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ABSTRACT 

A great deal of interest and attention has recently been focused on the 

optimal design of structures. By optimal design it is meant that a structur~? 

performs the same function as  another similar structure while minimizing some 

performance index, usually the weight of the structure, This study investigates 

some simple structures whose weights a r e  minimized subject to several. types a$ 

constraints involving fixed eigenvalues. These eigenvalues may be related to 

f ree  vibration, in which case a least weight structure is dekrmined while holding 

one o r  more natural frequencies constant. Similarly, the eigenvalues may be 

related to aeroelastic instabilities where a least weight structure is found while 

holding the flutter speed constant. 

With one exception, the models a r e  idealized one-dimensional structures 

with fixed geometry and spatial dimensions. These models a r e  adequately 

described by a set  of N simultaneous first-order ordinary differential equations 

which come from the general Nth order equilibrium equation. Methods adapted 

from optimal control theory a r e  used to develop differential equations and bisundary 

conditions which a r e  necessary to ensure optimality. This optimization pra>blern 

then becomes a two-point boundary value problem with 2N simultaneous non- 

linear differential equations. 

The solution method used to solve these equations is an adaptation 06 a 

numerical technique used in optimal control theory which is referred to as the 

"transition matrix" procedure. This method involves perturbing the optimaliw 

equations and boundary conditions to find successive neighboring extremal! solu- 

tions until the optimum design is reached. 

Solutions presented include optimum weight configurations for beams and. 

thin-walled cylinders whose bending o r  torsional vibration frequencies are neld 

fixed and which may or may not have minimum thickness constraints, The problem 

of finding an optimum panel whose aerodynamic flutter parameter in high super- 

sonic flow is specified is also studied. Finally a simple study is presented 



which provides insight into the accuracy and usefulness of discrete or  finite 

element methods when they a r e  used to generate the structural model for an 

optimization search involving discrete parameters. 
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NOMENCLATURE 

Arbitrary modal constant 

Error  vector for transition matrix 

Bending stiffness 

Torsional rigidity 

Hamiltonian 

Performance index or merit function 

Dimensional length 

Tntepand for J 

Mass ratio 

Integration iteration number 

Mass per unit length 

Constraint equation order 

Nondimensional deflection slope 

Nondimensional bending moment 

Nondimensional shear 

Nondimensional torque 

Nondimensional thickness parameter 

Design variable parameter 

Dimensional thickness 

Transition matrix 

State variable 

Nondimensional deflection 

Dimensional deflection 

Dimensional spacial coordinate 

Nondimensional spacial coordinate (= X/L) 

System variable, may be either state variable, adjoink variable, 

or combination 

Frequency parameter for flutter 



Z Number of finite elements in beam model 

Ql 
2 Frequency parameter (= w 6 ) 1 

2 Frequency parameter (= w (1 - 61)) 

Calculated vector of end conditions with specified values 

Exact values of end conditions 

Ratio of initial structural mass to initial total mass 

E Ratio of monstrucbral mass to initial mass 
2 

Ed a Variation (in calculus of variations) o r  perturbation (in dif- 

ferential calculus) 
% 

!A Vector of control constants 

A, Step size for transition matrix 

Er ror  tolerance (greater than zero) 

Nondimensional rotation 

Frequenc y 

Reference frequency 

kagrange multiplier o r  adjoint variable for state variable z 

Aerodynamic parameter for panel flutter 

A * ~  A:F Critical aerodynamic parameter for flutter 
0 

Sub~c~sapts and Symbols 

d :o Initial or  reference value 

Final value 
A 

) "  Differentiation with respect to x 

1-  ith element of a vector n 

Id: Multiplication 

h j Division 



exp( Exponentiation 

Row matrix 

Column matrix 

lT Matrix Transpose 

)-I Matrix Inverse 

'final 
Final value 

( 'int 
Initial value 

N. B. The above nomenclature is  followed in the majority of the thesis, 

However, because the problems involve several areas of study there may be 

an overlapping of terminology. Where this is the case, this fact will be p o i ~ ~ t e d  

out. 

xiii 



The optimization of structural configurations to achieve least weight cde- 

signs, while preserving certain design requirements such as  mmimurfi s trengh,  

has received a great deal of attention over the last few years. This field of 

design optimization is still. so new that many seemingly simple problems remain 

to be solved, The term lrstructural optimizationw usually refers to the search 

for a structure which i s  similar to a reference or initial design structu7re,but, 

which weighs less and fulfills the original design requirements and purpose c ~ f  the 

initial! structure. These design requirements or objectives may be viewed as 

constraints on the optimization search since the optimization search for  a 

n~inimum weight structure must always be guided or  constrained such that the 

original design objectives a re  preserved, The problem can then be said to be 

that of finding a minimum weight structure subject to a given set  of constrailrts, 

Design constraints usually fall into one of two categories, or they may 

be a combination of both. The first  category is usually referred to as  the static 

constraint such as  would occur if the design structure i s  required to support a 

static load of a given magnitude. The second constraint category i s  the dyna,mic 

constraint, which will occur if an eigenvalue such as  natural frequency of vibra- 

tion is held fixed during the least weight search. 

The field of aeroelastic optimization belongs in the category sf dynmiie 

constraints. Aeroelastic problems involve aerodynamically induced static or 

dynamic instability, however, in either case the problems involve the solution 

of an eigenvalue problem. Therefore, all aeroelastic optimization problems 

properly belong under the heading of "dynamic constraints, 'I 

Once a constraint criterion has been eshblished, the actual choice of 

a solution or  optimization method is rather broad. The optimization technique 

depends, f i rs t  of all, on We choice of structural models. Structures, in the 

simplest cases, may be sufficiently described by differential equations sf 



equi4sbriwrn o r ,  if they a r e  extremely complicated, they may be described by a 

siscrete parameter technique which expresses the eqalibrium equations as a 

:r;ztrLx equation, Once the structural modeling method has been established, an 

eptimization technique must be found which will reduce the weight while still  

satisrj-ing the constraints placed on the problem. No matter what the structural 

modeling technique may be, optimization techniques a re  many and varied, with 

each n esearcher having his own favorites. En addition, each problem has its own 

psculiarZties which may make one method nonapplicable and another perfectly 

adaptable, It has been noted many times that optimization is partly art ,  partly 

scie:q.lce, 

Methods of solution for optimization problems a re  determined both by the 

str:?r3iLara1 model and the constraints. In the case of a dgferential equation 

structurnl model, one is led to the calculus of variations and a set of equations 

8:rm ~7gi;13, a~ the Euler-Lapange equations. Many problems in various scientific 

disciicaiinas em be described in this way, the most notable being the field of 

optimai control theory, In the case of a discrete element model there a re  many 

teekniqcies which use optimization theory to search for the optimum value of a 

finite set of design. parameters such a s  material thicknesses or  areas. For this 

reasslc, this area  is commonly referred to a s  'parameter optimization. " 

P,2 Purpose ----- 
I n  the field o r  aircraft o r  missile en@neering, optimum weight structures 

are cf prime importance, Because of the so-called "powth factor, " the addition 

r~gf a poucd of structural weight to an aircraft wing may cause the increase of 

the gross weight by several additional pounds. Conversely, the removal of an 

xnneeessary pomd may result in fuel savings which in turn lead to cost savings. 

For  tlsese and other reasons, the purpose of this thesis is not entirely academic, 

but also has practical engineering objectives a s  well. 

This investigation has several purposes. First  of all, using one- 

dimensional difirential equation structural models, it seeks to find solutions 

to sowe previously unsolved problems having dynamic or fixed eigenvalue con- 

straints, These solutions will be obtained using n w e r i c a l  techniques adapted 



from optimal control theory. The numerical techniques a re  designed for use on 

a digital computer and will be studied to determine relative advantages and dis- 

advantages of each method, In addition, estimation techniques will be sraggested 

and discussed together with interesting properties of the optimal solutions 

obtained. The study will also determine the relative weight savings of the same 

structural configuration with several different boundary conditions, In doI-61g 

so, it  is hoped that one may extrapolate from these results to formulate guide- 

lines which may be used in "real worldM engineering problems. 

In addition to using the differential equation approach to structural modeling, 

a discrete or  finite element model will also be studied. A padient  technique will 

be used to compare some 'parameter optimization1l solutions to Mose "exactP' 

solutions obtained using d~ fe r en t i a l  equation techniques. 

I. 3 Scope 

A l l  of the structural models used in this investigation a re  idealized one- 

dimensional configurations such a s  beams in bending or  thin-walled cylinder s in 

torsion. By one-dimensional, we mean linear elastic systems whose deforma- 

tion state can be adequately specified by a set  of functions of a single spatial 

variable. The constraints imposed upon these models will be in the form of 

eigenvalue equations in which one or  more of the eigenvalues are  held fixed, 

These eigenvalue equations will describe conservative system motion swell a,s 

free vibration and also nonconservative motion such as  is encountered in aeao- 

elastic problems. 

Among the problems treated will be beam flexural vibration with mulltipjee 

dynamic constraints and panel flutter in supersonic flow. As used in this study, 

the term "dynamic constraint" will refer to a situation where a structure has 

one or more of its natural frequencies fixed. The term "aerselastic constraint" 

will refer  to a structure which has a fixed aeroelastic eigenvalue such as f l ~ ~ t t e r  

speed or  critical dynamic pressure. 

The rtructural models will include those whose characteristic stiffness 

per unit length i s  a linear function of its mass per unit length and those whose 



stiffnqess is a polynomial fmction of the mass per unit length. In all cases, 

0ondi:~ensioraa8 quantities will  be used so that the optimurn codiguration is 

a4tvays referred to a base or reference structure with uniform properties. 

