angle-of-attack., With large reverse thrust at high angle-
of -attack, Cn vs P is quite nonlinear; with Cn¢) very low, or negative,
through zero sideslip.

5) The rudder effectiveness is strongly affected by propeller thrust. Its
reduction at large negative thrust would be a limiting factor for lateral-direc-
tional characteristics.

6) The dihedral effect is strongly affected by flap deflection, propeller
thrust, and angle-of-attack. Its largest variations are at negative thrust,
from about zero at low @ and up flap, to about three times normal at high «
and down flap.

7) The aileron effectiveness is strong and relatively unaffected by flap

deflection, angle-of-attack, or propeller thrust.
REFERENCE
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TABLE 1 - AIRPLANE DIMENSIONS

Wing

Area, S 184 ft*

Sweep 2° 591 46"

Aspect Ratio, A 6. 04

Taper Ratio, A .54

Mean Aerodynamic Chord, ¢ 5.7 ft

Dihedral 7.5°

Incidence Root, iwr » +20

Incidence tip, 'iwt —1o

Airfoil tip NACA 6410 R
root NACA 4415 R

Horizontal Tail

Area 43 ft°

Sweep 6°

Aspect Ratio 4.0

Taper Ratio .67

Airfoil NACA 0012

Incidence -3°

Vertical Tail

Area (above horizontal stabilizer) 12.5 £t®

Airfoil root NACA 0013,2 MOD
tip NACA 0012, 04 MOD

Fin offset 2°

13



Power Plant

Reciprocating Engine; Model No. 105208

HP Rating 285 HP at take-off at 2700 RPM

Control Surfaces

Surface Area (ft®)
Flaps (plain) 83.6
Stabilizer 30,0
Elevator 14.1
Aileron 5.4
Rudder 6.0

Mass and Inertia Characteristics

Gross weight
Center of gravity
I

X

I

y

I

z

Propeller Characteristics

Diameter 84"
Number of blades 2
Side force factor 100

Deflection (deg)

40

up 30
down 20

20

15

2940 pounds
25% MAC

1284, 08 slug-ft®
2772, 86 slug-ft®
3234, 72 slug-ft®

14

Ctsc

.24

.23

.18

.39 base
.45 tip



TABLE 2 - WIND TUNNEL TEST RUNS

Run 8¢ it 8¢ 8a Se T.'
(nominal)
1 0 -5° 0 0 23 .215
2 0
3 17.9
4 -10
5 =17 Y
6 17.9 095
7 0
8 -10
9 -17
10 -23
11 17.9 !
12 0
13 -10
14 -17
15 -23 Y
16 17.9 -. 05
17 0
18 Y Y Y { -10 Y
19 VOID
20 0 -5° 0 0 -17 -.05
21 -23 ‘
22 17.9 -. 09
23 0
24 -10
25 -17
26 -23
27 17.9 -.13
S L B

15



Run 8¢ it 8r 84 Se Te'
(nominal)

29 0 -5° 0 0 -10 -.13

30 -17

31 -23 *

32 17.9 -. 175

33 0

34 -10

35 -17

36 * -23

37 13.2 0

38 7.0

39 ~ 9.0

40 -17.5 v

4] + 7.0 - 13

42 -~ 9.0 *

43 +7.0 -. 09

44 - 9.0 {

45 + 7.0 -. 05

46 - 9.0 ‘

47 +13.2 0

48 +7.0

49 - 9.0

50 -17.5

51 +7.0 . 095

52 - 9.0 ‘

53 13,2 .215

54 7.0

55 4 - 9.0

56 Y * -17.5 ]

16




Run of it i) 8¢ 85 be Tc'
(nominal)

57 0 -5 0 0 -18.8 0 0
58 - 8.8

59 +12.2

60 \ +24. 4

61 + 5 0

62 .215
63 v -. 175
64 +10 Y .20
65 + 7.0

66 - 9.0

67 0 .095
68 ‘ 0
69 + 7.0

70 + - 9.0

71 +10 0 -. 05
72 -.09
73 -. 13
74 - 175
75 + 7 -

76 * Y [ -9 \ * ]
77 VOID

78 0 -5° +15 13.2 0 0 .20
79 | 0

80 -17.5 Y
81 * 0
82 0

83 13.2 l
84 + -.175
85 0 L
86 ! * Y -17.5 ' Y

17



Run 5¢ i ) 5y 5a 5o To'
(nominal)
87 0 -5° - 5° 0 0 0 -. 175
88 0
89 V .215
90 ~10 .20
91 + 7
92 -9
93 0 . 095
94 + 7 0
95 0
926 -9
97 0 -, 05
S ' rot Voo
99 VOID
100 0 -5° -10 0 0 0 -.13
101 + -.175
102 + 7.0
103 Y - 9.0
104 -15 +13.2
105 0
106 -17.5 y
107 0 0
108 13.2
109 -17.5 Y
110 & +.20
111 13,2
112 ' % 0 Y
113 +20 0 17.9
114 0
115 -10
116 Y Y Y | -17 Y
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Run 8¢ it P 8¢ 84 8e T
(nominal)

