# NTI-32369 



FULL-SCALE WIND TUNNEL TESTS OF A
LOW-WING, SINGLE-ENGINE, LIGHT PLANE
WITH POSITIVE AND NEGATIVE PROPELLER
THRUST AND UP AND DOWN FLAP DEFLECTION
by Edward Seckel and James J. Morris

Prepared by
PRINCETON UNIVERSITY
Princeton, N. J.
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • AUGUST 1971


[^0]The authors wish to acknowledge with thanks and admiration the part in this project of the wind -tunnel staff at Langley Research Center, NASA. Messrs. Marion O. McKinney, Jack Paulson, and Marvin P. Fink produced the needed data in the wind-tunnel tests; and by their interest, patience, and guidance, helped educate the participating group of Princeton students.

The Princeton Department of Aerospace and Mechanical Sciences stu dents who assisted the Langley staff in the wind -tunnel test program were C. W. Staley, P. W. Howard, and R. C. Hubenet, graduate students; and H. W. Davis, P. S. Basile, and W. K. Woodrow, seniors..

The analysis of the aerodynamic data has been largely done as Independent Work by two groups of seniors: P. S. Basile, G. F. Kline, S. F. Gripper; and H. W. Davis, J. J. Morris, P. E. Griffin. The authors greatly appreciate and freely acknowledge the importance and advantage of all this student participation.

The wind -tunnel test project, including analysis of the test data, is Phase I of a larger project involving extensive automatic control installations and other modifications to another aircraft of the same type, and ultimately flight tests on flying qualities for landing. The whole program is supported at Princeton University by Langley Research Center under Contract No. NAS 1-9443. The technical monitor for LRC is Mr. Harold Crane.

Full-scale wind-tunnel data for a low-wing, single-engine, light plane, with up and down flap deflections and negative through positive propeller thrust, are presented. These data are analyzed to determine the effects of flap deflection, thrust and angle-of-attack on the longitudinal and lateraldirectional static stability, control effectiveness, and trim characteristics.

Although the interacting effects of these variables are strong and sometimes irregular, the factors limiting the use of large negative thrust are probably loss of elevator effectiveness for longitudinal characteristics and rudder effectiveness for directional characteristics.

## TABLE OF CONTENTS

Page
FOREWORD ..... iii
SUMMARY ..... v
LIST OF SYMBOLS ..... ix
INTRODUCTION ..... 1
The Light Single-Engine Airplane ..... 2
The Wind-Tunnel Program ..... 2
Wind-Tunnel Data Reduction and Aerodynamic Parameters. ..... 4
Pitching Moment Stability, Trim and Control, $\mathrm{C}_{\mathrm{m}}$ vs $\alpha$ and $\delta_{\mathrm{e}}$ ..... 5
Stabilizer Effectiveness, $\mathrm{C}_{\mathrm{m}}$ for two $\mathrm{i}_{\mathrm{t}}$, and Tail-off ..... 6
Elevator and Stabilizer Effectiveness as a Function of Power ..... 6
Effective Downwash Angles ..... 7
Static Trim, $\mathrm{C}_{\mathrm{m}}$ vs $\mathrm{C}_{\mathrm{L}}$ ..... 7
Maneuvering Stability, $\mathrm{N}_{\mathrm{m}}$ ..... 8
Directional Stability, $\mathrm{C}_{\mathrm{n}}$ vs $\psi$ ..... 9
Rudder Effectiveness, $\mathrm{C}_{\mathrm{n}}$ vs $\delta_{\mathrm{r}}$ ..... 9
Dihedral Effect, $C_{\ell}$ vs $\psi$ ..... 10
Roll Control, $\mathrm{C}_{\ell}$ vs $\delta_{\mathrm{a}}$ ..... 11
CONCLUSIONS ..... 11
REFERENCE ..... 12
TABLES ..... 13
FIGURES ..... 27

## LIST OF SYMBOLS

| $C_{\text {D }}$ | Drag coefficient |
| :---: | :---: |
| $\mathrm{C}_{\text {L }}$ | Lift coefficient |
| $\mathrm{C}_{2}$ | Rolling moment coefficient |
| $\mathrm{C}_{\ell \psi}$ | Directional stability; $\partial \mathrm{C}_{\ell} / \partial \psi$; per degree |
| $\mathrm{C}_{\text {亿 }}$ | Aileron effectiveness; $\partial \mathrm{C}_{l} / \partial \delta \mathrm{a}$; per degree |
| $\mathrm{C}_{\mathrm{m}}$ | Pitching moment coefficient |
| $\mathrm{C}_{\mathrm{m}}{ }^{\text {a }}$ | Static stability derivative; $\frac{\partial \mathrm{C}_{\mathrm{m}}}{\partial \alpha}$; per degree |
| $\mathrm{C}_{\mathrm{m}}$ | Elevator effectiveness; $\frac{\partial C_{m}}{\partial \delta}$; per degree |
| $\mathrm{C}_{\mathrm{m}_{\mathrm{i}_{\mathrm{t}}}}$ | Tail effectiveness; $\frac{\partial C_{m}}{\partial i_{t}}$; per degree |
| $\mathrm{dC}_{\mathrm{m}} / \mathrm{dC} \mathrm{~L}_{\mathrm{L}}$ | Static stability derivative |
| $\mathrm{C}_{\mathrm{n}}$ | Yawing moment coefficient |
| $\mathrm{C}_{n_{\psi}}$ | Directional stability; $\frac{\partial C_{n}}{\partial \psi}$; per degree |
| $C_{n_{\delta r}}$ | Rudder effectiveness; $\frac{\partial C_{n}}{\partial \delta_{r}}$; per degree |
| T ${ }^{\prime}$ | Thrust coefficient; $\frac{T}{q S}$ |
| $\delta_{a}$ | Aileron deflection angle; degrees |
| $\delta_{e}$ | Elevator deflection angle; degrees |
| $\delta_{f}$ | Flap deflection angle; degrees |
| $\delta_{r}$ | Rudder deflection angle; degrees |
| $i_{t}$ | Tail incidence angle; degrees |

Angle of attack; degrees
$\psi$
$\beta$
ع
$\mathrm{d} \varepsilon / \mathrm{d} \alpha$. Downwash factor
T.O. , Horizontal tail off

L/D Lift to drag ratio
$\eta_{t}$
S
D
$\tau_{\mathrm{e}}$
$\Gamma$
c.g.
$\mathrm{N}_{\mathrm{m}}$
$\bar{x}_{c g}$
u
$l_{t}$
$\bar{c}$
Angle of yaw; degrees
Angle of sideslip; degrees
Downwash angle; degrees

Tail efficiency

Propeller diameter

Dihedral angle; degrees
Center of gravity position
Maneuver point

Wing area or propeller disk area; $\mathrm{ft}^{2}$

Elevator effectiveness; $\mathrm{C}_{\mathrm{m}_{\delta}} / \mathrm{C}_{\mathrm{m}_{\mathrm{i}_{\mathrm{t}}}}$

Position of center of gravity on mean aerodynamic chord Airplane density factor; $\frac{m}{\rho S \bar{c}}$ Distance from c.g. to horizontal tail; ft

Mean aerodynamic chord; MAC; ft

# FULL-SCALE WIND TUNNEL TESTS OF A LOW-WING, SINGLE-ENGINE, LIGHT PLANE WITH POSITIVE AND NEGATIVE PROPELLER THRUST AND UP AND DOWN FLAP DEFLECTION <br> By Edward Seckel and James J. Morris <br> Princeton University 

## INTRODUCTION

Early in 1969, it was proposed by Princeton University to equip a light single-engine aircraft for variable stability with separate control of lift and drag by a modified lift-flap and a blade pitch control propeller.

