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ABSTRACT

A great deal of interest and attention has recently been focused on the
optimal design of structures. By optimal design it is meant that a structure
performs the same function as another similar structure while minimizing some
performance index, usually the weight of the structure, This study investigates
some simple structures whose weights are minimized subject to several types of
constraints involving fixed eigenvalues. These eigenvalues may be related to
free vibration, in which case a least weight structure is determined while holding
one or more natural frequencies constant., Similarly, the eigenvalues may be
related to aeroelastic instabilities where a least weight structure is found while
holding the flutter speed constant.

With one exception, the models are idealized one-dimensional structures
with fixed geometry and spatial dimensions. These models are adequately
described by a set of N simultaneous first-order ordinary differential eqguations
which come from the general Nth order equilibrium equation. Methods adapted
from optimal control theory are used to develop differential equations and boundary
conditions which are necessary to ensure optimality. This optimization problem
then becomes a two-point boundary value problem with 2N simultaneous non-
linear differential equations.

The solution method used to solve these equations is an adaptation of a
numerical technique used in optimal control theory which is referred to as the
"transition matrix'' procedure. This method involves perturbing the optimality
equations and boundary conditions to find successive neighboring extremal solu~
tions until the optimum design is reached.

Solutions presented include optimum weight configurations for beams and
thin-walled cylinders whose bending or torsional vibration frequencies are held
fixed and which may or may not have minimum thickness constraints. The problem
of finding an optimum panel whose aerodynamic flutter parameter in high super-

sonic flow is specified is also studied. Finally a simple study is presented
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which provides insight into the accuracy and usefulness of discrete or finite
element methods when they are used to generate the structural model for an

optimization search involving discrete parameters.
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1. INTRODUCTION

1.1 Background

The optimization of structural configurations to achieve least weight de~
signs, while preserving certain design requirements such as maximum strength,
has received a great deal of attention over the last few years. This field of
design optimization is still so new that many seemingly simple problems remain
to be solved. The term '"'structural optimization' usually refers to the search
for a structure which is similar to a reference or initial design structure,but
which weighs less and fulfills the original design requirements and purpose of the
initial structure. These design requirements or objectives may be viewed as
constraints on the optimization search since the optimization search for a
minimum weight structure must always be guided or constrained such that the
original design objectives are preserved. The problem can then be said to be
that of finding a minimum weight structure subject to a given set of constraints.

Design constraints usually fall into one of two categories, or they may
be a combination of both. The first category is usually referred to as the static
constraint such as would occur if the design structure is required to support a
static load of a given magnitude. The second constraint category is the dynamic
constraint, which will occur if an eigenvalue such as natural frequency of vibra-
tion is held fixed during the least weight search.

The field of aeroelastic optimization belongs in the category of dynamic
constraints. Aeroelastic problems involve aerodynamically induced static or
dynamic instability, however, in either case the problems involve the solution
of an eigenvalue problem. Therefore, all aeroelastic optimization problems
properly belong under the heading of "dynamic constraints. "

Once a constraint criterion has been established, the actual choice of
a solution or optimization method is rather broad. The optimization technigue
depends, first of all, on the choice of structural models. Structures, in the

simplest cases, may be sufficiently described by differential equations of




equilibrium or, if they are extremely complicated, they may be described by a
discrete parameter technique which expresses the equilibrium equations as a
matrix equation, Once the structural modeling method has been established, an
optimization technique must be found which will reduce the weight while still
satisiyving the constraints placed on the problem. No matter what the structural
modeling technique may be, optimization techniques are many and varied, with
each researcher having his own favorites, In addition, each problem has its own
peculiarities which may make one method nonapplicable and another perfectly
adaptable, It has been noted many times that optimization is partly art, partly
science, |

Methods of solution for optimization problems are determined both by the
structural model and the constraints, In the case of a differential equation
structural model, one is led to the calculus of variations and a set of equations
known as the Euler-Lagrange equations, Many problems in various scientific
disciplines can be described in this way, the most notable being the field of
optimal control theory. In the case of a discrete element model there are many
technigues which use optimization theory to search for the optimum value of a
finite set of design parameters such as material thicknesses or areas. For this

reason, this area is commonly referred to as '"parameter optimization, "

In the field or aircraft or missile engineering, optimum weight structures
are of prime importance. Because of the so-called ""growth factor, ' the addition
of a pound of structural weight to an aircraft wing may cause the increase of
the gross weight by several additional pounds. Conversely, the removal of an
unnecessary pound may result in fuel savings which in turn lead to cost savings,
For these and other reasons, the purpose of this thesis is not entirely academic,
but also has practical engineering objectives as well.

This investigation has several purposes, First of all, using one-
dimensional differential equation structural models, it seeks to find solutions
to some previously unsolved problems having dynamic or fixed eigenvalue con-

straints, These solutions will be obtained using numerical techniques adapted
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from optimal control theory. The numerical techniques are designed for use on
a digital computer and will be studied to determine relative advantages and dis-
advantages of each method. In addition, estimation techniques will be suggested
and discussed together with interesting properties of the optimal solutions
obtained. The study will also determine the relative weight savings of the same
structural configuration with several different boundary conditions, In doing
so, it is hoped that one may extrapolate from these results to formulate guide-
lines which may be used in ''real world" engineering problems,

In addition to using the differential equation approach to structural modeling,
a discrete or finite element model will also be studied. A gradient technigue will
be used to compare some ''parameter optimization' solutions to those "exact”

solutions obtained using differential equation techniques.

1.3 Scope

A1l of the structural models used in this investigation are idealized one-
dimensional configurations such as beams in bending or thin-walled cylinders in
torsion. By one-dimensional, we mean linear elastic systems whose deforma-
tion state can be adequately specified by a set of functions of a single spatial
variable. The constraints imposed upon these models will be in the form of
eigenvalue equations in which one or more of the eigenvalues are held fixed,
These eigenvalue equations will describe conservative system motion such as
free vibration and also nonconservative motion such as is encountered in aero-
elastic problems.

Among the problems treated will be beam flexural vibration with multiple
dynamic constraints and panel flutter in supersonic flow. As used in this study,
the term "dynamic constraint' will refer to a situation where a structure has
one or more of its natural frequencies fixed. The term "aeroelastic constraint”
will refer to a structure which has a fixed aeroelastic eigenvalue such as flutter
speed or critical dynamic pressure,

The ~tructural models will include those whose characteristic stiffness

per unit length is a linear function of its mass per unit length and those whose




stifiness is a polynomial function of the mass per unit length. In all cases,

nondimensional quantities will be used so that the optimum configuration is

always referred to a base or reference structure with uniform properties.

1.4 Previous Investigations

If one were to list all papers involving some type of optimization, the
list would be quite long, However, if only those papers dealing with structural
optimization were retained, the list would be considerably shortened. If one
went further and eliminated all those papers dealing with static constraints the
regulting list would contain probably no more than thirty or forty references.,

Ashley (Ref. 1) has covered the early history of dynamic and aeroelastic
constraints and cites what he believes to be the earliest work in the field.
Significantly, this paper is by Turner (Ref. 2) and was published as an internal
report at Vought-Sikorsky Aircraft in 1942, In the field of optimization of one-
dimensional structures, a study of beam flexural vibration by Niordson (Ref. 3)
appears to be the first published. This paper was closely followed with articles
by Turner {(Ref. 4), who had first worked in the area twenty-five years earlier,
Taylor (Ref, 5), and Prager and Taylor (Ref. 6). In the latter paper, a proof
was given for the uniqueness of the solution to several problems involving con-
servative vibration problems.

The use of control theory techniques to solve simple aeroelastic optimiza-
tion problems was first suggested by Ashley and McIntosh (Ref. 7). A following
study by Armand and Vitte (Ref. 8) formulated some basic probiems in more pre-
cise control theory terminology and described a perturbation matrix method used
for the numerical solution of many aeroelastic and dynamic optimization problems.
This suggestion by Ashley was a highly significant contribution and considerably
advanced the state-of-the-art.

The primary numerical solution techniques used in both references (7)
and (8) above were all adapted from those described by Bryson and Ho (Ref. 9).
These methods, with some modification, are also used in this thesis. Further
use will be made to some of the above references in later chapters of this

investigation,



The field of weight optimization of actual engineering structures is more
widely discussed in the literature. A paper by MacDonough (Ref. 10) in 1953 is
regarded as the first real attempt at the design of a structure to satisfy flutter
requirements. More recently, Schmit (Ref. 11) and several authors including
Turner (Ref. 12) have dealt with optimization of discrete parameter systems.
One particularly interesting paper by Rubin (Ref. 13) details a gradient method
which is used to find minimum weight structures whose frequency may be
specified or held within some tolerance. An adaptation of this technique is used
in Chapter 7 of this thesis,

Although a flurry of optimization papers has appeared from time to time,
the literature dealing with dynamic or aeroelastic optimization is surprisingly
sparse. This thesis is intended not only to fill several gaps left by earlier
papers, but to extend the solution methods to more complicated problems and,
where necessary, to develop new techniques for solving aeroelastic optimization

problems.

1.5 Methods of Approach

The general method of approach to both types of problems covered in
this thesis will now be briefly outlined. First of all, the equations necessary to
define the so-called "optimality conditions' for systems with differential equation
convstraints will be discussed. This theory, which is adapted from the field of
optimal control is well developed and will be applied to some one-dimensional
structural optimization problems in which the total mass of the structure is to be
minimized. In all cases, the important variable will be a nondimensional
thickness distribution parameter t(x), which may be related to the stiffness and
inertial properties of the structure. This nondimensional thickness parameter
will be referenced to a uniformly dimensioned structure having the specified
dynamic or aeroelastic eigenvalues. The overall geometry, such as the length,
will be assumed fixed. The constraints which are imposed upon the optimal
structure will be eigenvalue differential equations which will involve a fixed

parameter, e.g., free vibration equations with a frequency held fixed. These




eigenvalue constraint equations will be expressed as a set of N first-order,
ordingry differential equations.

Given these N equations, the use of optimal control theory to generate
necessary conditions for an optimal thickness distribution always yields a set
of 2N first-order, nonlinear differential equations. Since the problem is one-

dimensgional, boundary conditions are specified at only two points, leaving one

& numerical solution technique, commonly referred to as the "transition
matriz' solution method, has been adapted from control theory to solve this
nonlinear two-point boundary problem. This solution method involves the initial
estimation of the so-called '"natural boundary conditions' and a cyclic or iterative
integration of the differential equations to arrive at a final solution.

The latter part of this thesis will briefly study two cases involving
parameter optimization problems., The first of these two cases is the weight
optimization of a finite-element structural model for a beam on simple supports
with the requirement that the lowest frequency be held fixed. The second case
studied is the optimization of a finite-element model for a simply supported panel
of infinite aspect whose aerodynamic flutter parameter is held fixed., In both
cases, an elementary gradient technique similar to that used by Rubin (Ref. 13)

will be used, together with an eigenvalue perturbation method.



2. OPTIMIZATION THEORY FOR SYSTEMS HAVING LINEAR
DIFFERENTIAL EQUATION CONSTRAINTS

2,1 Introduction

The development of the differential equations and boundary conditions
which are necessary to find the optimal thickness parameter distribution for a
minimum weight structure with eigenvalue constraints is, in general, straight-
forward and simple. It is the actual solution of the differential equation ~
boundary value system which poses the difficulty in defining the optimal system.
In this section a review of the theory necessary to formulate the governing
equations of the optimal system is given together with an example of a simple
structural model involving torsional vibration at a given frequency.

The theory and nomenclature are taken from the theory of optimal control,
as first suggested by Ashley and McIntosh (Ref. 7). The nomenclature and method

of expressing the constraint equations are also taken from the same reference.

2.2 An Example of Constraint Equations — A Thin Walled Cylinder in Torsion

Consider (Figure 2.1) a thin-walled cylinder with the end X = 0 built

in and the end X = L free. The equation of free torsional vibration is given by

%(GJ%XG—)-m‘eho 0sX <L 2.2.1)

where GJ(X) is the torsional stiffness per unit length at station X and m(X)
is the moment of inertia per unit length at station X. If we assume harmonic

motion i.e. 6(X,T) = G(X)elwr then equation (2. 1. 1) reduces to

a%(GJg%) +me0(x) = 0 (2.2.2)

If we were to solve the eigenvalue problem for uniform GJ(X) = GJ@

and m(X) = m_ we would find (Ref. 14) the nth eigenvalue equal to

GJ
w = (2n +]‘,Tr 2 (2.2, 3a)
n 2 L2

m
o)




with the nth eigenfunction

. ) X
6 (%) =4 sin (o) (2.2.3Db)

n=0,1,--=9

We may nondimensionalize equation (2. 2. 2) to the following equation

2
m L
d GJ(x) do, m, O 2 B - -
= ar @ g gy e =0 0=x=l (2.2.4)
o o o
where
X
X = -
L

fwe let w= @ and note that, for a thin-walled cylinder, GJ(x) is

proportional to the thickness T(x), then equation (2.2.4) becomes

2
d I do, , m, T o=
ax T, e +(mo)( 5)0(x) =0 (2.2.5)

Now, define a nondimensional thickness parameter

t(x) = %Q—Q (2.2.6)
O

and note that we may express m as
m =pT +Y
o Plo
where v is a nonstructural moment of inertia contribution and p is a constant

which depends only on geometry so that
mE) = pT () + (2.2.7)
0
Finally, we can express the ratio of m(x) to m as
m (x)
Mt v ) 2.2, 8
= 01t 6y (2.2.8)

where



T
0 Y
§ = pmem § metm=1-86
1 pm and 2 mo 1

1

o

The constraint equation now may be expressed as
(to')’ +(Tr/2)2(61t +62)9(x) =0 0=x=<1 (2.2.9)

The addition of the nonstructural mass term is Seen as a necessary
condition for a meaningful answer. An examination of equation (2.2.9) will show
that, if the 62 term were not there, a possible solution to equation (2. 2. 9) could
be one for which t(x) = 0. It can also be seen that, if GJ and m are linear
functions of T(x), the frequency @ is independent of the thickness. Thus,
one may expect that the zero thickness solution might be mathematically possible
if 62 =0,

The boundary conditions for the above problem are

6(0) = 0

t0' (1) = 0

(2.2.10)

The first condition requires zero rotation at the fixed end and the second condi-~
tion states that no torque is applied at x =1,

The above second-order eigenvalue constraint equation can be expressed
as two simultaneous first-order equations by introducing a new variable

s = to! (2.2, 11)
Thus equation (2. 2.9) can be written as

s' = -(at +B)0 {(Z.2,12)

6" = s/t (2.2.13)

where o = (17/2)‘261 and B = ('rr/2)262 and 6(0) = s(1) = 0.

Thus, we have taken the free vibration equation for a nonuniform thin-
walled cylinder having an eigenvalue (the lowest frequency of free vibration)
equal to that of a reference structure eigenvalue and reduced it to two first-order
ordinary differential equations which are dimensionless and contain the dimension-
less thickness parameter t(x). This is the method which will be followed in all

the problems which involve the use of continuum structural models,




2.3 Optimal Control Theory as Applied to Systems With First-Order, Ordinary

Differential Equation Constraints With No Constraints on the Thickness Parameter

Some definitions of nomenclature are necessary before beginning the
discussion of optimal control theory. These definitions are consistent with
Bryson and Ho (Ref. 9). A scalar J, called the "performance index' or,
"merit function' is used to define the quantity which is to be minimized. This
guantity J is also variously known in the literature as the 'return function”
or the "payoff function. ' The applicability of these terms to controls problems
is obvious,

In the field of structural optimization we look for an optimal distribution
of a thickness or weight parameter such as t(x), which will minimize a per-
formance index J which is itself a function of the weight or thickness parameter.
Tor the one~dimensional structure discussed in Section 2. 2, the performance

index can be written as

1 T(x
bﬂ” zm Bf 61 T +520 (2'3'1)
o} 0

where B and C are constants related to the geometry of the structure., Since

éDC is a fixed constant, equation (2.3.1) can be just as simply stated as

1 I - 6,C
J xjf tx)dx = (2.3.2)
o

1

The problem now involves minimizing J subject to a given set of dif-
ferential equation constraints and boundary conditions such as those described
in Section 2. 2.

A brief review of optimal control theory as detailed in Bryson and Ho
(Ref, 9) will be given now, Some symbols will be changed from their notation
in order to conform to structural terminology. Also, while the discussion will
not be rigorous, it will nonetheless be correct. Let us assume that the
structural system is described by a set of N first-order, ordinary differential

equations. (Each element of V(x) is called a '"state variable' because it

10



partially defines the physical state of the system.)
V' (®) = (v, t,%) X SXSx (2.3.3)
The () represents a vector or vector function. The boundary conditions
are in general split, just as we saw in the simple torsion problem, with some
specified at x = Xo while others are specified at x = Kpe
Let us consider the so~called Bolza problem where the performance

index is of the form
b4

f
J=WW§»i/ L(t,V,x)dx (2.3.4)
X
!
For the previously discussed torsion problem, ¢ =0 and L =t(x). Our
problem is to find a function t(x) which minimizes J subject to the specified
constraint equations V(x). We can accomplish this by "adjoining" the constraint
equations (2. 3. 3) to the performance index J with multiplier functions A(x)
(also called adjoint variables or Lagrange Multipliers) in the following manner.
X, -
J=¢+/~[L+l{f—%}wx (2.3.5)
X
)
For convenience, as in equation (2. 3. 3), the adjoint variables are written in

vector form so that

Now, define a scalar function H (called the Hamiltonian)

H(t,¥,%) = L + AT (2.3.6)

If we integrate the last term on the right-hand side of equation (2. 2. 5) by
parts, we will have

>T  ~ ~T ~ Xf ~ T
J=¢ -2 (Z)V(x,) +A (x V) +/ (H +A' "fHdx (2.3.7)
X
o)

Finally we approximate — to first order — the variation of J due to admissible

weak variations or first order changes in the "control variable" t(x) for fixed

11




values of x.G and X..

f
57 = {Qﬁ? - RT)&?} +(XT6~v)
ov X = X¢ X=X
Xf (20 30 8)
~ ~

OH 1T .~  OH

+ —t A

ij Go+X' )ev +3t—6t§ dx

o

where 6V are any "admissible" variations of the state variables V. The thick-
ness parameter t(x) is called the control variable because its behavior "controls"
the state variable equations. From the constraint equations and boundary condi-
tions, t determines V in a complicated manner, but we do not want to go
through the tedious process of determining the variations 8V caused by 6t.
Therefore, we arbitrarily choose the functions X(x) in such a way as to force

the coefficients of the 6V's in equation (2.3, 8) to vanish. We see then that

UL W LS (2.3.9)

If some "'geometric’ or state variable boundary conditions are specified in the

form
. o
v.h@) - Vj =0 (2.3.10a)
f
v.{x)~v,=0 2,3.10b
) -V, ( )
then
éviixi) =0 (2.3.10c)
and
6v%§}{f} =0 (2. 3.10d)

Now, with the above conditions specified, the variation 5J in equation (2, 3. 8)

becomes
57 = (22 - 3T)e¥ + 359
av X=X X=X
f o
(2.3.11)
X
f
oH
i}i (Gp)(Bt)ax 1

0



If 6v, #0 at x=x_, then A -2 at x=x_, if 8J is to be zero. If

k f k  9Ovk f
6vi(x0) # 0, as would be the case if no geometric or state variable boundary
condition is specified at x = X s then the multiplier of )\i must be zero at

X = Xo if 6J is to be zero.
A = i \
i(Xo) 0 if 6vi(x0) #0 (2.3.12)

In control theory, the function %% is referred to as the "impulse re-
sponse function'' since it represents the variation in J caused by a unit impulse
in 6t at position x when v(xo), 7\(x0) and the constraint equations are held fixed.
Finally, for an extremum of the performance index we must have &J equszl to
zero for any admissible 6t(x) # 0. As a result, we see from equation (2.3.11)

that we must have

oH
—_— <=x < 3,13
5t 0 X, SX =X {2.3. 13}

if St(x) # 0. Equation (2. 3. 13) is known as the "control equation” and is always
an algebraic rather than a differential equation. It should be noted that equation
(2.3.13) is only necessary if 6t(x) # 0, that is, if there is no constraint placed
on the control variable t(x).

To summarize this development, we have found that, in the absence of
constraints on the control variable t, we must solve the following set of dif~
ferential equations to find a thickness parameter distribution t(x) which pro-

duces an extremum of J, the performance index.

V' (%) = f(v,t, %) (2.3,14)
~ T
~ — T~ 0L
x! . }\_ PN S, g Y
) Gy (2.3.15)
oH of ~~  OL .
Frak 0= (gt-) 7\+'¥ (2.3.16)

Equations (2. 3. 15) are known in the calculus of variations as the Euler-
Lagrange equations.
In most structural optimization work the function d)(xf,v(xf)) is zero

and the resulting optimization problem is referred to as the ""Lagrange problem, "

13




1

The boundary conditions for this problem are easy to remember, since if
v.{(x ) unspecified then A (x )= 0
i) WO 1o/ (2. 3.17)

Vi(}{ﬁ?) unspecified then Ki(xf) =0

It may be seen from the above that we have N variables describing the
system behavior together with N Lagrange multipliers and one control variable
t, The Euler-Lagrange equations plus the constraint equations and the control
equation vield 2N first-order, nonlinear differential equations which are coupled
together through the control equation. The 2N necessary boundary conditions
related to these equations are given in equation (2, 3.17). These boundary condi-
tiong are split equally, with N being given at XO, and the N others at Xpe
This problem is referred to as a two-point boundary problem and is sufficient
to solve for the 2N variables and t(x).