117 +20 -5° 0 0 0 -23 +.20

118 + 7.0

119 - 9.0 Y

120 0 17.9 0

121 0

122 -10

123 -17

124 -23

125 Y Y { +70 Y 0 Y

126 VOID

127 +20 -5° 0 - 9.0 0 0

128 17.9  -.175

129 0

130 0 -10

131 * -17

132 VOID

133 20 -5° 0 0 0 -23

134 7 0

135 0 *

136 17.9

137 10 0 . 175

138 0

139 -. 175

140 -10 ‘

141 0

142 , .175

143 30 0

144 .175

145 ] Y Y Y + -. 175

19



Run 8¢ iy ¥ 84 8, 8¢ T

(nominal)
146 VOID
147 VOID
148 30 -5° 0 0 0 0 0
149 , 17.9
150 -10
151 -17
152 -23
153 12,2 0
154 ‘ 1 Y Y 24.5 * Y
155 VOID
156 30 -5° 0 7 0 0 0
157 -9 +
158 0 .215
159 \ , { 17.9 ¢
160 VOID '
161 30 -5° 0 0 0 -10 .215
162 -17
163 -23
164 7 0 .205
165 -9 .200
166 0 l -. 175
167 17.9
168 -10
169 -17
170 23
171 7 0
172 -9
173 1! 0 !
174 .200
175 Y y -. 175
176 -20 0 Y 0
177 * Y V + 1749 *

20



Run 8¢ it P & 84 be T.'
(nominal)

178 -20 -5° 0 0 0 -10 0

179 17

180 23

181 7 0

182 -9

183 v ‘ .175

184 * ! VOID '

185 -20 -5° 0 0 0 17.9 .175

186 0

187 -10

188 -17

189 { 23

190 7 0 \

191 0 + -.175

192 17.9

193 -10

194 17

195 23

196 7 0

197 ' -9 Y

198 10 0 0

199 175

200 y - 175

201 -10 0

202 . 175

203 Y # - 175

204 -30 0 ﬁ .175

205 17.9

206 -10

207 17

208 Y -23

209 Y Y * 7 J 0 *

21



Run 8¢ i ] [ Ga de T

(nominal)
210 -30 -5° 0 -9 0 0 .175
211 0 ‘ 0
212 17.9
213 -10
214 -17
215 -23
216 7 0
217 -9 Y
218 0 12.2
219 24.5 Y
220 0 -.175
221 17.9
222 -10
223 -17
224 * 23
225 7 0
226 L -9 Y
227 10 0 0
228 .125
229 ‘ -. 175
230 -10 0
231 .125
232 Y * -.175
233 +5 0 \ 0
234 11.3
235 -10
236 ‘ =20
237 -30
238 0 - 175
239 \ Y Y Y + 11.3 Y

22



Run 8¢ iy ) 5y 5a Se T

(nominal)
240 -30 +5 0 0 0 -10 -.175
241 -20
242 -30 '
243 0 .175
244 11.3
245 -10
246 -20 . 095 (max)
247 * -30 ‘
248 -20 0 0
249 11.3
250 -10
251 -20
252 -30 *
253 0 -.175
254 11.3
255 -10
256 -20
257 -30
258 0 .125
259 11.3
260 -10
261 -20
262 ' » -30
263 0 0 0
264 11.3
265 -10
266 -20
267 -30
268 0 .175
269 Y Y Y Y Y 11.3 Y

23



Run 8¢ ig Y Sy 8a be Te'

(nominal)
270 0 +5 0 0 0 =20 .175
271 -10
272 -30 '
273 , 0 . 095
274 11.3
275 -10
276 -20
2717 -30 Y
278 0 ~. 05
279 11.3
280 : -10
281 -20
282 =30
283 0 -.0'9
284 11.3
285 -10
286 -20
287 =30 '
288 0 .13
289 11.3
290 -10
291 -20
292 -30 Y
293 0 -. 175
294 11.3
295 -10
296 -20
2917 v -30
298 20 0 . 175
NS B A D B

24



Run 5¢ i $ 5. 5, be T,
(nominal)

300 20 +5 0 0 0 -10 .175

301 -20

302 -30 ‘

303 0 0

304 11.3

305 -10

306 -20

307 -30 Y

308 0 -. 175

309 11.3

310 -10

311 -20

312 Y -30

313 30 0 0

314 11.3

315 -10

316 -20

317 -30

318 0 .175

319 11.3

320 -10

321 -20

322 -30 Y

323 0 -. 175

324 11.3

325 -10

326 -20

327 Y * ! # + -30 Y

328-336 SLOTS OPEN

25



Run 8¢ i Y 84 8¢ T.'
(nominal)
337 30 Off 0 0 Off 0
338 . 175
339 v -.175
340 20 0
341 .175
342 ' -. 175
343 =20 0
344 .175
345 Y -. 175
346 -30 0
347 .175
348 -.175
349 0 0
350 . 095
351 .175
352 -.05
353 -. 09
354 -.13
355 ' ' Y Y & -. 175
356 TP=12 0 -5 -15 0 0 Off
357 0
358 4
359 8
360 12
361 % +15
362 -30 0
363 -20
364 20
365 30 \ Y ' v

26
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FIGURE 1. THREE VIEW DRAWING OF THE LIGHT SINGLE-ENGINE AIRPLANE
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FIGURE 2 CONTOURS AND HINGE POSITION OF WING FLAP AS MODIFIED
FOR UP AND DOWN DEFLECTION
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