The special flap would be the standard flap unit, but with the hinge position altered, and provision for up as well as down deflections. In contour and shape, the flap being the same as the aileron, the new hinge position was chosen for convenience to be in line with the aileron hinge (see Figure 2). This expedient detail would greatly simplify the detail design of hinge brackets, attachments, and the installation.

The blade pitch propeller was to be used for automatic control of thrust to simulate arbitrary drag properties, including large drag, low L/D vehicles. This would involve large amounts of negative thrust, and rapid changes of thrust due to automatic command of the propeller pitch angle.

It was anticipated that both the up-and-down flap and the negative thrust propeller would cause complicated and unpredictable aerodynamic effects which would interfere with their proper use in simulation unless at least major interference phenomena could be identified quantitatively by windtunnel test data. Accordingly, it was agreed with Langley Research Center of NASA that the airframe, with the modified flap and propeller, would be tested in the Full-Scale Tunnel to furnish the required data. An electric motor was to be installed by the wind -tunnel staff to facilitate power control in the tunnel, and simplify general operating procedures.

The wind-tunnel program was done in August and September of 1969, with a group of graduate and undergraduate Princeton students assisting the wind -tunnel staff. A very complete and definitive set of aerodynamic data data was obtained, as would be required ultimately in the flight program. The Princeton students, of course, benefitted tremendously by the experience and contact with research operations and personnel at LRC.

During the academic year 1969-70, a group of students at Princeton extensively analyzed the wind-tunnel data to find basic aerodynamic parameters of the airplane and the various special controls. This data reduction is scarcely complete - in fact, it will probably continue for special effects through the life of several flight projects - but the substantial results so far achieved are presented in this report.

## The Light Single-Engine Airplane

The dimensional and typical inertial properties of the aircraft are shown in Figure 1 and Table l. Details of the modified flap are shown in the accompanying large-scale drawing of the outboard flap section.

## The Wind-Tunnel Program

The wind -tunnel tests involved some 365 runs - each "run" consisting of readings over a complete range of angle of attack from -4 to 22 degrees. Among the 365 runs, there were variations in tail incidence ( $i_{t}$ ), including tail-off; elevator angle ( $\delta_{e}$ ); flap deflection ( $\delta_{f}$ ); thrust coefficient ( $T_{c}{ }^{\prime}$ ), including propeller-off; aileron deflection ( $\delta_{a}$ ); rudder angle ( $\delta_{r}$ ); and sideslip angle ( $\beta$ ).

A table of runs is given in Table 2 for detail reference. The scope and shape of the tests conditions can better be appreciated, however, by a short description of the test program.

The sets of conditions for the longitudinal parameters can best be described in two parts. For a flap angle of zero degrees, 66 runs were made using all combinations of 6 values of $T_{c}^{\prime}$ (nominally . 215, . 095, 0, -. 05, $-.13,-.175), 2$ values of $i_{t}\left( \pm 5^{\circ}\right)$, tail-off, and 5 values of $\delta_{e}\left(17.9^{\circ}, 0^{\circ}\right.$, $-10^{\circ},-17^{\circ},-23^{\circ}$ for $i_{t}-5^{\circ}$ and $11.3^{\circ}, 0^{\circ},-10^{\circ},-20^{\circ},-30^{\circ}$ for $i_{t}=+5^{\circ}$ ). For flap angles of $\pm 20^{\circ}, \pm 30^{\circ}, 132$ runs were made using all combinations of 3 values of $T_{c}{ }^{\prime}$ (nominally $\left..215,0,-.175\right), 5$ values of $\delta_{e}\left(17.9^{\circ}, 0^{\circ}\right.$, $\left.-10^{\circ},-17^{\circ},-23^{\circ}\right), 2$ values of $i_{t}\left( \pm 5^{\circ}\right)$, and tail-off.

For aileron characteristics runs ( $\alpha$ from -4 to 22 degrees) were made for five values of $\delta_{a}\left(24.4^{\circ}, 12.2^{\circ}, 0^{\circ},-8.8^{\circ},-18.8^{\circ}\right)$ at $\delta_{e}=\delta_{r}=\delta_{f}=\psi=$ $T_{c}{ }^{\prime}=0$, and $i_{t}=-5^{\circ}$. Runs were also made for three values of $\delta_{a}\left(24.4^{\circ}\right.$, $12.2^{\circ}, 0^{\circ}$ ), at 2 values of $\delta_{f}\left( \pm 30^{\circ}\right)$ for $i_{t}=-5^{\circ}, \delta_{e}=\delta_{r}=\psi=T_{c}^{\prime}=0$.

The scope of the wind tunnel runs to determine the effect of yaw angle and rudder inputs is more complex than that for the longitudinal or aileron runs. The combinations are shown in the matrix below using three symbols to indicate combinations of $\psi$ and $\delta_{r}$ for different $T_{c}{ }^{\prime}$ and $\delta_{f}$. The $X$ represents runs for 3 values of $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$ (nominally $.215,0,-.175$ ) for $\delta_{f}=0$. The + represents runs for 4 values of $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$ (nominally . 095, -. 05, -. 09, -. 13), also for $\delta_{f}=0$. Finally, the $O$ represents runs for 3 values of $T_{c}{ }^{\prime}$ (nominally .215, $0,-.175)$ and 4 values of $\delta_{f}\left( \pm 20^{\circ}, \pm 30^{\circ}\right)$. In all of these, $i_{t}=-5^{\circ}, \delta_{e}=\delta_{a}=0^{\circ}$.

$$
\delta_{r}(\mathrm{deg})
$$

| 13.2 | 7 | 0 | -9 | -17.5 |
| :--- | :--- | :--- | :--- | :--- |


|  | 15 | X | X |  |  | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 |  | X | $\mathrm{X}+\mathrm{O}$ | X |  |
|  | 5 |  |  | X |  |  |
| $\psi(\mathrm{deg})$ | 0 | X | $\mathrm{X}+\mathrm{O}$ |  | $\mathrm{x}+\mathrm{O}$ | X |
|  | - 5 |  |  | X |  |  |
|  | -10 |  | X | $\mathrm{X}+\mathrm{O}$ | X |  |
|  | -15 | X |  | X |  | X |

In the actual tests the remote control of propeller blade pitch angle was rather inaccurate and inconsistent - so that between runs at the same nominal $T_{c}{ }^{\prime}$ there were considerable variations of actual $T_{c}{ }^{\prime}$. The true values of $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$ were deduced in the data reduction by subtracting the overall effective $C_{D}$ (with propeller operating) from a corresponding $C_{D_{p r o p}}$ off read in runs with the propeller removed. The variations of $T_{c}{ }^{\prime}$ within runs greatly complicated certain aspects of the data reduction, as explained in the next section.