Because of the nonlinear nature of the problem and the split boundary
conditions, these problems are difficult to solve, even with numerical techniques.
An interesting characteristic of the Hamiltonian function, H, is thatif H is
not an explicit function of x, then it will be a constant over the entire interval

X <% = X, provided that t is unconstrained. This is easily seen from the

relations

dH & at di.

dH C o LT

S At

ax Hx+Htt +(HV+ )

dH dt

T - Hx +Ht iz (2.3.18c)
Thus, if H# H(x) and if Ht = 0 (meaning that we are on a ''path' which has
optimal thickness t) then

dit_ 0 (2.3.19)

dx e Se

H = constant X, =x < X, (2. 3.20)

14



This constancy of H when t(x) is unconstrained and H# H(x) provides a good

check to see that one has indeed found an extremum of J,

2.4 Terminal Constraints and Optimization Methods With Inequality Constraints

on the Thickness Parameter

The discussion in Section 2.3 dealt with the problem of finding the condi-
tions necessary to ensure an extremum of a performance index in which the
state variables may or may not have prescribed end conditions and for which no
constraint was placed on the thickness parameter. A slightly more complicated

problem arises if a function of the state variables is prescribed at x = x_. Such

a condition might arise if the optimization problem involved a cantilever f?:)ea.m
with a discrete tip mass at x = Xpe A complicated boundary condition occurs

at this point because the shear, which is one of the state variables, must be
proportional to the acceleration of the tip mass at x = Ko If we are dealing with

harmonic motion at a frequency w then the relation would be of the form

2
I‘(xf = - MtW(xf) (2.4.1)

where r(x) and w(x) are nondimensional modal shear and deflection amplitudes
respectively and Mt is the concentrated mass at the tip.

The treatment of this type of end or terminal condition is discussed at
length by Bryson (Ref. 9) and is treated by adding additional or side conditions to
the optimization problem. These M side conditions may be expressed as an
M-dimensional vector

U?(v(xf),xf) =0 (2.4.2)

This equation may be adjoined to the performance index by another M-dimensional
vector 7 to form a problem similar to that discussed in Section 2,3, Since

¢ = 0, the performance index for the Lagrange problem becomes

X

£
7=750 - R’T(xfﬁ(xf) +xT(xo)x7(xO) J/ { H +7\'T\7} dx (2.4.3)
X

o
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. ~Tm .
If the product M { is treated in the same manner as the function ¢ in
the development of the Bolza problem, the necessary conditions for an extremum

of J are found to be

¥ o= (v, t, %) (2. 4.4)
~ ATy ~T
o= A -
fv LV (2.4.5)
oH
o T 0 (2,4.6)
with
vix)=0 or Ax)=0 (i=1,2,----N) (2.4.7)
and
~T, . ST 0y
A (Xf)—ﬂ -8-;/‘- (2.4.8)
X=X
f
with
P(vixg),xg) = 0 (2.4.9)

The only further development necessary before solving an example
problem is the discussion of the method of handling constraints on the thickness
parameter t(x). The most common constraint is the inequality or minimum
gauge constraint, that is, the requirement that the thickness parameter be
greater than (or less than) a given value. These constraints may be expressed
mathematically as

_ _ <
(”m.l?.n(t) tmin tx) =90

or X <X<X
o f

= - <

Cmax(t) Ux) tmalx 0

where t . is a minimum thickness value while t is a maximum thickness
min max

value,

If o new Hamiltonian functional is defined as

H¥ =L+ 3F +pC (2.4.10)

16



it can be shown (Ref, 9) that the necessary conditions for an extremum of J,
using the above Hamiltonian, will be identical to those previously derived, Thus,
the Euler-Lagrange equations are the same, but the control equation will be slightly

different since

OH* ~T~
= A = (2. 4 |
” Lt+ ftﬂlct 0 (2,4, 11)
It can further be shown that
=20 i =0
wois it C (2.4.12)
=0 if C<0

The functional H plays an important part in optimal control theory, It
has been shown that, when there is no constraint on t(x), the variation of J
may be written as

X X

f f
8J =f Ht6tdx =/ SHdx (2.4.13)

X X
O o

Since our entire problem has been cast in the form of finding a minimum of J,
it is readily seen that &J must be either positive or zero for any admissible
variation of t(x). This then implies that 6H(x) itself must be likewise either
greater than or equal to zero for all admissible 6t(x). This is all expressed in
Pontryagin's Minimum Principle which states that, for an extremum of the
performance index J, the Hamiltonian also must be minimized over a set of all
possible t(x). Thatis, H is decreased until either a minimum is found or a
constraint boundary for t(x) is encountered.

The need for the positive sign on p is readily seen. Since Clt <0,

equation (2.4.11) becomes
I, +3F = sign)*|uC, | (2. 4.14)

The left hand side of equation (2. 4. 14) is the partial derivative (with respect to t)
of the standard "unconstrained" Hamiltonian, H. If t(x) is unconstrained then
i =0 from our previous work but, if we should encounter the constraint boundary

then further improvement can only be made if 6t < 0 that is, if we decrease t

17




helow tmmo But, from our discussion above, this decrease in &t should also
Ll i

cause 2 decrease in OH, or OH < 0 and thus Ht > 0, Thus, the sign of p
should be positive. Similar reasoning can be applied to the t = tmax case.,

if there are inequality constraints, optimization problems will have two
or more solution regions. Although the necessary differential equations will be
identical in all regions, the control equation will be different in regions where
the control variable is restrained, At the junction points between the constrained
and unconstrained solutions, the thickness parameter t(x) will, by the nature
of the inequality constraint, always be continuous although its first derivative
with respect to x will not. Because of this continuity, the state variables and the
adjoint variables are continuous as are all their first derivatives with respect to
%. In addition, the Hamiltonian and its derivative with respect to t(x) (the
control equation) are continuous at the junction points. A full treatment of the
analytic solution of some simple optimization problems having inequality con-

straints is given by Armand and Vitte (Ref. 8).

2.5 An Example Problem-Free Torsional Vibration With a Single Frequency

He idw}? ized

As a simple example of the optimization of a simple structure, let us
consider the thin-walled cylinder discussed in Section 2.2. The equations
governing this problem have discussed and solved in several previous works
including Turner (Ref. 4),Ashley and McIntosh (Ref. 7) and Armand and Vitte
(Ref. 8). We wish to find the least possible weight of a cylinder with similar
geometry which has an identical first frequency. When the overall geometry is
held fized, the only allowable structural variation will be the wall thickness.
From equation (2.2.9), the optimal thickness must satisfy the eigenvalue

equation
(tory! +(Tr/2)2(61t +62)9=0 0sx=<1 (2.5.1)

with 6(0) = t0' (1) = 0, if the optimum structure is to have its lowest frequency
identical to that of the uniform structure.

Equation (2.5.1) may be expressed, as discussed before, as two

18



first~order differential equations having two boundary conditions.

s' = -t + B)O (2.5.2)
0 = s/t (2.5.3)
9(0) = s(1) = 0 (2.5.4)

The performance index may be written as

1
J=/ tdx (2.5.
o]

while the Hamiltonian is written as

(&} ]
e

H=t+A (-@t+B)6) + Ae(f- (2. 5. 6)

o= 61(Tr/2)2 B= 62(17/2)2

If t(x) is unconstrained, then, using equations (2.3.15) and (2. 3. 16) the Euler-

Lagrange equations may be formed together with the control equation

oH

Al = 0 — = A g B 7
. S e/t (2.5.7)
oH

Al = m——_ ) -

b 55 = @t +B) (2.5.8)
A s

oH 6

Ll =] - e — g _— }

s =0=1-——-aro (2.5.9)

and, since s(0) # 0 then 7\8(0) =0 and since 6(1) # 0 then Ke(l) =0,
Equation (2.5.9) can be solved for the thickness, yielding

A
2 0°

t “1-aro
s

(2.5.10)

Equations (2. 5. 7) through (2. 5. 9) and equations (2. 5. 2) and (2. 5. 3} plus
the associated boundary conditions are sufficient to determine the optimal
thickness distribution such that J is an extremum, hopefully a minimum. A
closer examination of these equations reveals a similarity between the state
variable equations and the multiplier equations, In fact, it can be demonstrated

that
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§'?‘»~@{x} 0 1 6(x)
§ § = A { } (2.5.11)

-1 0 s(x)

The constant A is a modal or undetermined constant which will be dis-
cussed later. Similar relations are found to occur in optimization problems
invelving eigenvalues of conservative systems. The state variables are said to
be 'self-adjoint" since they satisfy their own adjoint or multiplier equations and
the respective boundary conditions. This self-adjoint property considerably

simplifies the problem since it reduces the 2Nth order system to Nth order.

Our fourth order system becomes a second order system with the introduction

of equation (2,5, 11),

o = g/t (2.5.12)

gt = ~fat + 3]0 (2.5.13)

. 2

{3 _ As - (2.5.14)
1+A8

with 8(0) = s(1) = 0,
The solution to these equations is found to be (Ref. 8) given by

1 1/2
S : 2,5,15
£ {\OZA) sinh (‘,ozx) { )

o

B f‘ 1 cosh({x)/ cosh \/~ 2.5.16
"%‘gx’ 26 \cosh(\/‘x) B (2.5.16)

The resulting thickness distribution is given by

-0
tx) = 0 [ COSh\F _ (2.5.17)
) 26 ‘cosh \/_x °

In addition, the author has found that

1-6

H=H =( )(smh \/" (2.5.18)

Note that, although the expressions for 6(x) and s(x) contain the constant "A,™

the thickness distribution and the Hamiltonian are independent of this constant.
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This constant, which occurs in the relation between the multipliers and the state
variables, plays the role of a "modal amplitude factor' in the equations. Thus,

one would not only expect, but require, that the thickness not be a function of the

eigenvector amplitude but only of the eigenvector modal shape and the value of the

eigenvalue itself. Thus, we can and will set A =1 in all of the future investiga-

tions since it does not affect the solution for t(x). Note, however, that it does
affect the magnitude of the solution for the state variables and the multiplier
functions. Note also, from equation (2.5.14) that A must be greater than zero
if tz(O) is to be positive.

It is also interesting to note that, in the absence of constraints on the thick-
ness, the value of the thickness goes to zero at the end, x.= 1, This will be seen
to be a common characteristic of problems where no torque or moment isg pre~
scribed at a point. It may also be seen that at x =1, equation (2.5.12) is inde-
terminate since both s(1) and t(1) are zero.

An examination of the expression for Ho in equation (2.5.18) shows that

lim
= 2.5.19)
6, ~1 H =0 (2.5.19)

and, using L'Hospital's rule

Iim
= . 5.2
5, ~0 H =0 (2.5.20)

Between these upper and lower bounds the Hamiltonian is positive. This
behavior at the upper and lower limits occurs because the problem is not well
posed at these extremes. At the lower limit, & 1= 0, no structure exists fo be
optimized so the minimum value of H is simply zero. At the upper limit,

61 =1, something more subtle occurs. As & 1 —1, the magnitude of the thick-
ness as given in equation (2. 5.17) grows smaller and finally vanishes as 61 -1,
This seems to say that, in the absence of any nonstructural moment of inertia,
the optimum cylinder is one with zero thickness. Physical reasoning leads one to
assume that the problem is poorly posed.

The reason for this problem' s being poorly posed is that the {requency,

W, is not an explicit function of the thickness parameter t(x) since both GJ(x)
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and m(x), on whose ratio @ depends, are both linear functions of t(x). There-
fore, the frequency is unaffected by changes in t(x). Also, the state variable

or constraint equations will be linear and homogeneous in t, if there is no non-
structural mass or moment of inertia. Thus, for b 1= 1, t(x)=0 is an
allowable scolution., With the addition of a nonstructural mass, the constraint

equations are no longer homogeneous in t(x) and the problem is no longer poorly

byt

posed,

The expression for tz(x) in equation (2.5.14) has a resemblance to the
Rayleigh Quotient encountered in mechanics. The numerator is the square of the
strain energy per unit volume while the denominator is equal to the kinetic
energy per unit volume due to elastic deformation at a fixed frequency plus a
constant, "one. "

This concludes the brief discussion of the formulation of eigenvalue
constraint equations and the theory of optimization of functions which have con-
straints in the form of first-order, ordinary differential equations. This also
will be the last time that an analytic solution will be obtained since the discussion
in the next section will focus on numerical estimation techniques, solution

methods, and accuracy of these methods,
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3. NUMERICAL TECHNIQUES FOR PROBLEMS WITH
DIFFERENTIAL EQUATION CONSTRAINTS

3.1 Introduction

Chapter 2 discussed the development of a set of nonlinear differential
eguations and boundary conditions which are necessary to determine an optimal
thickness parameter distribution. The formulation of the necessary conditions was
seen to be quite simple, however, the actual solution of these equations poses a
real obetacle, Unfortunately, only the very simplest of problems, such as the
torsion example discussed in Section 2.5, have analytic or exact solutions, In
most cases, one is forced to use numerical or approximate methods to solve the
problem.

Chapter 3 will describe and discuss numerical methods which will yield
"exact' solutions to a wide variety of one-dimensional structural optimizationm
problems with differential equation constraints, - Optimal control techniques again
provide the basis for these numerical schemes. The sections which follow will
discuss the theory behind these methods and will conclude with an example in-

volving the torsional frequency problem discussed in Section 2. 5.

3,2 The Transition Matrix Method

One of the first successful numerical solution techniques encountered in
this investigation was the "transition matrix' method. The basic discussion of
the transition matrix technique as applied to optimal control problems is discussed
in Bryson (Ref, 9). In Chapter 2, optimization problems with N differential
equation constraints were shown to lead to a problem involving 2N nonlinear dif-
ferential equations with N boundary conditions specified at x = X, and the
remaining N boundary conditions specified at x = x.. Thus, at either X, or

f
Xg there are N ''specified" and N ''unspecified’ or "undetermined" boundary
conditions,
The terms "unspecified" or "undetermined'' can be a source of some con-
fusion since these initial or final conditions are not, in fact, undetermined or

unspecified, They are determined by the N boundary conditions at x = X, and
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the N boundary conditions at x = Xe and the 2N differential equations. However,
since all numerical integration schemes for solving a system of simultaneocus first
order differential equations require a number of starting or initial values which is
equal to the number of simultaneous equations, these N constants are initially
unknown. In any solution scheme these N constants will be determined by the
requirement that they have values which, when used together with the N ‘'specified"
initial conditions, will yield the final N specified conditions once the 2N egua-
tions have been integrated from X, to Xpe

The terms "initial' and "final" in the above discussion may be interchanged
since the same numerical technique will work for forweird as well as backward
integration. Most solution techniques for nonlinear, two-point boundary value
problems have one characteristic in common; a search for these "undetermined”
constants and the subsequent determination, by numerical integration, of the control
variable (thickness parameter) distribution.

In the discussion which follows, the term "optimality equations' will be
used to refer to the control equation plus all the first-order differential equations
necessary to solve for t(x), the thickness parameter. These equations may be
composed of both state and adjoint variables or, as was shown in the forsicnal
vibration problem, only the coupled state variable equations. The coupling of the
state variable equations is seen to occur in the control equation. The optimality

equations have been shown to be of the form

dy.
1 4] 7z : .
—_—=Vy!= =1,2,,...2 3.2.1
- Yishoph (=122 (3.2.1)
where
2
t =gy, (3.2.2)

with N boundary conditions specified at X and N conditions required at Koo
The variables Sf’i(x) will be referred to as system variables. The term "control
constants' will be used to denote the N "undefined" or 'unspecified' constants
at x = X This term is used because these N constants "control' the value of

§i(xf), the values of the system variables at x = Xpe If these control constants
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are adjusted correctly, the numerical solution to the optimality equations should
vield the N specified boundary conditions at x = Ko

Let us define the values of the control constants at x = X, asan N~
dimensional vector . Also, let ﬁe by an N-dimensional vector composed of the
N prescribed values of Sf'(xf). This development will concern itself only with the
case where each element of the vector E’e is a function of a single prescribed
yﬁx@a only, although the transition matrix method is not restricted to this case
};ﬁy

If an initial or ""guessed' value of { is chosen then, this value of [
together with the N prescribed boundary conditions at x = XO can be used to
start the integration of the optimality differential equations (3.2.1) from x = X o
At x=x_. the result of the integration will be a vector 37i(xf). There will be N

I
values of this vector which are to be made equal to their respective elements in

5@3 the specified values of the system variables,

In general, these corresponding values of ?i(xf) which are numerically
calculated using an assumed or initial @ (together with the N prescribed initial
conditiong} will not be identical to Ee' What is needed then, is a method to perturb
& in such a way that the calculated values of the specified variables, defined as

o

ﬁﬁg can be made to approach Ee' it should be noted that, at x = X, we always

start with N specified boundary conditions and use them, together with the

optimality equations to generate values of §i(x Thus, no matter what values

f)"
are initially chosen for 1, every necessary optimality condition is satisfied by
the numerical solution except the N final specified boundary conditions. The
solution technigue will involve solving a series of problems in which Ec takes on
different values and finally approaches Ee' Thus, one may think of the final
numerical solution as being found through a transition from an initial problem,

in which éc # Ee’ to a final problem with EC = Ee" Each of these transition
solutions will satisfy the optimality equations (3. 2. 1) and have identical values of
the N prescribed boundary conditions at x = X . By perturbing P in a proper
manner, a transition from an initial problem with F'int and Bc # Be to a problem

with p = Heinal and B, = Be can be obtained.
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In practice, because of numerical "round-off' error, f will never
c
exactly equal Be. Thus, the problem becomes one of convergence, i.e.,

obtaining a series of intermediate or transitional solutions until
B, =B, | < € (3.2.3)

where € is an "error' or 'tolerance'’ vector and has all elements € > 0.

The question remains, '"how do we perturb . to bring ﬁc to 5@7” Let us
suppose that a linear relation could be found between a perturbation of 0 oand a
resulting change of the difference between Ec and Ee' We are primarily
interested in the difference Ec - Be since this gives us one measure of how close
we are to the otpimal solution. Adding to the list of definitions, let us call this

difference

B -B =¢ (3.2.4)
If 60 is a perturbation of {I then assume that this linear relation can be written
as
66 = Ton (3.2.5)

where 6 ( ) presents the numerical perturbation of ( ). T is called the
transition matrix and is NXN. FEach of the elements of the T matrix represents
the change in an element of 6e for a unit change in an element of :x (5“}; =13

holding all other changes equal to zero, e.g.

be. ge,
T = --—l— o _._1_ 2.2.6
ij 6}“L' au . (t_ o e }
J J
If we wish to decrease '50 - Be by an amount Kk i.e., 5(BC- Ee) = _Ke =
be then, by inverting T and premultiplying (3.2.5) by T -1 we have
— -1~
Sp=-kT e (3.2.7)

Therefore, if a relation such as (3. 2.5) does exist, then each element of

the error vector & can be reduced by a uniform amount ke by perturbing W
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by an amount 6 as given in (3.2.7). If (3.2.5) were, in fact, valid then T
could be found and, by letting « = 1, we could solve for 8{. However, since
the system of differential equations is nonlinear, (3.2.5) may be regarded only
as a first-order approximation and thus 0 <k <1, In practice, it is the adjust-
ment of this scalar, k, which separates the experienced researcher from the
amateur,

The matrix T is called the "transition matrix' for reasons which should
now be clear. It is this matrix which permits one to calculate the necessary 6.
to achieve a transition from an initial or trial solution to the '"exact" or optimal

solution., As mentioned, each element Tij represents the change in the difference

e

o T ;B%M for a unit change in pj(ﬁpj = 1). The transition matrix is thus always
anl N XN matrix, The calculation of the elements of the transition matrix is
usually straightforward and will be discussed in the last part of Section 3.2. By
using the above technique we can obtain a transition from a trial solution to a
final numerical solution which satisfies the optimality equations and has the
specified initial and final boundary conditions.

From the above discussion we can now outline a solution technique for

solving a 2Nth order system of nonlinear differential equations with split boundary

conditions, The technique is as follows:

(1) Using the N specified boundary conditions and an initial, assumed
set of control constants ., integrate the necessary differential
equations of optimality from x = X, to Ko

(2) Record Ec at x=x, calculate €= Bc - Ee' If |e] =€, stop the
procedure here — the solution obtained is the numerical approxima~
tion to the optimal sclution, If |E! >'¢ then continue.

(3y Calculate the transition matrix T.

(4) Calculate &1 using

el

o =-kT €

where & is pre-selected.
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(5) Form a new set of control constants using the equation

~ ~ ~ '_"'1~
Boow = Pogq P O =Hgq KT @

(6) If |€] has been found to be greater than € in step (2) above, begin
calculations at step (1) using the ﬁnew' Continue this process until
convergence has been obtained, i.e. lgl <€,

The calculation of the transition matrix can be accomplished in several
ways. The method to be used in this study involves solving a set of perturbation
differential equations simultaneously with the optimality equations. Let &( )
represent a perturbation of a variable., The operator 6 has the same properties
as the differential operator d( ). The perturbation of the optimality equations

(3.2.1) and (3. 2. 2) yields:

(6F.) = —=8F, +—=5 (3. 2. 8)
—T

= 1 Q& ing ( 3

8t = (5 5y %Y; (3.2.9)

J

Although the optimality equations are nonlinear, the perturbation
equations are linear in the perturbation variables. ''N' of the variables 8y
correspond to system variables whose initial values at x = Xo are elements
in the perturbation vector &i.. For instance, if 6yk(x0) is set equal to "one'
while all other 6yi(xo) =0, (i#k), andthe combined set of differential
equations (3.2.1) and (3. 2. 8) are integrated (using equations (3. 2. 2) and (3. 2. 9))
from x= Xo to x, with an assumed |, then N of the final values of &y(x

f )
can be used to construct 6€ due to a unit perturbation in yk(xo)

5¢ = 6(B, - B,) = B, (3.2.10)
Thus
Se, (8B).
i ci
T, =——t=—""= (58 ), (3.2.11)
)
ik Gyk Yy c'i




but {65353}}1 is the value of one of the perturbation variables in 6§(xf)., Thus
the value of an entire column of the transition matrix due to a unit change in the
control constant yk(xo) can be found in the féllowing manner:
(1) Set the value of Syk(xo) — yk(xo) is an element of the control constant
vector B —— equal to "one' and all other 6yi(Xo) =0; i=1 to 2N;
i# k),

Using these initial perturbation values, together with the specified

o
o
—

initial conditions and [, integrate the optimality equations and
the perturbation equations simultaneously from x = Xo to Koo

(3) Record the values of 6y(x These values represent the change in

)
f
the variables §(xf) for a unit change in the variable yk(xo). Thus,
N of these elements represent a column of the transition matrix

since

and ﬁcirepresents a calculated value of a particular variable yi(xf)
which has its value prescribed. Thus, N of the values of 6§(xf)
will compose a column of the transition matrix -'I-‘-

If the above scheme is carried out N times, each time with a different value
of éyi{xe} set equal to "one'' and all others zero, then the entire transition
matriz may be calculated,

In all cases studied in this thesis Ee = {0} and each element of Eo
is a function of one system variable only. An extension of this procedure to
calculate a transition matrix for a problem in which Ec involves functions of

the variables is easy. If there are N functions Lpi(yj(xf),t(xf)) which are to

have prescribed values then let

B, = kpc (3.2.12a)
and

PO 3.2.12b

3@ 4Je ( )
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where the subscripts ¢ and e refer to the calculated and exact values respectively,

Since
e=PB =B =¥
then
%,
Se = &y .(x
8y].(xf) yJ( ?

