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A DESIGN STUDY FOR THE INCORPORATION OF AEROELASTIC CAPABILITY INTO NASTRAN

by
Robert L. Harder

Richard H. MacNeal
William P. Rodden

ABSTRACT

The basic computational tasks required for solution of both static
and dynamic aeroelastic problems are discussed. The modifications and
additions to NASTRAN that are required to add an aeroelastic capability
are presented. New functional modules and rigid formats are outlined.

Special emphasis is placed on flutter analysis.
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A DESIGN STUDY FOR THE

INCORPORATION OF

AEROELASTIC CAPABILITY INTO NASTRAN

1. INTRODUCTION

1.1 Present NASTRAN Capabilities

The NASTRAN* digital computer program for structural analysis is a
finite element program with an extremely broad range of applications. Its
problem solving capabilities are, at present, separated into the following
twelve ''rigid formats,' each of which entails a predetermined sequence of
calculations that are performed by ''functional moaules' under the control

of a flexible executive system,

Static Analysis

1. (Basic) Static Analysis 4
2. Static Analysis with Inertia Relief
3. Static Analysis with Differential Stiffness

L. Piecewise Linear Analysis

Elastic Stability

5. Buckling
Dynamics

6. Vibration Mode Analysis
7. Direct Complex Eigenvalue Analysis

8. Direct Frequency and Random Response Analysis

ot

" NASTRAN is a mnemonic for NASA STRuctural ANalysis program. The NASTRAN
Theoretical Manual (NASA SP-2217, Sept. 1970) contains a general introduc-
tion to its capabilities. s



9. Direct Transient Response Analysis
10. Modal Complex Eigenvalue Analysis
11. Modal Frequency and Random Response Analysis

12. Modal Transient Response Analysis

It will be noted that dynamic response and complex eigenvalue problems

may be solved either by a ''direct' method or by a "modal'' method. In a
direct method the degrees of freedom are physical components of displace-
-ment. In a modal method the degrees of freedom are generalized modal
coordinates. Like all other general purpose structural programs, NASTRAN
employs the finite element approach. The structural model that is analyzed
consists of ''elements'" such as beams, plates, and concentrated springs, that
are connected together at a finite number of ''gridpoints.'! The equilibrium
equations.of the model are expressed and solved in terms of the components
of motion at gridpoints. The solution of large problems, with hundreds or
thousands of structural elements, is emphasized in the design of NASTRAN.

it is, in addition, a highly user-oriented program with a large number of
convenience features including automatic load generation, plotting, and
restart capabilities. It also includes provisions for including nonstructural
components, such as control systems, in the structural model. At present,
provision is made in NASTRAN for the solution of aeroelastic problems by
means of ''direct input' matrices which may be real or complex and which may
be added to the structural mass, damping, or stiffness matrices and included
in the solution of any of the seven dynamic rigid formats. This provision

is regarded as inadequate for the fbllowing reasons:

a. It requires the use of separate computer programs for the genera-
tion of the aerodynamic input matrices, thereby causing delays and

increasing the frequency of errors.



b. It places the burden of achieving geometric compatibility between
the aerodynamic forces and the structure entirely on the user of

the program.

c. It provides very little static aeroelastic capability and it auto-
mates none of the specialized features of aeroelastic analysis,
such as the selection of control surface deflections for trimmed

flight, and the plofting of V-g flutter curves.

1.2 Objectives

The purpose of the present study is to define the modifications that
will be required to make NASTRAN an effective tool for aeroelastic analysis.
Due to its modular character, the addition of new capability to NASTRAN is
not inherently difficult. The modifications required to add a particular
new capability may involve changes in existing functional modules, the
generation of new functional modules, or the compilation of new rigid formats.

All of these measures will be required to add aeroelastic capability.

One of the major objectives for the NASTRAN aeroelastic modification
should be to provide a means for solving aeroelastic problems which has a
degree of automation and a range of application comparable to that which
presently exis;s for the solution of purely structural problems. Advanced
aerodynamic configurations, such as the Space Shuttle, indicate a need for
a more sophisticated approach to aeroelasticity in order to cope with the
attendant structural and aerodynamic complexities. Our study of these
matters has led to the following list of requirements for a general purpose

aeroelastic program:



1. Broad Application

a. Many types of structures

b. Many aerodynamic configurations

c. Subsonic to hypersonic flow regimes

d. Many classes of static and dynamic analysis

e. Compatibility with other aspects of structural analysis, such
as stress analysis, and control system interaction.

2. Sophistication

a. Ability to use advanced aerodynamic theories
b. Accurate and efficient computational procedures

c. Many degreers of freedom
3. Automation

a. Minimum user effort, for both clerical and intellectual tasks

b. Checkpoint and restart capabilities.
L. Ease of modification to include new or improved features

The requirement for broad application is important from an}econcmic'
viewpoint, because it reduces the number of separate computer programs and,
therefore, reduces development cost. It also eliminates the time that the
user would spend in learning to apply several separate programs, and in

preparing several different sets of input data.

The qualities listed under Sophistication and Automation are the
qualities that are usually associated with large user-oriented computer
programs, and they are now largely taken for granted in structural analysis,

if not yet in aeroelastic analysis. Ease of modification to include new or.
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improved features is particularly important due to the long length of the
development cycle for large scale computer programs, and the rapidity of

recent technical progress.

The heart of an aeroelastic analysis is the theory used to calculate
aerodynamic forces, and the requirements listed above for the complete
computer program can also, very largely, be applied to the selection of
aerodynamic theories. Since no existing theory has the desired range of
application, the ability to include several different aerodynamic theories,
perhaps even in the same problem, is recognized as a requirement. Advanced
theories should be included, and also simple theories which are usually
better from the standpoint of computational efficiency. One of the tasks
undertaken in the study has been to investigate candidate unsteady aero-
dynamic theories with respect to their range of application, accuracy,
efficiency, user convenience, and general compatibility with a finite
element approach to aeroelastic analysis. The results of the investigation

are reported in Appendix G and in Section 5.5.2.

1.3 Classification of Aeroelastic Problems

It is expected that aeroelastic capability will be implemented in-
NASTRAN by a number of different rigid formats with names such as 'Diver-
gence," "Flutter," and '‘Frequency Response' that correspond to different

types of analysis. A first task, before discussing the proposed measures

for including aeroelasticity in NASTRAN, is to classify aeroelastic problems

according to type of solution. The classification will be separated, for

-convenience, into static aeroelastic problems, flutter, and dynamic response

. problems.



Static Aeroelastic Problems

A static aeroelastic problem may be defined as a problem involving the
response of a flexible structure to aerodynamic loading in which terms
proportional to the velocities and accelerations of the structure are
assumed to be independent of time. Thus, inertia forces, if they enter at
all, are assumed to be constant in time. The three common types of static

aeroelastic problems are

a. Calculation of static response, including loads and stresses in

the structure.

b. Calculation of stability and control derivatives, i.e., the cal-
culation of the changes in the aerodynamic loading (and, more
particularly, of the changes in its resultants) due to small

changes in the motions of the vehicle and of control surface

‘deflections.

c. Divergence, which is an idealized stability problem in which the
determinant of the stiffness matrix, including both structural

and aerodynamic terms, vanishes.

Each of the static aeroelastic problems may be further classified as to
whether the structure is supported or free to move. If it is free to move,

the inertia forces due to (steady) accelerations must be taken into account.

An additional distinction occurs in the determination of the static
response of a freely moving structure, with respect to the manner in which
the velocfty components and the control surface deflections of the structure
are determined. In some cases the analyst specifies all of thg components
of velocity and the control surface deflections and accepts whatever

accelerations they produce. He may, on the other hand, request that some

-6-



of the velocity components and control surface deflections be evaluated
so as to put the forces on the vehicle into equilibrium, i.e., into a

trimmed flight condition.

The general task of formulating and classifying static aeroelastic
problems for solution in NASTRAN is addressed in Appendix B. It is shown
there that all of the problem types mentioned above may be solved with the

following three rigid formats:

~-- Aeroelastic Divergence
-- Untrimmed Static Aeroelastic Response

-- Trimmed Static Aeroelastic Response

In particular, the calculation of stability and control derivatives

is treated as a subcase of aeroelastic response.

Flutter

Flutter is the dynamic aeroelastic stability problem just as divergence
is the static stabilit; problem, and it is appropriately analyzed as an
eigenvalue problem. It is, however, a multiple eigenvalue problem because
the frequency of the oséillations and the speed and altitude at which they
become unstable are all desired items of information. The unsteady aero-
dynamic forces%are functions of reduced frequency (or Strouhal number),
Mach number,_air density, and perhaps of other parameférs. A standard
genera{ approach to flutter analysis is to evaluate the frequency of the
oscillations and their damping (or equivalently the structural damping
required to make them neutrally stable) for different values of the para-
meters, and then to cross-plot the results to find stability boundaries

. in the parameter space. Several variations of the general approach are



explored in Appendix F, resulting in the recommendation that two different
methods of flutter-eigenvalue analysis be implemented in NASTRAN. These
methods, called the k method and the p-k method, can be implemented with

the same rigid formats.

The ability to have both ''direct'" and ''modal'' methods of solution,
noted earlier as an existing NASTRAN capability, is also important for
flutter analysis, although the modal method is usually more efficient.

Separate ''direct' and '"modal'! rigid formats are proposed for flutter analysis.

Dynamic Response

The steady state response of an aeroelastic system to sinusoidal
excitation can provide the basis for the calculation of deflections and
stresses due to loads caused by oscillatory vibration, random vibration,
and transient excitation. The frequency response calculation requires the
solution of a system of simultaneous complex algebraic equations. The
transfer functions that result from the calculation can be qsed to compute
the statistical properties of the response of linear systéms to stationary
random excitation. In addition, Fourier integral transform theory provfdes
the basis for ﬁsing frequency response data to comﬁute the response of

linear systems to transient excitation.

The latter ability is particularly important for aeroelastic analysis
because all advanced unsteady aerodynamic theories are formulated in the -
frequency domain. Their conversion to the time domain in'o}der to numeric-
ally integrate the equations of motion appears to be prohibitively awkward
unless gross approximations are made. This matter is explored a bit
further in Appendix D where the conclusion is reached that transient aero-
elastic response calculation should be implemented by the Fourier Infegral

Method only, at least initially.
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Dynamic aeroelastic response, therefore, results in four NASTRAN rigid
formats corresponding‘to frequency response analysis and transient response
analysis (by the Fourier Integral Method) using either a direct or a modal
formulation. Random analysis is treated, as in the present NASTRAN rigid

formats, as a subcase of frequency response.

1.4 The Major Tasks

The process of solving a linear aeroelastic problem with the aid of a
structural analysis program is conceived as consisting of the following

steps:

1. Define the properties of the structure in terms of matrices of
stiffness, mass and (perhaps) damping coefficients that refer to the
components of motion at structural grid points (or to generalized modal

coordinates in a modal formulation).

2. Compute a matrix of aerodynamic influence coefficients, relating

forces to motions, at a set of aerodynamic control points.

3. Transfer the aerodynamic influence coefficients to the structural
grid points (or to modal coordinates) and combine them with the structural

matrices.

4. Solve the resulting matrix equations by whatever methods are
appropriate for the type of results desired, e.g., by eigenvalue extraction

for a flutter analysis.

5. Recover stresses, aerodynamic forces, etc., by means of equations

relating these quantities to the degrees of freedom evaluated in step 4.



In the above list of steps,

Step 1 requires no modification of the structural analysis program;
-- Steps 2 and 3 are wholly new;

-- Step 4 requires some new solution techniques to accommodate special

features of aeroelastic analysis;
-- Step 5 requires modification of the program only to the extent of
adding routines to recover aerodynamic quantities.

Major emphasis has been placed, during the study, on formulating an
approach for the implementation of steps 2 and 3. The foremost objectives
have been to provide a broad range of options with respect to configuration
parameters and available theories, and to minimize user effort. Step 2
has been divided into two tasks: first, subdivision of aerodynamic surfaces
into subregions (called aerodynamic elements) and the definition of their
geometric properties; and second, the calculation of aerodynamic matrices for
the selected aerodynamic theories. By restricting the range of permitted
aerodynamic element shapes ‘and orientations, the design of a module to
perform the first task has been made independent of the second task. The
work required to add new aerodynamic theories will,.thereby, be minimiéed
for theories that conform geomet?ically to the restrictions that have been
imposed. For this.reason considerable attention has been paid to the

geometric requirements of current aerodynamic theories, see Section 5.2,

Step 3 has been divided into four tasks as followé, each performed by

a different functional module.

1. Generate a transformation matrix that linearly relates displace-
ments at aerodynamic control points to displacements at structural grid
points. Calculation of the transformation matrix. involves the use of
interpolation -procedures, for which a variety éf options are proposed,

see Section 5.4 and Appendix E.
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2. Compute aerodynamic matrices as seen at the structural gridpoints
(or modal coordinates) for a selected list of aerodynamic parameter sets
(reduced frequency and Mach number), using the tranéformation matrix from
task 1 of step 3, the aerodynamic matrices generated in step 2, and, if

needed, the matrix of structural eigenvectors.

3. Interpolate the aerodynamic matrices to other values of the aero-

dynamic parameters; see Section 5.7 and Appendix J.

L, Combine the aerodynamic and structural matrices in the functional

module that generates each particular type of solution.

The accomplishment of step 4, solution of matrix equations, will require
new routines for flutter analysis, divergence and static aeroelastic
response. In ourvjudgement, the existing NASTRAN procedufes are not
adequate to accommodate the épecial features of these analysis types,

although in all cases the new routines resemble existing routines.

The effort requiréd to formulate.computational procedures for the above
tasks has resulted in some innovations that may be worthy of consideration
in other contexts. These include the use of elastic plates for surface
interpolation (Appendices E and J), a formulation of the static aeroelastic
problem that preserves rigid body accelerations as degrees of freedom
(Appendix B), and a procedure for minimizing the number of cases required
to obtain a flutter boundary (Appendix F). In addition, a means forv
extending the subsonic aerodynamic theory known as the Doublet-Lattice
Method to supersonic.speeds has been explored. This result will be

reported in the near future.

-1}~



1.5 Summary

The remaining sections of the main text present the content of the
proposéd NASTRAN modifications. The text is organized so fhat it can be
used both as a specification, and as a preliminary design description, of
the proposed modifications. Section 2 presents simplified flow diagrams
of the proposed computational procedures for aeroelastic analysis and lists
the new Rigid Formats and Functional Modules. Sections 3 and 4 summarize
the formal matrix algebra used in accomplishing each of the steps in the
calculation. Section 5 includes descriptions of the new functional modules
and Section 6 describes the new.types of input data, the new types of output
data, and the options that will be available to the user. Special topics

are discussed in the appendices.

The dégree of detail included in the functional module descriptions
varies from complete mathematical designs of thé algorithms to brief
sketches. More detail is .included for those modules required in dynamic
aeroelastic analysis than for those used in static analysis, and flutter
‘analysis receives more emphasis than dynamic response analysis. The
relative emphasis reflects the pfiorities that have been set by the Technical

Monitor.
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2. PROPOSED PROBLEM FLOW

A computer program consists of a set of instructions that are organized
to solve a variety of mathematical problems. The problems themselvgs are
described by parameter values supplied by the user of the program. The
“computational task is subdivided into steps that are performed by discrete
blocks of code called 'Functional Modules.'' In NASTRAN, calls to functional
modules are controlled by the '"Executive System.'' A number of sequences of
module calls, called '"Rigid Formats,' are stored in the program. Each
rigid format is designed to solve a particular class of problems such as

Y'Basic Static Analysis,' '"Buckling,' ''Modal Transient Response Analysis,' etc.

The subdivision of computational steps into Functional Modules is
arbitrary at least to the degree that the dividing points that they insert
in the sequence of calculations can be placed arbitrarily. In some cases
it is also possible to rearrange.the order of calculations. Computational
efficiency (and common sense) dictates the insertion of divisién points
.at places where the d;ta transmitted across the interfaces are minimal
(NASTRAN réquires that all data blocks transferred from one module to another
be first placed in peripheral storage). Other factors, such as the require-
ment that restarts can only be scheduled at the beginning of a module, or
that certain éélculations are useful in several different types of problems,

influence the subdivision into Functional Modules.

The proposed subdivision of aeroelastic analysis into NASTRAN Functional

Modules and Rigid Formats is summarized in the following exhibits:

Table 2-1: Simplified Flow Diagram for Dynamic Aeroelastic Analysis

Table 2-1 presents a sequence of functional module calls for all

forms of dynamic aeroelastic analysis. It also provides a very brief

-]3-.



statement of the operations performed by each module and indicates

whether the module is an existing module or a new module.

Table 2-2: Simplified Flow Diagram for Static Aeroelastic Analysis

Table 2-2 is analogous to Table 2-1.

Table 2-3: List of New Functional Modules

Table 2-3 lists the names of the new functional modules contained

in Table 2-1 and 2-2 in three classifications:

A. Modules used in both static and dynamic analysis.
B. Modules used only in dynamic analysis.

€. Modules used only in static analysis.

Table 2-4: List of New Rigid Formats

Table 2-4 1ists nine proposed new rigid formats for the solution
of aeroelastic problems. Each rigid format corresponds to a particular
type of aeroelastic anglysis and, in the case of dynamic aeroelasticity,
to a particular method of analysis. Additional rigid formats will be
required for transient analysis with aerodynamic forces represented
directly in the time domain, but this topic has not been researched
sufficiently. The different rigid formats correspond to alternate
paths in the f}ow diagrams of Tables 2-1 and 2-2, or to the deletion of
some modules, or, in some cases, simply to alternate paths within
modules. Separate rigid formats are provided for direct and modal
dynamic analyses, which is consistent with existing NASTRAN practice
for structural dynamics. A separate rigid format does not exist for
the calculation of stability derivatives, because this task can be
accomplished with Format No. 8A, Untrimmed Static Aeroelastic Response,

see Appendix B.



The proposed new functional modules are described in detail in Sections
5.1 to 5.17. The major algebraic tasks performed in the solution of aero-

elastic problems are summarized in Sections 3 and 4.



Step

10.

1.

TABLE 2-1,

Module

Static Part
of NASTRAN

Y

Dynamic Pool
Distributor

Y

Real Eigenvalue
Analysis, READ

|

Aerodynamic

Pool Distributor

Y

Aerodynamic

Element Generator

\

Aerodynamic
Plotter

Y

Geometry
interpolator

Y

Aerodynamic

Matrix Generator

'

Direct Dynamic
Matrix Assembler

Y

Modal Dynamic

Matrix Assembler

!

Aerodynamic

Matrix Processor

L
(::Continue %:)

. ~16-

Status

(Existing)

(Existing)
(Existing)
(Nau,

(New)

(New)
(N;w)

(New)

(Existing)

(Existing with
minor modifi-
cation)

(New)

Simplified Flow Diagram for Dynamic Aeroelastic Analysis

Functions

1. Forms structural mass, damping, and
stiffness matrices.

2. Generates geometric data for structure.

Organizes tabular data for structure, con-
trol systems and loads,

Finds structural modes.
approach only.)

(Used for modal

Forms tables of aerodynamic data.

1. Defines boundaries of aerodynamic elements.

2. Locates and orients displacement compo-
nents at aerodynamic control points.

Plots aerodynamic elements and control point

-displacement directions in 3-D projection.

Forms the matrix relating displacements at
aerodynamic control points to structural
displacements.

Forms the basic aerodynamic matrices
according to each aerodynamic theory.

1. Decodes control system input.
2. Reduces direct matrix input.

3. Assembles complete dynamic matrices
(excluding aerodynamic terms) for direct
approach.

Forms dynamic matrices for modal approach
(excluding aerodynamic terms).

Forms composite aerodynamic matrices.



TABLE 2-1. Simplified Flow Diagram for Dynamic Aeroelastic Analysis

Step Module
Continue 2
¥
121~ Aerodynamic
’ Matrix Interpolator

13.>{Flutter Analysisl—"“

IM.L.

Dynamic Aeroelastic

15.

16.

17.

18.

19.

. 20.

21.

Load Generator

\
LFrequency Response }a-

Dynamic
Data Recovery

v
Aerodynamic
Data Recovery

Static Data -’
Recovery Modules

|
Random
Analysis

L |
Inverse
Fourier Transform

Y
Output File
Processor

Y
(::Continue 3;)

Status

(New)

(New)

(New)

(Existing with

(Cont.)

Functions

Interpolates. composite aerodynamic matrices -
for different Mach numbers and reduced
frequencies, as required.

2.

3.

modifications)

(Existing)

(New)

(Existing)

(Existing)

(New)

(Existing)

1.

2.

Combines matrices as required.

Finds roots of flutter determinant.

Generates downwashes due to gusts and re-
duces them to structural grid point loads.

Combines gust loads with other loads in
either time domain or frequency domain.

Finds modal excitation (for modal approach).

Finds {ud} or {uh} at discrete frequencies.

Finds physical displacements (modal
approach) .

Uses mode acceleration method to
improve displacements (optional).

Recovers aerodynamic displacements, downwashes,
pressures, and forces at control points
(all optional).

1.
2.

Recovers dependent displacements {(optional)

Finds internal loads and stresses.
(optional)

Finds psd, rms value and/or autocorrelation
function for any response quantity. (Optional)

Finds time history of any response quantity
for Fourier transform method of transient
analysis.

Organizes output data for printing and
plotting.



TABLE 2-1. Simplified Flow Diagram for Dynamic Aeroelastic Analysis

(Cont.)
Step Module Status Functions
(:;Continue 3 :)
‘1. Plots time histories (optional)
Y 2. Makes Bode plots of frequency response
_ (Existing with “* pc quency resp
22. X-Y Plotter modifications) output. (Optional)
3. Makes V-g and V-f plots of flutter roots.
(New feature, optional)
Y . . .
Deformed (Existing with 1. Plots structural modes in 3-D projection.

(Optional)

2. Plots real and imaginary parts of flutter
modes in 3-D projection (new feature,
optional)

23.

Structures Plotter| modifications)
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Step

TABLE 2-2. Simplified Flow Diagram for Static Aeroelastic Analysis

Module

Static Part
of NASTRAN

3

Aerostatic
Pool Distributor

Y

Aerodynamic

Element Generator

y

Aerodynamic

Plotter

Y

Geometry
Interpolator

!

Aerostatic
Matrix Generator

Y

Aerodynamic
Matrix Processor

Y

Aerodynamic
Matrix Interpolator

Y

Aerostatic

Matrix Assembler

\J
(:jContinue 2?)

Status

(Existing)
(New)

(New)

(New)

(New)

(New)

(New)
(New)u

(New)

Functions

Forms structural mass and stiffness matrices,
rigid body properties and nonaerodynamic loads.

Forms tables of aerodynamics data

1. Defines boundaries of aero elements.

2. Locates and orients displacement components
at aero control points.

Plots aerodynamic elements and control point
displacement directions in 3-D projection.

Forms the matrix relating displacements at
aerodynamic control points to structural
displacements. '

Forms the basic aerodynamic matrices and the
steady angle of attack vector for each aero-
dynamic theory.

Forms composite aerodynamic matrices,

Interpolates the composite aerodynamic
matrices for different Mach numbers as
required.

Assembles matrices required for divergence

analysis, untrimmed loads analysis or trimmed
loads analysis.
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Step

10.

]].
12.
3.
14.

15.

16.

TABLE 2-2.

Module

<:¥Continue Zj)
o)

Divergence

(Cont.)

Status

Analysis -

L

Aerostatic
oad Generator

\

Static Aeroelastic

Response

(New)

(New)

Aerodynamic
Data Recovery

l

Static Data

Recovery Modules

|

Qutput File
Processor

\

Deformed

Structures Plotter
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=1  (New)

e  (New)

(Existing)

(Existing)

(Existing with
modifications)

Simplified Flow Diagram for Static Aeroelastic Analysis

Functions

Finds divergence speed(s) and eigenvectors.

i.

2.

Reduces angle of attack distribution to
structural gridpoint loads.

Combines air loads with other loads.

Solves for displacements in either

trimmed or untrimmed analysis.

1.

2.

].'

2.

Recovers aerodynamic displacements, down-
washes, pressures and forces at control
points (all optional).

Recovers net forces and moments on vehicle
for untrimmed condition (optional).

Recovers dependent displacements.
Finds internal loads and stresses
(optional) ~

Organizes output data for printing and
plotting.

1.

Plots divergence mode(s) in 3-D projec-
tion. (Optional)

Plots deformed structure due to loads.
(optional) '



TABLE 2-3

NEW FUNCT!ONAL MODULES

Modules used in both static and dynamic aeroelastic analysis
1. Aerodynamic Element Generator
2. Aerodynamic Plotter
Geometry Interpolator
L. Aerodynamic Matrix Processor
5. Aerodynamic Matrix Interpolator
6. Aerodynamic Data Recovery
Modules used only in dynamic aeroelastic analysis
7. Aérodynamic Pool Distributor
8. Aérodynamic Matrix Generator
9. Flutter Analysis
10. Dynamié Aeroelastic Load Generator
11 Inverse Fourier Transform
Modules used only in static aeroelastic analysis
12. Aerostatic Pool Distributor
13. Aerostatic Matrix Generator
14. Aerostatic Matrix Assembler
15. Divergence Analysis
16. Aerostatic Load Generator
i7. Static Aeroelastic Response
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1A
2A.
3A.
La.
SA.
6A.
7A.
8A.

9A.

TABLE 2-4
NEW RIGID FORMATS

Direct Flutter Analysis

Direct Aeroelastic Frequency and Random Response

Direct Aeroelastic Transient Response by Fourier Integral Method
Modal Flutter Analysis

Modal Aeroelastic Frequency and Random Response

Modal Aeroelastic Transient Response by Fourier Integral Method
Aeroelastic Divergence |

Untrimmed Static Aeroelastic Résponse

Trimmed Static Aeroelastic Response

Note: There are twelve NASTRAN rigid formats at the present time. The

(A) after each rigid format number in the above list is intended to symbolize

aeroelastic analysis.



3. FORMAL MATRIX ALGEBRA FOR NASTRAN DYNAMIC AEROELASTICITY

The formal matrix algebra for dynamic aeroelasticity will be summarized

using the NASTRAN matrix terminology described in Appendix A. The develop-

ment parallels the flow diagram in Table 2-1 of Section 2 and it is divided

according to functional modules. The functional modules are described in

detail in Section 5.

Step 1: Static Part of NASTRAN (existing)

Form: [Maa]’ [Kaa], [Kga] and [Baa]

Reference: NASTRAN Theoretical Manual, Section 9.3.3

Step 3: Real Eigenvalue Analysis, READ (existing)
a. Solve: [Kaa - .XMaa] {ua}
“for eigenvalues A, = wiz and eigenvectors {¢ai}'
b.

Normalize eigenvectors and form modal masses

T
m = .{¢ai} [Maa]{¢ai}

Reference: NASTRAN Theoretical Manual, Section 9.2.1

Step 7:

jGeometry Interpolator (new)

Form [Gka] directly, or

Form [Gkg] and

i
km }'Gkn]
form: [Gkn] = [Gkn] + [ka][Gm]

aga _ t -
partition: [Gkn] = [GkS : Gko ; Gka]

106, ]

i

partition: [Gkg] [G

forT: [Gka] = [Eka] + [Gko

References: 1. Section 5.4

2. Appendix E



Step 8. Aerodynamic Matrix Generator (New)

Form, according to the aerodynamic theory selected by the user:
_ -1
D. 1, IS, .], and [A,.] or [A..
[Jk] [kJ] an [jJ] o [JJ]

Reference: section 5.5

Step 9. Direct Dynamic Matrix Assembler (Existing)

Form: [K, ] = (1 + ig)[KLd] + [Kgd] + i[K:d]
[Bygl = [844] + [83]
Mgl = Dggl + Iyl

Reference: NASTRAN Theoretical Manual, Section 9.3.3

Step 10. Modal Dynamic Matrix Assembler (Existing with minor modification)

Form: [Mhh], [th] and [Khh]
modi fication: set bi =0 and ki = (1 + ig(wi))w?mi

Reference: NASTRAN Theoretical Manual, Section 9.3.4

Step 11. Aerodynamic Matrix Processor (New)

a. For direct flutter or frequency response analysis; form:

|
[ ] Qaa | Qae
Qgl = |-—+——
dd o ! o

where:

1ol = 16,1708 108,17 0, TG, ]

) T -1
SRR LR I U
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notes: (i). [Dje] which relates downwash, {wj}, to extra-point

displacements, {ue}, is supplied by the user.

(ii) If [Ajj] rather than [Ajj]—] is formed in the aerodynamic
matrix generator, operations with the triangular factors

of [Ajj] replace multiplication by [Ajj]-]'

b. For modal flutter or frequency response analysis, form

Gyl
[q,] = *‘O—T;—
where:
T T -1
[Q”] = [o,;] [Gka] [Skj][Ajj] [Djk][Gka][¢ai]
. Tr. 4T -1
Q.1 = [o,,] [Gka] [Skj][Ajj] [Dje]

note: see notes (i) and (ii) above

c. For frequency response or for transient response also form
_ T -1
{Qaj] = [Gka] [skj][Ajj]
for direct analysis, or
_r T T -1
[Qij] = [¢ai] [Gka] [Skj][Ajj]
for modal analysis.

Reference: Section 5.6

Step 12. Aerodynamic Matrix Interpolator (New)

Interpolate the matrices generated in the Aerodynamic Matrix Processor
with respect to Mach number, m, and reduced frequency, k. Values are
specified for a rectangular array of m and k (imbedded blanks are permitted).
Also interpolate [AJ.j]'-| for use in aerodynamic data recovery.

References: 1. Section c.7.
2. Appendix J.
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Step 13. Flutter Analysis (New)

a. For k method, direct approach:

pb2
(i) form: [M 7 [Qdd]

@]
dd 2k
. ) S1g
(ii) find eigenvalues P; Tuh(l 3 ) and
-eigenvectors {¢dj} for the eigenproblem
[, +M3)p2 +B, p+K, Hu} = 0
dd dd dd dd” " d

note: for the method of eigenvalue extraction described in
Appendix H, it is required to set [de] = 0.

(iii) repeat for selected values of p, k and m,

b. For k method, modal approach:

: 2
. a _ pb
(i) form M ] = = [Q,]
2k
(ii) fi.nd eigenvalues pj = imj(l _—'.;.g.)and eigenvectors {<bhj}

for the eigenproblem

LMy, + ":h)Pz *BP Ky} =0

noge: for the method of eigenvalue extraction described in
Appendix H, it is required to set [th] = 0.

(iii) repeat for selected values of p, k and m.

¢c. For p-k method:

(i) direct approach, form [Kjd] = - %-DVZ[Qdd]

(ii) modal approach, form [K;L] = - %-pVZ[th]
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{(iii) direct approach, find eigenvalues P and éigenvectors{¢dj} for
the eigenproblem ‘

2

a -
[MygP™ + Bygp + (Kyy + Kyy) Tuylh 0

by the inverse power method described in Appendix J.