--- 
If one were to list all papers involving some type of optimization, the 

listwou8d be quite Bong. However, if only those papers dealing with structural 

opth-  Y-izahion were retained, the list would be considerably shortened. If one 

~i;ien"k~~rther and eliminated all those papers dealing with static constraints the 

resalting list aivould contain probably no more than thirty or forty references. 

Ashley (Ref, 1) has covered the early history of dynamic and aeroelastic 

constrairzts md eites what he believes to be the earliest work in the field. 

SimiRcaatly, this paper is by Turner (Ref. 2) and was published as  an internal 

rep21 t at Vought-Sikorsky A i r c r d t  in 1942, In the field of optimization of one- 

dinensionan structures, a study of beam flexural vibration by Niordson (Ref. 3) 

zppear s LO be the f i rs t  published. This paper was closely followed with articles 

by Turner (Ref. 43, who had f i rs t  worked in the area  twenty-five years earl ier ,  

Taylor (Ref,, 56, and Prager and Taylor (Ref. 6). h the latter paper, a proof 

w7as given far the miqueness of the solution to several problems involving eon- 

sesvative vibration problems. 

The use of control theory techniques to solve simple aeroelastic optimiza- 

rnosl problems was first  suggested by Ashley and McIraGosh (Ref. 7). A following 

study by Armand and Vitke (Ref. 8) formulated some basic problems in more pre- 

cise control theory terminolom and described a perturbation matrix method used 

far  the num~erical solution of many aeroelastic and dynamic optimization problems. 

This suggestion by Ashley was a highly significant contribution and considerably 

advaaced the state-of-the-art, 

The primary numerical solution techniques used in both references (7) 

and (8) above were all adapted from those described by Bryson and No (Ref. 9), 

These methods, with some modification, a r e  also used in this thesis. Further 

use will  be made to some of the above references in later chapters of this 

inver3tigaQion. 

4 



The field of weight optimization of actual engineering structures is more 

widely discussed in the literature. A paper by MacDonough (Ref. 10) in  1953 is 

regarded as  the f i rs t  r ea l  attempt at the design of a structure to satisfy firrttes 

requirements. More recently, Schmit (Ref. 11) and several authors nncludiiereg 

Turner (Ref, 12) have dealt with optimization of discrete parameter systems, 

One particularly interesting paper by Rubin (Ref. 13) details a padieni, method 

which is used to find minimum weight structures whose Aequency may be 

specified or  held within some tolerance. An adaptation of this technaqne is used 

inchapter 7 of this thesis. 

Although a flurry of optimization papers has appeared from .time to  t ine,  

the literature dealing with dynamic or  aeroelastic optimization i s  surprisingly 

sparse. This thesis is intended not only to fill several gaps left by earlier 

papers, but to extend the solution methods to more complicated problen7s and, 

where neces sary , to develop new techniques for solving aeroelas tic optirn ization 

problems. 

1.5 Metlnods of Approach 

The general method of approach to both types of problems covered in 

this thesis will now be briefly outlined. First  of all, the equations necessasry to 

define the so-called "optimality conditionsu for systems with differential equation 

constraints will be discussed. This theory, which is adapted from the field of 

optimal control i s  well developed and will be applied to some one-dimensional 

structural optimization problems in which the total mass of the structure is to be 

minimized. In all cases, the important variable will be a nondimensiepjnal 

thickness distribution parameter t(x), which may be related to the stiffness and 

inertial properties of the structure. This nondimensional thickness parameter 

will be referenced to a uniformly dimensioned structure having the specified 

d p a m i c  or  aeroelastic eigenvalues. The overall geometry, such as the length., 

will be assumed fixed. The constraints which a r e  imposed upon the optimal 

structure will be eigenvalue differential equations which will involve a fixed 

parameter, e. g., free vibration equations with a frequency held fixed, These 



ergeryral le constraint equations will be expressed as a set  of N first-order, 

crdir,ar) d~flerential  equations. 

Given these N equations, the use of optimal control theory to generate 

necessary conditions for  an optimal thicekness distribution always yields a se t  

of 2N f-rst-order, nonlinear differential equations, Since the problem is one- 

dirnetlt lsio~z1~ bomdary conditions a r e  specified at only two points, leaving one 

vvith lcqk of solving a nonlinear, two-point boundary value problem. 

,;urnerica4i solution technique, commonly referred to as  the "transition 

ssatrt,"' solution method, has been adapted from control theory to solve this 

; onhea r  rvro-point bounday problem. This solution method involves the initial 

estlrna"iro:~ of the so-called Ifnatural boundary conditions" and a cyclic o r  iterative 

i n t ep  ar1c-i {of the differedial equations to arr ive at a final solution. 

The latter part of this thesis will briefly study two cases involving 

?arar:r-eler optimization problems. The f i rs t  of these two cases is the weight 

opt: r; 1,:;rtion of a finite-element structural model for a beam on simple supports 

w4t5 t;ae requirement that the lowest frequency be held fixed. The second case 

stac!ieL % the optimization of a finite-element model for a simply supported panel 

of i";?~'iri~e aspect whose aerodynamic flutter parameter is held fixed, In both 

cases, an elementary gsadient techique similar to that used by Wubin (Ref. 13) 

will. be used, together with an eigenvalue perturbation method. 



2. OPTIMIZATION THEORY FOR SYSTEMS HAVING LINEAR 
DIFFEWEWEA L EQUATION CONSTRAINTS 

2.1 Introduction 

The development of the differential equations and boundary conditions 

which a re  necessary to find the optimal thickness parameter distribution for a 

minimum weight structure with eigenvalue constraints is,  in general, straight- 

forward and simple. It i s  the actual solution of the differential equation - 
boundary value system which poses the difficulty in defining the optinnal system, 

In this section a review of the theory necessary to formulate the governing 

equations of the optimal system is given together with an example of a simple 

structural model involving torsional vibration at a given frequency. 

The theory and nomenclature a re  taken from the theory of optimal control, 

a s  f i rs t  suggested by Ashley and McIntosh (Ref. 7). The nomenclature and method 

of expressing the constraint equations a r e  also taken from the same reference, 

2 .2  An Example of Constraint Equations - A Thin Walled Cylinder in Torsion -- 
Consider (Figure 2.1) a thin-walled cylinder with the end X = 8 built 

in and the end X = L free. The equation of free torsional vibration is given by 

where GJ(X) is the torsional stiffness per unit length at station X and m(X) 

is the moment of inertia per unit length at station X. If we assume harmonic 
i w ~  

motion i. e. ~ ( X , T )  = O(X)e then equation (2.1.1) reduces to 

If we were to solve the eigenvalue problem for uniform GJ(X) = GJ 
0 

and m(X) = m we would find (Ref. 14) the nth eigenvalue equal to 
0 



with the nth eigenfw~ction 

X 
6 (XI = A sin (w -) 
n n nL 

n = O,1, ----co 

We may nondirnensionalize equation (2.2.2) to the following equation 

where 

If we let w = w and note that, for a thin-walled cylinder, GJ(x) is 
0 

propdrtional do the thickness T(x), then equation (2.2.4) becomes 

NOIN, define a nondimensional thickness parameter 

arad note "chat we may express m a s  
0 

rrm = p T o + Y  
0 

where y is a nonstructural moment of inertia contribution and p is a constant 

which depends only on geometry so that 

Finally, we can express the ratio of m(x) to mo a s  



I 
0 6 1 = p, and 6 = L = 1 - 6  
0 2 m 0 

1 

The constraint equation now may be expressed as 

2 
(to') '  +(r/2) (hlt +62)8(x) = 0 0 r x 5 1 

The addition of the nonstructural mass term is seen a s  a neeessarjr 

condition for a meaningful answer. An examination of equation (2,2,9) will show 

that, if the 62 term were not there, a possible solution to equation (2.2.9) could 

be one for which t(x) = 0. It can also be seen that, if GJ  and m are linear 

functions of T(x), the frequency w is independent of the thickness, Thue, 
n 

one may expect that the zero thickness solution might be mathematically pra~ssible 

The boundary conditions for the above problem a re  

The f i rs t  condition requires zero rotation at the fixed end and the second condi- 

tion states that no torque is applied at x = 1. 

The above second-order eigenvalue constraint equation can be expressed 

a s  two simultaneous first-order equations by introducing a new variable 

s = to' (2-2, Ll) 

Thus equation (2.2.9) can be written a s  

s' = -(at +P)B 

0 '  = s / t  

2 2 where u = (r/2) 61 and = (r/2) 6 and B(0) = s ( l )  = 0. 
2 

Thus, we have taken the free vibration equation for a nonuniform thin- 

walled cylinder having an eigenvalue (the lowest frequency of free vibration) 

equal to that of a reference structure eigenvalue and reduced it to two first-.order 

ordinary differential equations which a re  dimensionless and contain the dimension- 

less thickness parameter t(x). This is the method which will be followed in all 

the problems which involve the use of continuum structural models, 



2,3 OaLima!l Control Theory as  Applied to Systems VCTith First-Order, Ordinary 
--h 

3ifkerentiai Equation Constraints With No Constraints on the Thickness Parameter 
"- 

Some definitions of nomenclature a r e  necessary before beginning the 

diiseua;siwn of optimal control theory. These definitions a re  consistent with 

Bryson and Ho (Ref, 9). A scalar  J, called the "performance index" or,  

Bqmeri$ f~v~ct ion"  is used to define the quantity which is to be minimized, This 

quastity J is also variously known in the literature as  the "return function" 

csr rhe "payc~ff fmction. The applicability of these terms to controls problems 

is obvious, 

In the Geld of structural optimization we look for an optimal distribution 

of a tbickncss o r  weight parameter such as  t(x), which will minimize a per- 

formance index J which is itself a function of the weight o r  t h i ches s  parameter. 