In this case, each element 651

(3.2.13)

(3.2.14)

is a function of more than one Esyj{:s%:ﬂ?}g

however, the transition matrix procedure is the same since

=5
T ™ %%

for a particular choice of 6yk(x0) =1,

The transition matrix is therefore not restricted to systems where éei

is a function of a single 6yj(xf).

3.3 Example of the Transition Matrix Solution

As an example of the general procedure described in Section 3.2, con-

sider the simple torsional vibration problem discussed in Chapter 2. The

necessary optimality conditions were found to be

6" = s/t
s' = -6t + p)

0sx=1

where

2
2 S

1 +a62
with 6(0) = s(1) = 0.

The perturbation equations for the above system are

56y = 2 _ St
t 2

(68)' = - 80(at +B) - 6 (dt)

(3.3.1)
(3.5.2)
(3.3.3)
(3.3.4)
(3.3.5)
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6‘i;n.:1_< sds _oz6s266 > (3.3.6)
A1 s00® (14a6?)?

Eguation (3. 3. 8) can also be written as

< . %s 660
ot =1 S —Oz;'z— (3.3.7)

For the numerical solution of these equations, the previously defined

vectors R, Bys and B are equal to the following

E=s(0)=8 (3.3.8)
E@ =s(l) = (3.3.9)
2 ey

B =8 (3.3.10)
8 = @c - ﬁe = pc = Sl so e =06s(l) = dSl (3.3.11)

where Sl and dSl are numerical values of s(1) and 0s(l) respectively. The
task is to force S 1 to zero by perturbing the value of So' The relation between

changes in 6s(0) = So and dS, = 6s(0) is written as:

1
é {1y = s Ja
s(1) Tués(()) (3.3.12)

Using the boundary condition 6(0) = 0 and an assumed value for s(0):

s(0)=8; with  68(0)=0

and §s(0) = 1 the system equations (3.3.1) to (3. 3.6) may be numerically

integrated from x =0 to x =1, In general, the calculated value of s(1), Sl’
will be unequal to zero. If the calculated value of 6s(1) is called dS1 then,

since
5"“’ P 7 = 6~ = Py = ° o
gﬁe @e) Bc be dS1 (3.3.13)
and 6s{) =1, then
be
v =280 L _ s (3.3.14)

11~ 9s(0)  6s(0) 1
A change in S0 can then be calculated such that the error e, = S 1 is
reduced by an amount k. Let ‘
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6e1 = -ke, = —Ksl (3.3.15)

then from equation (3.3.12)

g - 1 -
o - = ds {3@ %3@ 16])
1
Now, let
KSl
SO =8 + 680 = So - 35 (3.3.17)
new %1d old 1

The system equations can be numerically integrated once more from

x=0 to 1 using

s(0) =8
new
0O=20

6(0) (3.3.18)

6s(0) = 1

66(0) =0

At x =1, new values will be obtained for both s(1) and 0s(1). If ‘S1
new

denotes the new value of s(1) then from equation (3. 3. 15) the following re-~

lation should hold

~ (3.3.19)

if k 1is being chosen correctly. Since the transition matrix definition is a
linear approximation, if equation (3.3.19) does not hold then we have exceeded
the limits of the linear approximation. If this is the case, x has been chosen
too large and should be decreased on the next integration iteration. On the
other hand, if k is very closely equal to that given in equation (3. 3. 19) then
a larger value of k should be chosen to drive s(1) to zero more quickly. In
practice, it is found that a relation such as equation (3. 3. 19) is satisfied for

0<K=<K <1 (3.3.20)
max
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where ¥ x varies from one iteration to the next. As the error e decreases,

ot
t

#
max

s(1)~0, it is found that « ~1. In problems with more variables, the
max ’

found to increase. As the solution begins to converge, that is, when

problem of adjusting x becomes more complicated and is largely one of

experience with particular problems being solved. After a number of iterations,
81
optimality differential equations and the boundary conditions.

will be driven to zero and the numerical solution will satisfy all the necessary

The results of an application of this method are shown in Figure 3. 1,
The nondimensional thickness distribution is plotted vs. x (no minimum
thickness constraint is imposed on t(x)). Using the numerical solution with a
starting value s({0) = 81 =1,0 and x from between .8 and .95, convergence of
the numerically calculated thickness distribution to the analytic solution was
achieved in five iterations,

If a comparison between the numerical and analytic solutions for t(x)
were given on a figure, the results would be indistinguishable. Table 3.1 gives
a numerical comparison between these two solutions. In the table, D1 is the
amount by which the nth iterative value of So would change if « equalled
unity, If the method is converging satisfactorily then this value of D1 should
decrease nearly proportional to k.

As a historical note, in early studies by Ashley and McIntosh (Ref. 7),
this method was so successful on the torsional vibration problem that some
over-optimism was expressed with regard to the transition matrix procedure.
Since, in the torsional vibration problem

s2(0)

2 2
t{0) = =35 (0) (3.3.21)

1 +ab”(0)
one might deduce from physical intuition that, even in an optimum thickness
distribution, the thickness at x = 0 will not be far from unity.

Thus, a good starting value for the control constant s(0) would be unity.
Except for cases involving large values of 51 this observation holds true. Early
researchers used this starting value for s(0) and the adjoint A 6(0) and Wei'e

highly successful. In more complicated problems, a bit more insight is needed
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and the transition matrix procedure becomes more difficult due to the difficulty

in estimating the control constants.

3.4 Transition Matrix Solution With Minimum Thickness Constraints

The previous discussion of the transition matrix made no mention of
thickness constraints. A simple logical statement or test must be added to o
computation scheme if thickness constraints are to be imposed. For instance,
in Section 3. 3, in the absence of thickness constraints the torsional vibration

problem was solved using the equations

9" = s/t 0<x <1 {3.4.1)
st = - 0(at + B) (3.4.2)
2 s2 o 4 a
t = 5 {3.4.3)
1 +af
Goy =28 _ Sg (3.4.4)
t 2
t
(6s)" = - (860)(at +B) - (6)dt (3. 4.5)
6s 0. 50
- 08 _ 8, 90, (3.4.6
8t = t( - (ST (3.4.6)

with 6(0) = s(1) = 0; 6s(0) = 1; 86(0) = 0.
Suppose, as an example, that the constraint

t 2t 0sx=<1 (3.4.7)
min

is specified. The numerical solution method for this type problem is nearly the
same as described in Section 3.3, If, ata value x= X, in the numerical
solution process, a value of t, as calculated in equation (3. 4. 3) is found such
that

t=t

then t(xc) is set equal to tmin and 6t must be set equal to zero. The value
of &t must be zero because no variation of thickness is permitted. The
integration procedure continues using these values of t and 6t until such time

when t(x), as calculated from equation (3.4.3), again exceeds tmmﬁ If and
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when this occurs, this value of i{(x) is again used in the optimality equations,

together with 8{(x) as calculated in equation (3.4.6). The logic may be expressed

2
(1) Let C= =
1+ab
t=C
C > tmin 5t £ 0
(2) I or Then or
C=st . =t
min min
8t=10

This completes Chapter 3 and the bulk of the discussion of the numerical
techniques used to solve the optimization problems which have ordinary dif-
ferential eguation constraints, In the chapters which follow, additional techniques
will be discussed as is necessary, The following chapters present solutions to
problems whose analytic solutions are as yet unknown. These numerical solutions
have been obtained using the transition matrix method or a modification of this

basic method,
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4, OPTIMIZATION OF SIMPLE BEAMS WITH ONE FLEXURAL
VIBRATION FREQUENCY HELD FIXED

4,1 Introduction

This section will discuss the solution of problems involving the search
for a least-weight design of a beam whose first or fundamental frequency of
flexural vibration is held fixed. As in the torsional vibration problem, the
constraint eguation will be expressed in nondimensional form. The resulis
which are obtained will then apply to any beam with similar end conditions and
whose length is held fixed. A nondimensional thickness parameter will be
defined in each case discussed and will be used to relate the structural and
inertia properties of the optimal beam to a uniform thickness reference beam.

Two structural configurations will be discussed. The first is a beam
composed of two thin face-sheets with a nonstiffening core sandwiched between
them. The problem will be to find an optimum face-sheet thickness distribution,
without altering the core, which results in an optimum or least-weight design
and still has a fundamental frequency identical to a beam of similar geometry
and uniform face-sheet thickness, The second problem will deal with a beam of
fixed width and length having a solid rectangular cross-section. The problem
will involve finding a distribution of thickness such that a least-weight design is
found which has the same fundamental frequency as a uniform thickness beam
with similar geometry.

Two sets of boundary conditions will be considered for the sandwich
beam problem. One set of boundary conditions will be those due to clamping one
end of the beam while allowing the other end to be free. The second set of
boundary conditions will be due to fixing the beam at each end and allowing
rotations at these ends. This set of end conditions is referred to as "pinned-
pinned. " The solid cross-section beam will be studied only for pinned-pinned

boundary conditions.
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4,2 Least Weight Optimization of a Cantilever Beam Composed of Two Thin

Face~Sheets With its Fundamental Frequency Held Fixed

The equilibrium equation for the free flexural vibration of a simple

beam with inextensional bending is given by:

2 2
d w2
S(EIX)™) - o mX)W(X) = 0 (4.2.1)

dx dx

0=X=L

where the lateral motion is assumed to be of the form

WHX,T) = W(X)e
For a sandwich beam, that is, a beam with thin face~sheets top and bottom, the

bending stiffness EI(X) is given as

EL(X) = 2Ebh2T(X) (4.2.2)
where: b = width of face-sheet

h = distance of face sheet above a hypothetical neutral axis or midplane

E = Young's modulus

T({X) = face sheet thickness

Now, we nondimensionalize equation (4.2, 1) by letting

w(x) = W(x)/L

o y_i—l d
x=X/L () Tdx T L d(X/L)

to get the following equation:

(BIEwE)")" - @ LYmE@w) = 0 (4.2.3)
Furthermore, if EIO = :ZEbhzTO is a reference stiffness due to a sandwich beam
with uniform face-sheet thickness then, dividing by EIO, equation (4. 2.3) can be

written as

4

m L

Ei{x 2 0 mgxz

A8y - B we = 0 (4.2.4)
0 0 o

where m is the mass per unit length of the uniform thickness beam. Since
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m(x) is composed both of the contributions due to face-sheet inertia and non-

structural core inertia, the ratio m(x)/m0 may be written as
m(x)
=8 +6 2
m_ 1t(x) 9 {4.2.5)

where 62 =1- 61 and () = T(x)/TO. The quantity 62 is the ratio between
the nonstructural or core mass and the total mass of the original structure and
is a constant. Expression (4.2.5) is similar to that encountered in the tersional
vibration problem in Chapter 2. From equation (4. 2. 2) it is seen that the ratio

EI(x)/ EI  can be written as:

EI(x) - Ix) _ A,
EIO To t(x) {4.2.6)

Using the above expression, equation (4. 2. 4) becomes:

mL4

2
(tw")" - wo( )(611', + 62)W(x) = (4.2.7)

0
EI

¢}

Equation (4.2.7) is the constraint equation which any variable face-sheet
thickness distribution must satisfy if it is to have a frequency @, egual to that

of the uniform structure. One further simplification can be made by noting that

2, . .
w, is, for a cantilever beam, given by

EI
0

mL4
0

wi - (.59mm)%( ) (4.2, 8)

By letting: a = (. 597"rr)4€51
B = 597Tr)462

the constraint equation (4. 2.7) may be written as:
(tw" - (@t +Byw(x) = 0 ‘ (4.2.9)
0=x=1
Using a change of variables, this fourth order equilibrium equation can be
written as a set of four simultaneous, first-order, ordinary differential

equations
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wi=p (4. 2.10a)

p' =q/t (4.2.10b)
' =r (4. 2.10c)
rf = (ot + B)w (4.2.10d)

These equations are now in the form suitable for optimization theory.

The constraint equations in equations (4. 2. 10a,b,c¢,d) could have been
formulated without reference to the boundary conditions. Until we specify
that o = (. 597Tr)461 and give the boundary conditions for a cantilever, these
constraint equations are perfectly general. These general equations will also
appear in the section which discusses the beam on simple supports.

Tor the cantilever beam, the state variable boundary conditions are

w(0) =p(0) =q(l)=x(1)=0 (4. 2. 10e)
The state variables w,p,q,r represent the nondimensional modal deflection,
slope, bending moment, and shear respectively. The performance index or

merit function whose minimum is sought is given by

1
J "Zﬁ{ tdx (4.2.11)
O

The Hamiltonian for this problem is given by

H=t+A p+Ar q/t+A 1T +A (ot +B)W (4.2.12)
wh p q T

where ?\W, Kp, Kq and hr are the adjoint variables or Lagrange multipliers
for their respective state variables w,p,q,r.

The necessary set of differential equations for an extremum of J is
composed of the constraint or state variable equations (4.2.10a,b,c,d) and the

differential equations for the adjoint variables. These adjoint equations are

given by
COE oot +B) (4.2.13a)
bw  w T <
- (4.2.13b)
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- —— = Al = A t ‘A D ~
g =y (4.2, 13¢)
9H

e = A = A p .
e e N (4.2.130)

The control equation gives an algebraic relation between the control variable

t(x) and the state variables and adjoint variables.

8H *d
Zop=1-E it w (4. 2. 13e)
t 2 T
t
or

A q
2 .\ p 1af
t (x)-1+oz?\rw (4.2, 13f)

Since t(x) occurs both in the state variable and the adjoint variable
differential equations, they are both coupled and nonlinear.

The boundary conditions for the adjoint variables may be simply expressed
as

at x =0 either Ka(O) or a(0)=20
(4.2.14a)
at x =1 either Xa(l) or a(l)=20

where "a'" is a particular state variable such as w. Therefore, from the
boundary conditions in equation (4.2.10e) it can be seen, using equations (4.2, 14a),
that the adjoint variable boundary conditions are

A0 =20 = A (1) = A (1) = 0 (4.2.14b)

Equations (4. 2.10a,b,c,d) and (4. 2. 13a,b, ¢, d) together with the control
equation and the boundary conditions (4. 2. 14a,b) define an eighth order, nonlinear,
two-point, boundary value problem which must be solved to find the thickness
parameter distribution t(x) for the least weight beam. Fortunately, an examination
of the state variable equations and the adjoint equations and the boundary condi~
tions shows that a solution exists for which the adjoints or multipliers are linear

functions of the state variables. That is:
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w{x) 60 ¢ 0 1 AW(X)

| b 0 0-1 0 A (%)
=A P (4. 2.15)
qi{x) 0 1 0 O A (%)
q
r(x) -1 0 0 0 A )

The constant A is arbitrary, but must be greater than zero for the
present problem. The adjoint variables are seen to be proportional to the modal
amplitude of the state variables. Using equation (4. 2.15a), the control equation

may be written

tzsix} = qu/(l +ozAW2) (4.2, 163)
If A> 0.0 then we can see that tz(x) >0, Now, since we are working with
eigenvalue constraints, we would suspect that the thickness would depend on the
various state variable mode shapes, but not the amplitude. Thus, for a set of
A's the state variables such as gq(x) will have the same shape but their

amplitudes will vary with A, Thus, at x=x_, the value of g(x 1) will vary

1
with A but, the product Aq(xl) will be invariant for the optimum solution.
For ease of numerical computation, the value of A is set equal to unity. Then,

eguation {4, 2. 16a) becomes:

ﬁgs{X} = q2(X)/(1 +aW2) (4. 2.16Db)

Using equation (4. 2, 16b) together with the state variable equations, the
eighth-order problem can be reduced to a fourth-order problem in the state
variables, Using equation (4.2. 15) permits us to uncouple the state variables
from their adjoints, however, note that the state variables are still coupled
through the control equation.

The problem of finding a thickness distribution for a minimum weight
beam which has its first or fundamental frequency equal to that of a uniform

thickness reference beam now becomes one of solving the first-order equations

W' = (4.2.1732)
Pl = q/t (4.2.17b)
QY =T 0<x=<1 (4:.29170)
v o= (ot + B)yw 44 (4.2.17d)



with w(0) = p(0) = q(1) = r(1) = 0 and with t(x) given in equation (4. 2. 16hb).

A computer program was written to numerically integrate the above
equations from x=0 to x=1 using as boundary conditions w(0) = p{(0) = ¢
and assumed initial values of the control constants q, = q{®) and r = r{0).

For the optimum solution, these constants q, and r, must have values which,
together with the boundary conditions w(0) = p(0) = 0 will yield q(1) = r(1) =0
when the optimality differential equations (4.2.17a,b,c,d) are integrated from
x=0 to x=1,

An analytic function solution to equations (4.2.10a,b,c,d) when t(x) is
given by equation (4. 2. 16b) has not yet been found. A wide variety of possible
solutions have been attempted, but with no success. However, a transition
matrix solution has been devised to solve this problem. Using equations
(4.2.17a,b,c,d) with t(x) given in equation (4.2.16b) and the boundary conditions
w(0) = p(0) = 0, a numerical method was programmed which perturbs an initial
set of assumed values of q(0) and r(0) in such a way as to eventually force
q(1) and r(1) close to zero. The result of these cyclic iterations is a numerical
solution to the set of optimality equations (4.2.10a,b,c,d; 4. 2. 16b) for which the
boundary conditions are w(0) = p(0) = q(1) = r(1) = 0, These are the necessary con-
ditions for J to be a minimum and thus our numerical solution satisfies the optimality
conditions. To force q(1) and r(1l) to zero, perturbations in q(1) and r(1)
must be related to perturbations in q, and r - These relations may be writien,

to a first order approximation,as

9q(1)  9q(1)

. q(1) _ | 8q0)  or(0) > (4.2.18a)
x(1) mn 0| %
or
e T °d, 5 181
r(1) 9 er o
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The 2 x 2 matrix above is seen to be nothing more than a transition matrix such as
described in Chapter 2. For a given choice of q, and r and with w(0) = p(0) = 0,
the integration of the state variable equations from x =0 to 1 using the expres-
sion for t(x) in equation (4.2.16b) will yield values of g(1) and r(l) which are
either near zero, to within some error tolerance, or which are outside this

tolerance, i.e.

q. | (1) €
0| > <1 a (4.2.192)
r(l) €

=

&
=

} q(1) €
5 B .1« (4.2.19b)
é (1) €.

9o

T

0

1f the latter case, equation (4.2.19b), is true then perturbations in qo
and T must be found such that the next integration cycle brings the values of
g(1) and r(1) closer to zero. If we let
Claw ] fe]

> | (4. 2,20)
%re{l}

M M)

where q{MM and r(l)M are the values of g(1) and r(1) found at the end of the
Mth integration cycle, then from equation (4.2.18b) we find the perturbations

éq@ and &ro to be

o

[ 6a a(1)

Lo . KM[T,_]"l (4.2.21)
é br T (r)

° M+1

where the subscript "M" refers to the integration cycle number. Thus, on the

(M +1)st cycle, the values of q, and r will be

= + (4.2, 22)

rO rO 6r0
M+1 M M

% qO q0 6q0
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This type of iterative integration has been found to be extremely successful

when the initial values of qo and ro are chosen properly. This initial choice
of q, and ro will be discussed below. However, before the discussion of the
estimation of q, and T it would be well to discuss the generation of the
transition matrix for this problem. As defined in Chapter 3, the perturbation

equations for this problem are:

(dw)' = &p (4.2.23a)
5

(6p)" = =2 - st (4.2.23b)
t 2

(5q)' = or (4.2.23¢)

(51)' = (@t + B)(bw) +aw(bt) (4. 2. 230d)

where

2
1 ) wbd
ot = ¢ | =g - S (4. 2.24)

2 2
1 +aw (1 +ozw2)

or
(4. 2. 25)

The perturbation equations involve values of the state variables. The
above perturbation equations are integrated, together with the state variable
equations and the chosen boundary conditions q0 and ro, with:

w(0) = p(0) = 6w(0) = p(0) = br(0) = 0; 8q(0) = 1 (4. 2. 26)

then, at x =1 the values of or(l) and 6q(l) are seen to be

_9q(1

11~ 9q(0) = 6q(1) {4.2.273)
or(1l
= =38 4.2 27
T21 59(0) r(l) (4. 2.27b)

Similarly, with q(0) = d,; r(0) = r and w(0) = p(0) = dw(0) = 6p(0) =
8g(0) = 0; 6r(0) = 1 the integration of the system equations and the perturbation
equations yields

Zfal) 6 4.2.28a
12 ar(o) Q(l) 47 ( € e }




S 1€ R
Lyo = 5r(0) r(1) (4.2,28b)

1t will be noted that, since the perturbation equations are linear in the
perturbation variables and only depend on the system variables, the generation
of all columns of T may be done simultaneously if computer storage space permits.
Placing a minimum thickness constraint on this problem is quite useful

since, at x =1, in the absence of such a constraint

- —LW =0 (4.2.29)
1+aow (1)

If, during the iterative integration process, a value of g(x) should be
encountered which is equal to zero, then the numerical solution process may
diverge. This occurs because, from equation (4. 2. 10b)

p' =q/t=0/0 (4.2, 10Db)
o' (x) will then become numerically indeterminate. Thus, in most cases, at least a
small minimum-thickness constraint is imposed to facilitate a solution.

The estimation of initial values of qo and r requires a little analysis.
The previous investigations have shown that good first approximations to the
state variables, i.e. w(x), p(X), 4(X), r(x), can be found by using the eigen-
function solutions from the uniform thickness solution.