## Wind-Tunnel Data Reduction and Aerodynamic Parameters

The reduction of the basic wind tunnel data is described and discussed in the following paragraphs. The results are presented graphically in Figures 3 through 20.

Lift curve, $\mathrm{C}_{\mathrm{L}}$ vs $\alpha$. - Lift curves, $\mathrm{C}_{\mathrm{L}}$ vs $\alpha$, for the five flap deflections tested, and for positive, negative, and zero thrust coefficients are shown in Figures $3 \mathrm{a}, \mathrm{b}$, c . The lift increments due to flap deflection and thrust are about what might be expected. The lift for $30^{\circ}$ up flap is practically the same as for $20^{\circ}$ up flap, and it may be concluded that for $30^{\circ}$ up deflection, separation occurs on the bottom surface, limiting the negative lift increment. This may be caused prematurely by the protruding nose of the flap at negative deflections. The shape is, and characteristics ought to be, like those of a typical Frise aileron.

The lift curves of Figure 3, discussed above, are derived from fair ings of the test data points presented in Figures 16 (a to e). The latter are done in carpet fashion, with the independent carpet variables $\alpha$ and $T_{c}{ }^{\prime}$. This was to facilitate the plotting and interpolations necessitated by variations in $T_{c}{ }^{\prime}$ from nominal, constant values. The magnitude of the $T_{c}{ }^{\prime}$ scatter can be appreciated by observing the data points in the carpets. Some scheme like this was quite necessary in order to regularize $T_{c}{ }^{\prime}$ in the final
data presentation. The scheme, however, is not really feasible near $C_{L_{\text {max }}}$ and the stall, where the lift curves are quite irregular. In that area, the curves of Figure 16 are less precise and shown dotted to indicate reduced confidence.

Pitching Moment Stability, Trim and Control, $C_{m}$ vs $\alpha$ and $\delta_{e}$
The longitudinal static stability and trim of the light single-engine aircraft are presented in the various parts of Figure 4, with $C_{m}$ a function of $\alpha$ and $\delta_{e}$. The graphs are presented in carpet style, to facilitate interpolations. In the test program, the maximum elevator deflections were 23 deg up and 17.9 deg down for $i_{t}=-5^{\circ}$ and 30 degrees up and 11.3 degrees down for $i_{t}=+5^{\circ}$. There are fifteen of these carpets, for five flap deflections and three thrust coefficients.

Several important effects are visible in the various parts of this figure. Most outstanding are the effects of power on the static stability, elevator effectiveness, and linearity. The static stability, indicated by the slope of $C_{m}$ vs $\alpha$, is affected little in the range of forward thrust but it is reduced by rearward (negative) thrust; and for the latter case the $C_{m}$ curve is quite nonlinear, corresponding to a strong variation of $\mathrm{C}_{\mathrm{m}_{\alpha}}$ with angle-of-attack or lift coefficient. $\mathrm{C}_{\mathrm{m}_{\delta}}$ is of course strongly affected by $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$, being reduced by negative thrust and increased by forward thrust. These effects are as sumed to be more-or-less directly related to slipstream effects on the horizontal tail.

The $C_{m}$ vs $\alpha$ and $\delta_{e}$ carpets of Figure 4 are derived from fairings of original data shown in Figures 17 ( a to ii). The latter are carpets with $\alpha$ and $\mathrm{T}_{c}{ }^{\prime}$ the independent variables, done that way to facilitate the interpolations required by variations in $\mathrm{T}_{\mathrm{c}}$ '. They would be useful in further interpolation for intermediate or uneven values of $T_{c}{ }^{\prime}$.

Stabilizer Effectiveness, $C_{m}$ for two $i_{t}$, and Tail-off
Curves of $C_{m}$ vs $\alpha$ for $i_{t}= \pm 5^{\circ}$, and tail-off, are presented in Figure 5. There are fifteen of these, for five flap deflections and three thrust coefficients. These curves, derived from the $\alpha, T_{c}{ }^{\prime}$ carpets of Figure 17 are used for the $\mathrm{C}_{\mathrm{m}_{\mathrm{t}}}$ and $\varepsilon$ computations as described in the next sections.

It can be seen from the tail-off curves that without the horizontal tail, the effects of power (forward thrust) are destabilizing, the wing-fuselage combination being more stable at negative thrust. This effect of thrust appears to be greatest at down-flap deflections, almost disappearing at large up-flap positions.

Elevator and Stabilizer Effectiveness as a Function of Power
$C_{m \delta}$ and $C_{m_{i t}}$ are shown as a function of $T_{c}{ }^{\prime}$ in Figure 6. The former is derived from the $\alpha$, $\delta \mathrm{e}$ graph of Figure 4 and the latter, of course, directly from the $i_{t}$ curves of Figure 5. There are variations of both parameters with angle-of-attack and flap deflection, but they are small over the useable range of $C_{L}$ and not very regular. The variations with $T_{c}{ }^{\prime}$ stand out as the principal trend. The values shown in Figure 6 may be considered averages which apply approximately for all $\alpha$ and $\delta_{f}$. Particular values, needed accurately, can be deduced readily from the source carpets as described above.