For the one.-dimensiod structure discussed in Section 2 . 2 ,  the performance 

index carp be written as  

-sehes-e B and C a r e  constants related to the geometry of the structure. Since 

6 C is a finred constant, equation (2.3.13 can be just a s  simply stated a s  
2 

The problem now involves minimizing J subject to a given set  of dif- 

ferrl~lia! equation constraints and boundary conations such as  those described 

in Section 2 ,2 ,  

A brief review of optimal control theory a s  detailed in Bryson and Ho 

(Ref,  99 w i l  be given now. Some symbols will be changed from their notation 

in erder to codorm to structural terminology. Also, while the discussion will 

gaol he rigorous, it will nonetheless be correct. Let us assume that the 

struct~aral system is described by a set of N first-order, ordinary differential 

equations, (Each element of ';(XI is called a 9'state variableq' because it 



partially defines the physical state of the system.) 

( x = ( , t x  x 5 x 5 x  
o f (2, 3 ,3 )  

The (-) represents a vector or  vector function. The bomdary conditions 

a re  in general split, just a s  we saw in the simple torsion problem, with some 

specified at x = x while others a re  specified at x = x 
0 f' 

Let us consider the so-called Bolza problem where the performance 

index is of the form 

For the previously discussed torsion problem, $I = 0 and L = t(x). Our 

problem i s  to find a function t(x) which minimizes J subject to the speczted 

constraint equations ?(x). We can accomplish this by "adjoining" the eonst:raint 

equations (2.3.3) to the performance index J with multiplier functions h(x) 

(also called adjoint variables or  Lagrange Multipliers) in the following mmraer, 

For convenience, as  in equation (2.3.31, the adjoint variables are  written in 

vector form so that 

Now, define a scalar function H (called the Hamiltonian) 

If we integrate the last term on the right-hand side of equation (2,3,5) by 

parts, we will have 

Finally we approximate - to f i rs t  order - the variation of J due to a&missible 

weak variations or f irst  order changes in the "control variableii t(x) for fixed 



values of x and x 
0 f' 

\#here by a r e  any "admissible" variations of the state variables 7. The thick- 

ness parameter t(x) is called the control variable because its behavior l'controlsl' 

the r.;tate variable equations. From the constraint equations and boundary condi- 

tions, t determines 7 in a complicated manner, but we do not want to go 

through t&a tedious process of determining the variations 67 caused by 6t. - 
Therefore, we arbitrarily choose the functions h(x) in such a way as  to force 

the coefficients of the 67' s in equation (2.3.8) to vanish. We see then that 

HS some "geometric" or  state variable boundary conditions a r e  specified in the 

form 

0 
V.(X ) - v = 0 (2.3.10a) 
J Q  j 

and 

Nowia, with t11e above conditions specified, the variation 6J in equation (2.3.8) 



a$ If 6v # 0 at x = x then A = - 
f 

at x = x if 65 i s  to be zero, If 
k k avk f 9  

6v. (x 3 # 0, as  wovld be the case if no geometric or state variable bow-ndary 
1 0  

condition i s  specified a t  x = x then the multiplier of A. must be zero at 
0' 1 

x = x if 6J is to be zero. 
0 

h.(x ) = 0 if 6v.(x ) f 0 (2,3.12) 
1 0  1 0  

8H In control theory, the function - is referred to as the "impulse re- 
at 

sponse function" since it  represents the variation in J caused by a ennit impulse 

in 6t at position x when v(x ), h(x ) and the constraint equations are held fixed, 
0 0 

Finally, for an extremum of the performance index we must have 65 equal to 

zero for any admissible 6t(x) f 0. A s  a result, we see from equation (2,3,11) 

that we must have 

if Cit(x) # 0. Equation (2.3.13) is known as  the 71control equation" and is ahvays 

an algebraic rather than a differential equation. It should be noted that equation 

(2 .3 .13)  i s  only necessary if 6t(x) f 0, that is ,  if there is no constraint placed 

on the control variable t(x). 

To summarize this development, we have found that, in the absence of 

constraints on the control variable t,  we must solve the following set of dif- 

ferential equations to find a thickness parameter distribution t(x) which pro- 

duces an extremum of J, the performance index. 

N 

3 (x) = f(v, t , ~ )  (2,3,14) 

Equations (2.3.15) are  known in the calculus of variations as the E d e r -  

Lagrange equations. 

In most structural optimization work the function @(xf,v(xf)) is zero 

and the resulting optimization problem is referred to as  the "Lagrange problem, " 



The boundary conditions for this problem a r e  easy to remember, since if 

v.(x ) unspecified then h.(x ) = 0 
1 0  1 0  

v, {;a .) unspecified then h (x ) = 0 
1 i i f 

It may be seen from the above that we have N variables describing the 

sysleral behavior together with N Lagrange multipliers and one control variable 

r, The Euler-Eagrange equations plus the constraint equations and the control 

equation yield 2 N  first-order, nonlinear differential equations which a re  coupled 

together through the control equation. The 2N necessary boundary conditions 

related do these equations a r e  given in equation (2.3.17). These boundary condi- 

tions are split equally, with N being given at x and the N others at x 
0" f" 

This prsb~lem is referred to as a two-point boundary problem and is sufficient 

to solve for the 2N variables and I;(x). 

Because of the nonlinear nature of the problem and the split boundary 

conditions, these problems a r e  difficult to solve, even with numerical techniques. 

A n  interesting characteristic of the Ramiltonian function, H, is that if H is 

not an explicit function of x, then i t  will be a constant over the entire interval 

x 5 w 5 x provided that t is unconstrained. This is easily seen from the 
0 f 

-- - at d % K  + H  - 
dl2811 x t a x  

Thus, if B H(x) and if N = 0 (meaning that we a r e  on a "path" which has t 
optimal thickness t) then 



This constancy of B when t(x) i s  unconstrained and B f H(x) provides a good 

check to see that one has indeed found an extremum of J. 

on the Thickness Pa ramekr  

The discussion in Section 2.3  dealt with the problem of finding the elondi- 

Lions necessary to ensure an extremum of a performance index in which the 

state variables may o r  may not have prescribed end conditions and for which no 

constraint was placed on the thickness parameter. A slightly more complicated 

problem arises if a function of the state variables is prescribed at x = xf. Such 

a condition might arise if the optimization problem involved a cantilever beam. 

with a discrete tip mass at x = x A complicated boundary condition oeeumrs 
f" 

a t  this point because the shear, which is one of the state variables, must be 

proportional to the acceleration of the tip mass a t  x = xf. If we are  dealing with 

harmonic motion a t  a frequency w then the relation would be of the form 

where r (x) and w(x) a r e  nondimensional modal shear and deflection amplitude a 

respectively and Mt i s  the concentrated mass at the tip. 

The treatment of this type of end or terminal condition is  discussed at 

length by Bryson (Ref. 9 )  and i s  treated by adding additional or  side conditions to 

the optimization problem. These M side conditions may be expressed as an 

M-dimensional vector 

This equation may be adjoined to the performance index by another M-dimensional? 

vector 5 to form a problem similar to that discussed in Section 2.3, Since 

@ = 0, the performance index for the Lagrange problem becomes 



-T'- 
If the product rl +J i s  treated in the same manner as  the function @ in 

the development of the Bolza problem, the necessary conditions for an extremum 

of 9 are found ko be 

with 

v , ( x ) = O  or A . ( x ) = O  (i=l,2,----N) 
.. 0 1 0  

and 

The only further development necessary before solving an example 

prob:tern is 'the discussion of the method of handling constraints on the thickness 

parameter t(x). The most common constraint i s  the inequality or minimum 

gauge conskaint, that i s ,  the requirement that the thickness parameter be 

greater than (or less than) a given value. These constraints may be expressed 

c (t) = t - t(x) r o 
min min 

8 8" X < X < X  
0 f 

c ( t ) = t ( ~ ) - t  S O  
m a  max 

r/vhere t is  a minimum thickness value while t is a maximum thickness 
m in max 

value, 

If a new Hamiltonian functional i s  defined as  



it  can be shown (Ref. 9 )  that the necessary conditions for an extremum of J, 

using the above Bamiltonian, will be identical to those previously derived, T ~ I I S ,  

the Euler-Lagrange equations a r e  the same, but the control equation will  be slightly 

different since 

It can further be shown that 

The functional B plays an important part in optimal control theory,, It 

has been shown that, when there is no constraint on t(x), the variation of J 

may be written as  

Since our entire problem has been cast  in the form of finding a m i n i m m  olF J, 

it is readily seen that b J  must be either positive or zero for any admissible 

variation of t(x). This then implies that 6H(x) itself must be likewise either 

greater than or  equal to zero for all admissible 6t(x). This i s  all expressed in 

Pontryaginl s Minimum Principle which states that, for an extremum of the 

performance index J, the Bamiltonian also must be minimized over a set of all 

possible t(x). That is, B i s  decreased until either a m i n i m a  is  fc~und s ~ r  a 

constraint boundary for t(x) i s  encountered. 

