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ABSTRACT

Propellant sloshing in a tilted cylindrical tank is studied experimentally
and analytically. Two distinct fundamental modes are shown to exist, one of
which can be excited by tank motions parallel to the long axis (the "I, rig" mode)
of the elliptical free surface and one by motions perpendicular to :the '°.short"
mode). Experimental results show that the natural frequencies of boy h modes
decrease as the tilt increases and the slosh damping decreases markedly with
increased tilt for the long mode. The shape of the long mode is significantly
asymmetrical although the short mode appears similar to the slosh mode in an
upright tank. Analytical results confirm these observations, and a mathemat-
ically equivalent mechanical model is derived from the theory. The model
shows that the slosh mass for the long mode decreases as the tilt increases.
More importantly, the model indicates that an oscillating force is created
parallel to the thrust; this could be important in POGO applications.
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I. INTRODUCTION

Since nearly all previous rocket vehicles of interest have had axisymmetric
tanks and thrust vectors parallel to the tank axis, propellant dynamics in axi-
symmetric tanks accelerated parallel to their axes have been studied extensively.
The space shuttle now under development not only contains propellant tanks
shaped to fit in an aircraft-type structural envelope but also must be controllable
in horizontal flight and during the transition from vertical to horizontal flight.
Thu g , the tanks for the shuttle will not all be axisymmetric nor will the thrust
vector always be parallel to the axes of the tanks that are axisymmetric. The
research program described herein was addressed to the latter problem: deter-
mining the propellant slosh characteristics for an axisymmetric cylindrical
tank when the acceleration vector is not parallel to the tank axis.

Little previous work has been devoted to the problem of sloshing in a
"tilted" cylindrical tank. Bugg( l )* at NASAL-MSFC experimentally determined
the natural frequencies as a function of angle of tilt and liquid depth, and McNeill
and LambP) and Moiseev and Petrov( 3 ) determined the slosh frequencies
analytically, for cases when the free surface did not intersect the tank bottom.
Chu solved a similar problem for a two-dimensional tank, by numerical methods.. (4)
In none of these studies were the slosh forces or moments evaluated. Consequently,
an equivalent mechanical model for use in control or loads analyses has not been
formulated previously.

The objectives of the present research, then, were to conduct careful 	 re

experimental measurements of the frequencies, forces, and moments for sloshing
in a tilted cylindrical tank, as a function of angle of tilt and liquid depth. The
existing analyses were also to be extended so that an equivalent mechanical model
could be developed and verified by the tests.

*Raised numbers in parentheses refer to references given in Section VI.
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II. EXPERIMENTAL PROS' ZAM

x.

The specific objectives of this part of the program were to measure the
slosh forces and moments as a function of excitation frequency, for angles of
tilt of 0 0 , 5 0 , 10 0 , 15°, and 20° and for liquid depths of 0. 5, 0. 75, and 1. 07
times the tank diameter. For each tilt angle and liquid depth, these slosh
characte r '.stics were to be determined for both the "long" mode (excitation_
parallel to the major axis of the elliptical free surface) and the "short" mode
(excitation parallel to the minor axis); the two modes are sketched in Figure 1.

The tank used in the tests was an aluminum right-circular cylinder,
17. 75-in. inside diameter and 36 in. tall. As shown in Figure 2, a rectangular
frame held the tank in place in the dynamometer arms of the SwRI Slosh Test
Facility, which is a large shake table driven by a variable speed electric motor
and eccentric driver-crank linkage. The tank could be positioned in the frame
so that it tilted either in the direction parallel to the shake table displacement or
at right angles to it. For all the tests, the shake table displacement was
0. 017 75 in. (0. 1 pe rcent of the tank diamete r).

A strain-gage dynamometer sensed both the slosh force parallel to the
horizontal excitation and the slosh moment about the axis of the dynamometer.
Although the slosh force was recorded for all tests, the slosh moment was
recorded only for the h/d = 1. 07 tests, since these were the only tests for which
the center-of-mass of the liquid coincided with the dynamometer axis. To measure
the moments for the smaller depths would have required a vertical shifting of
the tank and the supporting frame, a procedure that was deemed to be too time-
consuming for the value of the data obtained thereby.