It is interesting that both $C_{m \delta}$ and $C_{m_{i t}}$ are strongly influenced by T $c^{\prime}$ 'in the manner to be expected due to slipstream effects on tail efficiency. The effect, however, is only about 37 percent of what would be predicted by the simple momentum formula.

$$
\eta_{\mathrm{t}}=1+\frac{8}{\pi} \mathrm{~T}_{\mathrm{c}}=1+\frac{4}{\pi} \frac{\mathrm{~S}}{\mathrm{D}^{2}} \cdot \mathrm{~T}_{\mathrm{c}}^{\prime}
$$

The two parameters appear to be affected to the same extent by $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$, maintaining a constant ratio over the range of $T_{c}{ }^{\prime}$. The ratio, of course,
is the relative elevator effectiveness

$$
\tau_{\mathrm{e}}=\frac{\mathrm{C}_{\mathrm{m}_{\delta}}}{\mathrm{C}_{\mathrm{m}_{\mathrm{i}_{\mathrm{t}}}}}=.71
$$

## Effective Downwash Angles

Effective downwash angles, derived basically from Figure 5 using the difference between tail-on and tail-off $C_{m}$, and the local $C_{m_{i_{t}}}$ are presented as functions of $\alpha$ and $T_{c}{ }^{\prime}$ in Figure 7. There are five parts, corresponding to the various flap deflections tested. These graphs are actually derived from fairings of the calculated $\varepsilon$ values which are included for reference in Figure 18.

The variations of $\varepsilon$ with $\alpha$, and the effects of $T_{c}{ }^{\prime}$ and $\delta_{f}$ are interesting and worthy of further study. Superficial examination indicates, for $\delta_{f}=T_{c}^{\prime}=0$, a downwash factor $\frac{d \varepsilon}{d \alpha}=.38$ at low angle-of-attack. It appears to reduce as $\alpha$ increases, which is somewhat unexpected since the tail is initially above the wing wake. The trend, however, is quite clear, being stronger for down-flap deflections; and weaker, or slightly reversed, for up-flap positions. The effects of forward thrust are seen to increase $\frac{\mathrm{d} \epsilon}{\mathrm{d} \alpha}$, and those of negative thrust to decrease it and cause a strong nonlinear variation with $\alpha$. These details are well worth further study and comparison with the predictions of Silverstein and Katz off in Reference 1.

Static Trim, $C_{m}$ vs $C_{L}$
Curves of $C_{m}$ vs $C_{L}$ for various $\delta_{e}$ are shown in Figure 8. There are fifteen parts, for the five flap deflections and three thrust coefficients. They are derived from the $C_{m}$ vs $\alpha, \delta_{e}$ of Figure 4 and the $C_{L}$ vs $\alpha$ of Figure 3.

This form of the stability and trim data is the most useful for calculating the allowable CG range from the point of view of stability and trim. Although these interpretations are not complete at this time, certain facts can be seen easily by inspection. Effects of thrust on stability and control effectiveness, and nonlinearity at negative thrust, are most visible. Casual inspection indicates that the principal limitations would be on trim and maneuverability at negative thrust. The reduced control effectiveness, especially at high $C_{L}$, would create some control problems in that condition, with restrictions on CG range.

Another important matter is also visible - the trim changes due to flap deflection and thrust. The trim change $\Delta \mathrm{C}_{\mathrm{m}}$ or $\Delta \delta_{\mathrm{e}}$ at a constant $\mathrm{C}_{\mathrm{L}}$ is of interest for piloting the basic single-engine aircraft; but for design of the simulation artificial stability system, the $\Delta C_{m}$ at constant $\alpha$ is of more significance. The latter, more directly visible in the $C_{m}$ vs $\alpha$ curves (Figure 5), have not been evaluated, in detail, as yet. It is apparent, however, that they are large and important.

$$
\text { Maneuvering Stability, } N_{r}
$$

The effect of thrust on maneuvering stability is shown in Figure 9. The maneuver point is estimated by the formula

$$
\bar{x}_{C G}-N_{m}=\frac{d C_{M}}{d C_{L}}+\frac{1}{2 \mu} \cdot \frac{\ell_{t}}{\bar{c}} \cdot C_{m_{i}}
$$

The formula involves, of course, the slope of the curves of Figure 8, and an estimate of the pitch damping effect represented by the second term.

The figure indicates some possible stability problems at high negative thrust. The larger difficulty for that case, however, is probably the reduced control power previously identified.

Yawing moment coefficient, $C_{n}$, versus yaw angle, $\psi$, and thrust coefficient, $T_{c}^{\prime}$, is plotted in the form of carpets for various angles of attack and flap angle, $\delta_{f}=0$, in Figure 10 . This form of the carpet is useful for the interpolations necessitated by the uneven values of $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$ in the test data. It also directly displays, by its slope, the directional stability, $C_{n_{\psi}}$.

For the flap deflected cases, $\delta_{f}= \pm 20, \pm 30$ degrees, there were data points at only three yaw angles. For $T_{c}$ ' interpolation, the different carpets, $C_{n}$ vs $\alpha$ and $T_{c}^{\prime \prime}$, were preferable. These are given in Figures 19 a through d. In these cases the directional stability was reckoned by the difference of $C_{n}$ between points for $\psi=10 \mathrm{deg}$ and $\psi=-10 \mathrm{deg}$.

The directional stability, $C_{n_{\psi}}$, resulting from the two sets of carpets, is shown itself in carpet form as a function of angle of attack and flap deflection in Figure 11. There are three parts for negative, zero, and positive thrust.

It is seen that $C_{n_{\psi}}$ is strongly affected by all three variables: $\alpha, \delta_{f}$, $\mathrm{T}_{\mathrm{c}}{ }^{1}$. The values range from. 0010 to. 0030 per degree - all probably in a satisfactory range for the speed and inertia of the light single-engine air craft. What is not shown, however, is the nonlinearity of $C_{n} v s \psi$ for the high angle of attack, negative thrust cases. This can be seen in the carpets of Figure 10. In the worst cases the directional stability is actually near zero for a small range of sideslip angles. This kind of nonlinearity might be quite troublesome in simulation work with the airplane if the corresponding combinations of flight variables were to be traversed.

$$
\text { Rudder Effectiveness, } C_{n} \text { vs } \delta_{r}
$$

The rudder effectiveness is shown in Figure 12 by the carpets of $C_{n}$ vs $\delta_{r}$ and $T_{c}$ '. There are three parts corresponding to combinations of $\alpha$ and $\delta_{f}$ for a wide spread of directional stability, $C_{n_{\psi}}$. Again, this manner
of plotting facilitates the interpolations and fairing required by the variations in $\mathrm{T}_{\mathrm{c}}{ }^{1}$.

The derivative, $C_{n_{\delta r}}$, is shown in Figure 13 , based on the carpets. It is plotted against $C_{n_{\psi}}$ representing different combinations of $\alpha, \delta_{f}$; and for the negative, zero, and positive thrust. It is seen that the directional stability is not a good correlating parameter, at least for differences of thrust coefficient, $T_{c}{ }^{\prime}$ 。At any rate, there is a general strong effect of $T{ }_{c}{ }^{\prime}$ in the expected direction, so that at large negative thrust the rudder effectiveness is very much reduced.

$$
\text { Dihedral Effect, } C_{\ell} \text { vs } \psi
$$

The variations of rolling moment coefficient, $C_{\mathcal{l}}$, versus $\psi$ and $T_{c}{ }^{\prime}$ are shown in carpets in Figure 14 , similar to those for $C_{n}$. There are three parts, for variations in $\alpha$ for $\delta_{f}=0$. The slopes, $C_{\ell \psi}$, are of course the dihedral effect.