The need for the positive sign on p is readily seen. Since C 1 0, t 
equation (2.4.11) becomes 

The left hand side of equation (2.4.14) is the partial derivative (with respect to t) 

of the standard "meonstrainedr1 Hamiltonian, B. If t(x) is  mconstrained then 

p = O from our previous work but, if we should encounter the cons$b-atinat boundary 

then further improvement can only be made if 6t < O that is ,  if we decrease t 



below t But, from our discussion above, this decrease in 6t should also 
m i r ~  

calxse a decrease in 6H, or 6H < 0 and thus I9 > 0 ,  Thus, the sign of IJ. 
t 

shculld be positive. Similar reasoning can be applied to the t 5 t case. 
max 

If these a r e  inequality constraints, optimization problems will have two 

o r  m ~ o r e  iw1utiorn regions. Al thugh the necessary differential equations will be 

1.ds1.11 ical i , ~  all regions, the control equation will be ~ f f e r e n t  in regions where 

+he e.r;n$rol variable is restrained. A t  the jmction points between the constrained 

an< unconstrained so1utions, the thickness parameter t(x) will, by the nature 

of the i~equal i ty  constraint, always be contimous although its f i rs t  derivative 

witla respect to x will nod. Because of this continuity, the state variables and the 

ad;30,rl variables a r e  continuous a s  a re  all their f i rs t  derivatives with respect to 

x In addition, the Hamiltonian and its derivative with respect to t(x) (the 

eontco'i eqgation) a re  continuous at the jranction points. A full treatment of the 

analil ic solution of some simple optimization problems having inequality con- 

straints is given by Armand and Vitte (Ref, 8). 

2,s An Example Problem-Free Torsional Vibration With a Single Frequency ---- 
Meld Fixed --- 

A s a simple example of the optimization of a simple structure, let us 

consider th'e thin-walled cylinder discussed iin Section 2.2. The equations 

governing this problem have discussed and solved in several previous works 

ineluding Turner (Ref. 4),Ashley and McPntosh (Ref. 7) m d  Armand and Vitte 

(WeE,  8), We wish to find the least possible weight of a cylinder with similar 

geor,~etry which has an identical f i rs t  frequency, M e n  the overall geometry is 

held fixed, the only allowable structural variation will be the wall thickness. 

Froan equation (2 .2 .9) ,  the optimal thickness must satisfy the eigenvalue 

with flg0) - LO9 (1) = 0, if the optimum s t ruch re  is to have its lowest frequency 

identical to  that of the uniform structure, 

Equation (2.5.1) may be expressed, as discussed before, a s  two 



first-order differential equations having two boundary conditions. 

The performance index may be written as  

while the ISamiltonian is written as  

If t(x) is unconstrained, then, using equations (2.3.15) and (2.3.16) the  Euler-- 

Lagrange equations may be formed together with the control equation 

and, since s(0) # 0 then hs(0) = 0 and since B ( 1 )  f 0 then h (1) = 0. 
0 

Equation (2.5.9) can be solved for the thickness, yielding 

Equations (2.5.7) through (2.5.9) and equations (2.5-2) and 42,5,3) plus 

the associated boundary conditions a r e  sufficient to determine the optimal 

thickness distribution such that J is an extremum, hopefully a minimum, A 

closer examination of these equations reveals a similarity between the state 

variable equations and the multiplier equations. In fact, it can be demonstrated 

that 



constant A is a modal or  undetermined constad which will be dis- 

LIISS 33 later, Similar relations a re  found to occur in optimization problems 

, ~ ~ 3 l v i n g  eigenvalues of conservative systems. The state variables a r e  said to 

ae ''L- A", --adjoint?' since they satisfy their own adjoint or  multiplier equations and 

the xespzctive boundary conditions. This seE-adjoint property considerably 

~bmsJI:fia>~ the problem since it reduces the 2Nth order system to Nth order. 

i3c~ E3ur"C order system becomes a second order system with the introduction 

eaqb at10i\ (2,5,11), 

{ "  

sf = -[at +p]e 

The solution 8;s these equations is found to be (Ref. 8) given by 

1/2 
= i'---- 

'ata 
) sinh (p) (2.5.15) 

The resalting khichess  distribution is given by 

in additian, the author has foiland that 

1 - 6  
I) (sinh $) 2 Ir - M = 6---- 

0 611 

Note tlnat, although the expressions for $(x) and s(x) contain the constant "A, " 

the thickness distribution m d  the Wamiltonim a re  independent of this constant, 



This constant, which occurs in the relation between the multipliers and the state 

variables,plays the role of a "modal amplitude factor" in the equations, T ~ I J S ,  

one would not only expect, but require, that the thickness not be a fmetion of the 

eigenvector amplitude but only of the eigenvector modal shape and the -- value of the 

eigenvalue itself. Thus, we can and will se t  A = 1 in all of the future investiga- 

tions since i t  does not affect the solution for t(x). Note, however, that it does 

affect the magnitude of the solution for the state variables and the multipliie~: 

functions. Note also, from equation (2.5.14) that A must be greater than zero 
2 if t ( 0 )  is to be positive, 

It is also interesting to note that, in the absence of constrainl;~ on the thick- 

ness, the value of the thickness goes to zero at the end, x = 1. This will be sees? 

to be a common characteristic of problems where no torque or  moment is pre- 

scribed at a point. It may also be seen that a t  x = 1, equation (2.5-12) is inde- 

terminate since both s(1) and t(1) a re  zero. 

An examination of the expression for H in equation (2.5.18)  show^; that 
0 

and, using L Hospital' s rule 

lim 
B = O  

61 4 0  o 

Between these upper and lower bounds the Hamiltonian is  positive, This 

behavior at the upper and lower limits occurs because the problem i s  not well 

posed at these extremes. At the lower limit, 6 = 0 ,  no structure exists to be 
1 

optimized so the minimum value of H is simply zero. At the upper limit, 

6 = 1, something more subtle occurs. As 61 -1, the magnitude of t h e  thick- 1 
ness a s  given in equation (2.5.17) grows smaller and finally vanishes as 6 1 -*I, 

This seems to say that, in the absence of any nonstructural moment of inertia, 

the optimurrm cylinder is  one with zero thickness. Physical reasoning leads one to 

assume that the problem i s  poorly posed, 

The reason for this problem' s being poorly posed is that the frequency, 

o is not an explicit function of the thickness parameter t(x) since both @J(x) 
0" 



&nd rn(x), on whose ratio w depends, a re  both linear functions of t(x). There- 
0 

fore, *,he frequency is unaffected by changes in t(x). Also, the state variable 

o r  cocstraint equations will be linear and homogeneous in t,  if there i s  no non- 

slruet?;iaral mass or  moment of inertia. Thus, for 6 = 1, t(x) = 0 is an 
1 

all,awabllie solution, With the addition of a nonstructural mass,  the constraint 

equations are  no longer homogeneous in t(x) and the problem is no longer poorly 

posed, 
2 

The expression for t (x) in equation (2.5,14) has a resemblance to the 

Rayleigh Quotient encountered in mechanics. The numerator is the square of the 

strain ecergy per unit volume while the denominator is equal to the kinetic 

energy per unit volume due to elastic deformation at a fixed frequency plus a 

constant, ''cane. " 
This concludes the brief discussion of the formulation of eigenvalue 

eonstrai.,st equations and the theory of optimization of functions which have con- 

straints in the form of first-order, ordinary differential equations. This also 

iaiill. be the last time that an analytic solution will be obtained since the discussion 

in the next section will focus on numerical estimation techniques, solution 

methods, and accuracy of these methods. 





3 ,  NWERHCAL TECHNIQUES FOR PROBLEMS WITH 
DIFFERENTU L EQUATION CONSTRAINTS 

3, i Introduction --."---- 

Chapter 2 discussed the development of a set of nonlinear differential 

equations and bomdary conditions which a r e  necessary to determine an optimal 

t9ii~hiess parameter distribution. The formulation of the necessary conditions was 

see? to be quite simple, however, the actual solution of these equations poses a 

yea1 nhstaele, $Jnfortunately, only the very simplest of problems, such as  the 

lors ior~  exarnple discussed in Section 2.5, have analytic or  exact solutions. In 

most eases, one is forced to use numerical or approximate methods to solve the 

proolern, 

Cbapker 3 will describe and discuss numerical methods which will yield 

''exactTf solutions to a wide variety of one-dimensional structural optimization - 
psobZterns with differential equation constraints. Optimal control techniques again 

prosj~ce the basis for these numerical schemes, The sections which follow will 

d i s c ~ s s  the theory behind these methods and will conclude with an example in- 

volving the *torsional frequency problem discussed in Section 2.5. 

3,2 The Transition Matrix Method -- 
O K ~  of the f i rs t  successful numerical sol.LPtion techniques encountered in 

ehis n~vestigation was the 7%ransition matrix" method. The basic discussion of 

the transition matrix technique as  applied to optimal control problems is discussed 

in B~"yson (Ref. 9). In Chapter 2 ,  optimization problems with N differential 

equation constraints were shown to lead to a problem involving 2N nonlinear dif- 

ferential equations with N boundary conditions specified at x = x and the 
0 

remaining N bomdary conditions specified a t  x = x Thus, at  either xo o r  f* 

xf 
there are N "specified1' and N "unspecif iedw or  f'undeterminedfl boundary 

conditions, 

The terms 99unspecified" or "undetermined" can be a source of some con- 

fusicsr' sines these initial o r  final conditions a r e  not, in fact, undetermined or 

unspecified. They a r e  determined by the N boundary conditions a t  x = xo - and 



the N boundary conditions a t  x = x and the 2N differential equations, However, f 
since all numerical integration schemes for solving a system of simvxlltaneous first 

order differential equations require a number of starting o r  initial values which is 

equal to the number of simultaneous equations, these N constants are initially 

unknown. In any solution scheme these N constants will be determined by the 

requirement that they have values which, when used together with the N 'sspecifisd" 

initial conditions, will yield the final N specified conditions once the 2X iequa- 

tions have been integrated horn xo to x f* 
The terms "initial" and "final" in the above discussion may be interchanged 

since the same numerical technique will work for forward as  well as backward 

integration. Most solution techniques for nonlinear , two-point boundary value 

problems have one characteristic in common; a search for these "undetermined" 

constants and the subsequent determination, by numerical integration, of the control 

variable (thickness parameter) distribution. 