For a cantilever beam of uniform stiffness and mass per unit length, the
mode shape w(x) is found to be (Ref, 14):

sinQ - sinh

wi(x) = C[{ Y{(sinh (’anx - sin an) +(cosh an

cosh O +cos
o " (4. 2. 30)
- CO8 an)}
Letting t(x) = 1 and using the definitions for w,p,q,r in equations (4.2.10a,b,c,d),
we find that the ratio r(0)/q(0) obtained using equation (4.2.30) as an approxima-

tion for wix) is

sin 0 - sinh O
n

M0 _ g

= 4,2.31
{0} n'cosh O +cos Q ) ( 31)
n n

where, for the fundamental frequency
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Q =.597mw
n

Thus, a good trial value for the ratio in the numerical solution might be:

T
r(0
E(%%: 53—_- -1.37734 (4.2.32)

Now that an estimate of the ratio of control constants has been obtained, only
q, or T, need be estimated. Since w(0) = 0, an estimate for q = a{0) can be
easily obtained from equation (4. 2. 16b)

tz(x) = qz(x)/(l + ozwz(x)) (4.2.16b)
For any iteration, t(0) = q(0) = q- Thus, the estimate involves the sizing of
t(0). Since, initially, the reference structure has t(0) = 1, a likely initial value
of a, is q, = 1. From the above ratio ro/qo we find r, = -1.3774.

These estimates were used in a computer program which uses iterative inte-
gration to solve the optimization problem. Using these numbers, an initial distribu-
tion of t(x) is obtained as shown in Figure 4.1. Using values of «=.5,.9,.9,.9,
the final converged solution of thickness distribution was obtained and is also
shown in Figure 4.1. For this case, 61, the initial structural mass ratio, is

) 1= 0.50. In addition, no minimum thickness constraint is imposed. A quantity,

called the '"'mass ratio, " is defined as
1
MR =6J tdx +8, (4.2.33)
)

and is used to indicate weight savings from the optimization process, The mass

ratio is the ratio of the total weight of the optimum beam to the total weight of the

reference beam. In the case shown in Figure 4.1, the mass ratio is wr = 0, 6632,

Thus, the weight of the cantilever beam after optimization is 66. 32% of the
reference beam so that the result of optimization is a 33.68% savings.

Although no analytic or functional solution for this optimization problem has
yet been obtained, an interesting check solution has been found. If ot << g and

aw << 1, then the nonlinear state variable equations may be estimated by:
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w! = p (4. 2, 34a)

pP =10 (4. 2. 34b)

gq' =T 4.2, 34c¢)

! = Bw (4.2.344d)

w{0) =p(0)=q(l)=r(1) =0 (4.2, 34e)
where

tz{x} = [qz/(l +ozw2) = ,qz(x) (4. 2, 34f)

The exact solution to the equations above is given by

W(x) = X2/2 (4. 2.35a)

D) = X (4. 2. 35b)
4

g{x) = tx) = paX - 4x +3) (4.2, 35¢)

mnggg-n (4. 2. 35d)

where B = (0, 5971T)4(1 - 61).

Note that this approximate solution for t(x) is linear in 62 =(1-25 1),

P

This approximation is remarkably accurate, as can be seen in Figure 4.2. In
this figure, the topmost curve shows the results of expression (4. 2. 35c) for

63 = { or 6? =1 - 61 =1.0. An approximation for any other value of 61 can

be found by multiplying each point on this curve marked "approximation' by

(1 -8,

and show the behavior of the thickness distribution as a function of & 1 As

The "exact" solutions for 61 =.1,.5, .9 are also given in Figure 4.2

?51 -1.0, or (1- 61) -0, 0, the nonstructural mass disappears. At the same
time, as in the case of the torsional vibration problem, this problem becomes
poorly posed, i.e. t(x) =0 is a solution, and the load carrying structure disappears,
that is Mt = 0,
At the opposite extreme, 61 —-0.0, as &, decreases there is less total

1

structure available to be optimized., Because of this, as 6, -0.0, M —~1.0,

1
Figure 4.3 shows the behavior of the mass ratio between the two extremes,

6% = { and 61=1.0,

E
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If a constraint is placed on the thickness in the form t(x) = tmm’ the
results of this minimum thickness constraint at any value of 6 1 for which the
problem is well posed will be similar to those shown in Figure 4.4. This figure
shows three different minimum thickness constraints together with the case for
which tmin = 0. These cases all have the common parameter 61 = (.50, Asis
seen in Figure 4.4, as tmin —1.0, the optimum distribution of t{x} approaches
the uniform thickness reference case. In addition, as tmin -1,0, mp —~1.0,

Table 4.1 shows some values of the control constants 9, and r which
were obtained in the previocusly discussed work. The values of the ratio ro/%
are also shown to give an indication of the accuracy of the estimation procedure
suggested in this section, In all cases shown in the table, this estimated ratio was
within 4% of the "exact" value.

This completes the discussion of the optimum cantilever beam. Further

reference will be made to this configuration after the discussion of the pinned-

pinned beam in the next section.

4.3 Least Weight Optimization of a Sandwich Beam on Simple Supports With the

Fundamental Frequency of Flexural Vibration Held Constant

The nondimensional equilibrium equations for a sandwich beam on simple
supports has the same general form as that given for the cantilever in Section 4, 2.

These first-order equations are:

w' =p (4. 3. 1a)
o' = q/t (4.3.1b)
q'=r {4.3.1c)
r'=(@t+pw 0=sx=1 (4.3.1d)

For this case, o and B are found to be
4
o= (T )61
4
B=(m)(1-35)
The boundary conditions reflect the fact that, at the supports, there is no deflec-
tion or bending moment. This may be expressed mathematically as:

w(0) = q(0) = w(1) = q(1) = 0 (4.3.2)
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Since the quantity to be minimized is again
1
J= f tdx (4.3.3)

0
the Hamiltonian may again be written as

Hoe=1f+A A A A
H AP+ pq/t+ qr+ Lot +Pw (4.3.4)

Except for the state variable boundary conditions and different numerical values
of @ and B, the governing equations necessary to achieve a minimum of J are
identical to those encountered in the previous section, Therefore, the adjoint

variable differential equations are:

- %g» = A:N = - Ar(at +B) (4.3.52)

OB o (4.3.5b)
P v 0=x=1

5 %ﬁ: A (4.3.5¢)

} %?: =y (4.3.5d)

while the control equation can again be written as
%‘:2 = A g/(L+ar W) (4.3.6)
D T

Given the state variable boundary conditions in equation (4. 3. 2), the adjoint
boundary conditions must be:

A0 = A (0) = A (1) = A (1) = 0 (4.3.7)

It can be shown that, given the above eighth~order system with its boundary
conditions, a solution exists for which the following algebraic relation between the

state variables and the multipliers will hold.

o 0 o0 1 A (%)
w
; A
a0 oo p®) (4.3.8)
0 1 0 0 A (%)
q
i} A
1 0 0 0 )
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Here again, the modal constant A appears in the state variable-adjoint
relation, If tz(x) is to be positive, then A must be greater than zero. For
ease of computation, let A equal one. Because of equation (4. 3.8), the control
equation becomes a function only of the state variables (or equivalently, only of

the multipliers):

tz(x) = qz(x)/(l +ozw2(x)) (4.3.9)

An examination of the boundary conditions for the problem shows that, at x =0
and x =1, the thickness parameter vanishes. This vanishing of the thickness

at the end points gives rise to singularities in the differential equations. For

this reason, a minimum thickness constraint was used in all cases to be discussed.

It is worthwhile to note that the differential equations and the control
equation for the pinned-pinned beam are the same as those for the clamped-free
beam. The boundary conditions are, of course, different and it will be seen
that these differing boundary conditions give rise to markedly different thickness
distributions and mass ratios.

The problem now becomes one of finding a numerical solution to the differential
equations (4.3.1la,b,c,d), with t(x) given by equation (4.3.9), and the boundary
conditions:

w(0) = q(0) = w(1) = g(1) = 0
The control constants for this problem are p(0) = po, the nondimensional slope
and r(0) = T the nondimensional shear. These control constants must be perturbed
in such a way that, after several iterative integration cycles, the values of w{1)
and g(l) are near zero.

A first-order approximation of the relation between perturbations in p(0)
and r(0) and the resulting perturbations in w(1l) and ¢(1) may be expressed as:

ow(1) ow(1)

w(1) op(0) ar(0) <Spo
5 - (4.3.10a)
oq(1)  9q(l)
a(1) ap(0)  or(0) or,
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L wl) 6p0
5%@@)1 ) iTij! GrO‘ (4.3, 10D)

The matrix T is again seen to be the transition matrix for the problem.

The method of solution in this problem is similar to that used for the problem in
Hection 4. 2.

The control constants P, and r must first be estimated in a2 manner
similar to that shown in Section 4.2, Using these approximations and the boundary
conditions  w(0) = q(0) = 0, the state variable equations may be integrated from
x=10 to x=1, At x=1, the values of w(0) and q(0) are recorded and compared
to the error vector €, If

(w(1)

;
4

i >
am |y,

then we choose
[ 6w (1)
| d4(1)

M

w(l)]
a) | o

where the subscript M refers to the iteration cycle number. During each of

s

L

these integration cycles, the transition matrix is determined by simultaneously
integrating the system perturbation equations. For the pinned-pinned beam,

the perturbation differential equations are identical to those used for the

cantilever beam, equations (4.2.22a,b,c,d; 4.2.23b). There are two sets of
perturbation boundary conditions necessary to determine the transition matrix.
These are:

5w (0) = 6g(0) = &r(0) = 0; &p(0) = 1 (4.3.11a)
and |

Sw(0) = dp(0) = 8q(0) = 0; ér(0) = 1 (4. 3.11b)

The first set of perturbation boundary conditions, equation (4.3.11a), will yield

_ow(d) _ : _8q(1) _
117 3p(0) = MW Tyy = gpeg) = 04 (4.3.12a)

while the second set will give
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_ow(d) _ . _ 9g(1) _
12 7 8r(0) Sw(l); Ty, = ar(0) bq(1) (4.3.12b)

When T has been determined, the control constant perturbations can be calculated
from:
6p w(1)

° -1
o _ e KM[Tij]M a(l)
M

On the (M +1)st integration, the system boundary conditions will be:

p(0) _ PO, |op, (4.3.14)
r(0)

r(0) or

M+1 M o]

M

If at any time the value of t(x), as given by equation (4.3.9) falls below
tmin then the value of t(x), as used in the state variable equations, is then set
equal to tmin' In addition, the value of 6t(x) is set equal to zero when the constraint
boundary, t= tmin’ is encountered. The solution to this problem is basic to the
solution of the panel flutter optimization problem discussed in Chapter 6. For this
reason it was researched carefully and a wide variety of solutions was obtained.

First of all, let us discuss the estimation of P, and ro The estimation
procedure is similar to that discussed in Section 4.2 and involves using the mode
shape of the reference structure as an approximation for the deflection w(x)
encountered in the optimization equations. The solution for w(x) with t(x) =1
and equations (4. 3. 1a,b,c,d) is found to be:

w(x) = C sin mx {4.3.15)
Since t(x) = 1, the equations are linear and the constant C is, as yet, undeter-
mined. Once w(x) has been approximated, the expressions for p(x), q(x)
and r(x) also follow from equations (4.3.1a,b,c,d) if t(x) = 1. With these
expressions, the ratio 1"0/pO can be shown to be

= —m? = ~9.8696 (4.3.16)

€

it

=
2
"GIH
o lo

If the approximate solutions obtained above are inserted into the control equation

we get
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4 2 2
@2(}{} m C gin mx
1 +Tr4(3261$in27rx

(4.3.17)

It can be shown that this solution for t(x) is symmetric about x = 1/2 and reaches

its maximum value there. If t(1/2) = tmax’ then the solution for C becomes

1 i/2
. max 1
C o= 5 ) 5 {4.3.18)
L- 61tmax

For a given value of 61 and for an assumption that tma,x = 1.0 a good set
of approximations for p(0) and r(0) are:

3
p, = p(0} = Cm; r = r{0) = - Cm (4.3.19)

where € is determined from equation (4. 3. 18),

1t will be noted that the approximations for the state variables have an
arbitrary modal constant multiplier C. However, once these approximations
are used in the expression for t(x) and the value of tmax is set, the arbitrary
constant C is determined. This can be seen to be parallel to the discussion
of the constant A encountered in the previous discussion. With t(x) not equal
to a function of the state variables, the state variable equations are linear in the
state variables. However, once t(Xx) becomes a definite function of the state
variables the equations become nonlinear. Thus, for the nonlinear state
variable equations, the solutions are unique and have no arbitrary constant
multiplier,

When B >>at and 1 >> ozwz, an approximate solution can also be
obtained in a2 manner similar to that shown in Section 4,2. If the above assump-

tions hold, the nonlinear state variable equations become:

w! =p (4.3.202)
p' =a/t=1.0 (4.3.20D)
q' =T (4. 3. 20c)
r' = (ot + B)W = Pw (4.3.20d)

and
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rz(x) = qz/(l +aw2) = qz(x) (4.3, 20e)

with boundary conditions

w(0) = q(0) = w(1) = q(1) = 0 (4.3.20f)
The solutions to the above equations are:

w(x) = x(x - 1)/2 (4.3, 21a)

p(x) =x - 1/2 (4.3.21Db)

q(x) = t(x) = w4(1 - 61)(x4/2 - x3 +x/2)/12 (4.3.21c)

r(x) = Tr4(1 - 51)(X3/6 %2/ +1/24) (4.3.214d)

The solutions in equations (4.3.21a,b,c,d) are symmetric about x = 1/2 and the
maximum value of t(x) also occurs at x=1/2 and is

t = B(1/2) = 1.2683(1 - &) (4.3.22)

Although the above solution for thickness was obtained assuming that
tmin = 0.0, that is, no thickness constraint, it compares rather closely with the
exact solution obtained numerically for which 6 1= 1 and tmin = ,01, These
two solutions are plotted in Figure 4,5 for comparison.,

The effect on the thickness distribution of varying & , can be seen in
Figure 4.6. This figﬁre shows three different distributions for & 1 equal to
0.9, 0.5 and 0.1 and a minimum-thickness constraint of tmin = 0,10, The
mass ratio for these configurations is also shown on the figure.

The mass ratio MR is shown vs, 6., in Figure 4.7 for several values of

1
6, and a thickness constraint tmin =,10. The weight savings for the pinned-

pilnned beam are seen to be in the area of six to ten percent, This result differs
greatly from the large savings seen to be possible for the cantilever beam.

The effect of varying the minimum thickness of a beam with a fixed value of
61 is shown in Figure 4.8. As tmin —1 it is seen that the thickness distribution
begins to approach t(x) =1 as it should.

Table 4.2 lists, for reference, the values of the control constants obtained
for the cases shown in the figures, together with the ratio ro/po. These control

constants exhibit a continuous behavior when plotted vs. 6 ; °F tmin“ This
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behavior is extremely useful because once one or more solutions are known we may
extrapolate to find others.

This completes the discussion of the pinned-pinned sandwich beam for the
moment, More will be said about this configuration in Chapter 5 as regards the
unigueness of the thickness distributions found and the solution formulation when
one or more eigenvalues other than the fundamental frequency are held fixed, The
final portion of this section will treat the problem of optimizing a pinned-pinned
beam whose cross-section is a rectangular solid. Thus, the bending stiffness will

be found to be proportional to t3.

4,4 Least Weight Optimization of a Pinned-Pinned Beam of Solid Rectangular

Cross Section With its Fundamental Flexural Frequency Held Constant

The previous sections have dealt with beams for which the structural
stiffness was a linear function of the nondimensional thickness and the thickness
enters linearly in the equilibrium equation. If a beam has a solid rectangular cross-

section, then the bending stiffness is given by

3
El(x) = &—iﬁ (4.4.1)

where b is the cross-sectional width. Since the ratio of a variable bending

stiffness to a reference bending stiffness can be written as

3
ng} _ bT éX) _ t3(x) (4. 4. 2)
o bT0

it can be shown, with reference to equation (4. 2. 7) that the state variable eigenvalue

constraint equations can be written as:

W' =D (4.4, 3a)
p' = q/t'3 0<x=<1 (4. 4. 3b)
q' =r (4.4.3c)
o= (ot +Byw (4.4.34d)

In the above equations, o« and [ have the same values as in Section 4. 3.

For a pinned-pinned beam the boundary conditions and values for ¢ and p are:
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w(0) = w(l) = q(0)=q(1) =0 (4. 4. 3€)

oz=611r

4
B=(1-6)m

An interesting facet of this problem is that a solution for 61 = 1,0 can be
obtained, that is,an optimum beam can be found for which there is no nonstructural
mass. This occurs because the frequency of a solid section beam depends upon the

thickness. For a uniform beam, the square of the frequency is given by:

2
El ET
w2=_n_4( O)=TT4( 0) (4‘4@4:»
o} 4 4
mOL pL

where p is the density/unit volume, Although the expression for the freguency of
a nonuniform beam will differ from equation (4.4.4), it is reasonable that the
dependence of the frequency on beam thickness is similar to equation (4. 4. 4).
Thus, the frequency will not be independent of thickness as it was for the sandwich
beam for p=0, and t(x) =0 will not be an allowable solution.

The merit function to be minimized is again written as

1
J='/’ tdx
o}

and, therefore, the Hamiltonian may be written as

q
= A A —=—+AT+A +
H=t+ Wp+ pt3+ qr I‘(oz'c Byw

The adjoint equations become

oH

- ———= Al = . A

o = M L@t +B) (4. 4. 5a)
oH ,

—— = A" = ~ A .4, 5b
op P w (2. 4.5b)
oH 3

L Y 4 4,4,5¢
o9 q p ( )

JAH L (4.4, 5d)
or T q
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with boundary conditions

A0 = A = A = A =
pﬁ% pﬂJ 0 =2A(1)=0 (4.4.5¢€)

The control eguation for this problem is

A
SH _ . _ S
ot 2 + akrw - (4.4.63a)
5
A
"r@ = mmn—-—-—-—--—-mg pq 4 b
| +a>\rw (4. 4. 6b)

A comparison of these equations with the state variable and adjoint
sguations in Section 4, 3 reveals a marked similarity. As in Section 4.3, it can
be shown that a solution exists for which the relation between the state variables

and the adjoint variables is

imy@ o 0 o0 1 A
0 W
, 0 0 -1 0 A
P i - A 1 P (4.4.7)
g 9 o 1 0 0 A
q
tr J -1 0 0 o0 A

If the state variables are chosen as the dependent variables and A =1, the

control equation can be written as:

[

2
*4@@==“-£ﬁligi- (4.4, 8)

1 *Jrozwz(x)
Then, for this problem, it is necessary only to find that solution to the set of state
variatle equations (4.4. 3a,b, ¢,d) together with equation (4. 4. 8) which satisfies the
boundary conditions given in equation (4. 4. 3e).
The numerical solution process for this problem is nearly identical to
that shown for the sandwich beam in Section 4.3. The state variable and perturba-
tion eguations differ slightly from those in Section 4.3 but the transition matrix

relation is of the same form. The perturbation equations are:
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(6w)' = bp (4. 4. 9a)

5qg 3
(6p)' = 2 - S5t (4. 4. 9b)

37 4

t ot
(6q)' = or (4.4, 9¢)
(6r)' = (ot +B)(6W) +aw(dt) (4.4, 9d)

with
t 4w

== 6q ~at (= L 9e)
ot = 5 | o -t @] (4. 4. 9€)

The above perturbation equations and the nonlinear state variable sguations
were used with a transition matrix procedure exactly like that in Section 4.3. This
method was used to generate optimal thickness distributions for several problems.
Because of the control equation, this problem is highly nonlinear, a fact which
makes the accuracy of the numerical techniques critical. The slope of the
thickness distribution is very high near x=0 and x=1 causing additional
numerical problems. To remedy these problems, a large minimum thickness
constraint was used in the examples shown in Figure 4. 9.

Figure 4.9 shows two cases solved using the transition matrix method.
These cases have 61 =1 and 61 = 0.5; tmin = 0.50. There is little difference

between the distributions having the same tmin but different values of 61»

4.5 Summary of Results

Much has already been said regarding the quantitative results of the
analyses in Chapter 4. There are, however, several topics which remain to be
explored. The subject of the uniqueness of these solutions is very interesting.
It would be well to ask; ""are there any solutions other than those already found
which also satisfy the constraints placed on the problem ?" The related question
is "what does the application of additional frequency constraints do to the problem 7"
Suppose, for instance, that the first two frequencies are held fixed or that only the
second frequency is held fixed —— what results may we expect? These are interesting

and important problems that will be discussed in the next section, Chapter 5.
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As regards qualitative comments on the previous studies, probably the
most interesting observation to be made is one regarding weight savings for the
same structural configuration with different boundary conditions. It appears that
gquite sizable gsavings can be realized when clamped-free conditions are enforced
and only the vibration frequency is held constant. This is of particular engineering
interest since these are the type structures commonly encountered in aircraft wing
design. Thus, if there are no constraints such as strength, a great savings can be
realized for cantilever structures. The results for pinned-pinned structures are

less impressive but are still significant and are seen to be of the order of 10%.
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TABLE 4.1

Control Constants —— Clamped-Free Beam Comparison
1:min =0.0

6l r0 qo r0/qo MR

.1 -1.90491 1.42031 -1.34119 0.95630

.3 -1.55647 1.14746 -1.35645 0. 83429

.5 ~1.16474 0.849191 -1.37159 0.66319

.1 -0.72974 0. 526270 ~-1,38663 0. 43963
0.9 -0. 254255 0.181853 -1.39813 0.16141

Estimated value of ro/qo = -1,37734
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TABLE 4.2

Control Constants — Pinned-Pinned Beam Comparison
tmin =0.10
61 ro po ro/po MR
0,1 4,27976 -0.510427 -8. 38467 0.98187
0.3 4, 87837 -0, 569647 -8.56385 0.94946
0.5 5.82908 -0.662153 -8, 80322 0.92419
0.7 7.65440 -0. 837900 -9.13522 0.,91138
0.9 13,6490 -1.42012 -9.61116 0.92600

T
Estimated value of 2 is: -1T2 = -9,86960
o
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5. MULTIPLE FREQUENCY CONSTRAINTS AND CONSTRAINTS ON
FREQUENCIES OTHER THAN THE FUNDAMENTAL

5.1 Introduction

This section will examine problems where constraints are placed on natural
frequencies other than the fundamental frequency. In addition, the question of
optimizing weight while holding two or more natural frequencies fixed simultaneously
will be considered. The results of these studies will provide valuable insight into
the question of the uniqueness of the solutions found in the preceding sections. In
addition, it will be shown that, in certain cases, once one sclution has been found
holding 2 single frequency constant, solutions involving other frequency constraints

may be constructed.