For the intermediate flap angles, where data were only taken at three $\psi$, the carpets have $\alpha$ and $T_{c}$ ' as abscissa. They are Figures 20. Here the $C_{\ell \psi}$ is calculated from the points at $\psi= \pm 10 \mathrm{deg}$.

The dihedral effect derivative, $C_{l \psi}$, is shown as a function of $\alpha$ and $\delta_{f}$ in Figure 11, where there are the three parts for negative, zero, and positive thrust. Only at zero thrust is $C_{\ell \psi}$ more-or-less independent of angle-of-attack and flap deflection. Its value there is about. 0017, corresponding in effective dihedral angle exactly to the true dihedral of $7 \frac{1}{2}$ degrees! With positive or negative thrust, however, the effective $\Gamma$ varies from zero to as much as 25 degrees. The trends and the effect of flap deflection are what would be expected from slipstream-flap interactions. With large thrust coefficients, the variations of $C_{\ell_{\psi}}$ with $\alpha$ and $\delta_{f}$ are strong - but they are quite regular except where wing stall or flap separation are involved.

Plots of $C_{\ell}$ vs $\psi$, as in Figures 14 are reasonably linear in all cases not involving stall. The regularity of the $C_{\ell}$ function is a favorable feature for simulation work, where the interactions of $\alpha, \delta_{f}$, and $T_{c}{ }^{\prime}$ could be compensated quite easily by coupling in the automatic command of aileron deflection.

$$
\text { Roll Control, } C_{l} \text { vs } \delta_{a}
$$

The aileron effectiveness is shown by Figure $15, C_{l}$ vs $\delta_{a}$. The curve drawn is an average one for all combinations of $\alpha, \delta_{f}$, and $T_{c}{ }^{\prime}$. Short of wing stall, the effects of variations in those parameters are very small, and no attempt is made to show them separately. The general effectiveness of the ailerons is, of course, a feature favorable for variable-stability flight simulation.

## CONCLUSIONS

Analysis of full-scale wind-tunnel data for a low-wing, single-engine, light plane, with both up and down flap deflection and over a full range from negative to forward propeller thrust, indicates the following:

1) The negative lift effectiveness of the flap deflected upward is limited to deflections between 20 and 30 degrees. The negative lift increment is less with negative propeller thrust, and more with positive thrust.
2) There are strong interactions between flap deflection and propeller thrust effects on pitching moments. These will affect both the static stability and trim of the airplane. At large negative thrust, the effects are large and irregular.
3) At large negative thrust the elevator effectiveness is greatly reduced, and appears to be a limiting factor for longitudinal characteristics.
4) Directional stability is strongly affected by flap deflection and propeller thrust and angle-of-attack. With large reverse thrust at high angle-of-attack, $C_{n}$ vs $\psi$ is quite nonlinear; with $C_{n_{\psi}}$ very low, or negative, through zero sideslip.
5) The rudder effectiveness is strongly affected by propeller thrust. Its reduction at large negative thrust would be a limiting factor for lateral-directional characteristics.
6) The dihedral effect is strongly affected by flap deflection, propeller thrust, and angle-of-attack. Its largest variations are at negative thrust, from about zero at low $\alpha$ and up flap, to about three times normal at high $\alpha$ and down flap.
7) The aileron effectiveness is strong and relatively unaffected by flap deflection, angle-of-attack, or propeller thrust.

REFERENCE

1. Silverstein, A. and Katzoff, S.: Design Charts for Predicting Downwash Angles and Wake Characteristics Behind Plain and Flapped Wings. NACA Report 648, 1939.

TABLE 1 - AIRPLANE DIMENSIONS

| Wing |  |
| :--- | :--- |
| Area, $S$ | $184 \mathrm{ft}^{2}$ |
| Sweep | $2^{\circ} 59^{\prime} 46^{\prime \prime}$ |
| Aspect Ratio, $A$ | 6.04 |
| Taper Ratio, $\lambda$ | .54 |
| Mean Aerodynamic Chord, c | 5.7 ft |
| Dihedral | $7.5^{\circ}$ |
| Incidence Root, $\mathrm{i}_{\mathrm{w}_{r}}$ | $+2^{\circ}$ |
| Incidence tip, $\mathrm{i}_{\mathrm{w}}$ | $-1^{\circ}$ |
| Airfoil tip | NACA 6410 R |
| $\quad$ root | NACA 4415 R |

Horizontal Tail

Area
Sweep
Aspect Ratio
Taper Ratio
Airfoil
Incidence

Vertical Tail
Area (above horizontal stabilizer)
Airfoil root
tip
Fin offset
$43 \mathrm{ft}^{2}$
$6^{\circ}$
4.0
.67
NACA 0012
$-3^{\circ}$
$12.5 \mathrm{ft}^{2}$
NACA 0013.2 MOD
NACA 0012.04 MOD
$2^{\circ}$

## Power Plant

Reciprocating Engine; Model No. 10520 B
HP Rating 285 HP at take-off at 2700 RPM

## Control Surfaces

| Surface | Area ( $\mathrm{ft}^{2}$ ) | Deflection (deg) | $\mathrm{C}_{\mathrm{f} / \mathrm{C}}$ |
| :---: | :---: | :---: | :---: |
| Flaps (plain) | 83.6 | 40 | . 24 |
| Stabilizer | 30.0 | - | - |
| Elevator | 14.1 | $\begin{aligned} & \text { up } 30 \\ & \text { down } 20 \end{aligned}$ | 23 |
| Aileron | 5.4 | 20 | . 18 |
| Rudder | 6.0 | 15 | $\begin{aligned} & .39 \text { base } \\ & .45 \mathrm{tip} \end{aligned}$ |

Mass and Inertia Characteristics
Gross weight
Center of gravity
$I_{x}$
I
$I_{z}$