In the discussion which follows, the term "optirnality equations" ~ ~ j l l  be 

used to refer  to the control equation plus al l  the first-order differential equations 

necessary to solve for t(x), the thickness parameter. These equations may be 

composed of both state and adjoint variables or ,  a s  was shown in the torsional 

vibration problem, only the coupled state variable equations. The cwpling sf the 

state variable equations is seen to occur in the control equation. The optim~raality 

equations have been shown to be of the form 

where 

with N boundary conditions specified a t  x and N conditions required et xf. 
o 

The variables F.(x) will be referred to as  system variables. The term "eccrntrol 
1 

constants1' will be used to denote the N "undefined" or "unspecified" constants 

a t  x = x This term is  used because these N constants t1contro817 the value of 
0' 

Yi(xf), the values of the system variables a t  x = x If these control constants 
f' 



are adjusted correctly, the numerical solution to the optimality equations should 

>-ield the N specified borrndary conditions at  x = x 
f * 

Let u s  define the values of the control constants at  x = x as  an N- 
o 

dimensional vector F. Also, let pe by an N-dimensional vector composed of the 

N prescribed values of y(x ). This development will concern itself only with the 
f 

cass where each element of the vector is a function of a single prescribed 
e 

y (x,) only although the transition matrix m e b d  is not restricted to this case i JL 

a n'by * 

If an initial or  "guessedv1 value of is chosen then, this value of 

together with the N prescribed boundary conditions at x = x can be used to 
0 

start the tintegration of the optimality differential equations (3.2.1) from x = x . 
o 

A t  x = x the result of the integration will be a vector (x ). There will be N 
f i f 

values of his  vector which a r e  to be made equal to their respective elements in 

Be, rhe specified values of the system variables. 

In general, these corresponding values of 7 (x I, which a re  numerically 
i f 

calculated using an assumed or initial (together with the N prescribed initial 
N 

eond~tfrsns) 'will not be identical to P . 'bVhat is needed then, is a method to perturb 
e 

in ~uch a way that the calculated values of the specified variables, defined as  
P b  

Go, cu l  be made to approach 6 . It should be noted that, at x = x we always 
e o' 

start with N specified boundary conditions and use them, together with the 

opcix~di ty  equations to generate values of F.(x ). Thus, no mattes what values 
a f 

are initially chosen for every necessary optimality condition is satisfied by 

-",he nuyn-ssrical solution except the N final specified bomdary conditions. The 
w 

solution tedsnique will involve solving a series of problems in which P takes on 
c 

different values and finally approaches Thus, one may think of the final 
e * 

nurncirical solution as  being found through a transition from an initial problem, 

in which # , to a final problem with " jj . Each of these transition e e c e 
solutions wi l l  satisfy the optimality equations (3 .2 .1 )  and have identical values of 

the N prescribed bomdary conditions at x = x By perturbing in a proper 
0' 

manner, a transition from an initial problem with and Ec Fe to a problem 
int 

with =p and Fc . Fe can be obtained. 
final 



w 

In practice, because of numerical "round-offu e r ro r ,  
P C  

will never 

exactly equal . Thus, the problem becomes one of convergence, i. e ,  , 
e 

obtaining a ser ies  of intermediate or  transitional solutions until 

where 7 is an '?error1' or  "tolerance" vector and has all elements ei > 0, 

The question remains, %ow do we perturb to bring to ?' '  Let u s  c e 
suppose that a linear relation could be found between a perturbation of and a 

resulting change of the difference between p and p . We a r e  primarily 
c e 

interested in the difference - since this gives us  one measure of how close 
c e 

we a r e  to the otpimal solution. Adding to the l is t  of definitions, let us call this 

difference 

If 6r is a perturbation of then assume that this linear relation can be written 

a s  

6; = TE&. ( 3 - 2 , s )  

- 
where 6 ( ) presents the numerical perturbation of ( ). T is called the 

transition matrix and is NXN. Each of the elements of the T matrix represents 

the change in an element of 6e for a unit change in an element of (iyj. = 1) 
i 

holding all other changes equal to zero, e.g. 

N N N -4 

If we wish to decrease - p by an amount K i. e., &(PC - P,) = -K e = 
c e - -1 

6 e then, by inverting T and prernultiplying (3.2.5) by T we have 

Therefore, if a relation such as  (3.2.5) does exist, then each element of 

the e r r o r  vector g can be reduced by a uniform amount K g by perturbing 



by an amaunt 6 ;  as  given in (3 .2 .7 ) .  If ( 3 . 2 . 5 )  were, in fact, valid then T 
could be found and, by letting K = 1, we could solve for 6$. However, since 

the system of differential equatiom is nonlinear, (3 .2 .5 )  may be regarded only 

as a first-order approximation and thus 0 < K < 1. In practice, it is the adjust- 

mect of this scalar, K , which separates the experienced researcher from the 

The matrix is called the "transition matrixn for reasons which should 

now be clear, It is this matrix which permits one to calculate the necessary 6p 
to achieve a transition from an initial o r  t r ial  solution to the "exact" or  optimal 

ss l~ t ion ,  A s  mentioned, each element T.. represents the change in the difference 
11 " 1%; for a unit change in p.(6p = 1). The transition matrix is thus always 

C ;  J j 
anA ?4 X 'PT matrix, The calculation of the elements of the transition matrix is 

usually straightforward and will be discussed in the last part  of Section 3.2 .  By 

using the above technique we can obtain a transition from a tr ial  solution to a 

final numerical solution which satisfies the optimality equations and has the 

specified initial and final boundary conditions. 

From the above discussion we can now outline a solution technique for 

solving a 2bTth order system of nonlinear differential equations with split boundary 

conditiorrs, The technique is a s  follows: 

(1) Using the N specified boundary conditions and m initial, assumed 

stet of control constants K s  integrate the necessary differential 

equations of optimality from x = x to x 
0 f" 

e.2 r., 

(2) Record /3 at  x = x calculate = $ 
f" c - Pe 

If ( G I  57, stop the 
c 

procedure here - the solution obtained is the numerical approxima- 

.ion to the optimal. solution. If (;I >: then continue, 

(3) Calculate the transition matrix 

14) Calculate $ using 

lsvhere K is pre-selected. 



(5) Form a new set  of control constants using the equation 

(6) If 1 1 has been found to be greater than 7 in step (2) above, begin 

calculations a t  step (1) using the Continue this process until 
new" 

N 

convergence has been obtained, i. e. 1; 1 5 E.  

The calculation of the transition matrix can be accomplished in several 

ways, The method to be used in this study involves solving a set  of pesturkation 

differential equations simultaneously with the optimality equations, Let 6( $ 

represent a perturbation of a variable. The operator 6 has the same properties 

as  the differential operator d( ) The perturbation of the optimality equations 

(3.2.1) and (3.2.2) yields: 

Although the optimality equations a re  nonlinear, the perturbation 

equations a re  linear in the perturbation variables. "NIT of the variables 0y 

correspond to system variables whose initial values at x = x are  elements 
0 

in the perturbation vector @. For instance, if 6y (x ) i s  set  equal tc "os.aeir k 0 

while al l  other 6y.(x ) = 0, (i # k), and the combined set of differential 
1 0  

equations (3.2.1) and (3.2.8) a r e  integrated (using equations (3,2.2) and (3, ,  2,9)) 

from x = x to x with an assumed F, then N of the final values of 63x3 
o f 

can be used to construct 6Z due to a unit perturbation in y (x ) 
k 0 

Thus 



but !((ip ) ,  is the value of one of the perturbation variables in 67(x ). Thus c B f 
the value of an entire column of the transition m a t r h  due to a unit change in the 

control constant y (x ) can be found in the following manner: 
k o 

(1) Set the value of 6y (x ) - y 4x ) is an element of the control constant k 0 k o 
vector -equal to "one1' and all other 6y.(x ) = 0; i = 1 to 2N; 

1 0  

i P k), 

(2) Using these initial perturbation values, together with the specified 

initial conditions and c, in tega te  the optimality equations and - 
the perturbation equations simultaneously from x = x to x 

0 f' 
( 3 )  Record the values of 6 3 ~ ~ ) .  These values represent the change in 

the variables ?(x ) for a unit change in the variable y (x ). Thus, f k o 
N sf these elements represent a column of the transition matrix 

since 

and @ . represents a calculated value of a particular variable y (x ) '3 i f 
which has its value prescribed. Thus, N of the values of dy(xf) 

- 
will compose a column of the transition matrix T. 

If tine above scheme is carried out N times, each time with a different value 

of hy,(x 1 set equal to 170ne" and all others zero, then the entire transition 
L 0 

matrix nqay be calculated. 
w CI 

In a11 cases studied in this thesis 6 = and each element of e c 
is a function of one system variable only. An extension of this procedure to 

ealc.lalate a transition matrix for a problem in which involves functions of c 
the -i:ariabIes is easy. If there a re  N functions $ (y (x ), t(xf)) which a r e  to i j f  
have ;>rescribed values then let 

and 



where the subscripts c and e refer  to the calculated and exact values respectively, 

Since 

then 

In this case, each element 6Z. is a function of more than one F.y.(s.;,j, 
1 3 $ 

however, the transition matrix procedure is the same since 

for a particular choice of 6y (x ) = 1. 
k 0 

The transition matrix is therefore not restricted to systems where 6 s  
i 

is a function of a single 6y.(x ). 
1 f 

3 .3  Example of the Transition Matrix Solution 

A s  an example of the general procedure described in Section 3 , 2 ,  eon- 

sider the simple torsional vibration problem discussed in Chapter 2. The 

necessary optimality conditions were found to be 

0' = s/t 
o r x c i  

s '  = - @(at + p) 

where 

with 0(0) = s(1) = 0. 