Figure 3 shows a typical plot of force and moment data. In this case,
three resonances (at about 1. 4, 2. 4, and 2. 7 cps) were identified. Only the
first resonance was studied in detail. (The moments for the two higher frequency
modes were even smaller in comparison to the first mode response than were
the forces. )

Since the damping was small, various large-amplitude nonlinearities
were observed around resonance in nearly every test. For the short mode
tests, swirling or oscillation of the nodal line was evident, which also occurred
for the small angles of tilt with the long mode tests, but, for the large angle
tests of the long mode, these kinds of nonlinearities were not so prominent
except for a tendency of the wave to "break. "

The slosh damping was determined by measuring the decay of the slosh
force after "quick-stopping" the tank. Since nonlinearities prevented measure-
ments exactly at the resonant frequency, the slosh decay was measured just off
resonance. This procedure is accurate enough for most purposes, especially
if the first two or three decay cycles are neglected in computing the logarithmic

2
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decrements. Figure 4 shows a plot of the damping data. As the angle of tilt
increases, there is a definite decrease in damping for the long mode--almost
50 percent for a tilt of 20'. No pronounced change in damping occurs for the
short mode. The two flagged points on the plots are believed to be erroneous
and are neglected; this is reasonable since all the damping values for a 0° tilt
except the flagged h/d : 0. 75 point agree with the published data. (5)

Qualitatively, the free surface wave shapes for the short mode resembled
quite closely the waves for sloshing in an upright tank. The wave shape for the
long mode, however, was skewed in such a way that the wave amplitudes near
the wall where the liquid depth was greatest were much larger than the amplitudes
near the other wall. Figure 5 shows a plot of the measured wave shape, compared
to the predictions of a theory that will be described in the next section of the report.
It can also be seen that the amplitude on the "shallow" side of the tank is greatest
somewhat away from the wall, which is in contrast to sloshing in an upright tank.
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III. THEORY

In this section, an analysis of sloshing in a tilted cylindrical tank
is presented. The approach is similar to that outlined by Moiseev and
Petrov. (3) In Section IV, the equivalent mechanical model developed from
the theory is compared to the experimental measurements.

A.	 Velocity Potential for Free Vibrations

In order to compute the response of the liquid to various kinds of tank
motions, the characteristics of the nonforced sloshing waves, or the normal
modes, must be known.

Figure 6 shows the physical situation schematically. An r, 0, z coordinate
system is fixed at the intersection of the tank axis and the free surface; the
r-axis lies in the plane perpendicular to the tank axis. The wave height 'I is
measured with respect to the equilibrium free surface and in a direction parallel
to the z -axis. By assuming that the flow is irrotational and inviscid, a velocity
potential ^ can be used to derive the fluid velocities.

Each of the normal modss is a free vibration at the natural frequency;
that is, the potential of the ith mode is 4)i (r, 0, z)cos wit, and the corresponding
wave shape is -ni (r,0, z)sin wit. The linearized equations that determine
Oi and qi are given below.(5)

Conservation of mass in the fluid:

21_	 a	 a0i + 	 320i  
a 	 (1)(	 lr .^.

r 8r \ Or)Z	 2	 2r a0	 az

Requirement of zero velocity at tank walls:

"i8r = 0 at r = Ro	(2)

--^-1 =0 at z 	 (3)
az

Relation between wave height and unsteady pressure at the
free surface:

-wi^i + (g cos P),ni = 0 for z = r cos 0 tan p	 (4)

9
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Relation between wave height and fluid velocity:

wirli = - ( a it
co s ` an

1	 0i	 04i	 80i	 \
cow \ Oz cos (3 - Or sin p cos 0 - r89 sin a sin 9JP /

	for z = r cos 8 tan a	 (5)