5,2 Multiple Frequency Constraints —— Torsional Vibration

A simple example of multiple frequency constraints can be illustrated
with a torsional vibration example. As shown in Chapter 3, the nondimensional

eigenvalue equilibrium equation for free torsional vibration can be written as:

8" =8/t (5.2.1a)
' ]
8 (ozmt + Bm)e (5.2, 1b)
with
8{0)=8(1)=0 (5.2.1c¢)

For the mth eigenvalue, @ and ﬁm are equal to

2
2m -1, .2 (5. 2. 2a)

y =08
aan 1( 2

2
Zm-L 2 h-1,2,3,....9 (5. 2. 2b)

B = (1-8))

Therefore, any thickness distribution which satisfies the eigenvalue equations
(5.2, 1a,b) with one or more values of @ and ﬁm prescribed by equations
(5.2,2a,b) is an admissible candidate in the search for a least weight configuration.

Let us fix the lowest two eigenvalues (given by m =1 and m = 2) and apply

optimization theory to find a least weight thickness distribution with the first two
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natural frequencies of torsional vibration equal to those of a given reference
structure. The nondimensional thickness distribution t(x) is constrained to

satisfy two eigenvalue equations given by

9'1= sl/t {5.2.3a)
s‘1 = —(ozlt +ﬁl)61 (5.2, 3b)
6} = 82/t (5.2.3¢)
s'2 = - (ozzt + 52)92 {5.2.3d)
with
01(0) = 62(0) = sl(l) = s2(1) =0 (5.2, 3e)
and
ki3 2 3 2
oz1=(-2—) 61; a2=(—§—) 61 (5.2.31f)
' 2 m 2
B, =) (1-6);B,=(3) (L-5) (5.2.3g)

Note that the differential equations above have the control variable t(x) in

common, as well as the structural mass ratio, 61. We wish to minimize the

merit function, J, given by

1
J i/ tdx (5.2. 4)
0

Therefore, the Hamiltonian for this problem may be expressed as:

S

1
H=t+A, () +A [-@t+B))6,]
1 1
(5.2.5)
2
A (— -
+ 9 (t ) +7\S [ (ozzt +62)92]
2 2
The multiplier equations are found to be:
- %: N =A@ t+) (5. 2. 62)
1 1 1
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oH

oA =oAL/t (5. 2. 6b)
q,\‘ L4 2
0;:::1 S1 01
515)
e = AT = A
50 p < (azt +]32) (5.2, 6¢)
2 2 2
8
; .éfh Moo=t (5.2, 6d)
2 2 2
with
7\m (0) = As {0) = AG (1) = 7\9 (1) = 0. The control equation is found to be:
"1 2 1 2
A A
- 9181 9252
Zo0=1- -a. A O - . (5.2, 6e)
ot tz 1 s1 1 tz 2 s2 2
or
o3
{‘:{K S, +A S)/(l—ak 6, ~a r 6 (5. 2. 6%)
01 1 92 2 1 Sl 1 2 52 2

These equations are consistent with the previous torsional vibration problem

which had only one frequency held fixed. In fact, this problem may be generalized to
"zt frequency constraints with the result that we have '"z'" sets of state variable
equations like (5.2.3a,b) with "z adjoint or multiplier equations similar to

equations (5. 2.6a,b) and a control equation of the form

5 z z
4= - A 2
£ {Z (xa‘si)]/ [1 T S_ei)] (5.2.7)
i=1 i i=1 i
The boundary conditions for this general problem would be
— - )\, = A, = i= . s ® Lo
6.(0) = 5,(1) Si(0) 91(1) 0 i=1,2,....z2 (5.2.8)

If z =2, it canbe shown, as in the case of the single frequency constraint,

that an algebraic relation exists between the state variables and the multipliers.
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6, (x) 0 -1 0 0 A, ()

1
s (X) 1 0 0 0 A (%)
! = A ®1 (5.2.8)
6, () 0 0 o0 -1 xez(x)
5,(%) 0 0 1 0 xsz(x)

A<O
Thus, the solution for the optimum thickness distribution involves solving the
state variable equations (5.2.3a,b,c,d) with the thickness given as a function
of these state variables. If we choose A = -1, then

¢ = <(Sl)2 + (82)2) / (1 +oz1(01)2 +a2(92)2) (5.2.9)

To obtain a numerical solution we must solve the state variable differential
equations with assumed initial conditions for sl(O), s2(0) and with the specified
initial conditions 6 1(0) = 62(0) = 0, The control constants sl(O) and s 2{0} then
must be perturbed, using a transition matrix, in a way such that a solution to the
state variable differential equations will be obtained for which {t(x) is given by

equation (5.2.9) and for which the boundary conditions at x =1 are given by:

6,(0) = 0,(0) = 0; 5, (1) = 5,(1) = 0

The transition matrix relation which specifies the relation between inifial and
final perturbations is given by

8s,(1)  8s;(1)
asl(O) o8 2(0)

= ,2.10a)
bs,(1)  Bs,(1) (5.2.102)

851(0) 8s2(0)

6s,(1) 85.(0)
{ } = [T,] { (5. 2. 10b)
85,(1) ] 55,(0)

8s,(1) 6s,(0)

632(1) 6s2(0)

or

The results of a numerical computation for the above case with & 1= 0.5 is

compared with a problem for which only the fundamental is held fixed. These
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resulie are shown in Figure 5.1. The state variable behavior for the "two fixed

[

requencies' problem is shown in Figure 5,2. These mode shapes are seen to be
similar to those which are found for the uniform reference case. A close look at
Figures 5.1 and 5, 2 together with equation (5. 2. 9) for t(x) reveals that the
thickness first decreases with x and then, because of SZ(X):o increases again
hefore finally falling to tmin' Thus, a "hump" in the thickness distribution is
formed because of the influence of the second frequency constraint.,
Once the numerical method has been programmed for the computer it is
gasy to numerically vary each of the parameters in the problem. An exiremely
interesting result is found by varying o 1 and ﬁla These parametfers are functions
of two other parameters, the nondimensional frequency and the structural mass

1 2
fourth, then the problem posed is one in which weight is minimized while holding

ratio, &.. If «. and BZ are held fixed and oy and {31 are reduced by one

the fundamental frequency equal to one half the fundamental frequency

2 1 2 1 2
{15 P 'mm(v —_ '%: -
©1 0w (2 2101 d} Zt-(wlol d) ) of the reference structure and holding the second
frequency equal to the second frequency of the reference structure. As we decrease
the values of ay and ﬁl, the influence on t(x) of the first set of state variables be-
comes less and less, In fact, with a, = {31 = 0, the numerical solution gives

g, {x) and gl(x} equal to zero, With o = 8. = Gl(x) = sl{x} = (, we no longer

1 1
have a-multiple constraint but instead have only a constraint involving the second
frequency. The mode shapes for 6 2(x) and SZ(X) in this problem are similar to
those shown in Figure 5.2, The thickness distribution for this case, shown in
Figure 5.3, has a minimum thickness constraint for an obvious reason. If only
the second frequency is held fixed, the nondimensional torque, 8, is zero attwo
places in the region 0 <x <1, For this reason, in the absence of thickness in-
equality constraints the thickness will also be zero because of equation (5. 2. 9).
Figure 5.3 shows two thickness distributions, one with only the fundamental
frequency held fixed and the other with only the second frequency held fixed. Both
have the same minimum thickness constraint, The mass ratios, M , are shown

for each problem and are seen to be identical to each other. This fact, when

first encountered, was believed to be coincidence. However, after a close study,

78



it was proven to be true for this and certain other classes of problems. A proof
for this will be given in Section 5.4. Notice too that there is a similarity between
the thickness distributions shown in Figure 5.3, and that the maximum value of

t(x) in each case is identical. This will also prove to be true for certain classes of
problems. Also, the ratio between the control constants in each case is equal to

unity.

5,(0)
5,(0)

=1 (5.2.11)

It will be shown later that, if the optimal thickness distribution has been found for a
problem in which only the fundamental frequency is held fixed, one may construct
the solution to a problem in which any single eigenvalue is held fixed. The saving in
weight for any single frequency constraint, having the same tmin and & 1° is
invariant, This is truly a surprising result and will be studied in Section 5. 4.

In the absence of a thickness inequality constraint, holding tﬁe second
frequency fixed while optimizing weight will cause the thickness to go to zerc
between x=90 and x=1 as well as at x=1. At the point where t= 0, the rota-
tion 6(x) is continuous but, its first derivative 6'(x) is discontinuous and takes a
value, in the limit as t(x) -0, of plus or minus one. Thus the optimum configura-
tion has a discontinuity in the mode shape where the reference structure has none.
In addition, the first elastic frequency of the optimal structure is equal to the second
elastic frequency of the reference structure.

A counter-example for a solution uniqueness proof can readily be seen
from the above discussion. Once we have obtained a 'two humped' solution of the
type shown in Figure 5.3 we can reduce the parameter a, until it becomes

numerically equal to « The resulting thickness distribution will have a vibra-

1
tional frequency numerically equal to the fundamental frequency of the reference
structure. However, the mode shape Bl(x) for the reference structure never

crosses the x axis while the thickness distribution in the counter-example has

an elastic mode shape Gl(x) which does cross the x axis, The mass ratio in
the counter-example is substantially less than the classic optimal distribution as

shown in Figure 5.3.
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If the problem statement is of the form: "Find a minimum weight thickness

distribution which has its lowest frequency identical to the lowest frequency of a

uniform reference structure, ' then the counter-example is not acceptable, The

counter—-example has a rigid body frequency and thus its second frequency is

identical to the lowest frequency of the reference structure. Thus the crucial
words are underlined above. If the words "a freguency" are substituted for those
first underlined then the problem solution is nonunique.

To summarize, it seems apparent from numerical results that the optimiza-
tion problem is unique only if one insists that the ordering of the constrained fre-
quencies in the optimum configuration is identical to that of the reference structure,
If we wish to hold the nth frequency fixed then the optimum structure will have its
nth freguency identical to the nth frequency of the reference structure. The
phenomenon in which the (n +1)st frequency for the optimal structure is equal to
the nth frequency in the reference structure has been termed by Ashley as
"freguency slippage'' and by the author as "'solution slippage.'' When frequency
slippage or solution slippage occurs, the solution obtained is said to be ''super-
optimal, " Guarding against superoptimal solutions is extremely important in
practical engineering work, particularly in such work as flutter analysis, since one
obtaing many flutter speeds or instability points. Although many instability points
oceur, only the lowest speed is of interest because it will be the first encountered
by the aircraft., If one is minimizing weight while holding this lowest flutter speed
or eigenvalue constant, he must guard against superoptimal solutions., These
solutions not only have a flutter speed equal to the lowest flutter speed of the
reference structure, but also have an even lower flutter speed which will be en-
countered in flight first, Thus, it is usually important that not only the eigen-
value itself be fixed during optimization but also the eigenvalue ordering must be
preserved. Thus, the superoptimal flutter solutions are not only light weight but
also less stable and do not satisfy the design requirement. An excellent example
of this phenomenon, for wing torsional divergence, is given by Armand and Vitte

{Ref. 8).
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5.3 Multiple Frequency Constraints —— Flexural Vibration and Combined Bending-

Torsional Vibration

The nondimensional equilibrium equations for free flexural (bending) vibra-

tion of a sandwich beam have been shown to be

w! = (5,3, 1a)
p' =q/t (5.3.1b)
0<sx=s1
q'=r (5. 3. 1c)
! = t + o &”
T (am ﬁm)w (5.3, 1d)

The boundary conditions are determined by the type of end restraints, as are the
values of @ and Bm. If "z'" of the frequencies are held fixed, while the

weight is minimized, the Hamiltonian becomes

H=t i}zjl[ w Py piqi/t 3T e O 5i)wi] (5.3.2)

The multiplier equations become

9H
_————= Al = = A
5= M, = =h, (0 +B) (5.3. 32)
1 1 1
9
...8_Ii=>u =2 (5. 3. 3b)
p1 pi i
_-gﬂ:)u =2/t (5.3.3¢)
O (5.3.3d)
or T, q.
1 1 1

i=1,2,3,....2
The multiplier variables will have 'z'" boundary conditions determined by the

"z state variable boundary conditions. The control equation can be written

o z Apiqi
—— — — }\' — ———— S 4
5t 0=1 +i§_ 1[ (ozi riwi) tz ] (6.3, 4a)
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or

Z Z
() = E 20 qg] / [1 + 3 @ Wi)] (5. 3. 4b)
i=1 71 i

i=1 i
An algebraic relation between the state variables and the adjoint or multiplier
variables can be shown to be similar to that given in Section 4.3.

No multiple frequency examples for flexural vibration have been attempted.
However, typical solutions for which the second elastic frequency was held fixed
are shown in Figures 5.4 and 5.5 for the cantilever beam and the pinned-pinned
sandwich beam. For comparison, the solutions for configurations having the same
values of 51 and tmin are shown which have only their fundamental frequencies held
fixed. The two solutions for the cantilever are seen to be dissimilar, whereas, the
solutions for the pinned-pinned beam are markedly similar in form. They both
have the same tmax and the same mass ratio and, in fact, they appear to be peri-
odic solutions with one solution having twice the period in x as the other.

The pinned-pinned beam solutions will be shown to be related to each other
just as the solutions for torsional vibration were, and the arguments against
uniqueness, unless the problem is correctly stated, will also apply. The solution
similarity also will be discussed in Section 5. 4.

Let us return to the beam on simple supports, for which a single frequency
is held fixed., We have previously shown that there is a relation between the state

variables and the multipliers given by:

% w(x) | 0 0 0 1 A ()
] p{x) [ = A 0 0 -1 0 p(x) 5.5.5)
% a(x) | 0 1 0 0 ?»q(x)
r(z) | -1 0 0 0 ML)
A similar relation using the independent variable = (1 - x) may be found to be
A
0o 0 o0 1 (s
A
51 B p(" (5.3.6)
0 1 0 0 xq(f,)
1 0 0 0 A(D)
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if, and only if, one also assumes that

t(x) = (1 - x) = (&) (5.3.7)
The relation in equation (5. 3.7) states that the thickness distribution is symmetric
about the coordinate x = 1/2,

Unlike the modal constant A, which was required to be positive if a solu-
tion was to exist, the constant B may take on both positive and negative values.
If B >0, itcan be shown that the state variables w(x) and q(x) are symmetric
about x =1/2 while p(x) and r(x) are antisymmetric about this point. If
B < 0, it can also be shown that w(x) and p(x) must be antisymmetric while
p(x) and r(x) are symmetric in order for a solution for t(x) to exist.

As a final example of multiple frequency constraints, let us formulate the
problem, without actually solving it, for a cantilever beam whose hending stiff-
ness and torsional stiffness are linear functions of the nondimensional thickness
parameter t(x). Tne nondimensional equilibrium equations for uncoupled bending

and torsion may be expressed as:

w' =D (5. 3. 8a)
p' =q/t (5.3. 8b)
q'=r 0<x =<1 (5.3. 8c)
r! = (ozbt + ﬁb)w (5.3.8d)
0! = s/t {5.3.8e)
s' = - (ot +B,)0 (5. 3. 8f)

where

4 2
= 6,(.597m) = 6.,(1/2)

% £
4 2
B, = (1-5)(.597Tm) B = (1-56)(r/2)

the boundary conditions for the problem are
w(0) = p(0) = 6(0) = q(1) = r(1) = s(1) = 0 (5.3.9)

The performance index, or merit function is,

1
J=f tdx (5.3.10)
8]
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80 that the Hamiltonian becomes:

H=t+ Awp + hpq/t + ?\qr + Kr(att +[3t)w

(5.3.11)
- A A (-
4 8s/i:+ o (oztt +ﬁt)9)
The multinlier equations become
oH
e K;V = - )tr(abt +[3b)W (5.3.12a)
9H
ez AT o A
o b w (5.3.12b)
oH
o A = 2 A
50 -y p/t (5.3.12¢)
8H
e e = AN = A
pus - q (5.3.12d)
9H
= A = A
5 =M o/t (5.8.12e)
9H
- AV = Y
50 p (oztt +[3t) S (5.3.12f)
while the boundary conditions are
%; Yy = }L 0 = }\, = A. = A fed A =
S (0 = A0 = A (0) = A (1) = A (1) = A1) = 0 (5.3.13)
The equations are coupled together by the control equation:
A g AS
oH p 6
e v [} o — A’ - A - ——
5t 0=1 > + oy 1‘W o, SG 5 (5.3.14a)
t t
or
2 ,
i = (A + A + A - A PIE N
t7(x) = ( pq GS)/(l AW -0, SB) (5. 3. 14b)

Therefore, the solution to this problem involves a 12th order nonlinear
system of differential equations with six boundary conditions specified at x =0
and six at x = 1. As in all the other cases studied involving conservative
vibration problems, there is an algebraic relation between the state variables

and the Lagrange multipliers,

84



w(x) 0 0 0 1 0 0 ?\W(x)
p(x) 0 ¢ -1 0 0 0 kp(x)
q(x) - A o 1 o o0 o0 o0 Aq(x) (5.3.15)
r(x) -1 0 o0 0 o0 o0 ?\r(x)
s(x) 0 0 0 0 0 1 KS(X)
6(x) 6o o o o0 -1 0 7\9(X)

where A > 0. Thus, the control equation becomes, with A =1,
2 2 2 2 2
E®) = (@ (%) +s X))/ +o, w (x) +o, 6 (x) (5.3.,16)

and one need only consider the set of coupled state variable equations and
boundary conditions to find a solution o the problem.

The numerical solution method for the problem is quite similar to those
shown previously. A linear relation between the changes in the control constants,
in this case q(0), r(0), s(0), and changes in the specified boundary conditions at
x =1, g(1), r(1), s(1) is postulated to be:

8q(1)  3q(1)  dq(1)

a(1) 5q(0)  or(0)  9s(1) b,
_ or(1) or(1) or(1l)
51r = s ol aseh or_ (5.3.17)
9s(1)  os(l)  Os(l)
s(1) 8q(0)  or(0)  9s(0) os,

Although this problem has not been programmed for the computer, be-
cause of budget considerations, it is felt that the solution is not difficult. This
problem and related problems of coupled bending and torsion are of interest in

solving wing bending-torsion flutter optimization problems.

5.4 Similarity Transformations in the Construction of Higher Eigenvalue Constraint

Solutions From a Known Optimal Solution

Several of the solutions found in Sections 5.2 and 5.3 appear to be similar.
This similarity will be shown to occur only when the structure has reference

eigenvalues which are integer multiples of one another. For a structural con-

figuration of this type, the following statement will be shown to be true:
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"For a given thickness constraint and value of & , the total possible

15
weight savings for a structure, when any single frequency is held fixed during

the optimal thickness distribution for any fixed frequency can be shown to be a

periodic extension of the distribution found holding the fundamental frequency

2

fized, Finally, the control constants and state variables for any fized frequency

=

differ from those obtained while holding the fundamental frequency constant by a
congtant multiplicative factor which is a function of the ratio between the higher
eigenvalue and the fundamental eigenvalue. "

Now let us prove this lengthy statement and demonstrate the ideas to which
it refers, Suppose that we know the solution to the optimization problem for the
heam on simple supports with its fundamental frequency held fixed., Such a

solution has been shown to satisfy the equations:

w) = p, (5.4.1a)
p) = ql/fa1 (5.4.1b)
sl
Ty o= logty + Bywy (5.4.1d)
2
q,(x)
to(x) = (5.4.1e)

= wg-—u
1 +oz1w1(x)

w,(0) = w (1) = g (0) = q,(1) (5.4.16)
() 2t . 4.1
b =t (5. 4. 1g)
- _ 4 _ 4
O0=x=1 oz1~«51w 331—(1—-61)17

We wigh to find a solution to a problem which has its nth frequency of free

vibration held fixed, The equations which specify this problem are:

W%%(X) = pn(x) (5.4. 2a)
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v _qﬁm
pn(X) - tn(x)

q;}(x} = rl'l(x) (5. 4. 2¢)
rl'l(x) = (ozntn(x) + ﬁn)wn(x) (5.4.2d)
qam
t () =—"7— (5. 4. 2e)
B 14a wiir)
nn
L=t (5, 4, 2f)
W (0)=w (1)=q (0)=q (1)=0 (5. 4. 2g)

0=x=s1 a = 61(n17)4 ﬁn =(1- 61)(n1T)4

Let us define a new dependent variable p =ZI:- and let the range of x be

extended

0<x=<n (5.4.32)
so that

0sp=1 (5. 4. 3b)
and

d 14 1. ~

& nd nt ) (5.4.4)

Now, assume that the solution given by equations (5.4. 1a,b,c,d,e,f,g), called
the fundamental solution for 0 =x <1, can be extended periodically for ¢ <x <n
so that wl(x)' and ql(x) will be equal to zero for x=0,1,2,3,....n. Since
tl(x) is a function of the squares of the state variables, it too will be periodic
and always positive.