(iv) modal approach, substitute subscript h for subscript j in (iii)

References: Section 5.8
Appendices F, H, t

Step 14. Dynamic Aeroelastic Load Generator (New)

a. Direct approach, form the load vector

PS Pa-
a a

r} = a1 T
e

where {PZ} and {P:} are structural loads and

Crefy T =1, gy _ g
@3 = alg 1705, 10a,17 W8 = alo, 10u)

b. Modal approach, form the load vector

ps (P
. i i
fp3 = Lot 4 Lo
h pS 0
T e

whereA{P?} and {PZ} are structural loads and
a, _ T T -1, g

notes:

(i) see NASTRAN Theoretical Manual, Section 12.1 for generation
of structural loads.

- (ii) seesection 5.9 and Appendix D for transformation of trans-
__ ient loads into frequency response loads.
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Step

(iii) a routine for automatic generation of the downwash due to

gust, {w?}, including time delays, is provided.

(iv) the matrices [Qaj] or [Qij] are interpolated to the required

frequencies in the Aerodynamic Matrix Interpolator.

References: Section 5.9

Appendix D

15. Frequency Response (Existing, with modifications)

. ay - .12
Direct approach, form [Kdd] = 2 v [Qdd]

a = .1 2 k
Modal approach, form [Khh] =- 5oV [th]
Direct approach, solve for {ud} for various values of w:
[-w?M, + iwB,, + K, + K. 1{u} = (P}
Olgad 7 "q T "dd T RaaltMe’ T Yy

Modal approach, replaée subscript d by subscript h.

Note: [Qdd] and [th] are functions of k = %Q-. They are

interpolated by the aerodynamic matrix interpolator.

References: NASTRAN Theoretical Manual Section 12.1

Dynamic Data Recovery (Existing)

ua
{ud} = {.—u-'
e

Step 16.
- a. For modal approach, calculate
b. Partition
C.

-28-

Use mode acceleration method to improve {ua}. (Optional)

Reference: NASTRAN Theoretical Manual, Section 9.4



Step 17. Aerodynamic Data Recovery (New)

For frequency response analysis, or for flutter modes using the imaginary
part of p = o + iw, form:

fu} = I6 1u}
gl o= [0y Mud + [0, Tlu} + Wil
a, _ -l-
I} = ala;l eyl
a _ a
(FY = I5,1f)

Note: [Ajj]-] is interpolated to the required frequency by the

Aerodynamic Matrix Interpolator.

Reference: Section 5.10.

Step 20. Inverse Fourier Transform (New)

For the vector of response quantities, {u(w)}, form

-

{u(t)} = -:-r- fR,Q, [eiwt{u(w)}]dw
)

by approximate methods.

References: Section 5.11
- Appendix D
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L. FORMAL MATRIX ALGEBRA FOR NASTRAN STATIC AEROELASTICITY

The formal matrix algebra for static aeroelasticity will be summarized
using the NASTRAN matrix terminology described in Appendix A. The develop-
ment parallels the flow diagram in Table 2-2 of Section 2, and it is
divided according to functional modules. Detailed descriptions of the

functional modules are given in Section 5.

Step 1. Static Part of NASTRAN (existing)

Form: [KZQ]’ {Péﬁ,[leD + Mkr]’ [mr]’ (01, {Pi}

Reference: NASTRAN Theoretical Manual, Sections 3.5.5 and 3.6.3

Step 5. Geometry Interpolator (new)

a. Form [Gka] directly, or
b. Form [Gkg] anq
- —— l -
partition: [Gkg] = [ka : Gkn]

form: (6,1 = 6,1 + [6,,10G,]

cea ! P
partition: [Gkn] = [Gks ! Gko ! Gka]
form: [6 1 =1[6 1+ le, 1l6,]
cpr . - |
c. partition: [Gka] [le : Gkr]
Note: Except for the last partition, the function of the Geometry

Interpolator is the same in statics and dynamics.

References: 1. Section 5.4
2. Appendix E
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Step 6. Aerostatic Matrix Generator (new)

a. Form [Djk]’ [Skj] and [Ajj] or [Ajj]-]' These tasks are analogous to

those for dynamic analysis.
b. Form {w?}, the static angle of attack distribution,

¢c. Form [Dje] which relates downwash (and perhaps other aerodynamic
variables) to perturbation velocity components of the vehicle and

control surface rotations.

Reference: Section 5.13

Step 7. Aerodynamic Matrix Processor (new)

a. Form uy u.. u:
Al ‘__ 2 4'_ Y
gl = 19l 01 %

0 : 0 O

where

T -1
S I CU L EN [ A8 R C R [

_ T -1
[0,y = 161" I5,1 0817 [0 105,

_ T -1
[0y, ] = (61705, 10A; 17 [0, )

fe. 1

T -1
rel = (6,1 [5,;1[A;;1 1o, ]

je

b. For use in generating aerostatic loads, form

ROBERCR U [
and ‘

[0,;1 = (6, 170s,;10A; ;17"

. =32~



Notes: 1. [Dje] is automatically generated in Step 6.

2. |If [Ajj] rather than [Ajj]_] is formed in the Aerodynamic
Matrix Generator, operations with the triangular factors

.[Ajj] replace multiplication by [Ajj]-].

Reference: Section 5.6

Step 8. Aerodynamic Matrix Interpolator (new)

Interpolate the matrices formed in the Aerodynamic Matrix Processor

vs. Mach number.

Reference: Section 5.7.

Step 9. Aerostatic Matrix Assembler (new)

a. Form
[Kg,] = -algy,]
(Kl = -algy,]
KD = -qla ]

(3.1 = -alg,,]

re

b. For untrimmed static loads and divergence, partition

- !
[Kpel = [Kg, 1 01

|
[Kie] = [Kia | 01]

where [Kza] and [Kia] refer to velocity components and control surface

rotations included in {u:}.
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c. For untrimmed static loads, direct solution option,

Form [Kdd] in [Kdd]{ud} = {Pd}, which ié written in expanded form as

notes: 1. {ﬁr} and {u:} are automatically generated extra points.

{uz} is user-generated.

2. All matrices with superscript (2) are user-supplied.

d. For divergence and iterative solution option, form

Kog * Kg 1 Mop * Mgely 0 Ky
R e
2,2 | 2 .2
[Kl +K2] = D K2£+Kr2, | mr | 0 | 0 'KM+Kro
dd ~ 'dd —-—-—-———:———————I—-——-—+—-—-——————
2 ’ | | 2
Kaﬂ. | 0 | I | Kao
DU R Aol St
2 2 2
__Foz | 0 | Koa | Koo
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and

~ @ ; 7
Ko 1 0L Ky, LO
SRR Il el
a a a a
D' (KG,) + K, | o] DKL+ K |0
R e et e
0 | o 0 | ©
e e bl
- 0 [ o] 0 | o]

e. For trimmed static loads

. - a g _ @ ! 2
(i) partition [Kle] [Klt : Klu]
aq_ @ |8
[Kre] [Krt | Kru]

where [Kzt] and [Kit] refer to the subset of velocity components
and control surface rotations that are used to trim the
vehicle and [KZu] and [Kiu] refer to all other extra points.
(ii) For the direct solution option
Form [Kdd] in [Kdd]{ud} = {P4}, which may be written in

expanded form as

2 a a | a 2
Koo * Kog + Kyg 4 Kot 1 Kew * Kgy ug
— S— ——— o— — — ____.._....‘._ _____ ——
pT (K2, + Kk2,) L oTea | o (k2 + k%)
22 7 Mg | 2t | 2u T M
| [ ut
2 a l a | 2 9 e) ={p}
+ Krl + Krl | + Kot l * Kew * Ko
—————— l_.._ e i dvmmm w——n — — oo— —
2 1 k2 I 2 u
Kul | Kut | KuU ] v,
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(iii) For the iterative solution option, separate (K] terms from [K + K2]

terms.

Notes: 1. {u:} is selected by the user from {u:}; {u:} contains

the remaining members of {u:} plus all members of {uZ}.

2. The partition of [Kﬁu] corresponding to the remaining
members of {ua} will be set equal to an identity matrix

if no values are supplied by the user.

Reference: Appendix B.

Step 10. Divergence Analysis (new)

Calculate eigenvalues and eigenvectors of

[K"jd + Kgd + kg Hu} = 0

References: 1. Section 5.15
2. Appendix C.

Step 11. Aerostatic Load Generator (new)

a. Form
a _ g
{p3} = algy 1w}
and
a, _ g
{Pr} q{QrJ]{wj}
The downwash vector {w3} is calculatéd automatically by theory-
dependent subroutines in the Aerostatic Matrix Generator. lqﬂj] and [er]

are formed in the Aerodynamic Matrix Interpolator.
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b. For untrimmed load cases form

S a
P2 P2 + P2
r s T/n8 a a
Pe Pr +D (P2 * PR) * Pr
{pd} a . = S ——
P p2
e e
p° p©
e e

where {PZ} and {Pi} are structural loads, {P:} and {P:} are loads

on extra points specified directly by the user.

c. For trimmed load cases form

s a
P PZ + P2
_ t _ s T,.5 a a
{ry} = Pe) = PL+ D (Py +P) + P
pU pu
e e

'{P:} are loads on extra points specified directly by the user.
Reference: Section 5.16.

Step 12. Static Aeroelastic Response (new)

a. For direct solution option, solve

[Kdd]{ud} = {p;}

b. For iterative solution option, solve iteratively until convergence

1 2 n a n-1
[Kyg * Kdd]{ud} = Py} - K Huy '}

References: Section 5.17
Appendix B



Step 13, Aerodynamic Data Recovery (new)

Form {u} = [6, Ny (1
Wb = [0y Myl + [0, Hu} + {w]) (2)
(F = ala 17w (3)
(R} =[5, ;1f) (4)
{F} = Im1{i} (5)

Notes: 1. Equations 1, 2, 3, and I are identical to those for dYnamic
analysis.
2. Equation 5 gives resultant forces on the vehicle.

3. [Ajj]“I is interpolated vs. Mach number in the Aerodynamic

Matrix Interpolator.

Reference : Section 5.10.
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5. DESCRIPTIONS OF NEW FUNCTIONAL MODULES

5.1 Aerodynamic Pool Distributor

The purpose of the Aerodynamic Pool Distributor is to reduce the
number of files required to be opened during setup of structural mat-
rices, and to preprocess the aerodynamic data. All aerodynamic data is
transferred by the input file processor onto one data block (called
AEDECK for AErodynamic DECK). This data is pre-processed by the Aero-
dynamic Pool Distributor before any modules requiring this data are

executed, but after completion of the structural tasks.

One of the module tasks is to supply default values for all input
data cards. The default values are listed on the card descriptions, see

Section 6.2.

Another task is to sort the data for the aerodynamic theories. It
will do this by computing lists of entries for each CAER@ and PAER# data

card. The items on the lists are:

1. For CAER# cards: CID (CAER@ 1D)
PID (PAER® 1D)
TID (theory ID, to be found)

2. For PAER@ cards: PiD (PAERg ID)
TID (theory 1D)

USED{O -+ card not referenced

+1 + card is referenced

a. The first step is to compile the lists, getting the first two
entries from the data cards* The third entries are equal to
zero. The lists are sorted on the first entry (CID for CAER@
cards and PID for PAERS cards). |If any two PAER@ cards have

the same ID, a fatal message occurs.

The input cards are listed in Section 6.



b. Scan the PID's on the CAER# card list, and see if the corres-
ponding PAER@ card can be found. |If it can't, prepare a warn-
ing message. |If a PAER# reference is found, find the TID and
put it in the CAER@ list in third enfry; also set "USED" for
the PAER@ = +1.

c. Scan the "USED" entries on the PAER# card list, and prepare

a warning message if "USED' = 0.

d. Form a revised CAER@ card list. First discard all entries for
which TID = 0. Then sort on the contents of the TID entries.
This list gives a reference to all aero-cells in each theory, and will be
needed by the Aerodynamic Element Generator, phase 2. Note that cards

not referenced are not used, but produce warning messages.

The other task performed by the Aerodynamic Pool Distributor is to
pass on the images for each card to the module, or modules, which require

them:

Data List’ Name Module using it
connections ADTCN Ae Elem Gen
(includes

theory table)

properties ADTPR Ae Matrix Gen
(includes
m-k values)

splines ADTSP Geom Int
loads ADTLD Dyn Ae Load Gen
methods ADTMD Flutter Anal,

Inv Fourier Trns
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5.2 Aerodynamic Element Generator

The Aerodynamic Element Generator processes the user supplied
information about aerodynamic cells. The job is divided into two tasks.
The first, called Aerodynamic Element Generator-1 does only the geometry
(found on CAER@ data cards) associated with the cell. The second part,
called Aerodynamic Element Generatér-z, performs those tasks which refer
to a specific theory, such as choosing the number of degrees of freedom

per cell, and locating them (using data found on the PAER@ data cards).

5.2.1 Aerodynamic Element Generator, Part |

‘The purpose of the Aerodynamic Element Generator-1 is to process the

user supplied information about the aerodynamic cell geometry, producing

a data list which is useful for the Aerodynamic Matrix generator , the
Geometry Interpolator and the Aerodynamic Model'Plottgr. The aerodynamic
element is similar ib the NASTRAN structural element connection in that

it provides geometric information. The chief innovation fs the concept
of a macro-element which defines many geometrically similar aerodynamic

elements.

-

The.input to the Aerodynamic Element Generator Module comes from the
NASTRAN bulk data deck and from the output of the previously executed
Geometry Processor modules. The input data cards have been designed for
user convenience. There are two types of aerodynamic elements, the quad-
rilateral and the cylinder. There are three ways allowed to describe quad-

rilaterals and cylinders on bulk data cards:

v



A. Quadrilateral

1. Give grid point numbers at four corners.
2. Give the location of the four corners in defined

coordinate systems.
3. Give the location of the two leading edge corners and

the edge chord lengths.

B. Cylinder -

1. Give grid point numbers at the two ends of the axis.
2. Give the location of the two ends of the axis in defined
coordinate systems.
3. Give one location and one length.
Sample cards are in Figures 6-1 through 6-4.
The grid point numbers refer to locations defined by GRID bulk data cards.
A single aerodynamic coordinate system will be user supplied in which the

flow is in the +X] direction, for aerodynamic calculations; "see Figure 6-7.

The desired form of output is different for each of the several
theories which may use the output from the Aerodynamic Element Generator

module. The theories currently being considered are:

1. Doublet lattice (Subsonic and Supersonic)
2. Lifting cylinder (Subsonic)

3. Strip

4, Piston

5. Newtonian

Newtonian theory can accept any quadrilateral or cylinder which we will

call format 1. Piston theory requires that the quadrilateral lie parallel
to the flow (with a possible small initial angle of attack); this is format
2. Lattice theory requires, in addition, that the side chords be parallel
to the flow, thus forming trapezoids; this is format 3. In all cases fhe
qdaari]ateral aerodynamic elements will be made planar, even though'the
.user may supply four poinfs not on a plane. A basic decision is to output
data»in all three formats, plus andther format useful for plotting. This
Aimplies that the aerodynamic element module need not know which theory

is going to be used.
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Images of the aerodynamic cell connection cards, plus the BGPDT and
CSTM files are to be used by this module. The BGPDT.(basic grid point
data table) file contains a list of grid point coordinate systems, and
the locations of the point in the basic coordinate system. The CSTM
(coordinate system transformation matrix) file contains the coordinate
system identification, the type, the system origin in basic, and the
transformation matrix (the columns of this 3 x 3 are the 1, j; and k
unit vectors of the coordinate system referred to basic). Before begin-
ning, locate the aerodynamic coordinate system and check that its type

is rectangular. Then take thé following steps for all elements.
Step 1. Locate the four corners or two ends of a macro-element in
basic coordinates.
If CAER@1 card: look up coordinates in BGPDT table.

If CAER@2 card: compute basic coordinates using information in

CSTM. This code should be similar to that used in NASTRAN GP}
to form the BGPDT.

If CAER@3 card: compute coordinates of G and(G
Then ! b

} ol

2 1

ff

3 L

using CSTM.

where {i} is the first column of the transformation matrix to aerodynamic

coordinates.

If CAER@L, CAER@5, or CAER@6; the task is analogous to the above
for 1, 2, or 3, except that only 2 locations are defined.



Step 2. The quadrilateral of type 1 and 2 may be nonplanar. We replace
o the macro by an eléement projected on a plane half-way between
the diagonals.

1. Let F?

i=1, 2, 3, b in basic (3)

U L (v3yy) (24725 = (23-2)) (yy-y,)

2. Find V= (rpmr)) x (ry=rp) = ¢ (z5-2)) (x,=x,) = (x3=x)) (z)-2,) 5 (k) -
(x3=x) (yymy,)= (y5my ) (=%,

X,
Y
z!
]

3. Find F ) v
. In r 3 T ————————
2(TD) i

L. Print a warning message if

@-Gn_,

since the quadrilateral was not flat.

.01 (6)

5. The corrected values are b

ryt or
o
2
-, (7)
ry + Or
ry - ér
6. The area is given by
172 @2 (8)

Skip the step for cylinders (i.e. type 4, 5, 6).

Step 3. Form the element data by cutting the macro-element. The input
file processor will produce the following list of division -
points from the bulk data cards.
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NSPAN (an integer)

0
. (NSPAN +1) entries CAERg type 1, 2, 3
1.00
NCH@RD
0
. (NCHERD +1) entries all cards
[ 3
1.00
X
Let Ri = {y be the location of the four corners of the macro-
z
i
element.
Let ﬁn m=20, 1. . . (NSPAN)
and g n=0, 1. .. (NCHERD) be the fractional distances.

Then compute for m

I . . . NSPAN
n=1.. . NCHERD
1. The element identification

EiD.m.n (quad)
EID.n (cylinder)

2. The corner locations in basic coordinates

X

= QY (9
“fz

-

Mo = (o) (mg ) Ry + (F ) (-9, 1) Ry o)
+ (-fF ) _)) R, + (F-1) (g _y) Ry

e |
#

b, mn (-f)(-g ) Ry +(F) (=g ;) R, + (1-F ) (g _) R,
| (11)
+ (F)(g _;) R3



T2,mn ~ (-F) (=g IRy + (F) (1-g )R, + (1-f ) (g IR, ‘
+ (F) (g )Ry (12)
3 mn = (1-f ) O-g R, + (f_)(1-g IR, + (l-fm_,)(gn) R,

+ (F ) (g )R, (13)

The area is computed for each sub-element using equations (4) and (8) of
Step 2. The division for a cylinder is similar. The basic coordinate
lists will be used for plotting.

Step 4. Transform to aero coordinates.

T
{ri}aero = [7] ({ri}basic h {"o}) (1)

where r, and T are the CSTM entries for the aerodynamic coor-
dinate system. This is computed for every cornei of every
element, and the two ends of a cylinder.
‘Step 5. Transform to quadrilateral parallel to the flow. First compute
the angle of attack. Let .

x
{ri} = {y} as computed in Step 4. (15)

b4

i, aero

Then compare(in case the quadrilateral has a side of zero length)
|r2 - rll and |r3 - rhl

Let k=2 if |r2 - r]] is longer, otherwise k=3.

Then compute a unit normal vector in the aero coordinate system.

(rk-r') x (rh-r‘)

l(rk-r,) X (rh-rl)l

The first component is sin a_. Then while projecting the element
on a plane parallel to the flow, the values of x will not change.
Let the vectors be two-dimensional for the rest of Steps 5 and

6, then in the cross-flow plane: ’
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no={1} (16)

i

Let V= 1/2 (.3*‘?1,) - 1/2('r"l+'r'2) (17)
Let & 172 1 ) Vo)
e r. = ra=r e R T]
a 2 ' T g (18)
Ve(re-ry)  _|
sr =172 |(rp-r,) - 3 Y v
b 34 VeV | (19)
then take
ot 6ra
F; T
o (20)
g - r
—_
Ty ;3?;

This will be done for every corner of every element, which
results in quadrilaterals parallel to the airflow.

For the cylinders (i.e. type 4,5,6)

& = 1/2(r,-r) (21)

-

‘and the corrected values are

7q.+ or
(22)
Y-

Step 6. Transform to a trapezoid. (quadrilaterals only)

et ) e
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)

3,4 3 I '

it
N
pamer om—
N <
AV g
+
P N

where {Z} are defined in step 5.
i
The span is given by

Mn=Tly -y, )2+ (2, -z, )211/2

Step 7. Prepare the output list. The list will contain:

1. The macro-element ID
2. The element type

If type 1, 2, 3 (quadrilateral)

-3. The span number
k., the chord number
5.-16. X10Y 102y Xy eevs Zp basic .coordinates

17.-28. xl,y],z], x2, cees 2y aerq coordinates

29.-36, Y{1Z)sY912Zs s Y2y 3€FO coordinates format 2

37.-ho. Yie 200 Vi 2 aero coordinates format 3
b1. sina, the angle of attack
k2. A the area
43, An - the span

if type b, 5, or 6 (cylinder)

3. thé subelement number
4.-9, X1s Yys Zps Xps Yoo 2y basic coordinates

10.-15. X{s Ypo 290 %95 Yoo z, aero coordinates, format 1

16.-17.

YI,Z’ z]’2 aero coordinates, format 2, 3

5.2.2 Aerodynamic Element Generator, Part 2

The purpose of the Aerodynamic Element Generator-2 is to produce a
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list of the aerodynamic degrees of freedom, which are associated with the
aerodynamic elements. These sets are called the k-set and the j=set.
These are somewhat parallel to the other displacement sets defined in the
structural NASTRAN solution algorithm, called g-set, a~set, etc. These
sets are defined as:

Set k js a set of interpolated structural points. They are

associated With local (i.e.; global) coordinate systems with

one to six degrees of freedom. The location may be specified

by an aerodynamic theory as a specified location in a cell, or

by the use of GRIDK bulk data cards. The directions for the global

coordinate system will be internally computed for aero-cells, and

will be user specified by referring to a coordinate system for the

GRIDK method. Set k points may be plotted.

Set j is a set of aerodynamic poihts. A location and direction
is spécified so]e]y for the purpose of plotting output. The
physical interprétation of a displacement and force in j-set
depends upon the aerodynamic theory, and may represenf normal-
wash and pressure, flap angle and hinge moment, camber and
geheralized force or others. The number of j-set points per

aerodynamic cell may vary, but it will usually be 1.

For dynamic aeroelastic analysis, the Aerodynamic Element Generator-2
will provide the sets of j and k coordinates appropriate to the chosen

theories.. This will consist of a data block called USETKJ with the following

information.
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1. For k-set
a. the external identification numbers: aero macro ID, span
index, chord index, and the index in that cell (as there
may be more than one). The GRIDK ID is used when the k-

point is defined on a GRIDK card.
b. ~location in basic coordinate system.

c. code for the degrees of freedom (may include one thru six,
and a typical code of 35 would indicate T3 and R2 motion

in the global coordinate system).

2. For j-set
a. the external identification numbers (similar to the k-set)
b. the location in basic coordinate system for plotting dis-
placements, and a unit vector for direction.
c. the location in bésic coordinate system for plotting %orces,

~and a unit vector.

The order in which the entries appear will be as follows.

a. Sorted by aerodynamic theory number.

b. Sorted by external identification numbers.
The order of the entries on this list is the internal indexing scheme.

A header record will list the number of aerodynamic theories used,
and the number of degrees of freedom in set k and set j in each aero-
dynamic theory. Also a list of all splines referenced, and a list of the
<nﬁmber ;f degrees of freedom in k-set for each spline. These header

records will be useful for indexing thru these lists in the Geometry

Interpolator and Aerodynamic Matrix Modules.
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5.3 Aerodynamic Plotter Module

The Aerodynamic Plotter Module serves two functions. It plots the
aerodynamic elements for a visual display of geometry, which is similar
to the role of the NASTRAN structure plotter. It also plots results,
which is similar to the role of the NASTRAN deformed structure plotter.
The aerodynamic plotter will extend the present plotting capability to

include the following:

1. Aerodynamic elements
2. Aerodynamic element labels
k set point locations
k set point labels
i set point locations
set point iabels
. k set deflections

. ] set deflections

W 00~ N (%, & w
vy

. J set forces

The present deformed structure capability will be extended to plot
complex results. Thus plots can be made of the real part (in-bhase) or
the imaginaryﬁpart (out-of-phase) of the structural and aerodynamic de-
flections. Magnitude can also be plotted. Provision will be made for
linear combinations of the in-phase and out-of-phase plots in order to

plot the results at any phase; this could be used to make the frames

for a movie of flutter mode, if desired.

The plot package will be able to make overlay plots using the same
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vieQing angles and scales in each plot. This is done to reduce the
amount of clutter in the presentation. Overlay plots can also be
made with the structures plotter in order to check congruencé of the
aerodynamic model and the'structurél model. For example, the plotting
package can be used'to visually check the accuracy of displacement
interpolation by outputing the g set and the k Set displacements for

identically scaled plots.

The instructions for‘the plotter will be in the Case Control Deck.
The selection of plotter,;view éngle;% scaling, etc., will be tﬁe same
as at present. No new d%ta cards aréineeded. All that is required is
that the interpretation¢éf the PL@T card be extended to recognize aero-
dynamic quantities. Ovezrlays are madé with two plot galls using the same
SCALE, @RIGIN, VANTAGEJPﬂlNT, v{ew; i?d AXES. The desired PHASE will be

: o

an alternate to the ex%&aﬁhngAﬁGE/TlM%-Eﬁﬁathe PLAT erd- Thus . 'no new

data cards are needed.
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5.4 Geometry Interpolator

The purpose of this module is to provide a transformation matrix
which gives structural displacements at a set of interpolated (or extra-
polated) locations in terms of deflections at structural grid points.
The matrix coefficients are determined by using linear and surface’
splines, which give ''structural-like' deformation patterns since they
are beams and plates. The Geometry Interpolator performs the following
two tasks:

I. 1t selects the structural grid points to be used. The spline
is connected to a subset of the degrees of freedom of the
structure, which are chosen to be in a rzgion desired for
interpolation. The user may specify the structural grid points

in terms of aerodynamic elements, or in terms of a list.

2. It constructs interpolating functions (splines) which fit the
»structural'dqflections at the chosen structural degrees of free-
dom, and from which deflections at the interpolated (aerodyj

namic) points can be determined.

The module will be able to process several splines in one pass.
Its primary use is for interpolation for providing a relationship between

aerodynamic and structural degrees of freedom. i oeme Lamion

""The Geometry Intefpolatbr Module includes both linear and surface
splines. The linear splines consist of\uniform beam-torsion member§,

connected to the structure with rigid arms perpehdicuiar to the axis of

the spline (see Figure 5.4-2). |In addition, scalar springs may be placed

at the grid points. The surface splines consist of uniform plates which
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may be attached to the érid point through springs. The purpose of the
springs is to provide shoothing of the interpolated points by not re-
quiring the spline to go thru all points; see Appendix E for details of
how to choose values for the springs. All splines are planar, i.e., the
rigid arms to the linear splines all lie in the same plane, and the plates
are flat. Within this plane, there are two types of motion. Inplane
motion consists of displacements parallel to the plane and rotations

about an axis normal to the plane. Out-of-plane motion consists of
displacements normal to the plane, and rotations about axes parallel to

the plane. Three types of splines are provided:

| S0 = surface, out-of-plane
LO = linear, out-of-plane
Lt = linear, inplane

No inplane surféce spline is provided. The only surface inplane inter-
polation with known solution is a rigid plate, and this gives the same re-
‘sults as a rigid linear spline. The in-plane inferpo!ation is not needed
for any currently proposed aerodynamic theories, but is included as a tool
for impiementation of theories iﬁvolving motion in the airstream direction.
The desired result of the analysis is a set of interpolation co-
efficients. The interpolated dependent displacements, ., are determinéd

at a set of points whose location is determined by the aérodynaﬁic theory.

The structural (independent) displacements,.ug, are grid point displacements

in the global coordinate system. The goal of the module is to provide

a matrix Gkg such that



) =[G ] )}

If the set of structural points contains only members of the ''a'" set

then this will be written as
{uk} = [Gka] {ua}

The "a' set is preferred since it leads to a reduction in matrix

algebra, and thus in the time of execution of this module.

There are several ways to analyze splines.: These include the
three moment method, the stiffness method, and the influence function
methods. The influence function methods have been chosen. The ad-
vantages include a uniform formulation for beams and plates, ease of
interpolation for the "k'" points, and the ease of putting springs at
the grid point attachmgnts. The disadvantage is the loss of banding
in the matrix, thus requiring additional computation. This limitation
has been accepted with the understanding that the number of indepen-

dent degrees of freedom in the ''g'' set is usually small. A flow chart
14

for the geometry interpolator is shown in figure 5.4-1.

5.4.1 Independent variables; the 'g' set.

The grid pqints in the independent ug set for a particulaf spline
~are chosen by the user by means of SPLINE and SET data cérds. (The com~-
ponents will be chosen by the choice of a value for an attachment spring
rate on a SPLINE data card. A zero value implies that the component is not
attached.) The first task performed by the program is to compile lists

-of grid polnts with the following format:
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Sel Grid Poi

Find Coordinate System
Select dependent points

!

Form matrices

v

Form [G

Y

Reduce to [Gka]

# *%

- » — ]
Partition [Gka]"[sz t G

:kr]
Y

Pack into sparce matrix form

kn]

another case

% May be skipped if all
grid points are in the »
ua set.

o (: Exit :)

** Required for static

analysis only.

Figure 5.4-1

The Geometry interpolator Module
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l. SiD set of identification numbers
2. N number of grid points in the set

3 thru (N+2) list of grid points

If the SETI card (see Figure 6 -11) is used, the data is directly
available. |If SET2 (Figure 6-12) is used, a set of inequalities are
set up in the basic coordinate system, and all grid points are checked
to see which ones satisfy the inequalities (i.e., which grid points lie
within the volume defined by the inequalities). For SET2 definition,

take the following steps:

Step 1. Locate the corners of the selected aerodynamic element
in the basic coordinate system. These are found on the output list of
the Aerodynamic Matrix Generator Module. First, find the referenced

macro element. Then

" is the first vertex of subelement si1.Cl
F;‘ is the second vertex of subelement . $2.C]
F; is the third vertex of subelement $2.C2
F;' is the fourth vertex of subelement S1.C2 .

Step 2. Form outward normal vectors for all surfaces

_ [(Fy) x (Fp=F)] x (7)F))

Mo =

l[(F}-Fé) X (rz-r])] x (rz-r])]

pérmute indices 152431 to get l_'1.23, ;3“’ FL]' A vector r is
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within the cylinder if all of the following inequalities hold.

f'ﬂlz r]°n

IA

12
F*Na3 S T2°My3

TNy = T3°Ngy

tA IA

1A

l"'nL”

i Ny

If rysrp,orr, = ?3 » triangular element has been used. For this

case, use only three tests.

Step 3. [f height limits are given, define

(Fy ) x (7))

| (75 % (7|

Then the following inequalities must be satisfied.

H1

-
.
A

-H2

-
.
IA

2 to define nup .

i f rlér use rA > Ty and r3

Step 4. If all of the above inequalities are satiéfied, then

the grid point is in the set.