In Equation (5), aoi / an is the fluid velocity perpendicular to the free surface
and involves all three vertical, radial, and tangential velocities. Equations
(4) and (5) can be combined to give one equation in 4y

a0•
...44-6 , g 7

5z

	
aZ cos - r sin P cos 0 -	 sin P sin 8 = 0	 (6)

for z = rcos6tanP

Equations ( 1), (2), (3) and (6) completely define the velocity potential, but
they cannot be solved "exactly" except for the case P = 0'. There are several
ways to solve the equations approximately (or"exactly" by a limiting process),
such as energy or variational methods, or expansion of ^i in a power series
and the determination of the coefficients by Galerkin's method, or numerical
analysis. For this case, the onergy method has been selected, but numerical
analysis would be more appropriate for a tank of generalized shape.

Moiseev and Petrov(3), Troesch(6),La.wrence, Wang, and Reddy(7),
and others have shown that minimizing the integral of the difference between
the kinetic and the potential energy is the proper energy method for sloshing.
That is, if the potential + minimizes the integral

t 2
A = Z p ,1	 r^ a - w - X 21 ds d^;	 (8)

t	 L	 g	 J1

and if it is also picked such that the approximating functions for ^ satisfy
Equations (1), (2), and (3), then in the limit + will satisfy Equation (6) exactly.
The integrals in Equation (8) are to be evaluated at the equilibrium free surface,
z = r cos 8 tan (i. Minimizing Equation (8) not only will determine all of the
normal modes but will also determine all of the natural frequencies cwi.

i	 ,

11
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The potential ^ is approximated as a sum of the known normal modes
for an upright ton.	 In nondimensional coordinates, this approximation is

N-1	 N	 1 Xk • (Z + H)]
^

_cosh[	 _._.0= COs SET	 Jk(kkJR)
•^ Akj	 cosh J^H

k=0	 1	 JJ

X akj cos k9 + 'Ykj sin ke	 (9)

where R = r/R o, Z = z/R o, H = h/R o, Q= w R og T= t g^, and
0_ 0/4g o.	 The Xkj are determined by the requirement that dJ k/dR = 0 at
R = 1, which assures that each term in the series satisfies Equation (2),
and the cosh [hkj(Z + H)] function assures that each term satisfies Equation (3).
Also, each term individually satisfies Equation (1). 	 The A kj = Jk(kkj)

k2 
X ^ 1 

	
X 

]/211/"	 are normalizing factors such that the integral over the
kJ

free surface of the square of each term in the series equals one for 	 = 0°; this
fact is a valuable check on the numerical work and computer programming.
The constants akj and Tkj are to be determined in such a way that Equation (8)
is minimized.

After integrating over one cycle in time, Equation (8) can be written as

N-1	 N	 N-1	 N
A = 1 R 4	 R 	 - SZ2K2kjm11P o (g/ o ) . [K1 kjml	 akjcml

k=0	 -1	 =0 I-1Jm

^,. + CK3kjm 
f - n2K4kjml] ykj 'Ym,Q} 	 (10)

L	 J

The K1, K2, K3, K4 are integrals of terms such as, for example,

1	 l	 cosh [kk•(R Cos 0 tan (i + H)]J
l Jk (XkjR)Jm (Xm f R)

AkjAmj H 

4	 : 	 e sinh [Xmk (R cos 0 tan (i + H)]
X[cos kB cos m0 or sin ke sin me] R de dR	 (11)

\	 cosh	 • Hk^

By expressing the hyperbolic cosine and sines as exponentials and using the
sum and difference formulas for the products of cooines or sines, integrals

t such as Equation ( 11) can be integrated analytically over 0, with the results
being given in terms of modified Bessel functions such as Ikf m [( Xkj	 Xmi)
X r tan PI as explained in Reference 8.	 The final integration over r can be
performed numerically, say by Simpson's rule.

12
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Notice that there are no terms which involve products of cos k9 and sin m0;
these terms give integrands that are an odd function of 0 and therefore integrate 	 .
to zero. Thus, the cosine terms correspond to the long modes, and the sine

terms to the short modes.