Now, assume that

Wn(é) =Cw (x) 0s=x=n (5.4.5)

where C is, as yet, an undetermined constant. From equations (5.4.1a) and

(5.4.2a) we get the following
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1,

Cw)(x) = Cp,(®) = =W _(#) = Tp_(0) (5. 4. 62)

Thus, we see that, because of the definition in equation (5. 4. 5)

Cp,(x) = %pn(p) (5.4. 6b)

0 =x <n; 0<sp=s1l

Similarly, using the state variable equations for pl(x) and pn(x),

) qu(X) 1. 1 9 (P)

Cpj(x) = @ n—z p_(P) = ( )t(p) (5.4.7)

Asgsume, for the moment, that

£ x =t () (5.4.8)
then, from equation (5.5.7) we find that
2 _
n-Ca, (x) =q_(p) (5.4.9)

Using the state variable equations for ql(x) and qn(p) we find

=

1, n
n Cq (x) =n Cr (x) =3 n(p) = ) (5.4.10)
Thus, from equation (5. 4.10) we get
R
?ni@ﬁ =n Crl(x) (5.4.11)

Finalily, using relation (5.4.11) we get

3., .3
n"Cry(x) = n"Cla,t + p,)W, (5. 4.12)

1, 1
= grn(m = ;(antn + ﬁn)wn(P)

Thus, we are left with the relation

240,y ) + 8w (8) = (@t (P) +BIW,(p) (5.4.13)

For a pinned-pinned beam, a = n4a1
. (5. 4. 14)

while ;Sn =1 !31



Substituting these relations into equation (5. 4. 13) and remembering that W?{p} =

Cwl(x) we get

n4c(041t1(x) +Bw,(x) = n4c(Oél'Cn(P) B W, (x) (5.4.15)

We have postulated that tl(x) = tn(p) and, if this is true, equation (5.4.15) is an
identity. Let us now calculate tﬁ(p) in terms of the fundamental solution. From

the above identities

2 4.2 2
9 9 () n"C q,(x)
t (p)=——"—5—= (5.4.18)
o 1+a W2( y 1 +n4oz Czwz X)
n"n'P 1 ¥yl
Thus, if:
2 1 1
c'=- C=3 (5. 4.17)
n n

we will have the relation
2 2
t (p) =t (®)
0<p=<1 0sx=<n
Now, exactly what has this long derivation shown? If we have the solu-

tion to the fundamental problem and if this solution is periodic from x =0 to n,

where n is an integer, then the solution

w_(x) = (%)Wl(nX) (5.4.18a)
n
1

P (%) = (D)p,(nx) (5.4. 18b)

q, (%) = q; (nx)

r (x) = (n)T,(nX) (5.4.18d)
2
2 dy () 2
= —— = .4.18e)
t () 5 £ (nx) (5.4.18e)

1 +011W1(nx)
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{5 >
“%Jﬁi@ tmin

is a solution to the weight optimization problem where the nth natural frequency
ig held fixed, Since the solution is periodic, the thickness will take on values of

1
&m at x=0, x= e 1, and all the boundary conditions will be satisfied,
?

%:ﬁ

because the modal deflection shapes of the optimal distribution will have
the same number of crossing points on the x-axis, we can assure ourselves that

here will not be "frequency slippage. " This then is an optimal solution and not a
superoptimal solution.

The above results were, in fact, tested numerically and found to be correct,

o

For instance, the control constants for the problem with only the third elastic

freguency held fixed were found to be:

Pag ™ Pg 3 3
Tog ™ rg(% = Brw = 3r1(0)

The key to the above demonstration was the fact that w 1(X) and ql(x)
were periodic such that they took on values of zero at x=0,1,2,3,....n. This
will only happen if the ratio between the eigenvalues are integer multiples of one
another. For this reason, the above statements do not hold for the cantilever beam

problem,

The invariance of the mass ratio M can be seen from the following:

1
J =
3 f t_(x)ax (5. 4. 192)
© .
Changing variables gives
1
.= "“fn t, (nx)d(nx) (5. 4.19b)
B 0
Because of periodicity, of period unity, of tl(nx), we find

1

(e

ot

tl(x)dx> (5.4.19¢)
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Thus,

= (5.4,1
J =d (5. 4. 19d)

If we have the solution to the fundamental torsional vibration weight
optimization problem, then, for the nth free vibration freguency held fixed,

the state variables are given by

1
e [ 209
Bn(x) mel(mx) (5.4.20a)
sn(x) = sl(mx) (5.4.20b)
tn(x) = tl(mx) 0=sx=1 (5.4.20c)
(m=2n - 1) (5.4.20d)

where the state variables 61 and Sl are the fundamental solutions.

5.5 Summary

This section has discussed a group of solutions involving multiple eigenvalue
constraints and constraints on single eigenvalues other than the lowest. These
solutions and their behavior are of more than passing academic interest. They
show, for instance, that, using numerical techniques which are available, the
solution may not be unique. Thus, if an estimate of control constants is in-
correctly chosen, one might obtain a superoptimal solution. In practical
engineering work this could be dangerous where the eigenvalues involve instability
parameters.

An observation which will be of great importance for the panel flutier
optimization problem in Chapter 6 is that the shape of the optimal thickness distribu-
tion for a particular fixed frequency is similar to that obtained by substituting the
reference structure mode shapes into the control equation. For instance, be-
cause the modal deflection and bending moment go to zero at x = 1/2 for the
second elastic frequency for the reference structure, one expects similar be~
havior for the optimal structure. Thus, by examining the control equation, one

can predict the qualitative behavior of the thickness distribution. In all cases

studied in this thesis, the reference mode shapes always gave an accurate
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gualitative indication of the thickness distribution behavior. Thus, if one has a
pinned-pinned beam to be optimized, an examination of the mode shapes for w(x)
and g(x) for the first frequency should indicate that the thickness distribution he
will finally obtain will have only one maximum and that it will occur at x = 1/2,
The next section will examine a problem which involves a structure with
nonconservative aerodynamic loading. This solution evaded researchers for
several years because little was known about the basic behavior of solutions such
a8 those shown in this section. Finally, the experience with problems such as

these provided the groundwork necessary to solve this difficult problem.
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PRECEDING PAGE BLANK NOT FILMED

6. OPTIMIZATION OF AN INITIALLY FLAT PANEL IN
HIGH MACH NUMBER SUPERSONIC FLOW WITH ITS
AERODYNAMIC FLUTTER PARAMETER HELD CONSTANT

6.1 Introduction

This chapter will discuss panel flutter optimization, the search for a
least-weight thickness distribution for an initially flat plate~-beam with the con-
straint that its critical flutter parameter in supersonic flow is held constant during
the optimization. Only the simplest case of panel flutter will be discussed, that
is, one for which the following assumptions are made.

(a) The panel is initially flat,

(b) There are no inplane stresses.

(¢} The panel rests on simple supports.

(d) The aerodynamic forces act on only one side of the panel.

(e) The Mach number is sufficiently high so that quasi-steady linearized.

supersonic flow may be used (M > 1.6).

(f) The panel is of infinite dimension in a direction perpendicular to the

free stream direction (spanwise), i.e. the problem is one-dimensional.

(g) The panel is of sandwich construction with thin face sheets top and

bottom and a nonstructural core in between.

Figure 6.1 shows the structural configuration and nomenclature for this
problem. The general problem of panel flutter is discussed fully in Ref., 15,

The following section will discuss numerical techniques used to determine
the instability parameter for this type of problem. In addition, other sections
will illustrate methods for obtaining initial estimates of the thickness distribution
before finally using a modified transition matrix procedure to solve the neces-
sary optimization equations. The end result of this study will be a thickness

distribution for a sandwich panel which has a least total weight.

6.2 The Determination of the Critical Aerodynamic Parameter For Panel Flutter

Before beginning the discussion of the panel flutter optimization problem,

it would be well to review the method of solution for simple panel flutter problems.
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For the panel configuration shown in Figure 6.1, the governing nondimensional
differential equation of equilibrium with quasi~steady linearized supersonic aerc-

dynamics and simple harmonic motion can be written as

2 2 2
d  D{x) , dw dw M -2 a_, .
— W'y +R__ =5 + A ==+ A ( W) (-lw)w(x)
dxz DO xxdx2 odx 0 M2 -1 U

(6.2.1)
2
+ E%-}E)l(aéw w(x) =0
o
Equation (6. 2. 1) is written using the variables

< /

X = xA/8a
w{x) =YVJ§—Z

WK, ™) = W(K)e

EDO = reference plate stiffness (constant thickness panel)

/‘x@ = zqoa?’ /Do M2 -1 (aerodynamic parameter)

g = dynamic pressure

%
¢

1f the assumptions listed in Section 6.1 are to be applied, then we must

have
R =20
XX
ﬁx_Tgx?__
5 =TT = (%)
0 o

For a panel on simple supports, the boundary conditions will be
w(0) = w(l) = 0
tw'(0) = tw'(1) = 0
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Equation (6. 2.1) is a complex equation because of the aerodynamic damping term
(bracketed in equation (6.2.1)), Studies have shown (Ref. 15) that this term may be
neglected without great loss of accuracy in a great number of cases., Therefore,
this study will neglect this damping term in order to simplify the calculations.

With aerodynamic damping neglected, equation (6.2.1) can be written as

4
LA | — ¢ }
(tw™" + oW (zow) (61t+62)w(x) 0 (6.2.2)
where
m(x)
= 6 2 Do
- 5,t+5, (6.2.3a)
o
4
moa 2
(z,;m = D, o (6.2.3b)

where @ is the fundamental frequency of free vibration of the panel. Thus,

the variable z0 is seen to be

w
zZ = I
o] w

o]

it KO =0 and zZ, = 1, equation (6. 2.2) reduces to the nondimensional equa-
tion for free flexural vibration in the fundamental mode that we encountered in
Chapter 4. If KO =0 and z, = 2, the constraint equation corresponds to the egua~
tion for free vibration with the second frequency fixed.

With 7to # 0, equation (6. 2.2) belongs to a class of equations termed
"non-self-adjoint, ' These equations arise in nonconservative elastic systems,
that is, systems where the work done during any single cycle of oscillation is a
function of the path taken during that cycle. Free vibration systems, in the

absence of damping, are termed conservative because the energy of the system is
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conserved over any cycle of oscillation. A characteristic of nonconservative

(47}

ystems such as the panel, as discussed by Bolotin (Ref, 17), is that, as the

parameter causing the system to be nonconservative is increased, the vibration

frequencies which are real — are changed in such a way that they approach

each other in pairs. At a certain critical point, if there is no damping, one set

of real frequencies will "merge" or become equal to each other., If the parameter is
raiged further, these merged frequencies no longer remain real, but become complex

conjugates of one another, Because the motion is assumed to be of the form.

wix,T) = W(x)ein
and if there is no system damping present,if w = o T if, then the behavior of
wix;) will be divergent and thus unstable. If the nonconservative parameter is
increased further, additional pairs of fregquencies will merge. In physical problems,
the nonconservative parameter is often equal to an airspeed or a follower load,
therefore, we are usually only interested in the lowest value of the parameter which
causes the system to become unstable,

For the panel flutter problem, it is expected that, for a given value of ?\0,

0sA s A%
o o

{ 2\«;;% = critical value of 7\0 for instability)

the frequencies in equation (6. 2.2) are real and distinct — in this case zi is

real, For values of AO > ?\g, no solution to equation (6. 2. 2) with the prescribed
boundary conditions is possible —— unless the equation and the variables are assumed
complex, i.8.

w(x) = wr(x) + iwi(x)

One method of solution, given a thickness distribution, is to fix 7\0 and
solve for Z - Since zg is a free vibration frequency parameter it is multivalued.
1f several values of ?to are chosen, a graph can be drawn showing the behavior of
?\O VE. Z and eventually a point will be found where zil) = zgz), where zf)n)
refers to the nth value of the frequency parameter for a fixed Koa If, on the
other hand, we choose z, and choose it to be a real number, then we may solve

for the corresponding 7\0 and construct a graph of 'Ko V8. Z. This latter
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technique has the advantage that, for a fixed value of Zs the parameter ?'km will
be single valued. Also, since we are concerned only with the merging of real fre-
guencies, the merging point can be seen to be the point at which ho reaches iis
maximum value for real values of Z- It can further be shown that Tdfz% = 0 at this
merging point. A graph such as that described above is shown in Figure 6. 2.
There are many ways to solve the eigenvalue problem posed in equation
(6.2.2), but one numerical method which will give an exact solution (exact in the
numerical sense) was used by the author in this study. This method uses the unit
solutions to equation (6. 2.2) to generate a determinant which must be forced to zero

if boundary conditions are to be met. The solution technique begins by defining

auxiliary variables as:

p=w' (59 2.48)
q=tw" (6. 2. 4b)
r = (tw'")’ (8. 2. 4¢)

Equation (6. 2.2) then can be written as four simultaneous, first-order, linear

differential equations,

w' =p (6.2.5a)
p' =q/t (6.2.5b)
q' =T (6.2.5¢)
r' = (ot +B)w - Kop (6.2, 5d)
0=x=1

where
o= (zo'rr)461

B=(z,m"(1-6,)
and
w(0) = w(1) = q(0) = q(1) = 0
Assume, for the moment, that t(x) is known analytically; equations (6.2.5a,b, c,d)
are then linear functions of the boundary conditions p(0) = P, and r(0) = r
since w(0) = q(0) = 0. The solutions for w(x) and q(x) may be symbolically

written, by linear superposition, as
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wix) = p@wp(x) + rowr(x) (6.2.62a)
q{x) = poqp(X) +roa.(x) (6. 2. 6b)

The functions wp(x), Wr(X), qp(x), qr(x) are called unit solutions for the following
reason., The function Wp(X) is the solution for w{x) in equation (6.2.52a) with
initial conditions
p(0) = 1; W(0) = q(0) = r(0) = 0
while qp(x} is equal to g(x) in equation (6. 2.5¢) for the same boundary conditions,
The functions Wr(X) and qr(x) are similarly formed using the boundary conditions
r(0) = 1; w(0) = p(0) = q(0) = 0
The solutions (6. 2. 6a,b) must satisfy the boundary conditions w(l) =q{1)= 0 or
§ ng = { 0} - | WD) gpo } (6.2.7)
dam 0 SRORNCRON I N
For a nontrivial solution, P, # 0, r, # 0, the determinant of the matrix in
equation (6.2.7) must be zero., Thus
% W w (1) oo, &

g 1,
M 4

3

A.z)=0 (6.2.8)

A graph of ?\0 Vs, .z can easily be constructed in the following manner:
{a) For a given function t(x) and fixed parameters zZ and & ;> 8uess
a value of A,
o
(b) Obtain —— numerically — the unit solution values necessary to
construct the determinant in equation (6. 2, 8) —— in general
£ A = f(A .
(6), 6,5 A s 2 ) = H2 ) # 0
(c) Perturb 7\0 in such a way as to reduce the value of f(ho).
(d) Begin again at step (b) and iterate on the value ?\0 until f(KO) is close
enough to zero that }\o may be considered exact. This gives a
(KO, zO) point for the configuration.

Note that since the determinant is a function f(t(x), 6 AO, zo), we could choose

19
any one of the parameters to force the unit solution determinant to zero.
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Figure 6.2 shows two typical plots of ?xo vs. zo. The solid curve is that for
a uniform thickness panel (t(x) = 1) while the broken line is a plot showing the ?x@
vS. Z_ behavior of an optimum panel {o be shown later. Note that the frequency
merging occurs at a point where a'z% = 0, The classic paper by Hedgepeth (Ref. 16)
shows, for a uniform thickness panel, that Aé‘ = 343.2. This present study has

found ?»:)“ = 343.2 and zé = 1,82,

6.3 Constraining a Non~Uniform Panel to Have its Flutter Parameter Equal to

that of a Uniform Thickness Reference Panel

The formulation of the constraints for the panel flutter optimization problem
is different than that encountered in the fixed frequency problems discussed in
previous sections. One of the necessary conditions for the flutter problem is that
the thickness distribution satisfy equations (6. 2.5a,b,c,d) with the associated
boundary conditions and with Ao = 343.2. The constraint equation set is a two
parameter eigenvalue problem but z, is not explicitly required to assume any fixed
value. The satisfaction of equations (6.2.5a,b,¢c,d) is, however, only a necessary

condition and is not sufficient to specify the flutter problem constraints.

If we set 7\0 = 343.2 and let zO take on a set of values near zg then,
using equations (6.2.5a,b,c,d) as the constraint conditions, we can solve a series
of optimization problems each having 7\0 = 343. 2 but with different values of Z .
The distributions found in each of these optimization problems will all have one
characteristic in common. If we construct the (Ay,2z,) curves for each of them,
they will have flutter parameters —— places where EZ—Z = 0. — which are egual
to or greater than 7@; = 343.2. This must occur because of the generzal shape of
the (ho,zo) curve. By picking )\o = 343.2 we thus ensure the fact that a con-
figuration has a point on its (7\0, zo) curve where 7\0 is at least 343.2. Each of
these optimal solutions will have a mass ratio associated with it. Since ?&@ = 343, 2
is a common characteristic of each solution, the mass ratio, for a given tmin
and 61, is a function only of Z e

If the problem is to have a solution, there will be a well defined minirmum

value of MR for a certain Zo =z

(A

opt’ This configuration for (Ko,zoptjs will have a

+Z ) curve tangent to the line A = 343.,2, Thus, the free parameter z
o° opt 0 o
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in the constraint equations is adjusted to find an optimum solution which has

A@ = 343,2 and 35-3 = 0. This then is the true optimum solution. If should be
noted that this procedure only applies for a system with no damping, that is, one
which has merging frequencies.

To summarize, the optimum thickness distribution satisfies the constraint
equations (6. 2, 5a, b, ¢, d) with )\0 = 343.2 and with z, determined such that the/
resulting a{ho, zo} graph is tangent to the line KO = 343.2. This parameter Zo
must be determined through a series of suboptimal problems which have
X; 2343.2, until one value Zopt is found for which the mass ratio is a minimum.
Any further increase or decrease in Z, will result in configurations with larger

mass ratios and with 7\; > 343, 2.

8,4 Coverning Equations for Panel Flutter Optimization

Since our panel model has infinite span, the term '"minimum weight' has
no meaning, If, however, we choose to minimize the weight of a strip of panel

of unit spanwise width, the merit function may be written as:
-1
J ij tdx (6.4.1)
)

With equations (6.2.5a,b,c,d) as the constraint equations, the Hamiltonian be-
COMes

&: A, A, A, 7\. -‘)\' e Lo
H=1t+ Pt pq/t+ qr+r[(ozt+ﬁ)w Op] (6.4.2)

The multiplier equations are:

oH .

P g :.—7\, L] @
aw W r(at+ﬁ) (8.4.32)
8

JE 2o +{xx } (6. 4. 3b)
5p P W or
¥

-z A = At 6.4, 3¢
g - g p/ ( )
oH

o o = AT = e A 6.4:,3d
or r o] ( )
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The control equation is

OH 2

— == - A - oA SO =)

5= 0=1 pq/t + ok w (6.4. 3e)
or

2

t=Aﬁya+a%w) (6. 4.3%)

with the boundary conditions

A (0)= A (1) =A_(0) = A_(1) = 0
P P t t (6.4.3g)
w(0) = w(1) = q(0) = (1) = 0

Except for the term in brackets in equation (6. 4. 3b), these adjoint equations are
identical to those seen previously in fixed frequency optimization probiems. These
equations were first presented by Ashley and McIntosh (Ref. 7) and are, by now,
well-known., While the equations are well-known, their solution is not well-
known and has been the subject of a great deal of discussion since 1968. Fol-
lowing a suggestion by Turner, Armand (Ref. 8) has shown that, with the above
necessary conditions for an extremum, there will be at least one solution to the
problem in which t(x) is symmetric, that is

tx) = (1 - %) (6.4, 4)
It follows that, if the solution is unique, then this type of solution is the solution.
At this time, no rigorous mathematical proof exists which shows that there is or is
not a unique solution. Also, since optimal control theory only guarantees an

extremum, this solution may lead to a maximum or a minimum. If t(x)= (1 ~ x),

a relation between the state variables and the multipliers exists and is found to be

w(x) 0 0 0 1 KW(I - X)
p{x) B 0 0 1 0 Ap(l - X) (6. 4. 5)
(%) 0 1 0 0 Aq(l - X)
T{x) 1 0 0 —?\o )\r(l - X)

where B is a modal constant, which apparently may be positive or negative., It
may be noted that, if 7\0 = 0, our constraint equations reduce to the beam free
vibration equations., Equation (6.4.5) is identical to equation (5.4, 6) if 7%'0 = 0,

It will be remembered that, for 7\0 =0, and B >0, the state variables w(x)
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and g{x) never cross the x-axis and the solution corresponds to the fixed funda-
mental frequency problem. If B< 0 and 7\0 =0, both w(x) and ¢(x) change
signs when they cross the axis and the solution corresponds to the fixed second
frequency problem. This observation will be of great importance when solving
the problem later on.

Using equation (6.4.5) we can write the control equation as

%Z{X} = t2(1 - %) = Bq(x)g(l - x)/(1 +aBwx)w(l - X)) (6. 4. 6)
Note that the aerodynamic parameter does not enter explicitly into this expres-
sion for €{x), With ?\0 # 0, no reduction in the number of dependent variables can
be made since we can make no further assumption about the behavior of w(x)
and w(l -x) (for 7\0 =0, w{x) = w(l - x) or w(x)=-w(l - x)). However, since
% is the independent variable in the problem, we see that, as x goes from 1 to
1/2, p = (1 -x) goes from 0 to 1/2 therefore we may reduce the integration
interval on any numerical scheme by defining a new variable 0 <p =1/2 where
p=1-X,

The state variable equations are

wi{x) = p{x) (6.4.7a)
p'(x) = g(x)/t (6.4.7b)
ot {x) = r(x) (6.4.7¢c)
r'(x) = (ot + Byw(x) - Kop(x} (6.4.7d)
0=x=1

with

w(0) = w(l) = q(0) = q(1)

Let
W= w(l - x)
p=p(l -x)
d=q(l -x)
F=r{l-x)
and

(=8 _at)
dp d(1l - x)
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{ )'”—‘%X'l=§ug§-= gi———)- (6. 4. 8a)

dp T dp

Therefore, from equations (6.4.7a,b,c,d) we get

g

=-7
p=-q/t (6. 4. 8b)
g=-T (6.4.8¢)
T=-(at+ B)W +A b (6.4.8d)
0=p=1

W(0) = W(1) = g(0) = g(1) = 0
with

Bag

t=.{;= T———
1 +oww

(6. 4. 8¢)

Note that Ww(1l) = w(0), etc. and that, at x = 1/2, W(1/2) = w(1/2); p(1/2) = p(1/2);
§(1/2) = q(1/2); T(1/2) = £(1/2). (6.4.9)
As the problem now is written, we have eight dependent variables with four
independent boundary conditions.
w(0) = w(0) = §(0) = q(0) = 0
or
w(l) =w(1) =q(1)=q(1)=0
and four undetermined control constants
p(0); P(0); £(0); T(0)
or
p(1); p(1); r(1); T(1)
From continuity of the state variables, we must have the relations in eguation
(6.4.9) hold at x = 1/2. The transition matrix, to be discussed later, will then
involve integrating equations (6.4.7a,b,c,d) and (6.4.8a,b,c,d) with equation
(6.4.8¢e) and the boundary conditions over 0 <x<1/2 and 0 <p =1/2 and
forcing continuity at x = 1/2. This transition matrix will be a 4 x 4 matrix.