5.4.2 Spline Coordinate System

The spline coordinate systems are chosen such that surfaces
are in the x-y plane and line splines are on the y-axis, see Figure
5.5-2. This is consistent with the convention for flat airfoils,
where the x direction iIs downstream and the z direction is vertical.
The displacements U uy, u,, ex, ey, ez are chosen to be in the coor-

dinate directions using the right hand rule. Inplane motions consist

of U uy, and ez. Out-of-plane motions consist of us Ox, and ey.

The linear splines (beams) have rigid arms, which are perpendicular
to the beam and in the‘x-y plane; hence the rigid arms are parallel to
the splines x-axis. These rigid arms are firmly attached to the beam
so that their slopes and displacements are equal to those of the beam.
The location of the beam axis (i.e., the beam coordinate system) can

be chosen so that some arms come out of each side.

The spline coord{nate system may be chosen in two ways. One way
is to be specified by the user, in terms of an aero-cell or a given coor-
dinate system. The other way is to choose the coordinate axes (x,y)
in the plane of the spline such that the axes coincide with the principal
axes of the g;set. The first method would be used if the user desired
to fix the location, such as locating a beam spline along a wing spar.
The second method is used if it is desired that a beam spline should
have points of the 'g''-set distributed on both sides. For surface splines,

the results will be the same for either choice.

The spline location is defined by the user thru the use of the SPLINE
data card, Figures 6-8 thru 6-10. Only one of the fields CAER@ and CID

is used, which identifies the aerodynamic element or coordinate §ystem
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which defines the location of the x-y plane. |f the CAERZ method is used,
the spline x-y plane will be the plane of the referenced aero macro
element. If the CID méthod is used, it will be the x-y plane of the ref-
erenced coordinate system. There are two choices for AXES. |If FIXED is
chosen, then the x-y axes will agree with those of the defining aero ele-
ment or coordinate system. {f PRINC is chosen, then the x-y axes will be
shifted to the center of gravity and principal axes system of the ‘''g''-
points (projected onto the plane). The x and y axes of the principal
axes system will be within 45 degrees of the x and y axes of the FIXED
direction. What is required is the transformation vector and matrix from
NASTRAN basic coordinates: {ra}i is the location of the origin in basic
coordinates, and Ti is a 3 x 3 matrix whose columns are the unit vectors
of the spline coordinates written in basic. Thus, if x, y, z is the rec-
.tangular representation, and {f}iT = |x, y, z] is the spline coordinate

vector, then

{r} = {ro}i + [T;] {r}i

basic

If the AXES are specified as FIXED, then the user has specified
that the spline coordinate system is one of the defined coordinate systems.
The vector {r} and matrix [T] can be found in the CSTM file. If the AXES
are listéd as "'"PRINC', then some fitting will be required. This will

involve finding the principal axes of a set of points.

If CID, PRINC is specified, find the unit vector k (third column of
T) and the location, o of the origin in basic for the identified coor-
dinate system. Compute the location of the points projected on the plane

from
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k set

/' g set

7 »7

\

linear spline

rigid arms

Figure 5.4-2

Splines and their coordinate systems

X . .
L ]
X
B>y
R X
' .

surface spline
4

‘\::set g set

- [
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Foroj = - k [k (r-ro)]

Use a least squares fit to find a coordinate system which is a prin-

cipal axis through the c.g. of the points.

If the CAER@, PRINC is specified, find three distinct
points ry , r, , and F3 (or ry s Fyos and rh) and form the unit

normal

(7)) x (7,7

3|
"

|(rpmry) x (?3'?2) ‘ '

Proceed as in case CID, PRINC, except substituting F} and n for

?b and k.

The following algorithm will produce the principal axes of a set of

points.

1. Function: Given a list of values for X, Y, z; find a trans-

formation to grfncipal axes.

2. Input Data: N (number of points)

Xis Yi» z, i=l,N
i], iz, i3 components of "i' vector
jlf jz, j3 components of '"j'' vector.
3. Output
Xgs Ygr Zg location of c.g.
T

1’ le, T]3,...T33 transformation matrix

TRPY l3' principal moments of inertia



4, Method

4.1 Compute c.g. { x

0 N i
Yo( = -% :E: Y;
z4 i=1 z;
k.2 Compute matrix
o
- 2 ’ — - - -
. N (x; xo) (x;=x4) (v, =v,) (x;=x4) (z;-2,)
poy - 2 - -

SYM -y )2

4.3 Find eigenvalues li and eigenvectors,«bi of matrix A.

Normalize vectors to unit vectors.

4.4 Renumber so that Xz is the greatest, and A, is the smallest.

3

4.5 Reverse the eigenvectors (if necessary) so that
T-¢| >0

Je¢, >0

and

(@) x ¢))¢5 >0

where 7 and ] are input.

L.6 The output Xq» Yg» Zg 2are the c.g. location

0

- - ) .
B
T T2 T3
Tor Taz T3 | = ¢ | 92 |%5
| T3t T2 Ts3 |
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and the moments of inertia

5.4.3  Dependent variables; the 'k''-set

The dependent variables, Uy to be included will be determined by

_ the aerodynamic cell geometry (see CAER¥ data cards) and the particular

- aerodynamic theory (which involves the PAER@ data cards). For each aero-
dynamic cell, a list of locations plus degrees of freedom has been formed

in the Aerodynamic Element Generator Module. This function is table driven,
so that if new aerodynamic theories are added, the additional degrees of

freedom can be easily added.

The assignment of the degrees_of freedom of k-set to splines is as
follows. |

1. Check for type of spline. Degrees of freedom 3, 4, and 5 must
be interpolated with an out-of-plane spline. Degrees of freedom 1, 2,

and 6 must use an inplane spline.

2. |If the degrees of freedom are defined by an aero-cell, two sub-
cases exist.

a. |If the aero-cell is referenced by a SET 2 (i.e., via an aero-
cell) and a spline of the appropriate type refers to that set, use that
spline.

b. Otherwise assign the point to the nearest spline of the appro-

priate type.

~64-



3. |If the degrees of freedom are defined by a GRIDK data card, two

subcases exist.
a. If a spline is defined of the appropriate type, and is referenced
by the GRIDK card, use that one.

b. Otherwise assign the point to the nearest spline of the appropriate
type.

If no spline of the appropriate type exists, a fatal message occurs.

5.4.4 Mathematical analysis

The analysis is based upon a set of "influence coefficients' for

*  The independent degrees of freedom are the ''forces"

a free-free spline.
applied to the splines at the grid points and the ''rigid body'" displace-
ments. Thus the displacement at any point (in the g-set or the k-set)

can be written as a linear function of the grid point forceg_fg, and the

'rigid body' displacements, W
u=.f\ fg t R U (1)
The displacemeﬁts u and forces fg may include rotations as well as trans-

lations. The choice of spline types has been limited to a class where

both matrices A and R are very easy to generate.

The first step is to solve for the forces and rigid body motions

in terms of the displacements at the grid points.

* See Appendix E



u =A _f +R__W (2)

0=R__f (3)

The first equations are the self (i.e., g-g) terms of the influence
equations; the second equations are the equilibrium equations. Next

the cross influence (g-k) functions are written.

+ R, W (4)

If equations (2) and (3) are formally solved for fg and W, and then-

eliminated from equation (4).

u, = [Akg ! er] Agg : Rgr -1 s ug
T T T T (5)
R;r—!r 0 (ov °
=[Gk9 :: X] -”9) - [Gkg} {”9; ' (6)

The matrix X seems to have no importance, so it is discarded. Com-

bining the above, it is seen that Gkg can be found by solving

T T
R G A
g9 { gr kg kg
RT i 0 XT ) = RT (7)
gr | kr :



The matrix Gkg is expressed in the coordinate system of the spline.
The components are transformed to the global coordinate system to complete

the task. Thus the three tasks are

1. Form matrices A R, R

A,
99’ kg’ “gr
2. Solve equation (7) for Gkg‘

kr'
3. Transform to global coordinates.

The Agg and Akg matrix elements are listed in table 5.4-1. The
point with index j, witH coordinates xj and yj are the point of
application of the load, and are always associated with a ''g'' point.
The point with index i is the location where the deflection is to be
calculated, and may refer to either ''g'" points or "k'' points. Thus
the same formulas of table 5.4-1 are used for both Agg and Ak . The values for

the rigidities (D, EI, GJ, and AE) and springs (kx’ ks K, k

Yy ox’ kGy’
and kez) are obtained from SPL|NEi data cards (perhaps using default
ivalues which have béen supplied). Separate formulas are given de-
pending upon whether the i index and j index refer to translations
or rotations. Also separate formuias exist for the three types of
splines ( S=surface, L=Iiﬁear, @=out-of-plane, 1=inplane). When a

zero appears in the table, the term is not available unless the spline

is rigid (i.e., D = @), and a request for these formulas should lead

to an error message.

The Rgr and er rigid body matrices, (table 5.4-2) are simple geo-

metric quantities and are the same for linear and surface splines.



After determining a Gkg matrix, all points in the NASTRAN depen-
dent sets (called m for multipoint constraint, s for single point con-
straint, and o for omit) will be removed using the method of the pre-
sent SSG2 module. If only points of the a set were used, this step is

not needed. In static analysis G will be further partitioned into

ka
sz and Gkr'

The k displacements of the interpolated points must be transformed
~ from the spline coordinates to the aerodynamic coordinates. This can
be accomplished via the basic coordinates. Thus if u, is a three

vector (of displacements or rotations) then

|

= [Taero]T [Ts line] ’uk}
aero , P l spline s

where Taero and Tspline are the coordinate transformations for aero

and spline systems.

Finally, the matrix terms must be packed, using NASTRAN routines,

into a flle of Gkg matrices. ..
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T EI MRy T T T T T TS Rt i
_ (xi xj)(|+]n rij) ! | o ;.ELL
87D | 0 1 By
| |
b I

The second and third columns are used for rigid plates only.

rij = (xi - xj)2 + (yj - yj)2
. 1 for i = j
;. {

'J 0 for i #

~(a),Free-Free‘influence functions for S@

Table 5.4-1

The A matrix terms
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5.5 Aerodynamic Matrix Generator

5.5.1 Introduction

The Aerodynamic Matrix Generator Module will evaluate a matrix
of aerodynamic coefficients in the aerodynamic coordinate system
and the transformationqmatrices needed to convert these to the inter-
polated structural coordinate system. The module is designed to be
~able to do the calculation for a wide variety of aerodynamic theories,

and to accept matrices prepared exterior to the program if necessary.

More than one theory may be used in one computer run. This
allows (for example) the use of a lattice theory for the wing and
piston theory for the tail, or uncoupled lattice theories on differ-

ent areas. It assumes a finite aerodynamic element approach.

Parameters, such as Mach number m, and reduced frequency k, will
be usedAin the formulation of the matrices. One basic assumption is
that for some problems the most efficient way to evaluate the aero-
dynamic matrices as functions Qf the parameters is to

1. First evaluate at a chosen set of values of (m,k).

2. Then interpolate to the desired value of (m,k).

This method will be useful for thg subsonic doublet lattice method
where much time is spent computing the matrix elements and decom-
posing the matrix. The method is not‘desirablé for a simple piston
theory, and thus parametric interpolation will be a choice of methods,

and not tne only method available.

This module will be designed to accept new aerodynamic theories,



As much as possible, the format is chosen such that new theories can

be added to the list with a minimum of labor.

If a restart (i.e. secondary NASTRAN run) is made, as many of
the matrices as possible will be taken from the checkpoint tape.
Thus i% additional parameters are added to the list, and some para-
meters are deleted from the list, only the matrices for the new
.parameters will be calculated. This decision is based upon the
estimate that much time is required to compute the Ajj matrix of

the doublet lattice theory.
5.5.2 Choice of Aerodynamic Theories

Thé choice of which aerodynamic theories to implement will
depend upon the amount of effort required and the desires of the
users. The theories can be divided into two types.

a; Local theor;es ( Newtonian, Strip, Piston)

'b. Interaction theofies (Doublet latfice, Kernel function)
The local theories are, in general, easy to implement and present no
great difficulty; however they neglect some important aerodynamic
effects and are thus not sufficient. The interaction theories have
been developed only for sinusoidal (or steady) motion, and are of

‘two basitc types.

a. source (one sided, e.g. Mach box)

_b. doublet or vortex (e.g. doublet lattice)

The source types are characterized by the need to introduce a

diaphragm, and are of interest primarily in supersonic flow.



The doublet type has been developed primarily for subsonic flow;

however it appears that it can be extended to supersonic flow.

A decision has been made to not implement the theories which

require a diaphragm. This was based upon the following:

a. Alternate methods appear feasible.
b. The diaphragm requires the fntroduction of additional
degrees of freedom, which change as a function of Mach

Number, méking the implementation more difficult.

The theories which are recommended for implementation are shown
in Table 5.,5A. Additional discussion is presented in Appendix G. Spec-
ific recommendations for each theory are as follows:

1. Modified Newtonian Theory

A Newtonian Theory using modified stagnation pressure coefficients, and

which can be applied at large angles of attack, is recommended.

2. Piston Theory

Third order Piston Theory including trim angle of attack effects
should be used. It is valid for arbitrary camber distributions and

control surface configurations.
3. Modified Strip Theory

The NASTRAN version of Strip Theory should include a parabolic
camber mode and an aerodynamically balanced control surface (with tab).
Modifications should include an arbitrary circulation function, var-
iatioﬁ of the local 1ift curve slope, variation of the aerodynamic

" center location, and variation of the '‘three-quarter chord" neutral
point. All modifications will be under user control via input data

tables. Default values corresponding to 2-dimensional'in:ompressible
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flow theory will be provided.
L. Doublet-Lattice Method

The Doublet-Lattice Method will accommodate arbitrary configur-
ations of interfefring surfaces in subsonic flow. It may be regarded
as a typical method in which the aerodynamic degrees of freedom are
motions and pressure at user-selected fixed points (finite element
viewpoint). Provision will be made for two planes of syﬁmetry or anti-

symmetry.

5. Supersonic Doublet-Lattice Method

It is recommended that the doublet-lattice method be extended to the
supersonic case. The Kernel function has been derived, but the method

is undeveloped.

6. Body Interaction with Surfaces

The use of'doub]ets along a line to represent the lift and side
force on bodies is being developed (see Rodden, Geising, and Kidlmdn,
reference 5.5-1 at the end of this section) to include interference with
lifting surfaces. The method is considered to be an extension of the

doublet-lattice method.
5.5.3 Aerodynamic Degrees of Freedom

Two sets of degrees éf freedom will be introduced. Each aero-
dynamic theory has a set 6f degrees of freedom which are best for.that
theory. In addition, there may be another set of degrees of freedom
which ié best suited for interpolatioh to the structure. Both sets

and the transformation matrices will be used.
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The "j''-set is a set of degrees of freedom best suited for aero-
dynamics. The displacements wj, may include downwash velocities, pitching
velocities, angles of attack, camber motions, or any other dimensional or
dimensionless variable. The forces fja, may include pressures, momenﬁs,
generalized forces, may have dimensions, or be dimensionless, and may act
at different locations than the displacements wj. What is required is
that there is a non-singular matrix Ajj’ determined by the aerodynamic

theory such that

oy =g Ayt W
The matrix Ajj would be computed directly by the doublet lattice theory,
and its inverse would be computed directly by the local theories. The
terms of Ajj (or Ajj-]) will depend upon Mach number m, and reduced fre-
quency k, and perhaps upon other parameters. Thus the 'j''-set defines

degrees of freedom which-will depend upon which areodynamic theory is used.

The “k''-set is intermediate between the structural degrees of free-
dom and the ”j”-set. The displacement and forces must be consistent, such
that the product of two corresponding components of force and displacement
represents work. The displacements must be linear or rotational motions on
points of the structure which can be found by interpolation from the struc-

tural degrees of freedom, (see Section 5.4, Geometry Interpolator);

The transformation from the "k'-set to the '"j''-set will, in general,

be singular, with the '"j''-set displacements dependent upon the ''k''-set by

Wi o= Dy Uy (2)
a a



As an example to illustrate [Djk] and [skj] let

u

{uk} = %922 be the normal translation and rotation at the control point.
Y

{wj} = {az} be the angle of attack at point (2)

ay _ rea@
{fj} = {fl}

the normal pressure at point (1)

the normal force and moment at the control point
illustrated below '

/,7l *— //7' < v
\a; ) \‘N 6Y
-n—-xt-a-
XZ .
Then
6 X X,k
- - z 2 A = - i l<' i _g—- -
% = 6y Ty Gy ‘ 6Y 'Yzt R eY - W
a _ . £9
FZ - S f] L e P o (5)
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a a '
My S (§)
so that
- s
5,1 = |-zg5-- (7)
kj | le
. [ X,k
.k . 2
[Djk] i+ !1+. 3 :] (8)
5.5.4 Generation of Aerodynamic Matrices
The code to compute the S, ., A.. and D., matrices will be different
ki’ "jj Jk

for each aerodynamic theory. The format of the output will conform to

the following rules.

.need not be so.

There is one real matrix Skj’ which is usually ‘'diagonal'', but
It is '"diagonal' in the sense that non-zero

elements are in rectangular partitions along a sloped diagonal
of a rectangular matrix.

There is one complex matrix Djk’ which is the value of D.k for

reduced frequency, k = 1. For other values of reduced frequency

-

N (k) = Re[DJ.k (k=l)]+ I@[Djk (k=1)].k (9)

is also usually '"'diagonal''.

The aerodynamic matrices are eifher a single output, or a list
of outputs. The list format is required if more than one theory
is specified or if more than one set of (m,k) values is specified.
The matrices will be either Ajj-1’ or the decomposition products

of Ajj’ whichever is directly computed by the theory.

P



The output is in a form suitable for use by the Aerodynamic Matrix Processor,
or in the case of single output only, it can be used in any matrix oper-
ation. The calculation should be efficient for both simple local theories

and for complex interaction theories requiring parametric interpolation.

The basic flow chart is shown in Figure 5.5-1. When symmetry is spec-
ified on the AER# bulk data card, some degrees of freedom on the plane of
symmetry may need to be deleted. For example, when using doublet lattice,
remove all aero degrees of freedom in the plane of symmetry for a symmetric
condition, and make no changes for antisymmetric. This operation is like
SPC. The Skj and Djk matrices are the result of adding the matrices computed.
for each theory, and are independent of (m,k). Since the internal indices
are Sfrictly increasing (see Section 5.2.2 for internal indices of k and j
sets), these additions are actually appending to the end of a compiled matrix.
A list of (m,k) values for which the matrices are to be compiled has been
user supplied on ﬁKAEﬁﬂ (or AER#) bulk data cards. The details of the comp-
utation of.Ajj will depend upon the choice of theory; see Section 5.5.5 fOf
the details of .the subsonic doublet lattice method. The format of the out-
put will either be a matrix list, or a matrix depending upon the value of a

parameter in the module call.

5.5.5 Details'for the subsonic doublet lattice theory

The subson?c doublet lattice method has been chosen to illustrate how
the Aerodynamic Matrix Generator Module will be written. This method has
been chosen because it contains all of the features‘which need to be illus-’
trated. The mathematics required for the method have been detailed in the

literature by Rodden, Geising and Kalman, (See Reference 5.5-1).



There are many algebraic steps, which are summarized in Table 5,58,

The choice of the u degrees of freedom for the Doublet-Lattice method
is somewhat arbitrary. It is possible to use one normal displacement
and a rotation per cell, or to use two normal displacements at different
points. The results would differ only if there were substantial curvature
within the aerodynamic cell. The method of two displacements is chosen
since there is a distinct advantage for plotting, and there is a chance
Qf inaccuracy when interpolating slopes at points near the structural grid
points. Another choice is whether to use fixed locations (say, the 4 chord,
and 3/4 chord of a box at midspan) or points which depend upon parameters
(the cénter of pressure and the downwash center). A decision was made to
use the latter, since this will reduce the density of the Skj and Djk matrices,
and it can be guaranteed that these points will not coincide (even in the
supersonic case). Thus for doublet lattice, the following are chosen.
(k-set)

1. Normal displacement at center of pressure.

2. Normal displacement at downwash center.

(j-set)

1. Normal-wash and pressure coefficient.

For this choice, the Skj matrix for one cell is

fri s 1, |
= |------ f (10)

. lF.:z | 0 |

where S is the cell area. The»Djk matrix is given by
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Ax b l‘ukz

where Ax is the distance from the center of pressure to the downwash center,
and b is the reference length. U, and u,, are in the positive coordinate

system direction, while wj is in the opposite direction.

e

center of pressure downwash center

The Skj matrix will be 6f order 2N by N, where N is the number of boxes.

The 2 x 1 éubmatrices aiong the '"diagonal" are given by Eq. (10), and all

of the rest of the matrix is zero. The area S is output by fhe Aerodynamic
Element Generator. The Djk
diagonal are given by Eq. (11), wfth k = 1.  Note that

matrix is N by 2N. The 1 x 2 submatrices along the

= (cell chord) « (x1 - x0) (12)

where the cell chord is output by the aerodynamic element generator, and
x] and x0 are on the PAER@ data card (default = .75 and .25). The ref-

erence length, b, is on the AER@A data card.

The A matrix is an N x N, and must be computed and decomposed for

each (m,k) pair. The flow-chart for this operation (which is one box in

Figure 5.5-1) is shown in Figure 5.5-2. The basic calculations to compute Ajj
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are shown in Table 5,68, 1in the order in which they musf be evaluated. All
of the needed data is found on the data lists from the Aerodynamic Element

Generator and the PAER# (x0, x1) and AERf data cards.
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Recommended Aerodynamic Theories

Table 5.5A

Theory

Range of Application

Status

Modified Newtonian

a. M> 1, Ma >> 0

b, M>0, a >0
stall

Fully developed

Piston Theory

a. M>1, k>0

b. M >0, Mk >> 1

Fully developed

Modified Strip
Theory Including

Camber, Control

Surface, and Tab.

M>0,k>0

Fully developed

Subsonic Doublet .~

Lattice Method

M<1, k>0

Well developed

5.

Supersonic Doublet
Lattice Method

M>1, k>0

Undeveloped

Body Interaction

with Surfaces

M<l1, k>0

Being developed
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do forn = -e, 0, +e

B = (1-42)%

Axs = chord of sending box + b

e = semi-width of sending box)% b

Y, < dihedral angle of sending box
As = sweep back angle of sending box
X = (xr - xs)/b

;'= [(yr - ys) cos Y, + (zr - zs) sin Y ] /b

Ny

= ["(Yr - YS) siny, + (z_ - zs) cos ¥, ] /b
Y, = dihedral angle of receiver box
T1 = cos (Ys - Yr)

—rl(ﬁ) =[G -m2ez2]d

2

R(n) = [(;'- n tan AS)Z + Bzrlzli

ul(ﬁ) = (MR - x + y tan AS)/BZr1

k(ﬁ')=Tl-k
1

I(M =1 (u, k) See Appendix A of ref. 5.5-1 for details

! o of how to evaluate the approximate value

of the functions using finite series

LM I, k) approximation.
KM =-1 - exp (~ik u )Mr /R(1+y 2)3%

1 1 11 1

= . 1 2_ 2,52 2v3 s
Kz(ﬁ) 312 + lkl exp ( |k1u1)M F /R (H-u1 1% + exp( tklul)Mr1
[(1+u 2)B%r 2/R2 + 2 + Mr u /R]/R(Hu 2)3
1 1 : 11 1

KM =-~1-(x-n tan A_)/R

10 s

Table 65.5B

Formulas to be evaluated for the doublet lattice method

(From Rodden, Giesing and K&lman)
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TIM =7 [Zcos (yy-v) + G- sin (v, - v)]

(1)
(2)

(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

(12)
(13)

(14)

(15)

(16)

a7

(18)

(19)

(20)



do for n = -e,0,+e

Kzgﬁ) =2+ (x -7 tan AS)(Z +Bzr12/R2)/R (21)
PI(FD = {Kl exp I-ik (x - n tan As)l -K10 % Tl (22)
_ L (T -

PZ(FD = le exp { ik (x - n tan AS)] K20 } Tz* (23)

A = [P (-e) - 2P (0) + P (e ]/Zez (24)
1 1 1 1 ]

B = [P (e) - P (-e) ]/Ze (25)
1 1 1

c = P (0) (26)
1 1

A, =[P, 00 - 22,0 +P (o) |/2¢2 (27)
2 2 2 2

B = [P (e) - P (-e) ]/Ze (28)
2 2 2

C =°P (0) (29)
2 2

F = ; tan”! §%§%§%Ey—‘ , see ref 5.5-1 if |z| is near zero. (30)

Dors is evaluated using steady vortex, with Prandti-Glauert (31)

transformation, :

Ax ' g :
- s T2 _ 32 Ew )
DIrs ( 8 ) :[(y z°) Al + yBl * c1] F e+ (%Bl * yAl) fog
2

- N2 .=
(y-e”+2" . (32)
(? + e)z + ‘2'2 1
‘ Bxg { T2, T2 by !
D = — [ (y2 + z2)A + yB + ¢ ]F + ——
2rs © g R RS

({(;u + 207 + (32 - Eﬁ)e] A2 + (y2 + 2% + ye) 32 + (y + e)tz)

l N
- — — (';z * ‘2'2)7 - (;2 - ?)e] A + (?2 + 22- 7e
(y-e)? + 22 ([ .2
B+ (7 - e)c )} (33)
2 2
(Ajj)rs = DOrs + Dlrs * Der (34)
Table 5.58

(Con;'d)
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Ceer )

Symmetry?

Yes

Modify the degrees
of freedom

F

Compute (or Input)
Skj and Djk

More

-~ Yes

Theories?

Choose (m,k) from list

Cngutegior Input)
A}j or decomposition
Products of A,

JJ

More

Yes

Theories?

Yes

(— Exit )

Figure 5.5-1

Aerodynamic Matrix Generator



(e )

Choose receiving box

<

Y

Choose sending box

Compute *(A,
JJ rs
for antlsymmstr!c images

, hegative sign

Locate image
of sending box

images to
Process?

Store resultant (A,.)
jj'rs

more Yes
sending
boxes?

more
receiving Yes

boxes?

Decompose Aj' into

triangular factors

-
(: Exit :)

Figure 5.5-2

Doublet Lattice with planes of
symmetry or anti-= symmetry, Cal-
culation of A;. for a single Mach
number and reéﬂced frequency
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5.6 Aerodynamic Matrix Processor

The purpose of the Aerodynamic Matrix Processor is to produce aero-
dynamic matrices referred to structural or modal coordinates. |t does
this by using the aerodynamic matrices produced by the Aerodynamic
Matrix Generator, the interpolation matrices produced by the Geometry
Interpolator, and the modal transformation produced by the Real Eigen-
value Analysis Module. The Aerodynamic Matrix Processor will be
able to act upon the lists of matrices associated with parameters, or

with matrices associated with a single parameter value.

The matrices required for the direct approach are:

[9,,] = 16,15, ;10,17 [0, 06, ) (1)

[0, = [6,,1705,;10A; ;17" [0} ] (2)
T -1

[05) = [6,,17I5, ;1A ;) (3)

Qaa is needed in all problems, Qae is needed when extra points have been
referenced by the Aerodynamic Matrix Generator, and Qaj is needed when
gust forces are introduced. The corresponding three equations for the

modal approacH’are

. Tre 1T -1 o
[;;1 = Lo, 17161 15,10, 17 Do TG, 10, (8)
o] = 10,1716, 17I5, ;10A, 17 [0, ] (5)
[Q; ;1 = 0,,1716,17[s, ;11 ;17" (6)

The data for Ajj-‘ may be in the form of decomposition products.



For data recovery, when the aerodynamic matrices have been inter-
polated, it will also be necessary to interpolate [Ajj]-l before multi-
plying by the downwash. This is needed to find the pressures due to
structural displacements, extra points and gusts. The matrix Ajj-] will
be formed from the decomposition products only when required for output,
since this is a fime consumming job. Thus if a no aerodynamic data re-
covery is made on a NASTRAN run, and the job is restarted to request
output, this Aerodynamic Matrix Processor Module will have to be re-executed

to produce A..-l.
JJ

The Aerodynamic Matrix Processor will compute a list of desired matrices
for each required data block. The decision of whether to cgmpute the direct
or modal form will depend upon whether the ¢ matrix is listed as an input
or has been purged in the DMAP module call. The choice of which of the
three matrices from equation 1-3 or 4-6 to compute will depend upon the
status qf the output data blocks in the DMAP module call. In all cases, the
order of calculation sho;ld be from left to right. The order of the matrices
on the output lists (when there is morevthan one m,k pair) is the same as

the input list.
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5.7 Aerodyhamic Matrix Interpolator

The Aerodynamic Matrix Interpolator Module is used to interpolate
the aerodynamic matrices as functions of the parameters Mach number (m)
and reduced frequency (k). The purpose of interpolation is to save time
in computing aerodynamic matrices; thus it should only be used with
theories like doublet lattice, which require much effort to compute and

reduce the matrices.

The method to be described involves the use of linear splines. An
alternative application of surface splines is described in Appendix J.
A two-dimensional lattice of these splines is used, where the independent
coordinates are m and k, see Figure 5.7-1. The computation is divided
into three phases. Some aerodynamic calculations (for example, solving
flutter with the p-k method) will require the evaluation of the aero-
dynamic matrices for several values of one parameter (say, k) and fixed
values of the other parameter (say, m). The algorithm used will involve
looping} with one parameter (say, k) changing in the inner loop. The
module will be programmed such that either parameter may be varied in

_the inner loop. The three phases of the calculation are:

1. Preparation. Much of the calculation, as will be seen later,
needs to be done only once. These calculations are in module AMI1 (Aero-
dynamic Matrix Interpolator-1), which will be placed in the algorithm

just after the Aerodynamic Matrix Processor.

2, Outer Interpolation. Those calculations involved in interpola-
tion using the first parameter will be in AMI2., This module should be

placed in the outer loop of the algorithm.



3. Inner Interpolation. The final interpolation will be done in
AM13. This calculation should be efficient, since it is likely to occur

most often. This module will be placed in the inner loop.

This arrangement can also be used if there is only one parameter (for
example, aerostatics in which the only parameter is Mach number). Also,
the parameters need not be Mach number and reduced frequency. Reynolds
number could be substituted as far as the Ma;rix Interpolator Module is
concerned (of course, the Aerodynamic Matrix Generator Module would have

to be programmed to output matrices at several Reynolds numbers).
5.7.1 Spline Interpolation

The one-dimensional spline is a classical beam, of uniform property
and infinite length. Analysis by the three-moment method is known to

be very efficient, and will be used.

To spline a function F(x), given F(xi) - Fi for i =1, N, divide
the abcissa x into the N-1 closed intervals and two infinite end inter-

vals (See Figure 5.7-2). The slope at the right end of a closed inter-

val is given By

d4F Fi - F._] 1 _
(-a;)i = -)-(-i-—-_—-—)-(—:—-—‘- + 3- (xi-xi_]) (ZMi'i‘Mi_l) (l)
M, = (sz/dxz)x=x.