The perturbation equations for the above system a r e  





6e = -Ke = -KS 
1 1 1 

then from equation (3.3.12) 

Now, let 

S 
I 

= S + 6 S  = S  - -  
0 0 

old 
0 0 

new old 

The system equations can be numerically integrated once more froin 

x = 0 to 1 using 

s(0) = S 
0 
new 

6e(o) = o 
At x = 1, new values will be obtained for both s(1) and 6s{f), I f  S 

I 
new 

denotes the new value of s(1) then from equation (3.3.15) the folhllowing re- 

lation should hold 

if K is being chosen correctly. Since the transition matrix definition is a. 

linear approximation, if equation (3.3.19) does not hold then we have exceeded 

the limits of the linear approximation. If this is the case, K has  bee^ chosen 

too large and should be decreased on the next integration iteration. On the, 

other hand, if K is very closely equal to that given in equation (3.3,I.g) then 

a larger value of K should be chosen to drive s(1) to zero more quickly, In 

practice, it  is found that a relation such a s  equation (3.3.19) is  satisfied for 

O < K ~ K  < 1 
max 



i;h~~d.z 91 varies from one iteration to the next. A s  the e r ro r  decreases, 
a1 ax 

is is loaand to increase, A s  the solution begins to converge, that is ,  when 
P- ax 
s(P)-. 3, it is fomd that K -.I. In problems with more variables, the 

max 
;..\roblem of adjusting K becomes more complicated and is largely one of 

exg:ev-~znce with particular problems being solved. After a number of iterations, 

S will oe driven to zero and the n m e r i c a l  solution will satisfy all the necessary 
1" 

,apUm ;Bity differential equations and the boundary conditions. 

The results of an application of this method a re  shorn in Figure 3.1. 

The nosadimensisnal t h i c h e s s  distribution is plotted vs. x (no minimum 

tb8.9:;a;kness constraint is imposed on. t(x)). Using the numerical solution with a 

starting value s(O) = S = 1.0 and K from between - 8  and .95, convergence of 
1. 

che nxner~ea l ly  calculated thickness distribarGion to the analytic solution was 

achiel-ed in five iterations. 

if a comparison between the numerical and analytic solutions for t(x) 

sveze g$.r.em on a figure, the results would be inc9istinpishable. Table 3.1 gives 

.:: nu:.;9.eriea'l conaparison between these two solutions, In the table, D l  is the 

arn3-3~~. 2;. which the nth iterative value of S would change if K equalled 
o 

univ y e  If the method is conver@ng satisfactorily then this value of D l  should 

dee~ease nearly proportional to K. 

A s  a historical note, in early studies by Ashley and McIntssh (Ref. 7) ,  

this method was so successful on the torsional vibration problem that some 

.;aver-opti~aism was expressed with regard to the transition matrix procedure. 

Since, in the torsional vibration problem 

one night deduce from physical intuition that, even in an optimum thickness 

distribution, the thickness at  x = 0 will not be fa r  from unity. 

'li"hus, a good starting value for the control constant s(0) would be unity, 

Exi:ept for cases involving large values of 6 this observation holds true. Early 
1 

rescare::ers used this starting value for s(0) and the adjoint h (0) and were 8 
highly s~ecess fu l ,  Hn more complicated problems, a bit more insight is needed 



and the transition matrix procedure becomes more difficult due to the difficulty 

in estimating the control constants. 

3 . 4  Transition Matrix Solution With Minimum Thickness Constraints 

The previous discussion of the transition matrix made no mention of 

thickness constraints. A simple logical statement o r  test must be added t2 a 

computation scheme if thickness constraints a r e  to be imposed. For ~nstarace, 

in Section 3 . 3 ,  in the absence of thickness constraints the torsional vibration 

problem was solved using the equations 

with O(0) = s(1) = 0; 6s(O) = 1; 6O(O) = 0. 

Suppose, a s  an example, that the constraint 

is specified. The numerical solution method for this type problem is nearly the 

same a s  described in Section 3 .3 .  If, a t  a value x = x in the numerical c 
solution process, a value of t, a s  calculated in equation ( 3 . 4 - 3 )  is forrnd sceb 

that 

t r t  
min 

then t(xc) is se t  equal to t and 6t must be set equal to zero, The value m in 
of 6t must be zero because no variation of thickness is permitted, Time 

integration procedure continues using these values of t and 6t until such t.i=e 

when t(x) , as  calculated from equation (3 .4 .3) ,  again exceeds t If ~ n d  mine 



x hen ~ h i k  occurs, this value of t(x) is again used in the optimality equations, 

tsgethelr v,it la 6k(x) a s  calculated in equation (3.4,6), The logic may be expressed 

"3  

t = e  
s t +  o 

Then or 
t = t  

min 
5 t =  0 

Thas completes Chapter 3 and the bulk of the discussion of the numerical 

ieckzaiqa3s used to solve the optimization problems which have ordinary dif- 

ferez~tlal equation constraints, In the chapters which follow, additional techniques 

aril! be discussed as  is necessary, The following chapters present solutions to 

.,srcsb:em; vhose analytic so'bulions a re  a s  yet unknown, These numerical solutions 

hatre h e m  nbLained using the transition matrix method or  a modification of this 
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4. OPTIMIZATION OF SIMPLE BEAMS WITH ONE FLEXURAL 
VIBRATION FBEBUENCY WELD FIXED 

4. P Introduction 

This section will discuss the solution of problems involving the search 

for a least-weight design of a beam whose first  or  fundamental frequency of 

flexural vibration i s  held fixed. As in the torsional vibration problem , the 

constraint equation will be expressed in nondimensional form. The  result^ 

which a re  obtained will  then apply to any beam with similar end conditions aod 

whose length i s  held fixed. A nondimensional thickness parameter will be 

defined in each case discussed and will be used to relate the structural and 

inertia properties of the optimal beam to a uniform thickness reference bean,  

Two structural configurations will be discussed. The first  i s  a beam 

composed of two thin face-sheets with a nonstiffening core sandwiched haacAtk]i/een 

them. The problem will  be to find an optimum face-sheet thickness distaibutioc, 

without altering the core, which results in an optimum or least-weigb,t design 

and still  has a fundamental frequency identical to a beam of similar geome~ry  

and uniform face-sheet thickness. The second problem will deal with a beam of 

fixed width and length having a solid rectangular cross-section. The proble= 

will involve finding a distribution of thickness such that a least-weight design is 

found which has the same fundamental frequency a s  a uniform thiekne s s Seam 

with similar geometry. 

Two sets of boundary conditions will be considered for the sandwich 

beam problem. One set  of boundary conditions will be those due to clamping one 

end of the beam while allowing the other end to be free. The second set of 

boundary conditions will be due to fixing the beam at each end and allowing 

rotations at these ends, This set of end conditions i s  referred to as ' phned - 

pinned. The solid cross-section beam will be studied only for pinned-pinned 

boundary conditions. 



4 ,2  Least BlNeight Optimization of a Cantilever Beam Composed of Two Thin - 
:?ace-Sheets With its Fundamental Frequency Held Fixed - -"- 

The equiljibrium equation for the free flexural vibration of a simple 

beam with inextensional bending is given by: 

05X5L 

i~vhere the lateral motion is assumed to be of the form 

w*~x$T) = w(x)eiw' 

For 3 sa~idWickl beam, that is ,  a beam with thin face-sheets top and bottom, the 

bending stiffness EI(X) is given as  

2 
EIlXIB:) = 2Ebh T(X) (4.2.2) 

where: b - width of face-sheet 

h = distance of face sheet above a hypothetical neutral axis or midplane 

E = Young' s modulus 

T(X) = face sheet thickness 

Now, we nondimensionalize equation (4.2.1) by letting 

W(X) = W(X)/L 

to get She following equation: 

2 4 
(EI(x)w(x)")" - (w L )m(x)w(x) = 0 (4.2,3) 

2 
Furthermore, if EI = 2Ebh T is a reference stiffness due to a sandwich beam 

0 0 

with ~ n i f o r m  f ace-sheet thickness then, dividing by EIo, equation (4.2.3) can be 

written as 

where m is the mass per unit length of the uniform thickness beam. Since 
0 



m(x) is composed both of the contributions due to face-sheet inertia and non- 

structural core inertia, the ratio m(x)/m may be written a s  
0 

where 6 = 1 - 61 and t(x) = T(x)/To. The quantity 6 is the ratio between 2 2 
the nonstructural or  core mass and the total mass of the original structure and 

is a constant. Expression (4.2.5) i s  similar to that encountered in the tg.rsiio~..~.al 

vibration problem in Chapter 2. From equation (4.2.2) i t  is seen that the ratio 

EI(X)/EI can be written as: 
0 

Using the above expression, equation (4.2.4) becomes : 

Equation (4.2.7) is the constraint equation which any variable faee- sheet 

thickness distribution must satisfy if i t  is to have a frequency w equal to that 
0 

of the uniform structure. One further sirnplification can be made by noting that 
2 

w is, for a cantilever beam, given by 
0 

4 
By letting: a = (. 5 9 7 ~ )  6 

1 

the constraint equation (4.2.7) may be written as: 

(tw")" - (at + p)w(x) = 0 

0 5 x 5 1  

Using a change of variables, this fourth order equilibrium equation can be 

written a s  a se t  of four simultaneous, first-order, ordinary differential 

equations 

41 



v f t  = g) (4.2.10a) 

P' =q/k (4.2. 10b) 

4 '  = r (4.2.10~) 

rr = (at -t P)w (4.2.10d) 

These equations a r e  now in the form suitable for optimization theory. 