## Propeller Characteristics

Diameter 84"
Number of blades 2
Side force factor ..... 100

TABLE 2 - WIND TUNNEL TEST RUNS


| Run | $\delta_{f}$ | $i_{t}$ | $\psi$ | $\delta_{r}$ | $\delta_{a}$ | $\delta_{e}$ | $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | (nominal) |
| 29 | 0 | $-5^{\circ}$ | 0 | 0 | 0 | -10 | -. 13 |
| 30 |  |  |  |  |  | -17 |  |
| 31 |  |  |  |  |  | -23 | 1 |
| 32 |  |  |  |  |  | 17.9 | -. 175 |
| 33 |  |  |  |  |  | 0 |  |
| 34 |  |  |  |  |  | -10 |  |
| 35 |  |  |  |  |  | -17 |  |
| 36 |  |  |  | 1 |  | -23 |  |
| 37 |  |  |  | 13.2 |  | 0 |  |
| 38 |  |  |  | 7.0 |  |  |  |
| 39 |  |  |  | -9.0 |  |  |  |
| 40 |  |  |  | -17.5 |  |  | 1 |
| 41 |  |  |  | $+7.0$ |  |  | -. 13 |
| 42 |  |  |  | $-9.0$ |  |  | $\downarrow$ |
| 43 |  |  |  | $+7.0$ |  |  | -. 09 |
| 44 |  |  |  | - 9.0 |  |  | 1 |
| 45 |  |  |  | $+7.0$ |  |  | -. 05 |
| 46 |  |  |  | $-9.0$ |  |  | 1 |
| 47 |  |  |  | +13.2 |  |  | 0 |
| 48 |  |  |  | $+7.0$ |  |  |  |
| 49 |  |  |  | -9.0 |  |  |  |
| 50 |  |  |  | -17.5 |  |  | 1 |
| 51 |  |  |  | $+7.0$ |  |  | . 095 |
| 52 |  |  |  | - 9.0 |  |  | 1 |
| 53 |  |  |  | 13.2 |  |  | .215 |
| 54 |  |  |  | 7.0 |  |  |  |
| 55 |  | , |  | - 9.0 |  |  |  |
| 56 | $\dagger$ | $\dagger$ |  | -17.5 | 1 | 1 | 1 |




| Run | $\delta_{f}$ | $\mathrm{i}_{\mathrm{t}}$ | $\psi$ | $\delta_{r}$ | $\delta_{a}$ | $\delta_{e}$ | $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | +20 | $-5^{0}$ |  |  | 0 | -23 | (nominal) |
| 117 |  |  | 0 | 0 |  |  | +. 20 |
| 118 |  |  |  | + 7.0 |  |  |  |
| 119 |  |  |  | - 9.0 |  | 1 | 1 |
| 120 |  |  |  | 0 |  | 17.9 | 0 |
| 121 |  |  |  |  |  | 0 |  |
| 122 |  |  |  |  |  | -10 |  |
| 123 |  |  |  |  |  | -17 |  |
| 124 |  |  |  | 1 |  | -23 |  |
| 125 |  | 1 | $\dagger$ | + 7.0 | 1 | 0 | 1 |
| 126 |  |  |  | VOID |  |  |  |
| 127 | +20 | $-5^{\circ}$ | 0 | - 9.0 | 0 | 0 | 0 |
| 128 | $\mid$ |  |  |  |  | 17.9 | -. 175 |
| 129 |  |  |  | 1 |  | 0 | $1$ |
| 130 |  |  |  | 0 |  | -10 |  |
| 131 | 1 | 1 | $\dagger$ |  | 1 |  | 1 |
| 132 |  |  |  | - VOID |  |  |  |
| 133 | 20 | $-5^{\circ}$ | 0 | 0 | 0 | -23 |  |
| 134 |  |  |  | 7 |  | 0 |  |
| 135 |  |  |  | 0 |  | 1 |  |
| 136 |  |  | 1 |  |  | 17.9 | 1 |
| 137 |  |  | 10 |  |  | 0 | . 175 |
| 138 |  |  |  |  |  |  | 0 |
| 139 |  |  | 1 |  |  |  | $-.175$ |
| 140 |  |  | -10 |  |  |  |  |
| 141 |  |  |  |  |  |  | 0 |
| 142 | 1 |  |  |  |  |  | . 175 |
| 143 | 30 |  |  |  |  |  | 0 |
| 144 |  |  |  |  |  |  | . 175 |
| 145 | 1 | $\dagger$ | 1 | 1 | 1 | $v$ | -. 175 |



| Run | $\delta_{f}$ | $i_{t}$ | $\psi$ | $\delta_{r}$ | $\delta_{a}$ | $\delta_{\text {e }}$ | $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | (nominal) |
| 178 | -20 | $-5^{\circ}$ | 0 | 0 | 0 | -10 | 0 |
| 179 | , | $1$ | 1 |  |  | -17 | 1 |
| 180 |  |  |  | 1 |  | -23 |  |
| 181 |  |  |  | 7 |  | 0 |  |
| 182 |  |  |  | -9 |  | 1 | 1 |
| 183 | $\downarrow$ | 1 | 1 |  | 1 | 1 | . 175 |
| 184 |  |  |  | VOID |  |  |  |
| 185 | -20 | $-5^{\circ}$ | 0 | 0 | 0 | 17.9 | . 175 |
| 186 |  |  |  |  |  | 0 |  |
| 187 |  |  |  |  |  | -10 |  |
| 188 |  |  |  |  |  | -17 |  |
| 189 |  |  |  | 1 |  | -23 |  |
| 190 |  |  |  | 7 |  | 0 | 1 |
| 191 |  |  |  | 0 |  | $\downarrow$ | -. 175 |
| 192 |  |  |  |  |  | 17.9 | $1$ |
| 193 |  |  |  |  |  | -10 |  |
| 194 |  |  |  |  |  | -17 |  |
| 195 |  |  |  | $\downarrow$ |  | -23 |  |
| 196 |  |  |  | 7 |  | 0 |  |
| 197 |  |  | $v$ | -9 |  |  | $\psi$ |
| 198 |  |  | 10 | 0 |  |  | 0 |
| 199 |  |  |  |  |  |  | .175 |
| 200 |  |  | 1 |  |  |  | -. 175 |
| 201 |  |  | -10 |  |  |  | 0 |
| 202 |  |  |  |  |  |  | . 175 |
| 203 | 1 |  | 1 |  |  | , | -. 175 |
| 204 | -30 |  | 0 |  |  | 1 | . 175 |
| 205 | 1 |  |  |  |  | 17.9 |  |
| 206 |  |  |  |  |  | -10 |  |
| 207 |  |  |  |  |  | -17 |  |
| 208 |  |  |  | $\downarrow$ |  | -23 |  |
| 209 | 1 | 1 | 1 | 7 | 1 | 0 | 1 |