The slope at the left end of the interval is given by

D.IQ.
xXim
e
[}
x|_m
b
I 1
Xl T
t
ONI—A
—
x
hat
[}
=X
e
—————
=
+
+
N
4
-
—
N
—r



Eliminating the slope (dF/dx)i between (1) and (2), we get the three-

moment equation:

(xi+l-xi)(Mi+]+2Mi) + (x;-x, RCLI ) F F. F.-F,

P+l i i-]
— = (3)
6 - 0 IS et TR e I

Equation (3) for i =2 ... (N-1), along with the end conditions M, =

MN = 0, gives N-1 equations in N-1 unknowns M After solving

2 LI Y MN- 1 -
for the moments Mi’ either equation (1) or (2) can be used to solve for
the slopes. An efficient algorithm for solving these equations is shown

in Figure 5.7~-3.

The function F(x) can be written in a closed interval

LA
x
A
x

F(x) = (‘l-3x2 +2;<-3)F(>fL) + (3x2 -2;3)F(xu) + (xL-xU) (x-2x2+x3) -g{- (xL)

- ) G210 G Gy (%)

X =

In an open interval (the right,for example)

X < X< o»

F(x) = F(x) + (x-x) $E (x) (5)
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5.7.2 Use of Splines for two-dimensional interpolation .

Splfnes may be used to interpolate in a two dimensional table.
Assume that a function F(m,k) is known for a set of values of m and k.
For example, F may be a term in an aerodynamic matrix, m the mach number
and k the reduced frequency. The problem is to compute a value of
F(m,k) for other values of (m,k) which may even lie outside the range of

the data; i.e. involve extrapolation.

The first task is to compute a list of all the values for m and k.
Call these mi(i=l, 1) and kj(j=l, J). Then list all of the known values
of Fij = F(mi, kj)' If the value is unknown, a special symbol indicating

“funknown!' is used.

Second, construct linear splines through the known data points, for
fixed kj(j=l, J), which will produce tentative values for the unknown

ordinates Fij’ and values . of the slopes (BFlam)ij .

Next construct linear splines through the known data points, for
fixed mi(i=l, I) which will produce other tentative values for the unknown

ordinates Fij’ and values for the slopes (8F/3k)ij .

-

The values for the ordinate at the (mi, kj) points where F was not
given will be taken as the average of the two tentative values. Thus, at
every point (mi, kj) (i=1, 1), (j=1, J); the values Fij’ (BF/Bm)ij, and

(SF/Bk)ij are now known.

Let S stand for either m or k. Define interpolating functions fL(S),
fu(S), gL(S) and gU(S) which depend upon the end points of the interval.

These functions are cubic polynomials associated with beam interpolation.
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Let the interval be §,< S< §

or S, (upper limit) may be plus infinity. Then

for

,SL = finite

for

S, = - ®

L u

where SL (Tower limit) may

for for
SU = finite SU = + o
5.~ \?2 s, -5 \?
fL=3(_Sy:§-) 'z(su-s) fL=1
SuToL u L
S-S 2 S-S 3 :
L L
f, = 3| ) -2l = ) f =0
o) ) |
- /5,5 S,.~S
e U | - e
9 =(sy S'-).(s -s)z (s =3 5 9 =375,
U U i
- [/s-s 2 [s-S, \]
L L
9y -(sysy) (s =5 ) (s 3 ) 9y =0
~ [\U U ]
f, =0
fy =1
Not allowed
g =0
gu -(SU-S)

be minus infinity
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The interpolated value of the function can be found in any interval,

m <m<m k, <k < kU by

L u’ L ’

Fmk) = X X% Fm k) £, £ (k) + 50 (m k) g (m) £, (0] )

+ 3 (n k) £, (m) g;50)

In the above sum,when m or k goes to plus or minus infinity, thé
product of interpolating polynomials will vanish,-hence_these terms do not
enter. Along any boundary, the values of F, 9F/9m and dF/3k depend only
upon the end points of that edge segment, so that the same limit is obtéined
for the rectangles on both sides .of a boundary; i.e. the function F and

its derivatives are continuous.

If many interpolations on k wiil be made for a fixed value of m,
then the formula can be broken into two steps. This is particularly
useful in interpolation for the p-k method.of flutter analysis, and in
fréquency response studies. In the first phase, find m and My such

that m <m< My and then compute for i =1, J.

oF
F(m, k) = igz:,’u [F(mik ) f; (m+ 50 (m ok )g; (m)] (7
and
i=L,U
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These 2J terms are stored for each matrix term to be interpolated. In
the second phase, which is programmed within the inner loop, find kL

and k,, such that kL < k < k,,, and compute

U v’
Fmk) = L [Flnk ) () + 5 (mk;)g; ()] (9)

j=L,U

5.7.3- The three phases of the module

AMII; The data from which the interpolation will be made has been
output from the Aerodynamic‘Matrix Processor. It consists of a list
of.parameter'péirs'(m, k) plus the aerodynamic matrix (modal or physical
coordinates) for each set of parameters. This list has been sorted such
that all of the parametric values of a given matrix term are together,
and the identically zero terms are eliminated. Thus the input to AMII

contains

NPARAM  (the number if parameter pairs)

myoky

maska
. a list of parameter paifs

i, indices of the first nonzero terms

Qf j a list of values for the first non-zero matrix term
1 4

i, J indices of the last non-zero terms

Q a list of values for the last non-zero terms
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The AMI1 module does‘the cross-splining in both directions and outputs

a list. This liﬁt specifies first the number of m's and k's. The pro-
duct of these numbers will be greater than the number of input pairs if
there were imbedded blanks in the parameter pair set, (See Figure 5.7-1).
Next is a list of the parameters m, and kj' Then a list for each non-
zero matrix term of Q, 3Q/9m , 3Q/3k for every parameter pair. Thus the
“output list of AMIl contains the slopes needed for interpolation. Module

AM!1 needs to be executed only once.

AMI2. This phase of the calculation uses equations (7) and (8) to
reduce the number of Mach numbers to one, leaving only lists of Q and
9Q/3k. An alternative is to interpolate with respect to the other para-
meter, which can be done by the formulas obtained by interchanging m and
k in equations (7) and (8). The output list is similar to AMI1, except

only one parameter is used.

AMI3. This phase of the calculation uses equation (9), and outputs

a matrix which could be input to any desired module.

3
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A possible point where matrix

K A terms are unknown
Parameter values
for which matrix
terms have been
- O o' computed.
3
‘///f' Linear spline
- A L )
2 A 4 b 4 A
- Fat P .. O
1 A4 " A 4
l | | .
m m m m
1 2 3

Problen: Find Ffn,k) for all =, k; ifF{,k) is known at the circled
points.

Fig ue 5.7-1
Parametric Interpolation
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Figure 5.7-2

One-dimensional Spline
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Figure 5.7-3 An Algorithm for

Solving the Three Moment Equations

INPUT X, < Xy < el < Xy (inequalities will be checked)
Fio Fou vens By
OUTPUT M,, M eey M M= d?f
1’2’ * N dx?
9], 0,5, «-es GN 0= %;-

. INTERMEDIATE §,, ¢ ..y O

1> 8o - (6 can be stored in same storage as 9,
RESULTS

and b can be stored in same storage as m)

by, b,, ..., b

1> 722 N

CALCULATIONS - see next page.
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,<:7. Enter :)
Y

51=61=Ml=0
N= /N\ N <) D-Grror Exit)
Y
MN =0

if x,x, <0 error exit

N>2

Do for i =2, N-1
if x, T 0 , error exit

‘ i+l

§p = @bk mx ) - 8 bx
F..o~F.  F.-F

S L I i - :

by = Si-1 biar By

)%)

i-1

My-i = Onei (6 Byo i Myayog Ooggaixy-y))

(XX ) (2M
Xatl-i N~ - N+T=i “N-i

g

F =F ) .
91 = xg - x: (x2 xl) M,

2
’l F igure 5.7-3

(:; Exit _<:> (Cdnt'd)

N+1-1MN-1)/6

~-102-



5.8 Flutter Analysis

Flutter analysis is the solution for velocities, frequencies,
density, etc., for which the system has a steady sinusoidal response
with no excitation. The flutter point is on a boundary between sta-
bility and instability. One of the features of advanced unsteady aero-
dynamic theories is that the aerodynamic forces are not known except
for sinusoidal motion, so there is a degree of uncertainty in the esti-

mates of the amount of stability for parameters near the flutter boun-
dary. There are several emthods of analysis, of which two will be
implemented.

1. The k method.

2. The p-k method.

The matrix problem for sinusoidal equilibrium with no forces is
2
[-sz + iBw + K - B%— Q E%-, %—) ] {u} =0 (1)

The complex matrix Q has been generated by fhe Aerodynamic Matrix Pro-
cessor. Typically, the speed of sound, 'a', js a weak function of p
(standard atmosphere). In NASTRAN, the structural damping factor,
(1+ig), is included automatically in K by the direct Dynamic Matrix
Assembler, see Step (9) of Section 3. The problem is to find values for
V, w, and p for which a non-zero vector, {u }exists. Thus the problem
"is similar to an eigenvalue prob]ém, but it certainly is not in canon-

ical form.

The k method treats the aerodynamic matrix as a mass term and re-

sults in
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[(M + —2%; Q(k,m)) p? + Bp + k] {u} =0 (2)

where the eigenvalue
p=o+iw=iw (l--'—%) (3)

the Mach number m = V/a and the reduced frequency k = bw/V. The p~k method

treats the aérodynamic matrix as a stiffness and results in

[Mp2 + Bp + (K-p -ﬂ‘—:—a—z- Q (k,m))] {u} = o (%)

In both forms a value of k and m must be selected before an eigenvalue
can be found. Thus the eigenvalue is a function p(k,m,p). Solving

equationv(3)

w = Im(p) (5)
5 =25 ®

Thus both w and E'become functions of the parameters (k,m,p). In Qrder

to be a valid solution

0 = B ~ (7
g = 9 (usually = 0) (8)

In equations (7) and (8), the left sides are computed from equations (5)
and (6), and the m and k on the right hand side of equation (7) are the
values selected for computing the eigenvalue. Thus the solution of the

flutter problem will require some iteration to find consistent solutions.
58
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5.8.1 The k method.

The k method of analysis uses the aerodynamic mass formulation,
equation (2). It is a very efficient method when the matrix Q does not
depend‘upon Mach number m. Thus the eigenvalue can be found without a
choice of m, and then equation (7) can be used to solve for m. Equation

(8) is solved by plotting g (equation (6)) versus V = bw/k.

A flow chart is shown in Figure 5.8-1., |If more than one Mach number
is specified, then the analysis will be done for every m. The method is
to compute eigenvalues for a list of values of m,k,p. The p value sel-
ections are placed in the inner loop since p is a simple multiplier of
the aerodynamic mass matrix, thus saving time. The number of eigenvalues
extracted is controlied by the user, and for each eigenvalue (p), the fre-
quency (w) and dampingl(a) will be computed. A recommended method of eigen-

value extraction is described in Appendix H.

The module output consists of tables of eigenvalues, eigenvectors,
frequencies, and damping fac}ors, which can be selected by the user for
output by the Output File Processor. Usually the user will request V-g
and V-w plots; where p and m are held fixed and k varies; lists in this

format will be prepared by this module for the XY plotter.
5.8.2 The p~k method.

The p-k method (see Appendix F) is designed for use when iteration
is required to solve the consistency equation (equation (7)). It uses
the stiffness formulation (equation (4)). The procedure is, first, sel-

ect values of m and p, then guess a value of k, and solve (approximately)
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for the eigenvalue, p. A new estimate for k is obtained by solving

equation (7),

b w(k_,,,m,p)
= Old (9)

new ma

The process is repeated until convergence occurs. A recommended method
of eigenvalue extraction that convefges simultaneously on k and p is
described in Appendix |. A flow chart is shown in Figure 5.8-2. A

list of p's and m's is supplied by the user, as well as the desired num-
ber of eigenvalues. The initial estimates of k are obtained from a
previous solution for different values of m and p.> The initial esti-
mates will be automatically generated in a series of solutions (sub-
cases) for different values of p and m by taking the converged values
of k for the closest previous point in the p,m plane. The initiai vaiues
for the first solution in the series will either be provided by the user
or, in the case of a modal formulation, be evaluated from the structural

vibration modes.

The module outpuf for the p-k method consists of tables of eigen-
values, eigenvectors, frequencies and damping for converged (i.e., con-
sistent with equation (7)) solutions. Usually, the user will request
V-g and V-w plots} where p is held fixed and m varies; lists in this for-

mat will be prepared for the XY plotter.

5.8.3 NASTRAN Implementation.

It is not desirable to incorporate all of the flutter calculations

-106-



in a single module because of the technical NASTRAN requirement that
checkpoints (i.e., points where tidy exits can be made from the program)
can occur only after a module has been completed. It is shown in Section
5.7 that the Aerodynamic Matrix. Interpolator can be separated into three
phases. Phase 1 is preparatory to interpolation; phase 2 interpolates
with respect to Mach number; phase 3 interpolates with respect to reduced
frequency. This separation is useful for flutter analysis because the

different phases can be placed in separate modules.

Figure 5.8-1 indicates the recommended sequence of module calls for
the k method. The Aerodynamic Matrix Interpolator is separated into two
modules. The calculztion can be checkpointed after any eigenvalue extrac-

tion for a particular set of p, m, and k.

Figure 5.8-2 indicates the recommended sequence of module calls for
the p-k method. The third stage of the Aerodynamic Matrfx Interpolator
is incorporated into the Flutter Analysis Module in order to minimize
data £ransfers between high speed and low speed memories. Dummy modules
are introduced in order to permit checkpoints between different values
of m and p and also between different eigenvalues with the same values

of m and p.
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Module:

<(: Enter j)

AM11

Select from a list of m's
First stage of matrix interpolation

r

AMI3

Select from a list of k's
Second stage of matrix interpdlation

h

Flutter
Analysis
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Select from a list of p's
Form total mass matrix
Extract desired number of eigenvalues, p

No

No

Last k?

No
Last m?

Prepare data for output
includes V-g and V-u
plot for each p and m

v
C Exit )

Figure 5.8-1

Flutter analysis by the k method



Module:

AM|2

Dummy Module

Dummy Module

( Enter )

Select from a list of m's
First stage of matrix interpolation

s
Y

Select from a list of p's

g

Y

Guess an initial value of k

r

Flutter Analysis
(includes AMI3
as a subroutine)

Figure 5.8-2

Flutter Analysis by p-k method

Second stage of matrix interpolation
Form total stiffness matrix
Extract eigenvalue p, and w,g

Compute new value of k (equation (9))

No
k converged!?
_ No
Last root?
No
No

Last m?

Yes

Prepare data for output

(include V-q and V-0 for each o)

Y
( Exit )
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5.9  Dynamic Aeroelastic Load Generator

The function of the Dynamic Aercelastic Load Generator is to calculate
load vectors that will be used in frequency response analysis. The load
vectors will be calculated from two data sources: the standard NASTRAN
dynamic load sets defined on RLGADI, RLPAD2, TLPAD! and TLPAD2 data cards;
and the gust load sets defined on GU§T cards, (see Figure 6-15). The de-

sired combination of load sets will be indicated on a standard DLPAD card.

Four different rigid formats will use the results of the Dynamic Aero-

elastic Load Generator. They are:

2A. Direct Aeroelastic Frequency and Random Response.
3A. Direct Aeroelastic Transient Response by Fourier Integral Method.
BA. Modal Aeroelastic Frequency and Random Response.

6A. Modal Aeroelastic Transient Response by Fourier Integral Method.

For Rigid Formats 3A and 6A, the time dependent load data must be con-
verted to the frequency domain using the approach described in Appendix D.
The user will supply a list of frequencies via standard FREQ, FREQI, or

FREQ2 data cards, at which reéponse calculations will be made.

The data blbcks produced by the module are the dynamic load vector
for direct analysis {Pd}, or the dynamic load vector for modal analysis {Ph}
. " ]

evaluated at the user-supplied list of frequencies. Formal algebraic ex-

pressions for these vectors are

a) Direct Analysis

PS Pa
PR AT G I (ay
d P 0
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where {P: } and'{PZ} are dynamic structural loads and
2 = qle 1T0s, 1A, 17" () (2)
a ka kj ji j

is the gust load vector.

b) Modal Analysis

P P2
o} = {--ib e e (3)
P: 0

where {P?f and iP:f are dynamic structural loads and

U3 = aloy, 1706, 1 I, 1 1A, 17 043 (4)

Since tHe number gf frequencies is presumed to be large and the number
of degrees of freedom to which dynamic structural loads are applied may be
small, the load vectors {P:} , {P:} , and {P?} will be calculated from
the applied load vector {Pj}'(where the'subscript j refers simply to the
subset of all physical points, up, at which loads are applied) by the re-
duction procedﬁre indicated in Section 11.1 of the NASTRAN Theofétical'

Manual. This procedure results in the expressions:

PS v

RN ---i-- = ITy1 P} (5)
Pe

and
: P
S | S

LU e G TR (6)

P
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where [de] and [Thj] = [¢dh]T[de] are computed first.

If rigid formats 3A or 6A (transient response) are selected, the load
vector {Pj} will be a function of time, formed by combining individual

load sets,

Sy _ : k
{Pj} = SE‘, Sk {Pj} (7)

where, if the data are obtained from a TLFAD] card,
Pk} = ALY FL(e-T))) (8)
J kT Tk Jk

or if the data .are obtained from a TL@AD2 card,

k{p'i‘} = '{Ajk} (T)nk (eakt) cos (ank—t' +d>k) (9)

0<t<T, -T

2k Tk

where t = t - le - Tjk .
The formulas for converting equations (8) and (9) to the frequency
domain are given in Appendix D. The value of n_ is restricted to be an

k

integer, greater than or equal to zero, for aeroelastic response analysis.

The gust downwash velocity vector {w?} appearing in equations (2) and
(&) is calcuiated from information appearing on GUST cards, from the velocity
of the veh}cle defined by the Mach numser and the velocity of sound, and from
the geometric description of the aerodynamic elements. More than one gust

may be specified. For each gust, {w?} is the scalar product

-112-



| Wwa N ‘
WS o= WT e . 1
j i (10)
e I . . "
where wj is the gust velocity vector at the aerodynamic element, and nj

is the normal to the surface of the aerodynamic element. The gust velocity

vector at the aerodynamic element is delayed in time by an amount T

kj
from the specification on the GUST card, i.e., A
\ n -jwT,
ng(w) = w9 ™' jk (1)
The time delay is computed from
Xj - X0 )
T, = (12)
Jk . g
Vp + Vf ec
where
v is the velocity of propagation of the gust disturbance relative
P to the fluid.
Vf is the velocity of the flow.
Xo is the gust origin specified on GUST card.
X is the X-coordinate of jth aerodynamic downwash point in the gust

coordinate system specified on the GUST card.

er is the direction cosine of the aerodynamic X-axis on the gust X-
axis.

If %P is specified as a function of time, a transformation to the fre-

quency domain will be performed in the manner indicated earlier for dynamic

structural loads. If more than one gust is specified, the vectors {wjg}

are combined using the load combination factors on the DL@AD card.
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The gust velocities are reduced to equivalent aerodynamic load
vectors by means of equation (2)’or equation (4). Two cases are distin-
guished, corresponding to whether the elements of [Ajj]_] are provided 6r
the elements of the triangular decomposition factors [ij] and [Ujj] of
[Ajj] are provided. In eitﬁer case, the elements are stored for specific
values of Mach number, m, and reduced frequency, k ='§%-, and an inter-
polation is made to the gesired Mach number and the desired list of re-

w

duced frequencies, kn = —vﬂ-, where V = am. The aerodynamic load

vector may be expressed for direct analysis, as

ay, _ g
7 = qlo, 1 % (13)
or, for modal analysis as
ay, -_ g

where

q = 1/2 pV%2 , dynamic pressure
. _ T -1

| T T -1 :

The interpolated values of [Qaj] and'[Qij] will be generated by the
Aerodynamic Matrix Interpolator, Section 5.7. The Dynamic Aeroelastic Load
Generator performs the calculations indicated in equation (13), or in equa-
tion (14), and combines the structural and aerodynamic loads by equation (1)
or equation (3). A flow diagram for the calculations performed by the

module is shown in Figure 5.9-1. -~~~ ——
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o«
{

1. Calculate structural load

reduction matrix
[1g;] or [T, ]

Frequency response

Transient

2. Convert structural load vector
{PJ K} and gust velocity components

{W }to frequency domain.

X

3. Combine structural loads

Sy _ k
{PJ. } = Zk: S {PJ. }

Y

k.. Reduce structural loads to
analysis set.

Py*) = 1141 17} or 1P} = [7,.10P,5)

v

.5, Calculate and combine downwash vectors due
to gusts.

) {w 9% = Es v gky
C

2

6. Calculate aerodynamic load vectors

{Paa}=q[Qaj]{wjg}or.{Pia}=q[Qij]{h59}

Y

7. Combine and store structural and aerodynamic
" loads.

’Paa p.2
Pa = {Ps) *{ }0' {Pr} = {Py) *{‘5"}

'
(:7 Exit j)

Figure 5.9-1 Flow Diagram for Dynamic Aeroelastic Load Generator ~115-
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5.10  Aerodynamic Data Recovery Module

The Aerodynamic Data Recovery Module calculates those items of aero-
dynamic data pertaining to aerodynamic elements which the user has requested
for output. The formulas for the different classes of aerodynamic data pro-
duced in dynamic analysis are:

Displacements at aerodynamic control points:

{u} = 6] {u} ()

Aerodynamic motion variables:

o} = [0, 1ed + [0 J0u} + ) (2)

Aerodynamic force variables:
.2 = qla, 17w } (3)
P JJ J
Forces at aerodynamic control points:

) = Iy 106, (4)

The calculations are performed for each solution produced by the

Frequency Response Module or the Flutter Analysis Module.
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5.11 Inverse Fourier Transform Module

The function of this module is to calculate the time history of a
vector of transient response quantities {u(t)} from the vector of frequency
response quantities {u(wn)}, n=0,1, 2 ..., produced by the Data Recovery
Modules. The response quantities may include motions, stresses, internal
forces and aerodynamic variables. The calculation is an approximatfon of

the inverse Fourier transform

-]

fu(®r= 1 f refe™u(w)Hdw (1)
where RL[ ] indicates the real part of [ ]. The user specifies the times,

tm’ at which responses will be calculated via a standard TSTEP card.

The method that will be used is the method described in Appendix D
for frequencies that are not uniformily spaced. It consists of fitting
the frequency response data with a cubic spline and then performing the

integration in equation (1) by exact quadratures.

The steps of the calculation are as follows:

1. Sort each frequency response quantity Uj(wn) into a list increasing
with n. :

2. Perform a cubic spline fit to each U.(wn) by the method described
in Section 5.7 for functions of one éarlable. The result of the

-calculation will be the parameters a s bn., Ci and,dn. in the
representation of the function. J J J J

uj(w)=anj+b.5+c.52+d.c'u'3 (2)

where © = w-wn.
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If the lowest frequency in the list is not zero, it will be designated

w, and the values of the parameters for Wy = 0 will be calculated as follows:

a) |If the quantity is a displacement acceleration, internal force, or

stress:

b].wi

u.(0) = a,, = a,, - —d— (3)
0] 1] 2
bOj =0
coj = bij/Zm‘
dOj =0

b) If the quantity is a velocity

uj(O) = ag; = a‘j - b]jw] (4)
Poj = P1j
cOj = dOj =0

The indicated extrapolation is designed to cope with the awkward sit-
uation that arises when the structure is a free body with singular stiffness
matrix. Under these conditions it is not possible to specify zero as a
frequency, since infinite displacements will result. Nevertheless, acceler-
ations, internal forces, stresses and relative displacements will tend to

constant values at zero frequency, and relative velocities will tend to zero.

e

The va]ﬁeé.of a.,b.,c.andd , are formed into lists (i.e., column
S nj nj’ "nj nj

vectors {anj}’ {bnj}’ {an} and {dnj}) increasing with n > 0.

3. The exact integration formula is given by equation (28) of Appendix
D. It is implemented by the following operations.
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a) Form and store the coefficient matrices [Amn], [an], [Cmn] and

[Dmn] where the elements are

o, iwn+]tm iwntm
Amn =|-it " \e -e (5)

) . iwn+‘tm , iwntm
B . = .tm -ido t P e -t % e (6)
. ) y. 3 iwn+]tm iwntm
¢, = [(2it + 200 t 2+ ibw 2t e -2it e | ()
: 2, 2 3, 3 iwnHtm imntm
D = (-6 + 6idw t + 300 %t -ifw *t e + be (8)

and Awn =00 R Y Wy Woy eess tm = t], t2’ vees M is the row

index and n is the column index.

jw t
Since a very large number if factors e nm

- + 1 si -
cosmntm 1 sin wntm are re
quired, and since the required accuracy is not high, it is suggested that

a special interpolatioﬁ scheme be devised for evaluating the factors.

b) The time history of the jth response quantity is given by

Uity = —p Re(lAg e, b+ (8 106 )+ (o 1e 3+ [0 14, }) (9)

ﬁtm .

c) For ty =0 use, instead of equation (9),

RE (1Ag, I {a, ;b + By Hb o} + Leg e, 3+ 100, 1{d 3} (10)

|-

uj(O) -
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where elements in the row vectors are

Ao = Ao \

By, = (1/72) A 2

Cop = (1/3) b 3 ()
Dop = (l/h)Awn" )

5.12 Aerostatic Pool Distributor

The functions of the Aerostatic Pool Distributor are similar to
those of the Aerodynamic Pool Distributor, Section 5.1. The details

have not been formulated.

5.13 Aerostatic Matrix Generator

The Aerostatic Matr}x Generator performs the same functions for
static analysis that the Aerodynamic Matrix Generator perforﬁs for dynamic
analysis. Specifically, it generates the following arrays for user-
specffied values of Mach number.

a

-1
(o, 1. [s,1, (A1 or (17 {wjg} and [D; ]

These arrays are defined in equations (2), {3) and (4) of Appendix B. The
differences in their definitions between static and dynamic analysis are
that {hﬁg} refers to the static angle of attaﬁk distribution rather than
to gust velocities, and that [Dje]’ which relates angle of attack (and per-
haps other aerodynamic variables) to vehicle velocity components and cqntrol

surface rotations, is automatically generated in static analysis.
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A1l of the arra&s listed above are dependent on the particular aero-
dynamic theory being used. No work with specific static aerodynamic theories

has been done as part of the present study.

.14 Aerostatic Matrix Assembler

The operations performed in the Aerostatic Matrix Assembler are matrix
additions, multiplications, and partitions that will use the standard NASTRAN

matrix subroutines. The operations are defined in Step 9 of Section L.

5.15 Divergence Analysis Module

The operation performed in the Divergence Analysis Module is the cal-
culation of the eigenvalues and eigenvectors of

1

2 a _
[Kdd +Kdd +>\Kdd]{Ud} =0

-

]

2 a . . .
where [Kdd + Kdd 1 and [Kdd ] are generated in the Aerostatic Matrix

Assembler, (see Step 9 of Section 4).

The algorithm that is used to obtain eigenvalues and eigenvectors is
described in Aﬁpéndix C. As suggested in Appendix C, the user will specify
a set of shift points, AOI? 102, Ao3, etc., and the program will find the
eigenvalue closest to each shift point. The origin, A = 0, will often be
used as a shift point, and usually only one shift point will be specified.

The output of the module includes the last trial vector obtained from each

shift point, and all of the successive estimates of A.
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5.16 Aerostatic Load Generator

The Aerostatic Load Generator combines loads from three sources:

a) Structural loads generated in the static portion of NASTRAN,
SSG1, and SSG2.

b) Aerodynamic loads

¢) Loads on extra points, specified directly by the user.

Formulas for combination of the loads are shown in Section 4, Step 11,

for both trimmed and untrimmed cases.

5.17 Static Aeroelastic Response Module

The Static Aeroelastic Response Module solves the matrix equation

by one of two methods selected by the user, [Kdd] is a real, unsymmetric
matrix. For the direct solution option,.[Kdd] is decomposed into its tri-
angular factors and iudi is obtained by forward and backward substitution.
In the iterative solution option [Kdd] is separated into aerodynamic and

non?aerodynamic.terms
_ a _ 1 2
[Kaa! = Kgg 1+ [Kgg * Kyq'] (2)
and the prcblem is stated in the form

Kyy' + Kyg2) {u™ = P} = [k, 21 {u,™ ") (3)
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where {udn} is the nth iterative approximation to {ud}. The advantage of
the iterative solution option is that the matrix which is decompbsed, [Kdd]
+ KddZ]’ is sparce and narrowly banded in comparison with [Kdda]' Sub-
stantial time-saving results for large problems if the number of iterations
is small. The details of the proposed solution method, including conver-

gence criteria, is explained in Section B.4 of Appendix B.
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6. USER INTERFACE

6.1 lnput Preparation and Options.

The addition of aerodynamics to the NASTRAN structural analysis
program will follow the guidelines that presently exist in NASTRAN. The
input will be introduced via control and data cards. The Executive
Cdntroi Deck will provide the basic program to be selected. The Case
Control Deck will choose options of data selection, output control and
methods. The Bulk Data Deck provides all numerical data. 1In order to
describe the input preparation and options, the new Bulk Data cards are
~shown in Section 6.2. Examination of these cards is fhe easiest way to
describe the_tasks required of the user for preparing input and choosing

options.

There are many options in NASTRAN including:

1. Rigid Format, Alter, DMAP. The algorithm used to solve a par-

ticular aeroelastic problem may be one of the nine rigid formats in Table
2-L. These include choices of statics vs dynamics, and of direct vs modal
approaches.  These basic solﬁtion-optidns can be modified with the NASTRAN
ALTER feature for minor changes. The new aerodynamic modules can also

be used with the DMAP (Direct Matrix Abstraction Program) feature to pro-

vide capability not provided in rigid formats.

2. Restart, Checkpoint. Any of the rigid formats can be restarted.
This is useful for checking step by step during the solution, changing to
a new rigid format, requesting additional output and for many other pur-

poses. Restart may be very valuable in aeroelastic analysis, since aero-
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dynamic matrices computed for flutter analysis can easily be used for
other purposes such as a transient response by the Fourier transform

technique.

3. Method. Each of the rigid formats has a choice of methods for
.some of the modules. For example, several methods of eigenvalue extrac-

tion are provided and two methods of flutter analysis are provided.

L4, Aerodynamic Matrix. Several different aerodynamic theories will

be provided automatically, in addition to the ability to incorporate

aerodynamic matrices generated exterior to the program.

5. Matrix lnterpolation; When aerodynamic matrices are required at
many different reduced frequencies (k) and Mach numbers (m), automatic
matrix interpolation between matrices for chosen values of k and m is pro-
vided. The user may ALTER the rigid format to force the matrix to be
-recomputed rather than interpolated when this is more desirable (see

Section 5.7).

6. Geometric Interpolation. The aerodynamic coordinates and the

structural coordinates are not (in general) at the same locations. An
interpolation matrix is computed using either surface (plate-like) or

linear (beam-ltke) splines (see Section 5.4).