By requiring that 8A/8a k • = 0 and 8A/8'Yk • = 0 (which minimizes
the integral), a standard eigenvalue matrix (N 2 ^ N2 ) results. The matrix
has been solved numerically for a number of values of tilt angle P and depth
ratio H = h /Ro. If N X N terms are used in Equation (9), N 2 natural frequencies
and N2 sets of akJ or ykJ are determined. The interest here is in only
the results for the lowest frequency long mode, the lowest frequency short
mode, and the corresponding sets of eigenvectors aka and ykj.

The natural frequency results are shown in Figure 7. For h/d = 1. 070
the predicted frequencies are lower than the measured ones for both the long
and short modes. The discrepancy is not large, and is fact is slightly less
than that given by the theory of Moiseev and Petrov. (3) [No results are given 	 s
by McNeill and Lamb( 2 ) for tilt angles less than 30°.] The discrepancies 	 }
for either h/d = 0.75 or 0. 50 are similar; the theoretical curves for these
h/d values are not shown in Figure 7 for the sake of clarity.

The magnitudes of the parameters akJ and 'yk • in Equation (9) are shown
in Figures 8a and 8b, for the fundamental modes wit h/d = 1.07. The varia.
tion of these parameters for the other h/d's was similar to the presented results.
In these plots, the coefficients al l and y 11 of the predominant terms [J1 (XI 1R)
X cos 0 and J1 (XI 1R) sin 0, for the long and short modes, respectively] have
been set equal to one; also, all the yk • for k = 0 are identically zero for the
short mode. It can be seen that the Jj2 (A21 R)cos 20 and J2(k21R)sin 20 terms
are the predominant disturbances for these modes; however, the distortion
of the short mode (i. e., magnitude of 0y 2 1) is considerably less than for the
long mode. These plots indicate, furthermore, that the assumption that 0
depends only on cos 0 or sin 0 terms that is, neglecting all Jo(X okR) and cos m0,
sin m9 terms, as McNeill and Lamb () did] can lead to serious error.

The computed wave shape for = 20° and h/d = 1. 07, using the values
Of ak- presented in Figure 8, was shown previously in Figure S. The theory
predicts all the observed features very closely, as can be seen, and, in
particular, it predicts the definite skewness cf the wave.

B.	 Forced Vibrations
a

For forced vibrations, the governing equations are similar to the ones,,
given previously except that the boundary conditions at the tank walls and bottom
are now

Or= xow cos 0 cos P for r = Ro	 (l2)

13
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(13)

x

t

k

and

2k = xow sin O for z= -h

which matches the velocity of the tank walls and the fluid in contact with the
walls. These equations are written for an excitation of xo sin wt parallel
to 	 mayor  diameter of the elliptical free surface; for excitation of the short
mode, the cos 8 in Equation ( 12) should be replaced by sin 8.

Now, a new potential is introduced such that
—

	

cos wt = cos wt[O(r,9, z) - xowr cos ® cos - xowz sin 	 (14)

Substituting this relation for 0 into all the equations gives a set of equations for
T that are identical to Equations (1), (2), and (3); however, Equation (6) is
replaced by

Oxor cos 9- w2F + g	 cos p -	 sin P cos e -	 sin P sin 9 =	 cos P

for z = rcos®tanP	 (15)
OD

The standard procedure is to set T cos wt = I Bi^i cos wt where the chi'si1
are the normal modes and the B i ' s are unknown coefficients. Such a series
expansion for W automatically insures that ;F satisfies Equations (1), (2), and
(3). Substituting ;F =ZBiOi into Equation (15), and adding and subtracting the
seriesl:Biwf of gives the result that

ao	 ao

O	
i

Bi(wi - w 2joi + O, Bi - Joi + g	 ii cos 	 j sin p cos
i-1	 -1

- =1 sin P sin8 =
(,03x Orcos ® for z 

= r cos 8 tan (3	 (16)r89	 cos P

The term in braces is identically zero, since each ^i satisfies Equation (6).
Therefore, the constants Bi are determined from the relation