| Run | $\delta_{f}$ | $\mathrm{i}_{\mathrm{t}}$ | $\psi$ | $\delta_{r}$ | $\delta_{a}$ | $\delta_{e}$ | $\mathrm{T}_{\mathrm{c}}{ }^{\text {' }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | (nominal) |
| 210 | -30 | $-5^{\circ}$ | 0 | -9 | 0 | 0 | . 175 |
| 211 |  |  |  | 0 |  | $\downarrow$ | 0 |
| 212 |  |  |  |  |  | 17.9 |  |
| 213 |  |  |  |  |  | -10 |  |
| 214 |  |  |  |  |  | -17 |  |
| 215 |  |  |  | $\downarrow$ |  | -23 |  |
| 216 |  |  |  | 7 |  | 0 |  |
| 217 |  |  |  | -9 | $\downarrow$ |  |  |
| 218 |  |  |  | 0 | 12.2 |  |  |
| 219 |  |  |  |  | 24.5 |  | $\downarrow$ |
| 220 |  |  |  |  | 0 | , | -. 175 |
| 221 |  |  |  |  |  | 17.9 | + |
| 222 |  |  |  |  |  | -10 |  |
| 223 |  |  |  |  |  | -17 |  |
| 224 |  |  |  | $\downarrow$ |  | -23 |  |
| 225 |  |  |  | 7 |  | 0 |  |
| 226 |  |  | 1 | -9 |  |  | $\downarrow$ |
| 227 |  |  | 10 | 0 |  |  | 0 |
| 228 |  |  |  |  |  |  | . 125 |
| 229 |  |  | $\downarrow$ |  |  |  | -. 175 |
| 230 |  |  | -10 |  |  |  | 0 |
| 231 |  |  |  |  |  |  | . 125 |
| 232 |  | $\downarrow$ | 1 |  |  |  | -. 175 |
| 233 |  | $+5$ | , |  |  | , | 0 |
| 234 |  |  |  |  |  | 11.3 |  |
| 235 |  |  |  |  |  | -10 |  |
| 236 |  |  |  |  |  | -20 |  |
| 237 |  |  |  |  |  | -30 | 1 |
| 238 |  |  |  |  |  | 0 | -. 175 |
| 239 | $\downarrow$ | $\downarrow$ | 1 | $\downarrow$ | 1 | 11.3 | 1 |


| Run | $\delta_{f}$ | $\mathrm{i}_{\mathrm{t}}$ | $\psi$ | $\delta_{r}$ | $\delta^{a}$ | $\delta_{\mathrm{e}}$ | $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | (nominal) |
| 240 | -30 | +5 | 0 | 0 | 0 | -10 | -. 175 |
| 241 |  |  |  |  |  | -20 |  |
| 242 |  |  |  |  |  | -30 | 1 |
| 243 |  |  |  |  |  | 0 | . 175 |
| 244 |  |  |  |  |  | 11.3 |  |
| 245 |  |  |  |  |  | -10 | $\psi$ |
| 246 |  |  |  |  |  | -20 | . 095 (max |
| 247 | 1 |  |  |  |  | -30 | $\downarrow$ |
| 248 | -20 |  |  |  |  | 0 | 0 |
| 249 |  |  |  |  |  | 11.3 |  |
| 250 |  |  |  |  |  | -10 |  |
| 251 |  |  |  |  |  | -20 |  |
| 252 |  |  |  |  |  | -30 | 1 |
| 253 |  |  |  |  |  | 0 | -. 175 |
| 254 |  |  |  |  |  | 11.3 |  |
| 255 |  |  |  |  |  | -10 |  |
| 256 |  |  |  |  |  | -20 |  |
| 257 |  |  |  |  |  | -30 | 1 |
| 258 |  |  |  |  |  | 0 | .125 |
| 259 |  |  |  |  |  | 11.3 |  |
| 260 |  |  |  |  |  | -10 |  |
| 261 |  |  |  |  |  | -20 |  |
| 262 |  |  |  |  |  | -30 | $t$ |
| 263 | 0 |  |  |  |  | 0 | 0 |
| 264 | 1 |  |  |  |  | 11.3 |  |
| 265 |  |  |  |  |  | -10 |  |
| 266 |  |  |  |  |  | -20 |  |
| 267 |  |  |  |  |  | -30 | 1 |
| 268 |  |  |  |  |  | 0 | . 175 |
| 269 | 1 | $\dagger$ | 1 | $\downarrow$ | $\eta$ | 11.3 | 1 |


| Run | $\delta_{f}$ | $i_{t}$ | $\psi$ | $\delta_{r}$ | $\delta_{a}$ | $\delta \mathrm{e}$ | $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | (nominal) |
| 270 | 0 | +5 | 0 | 0 | 0 | -20 | .175 |
| 271 |  |  |  |  |  | -10 |  |
| 272 |  |  |  |  |  | -30 | , |
| 273 |  |  |  |  |  | 0 | . 095 |
| 274 |  |  |  |  |  | 11.3 |  |
| 275 |  |  |  |  |  | -10 |  |
| 276 |  |  |  |  |  | -20 |  |
| 277 |  |  |  |  |  | -30 |  |
| 278 |  |  |  |  |  | 0 | -. 05 |
| 279 |  |  |  |  |  | 11.3 |  |
| 280 |  |  |  |  |  | -10 |  |
| 281 |  |  |  |  |  | -20 |  |
| 282 |  |  |  |  |  | -30 |  |
| 283 |  |  |  |  |  | 0 | -. 09 |
| 284 |  |  |  |  |  | 11.3 |  |
| 285 |  |  |  |  |  | -10 |  |
| 286 |  |  |  |  |  | -20 |  |
| 287 |  |  |  |  |  | -30 |  |
| 288 |  |  |  |  |  | 0 | -. 13 |
| 289 |  |  |  |  |  | 11.3 |  |
| 290 |  |  |  |  |  | -10 |  |
| 291 |  |  |  |  |  | -20 |  |
| 292 |  |  |  |  |  | -30 |  |
| 293 |  |  |  |  |  | 0 | -. 175 |
| 294 |  |  |  |  |  | 11.3 |  |
| 295 |  |  |  |  |  | -10 |  |
| 296 |  |  |  |  |  | -20 |  |
| 297 | , |  |  |  |  | -30 |  |
| 298 | 20 |  |  |  |  | 0 | .175 |
| 299 | $\dagger$ | $\dagger$ | $\eta$ | $\dagger$ |  | 11.3 | 1 |