7. Aerodynamic Elements. Several different forms of aerodynamic

element cards (defining quadrilateral and cylindrical elements) are

available (see Section 5.2).

8. Oﬁtgut. Avlarge variety of automatic output is provided. The
aerodynamic displacements and forces are available for both output tables

and plots (see Section 6.3 for a list).
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6.2 New Data Cards for Dynamic Aeroelasticity

Samples of the new data card descriptions are shown in Figures 6-1
thru €-15. Most of these cards have been referenced in Section 5, where
their use in the modules is discussed. They have been collected for pre-

sentation together.

The general guidelines followed in the choice and format of the cards

are:

a. All input is (or should be) user-oriented.

b. There should be little redundant information, and if it
exists, consistency checks should be made.

c. The user should be forced to make decisions best left to human
judgement. For example, no default method of choosing aero-
dynamic cells is provided.

d. When a new data card performs a task similar to an existing
. card, the formats should be similar. For example, the format
of the new GRIDK card is nearly identical to the format of the
the existing GRID card.
The choice of recommended data cards for the description of aerody-

namics has been made in a parallel fashion to the NASTRAN structural ele-

ments. Table 6-1 shows the equivalence.

Aerodynamic : Structural
"CAER@! CQUADI
PAER@ i PQUADI
AER@, MKAER@ , MATi
Table 6-1

Bulk Data Cards
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A structural CQUADi (or CTRIAi, etc.) connection card describes the

geometry of an element by referring to grid points. The CAER@i bulk

data card provides aerodynamic cell geometry by referring to grid points,

or to coordinate locations and lengths. The (i) indicates that there are
- several alternative cards. The connection card references a property

PQUADi card which gives data about the element sqch as its thickness. The

PAER@i card gives the parameters of the ith aerodynamic theory, such as

center of pressure location, 1ift curve slope, initial angle of attack,

etc. The PAER@I card refers to an aerodynamic AER# (or MKAER®) card

which provides reference values of air velocity, density, and léngth.

The interpolation between structural and aerodynamic degrees of free-
dom is provided with SPLINEi bulk data cards. (There are three alternate
forms.) These cards allow the user a large range of choice from complete
user control to almost complete NASTRAN control of the setup of splines.

Two alternate forms of SETi data cards are used in connection with the

" splines for selection of structural points for jnterpolation. GRIDK cards
wili be useful when ihterpolation is desired, but no aero-cells have been
defined ‘singe they provide an alternative method tovdefine k-points. This
would be useful for direct matrix input methods, intérpolation for output,
etc. The GUST data card gives a method of introducing aerodynamic loads
due to atmospheric turbulence or to acoustic waves, which can be added to

the strucfural loads provided by existing NASTRAN cards.

6.3 Output.

At present NASTRAN provides a large selection of structural output'

information. Additional output capability will be required for aerody-
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namic information. There are three types of output: tables, drawings,

(structural plots) and curves (XY plots). The aerodynamic quantities

which may be output are:

1. u

k

2, w?
J

. f2
3 J
a

L. Fe

displacements at interpolated aerodynamic control points
displacements of aerodynamic degrees of freedom
aerodynamic forces

forces on interpolated aerodynamic control points.

The preparation of these data require additional calculation (see Aerody-

namic Data Recovery, Section 5.10), since the NASTRAN solution set will be

structural points in the modal or analysis sets.

Output requests are made in case control. They control the operation

of the Output File Processor, XY Plotter, and Deformed Structure Plotter.

The structural quantities and the aerodynamic quantitieé listed above are

output only when requested in case control. The sets of quantities which

-

may be requested will include:

DISPLACEMENT -

SPCF@RCE
BLEAD
STRESS

KDISP
JDISP
KF@RCE
JFBRCE

existing
(structural)

new
(aerodynamic)

The quantities desired will be in sets defined by the user, in the manner

presently used for structural quantities.
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In addition, there will be some automatic output. A flutter analysis
summary will include complex values of eigenvalues, frequencies, and aamp-
ing factors, tabulated versus Mach number, density, and reduced freguency.
The real and imaginary parts of flutter eigenvectors may be displayed on

structure plots, as well as being tabulated.

-|3o-



BULK DATA DECK

Input Data Card CAERgI

Description: Defines a quadrilateral macro aerodynamic element in terms
of four grid points.

Format and Example:

1 2 3 4 5 6 7 8 9 10
CAER@] EID PID Gl G2 G3 Gh NSPAN | NCHGRD | ABC
CAER@1 13 21 12 14 24 22 3 LIST | ABC
+BC lists|of diviision ppints fpr unequal subdivisiop.

H+BC 13 .29 .bb END

Field Contents

EID Macro element identification number (integer > 0)
PID Identification of a PAER@i property card (integer > 0)
Gl, G2, G3, Gk Grid points in order going around element (integer> 0)
NSPAN, NCH@RD The number of equally spaced elements in the spanwise

and chordwise directions within the macro element (int-
eger > 0) or VLIST'.

Remarks:

1. The sero elements will be identified as A.B.C where "A" is the
macro EID, and ''B'", and ''C'' are the span and chord index.

2. The word "LIST" in field 8 or 9, implies that the percent span
and/or percent chord subdivisions have been supplied on continuation
cards. The word "END" stops each list. When two lists are given, the
span list comes first.  Several continuations may be used.

3. A triangular element is formed if G4 = Gl or G3 = G2

k. The element should be (nearly) flat.

o 13.1.2 m‘zz

13.2.1

""" 13.4

_/—””"”’d

Figure €-1
CAER# data card

/
1
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5. The positive direction for element displacements is determined
from the order of connection and the right hand rule.

Figure 6-1

(CONT'D)
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BULK DATA DECK
Input Data Card CAER@2
Description: Defines a quadrilateral macro aerodynamic element in terms
of four points.

Format and Example:

1 2 3 L , 5 6 7 8 9 10
CAER@2 EID PID NSPAN | NCHZRD} ABC
13 21 3 LIST | ABC
+BC CiD1 X1 Y1 Z1 CiD2 X2 Y2 22 DEF
+BC 13.4 | 5.0 0.0 2 6.8 9.5 3.6 DEF
+EF CID3 X3 Y3 23 CiDh Xk Y4 Zh GHI
+EF 27.0 5.0 0.0 2 15.2 9.5 3.6 GHI
+HI lists of division [for ungqual sLbdiviéion JKL
+H1 .13 .29 | .66 END
Field Contents
EID Macro élement identification number (integer > 0)
PID Identification of a PAER@i property card (integer > 0)
NSPAN, NCH@RD The number of equally spaced elements in the spanwise

and chordwise directions within the macro element
(integer > 0) or "LIST".

ciD, X, Y, 2 _ Coordinate system identification number (integer > 0)
. and the coordinates of a corner point (real).

Remarks:

1. The aero elements will be identified as A.B.C where “A” is the
macro EID, and ''"B" and ''C'' are the span and chord index.

2. The word "LIST'" in field 8 or 9, implies that the percent span
and/or percent chord subdivisions have been supplied on continuation
cards. The word "END' stops each list. When two lists are given, the
span list comes first. Several continuations may be used.

" 3. A triangular element is formed if corner 2 = corner 1 or if
corner 3 = corner k.

Figure 6-2 :
CAER® Data Card -133-



L, The element should be (nearly) flat.

5. The positive direction for element displacements is determined
from the order of connection and the right hand rule.

1
]3.'.] 13.‘.3

13.4.3
L__———/L"'/

o 3

.Figure 6-2

(Cont'd)
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BULK DATA DECK

input Data Card CAER@3

Description: Defines a trapezoid macro aerodynamic element in terms
of two leading edge points and edge chord lengths

Format and Example:

1 2 3 L 5 6 7 8 9 10

CAERZ3 EID PID , X‘z Xh3 NSPAN |NCH@RD| ABC
~CAERZ3 13 2] 13.6 8.4 3 LIST | ABC

+BC CIDI1 X1 Yl Z1 CiDA Xk \L Zh DEF

+BC 13.4 5.0 0.0 2 6.8 9.5 3.6 DEF

+EF listls of dilvision points [for unequal supdivisien

+EF .13 .29 .66 END
Field Contents
EID Macro element identification number (integer > 0)
PID “Identification of a PAER@i property card (integer > 0)
X190 Xh3 length of edges, stream direction (integer)
NSPAN, NCH@RD The number of equally spaced elements in the spanwise

and chordwise directions within the macro element
(integer > 0) or "LIST".

ciD, X, Y, 2 Coordinate system identification number (integer > 0)
- and the coordinates of a leading edge element (real).

Remarks:

1. The aero elements will be identified as A.B.C where A" is the
macro EID, and "B', and ''C" are the span and chord index. '

2, The word "LIST" in field 8 or 9, implies that the percent span
and/or percent chord subdivisions have been supplied on continuation
cards. The word "END" stops each list. When two lists are given, the
span list comes first. Several continuations may be used.

3. A triangular element is formed if X or

12 & X453 =0

Figure 6.3

CAER@A3 Data Card -135-



4. The positive direction for element displacements is determined
from theorder of connection and the right hand rule. If point 4 is

1

L l
) —
13.1.1 13.1.3 I
13.6 | 8.4 Ay
i o
I
— | 13.4.3 _l_ x
P
| — 3
!L_ ——"’——"_———
2

farther outboard than point 1, the posutuve Z axis wull out of the paper
in the following sketch.

5. The program constructs a macro element in which sides 12 and 43 are
parallel to the flow. : .

Figure 6-3

(Cont'd)
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BULK DATA DECK
Input Data Card CAER@6
Description: Defines a cylindrical aerodynamic macro element in terms

of a forward point and a length in the airstream direction.

Format and Example:

1 2 3 4 5 6 7 8 9 10
CAER@6 EID PID CiD X1 Yl Z1 AX } NCELLS | abc
1 19 0 1.7 3.5 6.219.5 LIST ABC
+bc lidts of dilvision points for une&ual subdivisilon
+BC .16 .35 .70 END
Field Contents
EID Macro-element identification number (integer > 0)
PID Identification of a PAER#I property card (integer
.>0)
ciD Coordinate system identification number for locating

forward point (integer > 0)

X1, Yi, Z1 Location of forward point in coordinate system CID,
(real)
AX Length of cylindrical axis, in direction of air

flow (See AER@ card for direction) (real # 0)

NCELLS Number of equally spaced element subdivisions with-
in the macro, integer > 0 or "LIST". ‘

Remarks:

I. The cylindrical elements will be identified as A.B where "A"
is the macro EID, and B is the element.

2. The word "LIST" in field 9 implies that the unequal division

points have been supplied on a continuation card. The word END stops
the list.

Figure 6-4
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BULK DATA DECK

Input Data Card PAER@i

Description: Gives properties for aerodynamic theories.

Format and Example:

1 2. 3 b 5 6 7 8 9 10
PAER@i PID TID . ol list of| parameters .|. .
PAERS3 6 9 .71 .68
Field Contents
PID Property ldentification numberv(referenced by

CAER@i cards).

TID Theory identification number (aero cells with
different TID's are uncoupled)

- « . parameters . . .A list of parameters whose format depends upon
_the theory.

Remarks:
1. Fields 4 thru 9 and continuation cards may be used to input

parameters to the theory, such as 1ift curve slope, center of pressure,
etc. This sample shows the required format for all theories.

Figure 6-5

PAER@i Data Card
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Input Data Card PAER@]
Descr[ption:

Formaf and Exgmple:

BULK DATA DECK

Gives properties for DOUBLET LATTICE method.

L 5 6 7 8 9 10
o
PAER@1 PID TID X@ X1 0
PAER@I 1 9 b5 .95
Field Contents
PID Property identification number (referenced by
CAER®)
TID Theory identification (aero-cells with different
TID's are uncoupled)
Xg Center of pressure in fraction of box chord, (real)
Default X@ = 0.25
X1 Downwash center in fraction of box chord, (real)
Default X1 = 0.75 '
% Initial angle of attack (real).
Remarks:

1.

Figure 6-6

 PAER@1 Data Card

If symmetry is desired, see AER@ data card.
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BULK DATA DECK

Input Data Card AER@

Description: Gives basic aerodynamic parameters

Format and Example:

1 2 3 4 5 - 6 7 8 9 10
AER@ CID | ASEUND| BREF | RH@ZER@ K M |SYMXZ | SYMXY

| AER@ 3 1.3+4] 100.] 1.-5

Field Contents

cib A rectangular coordinate system, flow is in the positive

X1 direction (integer > 0 or blank)

ASBUND speed of sound

BREF Reference length (for reduced frequency)

RHAZERS Reference density
K 4 Reduced freauency

M Mach number

SYMXZ Symmetry key for aero coordinate X-Z plane

(word SYM, ANT!, or blank)

SYMXY Symmetry key for aero coordinate X-Y plane
(word SYM, ANT!, or blank)used to simulate ground
effects (SYM) and in hydroelasticity, a free surface

(ANTI) .
Remarks: '
1. This card is required for aerodynamic problems

2. Fields 6 and 7 specify the value of reduced frequency and
Mach number for which aerodynamic matrices are computed. |If a series
of values is desired, fields 6 and 7 are left blank and a MKAER@ bulk
data card is used. '

3. If field 2 is blank, the basic coordinate system is assigned.

Figure 6 -7
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BULK DATA CARD
Input Data Card SPLINEI
Descriptfon: Defines a surface spline for interpolating out-of-plane

motion.

Format and Example:

. 2 3 ! 5 6 7 8 9 10
SPLINEI EID | CAERg | CID AXES| SETG D abc
SPLINE1 3 L FIXED 14 1.0 ABC
+be K, Kox | Koy
+BC

Field Contents

EID Element identification number (integer> 0)

CAER@ Aero element which defines plane of spline

ciD " Rectangular coordinate system which defines

plane of spline

AXES To choose: the spline coordinate system:
YFIXED'" will cause the axes of the selected
aero element or coordinate system to be chosen;
“PRINC" will cause the principal axes of the
g-set to be chosen.

SETG refers to a SETi card which lists the structural
''g'’-set to which the spline is attached.
D .the plate rigidity 0 <D < 'INF"
(default = 1.0)
. k, linear attachment spring 0 < k_ < "INF"

(default = infinlte,'ﬁNF“)

ka’ kg torsional attachment spring 0 < k < '"INF"
Y (default = 0) |

Figure 6-8

SPLINEY Data Card
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Remarks:

1. Either CAER# or CID field must be blank.

2. The interpolated points (k-set) will be defined by aero-
cells or GRIDK data cards.

3. Continuation is not required if default springs are used.

Figure 6-8

(Cont'd’
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Input Data Card SPLINE2

Description:

motion.

BULK DATA DECK

Defines a beam spline for interpolating out-of-plane

Format and Example:

1 2 3 L 5 6 7 8 9 10
SPLINE2 EID| CAER#| CID | AXES SETG El GJ abc
SPLINE2 5 8 PRINC
+be Kz | *ox | oy

Field Contents
EID Element identification number (integer > 0)
CAER® Aero element which defines plane of spline
CiD Rectangular coordinate system which defines
’ . plane of spline.
AXES To choose the spline coordinate system
“FIXED" will cause the axes of the selected
aero element or coordinate system to be chosen;
"PRINC'" will cause the principal axes of the
g-set to be chosen. '
SETG A Refers to a SETi card which lists the structural
''g''-set to which the spline is attached.
El, GJ ~Beam bending and torsional rigidity 0 < El, GJ
< "INF"'  (default ElI = GJ = 1.0)
k, linear attachment spring 0 < k, < "INFY
(default = infinity, "INF").
k oo Kk torsional attachment spring 0 < k < "INF"
Y (default = 0)
Remarks:

1. Either CAER@ or CID field must be blank.

Figure 6-9
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2. The interpolated points (k-set) will be defined by aero cells
or GRIDK data cards.

3. Continuation is not required is default springs are used.

Figure 6-9

(Cont'd)
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BULK DATA DECK

Input Data Card SPLINE3

Description:

Format and Example:

Defines a beam spline for interpolating inplane motion

1 2 4 5 6 7 8 9 10
SPLINE3 EID | CAER@ | CID | AXES SETG El AE abc
SPLINE3 9 3 FI1XED 13
+bc kx kez

Field Contents
EID Element identification number (integer > 0)
CAER® Aero element which defines the plane of the spline.
CiD Rectangular coordinate system which defines the
' plane of spline.
AXES To choose the spline coordinate system
"FIXED" will cause the axes of the selected
aero element or coordinate system to be ghosen;
YPRINC'' will cause the principal axes of the
g-set to be chosen.
SETG Refers to a SETi card which lists the structural
"'g''-set to which the spline is attached.
El, AE beam tending and extensional rigidity O0< El,AE
< "INF''  (default = "'INF")
kx’ ky linear attachment springs 0 < k < "INF" (default
= 1.0)
Koz torsional attachment spring 0 < k < "INF"

(default = 0)

Figure 6-10

SPLINE3 Data Card
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Remarks:

1. Either CAER@ or CID field must be blank.

2. The interpolated (k-set) points will be defined by aero-
cells or GRIDK data cards.

3. The default values of rigidity and springs make the spline
equivalent to a rigid plate.

4, Continuation not required if default springs are used.

Figure 6-10

(Cont'd)
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BULK DATA DECK

Input Data Card SETI

Description: Defines a set of structural grid points by a list.

Format and Example:

1 2 3 L 5 6 7 8 9 10
SETI SID Gl G2 G3 Gh G5 Gé G7 ABC
SETI 3 31 62 93 124 16 17 18 | ABC
+BC G8
+BC 19

Field Contents

SID set of identification numbers (integer > 0)

Gt . . . list of structural grid points

Remarks:

1. These cards are referenced by the SPLINE data card.

Figure 6511

. SETI Data Card
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BULK DATA DECK

Input Data Card SET2

Description: Defines a set of structural grid points in terms of
aerodynamic macro elements.

Format and Example:

1 2 3 4 5 6 7 8 9 10
SET2 SID MACRg S1 Cl s2 €2 H1 H2
SET2 3 17 1 1 2 4 3.51

Field Contents

SID set identification number (integer > 0)

MACRY element identification number of an aero macro
element ‘ '

si, Cl -span and chord identification number of the first
element :

s2, C2 span and chord identification number of the last
element

Hl, H2 S greatest height above (using right hand rule with

the order the corners as listed on a CAER@ card)
to include in set, and the greatest distance below.
(floating > 0)

Remarks:

1. These cards are referenced by the SPLINE data cards.

2, The default values for Hl, H2, are infinity.

3. Every grid point, within a pfism whose croés-section
includes the set of aero elements of which S1, C1 is the first and

S2, C2 is the last, and within the height range, will be in the set.
For example,

Figure 6-12

SET2 Data Card
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si, Cl

The shaded area in the figure defines the cross-section of the prism

Figure 6~-12

SET2 Data Card
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BULK DATA DECK

Input Data Card GRIDK

Description: Defines a non-structural grid point, for use in inter-
polation of structural displacements.
Format and Example:

1 2 3 L 5 6 7 8 9 10
GRIDK 1D cp X1 X2 | X3 SPLINE! PS
Field Contents
)] Grid K point identification number (integer> 0)
cP Number of coordinate system in which the location

of the grid K point is defined (integer > 0)
X1, X2, X3 Location of point in coordinate system CP (real)

SPLINE Identification number of a spline to which the
GRIDK point will be associated, (integer > 0) (de-
fault, the spline whose cg is closest).

PS Permanent single point constraints in spline coor-
dinate system (any of the digits 1-6 with no im-
bedded blanks). .

Remarks:

1. Identification numbers of GRIDK points must be unique, and
not that of any GRID, SP@INT, or EP@INT.

2. The coordinate system will be that of the spline (See SPLINEi
data card).

3. No structural elements, loads, etc., may be applied to a GRIDK point.

k. The GRIDK points will be included in the set of u points,uséd in
aeroelastic analysis. They may also be used to interpolate deflection in
non-aeroelastic problems.

Figure 6-13

GRIDK Data Card
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BULK DATA CARD

Input Data Card MKAERf#

Description: Provides a list of Mach numbers (m) and reduced frequencies

(k) for aerodynamic matrix calculation.

Format and Example:

1 2 - 3 L 5 6 7 8 9 10
MKAER® . « o lists jof valu&s . abc
MKAER@ 10 .30 .50 END .7 .9 1.0 1.2 ABC
+be « o e contiduation pf lists
+BC END

Fields Contents
lists List of Mach numbers (real) followed by "END",

then a list of reduced frequencies followed by "END',

Remarks:

1. This card will cause the aerodynamic matrices to be computed for a

two dimensional array of parametric values.
2. Several MKAERG cards may be in the deck.

3. |If only one m and k are desired, the AER@ card can be used.

Figure 6-14

MKAER@ Data Card
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Input Data Card:

Description:
analysis.

Format and Example:

1

GUST

BULK DATA CARD

Aerodynamic Gust Load Description

Defines components of gust velocity for use in aeroelastic

2

3

b 5 6 7 8 9 10

| GUST

SID

CID TYPE | GX GY GZ X0 v

GUST

5

3

T2 7 b 3 -100.

Field
SID
CID

TYPE

If TYPE
If TYPE
If TYPE

If TYPE

GX, GY, GZ

-152-

R2

T2

Contents

Gust set identification number (integer > 0)

ldentification of coordinate system for specifying
components of gust velocity (integer > 0)

Flag to identify the information in fields 5, 6 and 7

GX, GY, GZ are identification numbers for tables
where the gust velocity component = C(f) + iD(f),
a function of frequency, f.

GX, GY, GZ are identification numbers for tables

where the gust velocity component = id(f),
. B(f)e

a function of frequency, f. 4

GX, GY, GZ are identification numbers for tables.
where the gust velocity component = G(t), a function
of time. ‘

GX, GY, GZ are identification numbers for TFUNCT
cards where the gust velocity component =

ATE eqt cos(2nft + ¢) for T, <t < T
where t = t-T,, and t = time.

1 2

Identification numbers for tables or data cards
which evaluate the components of gust velocity
parallel to the axes of the coordinate system iden- -
tified in field 3. If blank, that component of gust
is zero. (integers > 0 or blank).

Figure 6-15
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X0 Point on the x axis of the referenced coordinate

system where the gust components are evaluated for
time > 0. Default = 0.0 (real).

Velocity of propagation of gust disturbance relative
P to fluid in the positive x direction. ”

Remarks:

1. Gusts may be combined with either_gusts and/or other dynamic
loads by means of a DL@AD card.

2. The downwash velocity at an aerodynamic element is the pro-
jection of the gust vector on the normal to the surface of the element.

3. If Vp =0, the arrival of the gust at the several aerodynamic
elements is delayed in time (or in phase for frequency response) by the
time required for the vehicle to travel from point X0 to the aerodynamic

element. If Vp # 0, Vp is added vectorally to the velocity of the vehicle
to calculate the time delay.

Figure 6-15

(Cont'd)
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APPENDIX A

NASTRAN Matrix Terminology

Many of the operations performed in computerized structural analysis
are conveniently expressed in the notation of matrix algebra. In NASTRAN
matrix arrays are represented by a root symbol that indicates the type of
physical quantity and by one or mo;e subscripts and superscripts that act
as modifiers. The root symbols currently used in static and dynamic ana-
lysis with NASTRAN are listed in Table 1. Square brackets, [ ], indicate
two-dimensional arrays and twisted brackets, { }, indicate column vectors.
Row vectors, which are less common, are indicated either by appending

the transpose symbol, T, to the twisted brackets, or by | ].

Subscripts are used primarily to designate the subsets of displacement

components to which the roof symbol applies as for example in the equation,
T
{qs}.— -(P b+ K 1 ueh + [K _T{u }, (1)

which is used to recover single point forces of constraint, {qs}, from
displacements at constrained points, {us}, and at unconstrained (free)
points, {uf}. Nearly atll of the matrix operations used in NASTRAN are
concerned with -partitioning, merging and transforming matrix arrays from
one subset of displacement components to another.  All the components of
displacement of a given type (such as all points constrained'by single-
point constréints) form a vector set that is distinguished by a subscript
from other sets. A given component of dispiacement can belong to several
vector sets. The mutually exclusive vector sets, the sum of whoge'members
are the set of all phfsical components of displacement, {up}, are listed

in Table 2a. T T e



In addition, a number of vector sets are defined as the union of two

or more independent sets. See Table 2b.

In dynamic analysis additional vector sets are obtained by a modal
transformation derived from real eigenvalue analysis of the set {ua}.

See Table 2c.

The nesting of the vector sets in Table 2 is depicted by the follow-

ing diagram:

g.
——— > U, > Uy

The gridpoint set {us} contains all components of motion at structural
gfidpoints. The application of constraints and partitioning to the stiffness
matrix involves, essentially, the elimination of {um}, {us}, {uo} and {ur}

from {ug} to form a stiffness matrix referred to {uz}, which is the set used

for equation solution in static analysis.

Load vectors are distinguished by the same notation as displacement
vectors. Rectangular matrices are, whenever necessary to clarify the

meaning of the symbol, distinguished by double subscripts referring to the
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vector sets associated with the rows and columns of the array. Occasionally
only the subscript associated with the row is used. Superscripts have no
tensorial character and are used to identify arrays of different type or

origin that refer to the same sets such as in the equation,
= M1 2
Mggd = gy + M (2)

where [Méd] is the structural mass matrix and [Méd] is the direct input mass

matrix.

The introduction of aerqelasticity into NASTRAN will require a few
additional root symbols and a few additional subscripts and superscripts.
‘The new root symbols are Iistéd in Table 3. Use of the new subscripts is
illustrated in Table 4. The subscripts j and k do not define new struc-
tural degrées of freedom and the quantities that they modify_will not be
processed by existiﬁg functional modules. They define instead what may be
called aerodynamic degrees of freedom. The superscripts, both old and new,

that will be used in aeroelasticity are illustrated in Table 5.



_Table 1. Matrix Root Symbols Currently Used in NASTRAN.

[8] damping matrix

[b] modal damping matrix
o} rigid body transformation matrix
(6] transformation matrix, as in‘{um} = [Gm]{un}

[kl stiffness matrix

[k] modal stiffness matrix

{8} lower triangular factor

[M] mass matrix

[m] modal mass matrix

{N}  nonlinear force vector

{r} vector of applied load components
A{q} vector of forces of reaction

[B] matrix of constraint coefficients, as in [Rl{u} =0
[T] load transformation matrix

ful upper triangular factor

{u} vector of displacement components

{x1] rigid body stiffness matrix

{v} vector of enforced displacements
{£} generalized coordinate
{¢} eigenvector

(4] matrix of eigenvectors



Table 2. Displacement Vector Sets Currently Used in NASTRAN

Table 2a. Mutually Independent Vector Sets

un coordin?tes eliminated as independent degrees of freedom by multi-point
constraints

ug coordinates.eliminated by single point constraints

u, coordinates omitted by structural matrix partitioning

u, coordinates to which determinate reactions are applied in static analysis

uy the remaining structural coordinates used in static analysis (points
left over)

u -extra degrees of freedom introduced in dynamic analysis to describe
control systems, etc.

Table 2b. Combined Vector Sets

a LY the set used in real eigenvalue analysis
uy = u, + Ugs the set used in dynamic analysis by the direct method
unconstrained (free) structural coordinates

all structural coordinates not constrained by multi-point
constraints

=
]
[ =
+
[~
-

all structural (grid) points including scalar points

all physical cbordinates

Note: (+) sign indicates the union of sets

Table 2¢. Modal Coordinate Sets

Eo rigid body (zero frequency) modal coordinates
Ef finite frequency modal coordinates
£, = Eo + Ef, the set of all modal coordinates.

u, = Ei + Ugs the set used in dynamic analysis by the modal method.

Note: (+) sign indicates the union of sets.



kTablé 3. New Root Symbols for Aeroelasticity

[D] (new special meaning) matrix that gives transformation from displacements
to downwashes

[s] area coefficients

[A] matrix that gives downwash vector as a function of pressures

[Q] aerodynamic stiffness or transformation matrix divided by dynamic pressure
{w} downwashes (or other similar aerodynamic variables)

{f} vector of pressure coe%ficients (or other similar quantities)

{F} vector of forces (distinguished from {P} which is a vector of externally
applied forces)



{uJ
{wj}

()
()2
()

(H?
()®
()9

()°
()t

Table 4. New Displacement Vector Sets for Aeroelasticity

displacements at aerodynamic control points

downwash coefficients for aerodynamic elements

Table 5. New and 01d Superscripts for Aeroelasticity

. . 1 1
derived from structure as in [Kdd] or [Mdd]

direct user input as in [K2 ] or [M2 ]

structural damping derived as a property of structural elements as in
ifk*.1
dd

aerodynamic origin, as in [Mdd]

structural origin, as in {P }

externally generated aerodynamic quantity, as in {wg} the downwash
velocity vector due to gusts

other than aerodynamic origin, such as {u:}

refers to variables in {ue} that are used to adjust trim in static

analysis, as in {u:}

refers to all variables in {ue}mgxcludingﬁig;}



APPENDIX B



APPENDIX B

Procedures for Static Aeroelastic Analysis

A flow diégram for static aeroelastic analysis with NASTRAN is shown
in Table 2-2 of é;ction 2, and the formal matrix algebra is displayed in
Section 4 of the report. The purpose of this appendix is to develop the
theory for the formal procedures. The reader is referred to Appendix A for

an explanation of the notation that will be employed.

The static part of NASTRAN is used to generate a structural stiffness
matrix [Kzz], referred to the displacement set {ul}. It is also used to
generate vectors of static loads {P;} and {Pi} which may include, for
example, gravity lbads, pressure loads on structural panels, and loads due
to thermal expansion. Gravity loads corresponding to different load factors
can, in;idenfally, be specified by changing a single data entry. In addi-
tion, a number of data blocks (Iol, [mr], and [MQZD + er]) are generated

which are used to treat inertia relief effects.

The displacement.set {ug} is a subset of the dynamic anélysis set
{ua}, which excludes the degrees of freedom {ur} that are restrained in
order to provide a determinate set of reactions for free bodies. Thus,

u
o} = {3&} NG

r

-~

The vectors {Pz} and {Pi} are, respectively, the static structural loads

applied to {uz} and {ur}.

B.1 Generation of Aerodynamic Matrices

The matrices generated by the Aerostatic Matrix Generator (see Section

5.13) are denoted by symbo]s'identical to those used in dynamic analysis
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(see Section 5.5).. Thus,

a a
(£} = qla, 17w} (3)
J JJ J
and
- a g |

tog} = [0, Hu b+ [0, 1) + uf) (4)

where
=1 v2

q= 2 pV

{Fz} is the vector of aerodynamic forces at aerodynamic control points.

{f?} is a vector of pressure coefficients, one or more for each aero~

4 dynamic element.
{w.} is a vector of aerodynamic degrees of freedom (e.g., angles of
37 attack).

{u:} are NASTRAN 'lextra points'' used to describe aerodynamic variables.
They may be used to represent perturbation velocity components of
the complete vehicle and to represent control surface deflections.

w9} represents the static aerodynamic excitation. It includes, pri-

J marily, the static angle of attack distribution. It may also
include, for example, terms to generate skin friction drag.