°D	 w3xor coo H
Bi(wf - w) i =	 cos a	

for z = r cos 8 tan p
i=1

16
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By using Green's theorem, it can be shown that the normal modes satisfy
the orthogonality relation

:r

	

4)m^nr d8 dr = 0 if m A n, for z = r cos 0 tan 13	 (18)

Thus, the coefficients Bi can be computed one at a time from Equation (17)
by multiplying through by fir and integrating

n
+ir2 cos 0 d0 dr

_	 xo	 0
i cos pM - Wz)

+fr d0 dr
0 0

for z= rcos0tanp	 (19)

In particular, Equation (19) shows that the fundamental mode will predominate
when the excitation frequency is near to or equals cal. (The integrals can be
evaluated numerically.)

The forces and moments exerted on the tank walls can be evaluated in
tern,R of the unsteady pressure, p84P 8t. For the long mode, as an example,
the ,force is composed of two parts: the force normal to the cylindrical walls,
which is parallel to the line 0 = 0% and the force on the tank bottom, which is
parallel to the z-axis. For the fundamental mode ( = B i ^ i ), the first part
of the force is

cos 0 tan p
Fx = p	 [(aB101(r = R o ) + wZxoR o cos 0 cos

	

+ ca2xoz sin p] cos 0 Ro dz d0	 (20)

Simplifying Equation (20) gives

2Tr	 cos 0 tan p
Fx = (irpR 2h)xow2 cos p + pR o B1	 f

-h

	

X (^l (r = R o ) cos 0 az d0	 (21)

17
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where vpRjh = mt is the total liquid mass in the tank. Likewise, the axial
part of the force parallel to the z-axis is

21r	 1
Fz = (,rpRoh) xow2 sin - pRowB1	 fi1(z = - h)r dr d8	 (22)

0

The last integral in Equation (22) is exactly zero, since all the terms propor-
tional to cos m® (or sin m8) give zero when integrated over 0 from 0 to 21r, and
the terms independei.d of 0 (the J 0 terms) integrate over r to give zero.

The net horizontal force parallel to the excitation is

Fhoriz = F. cos P + Fz sin = (tr^►Roh)(cos2 (3 + sin2^i)xow2

tr	 o s 8 tan
 %I(r+ pRw$ cos	 j 	 = R ) cos 0 dz d0	 (23)0 1	

h	
or

The net vertical force (parallel to the thrust axis) is

Fvert = Fz cos P - Fx sin p = (1rpRgh) (cos P sin p - sin p cos (3)xow2

In	 os0tan^3
• pR o wB l sin	 01(r = R ) cos 0 dz d0	 (24)

0	 -h	 °

Substituting; for B 1 in these equations gives

= m x w2 + m Tx cL r1-011 =-rhoriz ' T o 	'1 o Ah/ 2 - w i

Ro	 'xo

rvert - ' mTxow2 h --2 --- 2 tan (^	 (25)

where&;is the product of the integrals in Equation ( 19) (which defines B I ) and
Equations (24) or (25), divided by tr.

The striking thing about these results is that a horizontal acceleration
of the tank induces a ver Ucal , force that is proportional to the horizonal force
multiplied by tangent of the angle of tilting of the tank. This oscillating force
in the direction of the thrust vector may have important consequences in the
POGO problem.

e

The slosh moments can be computed similarly, as can the forces and
moments for the short mode.

18
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IV. MECHANICAL MODEL

The parameters for an equivalent (mathematical) mechanical model can
be derived either from the analysis given in Section III or from the testa described
in Section H. Such a mechanical model, which duplicates the slosh forces and
moments, is shown in Figure 9.

'h.

vim

FIGURE 9. EQUIVALENT MECHANICAL MODEL

The amplitude of the horizontal force exerted on the tank by the mechanical
model is

Fhoriz = w2xo (mo +m l ) + m l cos 2P —
2 =

2 —
1	 (26)

C w1 - w 
21/

and the vertical force is

2w
rvert = -w2xo tan (3 m l cos	 (27)2^ir-2--- 21 

(There is also a static force that is related only to the angle of tilt; this force
is .also in the fluid dynamic analysis but neglected in the results. )

Comparing Equations (26) and (27) with Equations (24) and (25) shows
that the model will duplicate the analytically predicted force if

mo + ml MT	 (28)
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and

ml = MTr ( ^)   C082  = 2 MT U) 99 /COBZP
	

(29)

These two equations state that the total mass of the model must equal the
total mass of the liquid and relate the amount of liquid that participates in the
sloshing to P and h/d.