Although the observation that t =t has not reduced the number of variables,
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it will enable us to reduce the range of integration.

6.5 An Estimation Technique —— Sine Series Approximation for t(x)

Before beginning the discussion of the transition matrix solution, it is
necessary to discuss technigues for the estimation of our unknown parameters,
In previous sections this estimation discussion centered on the estimation of the
control constants. In this section, for reasons which will later become apparent,
the discussion will dwell on the estimation or approximation of the optimal
thickness distribution, &(x).

The panel flutter problem was at first thought to be a mere extension of
the previously solved beam problems. However, the eigenvalues in the problem,
?%fg = 343, 2, {Zgﬂ‘)4 = 1100 are far larger than anything that had been previously
encountered, Because of the size of }\; and zg, the constraint equations are
extremely sensitive to initial conditions. In addition,the paper by Turner
{Ref. 12) presented a finite element solution which led the author to believe that the
eventual solution for t(x) would be similar in form to that found holding the
fundamental frequency constant. In fact, several flutter analyses were done on
these configurations and it was found that beams which were optimized while
holding the fundamental frequency constant had flutter parameters of from 325
to 335, depending on the values of 61 and tmin' In general, for values of 61
close to 1, the flutter parameter 7\3‘ was only three percent lower than that for the
uniform thickness reference case. Initial assaults on the problem using the state
variable equations and the multiplier equations and with no assumptions as to the
form of t(x) ended in failure for what was then a curious reason, No set of
estimated control constants could be found which would keep the thickness distribu-
tion from equaling zero in the range 0 =x =1. For any set of estimated control
constants, the resulting thickness distribution given then by equation (6. 4. 3f) would
first rise to a maximum value near x = ,25, then fall sharply in the vicinity of
% = ,45, Even with a minimum thickness constraint, the integration method
would diverge because numbers would soon go out of range. This strange behavior
led to the adoption of the assumption that t(x) = (1 ~ x) and a reformulation of

the problem as it is presented in Section 6. 4.
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After a great many trials and failures, the thought came fo mind that perhaps
Turner's results, although obviously correct for the level of complexity that he
chose, were inconclusive. Perhaps the optimum panel did have some strange,
unanticipated shape. If so, the task was to find this shape. Let us examine the
expression for the thickness as given in equation (6. 4. 8e)

t=?=-f—§§]§w—w (6. 4. 8e)

In the absence of minimum thickness constraints, the optimum thickness distribu-
tion must be zero at x =0 and at x = 1. This occurs because q(0) = g(1) = 0,

In the language of variational calculus, an admissible trial function for ¢(x) must
be such that t(0) = t(1) = 0. In addition, we have chosen t(x)=t(1 - x). An

obvious choice for a valid approximation for t(x) is seen to be

N
) =tl-x= Y t sinmm) (6.5.1)
m=1
(m odd)
From our definition of the merit function, this expression for t(x) yields
1 N 9
J =f tdx = Z =t (6.5. 2}
o] m=1
(m odd)
In addition, t(x) is also required to satisfy the constraint equations
w' =p (6.5.3a)
p' =aq/t (6.5.3b)
q'=r {6.5.3¢)
r' = (et + B)yW - ?xop (6.5.3d)
with
w(0) = w(1) = g(0) = q(1) _ (6.5. 3e)

Section 6, 2 described a numerical method for determining parameters such that
the above eigenvalue equations are satisfied. This method involves forcing to

zero a determinant, given symbolically by
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—— A -
i{%ﬂstgs th 619 o’ ZO) (6.5.4)

Since the reference panel flutters at 7\0 =343.2 and z, = 1,82 let us set the

values of (?\O,zo) in the equation (6.5.3d) to these values., For a given value of
5 1 the eigenvalue determinant is now a function only of (tl’ t3, oo
get N - 1 of these thickness parameter values equal to specific numbers,

. .tN). If we

then the remaining value ti can be determined by choosing it in such a way that

£ Y =
i(t,) =0

With this logic, a preliminary study was done using as an approximation

i(x) = .01 +tlsin ™™ +t3sin 3T (6.5.5)

The constant .01 in equation (6.5.5) is added to ensure that equation (6. 5. 3b)

is not numerically indeterminate. Thus equation (6. 5.4) defines a function which

is "almost admissible. " For any combination of values of tl and t3, the mass
ratio for a strip of panel of unit spanwise width is given by:
2t1 2t3
MR = 51(. 01 +— +—§'T-;) +(1 - 61) (6,5.6)

For the analysis, the values

A = 343.2
0

s 1,82

G

§ = .7
°1

were used. A value t1 was selected; then the value of t

numerically forcing the determinant

i{“ﬁg) =0

g Was determined by

After tB had been determined, the mass ratio was calculated with equation
(6.5.6). This mass ratio is plotted as a function of 1:1 in Figure 6.3 and as a
function of t3 in Figure 6.4. Four typical thickness distributions found using
this method are shown in Figure 6. 5. Two significant conclusions can be drawn
from these figures. The first conclusion can be drawn from the behavior of

in Figures 6.3 and 6.4 where it is seen that mass ratio (and thus J) has a very
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smooth behavior and a well defined minimum. This well-behaved nature of

led to the belief that the exact solution would be similarly well behaved and that
an absolute minimum would be found without encountering local minima in the
process. A second and less favorable conclusion can be drawn from Figure 6.5.
Although the mass ratio changes only slightly in the four cases shown, the shapes
of the distributions change radically. From this, it was concluded that the problem
might be slow to converge when an exact solution was attempted. The approxima-
tion to the minimum weight distribution with two terms of a sine series shows
very pronounced peaks in the vicinity of x=.2 and x=.8., This behavior was
compared to the results of initial attempts at the transition matrix procedure
which had failed near x =.5. Perhaps the exact optimal thickness distribution
has two maxima, instead of one maximum at x = 1/27?

Figure 6.6 shows a plot of the mode shapes (the amplitude is unspecified
here) for q(x) and w(x) and also the products q(x)q(1 - x) and w(x)w(l ~ x)
obtained from the analysis of the minimum weight "'sine panel' found in the above
study. Although the signs of w(x) and q(x) may be plus or minus times those
shown in Figure 6.6, the signs of the products w(x)w(l - x} and q(x)g(l - x)
are invariant because they are products. Since q(x)q(l - x) is the numerator
in the expression for t(x) and because this product is negative while {(x) must
be positive, one may tentatively conclude that, because of the behavior of the mode
shapes in the thickness approximation, the arbitrary constant B in equation (6. 4. 8¢}
should be negative for a meaningful solution to exist.

One may see that, with B < 0, the state variable q(x) will have to change
signs somewhere over the range 0 <x =1, If B < 0 and if the exact optimum
value of q(x) is to be similar to the approximation shown in Figure 6.6, this
sign change can only occur at x = 1/2 because of the symmetry of t(x). If the
product q(x)g(l - x) is positive with B < 0 then there must be a constraint
£(x) ztmin’ otherwise a negative thickness would result. Therefore, all the
evidence accumulated from the "sine panel' study pointed to a two-peaked panel
as the final solution. With this evidence in mind, the study again returned to the

transition matrix procedure which had earlier been abandoned.
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6,6 Transition Matrix Solutions for the Optimum Panel With its Flutter Speed Fixed

Section 6.4 showed that a necessary condition for a thickness distribution

for minimum weight is that the following differential equations are satisfied:

w'(x) = p(x) {6.6.1a)
D' (x) = q(x)/t (6.6.1b)
q'{x) = r{x) (6.6.1c)
' {x) = (ot + B)W(X) - /\op(x) (6.6, 1d)
0sx=1/2

wip) = - Blp) (6. 6. 1e)
B(p) = -Tqp)/t (6.6.1f)
dlp) = - Flp) (6.6. 1g)
T(p) = - (et + BW(P) +A_DBle) (6.6.1h)
0<p=1/2

t(x) = t(p) = —2UK)A(P) (6.6. 1i)

1 +aBw(x)W(p)
with boundary conditions

W(0) = w(0) = §(0) = q(0) = 0 (6. 6. 1j)
and the continuity condition

Ut

B

We suspect, from Section 6,5, that B = ~1, and therefore will use this value

o

(6. 6. 1K)

I

p
q
loat x=p=1/2

in all numerical calculations. The problem above is a form of two-point
boundary value problem much like that encountered previously, with the ranges
of » and p both being 0 to 1/2. Equation set (6.6.1) can be integrated
simultaneously, using estimates of the control constants p(0), P(0), T(0), r(0),
to generate trial values of t(x), which has been forced to be symmetric. In
general, for any numerical computation the values of the respective state
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variables at x = 1/2 will not be equal, that is, equation (6. 6. 1k) will not be
satisfied, Our solution technique will involve perturbing P> ro, 50, '3750 in such
a way as to force equation (6. 6. 1k) to be approximately satisfied.

We begin by defining the quantities

AW w(1/2) w(1/2)
ap( _ |p/2){ _ }p(1/2) ) (6.6.2)
Aq q(1/2) q(1/2)
AT r(1/2) T(1/2)

For any numerical integration cycle, the components of the column matrix in
equation (6. 6.2) will have numerical values. The object of the iteration is to

reduce these A( ) quantities to zero, We postulate a first order relation

[
AW po
5
5] AP 1§ [T,,] % (6.6.3)
-
Aq P,
AT oF
(o]

where each element Tij gives the change in one of these same quantities for
a unit perturbation in one of the control constants, with all other control constant
perturbations set zero. The elements of the matrix Tij are obtainable from the

perturbation equations of the system. These perturbation equations are

(dw)' = &p (6.6.42)
(5p)' = bq/t - (q/tz)ét (6.6.4D)
(69)' = or (6.6.4¢)
(81)" = (ot + B)(dW) - A _(bp) +awbt (6.6.4d)
(dW)' = -6p (6.6.4€)
(57)" = - 951 +-§§(6t) (6.6.41)
t
(8q)' = - 61 (6.6.4¢)
(5T)' = - (at +B)(EW) + X _(6D) - aW(5t) (6. 6.4h)
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5 = 5T __]i{ 96q +gbq  aqq(wow +wbw) } (6.6. 41)

2t 11 +aBww a +an"m7)2

Element T 1 will be the change in Aw for a unit perturbation in po(fipO =1)

1
with all other initial perturbations set equal to zero. The change in Aw is simply
& =

p, =1

S(Aw) = dw(1/2) - 6w(1/2) 5W0 _ 6qo Cbr =W

The other transition matrix elements have a similar obvious definition. The
perturbation equations may be integrated, with four different sets of initial perturba-
tion boundary conditions, simultaneously with equation set (6. 6. 1) for a given set
of estimated control constants Py T s 50, '1_'0.

Several interesting observations should be noted, By assuming the thick-
ness symmetric about x = 1/2, the integration interval has been reduced by one-
half. But, on the other hand, the number of dependent variables has not been
reduced, having remained at eight. The transition matrix for this problem is
4 by 4 and is thus four times as large as any previously encountered. Thus, the
simple inclusion of the airload parameter 7»0 into the beam problem has greatly
changed the complexity of the problem.

Our previous discussion and analysis has led us to believe that the constant
B is negative. We must not however, disallow the fact that B may be positive.
For this reason, two solutions were attempted, one with B =1 and the other
with B = -1, The first solution attempts with 7\0 = 343.2 and zZ = 1.82 were
failures, no matter what value of B was chosen, because the errors, Aw, etc.,
were extremely large for the estimated values of the control constants. Once
again, the transition matrix method failed to be an effective approach.

Previous experience with beam vibration problems and the torsional
vibration problem has shown that the control constants will be continuous functions
of the problem parameters such as 61 and tmin' It was safe to assume that the

control constants for the flutter problem should be continuous functions of the
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problem parameters 7\0 and Z e This, in fact, is the case and was finally the
approach used to achieve the final answer, If B=-1 and 7\0 = 0, the problem
reduces to one in which we minimize the weight of a strip of panel of unit width
while holding the second frequency of free vibration constant. The solution to
this problem, as well as the control constants, was readily available from
previous work, If Ko is made slightly positive, say Ko =5, the control
constants for 7\0 = 0 are good initial estimates and can be used to solve this
problem. As the parameter 7\0 is increased, we can graphically estimate the new
values of the control constants and obtain extremely accurate estimates. Thus,
we can obtain a series of solutions to equation set (6.6.1), each having k@ dif-
ferent, but with z = 2.
If z = 2, an increase in 7»0 results in a solution which has a higher M .

At 7\0 = 200, MR was close to 1. At this point Z, was reduced to 1. 99 and
equation set (6. 6. 1) was solved using (?\O,zo) = (200,1,99)., This solution
produced an MR Wwhich was less than that for (200,2.0), This technique was
continued until a solution for (343. 2, 1. 96) was obtained. This solution had an

MR = 1.231, meaning that it weighed 23.1% more than a similar uniform thick-
ness panel. If also had a higher value of KE'; than 7\0 = 343.2. Since the re~
quirement that 7\;‘ = 343. 2 had been surpassed, zo was varied to satisfy the
requirement that flutter occur at 7\0 = 343.2, thatis, 343.2 will be the
maximum value taken on by the (7\0, Zo) curve. A decrease in Z and subse-
quent solution of the optimization problem, resulted in a lower M . The control
constants for decreasing Z, were again easily estimated because they exhibited
a continuous behavior for changes in Z e A graph of MR with 7\0 =343,.2 and
for various values of z, is presented in Figure 6.7, From this figure, it is
seen that a minimum value of MR is reached at (343.2, 1. 87) for this configuration.

The thickness distribution corresponding to this minimum value is shown

in Figure 6.8. TFor comparison, the nondimensional deflection w(x) and the
nondimensional bending moment q(x) are shown in Figures 6.9 and 6,10

respectively.
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This thickness distribution behavior is highly unorthodox, to say the least,
and was met, initially, with suspicion by the author and his advisor. There are,
however, several reasons for believing these results to be valid:

(1) The flutter mode shape is similar to that encountered in the analysis

of the reference panel.

{2) The sine series approximation for the optimal thickness distribution

exhibits similar behavior.

{3) The mass ratio MR is of the same order of magnitude as that

previously encountered in pinned-pinned beam fixed frequency
problems and in the sine series approximation,

{4y Finally, this thickness distribution shape has been shown to give a

?xo, Zo curve similar to that for the reference panel,

Figure 6.1 shows a AO vs. z_  curve for a panel similar to that shown in
Figure 6,11, This panel was optimized using zZ, = 1.87 with 7'\0 = 343.2 and
61 = 1,0, tmin = 0,50, Next, the Ao Vs, Z, curve shown in Figure 6.1 was generated
and it was found that ?»; for the panel was 343. 22, slightly greater than the re~
gquired value, At first, it was thought that this distribution was close to the
optimum. However, subsequent analysis showed that for 6 1= 1.0 and tmin = 0,50,
an additional weight savings of 1% could be found by reducing z from 1.87 to
1.824, This distribution is shown in Figure 6. 11 and is the actual optimal distribu-
tion. This study showed that for a given 6 1 and tmin and with 7\0 = 343.2 the
mass ratio was not very sensitive to changes in Z - A careful analysis is re-
gquired to find the actual zg which yields the optimal thickness distribution,

Several distributions with varying structural parameters 61 are shown
in Figure 6.12. An interesting characteristic of this problem is that an optimum
beam, with its second frequency held fixed, weighs more than a similarly sup-
ported optimum beam whose flutter parameter is fixed. A beam with
5 T 7

tE . =,10
min

has mass ratios
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MR = 0.91138 (fixed frequency)
MR = 0.88493 (fixed K(")‘)

This difference of over 2.5% is seen to be too large to be attributable to any dif-
ference in solution accuracy. Also, although the uniform thickness panel fluiters
with 7\3 = 343.2, and z; = 1. 82 the optimum panels flutter with 7\3 = 343, 2 but
with zg from 1,82 to 1. 87 for the cases analyzed. Although a case for which
tmin = {0 was not computed, it is expected that flutter for this limiting case would
involve the coalescence of a rigid body frequency (z0 = 0) and the first elastic
frequency, and that t(1/2) = 0, with the bending moment q(x) crossing the
x-axis at x = 1/2.

The analysis above was carried out with the modal constant B = -1, The
optimization equations were also used with B = +1, but with no meaningful
results. For 7\0 =0 and z, = 1 with B=+1, the problem solution corresponds
to the minimum weight beam with its fundamental frequency held constant. If
z, is fixed at z, = 1 and )\o is slowly increased, a series of solutions are obtained
with the mass ratio, MR , decreasing with increasing 7\0. The nondimensional
deflection w(x) and nondimensional bending moment ¢(x) keep their respective
signs over 0 sx =1,

This technique was successful for low values of KO, However, at a value of
7x0 near 50, convergence problems were encountered. These convergence problems
could only be remedied by raising the value of Z s with the result that M
also increased. The trouble was traced to the fact that at certain values of ?%»0
and Z the solution apparently wanted to change form and let w(x) and q(x)
have a cross-over point similar to the cases encountered with B = -1. However,
because B =+1, this is not possible. Thus, the only solutions obtainable with
B=+1 were very high M solutions. Because of this, the solution with B = +1
was abandoned.

No theoretical reason can be offered for B = -1 being a solution while
B =+1 is not. It may be remembered that the theory we are using guarantees us
an extremum of our merit function. Of course, it is hoped that this extremum is

a minimum, but it may be that, with B = -1, we get an extremum which is a
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minimum, while B=+1 will also give us an extremum which corresponds to a

maximum,

6.7 Summary

The panel flutter problem is by far the most interesting problem solved
during this study because the behavior of the system of governing equations makes
the sclution extremely difficult, For this reason, a great deal of computer time
was expended studying the behavior of the system equations and of the optimization
problem itself. However, the greatest difficulty and obstacle to overcome was
the closed~mindedness of the author himself, When one "knows intuitively" what
the answer should look like, he renders the problem doubly difficult. In this case,
the belief that the optimum must look like previously derived solutions with fixed
frequency constraints automatically disallowed the eventual and final solution,

If there is any value in structural optimization at all, it lies in discovering
unanticipated solutions. If we "know' the optimum solution, why go to the trouble of
the generation of optimal solutions ? It is the author's opinion that not even an
experienced seroelastician could have anticipated this optimal panel solution, If
for no other reason, optimization has proven valuable in showing the trend or form
of the panel shape. From the above solutions we can draw the conclusion that, to
raige the flutter speed of a uniform panel with a small change in weight we should
stiffen the panel near x=.30 and x=.70. These positions correspond to places
where the optimum panel is thickest. We may also deduce that adding a stiffener
at midchord (x = 1/2) is not as efficient as adding it elsewhere.

The numerical difficulties encountered in this problem suggest that this
size problem is as large as can be conveniently handled by a transition matrix
method, Unless a sophisticated numerical scaling technique is used, one will
encounter difficulties integrating the equations and inverting the transition matrix.
Let it be noted, however, that the transition matrix procedure has never failed in
any of the problems treated thus far, It would therefore be a great mistake to
automatically dismiss it.

The use of estimation techniques such as the sine series approximation for
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t(x) appears to be an inexpensive, effective, easy-to-use technique for most
eigenvalue constraint problems. It may be noted that although the shape of the
"exact' optimal thickness distribution differs greatly from the two term sine
series approximation, the mass ratios differ by only 2% to 3%. The results in
this chapter should be qualified by a final remark. No damping was considered
in these studies. It may well be that the addition of the aerodynamic damping
term to the constraint equations will make a significant difference in the results,
On the other hand, this zero damping solution is a limiting case and the author
doubts that the addition of a slight bit of damping would substantially change the
solution. This is certainly an area for future research.

This completes the treatment of systems which have differential equation
constraints. The following section will discuss parameter optimization, that is,

the optimization of a system described by a finite set of structural parameters.
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7, LEAST-WEIGHT DESIGNS USING FINITE ELEMENT STRUCTURAL
MODELS AND FIRST-ORDER GRADIENT OPTIMIZATION METHODS

7.1 Introduction

This final chapter of analysis will concern itself with realistic design

methods such as might be used in actual engineering design problems., The

1]

tructural models for the studies will be obtained using finite element analysis
technigues while the optimization technique will be patterned after one described
by Rubin (Ref. 13). For comparison with previous results found using continuous
one~dimensional structural models and optimal control theory, two problems will
be studied in this chapter. The first problem discussed will be the least weight
optirsization of a beam on simple supports with a frequency constraint. The
other study will involve solving the panel flutter optimization problem while con-
straining the critical aerodynamic flutter parameter A¥ Both of these problems
will use finite element techniques to describe the elastic and inertia properties
of the one-dimensional structures involved.

Unlike the constraints imposed on the problems in previcus chapters,
the constraint requirements in this chapter will be imposed such that a parameter,
either the freguency or the aerodynamic flutter parameter, is held close to a
reference parameter to within a specified tolerance. The optimization technique
suggested by Rubin (Ref. 13) was chosen because of its simplicity and the ease of

programming it for the digital computer.