{uk} is a vector of structural displacements (deformations) at aero-

dynamic control points.

The matrices, [Skj], [Ajj], [Djk] and [Dje], are matrices of real

constants, which may be functions of Mach number or other parameters.

Each aerodynamic theory provides separate procedures for calculating them.

[Ajj] must be nonsingular.

As an example to illustrate the use of aerodynamic extra points, let

thevelements_of {uZ} be the componehts of a perturbation velocity vector

{ug} =y, (5)



The magnitude of the total velocity is, for small perturbations,

V=V +a
o

! Vx + a2 Vy + a3 Vz (6)

where V0 is the magnitude of the steady velocity vector and a;, a, and a

3

are its direction cosines in the coordinate system of Vx, V. and Vz. In

Y
the aerodynamic pressure distribution given by Eq. (3), the dynamic pressure is

=1 2.
q=3 pve = 9 * pVo (a] Vx +a, Vy + ag VZ) (7)

The sum of the static angle of attack distribution and the angle of

attack distribution due to the perturbation velocities is

a ,
{nj]Vx + njzvy + nj3vz} + {wj} (8)

<'—-

{wj} = -

where njl’ njz and nj3 are the direction cosines of the normal to the jth

surface in the coordinate system of Vx, Vy and Vz'

Substituting Eqs. (7) and (8) into Eq. (3):

{4
a, _ |0 =1 L g
{fj} = (v;-+ p(a]Vx + a2Vy + a3vz))[Ajj] {nj]Vx + njzvy + nj3vz + Vowj}
(9)

If the second order terms due to the products of perturbation velocities

are neglected, Eq. (9) can be written as
A v
X

-1 1 ==
(793 = ov Iy 17 [l + 7 IRV, (10)

v
z

where fw?l is a diagonél matrix of static angles of attack,
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_a] a, a3"
a a a
a]=| ' %2 3 (1)
a] 82 33
-- etc. --
BT M3
a1 P22 My
[n] = === === --- (12)
it "2 "j3
Thus, by reference to Egs. (3), (4) and (5)
=2 a9
[0 = - [MWLa] + [n]] (13)

The first term in this equation is due to the influence of the pertur-
bation velocities on the dynamic pressure. It is frequently neglected in

aeroelastic analysis. -

The aerodynamic forces apblied to structural degrees of freedom can be

written in the form

a a| ,a | ,a : a -
Fy Koo 1 Kar | Koe | Y2 )
— == T "T— iy -
A\ _ a a a a
‘ Fr Krz: Krr : Kre ur_ + Pr‘ (14)
_; -=1 -1\l -
F 0, 0, 0 u? 0
e L. e

The partitions [Kzr] and [Kir] of the aerodynamic stiffness matrix

are not required because the rigid body displacements {ur} are assumed. to



be zero .in calculating the loads {P;} and {Pi}. The non-zero partitions

may be written as

a1 .a ] B | ]
Kog 1 Kee Qg1 e

i | iy s (15)
a | .2 i
KZr i Kre Qrz i 0're

The [Q] matrices are formed in the aerodynamic matrix processor by

means of the formulas
0,1 = [6,,170s,.1(A. .17 [0, 116, ]
I % k% kj jJ jkT ke

T -1
0] = [6,,17I5,;10A; ;17" [0, ]

Jje '
(16)
[0, = (6, 175, ;10A; 17 [0, 106, ;]
[0, ] = 16, 1705,;10A; ;17 [0, ]

The matrices [szl and [Gkr] are formed in the Geometry Interpolator.

If the [Q] matrices are computed for Mach numbers other than those desired,

they are interpolated to the desired Mach numbers in the Aerodynamic Matrix

interpolator.

Expressions for the static aerodynamic load vectors are

~

a

P2 % q |
——p=q|——|{wi} (17)
a

Pr er

where ,
Toy;] = [8,,17ls,;10A; 17"

| (18)
(0,1 = 6, 1705, 10A;17"



[an] and [er] are formed in the Aerodynamic Matrix Processor and

interpolated in the Aerodynamic Matrix Interpolator.

B.2 General Problem Formulation

Static aeroelastic problems may be classified as follows:
a. Calculation of static response.

b. Calculation of stability and control derivatives, i.e., the calcu-
lation of changes in the aerodynamic loading (and, more particularly,
of changes in its resultants) due to small changes in the motions

of the vehicle and of control surface deflections.
¢c. Divergence.

Each of the static aeroela;tic problems is further classified as to
whether the structure is supported, or free to move. If it is free to move,
the inertia forces due to (steady) accelerations must be taken into accouht.
A further complication ar}ses if control surface deflections are used to
trim out unwanted accelerations. All of these cases can be treated with

just three NASTRAN rigid formats as follows:

7A Aeroelastic Divergence

8A Untrimmed Static Aeroelastic Response

"9A Trimmed Static Aeroelastic Response

It will be shown that the calculation of stability and control deri-
vatives is a special case of Untrimmed Static Aeroelastic Response, and,that
solutions with supported structure are special cases of rigid formats 8A and

9A.
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The equilibrium equation for the vector of structural degrees of
freedom, {uz}, which are measured relative to the rigid body motions, {"r}’

may be written

2 = S i ay _ 2
[Kyy + K210 } = (P35} + {F1} + {F3} - [K2 1{u_} (19)
where
[Kzgl = structural stiffness matrix
[kZ,]
= direct input stiffness matrices, supplied by user

(k21 '

e
{P;} = structural load vector
{FL} = inertia force vector due to rigid body accelerations
.{Fz} = aerodynamic force vector, including static terms and terms

due to motions, see Eq. (14).

The equilibrium matrix équation for the rigid body motions is
Im 4G Y = (PR + {0 + (K2 Jup} + (K2 Mu,)
+ 01T[PSY + {F3} - [KZ 1w} - [KZ,Mu ) (20)

where
[mr] = rigid body mass matrix
{P:} = ;ector of static loads applied directly to {ur}
{F:} = aerodynamic force vector, applied directly to {ur}
{ﬁr} = vector of rigid body accelerations
%) . - : |
[Kie] = direct input stiffness matrices, supplied by user

[D] = rigid body matrix such that

{Hz} = [ol{i} (21)



The vector premultiplied by [D]T in Eq. (20) is the vector of forces
applied to {ul}, excluding only elastic structural forces. [D] is cémputed

from the structural stiffness matrix in the static portion of NASTRAN.

The inertia force vector in Eq. (19) is
{Fy} = - [M 10i } - [M (014G ) (22)

where [Mzz] and [er] are partitions of the structural mass matrix.

For the most general case, the degrees of freedom will be

{ud}= u e (23)

u
e

The vector of extra points {ue} is further partitioned into a set {u:}
that produces automatically calculated aerodynamic forces (see Eq. (4)) and

a set {u:} that does not. Thus, in the most general case

{ud} = :(zk)

The aerodynamic force vectors include constant terms and terms pro-
portional to displacements as shown in Eq. (14). The direct input stiff-

ness matrices relating to extra points are similarly partitioned, so that



.[st] =

The identity matrix in the diagonal partition for

28 a o.
u u U
r e e
o k2 | g2
[ %a)| %
- =
0 K2 | K2
' ra l ro
— -—l —————
0 | I : K2
ao
L
o lkz I ke
' oa l (o]0}

order to provide the following formula

where all coefficients, including the load vector {P:} are supplied by the

user.

{ul} = {P3} - [K2,J{u,} - [KZ T{u3}

(25)

{u:} is imposed in

(26)

The equilibrium equations, Egs. (19), (20), and (26), and a similar

equation for {UZ}, may. now be brought together into the single matrix

equation

L e o o — o aunaa

| DT(KEa + k) |

er + MQQD |
-— -
mr ,|

|

- — -
0 ]

|

|

0 |

|

2 a
+ +
.Kra Kra

| o
| Koo )
e | T
Tz 2 33
i D Kzo + Kro ur
S - tp,}
Kg .ua
ao e
K2 u®
00 e
(27)



where the load vector

rt={-——————- (28)

The following special cases are noted:

1. Aeroelastic response of a supported structural component: in

this case {ﬁr} does not exist.

2. Stability and control derivatives: the inputs are selected unit

values of the components of {P:}, which (if [ngl = 0 and [K;ol = 0) produce
unit values of the aerodynamic '‘extra'' degrees of freedom. The outputs

are the components of {ﬁr} or, alternatively, the force resultants,

R

COLF Y= [m 1{E} C (29)

3. Divergence: In this case {Pd} = 0 and values of the dynamic
pressure are sought which will render the matrix in Eq. (27) singular.

Procedural details are discussed in Appendix C.

L., Trimmed Static Aeroelastic Response: ’ln this case {ﬁr} = 0.

Special procedures are required, as described in Section B.3. below.

5. Untrimmed Static Aeroelastic Response: This is the general case

illustrated by Eq. (27).
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B.3 Formulatibn of the Static Aeroelastic Problem in Trimmed Flight

For a trimmed flight condition, it is assumed that {Ur} = 0. The
rigid body equilibrium condition, Eq. (20), must, however, still be satis-
fied, and this can be done only if the number of aerodynamic variables,
{u:}, equals or exceeds the number of elements of'{ﬁr}. Let {ue} be

partitioned into'tWO parts

{ue} = (30)

mclmn-

where
{u:} is a subset of {u:} used for trimming the vehicle. The number of

members of {u:} must equal the number of members of {ﬁr}.

{uz} is the union of the remaining members of {u:} and the sef'{u:}

of non-aerodynamié extra points (see Eq. (24)).

The direct input and aerodynamic matrices [K2] and [K?] are similarly

partitioned:

[kiq] = (31)




e e
a a t ,a
Koy Ree y M| [ Ve
oy o e TR )
[Kdd] = Kr | Krt ' Kru Ye (32)
_d L
i
ol o, o[
- | — e
The complete equilibrium equations are
P 2 a a | a s
Koo * Kog * Ku, Kot | Kou * Kou )
P T R
Krl * Krl l K3 DTK? | Kru * Kru + ut = (P} (33)
+ DT(KZ + Ka ) rt ¢t DT(Ka + K2 e d
L L8 | | fu Lu
T T T T
| ul } ut | uu B e
where
s a
Py PL
fe 1 o s , .a T,nS a ~
';{Pd} = (P2 +P_+0D (Pz + 92) (34)
py
e

All direct input ma;fjges [K2] and the load vector {P:} are user
supplied. The partitions [K;t] and [Kit] are forbidden in order that the
aerodynamic trim variables {u:} be determined by aerodynamic relationships
only. The aerodynamic variables included in {u:} may be set to specified
values or they may be slaved to structural deformations and/or to the aero-
dynamic trim variables {u:} by the-relationship inen by the bottom row 6?

Eq. (33), i.e.,

-1 ot t
{ul} = [K2 1773PLY - K2, Mu,} - K21 ugf (35)



Evaluation of the parameters in this equation is entirély controlled
by the user and not by an automatic aerodynamic procedﬁre, except that the
partition of [Kju] corresponding to the remaining members of {u:} will
be automatically set equal to an identity matrix if no values are supplied

by the user.

As an example, suppose that the rolling velocity, p, is placed in
{u:} and that the aileron deflection, 8a, is placed in {u:}. If the com-
ponent of {P:} is set equal to a desired value of steady rolling velocity
~ and if [Kﬁu] is an identity matrix, the program will then compute, in addi-~
tion to other quantities, the aileron deflection required to produce the

desired steady rolling velocity.

B.4 Procedures for Response Solutions

Equations (27) and (33) both have the general form
or, in terms of the matrices contributing to [Kdd],
1 L g2 a - ‘
[Kly + Kig + KGql{ugl = {P} (37)

where
[Kéd] is the structural stiffness matrix.
[st] represents direct }nput terms supplied by the user and aléoAl
.the fnertia and identity métrix terms in Eq. (27).

[sz] is the aerodynamic stiffness matrix.

The standard procedure for solving Eq. (36) is to decompose [Kdd] into

its triangular factors
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[Kyq = [L11V] o6

where [L] is a lower triangle with unit elements on the diagonal and [U]

is an upper triangle. The solution algorithm is to solve
[LHy} = (P} (39)

and

[U]{ud} = {y} (40)

successiVely by forward and backward substitution. Since [Kdd] is an
unsymmetricalvmatrix, partial pivoting (i.e., row interchanges) is

‘employed in the triangular decomposition.

The above solution technique may consume excessive computer time
because the aerodynamic stiffness matrix [K:d] may, in contrast with
[KJa] and [Kjd], be relatively fulf. For such.conditions an iterative
procedure, based on the aseumption that the terms in [K:d] are small
compared to those in [Kéd], may be more efficient. For example, con-

sider the algorithm
1 2 n = - a n-1 .

where {ug}'is the .nth iterate. If the algorithm converges to setis-_.
factory accuracy in a small number of iterations, it may consume less
time than the standard algorithm (Egs. (39) and (40)), provided ehat the
difference in time between the decomposition of [Kéd + Kjd] and of

[K;d + Kjd + K:d] is substantial. An additional advantage accrues if

a number of solutions corresponding to different [K:d] matrices are

desired, since [K;d + Kjd] need only be decomposed once.



Details of the iteration algorithm, including convergence tests,
are developed below. A practical form of the algorithm may be stated

as follows:
1. Decompose [K;a + K;;]
»é. Solve IKJ& + K;h]{u:} = {r,}
3. Form (P} = <[k 10u)
b, Soive [Kdld + K;a]{éu;}.= {P;}
5. Form {u;} = {ug} + {Su;}
6. Repeat, for n 2 2, until convergence:
“a. Form {P]} = -[K3,16u} ™}
b. Solve [Kyy + Kiql{oug} = {PO}
c. Form {u:}‘= {u:-'} + {6u:}

Knowledge is required of the conditions under which the algorithm
convergés in order to use it intelligently. The examination of stability

will produce appropriate convergence tests as a byproduct,

The heart of the algorithm is, combining steps 6a and 6b,
vl 2 N o 1@ n-1

In this form the algorithm closely resembles the power method used in
eigenvalue extraction. Its stability may be examined by methods similar
to those used to justify the power method (see, for example,'the NASTRAN

Theoretical Manual, Section 10.4).
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The eigenvalue problem associated with Eq. (42) is

[KJ& + Kja + AK3 qgl {ul =0 (43)

which is just the static aeroelastic divergence problem. Let the

iterates‘{du:} and {6u2-l} be expanded in terms of the eigenvectors {¢i}

of Eq. (43)

{duZ} = ? a'; {6} (44)

W= T (5)

It may be proved quite generally (see, for example, Section 10.4.4.3

S

of the NASTRAN Theoretical Manual) that

@ = y—o (46)

where Ai is the eigenvalue corresponding to the eigenvector, {¢i}’

The solution vector corresponding to the nth iteration is
| n (o] R m ) )
{ug} = {ug} + ] {8ug} o (47)
m= | g
or, using Eq. (bk4)

N n >
Wl = W+) o 0} (48)
m=] i

{u:} may also be expanded in terms of eigenvectors

Gt = ! a2, } [3)
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so that, substituting into Eq. (48),

n
{uz} = ) [u? + ] 'aﬁ]{¢i} (50)
=1

and, using Eq. (46) and the fact that\{ug} appears on the right hand side

of the first iteration,

1 1 !
{UZ} = za?(l+ XT+;\-2—+. . .-)F){(Pi} (51)
i i

The geometric series in Eq. (51) has the limit

n m
lim (1+ ) %—) ) = —1-,- (52)
n-° m=1 "7 ] - T
1

provided that [A,| > 1, Otherwise it does not converge.

lé the aircraft is st#t{cally stable (i.e. nondivergent) then all real
positive Ai > 1. ConJergence of the algorithm additionally»requires-that
all real negative Ai < =1 and that all complex eigenvalues (if any exist)
satisfy |Ai| > 1. These nonphysical requirements may not be satisfied even
if the aircraft is stable. They wiil not, for example, be satis%ied if a
negative dynamic pressure would produce divergence. This may well be the.
case for control surfaces with weak elastic restraints. Thus, it is not
possible to guarantee cdnvergence of the algorithm for all statically stable
aircraft, and it is, therefore, necessary to provide the standard solutiqﬁ

algorithm (Eqs. (39) and (40)) as an alternate.

B-17



It }emains to develop suitable convergence tests for the algorithm.
The remainder of the éeometric series in Eq. (51) is, after the nth itera-
tion,
- (1) (53)
n X 7;_:‘7 &

The error in {uz} is, therefore,

€ = fud - o= T —l (4.} _
d d d ; o, - (54)
or, using Eq. (46)
" o
{Ed} = ; -(-ri—:_-—r)— {¢i} (55)

After many steps of iteration the eigenvectors whose eigenvalues are
closest to 1.0 will dominate the error vector. |f we assume that only one
prominent eigenvector remains, then, using Eq. (4k)

n a? 1 n 3
{Ed} = XTTT {¢l} = XT—:-T {5Ud} (56)
" If a means for estimating A' can be found, Eq. (56) provides an estimate
of the error in the solution after n iterations. A good single number for

estimating the error, that automatically normalizes the elements in the error

vector, is
” - n T un . ﬁ f'vﬁ ’
. . {ed} {Pd} . 1 {Gud} {Pd} (57)
"W Tet A W
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A%n) is the estimate of X‘ obtained in the nth iteration. It is

evaluated as follows., By virtue of Eq. (45), the matrix product

CA AR G S P U TS T -1 o 1o, T kG 1 ) oo}

(58)
If it is assumed that the iteration has progressed to the point where only
a single prominent eigenvector remains in {Gug—'},
n-1Teony o 0142 T¢,a
6l H PO} = (o720} (K5 1M, (59)
Likewise, using Eds. (44) and (45):
TNy o ] n-1,2 T,
{Su b P} = - Y (o) )19, } K 41{9,} (60)
so that, dividing Eq. (59) by Eq. (60),
s 11 (P
T (61)
) , {Gud} {Pd} :

The proposed convergencé tests, to be used after all iterations for

n > 2, are

-

(n)

a. Form >‘I éccordi«ng to Eq. (61). P SR
b. If n>3 and IA](")l <1, abort the iteration.
c. Form €, according to Eq. (57).

d, |If lenl < € where € is an user-suppli‘e.d parameter, accept {uZ}

as the solution. If |e | > €, continue to iterate.
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The number of additional iterations required to obtain a converged solu-
tion may be estimated as follows. From Eqs. (46) and (56) the ratio of

the error after the nth and the (n+k)th iterations is approximately

€

o (1) &

n

An estimate of the required number of additional iterations to make € ek

equal € is, therefore

€
n
. oS (&) )
log xf”) 3

If the user specifies a maximum number of iterations, M, the solution

should be aborted if n + k> M. The following table gives values of k as

(n)
Hi

a function of sn/s and A

€ /e
10 100 1000 10,000
A
1 g k o
1.1 24,4 48,8 73.2 : 97.6
1.2 12.8 25.6 38.4 ' 51.2
1.5 5.7 1.4 171 22.8
2.0 3.3 6.6 9.9 13.2
5.0 1.4 2.8 4.2 5.6
10.0 1.0 2.0 3.0 4.0

it will be noted that the required number of iterations increases

rapidly as the divergence limit is approached.

 B-20



APPENDIX C



APPENDIX. C

ey

Notes on the Calculation of Static Aeroelastic Divergence

The problem is to calculate the eigenvalues and eigenvectors of

[KLd+ K§d+)\K:d]{u} =0 Y

The following observations are pertinent:

1.

[Kld] is real, and symmetric. [Kjd] and [K:d] are real but not,

in general, symmetric.

The eigenvalues may be positive real, negative real, or they
may occur in conjugate complex pairs. The physical significance

of negative real and complex eigenvalues is not apparent.

The user is interestéd in positive real eigenvalues that occur

in an interval 0 < A < Ab and he'hasAparticular interest in the
smallest posit}ve real eigenvalue. He may also wish to know of
the existence of any complex eigenQalues_with real parts in the
interval 0 < Rei < Ab.
The matrices [K;d] and [Kﬁd] are sparce whereas [K;d] may either

be sparce or dense.

It is concluded from the above observations that some form of the

power method is well suited to the problem. Neither of the forms of the
" power method provided with NASTRAN (Real Inverse Power and Complex Inverse
Power) are directly applicable. The Real lnverse»Power'method'assumes tha;

the matrices are symmetric and that the eigenvalues are positive real. The

- o SN



Complex lnverse Power method is used to solve problems of the form
[AZM + 2B + K]{u} =0 (2)

It assumes that [M] is not null (in making convergence tests) and that

complex arithmetic is required.

A new version of the power method is, therefore, proposed for the
calculation of static aeroelastic divergence. A brief investigation has
been made of the following algorithm, to which the existing Complex

Inverse Power method reduces when [M] = 0.

1. :Let the problem be stated as
(K + AB]{;J} =0 (3)
‘2.4 Let
Amagrh (1)

‘where A, is called the shift point. A, is a real number,

greater than or equal to zero.

3. The algorithm is

N [k + A Bl{w } = -[81{u _;} - (5)
3 . \’»»_ _ 1 LS D 6
(G} = &= o) ¢ )
s. - . where c_ is the largest element of {wn}.

The élgorithm converges to the eigenvector whose eigenvalue is.
closest to the shift point, provided that the closest eigenvalue is real.

An estimate of the shifted eigenvalue at any iteration may be obtained from
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) fu Y81y}
< {un}T[B]{Un}

(7)

o=

The iteration will be continued until three successive values of A‘
are separated by an amount less than €, specified by the user. If this
criterion is not satisfied within a number of iterations, Ni’ specified by
the user, the iteration will be terminated. In either case the last vector,
{uN}, and all of the successive estimates of A] will be output. The rate
of convergence is approximately proportiénal to the ratio of the two closest
eigenvalues, AZ/A]' This produces the difficulty that, since the shift
point, Ao, is_reg}f it will be equidistant from any pair of conjugate com-
plex roots and-Eq. (7) will not converge if the closest roots are complex.

The existence of this situation will be clear from the differences between

the successive estimates of AI.

There is an advantage in selecting the origin, XA = 0, as the shift
point because that selection restricts the trianéular decomposition implied
by Eq. (5) to [K:Id + Kid] which will beAsparce and narrowly banded whereas
[K:d] is relatively full. This choice may not be practical, however, due
to the possible existence ofv; negative eigenvalue of smaller magnitude than
the smallest pqsitive eigenvalue, with the result that the iteration algo-

rithm will converge on a negative eigenvalue (see discussion in Appendix B).

Another important point is that convergence to any eigenvalue can be

speeded if the user places a shift point at its estimated location.
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APPENDIX D

Notes on the Calculation of Transient Aeroelastic Response

An important difficulty occurs in the solution of transient aero-
elastic problems in that all advanced aerodynamic theories are formulated
in the frequency domain, i.e., steady state oscillatory motion is assumed.
If the aerodynamic theory is so formulated, its application to transient
analysis requires the assertion that the functional relationships expressed
in terms of frequency, w, can be continued analytically from the imaginary
axis, p = iw, into the complex plane. |If this is true, then the following

two basic methods are available for the solution of transient problems.

A

1. Employ the Fourier transform technique, i.e., calculate the
Fourier transforms of the excitation functions, obtain the
-fréquency respénse of the system to the Fourier transforﬁs of
the excftation funcfions, and calculate the inverse Fourier

transforms (i.e., time histories) of the response functions.

2. Perform an inverse Laplace transformation of the expressions for
the aerodynamic forces, obtaining time~-dependent functions which
are then inserted into the equations of motion of the system and

integrated to obtain the time histories of the response functions.

Each method has advantages and,disadvantages. The main advantage of
of the second method is that it can be applied to nonlinear problems or
to problems with time varying coefficients whereas the first method cannot.

It can, in addition, be used to obtain the response of unstable systems,



whereas the first method cannot. The main advantage of the first method
is that it accepts the frequency-domain aerodynamic formulations without
difficulty or approximation. A rigorous application of the second method,
on the other hand, leads to very cumbersome mathematical procedures for
all but the simplest theories. Practical application of the second

method requires, therefore, additional approximations. These approxima=-
tions are not serious for strip theory but they may be unacceptable for

more sophisticated theories.

Some of the details of each of the methods are examined below.

D.1 Fourier Transform Method

The problem to be solved may be stated as follows:

[Al{u(t)} = {P(t)} . m

where {u(t)} is a vector of displacements, {P(t)} is a vector of time-
dependent applied forces, aﬁd [A] is a matrix of linear integro-differential
operators, includiné con;olution integrals. Let {P(w)} be the Fourier
transform of {P(t)} and let {u(w)} be the Fourier transform of {u(t)}.

Then, if the inifial conditions for {u(t)} and its first derivative are

zero, the Fourier transform of [A]{u(t)} can be written in the form

[A(w)]{u(w)}. Thus,
(@)} = (A1 P} = Hw 1P} (2)

is the Fourier transform of {u(t)}. The matrix [A(w)] is the dynamic

matrix used in frequency response analysis, i.e.,

AT = [w? My Te By + Kyl 3)
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for a direct analysis, or
= [on2 :
[A(w)] = [-w Moy *+ Tw B+ Khh] (L)

for a modal analysis. The mass matrices [Mdd] or [Mhh] include the

aerodynamic mass matrix as a term.

The Fourier transform of the load vector is obtained by the defining

equation

{P(w)} - f”{P(t)}e-iwt dt (5)
0

Once {u(w)} has been evaluated by Eq. (2), the real time solution is

obtained from the inverse Fourier transform

(v} =+ f Refe' " {u(w) Hdu (8)
0 .

where RL[ ] signifies the real part of [ ].
The total calculation consists of the following three steps:

1. _Evéluate the Fourier transform of the applied load vector at a
sequence of_frequenc?es, Wy, Wy, ==, w“, in a range
0 < W, < W The number and distribution of frequencies is
selected as a compromise between sémpling error and computational

efficiency.

2. Form the dynamic matrix [A(wn)] and solve the matrix equation
[A(@n)]{U(wn)} = {Plw)} (7)

"for each selected frequency.

3. - Evaluate the transient response by means of an appropriate

" numerical approximation to Eq. (6).
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D.2 Fourier Transforms of Load Vectors

Fortunately the applied time-dependent load vectors used in NASTRAN
have relatively simple Fourier transforms. Two separate forms are pro-
vided. The first, or general, form is (see NASTRAN Theoretical Manual

p. 11.1-1):

{Pj (t)} {Aj}F(t-rJ.) 0 < t-Tj <T

(8)

0 0> t-t,; t-1.>T
: J J

where {Aj} and {Tj} are tabulated coefficients that may be different for
each loaded degree of freedom (j). F(t) is a tabulated function of time .
that is linearly interpolated between entries. }The maximum time limit,

T, is ihtroduced in order to make the function transformable. T may, if
desired, be set equal to the requested duration of the transient solution.
The form provided by Eq. (8) is particularly useful for loads due to
traveling waves. In such applications, F(t) may‘represent the pressure
produced by the wave at some arbitrary point, Aj is the exposed area
associated with the jth degree of freedom, and Tj is the travel time
»required for thé wave to travel from the arbitrary point to the jth

degree of freedom.

The function F(t) has constant slope between adjacent breakpoints,

t and t
m

el The Fourier transform of the load vector is, by straight-

forward application of Eq. (5),

-iwT,
W= {Ae  Jlew (9)
where
, M-l AF -iwt . -iat
6(0) = 1= (F(0) - F(Me Ty + Lp ] m e ™le ™ (0)
m m



et

and

oF = F(tm+]) - F(t) (11)

A=t -t (12)

Equation (9) is in standard form for frequency response analysis with

NASTRAN, see Eq. (2), p. 12.1-1, of the NASTRAN Theoretical Manual.

The second form of the applied, time-dependent load vector provided

with NASTRAN is

{p,(6)} = {Aj}(f)" ot cos(wE+¢) 0<T<T, -T

2 1
(13)
=0 0>t ; and T > T, =T
" where
t=t-Tl-Tj' (14)

Theﬁgix}constants T], TZ’ n, o, w and ¢ may be selected to provide
; wide variety of wave shapes. The coefficients Aj and Tj have the same
significance as they do for the general forcing function in Eq. (8).

Any number of load vectors of.either or both forms may be applied simul-

taneously. .

In order to avoid difficult integrations, it will be assumed that
the exponent n in Eq. (13) is an integer, greater than or equal to zero.

‘The Fourier transform of the load vector is in standard NASTRAN form,

(P} = (A e I16(w) (15)
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where

i -in]
G(w) = 7e [E(T2 =T a') + E(T2 U a,)] (16)
ap = o+ ilwt+¢- o) (17)
a, = o - i(wkt + ¢+ wt) (18)
and
' Tl Tn-l 17" "2
E(T, a) = &° 'L—- -+ n{n a)?

+ (0" 3,‘-,1] + (0" a—:;';,— (eT-1) for n > 0 (19)

= %—(eaT -1) forn=0

D.é Evaluation of the Frequency Response

i‘szhe most time consum}ng part of the calculation is the evaluation
of thé freqﬁency response to the Fourier-transformed excitation functions.
The aerodynamic matrices [Ajj] and [Djk]’ which are functions of reduced
frequency, wiil be different for each frequency because k = bw/V and
‘the velocity is held fixed.. Calculaiion of the aerodynamic mass matrices,
[M:d] or [M:h], can be economized by interpolating between values tabu-

lated for a few frequencies.

A more serious question is the selection of the frequencies at which
to compute frequency response. The graph of the freqhency response of a

lightly damped structure will contain sharp peaks and broad valleys.

D-6



Thus, a nonuniform spécing of frequencies, with points concentrated

near the peaks, will produce a more accurate transient response, for a
given number of points, than will a uniform spacing. It is quite likely
that the user will have advance knowledge of the location of the peaks.
Even if he does not, a preliminary run can be made with a coarse mesh of
points to approximately locate the peaks. |In any case the user should be
given the option of specifying a nonuniform spacing of frequencies. He
should also have the option to merge the results for two runs with

different frequencies.

Perhaps the most efficient method of calculatipg frequency response
ié to use the eigenvectors of the aerodynamically coupled structure. It
is, unfortunately, impossible to calculate the eigenvectors unless the
aerodynamic matrices can be evaluated for Complek values of the reduced

frequency. This method is not proposed.

'D.h Evaluatibn of the Inverse Fourier Transforms

If the frequencies are uniformly spaced, the most efficient method
for cdmputing the transient response is probably some version of the
Fast Fourjer Transform, Refs. 1, and 2. Af present NASTRAN does not
contain a Fast ;ourier Transform (FFT) routine, but there should be no

great difficulty in providing one because several efficient computer

codes exist.

The essence of the calculation is as follows. By Eq. (6) the
transient response vector, u(tm); is linearly related to the frequency
response vector, u(wn), so that the result of a numerical approximation

of Eq. (6) can be expressed in matrix form as
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u(t,) "(“’1)

u(tz) u(wz)
u(t3) = R% [an] u(m3) (20)
u(tM) u(wN)

where [an] is a matrix of the coefficients

iw t
- tw [t
an =—e (21)

The form of Eq. (21) indicates that equal weights are given to all

data points.