The parameters mo o m l , and wl can also be derived from measurements
Of Fhoriz versus w, as mentioned earlier. One method of accomplishing this
is to set Fhoriz in Equation (26) equal to the experimentally determined force 	 A
for a number of values of w; this gives a set of simultaneous equations to solve
for mo, m l , and wl. Figure 10 shows a plot of the variation of m l with p and
h/d as determined by both methods. The comparison is very close, with the
differences well within the limits of experimental scatter.

Perhaps surprisingly, m l for the long mode decreases as P increases.
It might be reasoned intuitively that since tilting the tank increases the length
of the free surface in the direction of the excitation, the slosh mass should
increase as P increases; that is, since m l for an upright cylindrical tank is(5)

ml MT 4. 4 (h. ) tank (3.68 d)
	 (30)

an increase in d should lead to an increase in m l . The fact that ml actually
decreases must, therefore, be related to the incr-,asing skewness of the mode
shape as p increases.

Figure 11 compares Fhoriz as predicted by the mechanical model to
that measured in the tests, for the case (3 = 20° and h/d = 1. 07. Again, the
comparison is close. [The experimentally determined w l was used in the
mechanical model to construct this plot, since otherwise the small difference
between this wl and the theoretical wl (Fig. 7) would shift the force-response
to a slightly lower frequency and mask the overall good agreement in the force
prediction. )

The location of m l in the tank (i. e., h l ) was also computed from the
test data. Within the accuracy limits of the data, no difference in h l from its
known value for (3 = 0° was noticeable; therefore, these results are not presented.

Slosh damping can be inserted in the model just as fr. a the case of an
upright tank. (5)

I	 T
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V. CONCLUSIONS AND RLCOMMENDA^.la':" 4q ...oR
FUTURE RESEARCH

Several interesting features of propellant dynamics in a tilted cylindri-
cal tank were revealed by this experimental and analytical study. For example,
within the range of the variables tested (0° < p < 20°, 0. 5 < h/d < 1. 07), it was
found experimentally that the free-surface waves become increasingly skewed
as the tilt increases (see Fig. 5); the skewing is also predicted by the present
fluid dynamic analysis [although some earlier analyses fail to do so (2) ]. Both
the theory and the tests show that for the long mode the mass of liquid participat-
ing in the sloshing decreases as the tilt increases; but, since the slosh damping
also decreases as the tilt increases, the peak forces for a tilted tank are still
larger than for an upright tank. On the other hand, the sloshing mass and the
damping for the s y4ort mode remain relatively constant as the tilt increases.
It was also found, experimentally and analytically, that the slosh resonant
frequencies for both the long and short modes decrease as the tilt increases,
although the decrease for the long mode is much more pronounced.

Perhaps most important of all, the theory shows that an oscillating
force in the direction of the acceleration vector is created by the sloshing when
the tank is tilted, and the force increases as the tilt increases. An oscillating
force in the direction of the thrust can have important consequences for the
POGO problem.

The research should be extended in several directions. Experimentally,
larger angles of tilt should be tested to discover if the traveling-wave type of
sloshing( 9i 10) will be a problem for the space shuttle, and smaller liquid
depths should be used in order to study the sloshing that occurs when the free
surface intersects the tank bottom. Other important tank geometries besides
cylindrical should be investigated. Analytically, the theory should be extended
to include other tank shapes and greater variations in p and h/d; likewise,
traveling-wave responses should be studied in detail. Because of its probable
importance in creating POGO-type oscillations, the slosh force in the thrust
direction should be investigated analytically and experimentally in much greater
detail than was possible during the present program.
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