| Run | $\delta_{f}$ | $i_{t}$ | $\psi$ | $\delta_{r}$ | $\delta_{a}$ | $\delta_{e}$ | $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | (nominal) |
| 337 | 30 | Off | 0 | 0 | 0 | Off | 0 |
| 338 |  |  |  |  |  |  | . 175 |
| 339 | , |  |  |  |  |  | -. 175 |
| 340 | 20 |  |  |  |  |  | 0 |
| 341 |  |  |  |  |  |  | . 175 |
| 342 | 1 |  |  |  |  |  | -. 175 |
| 343 | -20 |  |  |  |  |  | 0 |
| 344 |  |  |  |  |  |  | . 175 |
| 345 | 1 |  |  |  |  |  | -. 175 |
| 346 | -30 |  |  |  |  |  | 0 |
| 347 |  |  |  |  |  |  | . 175 |
| 348 | , |  |  |  |  |  | -. 175 |
| 349 | 0 |  |  |  |  |  | 0 |
| 350 |  |  |  |  |  |  | . 095 |
| 351 |  |  |  |  |  |  | . 175 |
| 352 |  |  |  |  |  |  | -. 05 |
| 353 |  |  |  |  |  |  | -. 09 |
| 354 |  |  |  |  |  |  | -. 13 |
| 355 | 1 | 1 | 1 | 1 | 1 | 1 | -. 175 |
| $356 \mathrm{TP}=12$ | 0 | -5 | -15 | 0 | 0 | 0 | Off |
| 357 I |  |  | 0 |  |  |  |  |
| 358 4 |  |  |  |  |  |  |  |
| 3598 |  |  |  |  |  |  |  |
| $360 \quad 12$ |  |  | 1 |  |  |  |  |
| 361 |  |  | +15 |  |  |  |  |
| 362 | -30 |  | 0 |  |  |  |  |
| 363 | -20 |  |  |  |  |  |  |
| 364 | 20 |  |  |  |  |  |  |
| 365 | 30 | $\downarrow$ | , | , | 1 | $\dagger$ |  |



FIGURE 1. THREE VIEW DRAWING OF THE LIGHT SINGLE-ENGINE AIRPLANE






$\begin{array}{llllllll}-25 & -20 & -15 & -10 & -5 & 0 & 5\end{array}$
$\alpha-8 e$
FIGURE 4 Continued



$-25-20-15-10 \quad-5 \quad 5$
 ${ }^{9} 1{ }_{3}, 2$




 ${ }^{9} 1{ }_{25}$



$\begin{array}{ccccccc}-25 & -20 & -15 & -10 & -5 & 0 & 5\end{array} a-8 e$
Nِ $\stackrel{\leftrightarrow}{\mathcal{B}}$


















$$
\text { m) } \begin{aligned}
\delta_{f} & =-30^{\circ} \\
T_{c}^{\prime} & =.2
\end{aligned}
$$

$$
\alpha, \operatorname{deg}
$$


$\sum^{N}$


$\frac{\text { Note }}{\text { The }}$ points morked by $\square$ are interocolited points torken fom Figures 4 ond 5

FIGURE 6 VARIATION OF STABILIZER EFFECTIVENESS AND ELEVATOR EFFECTIVENESS with THRUST COEFFICIENT








(/)



$$
\begin{gathered}
N_{0} \\
\\
\\
\hline 0
\end{gathered}
$$





$$
\begin{array}{cc}
0 & 0 \\
11 & 11 \\
-0 & \infty \\
E & \\
E
\end{array}
$$

$$
0
$$


$\begin{array}{lllllllllll}-.4 & -.2 & 0 & .2 & .4 & .6 & .8 & 1.0 & 1.2 & 1.4 \\ & & & & \text { FIGURE } & 8 & \text { continued } & & & & \end{array}$



$$
\begin{aligned}
& \text { ر) }
\end{aligned}
$$




$$
\begin{aligned}
& \text { k) } \begin{aligned}
T_{c}^{\prime} & =0 \\
\delta_{f} & =-20^{\circ}
\end{aligned} \\
& \text { - ひ } \\
& \text { 雱 } \\
& \stackrel{s}{s}
\end{aligned}
$$

(/)


$\mathrm{CH}_{48 \mathrm{~s}}$

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$







FIGURE II VARIATION OF DIHEDRAL EFFECT AND DIRECTIONAL STABILITY

#  $\mathcal{E}$ 



THRUST
WITH
12 VARIATION OF YAWING MOMENT COEFFICIENT
AND RUDDER DEFLECTION FOR $\psi=0$
21 ヨyก9is

$\circ$
$\stackrel{0}{N}$
11
10
$\infty$
0
0



$\delta r+50 \mathrm{~T}_{\mathrm{c}}^{\mathrm{c}}$





$\psi=0$
$T_{c}^{\prime} \cong .03$



$$
\begin{aligned}
& \begin{array}{l}
\circ \\
8 \\
0 \\
0 \\
0 \\
0
\end{array} \\
& \text { coses) } \\
& \alpha+50 T_{c}^{\prime} \\
& \begin{array}{cccccccc}
-20 & -15 & -10 & -5 & 0 & 5 & 10 \\
& & & & & \\
& \text { FIGURE } 16 & \text { Continued }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \checkmark
\end{aligned}
$$






| -20 | -15 | -10 | -5 | 0 | 5 | 10 | $\alpha$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -.4 | -.3 | -.20 | -.1 | 0 | .1 | .2 | $T_{c}^{\prime}$ |
| $T_{c}^{\prime}+.02$ |  |  |  |  |  |  |  |
| $\alpha$ |  |  |  |  |  |  |  |

$$
\begin{aligned}
& \underset{+}{\sim} \\
& C_{M .25}
\end{aligned}
$$

$$
\begin{aligned}
& \circ \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$









$$
\left\{\begin{array}{cc}
n & m \\
1 & 1 \\
0 & 0 \\
1 & i
\end{array}\right.
$$

$$
\begin{array}{lllllll}
\underset{\sim}{\sim} \\
\underset{\sim}{N} \\
\underset{\sim}{0} \\
\underset{\sim}{\infty}
\end{array}
$$

$$
\begin{aligned}
& \stackrel{\circ}{8} \stackrel{\circ}{\circ} \\
& \stackrel{4}{x}=
\end{aligned}
$$











$$
\begin{aligned}
& 0 \text { in } 0 \\
& \infty \\
& \infty \\
& 0 \\
& 0
\end{aligned}
$$

























figure 19 variation of yawing moment coefficient with angle of attack and

FIGURE 19 Continued


FIGURE 19 Continued


FIGURE 19 Concluded





$-4^{\circ} \quad 0 \quad 40 \quad 8^{\circ} \quad 12^{\circ}$
oricial business



TOSTACI AND THESKPND
 SHICE: SMMUSTR MTION
The aeronamical and space achinites of the United States shall be
condncted so as to contribute . . To the expansion of bamanz knowl.
edge of phenomena in the atmosphere and space. The Administation
shall provide far the willert practicahle and appropriate disecninasion
of information concerning ins accintites and the results thoreaf"

- National Aeronautics and Space Act or 1958


## NASA SCIENIIFIC AND TECHNICAI PUBLICATIONS

TECHNICAL. REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classificafion, or other reasons.

CONTRACTOR REPORTS: Scientificand technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies:
TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particulat interest in commercial and other non-aerospace applications, Publications include Tech Briefs, Technology Usilization Reports and Technology Surveys.

Details on the avaliability of these publicatiens may be obtained from:
SCIENTIFIC AND TECHINICAL INFORMATION OFFICE


[^0]:    *For sale by the National Technical Information Service, Springfield, Virginia 22151