The constraint equations in equations (4.2.10a, b, c, d) could have been 

formulated without reference to the boundary conditions, Until we specify 
4 

that a = (* 5 9 7 ~ )  6 and give the boundary conditions for a cantilever, these 
P 

constraint equations a re  perfectly general. These general equations will also 

appear in the section which discusses the beam on simple supports. 

For the cantilever beam, the state variable boundary conditions a re  

w(0) = p(O) = q(P) = r ( l )  = 0 (4.2,10e) 

The state variables w, p, q, r represent the nondimensional modal deflection, 

slops, bending moment, and shear respectively. The performance index or 

merit fmction whose minimum is sought is given by 

The Bamiltonian for this problem is given by 

where Xw, h , h and h a r e  the adjoint variables o r  Lagrange multipliers 
P cl r 

for their respective state variables w, p, q, r. 

The necessary se t  of differential equations for an extremum of J is 

co~fiposed of the constraint o r  state variable equations (4.2.10a, b, c ,  d) and the 

differential equations for the adjoint variables. These adjoint equations are  

given by 

- -- EN - A9 = - A p t  + p) 
Bw w 



The control equation gives an algebraic relation between the control variable 

t(x) and the state variables and adjoint variables. 

Since t(x) occurs both in the state variable and the adjoint variable 

differential equations, they a re  both coupled and nonlinear. 

The boundary conditions for the adjoint variables may be simply expressed 

at  x = 0 either h (0) or  a(0) = 0 
a 

at  x = 1 either h (1) or  a(1) = 0 
a 

where "af' is a particular state variable such as  w. Therefore, from the 

boundary conditions in equation (4.2.10e) i t  can be seen, using equations (4,2,14aj, 

that the adjoint variable boundary conditions a r e  

Equations (4.2.10a, b, c ,  d) and (4.2.13a, b, c ,  d) together with the control 

equation and the boundary conditions (4.2.14a,b) define an eighth order, nonlinear, 

two-point, boundary value problem which must be solved to find the th iehess  

parameter distribution t(x) for the least weight beam. Fortunately, an examination 

of the state variable equations and the adjoint equations and the bounldasy colndi- 

tions shows that a solution exists for which the adjoints or  multipliers are linear 

functions of the state variables. That is: 



The constant A is arbitrary, but must be greater than zero for the 

presext problem. The adjoint variables a r e  seen to be proportional to the modal 

amplixude of the state variables. Using equation (4,2.15a), the control equation 

may be written 

2 2 2 
t ijx) = A q  /(I +aAw ) (4,2.16a) 

2 
If X > 0, O then we can see that t (x) > 0. Now, since we a re  working with 

eigerzvalue constraints, we would suspect that the thickness would depend on the 

lsrarioaas state variable mode shapes, but not the amplitude, Thus, for a set of 

A s the s t ~ ~ t e  variables such as  q(x) will have the same shape but their 

amplitudes will  vary with A. Thus, at x = x the value of q(x ) will vary 
1 P 

with A but, the product Aq(x ) will be invariant for  the optimum solution, 
1 

For ease of nwmericali computation, the value of A is set equal to unity. Then, 

equation (4,2, B6a) becomes: 

2 2 2 
t (5) = q (x)/(l  +aw ) (4.2.16b) 

Using equation (4.2,16b) together with the state variable equations, the 

eighth-order problem can be reduced to a fotlrth-order problem in the state 

variables, Using equation (4.2.15) permits us to uncouple the state variables 

from their adjoints, however, note that the state variables a r e  still coupled 

through the control equation. 

The problem of finding a thickness distribution for a minimum weight 

beam which has its f i rs t  or  fundamental frequency equal to that of a uniform 

thickness reference beam now becomes one of solving the first-order equations 

Tw 1 = P (4,2.17a) 

P' = q/t (4.2.17b) 

q 9 = s  o s x s 1  (4.2.17~) 

r q  =. (at + P)w (4-2.174 



with w(O) = p(O) = q(1) = r(l) = O and with t(x) given in equation (4.2,16b), 

A computer program was written to numerically integrate the above 

equations from x = 0 to x = 1 using as boundary conditions w(0) = p(0) = 0 

and assumed initial values of the control constants q = q(0) and r = r$O), 
0 0 

For the optimum solution, these constants q and r must have values which, 
0 0 

together with the boundary conditions w(0) = p(0) = 0 will yield q(1) - r(I$ = 0 

when the optimality differential equations (4.2.17a, b, c ,  d) a r e  integrated from 

x = O  to x = l .  

An analytic function solution to equations (4.2. IOa, b, c, d) when t(x) is 

given by equation (4,2,16b) has not yet been found. A wide variety of pos siblle 

solutions have been attempted, but with no success. However, a transition 

matrix solution has been devised to solve this problem. Using equations 

(4.2. 17a9b9 c,d) with t(x) given in equation (4.2.16b) and the boundary conditions 

w(O) = p(O) = 0, a numerical method was programmed which perturbs an initial 

se t  of assumed values of q(0) and r(0) in such a way as to eventually force 

q( l )  and r ( l )  close to zero. The result of these cyclic iterations is a n m e r i c a l  

solution to the set  of optimality equations (4.2.10a, b, c, d; 4.2.16b) for which the 

boundary conditions a r e  w(0) = p(0) = q(1) = r(1) = 0. These a re  the necessary con- 

ditions for J to be a minimum and thus our numerical solution satisfies the optimality 

conditions. To force q(1) and r(1) to zero, perturbations in q(1) a11d r(l) 

must be related to perturbations in qo and r . These relations may he writ ten,  
0 

to a f i rs t  order approximation,as 



The ? .x 2 matrix above is seen to be nothing more than a transition matrix such as  

Jescsibed in Chapter 2, For a given choice of q and r and with w(0) = p(0) = 0 ,  
o o 

the integration of the state variable equations from x = 0 to P usillg the expres- 

sion fpr t ( x )  in equation (4.2.16b) will yield values of q( l )  and r(l) which a re  

either near zero, to wit"wn some e r r o r  "clerance, or  which a re  outside this 

~ o ~ ~ Y , " R T I c ~ ? ,  !, O, 

Sf the latter ease, equation (4.2.19b), is true then perturbations in q o 

ane r must be fomd such that the next integration cycle brings the vdrues of 
0 

q(4) and r( l)  closer do zero, If we let 

where and a re  the values of q( l )  and r(l)  found at  the end of the 

Mth integration cycle, then from equation (4.2.18b) we find the perturbations 

bq0 and Cr to be 
0 

w h e n  the subscript "M" refers  to the integration cycle number, Thus, on the 

(M i l / s t  cycle, the values of qo and r will be 
0 



This type of iterative integration has been found to be extremely successfu.eal 

when the initial values of q and r a r e  chosen properly. This initial choice 
0 0 

of qo and r will be discussed below. However, before the discussion of the 
0 

estimation of q and r it would be well to discuss the generation of the 
0 0' 

transition matrix for this problem. A s  defined in Chapter 3,  the perturbation 

equations for this problem are:  

( 6 ~ ) '  = 6p (4,2,23a) 

(6q)' = 6r  

(br) '  = (at + P)(6w) +aw(6t) 

where 

The perturbation equations involve values of the state variables, The 

above perturbation equations a r e  integrated, together with the state variable 

equations and the chosen boundary conditions q and r with: 
0 0 

w(0) = p(0) = 6w(0) = 6p(0) = 6r(0) = 0; 6q(0) = 1 (4, 2,226) 

then, a t  x = 1 the values of br(1) and 6q(l) a r e  seen to be 

Similarly, with q(0) = q ; r(0) = r and w(0) = p(0) = 6w(0) = 6p(O) = 
0 0 

bq(0) = 0; 6r(0) = 1 the integration of the system equations and the perturbation 

equations yields 



T,, := 
i r i  

It wI:lY be noted that, since the perturbation equations are  linear in the 

per"rur'i;;seion variables and only depend on the system variables, the generation 
- 

of all columns of T may be done simultaneously if computer storage space permits, 

Placing a minimum t h i c h e s s  constraint on this problem is quite useful 

since, at 7: = 1, in the absence of such a constraint 

If, during the iterative integration process, a value of q(x) should be 

cncor:,rtered which is equal to zero, then the n u e r i c a l  solution process may 

divergs:. This occurs because, from equation (4,2,POb) 

1) = q/t = 0/0 (4.2. lob) 

c"(lsa vri41 *ken become numerically indeterminate, Thus, in most eases, a t  least a 

~11i7:a" m-ini~~rum-thick~2ss constraint is imposed to facilitate a solution, 

The estimation of initial values of q and r requires a little analysis, 
0 o 

The previous investigations have shown that good first approximations to the 

state variabLes) i. e. w(x), p(x), q(x), r(x)$ can be found by using the eigen- 

fucetion solutions from the uniform thickne ss solution, 

For. a. cantilever beam of uniform stiffness and mass per unit length, the 

mcde shape w(x) is found to be (Ref. 14): 

sin Q - sinh s2 
n n 

"(") = '[(cash 0 +cos On ) (sinh 0 x - sin 02) + (cosh QnX 
n 

n (4,2,30) 

- eos 0 x)] n 

Lett"ii.ag t(x) = P. and using the definitions for w, p, q, r in equations (4.2.10a, b, c ,  d), 

we f irad that the ratio r(O)/q(0) obtained using equation (4.2.3 0) as  an approxima- 

tion for w(x) i s  

sin S2 - sinh S1 
~22". = n n 
qjo) "n'cosh 0 +cos On ]r 

n 

where, for the fmdamental frequency 

48 



Thus, a good tr ial  value for the ratio in the numerical solution might be: 