The calculation indicated by Eq. (20) has the discouraging aspect
iwt
that M x N separate factors e M are required. This can be reduced

to kN separate factors, where k is a small number, simply by using uniform

spacing in time and frequency such that

Mont = 2L (2

e % T

e .

-

where P is an integer. In the FFT method, M, N, and P are all selected
to be equal to ZY where y is an integer. The period of the response is

T =2n/bw = N/f . 1t may then be shown that Fan] can be factored into
(F o1 = [T 10F 1T, IIF,] === [TY][FY] (23)

where the [Fk] matrices include only two non-zero terms in each row and

the [Tk] matrices perform a reordering of elements in the right-hand



vector according to a fixed pattern. With these simplifications the
indicated matrix multiplications are reduced to short arithmetic and |
logical operations. The total number of operations is proportional to
NY = N log2 N. The number of different trigonometric functions is
equal to N. They need only be calculated once and stored, regardless

of the number of output quantities that are processed.

If the frequencies are not uniformly spaced, the following methods

(amogg others) are available.

a. Interpolate the frequency response data to a set of uniformly

spaced points and use the FFT method.

‘b. Represent each frequency response function by a polynomial fit

between data points and perform an exact integration.

The nonhnfform frequency intervals have, presumably, been selected
to minimize the error in method (b). The uniform frequency interval
for method (a) should, therefore, be selected equal to the smallest
ihtervél present. Thus, the number of frequencies generated in method

(a) may be much larger than the number of frequencies in method (b).

Both methods require analytic interpolation of the frequency response
data. It is proposed that the data points be fitted by a cubic spline
curve, i.e., by a curve that simulates the deflection of a beam passing
through all of the data points. This curve has the property that its
first and second derivatives are continuous at all data points. In any

interval,;wn <w<w the function is represented by

n+l’

- T =3
u=a + bnw *c @+ dnm (Zh)

where & = w = W, The second derivatives at three successive data points



satisfy the relétionship, for 2 £ n < N-1,

Aw_u'!
n

+ 20w+ Aw_ )u'! + Aw =6 “nt1 o - “n n-) (25)
n+l “n n=-1""n h=1Yn-1 " Auh Aw >

where Awn = W - . The boundary conditions are
uj = uy =0 (26)

Equation (25) is a well-conditioned difference equation and the

coding of a computer subroutine to solve it is a simple task.

For w > Wy the response quantity is assumed to be zero. Presumably
the highest frequency has been selected on the assumption thét the contri-
bution of higher frequencies to the transient response may be neglected.
If the lowest frequency, Wy s is not zero, the response must be extrapolated
in the range 0 < w < w, utilizing some reasonable presumptions regarding
the behaviour of the response quantity near zero frequency. The response
quantity will be represented by a quadratic curve that matches the displace-

ment and slope of the cubic spline at w = W, . The remaining coefficient

will be selected to match assumed boundary conditions at w = 0 as fol lows:

for displacements, accelerations, internal forces and stresses:

- - d
?}ope, da = 0

SR B

for velocities A nn Tt

Curvature, du _ 0, therefore the curve is a

dw straight line.
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The exact integration referred to in method (b), obtained by sub-

stituting Eq. (24) into Eq. (6), is
N-1 gl
wt - ~2 -3
| f e (an + bnw +c B+ dnw Ydw (27)

Wn

R%
n

I o~114

u(t) = -,:?-

An explicit representation of this integral is as follows:

u(t) = —17; R gogan[-;g(ei“’nnt - eiwnt)]

Tt n=

. iw iwt
+ bn[(tz'-’ ‘iAwntB)e LA tze n ] (28)

iw t fw t
* e [(2it + 2Amnt2 - iAw:t3)e P oite M ]

2

t iw t
+ dn [(-6 + 6iAwnt + 3Aw§t - iAmﬁtB)e n+l + 6e " ]%

‘where
imnt :
e = cosw t + isinw_t (29)
n n
If there is more than one response quantity, the coefficients of

a,b,c

n? B and dn in Eq. (28) may be held in core storage and used

n

repeatedly.

Equation (28) is indeterminate for t = 0. For t = 0 use

¢

ult) = + R.Q.Nil Awa + 3 awb + Law)3e + Law )t (30)
ﬂn=]nn2nn3nn1+-nn

Evaluation of the trigonometric functions in Eq. (28) and (29) is a
significant computational task since they must be evaluated NM times where

N is the number of frequencies and M is the number of time steps. The



calculation can be speeded, perhaps, by holding a short table of trigono-

metric functions in core storage and interpolating.

Each term indicated by the summation sign in Eq. (28) is evaluated NMR
times where R is the number of response quantities. Thus, since there are
four products in each term, the total number of complex multiplications is,
approximately, 4NMR if R is large. For comparison the number of multipli-
cations in the calculation of the frequency response is NDB2 where D is
the number of degrees of freedom and B is the semi-bandwidth. For aero-
elastic problems solved by the hodal method, the matrices are full and the
effective bandwidth is P/Vﬁq « Thus the number of multiplications is
approximately %-NDB. If we further assume that the number of desired
response quantities is equal to the number of degrees of freedom, the ratio
of computing times is approximately 8M/Dz. Since, typically, the desired
number of time steps is a few hundred, we see that the time to calculate

the inverse Fourier transforms is greater than the time to calculate fre-

quency response if there are fewer than about 50 degrees of freedom.

The ratio of the computing time by the FFT method (including inter-
polation of non-uniformly spaced frequencies) to the computing time by the
exact integration method is of the order of %-(IogiN) and it will almost
always be faster. Nevertheless the exact integration method offers greater
freedom with respect to the selection of output times and it is a safer
method because it makes fewer approximations. In particular, there is
less danger of missing frequenty response peaks. For these reasons it

is recommended that the exact integration method be given higher priority.
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D.5 Modifications of NASTRAN to Implement the Fourier Transform Method

Only two modifications are required. The first is to provide means
for calculating the Fourier transforms of applied load vectors, see Sec-
tion D.2 above. The representatioﬁs of thew»load vectors in both the
time and frequency domains are in standard NASTRAN form so that this

modification is quite simple to implement.

The second modification i; to provide means for calculating the
time histories of response quantities by the Fast Fourier Transform
method and also by the Spline Fit Integration method as described in Sec-
tion D.4 above. The input data réquired in these calculations is
already generated for use in the NASTRAN Random Analysis Module. The

system implications of the modification are, therefore, slight.

D.6 Representation of Aerodynamic Forces in the Time Domain

The basic form required by the NASTRAN transient analysis module is

[MI{G} + [8]{a} + [Kl{u} = {P(t)} (31)

where {u} may include 'extra points' as well as structural degrees of
freedom. The NASTRAN Theoretical Manual (section 9.3.2) shows how the

extra points may be used to represent transfer functions whose expression

in the frequency‘doh;invis

e, = Hi,(Ple, (32)
where
2
H,, = Tl i (33)
= — ,
12 bo + b]p + bzp
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The technique is to multiply both sides of Eq. (31) by the denominator

of Eq. (33) with the result
(b_+bp+bplle = (a +ap+apie (34)
o 1 2 2 o ] 2P 1

The proper interpretation of Eq. (34) in the time domain is simply
that p = d/dt. Equation (34) is then in the basic form, Eq. (31). Higher
order polynomial quotients can be treated by factoring or by partial

fraction expansion.

AAerodynamic theories do not usually express aerodynamic transfer
functions as polynomial quotients, but polynomial quotients have frequently
been used in approximate calculations with considerable success, particu-
larly in the case of strip theory (Refs. 3, 4 and 5). They can also be
applied, without approximation, to piston theory and to Newtonian flow
theory. For lifting surface theories, on the other hand, it is difficult
to find sufficiently simple approximations with adequate accuracy. Another
difficulty is thét different approximations have different matrix formu-
lations with the result that the unity of form that applies to the differ-
ent aerodynamic theories wheﬁ they are expressed in the frequency domain
is lost. For these reasons the matter of incorporating time-domain aero-
dynamic formulations into,NASTRAN will not be pursued further at the pre-

sent time.
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APPENDIX E

Interpolation by Means of Elastically Connected Beams and Plates

Interpolation will be used for three purposes in the NASTRAN Aero-
elastic program:

1. To find the equation of constraint between the aerodynamic
degrees of freedom and the structural grid point deflections.

2. To interpolate aerodynamic matrices to new Mach numbers and

reduced frequencies.

3. To find an analytic representation for a frequency response
curve, so that the Inverse Fourier Transform can be done with quadra-

tures.

Linear splines for one dimensional problems, and grids of linear
splines for two dimensional problems (Reference 1) have been used
successfully for structural'interpolation. This has been expanded‘for
the NASTRAN implementation to include surface splines (infinite uni-

form plate) and attachment springs (a method of achieving smoothing) .

E.1 Surface Splines

A surface spline is a mathematicalitool used to find a function
W (X, Y) for all points (X, Y) when VW is knownvfor a discrete set of
points W, = W(Xi, Yi)' A linear spline is a ''beam' function which
passes through the known points. The natural extension to two dimen-
sions is to introduce an infinite plate, and solve for its deflection,
given its deflection at a discrete set of points. This surface spline
is a smpoth continuous function which will become nearly linear in X
and Y at large distances from the points (Xi, Yi); Furthermore, the

problem can be solved in closed form involving nothing more difficult



than to evaluate some logarithm functions.

Solution to the plate equation

The deflection of the plate will be synthesized as the response due
to a set of point loads on the infinite plate. The response due to a
single load is cai}ed a fundamental solution. The fundamental s;lutions
have polar symmetry. If we take the load at X = Y = 0, and use polar

coordinates (X = r cosf, Y = r sin8), the governing differential equation

is
1 d d [1 d ¢ dw\]]_
D Vi =D r dr ; rar [-r- dr (r dr):”— @ - ()

The load q vanishes except near r = 0. The general solution to the homo-

"genous form of Eq. (1) is

= | ; 2 2'
W Co + C1 r? + C2 Inr + C3 riIn r. (2)

Set C2 = 0, to keep the solution finite as r >~ 0. Multiply Eq. (1) by 2mr and

integrate from r =0tor=c¢ (asmall number). Thus

o d 1 d aw\]
Lim 2mr D -3 -——-( -)
.r+0 - ) dl" [r dr r df ] = P s (3)

where P is a concentrated force. Applying gq. (3) to Eq. (2) we get

C3‘= PISnD. ‘Rearranging Eq. (3) we get the fundamental solution:
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P 2 2

W=A+Br? + T&m r“Inr (4)

The fundamental solutions are superimposed to solve the entire plate

problem with a solution of the form

il 12

W(Xx,Y) = .
i

P.
2 i 2 2
‘ [Ai + Bi YooY TE In riJ , (5)

where r? = (X-Xi)2 + (Y-Yi)2

- The remaining requirement is to satisfy the boundary condition at infinity.

To do this we expand the solution for X2 + Y2 » o,

r? = (X2+Y2) - z(xix+viv) + (xi2+v§ ) (6)
2 ‘ 2,2 XWX;in -1
Inrf = In(x®+¥?) -2 gy + O0R+v2) ¢)]

( (X24Y2)1n(x24+Y2%) - z(xix+viv)1n(x2+vz) - 2(xix+viv)
r?lnr? = - (8)

+ (x§+v§)1n(x2+~(2) + 80)

In Egs. (7) and (8), & (Xx2+Y2)" means of order (X2+Y2)n; Put expansions (6)



and (8) into Eq. (5) to get

Torg (X3 In0) ] P o+ (x34v?) ] B,

Xin(X2+y2 ~ YIn(x2 Yé
- n#n ) Lox P "%éﬁ;t“L Y P
©wW(X,Y) = X.P. | Y.P. (9)
+2X J\vem - %8 ) +2Y Ilymm - Vil

2 2 .
Ll I e+ o)

+

In order to satisfy boundary conditions at infinity, wé must get rid of
all terms in (X2 + Y2)In(X2 + Y2), (X2 + Y2), Xin(x? + ¥2) and Yin(x2 + Y?),

leaving terms of order X, Y, I1n(X2+Y2), and 1. Thus

"'z \

0 (10)
Lp=0 (1)
R o(~ (12)
[v.p, = (13)

Equations (11) thru (13) are recognized as the equations of equilibrium.

Using Eas. (6) and (10) it is seen that

e~z

(A, +B. r2)=a +aX+ay . (14)
1 1 | 0 1 2 X



Thus one form of the solution for a two dimensional spline is, using

EQ- (5) [}
N
WX,Y) =a +ax+ay + ) K (X,Y) P, (15)
0 1 2 n=1
]
where Ki(X,Y) = r2 in r? , r? = (X-X;)2 + (Y-Yi)z

1670 i

The N + 3 unknowns (aO; ay; a; Pi; i=1,N) are determined from the N + 3 ‘

equations

I poo= Ixp = y.p. =0, oand
N
W, =a+a X, +ayY, + .. P ji=1,N 16)
R Mo I IR A nzl ij i (3=1.) (
where K, . = K, (X., Y.).
] P J
.Note that Kij = Kji’ and‘Kij =_0 whgn f = j.
These equétions can be summarized in matrix form:
: | | "
N ‘ 3,
} . ‘ a2 »
WIK,Y) = L1, X, Y1 KOGV LK (X, Y), ey K (XGY) ] (mm4- (17)
‘ P‘
Pa
PN

where Ki(X,Y) is defined below Eq. (15)
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The vector of a's and p's is found by solving

oo | -

i

0 0 0 0 { 1 1 . . . 1 a,
1

0 0 0O : Xl X2 . XN a,
|

0 0 0 O ‘ Y] Y2 . . YN a,

R e il (18)

w] 1 Xl Yl : 0 K]Z .« e K]N P‘
i

M\ {1 Ka i Ky 0 e K | [P2

. . . i - ° . .

. . . i PO . .

W 1 X, Y, ! K., K .. 0

N B N N‘; N1 N2 _ PN

where Kij is defined below Eq. (16).

The interpolation to any point in the plane (X,Y) is then achieved

by evaluating W(X,Y) from Eq. (17).

E.2 Linear Splines, an Alternative Derivation.

Linear splines are easily solved by the three-moment method (see
Section 5.7 for the details)ik This method is excellent for simple linear
splines. UnfOftunately, the method does not work as well for splines
with torsion, rigid arms, and attachment springs as described in Section
5.4 for geometry interpolation. The derivations sketched below are based

upon an analogy with the surface spline derivation.

a. Linear splines

¢ Equation: " _
d'w dm
ELee = 97 & (19)

where q = applied load and m = applied moment

A symmetric fundamental solution for X # 0 is used for loads q = PS(X).

E-6



W=C +C|x]+¢c x2+c [X]|? (20-s)
0 1 2 3

Continuity of slope requires C1 = 0, and the equilibrium condition
gives C3 = P/12EI. An antisymmetric solution is used for applied moments.

Thus, for X # 0
W=4dX+dX|x] +dx3 (20-a)
1 2 3

The equilibrium condition gives d2 =~ T Combining fundamental

solutions, and renaming the coefficients

W= A+ BX+CX2+0XP - e X|X| + 1o IX[° (21)

12EL

Superposition for loads at X = Xi gives

M. (X-X.) |Xx-X.] P.|Xx-X.]|?
i I_ | +
LET T2ET

N .
W(X) = igl[Ai+Bi(x-xi)+ci(x-xi)2+|)i(x-xi)3-

As X » Foo |

P. ’ . .+P. X,
W(x) = XsZ(DiiTzT'zz) + X* Z(ci"”ixi:’-'?iﬁ—") v+ e (23)

Thus, to‘Satisfy the condition at infinity, which is that the slope

approaches a constant,

20, =3¢, =2D.X =0 '(2‘»)
2P, = 2M+P.X,) =0 (25)

Equation (25) is recognized as the equilibrium condition. The
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solution is given by (using Egs. (22) and (24%))

N M, (X=X) [x-X, | Pox-x.|?
W(X) =a +ax+ 2, (- ' + (26)
0 1 i=l LET 2ET
, N M. |X-X.| P(X-X.) |x=X.]|
e(x)=§3'-=a+2 - _— s ' —} (27
X S 1 2ET 4ET

These are written in matrix notation as

%
u I : . — a]
] - - - ————
W(x) 1oX e, L X el p
i 12E1 : LET !
...... P e et .
1 : .
8(x) o 1 : (X‘X]){X Xll - 'x-x]' pN
! . ' s s ]
| : hEI | 2€1 A
s MN
The unknowns a, P and M are found from
(o §
0 ) a,
W] i E T :. .T —1 T
IS s SOy T B I
: : T ,
= R Mo By P2 (29)
< D 2 Do R S
. ' [}
W N T
-é-‘ L ‘ ) - PN
1 ————
: M,
M
2
\*
M



where it has been assumed X] < X2 « e e < XN , and
B 1
T .
Ry =X X, xN]
0 0 . 0
Ry =
11 ]
b .
i (X,-X,)® (xX,)? |
0 2 M N
T2ET <t TTZEL
- 3 - 3
A - (x X,) o (XN XZ)
1 T2EL : " T2ET
Ty y3 BVEY! .
(Xy=Xy)® 0X,)
IRE3 SR 7 S 0o _
(Xyxy)* (xy~X,)*
0 - . ° - :
, LET REL
-X.)2 Ty 2
(x,-X;) . _ (Xy~X,)
A = | UEL T L=
21 ° . . .
- 2 - 2
(X=X) 2 (Xy=X,) .
LET RET |
o = (KX)o (yXy)
T %I - 2EI
e (X,~X,) . (Xy=X,)
22— e —— e s e " —————
: 2ET . o 2E1
COyxg) (X)) .
2E1 2ET
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b. Tension and Torsion Bars.

An analogous derivation exists for torsion bars (and tension

bars), which is sketched below:

Equation :
2
w® - (30)
dx?

A fundamental solution for x # 0

8 =Cy+ C x| (31)

Apply the jump condition to solve for C,, and superimpose the solutions

to get
N T %-x |
8 (x) = 3 [C - — (32)
i=1 264

To satisfy that 8 = constant for X = tw

2T, =0 (33)
The solution is o h'ao
P T SR
. X=X | Xy-X
" 26GJ 2G4 T
- 2
™

where the unknowns come from



1
_
2GJ
- | Xy %,
2GJ
0

. i
/ o\ o ! 1 1 C
|
| 1x,~x, |
0, 1 1o B T LA
n 26J
l
X=X
<ez > - bl 0
{26
: N B :
}
5 3 |%y-X, |Xy~X, |
\ N/ L gay 26J
3

8 -+ U
GJ > AE
T =+ F

in Eqs. (30) thru (35).

E.3 Attachment of splines with elastic springs.

A refinement of the spline interpolation analogy with structural

mechanics is to attach the splines to the structural grid points with

springs. The purpose of the springs is to provide a measure of smoothing-

to the data. The question natunally arises as to how stiff to make the

springs. If the springs are infinitely stiff, the plate will pass through

all of the data points. |If the springs have infinitesimal stiffness,

the plate will pass through a least-squares linear fit of the data points.

The question can be analyzed for the linear spline interpolation by

E-11



means of a spring-connected beam. Displacement of the beam satisfies the

equation
‘EI -5 = 2; (un-w) K, 6(§-xn) (3?)

where un(xn) is one of the data points, Kn is the spring constant, and

6(x-xn) is a delta function such that
f" S(x - xn)dx = | for all € >0 (37)
xY-¢ ‘

It is convenient to assume that the data points are uniformly, closely

spaced so that, passing to the limit as the spacing, Ax, approaches zero,

b _
E1 d—-‘ﬁ- =K'(u -~ w) (38)
dx
Kn _
.where K' = x Let us examine the case where the beam is infinitely

Tong and u is zero everywhere except near the origin where'td(0) = AS(x).

The solution is

. = . »;ww
W= %f e g'[cos(%) + sin(.z_)] | (39)
where ) o e
. : 1/h
L= "T(TEL) (40)

% is, evidently, related to the '"effective' length over which the value of
a single data point has an important influence on the smoothed curve, w.
(For example, when x = £, w = 0.51 A/22.) & can be selected'by the user

on physical grounds or according to some intuitive concept of smoothness.
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As a practical ﬁatter, the values of the spring constants, Kn, are
required to perform the interpolation. It is suggested that they be deter-
’ mined as follows.
1. The user selects a smoothing length, '2".

2. K'/EI is computed from Eq. (40):

K'/E1 = (41)

ze:_|-l=-.

3. Ax is assumed equal for all data points (in order to give them
equal weights) and is computed from Ax = L/N where L is the
difference between the largest and smallest values of x and
N is the number of data points.

L. The spring constant is, therefore

4

K, = b(L/N) ET/% (42)

. The analysis of the two-dimensional plate preb]em leads to similar
results except that the trignometric function in the solution is replaced

by a Bessel function. The effective length, obtained from analogy with

Eq. (40), is

v= 2 ()" (13)

3

where K'' is the spring constant per unit area and D = 1/12 Et” is the

bending stiffness of the plate. It is suggested that the spring constant

R

be evaluated as follows:

1. The user selects a smoothing length, .

2. Equation (43) is used to calculate

Kll _ L‘
= _.EK (4h)
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3. The spring constants for data points are assumed equal, and

equal to

Kn = ASKY = T ;E (I*S)

where R is the mean distance from the center of gravity of the
data points to the data points, R = [(z rnz) /N ]]/2, and N

is the number of data points.

The change in the formulas for splines to accommodate the springs is

very easy. A derivation, valid for the several types of splines, is as

follows.

The spline deflection is given by Eq. (17), (28) or (34) and can

be written
-uk(") =LR(r)J{a} + I-Aj(r) J {r} (46)

where U, is the deflection of the spline and the r may be a one or two
dimensional argument. Thus,including the equilibrium equations (18),

(29) or (35):

0 = [R1" (P} (47)
and

g} = [Rij.{a} SRR (48)

N
LS

R

- The structure deflectioﬁadé @iT1 differ from the spline deflection by the

deformation of the spring, resulting in forces

= IkJ {ug -l (49)
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where the matrix, KS, has the spring constants, K, along the diagonal. These
are non-zero (if Kwere = 0, then there would be no attachment and we would

discard that grid point) and thus the inverse of Ks is:

L 0
LR  (50)
° ®

Eliminate u, between Eqs. (48) and (49) to get

k

Qugh = IR L + (Ia 51 + 3™ ) (P (51)

Thus all that is required to accommodate springs is to add the spring flex-
ibilities to the diagonal of the spline influence coefficient matrix. This
is obvious by physical reasoning, since the spring and spline flexibilities

are in series and can be added directly.

E.4 Rigid arms on linear splines.

The linear splines used for geometry interpolation have rigid arms
(see Figure 5.4-2). Mathematically, these represent equations of constraint
between the displacements‘and rotations at the spline end and aftachment
end of the spliné. The constraint equations are used to transfdrm the
influence fuhcfioﬁs from the spline ends to influence functions at the
attachment ends. The complete transformed influencejfunctions are shown

in Table 5.4-1.
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APPENDIX F

Procedures in Flu;ter Analysis

The most general form of efgenvalue problem solved byANASTRAN has the

form
Mp2 + Bp + Kl{u} = 0 (1)

The solution‘vector {u} may either be physical displacemenfs or modal goor-
dinates. In the conventional approach to flutter analysis, the aerodynamic

properties are included in the mass matrix which then has the general form.

2

M = D+ e (2)

where [M]] is the structural mass matrix, [MZ] is the matrix of direct

input terms prescribed by the user and [Ma] is the aerodynamic mass matrix.

The mass matrix may be written as

2
1 = 2 [ (3)
" 2k

where the matrix [Q]. is a relatively slowly varying function of Mach

number, m, and of reduced frequency, k.

An alternative formulation of the flutter problem is obtained by treat-

ing the aerodynamic effect by means of an equivalent stiffness matrix

€] =-3 o[l (%)
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which is added to [K] in Eq. (1). This formulation has the apparent dis-
advantage that the velocity, V, is related to reduced frequency by V = bw/k
so that q = -%-pv2 cannot be specified as a fixed parameter in solving the
eigenvalue problem. The actual situation is not, however, greatly different
for the two formulations. The "independent' parameters in the mass formu-
lation are k, m, and p, while those in the stiffness formulation are k, m,

and q. Neither set of parameters is truly independent because at the flutter

condition, the flutter frequency .

DR ®

where a is the velocity of sound. Only if [Q] is independent of Mach number
do k and p become independent parameters for thé mass formulation while k, m,
and q never yield an independent pair for the stiffness formulation. Histor-
ically, flutter analysis began with low subsonic speeds where Mach number is

insignificant which is why the mass formulation is now standard.

Whichever formulation is used, the determination of true flutter boun-
daries requires cross-plotting of the results for combinations of the inde-
pendent parameters. In the case of the mass formulation the flutter speed

satisfies the pair of equations

LI
Vf = "‘E‘; = vf (p:m‘)
and o ' - (6)
v, = ma(p)

f

The dependence of a on p may be obtained from a standard atmosphere table.



The two equations in Eq. (6) may be cross-plotted versus density

as follows:

flutter boundary

In ‘the case of the stiffness formulation, the flutter speed satisfies the
same pair of equations which, however, are now functions of Mach number

and dynamic pressure

Ve = i = Velom
- : (7)
Ve = malq,m)
which may be cross-plotted versus dynamic pressure to obtain a flutter

boundary.

LN - <oy

Since both formulations lead to feasible'solutions, the selection of
one or the other depends partly on computational efficiency and partly on

precedent. The mass formulatfon has a large computational advantage when



the aerodynamic matrix [Q ] is assumed independent of Mach numbef'and it
also has the advantage of precedent. The stiffness formulation has a
significant advantage for some methods sf eigenvalue extraction such as
the p-k method, Ref. 1. In the p-k method the reduced frequency is eli-
minated as an independent parameter during the process of iteration toward
particular roots of the flutter problem. Thus, if V'is specified as a
parameter and w, is the current estimate of frequency, an estimate of the
reduced frequency can be found from ki+l = bwi/V. With this method,V and
p are specified as independent parameters, the Mach number is found from
m = V/a,and the flutter boundary is obtained directly by plotting flutter

speeds vs density.

Flutter

In cases where the aerodynamic matrix [Q ] is a function of Mach number,
the p~k method requires one less independent parameter than the standard
formulation (k method). It pays for this advantage by requiring a much less

efficient method of eigenvalue extraction. With the k-method highly

efficient transformation techniques (see Appendix H) can be used. Refer-
ence | recommends determinant iteration for the p-k method. We propose
instead a modified form of the shifted power method described in Appendix ‘

, which should be more efficient. Both the determinant and power methods



rely on approximate knowledge of the eigenvalues based on prior solutions.

Figure 1 shows a proposed flow diagram for flutter analysis by bothrv‘
the k and p-k methods, detailing the decision points. For both methodé;NMJ"
all instructions and data for the inner decision loop sﬁoufd be core held”
It will be noted that cross-plotting of flutter speeds vs p and m is not
done automatically. In our opinion the analyst can do a much better job,
particularly if the number of data points is small. Since flutter analysis

is expensive, excessive numbers of data points should be avoided.

Both methods shown in Figure 1 require some modification of the eigen-
value routines used in NASTRAN. The modifications for the p-k method are
discussed in Appendix |I. For the k method a transformation method that
will handle complex unsymmetric matrices, such as the one described in
Appendix H, should be added to provide improved effiéiency for the extrac-
tion of eigenvalues from full matrices. It is assumed, in this connection, 
that structural modes will usually be used as degrees of freedom, with the

result that aerodynamic matrix will be of relatively low order, but full.

It is seen in Figure | that the output data includes both p and m as
parameters, and it has been shown in the previous discussion that the user
is required to-cro§s-plot the results to obtain flutter speeds. Itris,
however, possible for the user to apply the density loop in the k hethod
in order to minimize the cost of flutter calculations, as will now Be

demonstrated.

Wird tunnel data are frequently summarized in terms of an altitude-
stiffness parameter as a function of Mach number. One form of a stiffness-

altitude parameter is V/bw/J where p is the mass ratio, u = Mg/ﬂpbzs, in
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Calculate [Q] for given
values of m and k

!

Interpolate [q] (if required) and
place interpolation coefficients in
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‘ N \
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! !
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!
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Y
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no l
L""""""<(38nverged ;j>
no l
"""""<.Iast root;i>

last k?

no no

Tast m7>.
last p?
no

Output Processors last m?
Plot V-g and V-u | | output Processors

for each p and m ’ ‘ -
B - B Plot V-g and V-w

for each p

FIG. 1. Basic Flow Diagram for Flutter Analysis



which wpbzs represents the mass of air in the conical frustum circum-

scribing the wing and Ms is the structural mass of the wing. The stability

curve appears as in Figure 2.

i

»unstablé
A
v
EE?E"
Y
stable
{ 1
1 1
M 1.0 M

0.0 1

FIG. 2. Stiffness-Altitude Stability Parameter

The stability curve can be generated analytically for each Mach number
Mi by choesing a single representative reduced freugency ki and obtaining
the corresponding aerodynamic infiuence coefficients (AIC's). With this
AIC matrix and a series of densities, ;> the eigenvalue solutions will

lead to a g-p curve and an w-p curve as shown in Figure 3.

The flutter point(s) correspond(s) to the densfty(ies) at which g.= 0.
From this density, say Pys the mass ratio at flutter, ¥y is knownrand the
stiffness-altitude parameter, V/bw/il = l/k]Vﬁ} is known for the Mach n&mber.
selected, say Mi' This gives an analytically derived point as shown in. -
Figure 2. The entire curve in Figure 2 is obtained by repeating the pro-

‘cedure at additional Mach numbers.
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unstable mode

stable mode

unstable mode

“"‘%‘ stable mode

P

FIG. 3 Variable Density'Damping and Frequenéy Curves .

A'Fo; applications to a specific éltitude corresponding to mass ratio
'uz, the choice’of representétive reduced frequency klnmay not have been
#ppropriate and an improved valdé may be estimated from k2 = k]/ﬁT7ﬁ; .
The curve of Fig. 2 may then be refined by repeating the aone sequencé

of calculations to determine its sensitivity to the choice of representa-

tive reduced frequency. The fundamental assumption 15 that thé‘éff%fnéss;
altitude parameter, which is proportional to vp/k, adequatély describes
the contributions of p and k to the #lutter problem so that their individual
effects need not be determined in every case. This is an oversimplifying

3

assumption that has been discussed by Yates”, Appendix €, so that conven-

tional flutter methods must eventually be employed. Once a representative



reduced frequency is obtained, say k3, the g-V curve can be generated in the
region near k3 by either the k or the p~k method for constant altitude

(density) to determine the flutter speed accurately at that altitude.

The possibility of substantial savings in aerodynamic analysis suggests
this approach is deserving of serious attention. Its primary value can be
seen in preliminary design work in which numerous planforms are under con-

sideration.
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APPENDIX G

A Comparison of the Characteristics of

Candidate Unsteady Aerodynamic Theories

Numerous canaidate aerodynamic theories for lifting surfaces in subsonic
to hypersonic flight regimes were discussed and compared in Ref. 1. We are
now able to review the leading candidates in each flight regime in the 1ight of
the general capabilities desired in NASTRAN, as discussed in the Introduction.
The desired general capabilities include versatility with respect to permiss-
ible aerodynamic configurations, accuracy, efficiency both in terms of user
conveniences and in terms of computational procedures, and compatibility with

existing NASTRAN capabilities.