7.2 TFinite Element Structural Modeling

The field of structural modeling using discrete parameters or finite elements
is extremely broad and complex. The end result of any finite element method is,
however, always the same, For problems involving dynamic response, a mass
matrix and a stiffness matrix are calculated to describe the inertia and elastic
properties of the structure. Any structure is considered to be an assemblage of
smaller structural elements which have their own elemental mass matrices and

stiffness matrices. These elemental matrices are combined to form the total
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system matrices by enforcing a requirement of geometrical continuity of displace-
ment and slope at the boundary between each element. The analysis then pro-
ceeds using only the displacements and rotations of a finite number of points on the
structure as variables. These variables are termed "generalized displacements’
and the discrete points are termed '"nodes. "

Within each element a continuous displacement pattern or function is chosen
which is a function only of the generalized displacements. This function is re-
stricted by the requirement that the satisfaction of geometric compatibility at the
nodes must ensure geometric compatibility along any element boundary. .Using
the displacement pattern or function, elemental mass and stiffness matrices are
generated using energy methods similar to Rayleigh-Ritz techniques. These
techniques are well described in books such as Przemieniecki (Ref. 18) and
Zienkiewicz (Ref. 19). It will be assumed that the reader has at least a
rudimentary knowledge of matrix techniques for structural analysis. This study
will be concerned only with simple beam elements. These elements are well
known in the literature and, for this study, the author derived elemental mass and
stiffness matrices for a beam element whose bending stiffness and mass varied
linearly along the length of the element. These matrices are listed in the Appendiz,
These beam elements are called "tapered elements' and are useful for analyzing a

beam whose mass and stiffness properties change rapidly along its length.

7.3 A First-Order Gradient Technique

The description of the method which follows was described in detzil by
Rubin (Ref. 13) and belongs to a class of optimization schemes referred o as
"first-order gradient techniques.' While it does have some drawbacks which will
be discussed later, this method is an excellent technique for optimizing the type
of structures to be studied.

To begin, let us define the merit function (also called the "objective

function') as the total nondimensional weight of the beam

N
W= i};l (tW) +W, (7.3.1)
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The N variables ti are design parameters which define a beam dimension and
which are free to be varied to achieve an extremum of W. In the simple beam
cases which follow, ti is the nondimensional thickness at a node point and W,
has values such that W is a nondimensional weight of the structure, VV0 is
the total weight of any nonstructural mass. The change in the total weight is
expressed as a function of changes in the design variables Ati'

N
AW= 3 (W, At) (7.3.2)
i=1

Let us multiply equation (7. 3. 2) by -1 to get

- AW = E (w,At) &7.3.3)
i=1

If the right-hand side of equation (7.3.3) can be made to be positive, then
AW will be negative, that is, the change in total weight, for a given set of changes
in the design variables, will be negative,

In the examples which will follow, an eigenvalue parameter, (, will be
fixed, Since this eigenvalue is a function of the design variables, the total change

in this eigenvalue parameter may be written as
dg = E ——-dt (7.3.4)

If small design variable changes are used and only first-order terms are re-

tained, then

N
an = —=At, {7.3.5)
ot, i
i=1

The constraint that Q is equal to a constant may then be written as

N
dy=0= 2. —-At Z g At (7.3.6)
1—1 i=1
where
_ 90
& "%t
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Thus, where there were originally N independent design variables, the con-
straint equation (7. 3. 6) has reduced this number to N - 1. Let us consider the

jth element in the above summation and solve for Atj.

S g
At,=- ), —At (7.3.7)

Now, substitute equation (7.3.7) into equation (7. 3. 3) to get

N wig. - W.gi
—AW=-Y | L At (7.3.8)
: g. 1
i=1 j
i#j
or

N
-AW= ), G, At, (7.3.9a)
i=1
i#7j
where
w.g. - wW.g,
G- |ii 3
1 g.
i#] !

Equation (7.3.9a) is an expression for the negative change in weight as a function

(7. 3. 9b)

of changes in (N - 1) design variables. Let us define these changes as

G,
i

i j
G1% | i=1,N
© ' max

N (7.3.10)
where € is a positive constant and IGi‘max is the maximum absolute value of
the set of gradients Gi’ i #j. If we substitute equation (7. 3.10) into equation

(7.3.92) we get the following equation.

N (Gi)2
- = — = 7.3.
AW € lG‘ ti €S (7.3.11)
i=1 lmax
i#]
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where $ is the value of the above summation., Since ti 20, the value of this
summaftion can be seen to always be
5 =20

and thus AW =0. Furthermore, the value of € can be seen to be

€ = - -A-S-W— (7.3.12)
1f 2 2% decrease in weight is desired, then we must have

AW = -~ 0, 02W
and

e = {0, 02)(-WS—) (7.3.13)

The above method will provide a set of A‘ci which causes a decrease in W as
long as there is a value G.(i # j) which is non-zero, In turn, G, will be

unequal to zero as long as giwj # gjwi.

The calculation of the 58{? terms is essential to this method and is
easily accomplished for the fixed frequency case. These terms are gradients
of (0 with respect to the design variables, ti’ Although several other authors
have detailed similar or more general techniques for calculating -%? when
0 is a frequency, a recent paper by Zarghamee (Ref. 20) gives a clear, concise,
specialized example of an analylic expression which may be used to give these
derivatives. This frequency gradient generation method will be discussed in
Section 7. 4.

The continuous problems treated in previous chapters were constrained
to have one or more frequencies exactly equal to those of a given reference structure.
Because of the slight inaccuracies and the assumptions of linearity of the optimiza-
tion techniques, the frequency may "drift" or vary from that of the reference

structure during the design process. Because of this, the frequency constraint

is expressed as a frequency band constraint, that is, the frequency is constrained

to be held within a certain tolerance or range on either side of a specified fre-

guency. In the cases studied in this investigation the square of the frequency of
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the optimized structure was held to within ¥ . 5% of the square of the frequency
of the original or reference structure.

If the frequency drifts outside this tolerance band, the optimization
design cycle must be stopped. A design cycle is then used to bring the frequency
back to within the specified tolerances. Rubin also provides a scheme for
performing this task using the least possible weight, that is, changing the
frequency a given amount using the least possible weight.

If the frequency is to be modified, changes in the design variables equal
to

g.

At = Kt.(—"l—
i i

(7.3,14
lg; | )

max
are used, where k is a positive or negative constant. The total change in

frequency is seen to be

2 XN N (gi)zti
M= Y g At =k D 2 (7.3.15)
i=1 i=1 8!
max
with
2
K =————§—“-’———2———— (7.3.16)
N .(gi)
i=1 15
max

7.4 Weight Minimization of a Finite-Element Beam on Simple Supports With its

Fundamental Frequency Constrained

A beam composed of thin face-sheets (a sandwich beam) with a nonstructural
core may be modeled as a finite element beam with Z equal segments as shown
in Figure 7.1. The beam rests on simple supports so that the translational dis-
placements at the beam ends are zero. The total number of unrestrained generalized
displacements is

n=227
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If [M] is the mass matrix for the structure while [K] is the stiffness matrix, the

matrix equation of free vibration may be written as

[-o”M] (K] g =0 (.4.1)
where [M] and (K] are nxn symmetric matrices. The vector {q} is nx 1
and represents the vector of generalized displacements as shown in Figure 7.1.

Equation (7.4. 1) represents an eigenvalue problem and has n real

eigenvalues and eigenvectors

w2, { g }

b
From matrix theory, the eigenvectors { q(p)} are orthogonal with respect to

[M]. That is

~p _
gél‘} [M]{q(p) _ Msor=e
L4 } (7.4.2a)
0; r#p
wiﬁp r=p
?_}%{i} [K]{q(p )} = (7.4.2b)
0 r#p

ﬁp is termed the generalized mass for the pth eigenvector. If equation (7.4.1)

is nondimensionalized, the eigenvectors and eigenvalues will be nondimensional

also, For a sandwich structure, the system mass and stiffness matrices can

be written
N
[M]=[M]+ 35 t[m,] (7.4.3)
nxXNn nxn 1= nxn
N
(K] =K1+ > .k ] (7.4.4)
nxXn nxn 1= nxn

where ti is a nondimensional face-sheet thickness. The matrices [mi] or
gki}l are matrices which give the mass or stiffness contribution to the system
due to the design variable ti. Note that there will be many zero or null elements

in these matrices. Also, note that
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=(M] = [m,] (7.4.5)

0
'B“E[K] = [ki] (7.4.6)
i

Using the technique described by Zarghamee (Ref. 20), let us differentiate
the matrix expression (7.4.1) (for a particular value of wﬁ) with respect to a

design variable te

(p) B
2 3
[—wp[MwKn{ a‘ii }+[—-—8t—‘i’[M]-wi[miw[kiu{q(p)}:o (.4.7)

Because the transpose of the eigenvalue problem posed in equation (7.4. 1} has
the same eigenvalues and eigenvectors ([M] and [K] are real and symmetric),
premultiplication of equation (7.4.7) by {q(p)} will eliminate the first matrix
term on the left-hand side of equation (7.4.7). It will reduce the second term

to a scalar.

8@2

_ PP _ 2 g (7.4.8)
ot. p i i

1

The symbol (—)(p) refers to the result of the matrix operation
(p)

LA ){q

Equation (7. 4. 8) may be rearranged to give

(p)} oy )(p)

80l  WlmiP) _ P)
p__p i i
ot, u®

(7.4.9)

Thus, the change in the square of the pth frequency with respect to ti is given

as a function of the mode shape {q(p)}, the frequency cop and the reference

matrices which describe the system. Expression (7.4.9) is "exact'' in the

sense that %%- is a calculated matrix function of the system properties, eigenvalues
and eigenvectolrs.

TFor a fixed frequency beam vibration problem, the frequency constraint

is expressed as

141




2 N
\ O )
w-—lxl o, Af, = g_jlg(a’c):ﬁ (7.4,10)

For a tapered-beam-element model, the total nondimensional weight of a beam

with 7 elements as shown in Figure 7.1 is

t, +t
vﬁ{ 1 "7 +1
W= 61 ««-—T-——ﬂL‘Zzti Z+(1—61) (7.4.11)
1 o=

The design variables t are discrete nondimensional thickness parameters at
each node. The parameter o1 is, as in the continuum case, the initial ratio
of structural mass to total mass in the reference structure, Using the definition

in eguation (7.3. 1)

1 .
W=7 for i=2,3,.0..2
(7.4.12)
1
W = W = e

In addition to the constraint expressed in equation (7.4.10), a minimum thickness
constraint can be added such that

t 2t oo i=1,2,....Z +1) (7.4.13)

Using the method outlined in Section 7.3 and calculating the frequency
gradients gi as shown previously, a computer program was written to search
for an optimal design variable vector {tti § The initial numerical cases con-
cerned themselves with testing the operation of the computer routine. A uniform
thickness case was chosen as a starting point, that is, gtig» = {1}. Using the
above technigues with the fundamental frequency constrained to be
0. %%wé < wi =1. 005w4, the method always drove design variables t1 and
t to the value t min’ At this point, no further changes in 1:1 and tZ +1

Z+1

were allowed, that is, Atl = AtZ 1= 0, In addition, because of the symmetry

of ! { >§ about x = 1/2, the frequency gradients g, were symmetric about

i

this point, Since t. . . .= 1, the design cycles always yielded a symmetric
i initial

structure, After these characteristics were determined, the program was altered
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so that it automatically set t1 and tZ +1 equal to tmin before beginning
calculations., Only symmetric changes in ’ci were then allowed during each
optimization design cycle. To save computation time, initial estimated values

of ti which might be chosen in engineering work were chosen so that the initial
design had a weight less than the uniform reference structure. If the fundamental
frequency of the initial design chosen was outside the frequency tolerance band,

a design cycle was taken to alter ti to bring the frequency to within the

allowable band. By doing this, the initial design, while not being a least weight
design, satisfied the requirements of the problem and was at least a "lesser weight"
design as compared to the reference structure, This initial design estimation

and modification technique usually saved ten or more design optimization cycles

and resulted in an approximation which had a fundamental frequency within the
tolerance band and a total weight or mass ratio which differed from the exact
minimum by only a few percent.

Two results of the above optimization work are shown in Figure 7.2. One
model was composed of four elements while the other model used six elements. As
mentioned before, during the weight minimization search, a series of "lesser
weight' structures are generated which satisfy the requirement that their lowest
frequency is close to that of a uniform thickness reference structure. As the
finite element design approaches the least weight design, the method outlined
above is very sensitive to the variable ¢, defined in equation (7.3.12). If ¢
is large, we are in effect asking for large changes in the weight. As the value
of the converged mass ratio, that is, the value of the mass ratio obtained using
the differential equation model, is approached,the design variable distribution
varies greatly. It appears that, near the optimum design, the merit or objective
function is fairly insensitive to the constraint boundary while the design variables
are very sensitive, For this reason, several designs of nearly the same weight
are found at the end of the optimization process. This is far different from the

differential equation approach where one and only one design satisfied the constraints.
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Because of this, the author selected the design which most closely approximated the
exact design shape., If ¢ was kept large, that is, if we ask for large changes in
weight at a point where we are near the minimum mass ratio, the design variables
began to increase near x= 0,25 and x= 0,75 and decrease near x= 0,50, Thus,
it appeared that the design began to take the form of a superoptimal soclution. When
this began to occur, the computer calculations were terminated.

From Figure 7.2 it can be seen that, while the finite element thickness
distribution — for four elements ~—— is in error by large amounts in some places,
the mass ratio differs only slightly from the exact solution. The reader is cau-
tioned, however, in drawing conclusions on the accuracy of this mass ratio since
the nondimensional frequencies in the finite element case are slightly lower than
that from the continuous model, that is, they differ from wz} = T\’4, Also, if one
were to build a beam in the exact shape of the finite element model, its frequency
would differ from that shown in Figure 7.2 because of the inaccuracies of the finite
element model itself, Still, the general conclusion that the discrete parameter
model for this problem is consistent with the exact solution can be drawn. Al-
though the design variables do differ substantially from the analytic solution,
the minimum mass ratio is fairly accurate. It is interesting to note that the taper
of the first and last elements in Figure 7. 2 decreases with the number of elements
in the model. This occurs because of the minimum thickness constraint, tmin = 0,5,
This constraint was purposely chosen to demonstrate this characteristic,

Figure 7.3 shows a ten-element finite-element model of the exact optimal
thickness distribution. Unlike the cases previously shown, this model is not the

result of an optimization process, but it shows the accuracy one may expect from

a multi-element structural model of the exact solution.

7.5 Panel Flutter Optimization Using a Finite Element Structural Model

The problem of finding a least weight thickness distribution for a sandwich
panel on simple supports which has an aerodynamic flutter parameter kg held
fized has been discussed in Chapter 6. In Chapter 6, the constraint equations were
expressed as a set of first-order differential equations. Therefore, optimal

control techniques were used to formulate and solve the problem. The result of
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this formulation was an optimal thickness distribution for a least-weight panel.
This section will discuss the identical problem posed in Chapter 6, but will use
finite element methods to describe a one~dimensional plate-beam on simple
supports and also to describe the aerodynamic forces using quasi-steady
linearized supersonic aerodynamics.

The problem of finding a least-weight panel with a prescribed flutter
parameter using finite element techniques was first discussed by Turner (Ref. 12).
His structural model consisted of a series of equal length finite elements, each
having a uniform thickness. In addition, his aerodynamic model included an
aerodynamic damping term. The model used in this thesis consists of a series
of equal length nondimensional tapered finite elements such as shown in Figure 7. 1.
The aerodynamic forces are taken from a paper by Olson (Ref. 21). The non-
dimensional matrix equilibrium equation for this system is written

[- «°[M] +[K] +2 [A]}{a} = 0 (7.5.1)

[A] is the aerodynamic generalized force matrix given by Olson and shown in the

Appendix and 7\0 is, as in Chapter 6, equal to

3
2
qoa

D0 M, -1

All aerodynamic damping is neglected in equation (7.5.1) and motion is assumed

to be of the form

{Q(X,T)} = {q(x)}eim- (7.5.2)
As discussed in Chapter 6, for a range of values 0 = 7\0 s A*, the freguencies
w, as determined from equation (7.5.1), will be real. At 7\0 = K}‘ frequencies
wg and w, merge, and, for 7&0 > K*,wl and w, will be complex conjugates of
each other. Thus, from, equation (7.5.2) at 7\0 = A*, the system is neufrally
stable and for ?xo > A* the panel becomes unstable. Using a four equal finite-

element model with uniform thickness and neglecting damping, Olson found

A¥ = 342,343, This value differed from the exact value of A* by 0.3%.
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A computer program using the optimization logic described in Section 7.2

was written for this problem. For this case, the constraint equation is written

N

- DA*

Ak = E: ._(%__Ati:() N=Z+1 (7.5.3)
i=1 71

For easy reference, the design variables ti may be expressed in vector form

£,(0)
t (1/Z)

g ) 2

%KX)} = (7.5.4)
ty 41D

The variable 2 is the number of equal length elements used in the finite element
model, These design variables represent nondimensional face-sheet thicknesses
at node points along the panel x as shown in Figure 7.1,

The calculation of the A* gradients, was done numerically.

ot; 7
i
First, M* was determined for the initial design panel. Next, the desgign
variables were perturbed one by one. New flutter parameters 7\;‘ were
calculated for each perturbation Ati to give the gradient of A%, g
AX o Ax
GAK MK i
~&7 1 REF (7.5.5)

& 75t AL At
1 1 1

i=1,2,.,..Z2+1
The design studied involved a case with 61 =1 and tmin = 0,50, Four tapered
elements were used to model the plate~beam. An initial set of design parameters
was chosen using previous experience as a guide, This design had a sym-
= {(1/2) as the greatest element and t

metrical shape with t = t(0), t5 = t(1)

3 1
equal to 0.50. This initial design was found to have A* = 335, a value which
was lower than the reference value of A* = 342,36. By using the gradient of

A% as calculated in equation (7.5.5), this initial design was modified so that the
value A* became 343,68, This design was chosen as a starting point for the

optimization search. Table 7.1 shows the results of four design cycles. The

thickness distributions for these results are shown in Figures 7.4 and 7. 5.
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Table 7.1 shows several interesting things. First of all, it shows that an initial
design can be found with a mass ratio close to optimal by simply using the **
gradients to increase or decrease the A* of an initial design. More importantly
however, the A* gradient elements are symmetric about x= 1/2 as hypothesized
by Turner (Ref. 12) and Armand (Ref. 8). The results alsc show that, in the absence
of aerodynamic damping, the optimal one-dimensional panel shape for minimum
weight has a pronounced "dip" at x = 1/2,

The comparison of these results with those found using differential tech~
niques is favorable and is shown in Figure 7.5. The exact value of Mt  is
0. 9020 while the finite element analysis gives 0.9151. The exact value of the

square of the flutter frequency is 1070. 0 while the finite element analysis give

&)

2 2
wl = w2 = 1059, 3.

7.6 Summary

The previous results using finite element analysis have only scratched
the surface of the subject. They have, however, shown that excellent results
may be obtained using finite element techniques in the problems covered. They
have also shown that the designer or researcher must be able to interact with the
optimization design process. In this way, his experience becomes an added
constraint on the design process. This analysis has also shown that the design
parameters may be relatively sensitive to the design constraint but, the mass
ratio in insensitive to changes in the design parameters near the least weight
design. Therefore, the designer may choose his final design on the basis of

factors other than least weight.
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8. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

If one has read the proceding chapters, he has by now formed his own
conclusions. However, there are several general conclusions which should be
noted and discussed. First of all, the optimal control techniques used in
structural optimization are limited to systems which are easily described by a
small number of first-order differential equations. This is not a method which one
would apply to the design of a 747 or SST. On the other hand, the use of this
technigue does provide useful information about the behavior of simple systems
such as one-dimensional panels. This information may be extrapolated to
estimate the behavior of larger systems. As seen in Chapter 7, the knowledge
of how the continuous system behaved proved very valuable in obtaining initial
design parameters which satisfied the constraints.

The field of parameter optimization was only briefly discussed. This
area obviously will be the most important and promising area of study for the
next few years. It is important to recognize that many techniques such as
Rubin’ & exist in the literature. They are well documented and are waiting for an
enterprising researcher to adapt them to the many problems in the field of
vibration and aircraft flutter. The adaptation of some of these methods to flutter
problems is already underway at Stanford. The main difficulty with these
parameter optimization problems is in calculating the constraint gradients such
as %%f While this can be done by brute force methods for small problems,
i;é@,?fg@; problems require more sophistication because of computer cost limitations.

There are several areas for future research that are of great interest to
the author, They are listed below.

{1) For the panel flutter problem, add the aerodynamic damping term

to the constraint equation, This is easily done for the finite element
model,

(2) Add inplane stresses {RXX # 0) to the panel flutter equation. This

may be eagily done using the differential equation model,
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(3) Extend the finite element technique to two-dimensional panel flutter
by using triangular plate bending elements.

(4) Using additional theory covered in Bryson and Ho (Ref. 9), formulate
and solve some simple beam problems having both static (maximum
stress or deflection) and dynamic constraints.

(5) Use a series approximation for t(x) to solve a bending-torsion-
flutter weight-minimization problem such as covered in Ref, 22,

Some of these and other similar problems are under study by the author

and others in the field. Their solution should prove not only interesting but

helpful in the field of structural design.
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APPENDIX

Elemental Mass, Stiffness, and Aerodynamic Matrices
Used in Finite Element Studies
q, ( ?

q, q3pq4
[ V2 ——— ]
j-— t z=1/Z

gl

b -

Nondimensional Element

Mass and stiffness per unit length are proportional to the thickness
which varies linearly with x.

Mase Matrix:

156 22z 54 ~13z
zt
I 5 2 2
{mij} = 150 4z 13z 3z
156 ~227
‘L(Symmetric) 4z _ |
72 14z 54 -12z |
, 2 2
! {tz «tl)z 3z 14z -3z
T840 240 -30z
Symmetric) 522
_.( Y —
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Stiffness Matrix:

6 3z -6 3z
2t 1 Zz2 -3Z z2
k! =73 6 -3z
z
. 2
:(Symmetrlc) 2z |
6 2z -6 4z
t2 -t 1 zz -2z z2
+
3 6 -4z
zZ
. 2
(Symmetric) 3z

Aerodynamic Matrix:

1 =z 1 z

2 10 2 10

Z Z2

0 —— Pt

[a.] = 10 60
ij’

1 2z

2 10

(anti-symmetric) 0

Note that these elemental matrices are not the same as defined in Chapter 7.
These present matrices must be used to generate the matrices discussed in Chapter

70
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