We regard the subsonic Doublet-Lattice Method as a technique that is
 typicaT of aerodynamic interference methods, but also as one that satisfies

"all of the above noted desirable features. Specifically,

a. [t accommodates multiple aerodynamic surfaces with arbitrary
planform shapes. The major restrictions are that the surfaces

should be (nearly) parallgl to the undisturbed flow.

b. It converges to theoretically correct results, within the limits
of small perturbation theory, for the entire reduced frequency
ranges and for 0 < M < 1 as the number of aerodynamic elements is

increased. No limit is placed on the number of elements.

c. It requires a minimum effort from the user to describe aerodynamic

elements and to provide other required input data.



d. It is a reasonably efficient computational scheme, although not so
efficient as those methods (such as the kernel function methods)
that produce aerodynamic influence coefficients from a priori
assumptions regarding the pressure distribution. The speed of

modern computers tends to minimize the importance of this feature.

e. It is generally compatible with the finite element concept of
~ structural analysis. The geometric and matrix properties of its
finite aerodynamic elements are easily related to the geometric

and matrix properties of the structural model.

The possibility of a Sonic/Supersonic-Doublet-Lattice Method also
exists but it is a future development whose success remains to be proved.
The most advanced proven methods available for spgeds above_subsonic include
the Transonic Sonic Box Method o%'Stenton and AndrewZ,Athe Supersonic Element
Method of Kariappa and Smith3, and, of course, Piston Theoryh for high super-

sonic and hypersonic speeds,

The specific requirements for implementing the Doublet-Lattice Method
in NASTRAN are discussed in Section 5.5 of this report. This appendix dis-
cusses the additional requirementg for implementing sonic, supersonic, and
hypersonic capability. We discuss the supersonic case first4because it has
been more refined than the sonic development, which should be regarded as a
special case. A discussion of fhe subsonic and supersonic kernel function

method is also presented after the discussion of the finite element methods.

G.} Supersonic Finite Element Methods

The fundamental aerodynamic element of the subsonic Doublet-Lattice

Method is a trapezoid with its parallel edges aligned with the free-stream.



The general devélopment of supersonic methods has utilized a fundamental
element known as the Mach Box, which is a rectangle with diagonals parallel
to Mach lines. This element achieved a fair measure of success, in spite of
its geometric incompatibility with typical planforms, in a methods’6 that
further limited its accuracy by global'interpolation of downwashes and
velocity potential functions. The recent development of Kariappa and Smith3
chooses a triangle with one side parallel to the free-stream as its funda-
mental element and uses local ihterpolation for downwashes and velocity
potentials. As a result, the method of Kariappa and Smith is compatible
with arbitrary planforms and it has-resulted in a significant improvement in‘

accuracy and computational efficiency.

THe subsonic Doublet-Lattice Method (and also the Kernel Function Method)
fs based on an acceleration (pressure) potential formulation qf‘the aero-.
dynamic lifting integfal equation and it is therefore only concerned with
potentials on the lifting surfaces. In contrast, the supersonic box methods
Have employed the ye]oc{ty potential formulatioﬁ and are concerned with
- _potentials not only on the 1ifting surfaces but also off of them in the so- |
called diaphragm regions. A comprehensive description of diaphragm con-
Mé?ﬁurations fgr nonplanar interfering configurations has been given by

6,7

Andrew and Moore

The consideration of diaphragm regions in addition to 1ifting surfaces
in NASTRAN would require additional input from ﬁhe usér, since the choice of
diaphragm configurations is not.unfque. The diaphragm may be regarded as
another kind of lffting surface, and its geometric features may be treéted .
in the same manner as the actual lifting surfaces. However, the boundary

conditions on the two kinds of 1ifting surfaces are different: the



downwashes (normalwash) on the actual lifting surfaces are speqified and the
velocity potentials are unknown; the velocity potentials on the diaphragms
are specified by the zero lifting pressure condition, and the downwashes are

unknown.

A nonplanar version of the Kariappa-Smith supersonic method can be
developed easily for inclusion in NASTRAN if the selection of diaphragm
configurations is left to the user. For very complex interfering configura-
tions this may place a very large burden on the user. If the selection of
diaphragm configurations is to be adtomated, a severe programming requirement
will exist that may limit the generality of configurations that can be accomo-
dated. The logical complexity of the program of Andrew6 for a limited number
of empennage configurations is a case in point. A-combination of cOmputer;
generated and user-specified diaphragm configurations may be a workable

compromise with the generality desired in NASTRAN.

G.2 The Transonic Box Method ‘“l‘ s

The Transonic Box Method is also a velocity potential formulation of
the 1ifting problem and therefore requires auxilliary diaphragm regions as
in the sdhersonic methods. The fundamental element employed by Stenton. and
Andrew2 is square (Ehe Mach box is infinite spaﬁwisé at' M = f.O) aﬂdAagéin
results in incompatibility with typical planforms. Its accuracy is also
limited by global interpolation of downwashes and velocity potentials as

5,6

in the supersonic Mach Box Methods

Since the theory for transonic flow is only a limiting case of super-
sonic flow, the procedures employed by Kariappa and Smith3 can be adapted to
permit the Mach number to approach unity and the discussion of the supersonic

problem in Section G.1 may be regarded as including the sonic case.



G.3 Kernel Function Methods

The modal solutions of the subsonic and supersonic 1ifting surface
problems are known as kernel function methods. A series of pressure func-
tions or modes is assumed and their amp]itudes are determined by colloca-
tion at an optimum set of control points. The subsonic techniques are more
advanced than the supersonic but they are still somewhat restricted as far
as interfering and intersecting surfaces are concerned, particularly with
regard to control surfaces. The first computational procedure was given by
Watkins, Woolston, and Cunninghanﬁ. An extension to a nonplanar surface was
given by Vivian and Andrew, a control surface was added by Berman gs_gl:g,

10

wing-tail interference was considered by Albano et al. ~, and intersecting

surfaces have been investigated by Andrew]l.
The supersonic case of a planar wing has been investigated by Cunning-
hamlz’]3

and by Curtis and Lingard]h. No extensions have yet been made to

include control surfaces or multiple surface interference.

A subsonic kernel function procedure could be developed that satiefies
the general fequifements of NASTRAN by combining the besfrfeatures of Refs.
8 - 11. In this way versatility with respect to permissibie aerodynamic
configurations,-efficiency in computation, user convenience, and compatibility
wi;h existing NASTRAN capabilities would be achieved. The question of accuracy -
would require further investigation because the techniques of Refs. 9 and 11
have been observed to have erratic convergence charactefistics.‘ However,
" it must be noted that tHe programming effort to;permit a very iargervafiety

of aerodynamic configurations will be substantial.

It does not appear that the Supersonic Kernel Function Method has been
investigated sufficiently that its development for NASTRAN is warranted at

this time.



"G.4 Piston Theory

While Piston Theory is obviously a finite elemént method, since a point
relationship exists between pressure and downwashh, it has never been auto-
mated as such. It has always been considered as a strip theory with a rigid
chordls, or with a parabolically cambering chord]6 and with an aerodynamically
unbalanced control surface. In the format of the Doublet-Lattice Method, the
pressure~-downwash matrix.for Piston Theory becomes a diagonal matrix. In
its most extended form, third-order Piston Theory leads to the diagonal
elements that relate the upper- and lower-surface pressures to the unsteady
box downwash in terms of the Mach number and the upper- and lower-surface
steady dpwnwashes. The steady downwash at each surface depends on the local
quasi-steady angle of attack and sn the rate of change of airfoil thickness
along the chord. The downwash at each box can be evaluated at its center,
and the pressure difference can be assumed to act at the center; the steady
downwash on each surface of a box can be evaluated using the average rate of
change of thickness along the box chord.

~Two modifications to the basic Piston Theory of Ashleykéﬁd Zartarianh

15

have been suggested by Rodden et al. in order to extend the usefulness of
Piston Theory to lower supersonic Mach numbers. One is a correction for
sweep; the other is an adjustment of the pressure coefficients to agree with

the low frequency, second order, two dimensional, supersonic airfoil theory

of Van Dykg]7. ‘ : o

Two additional modifications should be considered in any implementation
for NASTRAN because of the simpliéity of the format of the aerodynamic

influence coefficients. The first is to prevent the pressure-downwash

G-6



relation from predicting a pressure lower than vacuum on one surface, e.g.,
the upper surface at a very high reentry angle of attack. This méy be
included by a simple test on the local pressure coefficient or by use of
shock-expansion theory as has been done recently by Yates and Bennettla.

The second is the quasi-steady correct}on for finite span in the region of a

19

tip Mach cone that was applied by Rodden and Revell to the strip theory

17

flutter coefficients derived from the supersonic airfoil theory of Van Dyke .
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APPENDIX H

A Transformation Method for Eigenvalue Extraction of Non-Hermitian Matrices

This appendix presents an outline of the algorithms required for
extraction of eigenvalues and eigenvectors from general, real, or complex
matrices. The techniques are obviously more general than those employed in
the Tridiagonal Method for Real Symmetric Matrices in NASTRAN (Ref. 1,

Sect. 10.2) but the NASTRAN Theoretical Manual is a basic reference in fhe
context of extensions of its capability to include aeroelastic analyses.
The fundamental reference is Wilkinson2 for both the real and complex cases,

but Parlett3

has given a concise discussion of the algorithms for the real
case, and the IBM 360 lLibrary Subroutine Manual includes two important sub-
routinesh’s for real matrices. The algorithms of Wilkinson for complex
matrices have been automated by Funderlic and Rinzel in the subroutine
ALLMAT6.

. The present outline is given because the available subroutines h,5,6

must be reviewed for application to larger problems in-NASTRAN and since

the real subroutines 4,5 do not include the capability for eigenvector cal-
culation. The outline is presented in the logical order of the calculations:
Reduction to Upper Hessenberg Form, the QR Iteration,vConvergence Criteria,

Shifting, Deflation, and Eigenvectors. Emphasis is placed on the complex case.

since this is a primary requirement for flutter analysis.

Reduction to Upper Hessenberg Form

wé denote the given matrix by [A] in the eigenva]ﬁe problem [A-Al]u =0,
Reduction to this form requires decomposition of the mass matrix, see NASTRAN
Theoretical Manual, Section 9.2. We reduce [A] to the upper Hessenberg
matrix [AO] by using elementary stabilized transformations. The basic

algorithm and two alternatives are given by Wilkinson? (pp. 354 - 355).
H-1



The subroutine ALLMAT 6 uses Eq. (9.1) of Ref. 2 (p. 355) in its reduction
and it appears to be appropriate for the task. The total number of multi-
ﬁlications in the complete reduction is approximately (5/6)n3 which is half
the number in Householder's reduction and one-quarter the number in Givens'

reduction.

The QR lteration

The QR iteration of FrancTs 7 is defined by the relations (Wilkinsonz,
p. 515)
[A(s)] = Q(s)] 2 (s) O
0] | 1 |
[A(8+1)]= R(s)] o(s) S )

where {Q(s)] is the product of the (n-1) elementary unitary transformations
necessary to reduce [A(g)]to'the upper trfangular form [R(s)] with
positive real diagonal elements,

[Q(S)]“=k.{7(;)] [T(i)] . [T(n;Z)] [T(n:l)] o ;(;)

so>that Ced Ly CR . ;'1 R T R
(@] - (@] (@] W

The transformation matrices [T(é)] are the Givens' rotations as discussed by

Wilkinson 2 (p. 239-240) and in the NASTRAN Theoretical Manual I (Sect. 10.2)

in real form for real matrices but in complex form for complex matrices. The

T



th (

iteration is continued until the n~ diagonal element Iansz-‘I < g, the con-
’

vergence test, at which point the smallest eigenvalue Al = aﬁs) ; If the

,n
convergence proceeds so that !aif% a(s)

,n-Z‘ < ¢ before | n,n-

l' < €, the two

smallest eigenvalues are the roots of

(s) _(s)
anfl,n-l -A anil,n
= 0 (5)
R

The roots will be complex for complex matrices, and either real or complex
conjugates for real matrices. Before each iteration, thg subdiagonal elements
should be tested and-if some ]a?f%_]] < €, the matrix should be split
'according to this occurrence, and the i;eration continued with the lower main

submatrix only.

Convergence Criteria

The convergence criteria suggested by Wilkinson 2 (p.526) and
Parlett > (p. 123) is based on the Euclidean norm of the matrix IIAollE

and is -

€=2‘t ”A()”E (6)

oy

for floating-point calculations with mantissas of t binary bits. The

Euclidean norm (Wilkinson 2, p. 57) is found from

2 L 4 2 |
| Ially = 2 2 1oyl )
i=l  j=1



5

Subroutines ATEIG ° and ALLMAT 6 use decimal equivalents of Eq. (6).

Shifting

Since 'the QR iteration cdnverges to the smallest eigehvalue, the
. convergence can be acceleratea by shifting, i.e., by subtracting scalar
matrices from the original matrix. The matrix [A(;)]is replaced by the
difference [A(g)] - kg [1] after each iteration, in which kg is an

estimate of the eigenvalue. The shift eigenvalue kS is that root of Eq. (5),

: (s) _ (s) _ -
Pg ©F 4., that makes lan,n ps] or Ian,n qsl a minimum. The

shifted algorithm then becomes (Wilkinson, p. 524)

r - )

and

[A(sgl)] -, 1+ R(s)] [Q(s)1 ()

Equations (8) and (9) represent the algorithm for a shift to a sfngle'
eigenvalue and is appropriate'%or a complex matrix or a real matrix with
all real eigenvalues. The possibility of complex conjugate eigenvalues
in general unsymmetric real matrices suggests a shifting technique that

will retain real arithmetric. An elegant procedure has been given by

7 3

Francis and is discussed by Wilkinson 2 (pp. 528-537) and Parlett
and utilized in subroutine ATEIG 5; it is called the Double QR Tranformation.
" The algorithm permits a double shift after each iteration and the unitary

transformation is that of Householder (Wilkinson 2, p. 533) rather than

that of Givens'.



Deflation

When convergence to a single eigenvalue occurs, i.e., when

la(S)

n n-ll < g, the Hessenberg matrix [AO] is deflated by elimination
3 |

of its last row and column and the principal submatrix [A]]'of'order one.
less is the Hessenberg form for seeking the next eigenvalue. (Note: the

subscript on A denotes the number of eigenvalues removed from [Ao].) I f

(s)

convergence occurs to a pair of eigenvalues, i.e., 'an-l n=2
H

| <€, the
matrix [A0] is deflated by deléting the last two rows and columns, énd

the principal submatrix [A2] of order two less becomes the basis for seeking
the next eigenvalue. Each deflation removes either one or two eigenvalues

depending on the two convergence tests; the Double QR Transformation always

deflates two eigenvalues at a time.

Eigenvectors

The inverse power method with shifts (Wilkinson 2, pp. 626-628)
converges rapidly to the eigenygctor corresponding to each shift eigen=-
value. This algorithm for real and complex matrices has been discussed
throughly in the-NASTRAN Theeretical Manual ! (Sect. 10.4); the complex
case is discussed in Sect. 10.4.4. No further discussion is required

here.
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A Modified Power Method for Flutter Analysis by the P-K Method

The general aeroelastic eigenvalue problem including viscous damping
terms may be solved by the p-k method, see Appendix F. The eigenvalue

problem is stated as follows:

[Mp? + Bp + K + K°]{u} = 0 (1)

where M, B, and K are structurai‘and control system coefficients, K2 is

the aerodynamic stiffness matrix and p is the complex eigenvalue parameter.
ka is‘a function of Mach number, m, and reduced frequency, k. The

reduced frequency ié related to éhe imag?nary part of the eigenvalue para-

meter, w, since

i p=oa+ iw (2)
and
_ bw
k=g (3)

Dufing the course of the iteration procedure which produces the eigen-
value, pj = aj + in, the aerodynamic matrix is adjusted so that it is
evaluated for k™= kj = Bwj/v. The general procedure is to select an initial
estimate, Ao’ of p, where‘)\o is an eigenvalue obtained from a previous
solﬁtion with sltightly different values of Mach number and/or air density,

and to express K2 as the sum of two terms

k¥ = K 4K (4)

a0_ 1

where —-E-pVZ[Q(m,ko)] is the value of [K®] for the current values of

p and m and the previously obtained eigenvalue

.



Ab =q + i“B (5)

such that
b“b
ko = 7 (6)
The second term
al 1 2
K == ov4[Q(m,k) - Q(m,kc)] (7)

where kAis the correct value of the reduced frequency. K% is a matrix of
known coefficients whereas Kal can only be estimated. The estimate is
updated during the iteration..

The eigenvalue problem differs from that treated in the existing NASTRAN
complex eigenvalug_module only to the extent that K?‘ is present. The
proposed method of solution is a modification of the complex inverse power

method described in Section 10.4.4 of the NASTRAN Theoretical Manual, Ref. 1.

The iteration algorithm given by Eq. (14) of Section 10.4.4 will be replaced

by the following:

[AOZM + AOB + K+ ]{wn} = -[B + AOMv * 1 ! :]{un_]} - [M]{vn-l}

n-1
) (8a)
, 1 )
: -{un} = ?:: {w } : (8b)
- o ] S
,;{vn} = Ao{un} * E;'{un-l} (8¢c)

The circled terms are the only modifications. <, is equal to the

element of {wn} with largest magnitude. The current estimate of the eigen-

value is

Py = Ay + A (9)



where
. AT 1/2
{ur_ 3 Mo ;3

nooc, {u:}T[M]{un}

(10)

=
i
Ol—-

{u:}T is the transpose of the conjugate of {un}.

Only one eigenvalue will be extrécted for each value of Ab, so that
the sweeping of previously extracted roots is not required. The starfing
vectors are {uo} and {vo} = Ao{uo} wherev{uo} is the eigenvector obtained
in the previous analysis. In the eventvthat no previous flutter case has

been analyzed, {uo} will be taken from a free vibration analysis of the

structure.

Since neither A nor Ka] can be estimated before the first iteration,
the initial value of the product O/An_])K?l which appears on the right of

Eq. (8a) will be taken to be zero.

The convergence criteria provided with the current NASTRAN version of

the inverse power method will remain unchanged.

In the iteration procedure, Ka] will be estimated from a cubic spline
fit to the values of the aerodynamic matrix [Q]. The coefficients in the
spline fit will be kept in auxilliary storage; In any given interval of

reduced frequency, ké <k < kb’
= - 1 - Y202 -k Y3p3
Q(k) = g, + (k-k )@} + (k-k )2Q% + (k-k)Q an

The stored coefficients are Qa’ Q;, Q; and Q;. As long as kn’ the
current estimate of k, and ko’ the initial estimate of k, are in the same
interval, ka’ kb, only three sets of coefficients need be kept in high

speed memory because
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'] = & v2la(k ) - (k)]

= %'pvz[(kn-ko)Q; * <(kn-ka)2-(ko-ka)2)qg * ((kn-ka)a-(ko-ka)3)qg]

(12)

1 kn goes outside the range, for example by crossing the upper bound, kb’

four sets of coefficients should be stored in high speed memory because

n@ly = -'2- pvz[(Qb~Q(ko)) + (k -k )Q) + (k -k )2Q2 + (k -k,) 3Qg](13)

The algorithm given by Eq. (8) will also work for the special case
[B] = 0. It can, however, be simplified and its convergence can, perhaps,

be improved. -Let
p? = lo + A (14)
so that the eigenvalue problem may be stated as
DM + K+ K20 ud = -1 + Al u} (15)
Thekcqrrequhding iteration glgorithm is
o !

[Adm + K+ :Ka_O]{wn}‘ = ~[M+ Kn-l Ka‘]{un_l} (16a)

1
{un}= E;' {w } (16b)

where <, is equal to the element of {wn} with largest magnitude, and A i

is the current estimate of A, which is still computed by means of Eq. (10).

Convergence of algorithm given by Ed. (16) will now be explored. The

orthogonality properties of the eigenvectors are

i-4



(3, M o3 = o] (a7

Gk + k%0 + k19 ) = -p? &) (18)
where {¢i} is an eigenvector of Eq. (15), and {@5} is a "left" eigenvector,

0, Ka]] replaced by

i.e., an eigenvector of Eq. (15) with [M] and [K + K2
their transposes. 6{ is the Kronecker delta. The trial vectors {un} and

{un_]} can be expanded in terms of eigenvectors as follows:
{u}= ; a, {6} (19)

{u_ =]«

n- <
: 1

i,n-1

Hence, upon substituting into Eq. (16), and premultiplying by {Ej}T,

{¢.}

i,n=1""1i

(21)

cn{$j}T[Ao M+ K+ K??l ; o, {0} = - {EA}T[M + %3-1 ' Ja

Invoking the orthogonality properties

_ =Te al 1
ealOg PPyl = = ay g+ 81 e, Lognled - g ? % -1
(22)
If [KaI] were\ngll, then
a,
in 1 1 (23)

= Z_ =
5 n-l cn(pj Ao) anj
which shows that the trial vector would converge to the eigenvector

with smallest Aj'

in the general case, assuming that the increment in reduced frequency
is small, [Ka]] can be assumed to be linearly proportional to the increment

in reduced frequency, see Eq. (12). Thus,



1 f
(K] = 5 ov2(k _y - k) [Ql] (24)

In order to simplify the problem, assume that kn - ko is proportional to

= N2 = = - 11 . a
An Py A (pn Po)(pn + Po) and that [Qa] is proportional to [K + K°].
Thus, it is assumed that

A
('] = n 2L [k + ] (25)
(o]

where n is a dimensionless constant of proportionality.

Then, using Eq. (25) and the orthogonality conditions in Eq. (22),

A,
- = - - —J— -
% Y %0 " "% a1 “(‘ * Ao)(cn Ape1 %n ™ %) (26)
and solving for the ratio ajn/aj,n-l
ﬁl
o 1 ~-nil + Ao
in_ . . (27)
o
,n-1 , fl
cnkl\.j “nec, An-] 1 + Y
(-]
The product
) <, An-l =c A] x ] (28)
" for a reasonably converged solution so that
A,
L : = (29)
%3 -1 fi-- 1+ ﬁl
K -0 X
°

A sufficient condition for absolute convergence of Eq. (29) is that

A
1+l
o

> 1+ 2|n}. (30)

,A.
J
Al



for a small increment in the position of the lowest eigenvalue,

In ] << |
and (31)
[N IH I Y
if the roots are well separated.
Thus, a convergent solution will result from a sufficiently small
increment in the lowest eigenvalue. If |n| is of the order of unity and

the eigenvalues are well separated, the increment may actually be rather

large, as is shown by Eq. (30).
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APPENDIX J

Surface Splines for Aerodynamic Matrix Interpolation

Surface Spline Techniques

Surface spline equations could be used as an alternative to a
grid of linear splines for the Aerodynamic Matrix Interpolation Module,

(see Section 5.7). The characteristics of the surface spline method are:

Advantages

1. It does not require a rectangular grid of parameter values.
This would be useful to check interpolation. For example, after a
flutter condition is found, the resulting (m,k) parameter pair could
be added to the calculation list, and then a new flutter point found.

Any differences are presumably due to interpolation inaccuracies.

2. The mathematics would be easier to program, since there are

- less steps in the calculation. R
Disadvantages

1. It would be slower in the final stage, i.e., calculation time

in the inner }oop of a looping procedure would increase.

2. It is poor in the one-parameter case.

The formal mathematics is the same as is used in.the geometry inter-
polator, (see Section 5.4). One additional feature which is suggested is
scaling the m's and k's. The equation of the surface is

N
F(m,k) =C +C x+Cy+ P. r.2lnr.2 (1
(mk) =€+ Cx+Cy 2_: it (M

j=1

J-1



where X = m/Rm , R.-= scale factor

m

YRR R

I'j2 = (x-xj)z + (y-yi)2

scale factor

The unknowns Co' Cl, Cz, Pi(i=l,N) are found from

0= Z‘APi- inPi=’

F,=F (mi’ki) = C0 + (:lxi + Czyi + P>

e - ()

where

-n
il
—
b~}
>
——
———
vl

, -
Io' o ! R c:
. i
-- = -..--.! ..... -——
(F.’ R | A, P
i i Ui
where | RJ =11, x, vyl
2, 2 2, 2 2, 2
A [rllnrl . rzlnrz, e e . rN]nrN]
[Ri} = 1 xl Yl
! X, Y,
1 XN YN

J-2

2 'yiPi

2

Z P.rZ. 1n r2,
¢ J 1 1

» i=1,N

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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0 r2 inr? ... r2.1n
1 2 1N "IN
= 2]-2 0 « & s s e &
'J r12 nrlz (9)
2 2 . .
rlNInrlN . . . 0

| -

F = ’LF f A_J o R b (o
i v (10)

R ! A,. F
i A i
Ll an
i
where the interpolation vector G comes from the solution of
E T ( T T
N S I ol GRS (12)
R LA, ?GT AT
i : 1]

The Aerodynamic Matrix Interpolation would be done in two stages. The
first stage does ﬁot concern the values of the aerodynamic matrices, but
merely the valJes of the parameters for which the matrix is known. The
job is to set up the coefficient matrix of equation (12) and decompose it
into triangular factors. The second phase, which occurs when interpolation
is desired, is to evaluate the right hand side of equétion (12), solve

for the solution vector G of interpolation weights, and then compute

(using equation (11) for all matrix terms) the weighted average of the
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known aerodynamic matrices.

The number of non-zero terms in the interpolation sums can be

compared with the number using linear splines:

Surface spline: the number of (m,k) pairs

Linear spline : 4

The surface spline method could be used as an alternate method, or

perhaps as the sole method of Aerodynamic Matrix Interpolation.

Mixed spline techniques

Another possibility for parametric Aerodynamic Matrix Interpolation
is a mixture of surface splines and linear splines (instead of a lattice
of linear splines). Define the following four formats for aerodynamic

matrices.

1. A single matrix. This is the format desired for output from

an interpolation.

2. A single parameter list of values of the matrix and its first
derivative for a set of parameters. This form is useful for linear

interpolation.

3. A single parameter list of matrices. This is a type of data
that may be computed in aero-statics for example, where Mach number

is the only parameter.

4, A double parameter list of matrices. This is the type which

would be generated in two-parameter theories, such as doublet lattice.-
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The sketch shows the different functions of a matrix. interpolator.

L. two parameter

i \,

3. one parameter > 2. one parameter
matrix only i e o e aot e matrix and slope

4 i e

1. matrix

Each arrow represents a change of format which the interpolator can
make. The solid lines are the most necessary, and will require spline
calculations. The dotted lines are less necessary, and are intended
to be used when the set of parameter values of the result is a subset

of. the parameters of the original format.

The calculations for the transitions are

4-1. Surface spline, as discussed in the first part of this

appendix.

k-2. Surface spline, ohtputting the matrix and its slope at

requested parameter values.

4-3. This‘might be used if one parameter of the parameter pair is
frozen at one of the list of values. For example, if the matrix is known
for m=0, .1 and .3 for a set of values of k in format &4, it iS easy
to output a list of values for m = 0 and the_same set of values of k

in format 3.

3-2. This requires solving the linear spline equations to solve for



the slopes. This is discussed in section 5.7.

3-1. When the matrix is desired to be chosen from a list, there

is no need to use splines.

2-3. Of little value, but it is easy since this only requires

partitioning out the slopes.

2-1. The final step in linear splining, as described in section

5.7. This is useful, since it should be fast, for use in inner loops of
algorithms.

The following transitions would be used in the algorithms.

with looping
no looping outside loop inside loop
1 parameter 3-2, 2-1 3-2 2-1
2 parameter 4-1 4-2 2-1
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APPENDIX K

Data Block Descriptions

Due to the modular nature of the NASTRAN program, all data passed
between modules must exist in data blocks or be in parameter lists. The

data blocks may be saved for use in restart. There are two types of data

blocks.

1. Matrices. Matrix data blocks are one or two dimensional arrays

used for vectors and matrices.

2. Tables. All other data blocks are called tables.

The format of a matrix is standardized so that any of the arithmetic

.modules may use them. The format of the tables varies.

A new feature of the aerodynamic part of NASTRAN is the use of lists
of matrices. These are used, for example, to generate a set of aerodynamic
matrices for different values of reduced frequency and Mach number. The
lists of matrices wi}l be stored in table data blocks, so that no new data
block types are needed. Within the tables, the matrices can be stored in

the same packed format as is now used for matrices.

PO C SRS e

Each data b]ock must have a unique MNEMONIC. A NASTRAN DICTIONARY
,(Section 7 of NASTRAN Users Manual) lists existing names. It also includes

module names. Some sample additions needed for aerodynamics are shown in

Figure 1.



Term

%
"Code

Definition

AEDECK DBT Aerodynamic Bulk Data Cards
AEG FMA Aerodynamic Element Generator
AELEM DBT Aerodynamic Element Definitions
AJJINV PBM [Ajj]-] Aerodynamic lnf]uenge Matrix
AJJT DBT List of Ajj—‘ and Ajj Factors
APD FMA Aerodynamic Pool Distributor
ATDCN DBT Aerodynamic Data Table, Connectors
ATDLD .DBT Aerodynamic Data Table, Loads
ATDMD DBT Aerodynamic Data Table, Methods
ATDPR DBT- Aerodynamic Data Table, Properties
ATDSP DBT Aerodynamic Data Table, Splines
DJE DBM [Dje] Aerodynamic Downwash Matrix
DJK DBM [Djk] Aerodynamic Downwash Matrix
GKA DBM [Gka] Interpolation Matrix
KADD DBM [sz] Aerodynamic Stiffness Matrix
KAﬂH DBM [K:h] Aerodynamic Stiffness Matrix
KALE DBM [Kze] Aerodynamic Stiffness Matrix
KALL DBM [KZE] Aercdypamic Stiffness Matrix
-LJJ DBM L;wer frfaﬁgﬁi;r Factorbof [Ajj]
QHE DBM [Qhe] Aerodynamic Matrix
QHET DBT List of [Qhe] Matrices
QHH DBM [th] Modal Aerodynamic Matrix
QHHT DBT ~List of [th] Matrices
QIE DBM [Qie] Aerodynémiq Matrix Partition of [th]

Figure 1. Sample Mnemonic Dictionary Additions

* EMA - Functional Module - Aerodynamic; DBM - Data Block - Matrix:
DBT - Data Block - Table




Term Code* Definition

QII DBM [Qii] Aerodynamic Matrix Partition of [th]
QlJ DBM [Qij] Modal Aerodynamic Matrix for Gusts
SKJ DBM [Skj] Aerodynamic Area Matrix

uJJ DBM Upper Triangular Factor of [Ajj]

USETKJ DBT Definitions of Sets k and j

%
FMA - Functional Module - Aerodynamic
DBM - Data Block - Matrix
DBT - Data Block - Table

Figure 1 (Cont'd.)