Now that an estimate of the ratio of control constants has been obtained, or~lylr 

q o r  r need be estimated. Since w(0) = 0, an estimate for q = q(0) esn b? 
0 0 0 

easily obtained from equation (4.2.16b) 

For any iteration, t(0) = q(O) = qo. Thus, the estimate involves the sizing of 

t ( O ) ,  Since, initially9 the reference structure has t(0) = 1, a likely initial value 

of q o  is q = 1. From the above ratio ro/qo we find r = -1.3774. 
0 0 

These estimates were used in a computer program which uses iterative inte- 

gration to solve the optimization problem. Using these numbers, an initial. distribu- 

tion of t(x) is obtained as  shown in Figure 4.1. Using values of K = .5,. 9,. 9,. 9, 

the final converged solution of thickness distribution was obtained and is also 

shown in Figure 4.1. For this ease, ti 1' 
the initial structural mass ratio, is 

6 = 0.50. In addition, no minimum thickness constraint is imposed, A quantity, 
1 

called the "mass ratio, " is defined a s  

and is used to indicate weight savings from the optimization process, The mass 

ratio is the ratio of the total weight of the optimum beam to the total weight of the 

reference beam. In the case shown in Figure 4.1, the mass ratio is NR = 0.6632, 

Thus, the weight of the cantilever beam after optimization is 66.32% of the 

reference beam so that the result of optimization is a 33.68% savings, 

Although no analytic o r  functional solution for this optimization problenr has 

yet been obtained, an interesting check solution has been found, B at << P and 

orw << 1, then the nonlinear state variable equations may be estimated by: 



2 2 2 2 
t (xg = [q /(I +aw ) ]  = q (x) 

The exact solution to the equations above i s  given by 

2 
W(X) = x /2 

D{X) = X 

4 
w h c e  j3 = ( 0 , 5 9 7 ~ )  (1 - 61)e 

Note that this approximate solution for t(x) is linear in 6 = (1 - 
2 

This approximation is remarkably accurate, a s  e m  be seen in Figure 4.2. 9;n 

this figure, the topmost curve shows the results of expression (4.2.35~) for 

6, = 113 or 6 = 1 - 6 = 1.0, An approximation for any other value of 6 can 
i 2 1 1 

be fo.w~d by rnarltiplyirag each point on this curve marked "approximation" by 

(?  - 611 The "exactq? solutions for 6 = .l, .5, . 9  a r e  also given in Figure 4.2 1 
and show the behavior of the thickness distribution a s  a function of 6 A s  

1' 
6 +I, $3, or (1 - 6 ) +-0,0, the nonstructural mass disappears, At the same I 1 
time, as in the ease of the torsional vibration problem, this problem becomes 

poorl--7 posed, i, e, t(x) = 0 is a solution, and the load carrying structure disappears, 

that 1s = 0, 

At the opposite extreme, -+0.0, a s  decreases there is less total 

structu-e available to be optimized. Because of this, as  6 +0,0, +lo OO 1 
Figure 4,3 shows the behavior of the mass  ratio between the two extremes, 

= cs and b = 1.0. 
b I 



If a constraint is placed on the thickness in the form t(x) 2 t the 
mig' 

results of this minimum thickness constraint a t  any value of 6 for which the 
1 

problem is well posed will be similar to those shown in Figure 4.4. This fi,gure 

shows three different minimum thickness constraints together with the case for 

which t = 0. These cases all have the common parameter 6 = 0,50, A s  is 
min 1 

seen in Figure 4.4, a s  t -1.0, the optimum distribution of t(x) approaches min 
the uniform thickness reference case. In addition, a s  t +-Ie O 9  m +Ie 0- m in 

Table 4.1 shows some values of the control constants q and r which o 0 

were obtained in the previously discussed work, The values of the ratio r / q  
0 0 

are  also shown to give an indication of the accuracy of the estimation procedure 

suggested in this section, In all  cases shown in the table, this estimated ratio was 

within 4% of the llexactl' value. 

This completes the discussion of the opti.murn cantilever beam, Further 

reference will be made to this configuration after the discussion of the pinned-, 

pinned beam in the next section. 

4.3 Least Weight Optimization of a Sandwich Beam on Simple Supports With -- the 

Fundamental Frequency of Flexural Vibration Held Constant 

The nondimensional equilibrium equations for a sandwich beam an simple 

supports has the same general form a s  that given for the cantilever in Seetion 4 2 ,  

These first-order equations are: 

w' = P 

P" q/t 

q '  = r  

r t  = ( a t +  p)w 0 5 x  5 1  

For this case, a and p a r e  found to be 

(4.3, la) 

g4,3, Ill) 

(4-3, PC) 

(4 3* Id) 

The boundary conditions reflect the fact that, at  the supports, there is no deflec- 

tion o r  bending moment. This may be expressed mathematically as: 

w(0) = q(0) = w(1) = q( l )  = 0 

5 1 



Since the qumtity to be minimized is again 

the Hamiltonaan may again be written a s  

Exeect for She state variable boundary conditions and different numerical values 

I:~I a, and p, the governing equations necessary to achieve a minimum of J are  

ldentieal to those encountered in the previous section. Therefore, the adjoint 

vari able differential equations a re  : 

vu'hile the control equation can again be written as  

2 r- = h q / ( l  + ah w) 
P 1" 

Given the state variable boundary conditions in equation (4.3.23, the adjoint 

boundary conditions must be: 

It czn be shown that, given the above eighth-order system with its boundary 

eslndilions, a ssliution exists for which the following algebraic relation between the 

state variables and the multipliers will hold, 



Here again, the modal constant A appears in the state variable-adjoint 
2 

relation. If t (x) is to be positive, then A must be greater than zero, For 

ease of computation, let A equal one. Because of equation (4,3.8), the control 

equation becomes a function only of the state variables (or equivalently, only of 

the multipliers) : 

2 2 2 
t (x) = q @)/(I -taw (x)) (4,3,9) 

An examination of the boundary conditions for the problem shows that, at x = 0 

and x = 1, the thickness parameter vanishes. This vanishing of the thickness 

at  the end points gives r i s e  to singularities in the differential equations, For 

this reason, a minimum thickness constraint was used in all  cases to be discussed, 

It is worthwhile to note that the differential equations and the control 

equation for the pinned-pinned beam are  the same a s  those for the clamped-free 

beam. The boundary conditions are ,  of course, different and it will be seen 

that these differing boundary conditions give r ise  to markedly different thickness 

distributions and mass  ratios. 

The problem now becomes one of finding a numerical solution kip the differential 

equations (4.3. l a ,  b, c ,  d), with t(x) given by equation (4 .3 .9 ) ,  and the bomdary 

conditions: 

w(0) = q(0) = w(1) = q(1) = 0 

The control constants for this problem a r e  p(0) = p the nondimensional slope 
0' 

and r(0) = r the nondimensional shear. These control constants must be perturbed 
0) 

in such a way that, after several iterative integration cycles, the values of 7 w ( l )  

and q( l )  a r e  near zero. 

A first-order approximation of the relation between perturbations in p(0) 

and r(0) and the resulting perturbations in w(1) and q(1) may be expressed as: 



The matrix T is again seen to be the transition matrix for the problem. 

The nethod of soliution in this problem is similar to that used for the problem in 

Section 4 ,2 ,  

The control constants p and r must f i rs t  be estimated in a manner 
0 0 

slrnalar to that shorn in Section 4.2. Using these approximations and the boundary 

cor~ditions w(O) = q(0) = 0, the state variable equations may be integrated from 

s = Is 70 x = I, A t  x = 1, the values of w(0) and q(0) a re  recorded and compared 

"i the error  vector ye Pf 

where the s ~ ~ b s e r i p t  M refers  to the iteration cycle number. During each of 

these iritegration cycles, the transition matrix is determined by simultaneously 

integ~ating the system perturbation equations. For the pinned-pinned beam, 

the ~t?rzu,ajlrbation differential equations a r e  identical to those used for the 

cantillever beam, equations (4.2.22a, b, c ,  d; 4.2.23b), There a r e  two sets  of 

~er l~xrba t ion  boundary conditions necessary to determine the transition matrix, 

(4.3, l l a )  

and 

6:vi(O) = 6p((d) = 6q(0) = 0 ;  6r(0) = 1 (4,3. 11b) 

The first set of perturbation boundary conditions, equation (4.3. l l a ) ,  will yield 

while the second set will give 



When T has been determined, the control constant perturbations can be calculated 

from: 

On the (M + l ) s t  integration, the system boundary conditions will be: 

If at  any time the value of t(x), as given by equation (4.3-9) falls below 

t then the value of t(x), a s  used in the state variable equations, is then set 
min 

equal to t In addition, the value of 6t(x) is set  equal to zero when the constraint 
min' 

boundary, t = t is encountered. The solution to this problem is basic to the 
min9 

solution of the panel flutter optimization problem discussed in Chapter 6, For this 

reason it was researched carefully and a wide variety of solutions was obtained, 

Fi rs t  of all, let us discuss the estimation of p and r . The estirn,atioz 
0 0 

procedure is similar to that discussed in Section 4.2 and involves using the mode 

shape of the reference structure a s  an approximation for the deflection w(x) 

encountered in the optimization equations. The solution for w(x) with t(x) = 1 

and equations (4.3. l a ,  b, c ,  d) is found to be: 

w(x) = C sin ITX (4,3,15) 

Since t(x) = 1, the equations a r e  linear and the constant C is, as  yet, undeter- 

mined. Once w(x) has been approximated, the expressions for p(x), q(x) 

and r(x) also follow from equations (4.3. l a ,  b, c, d) if t(x) = 1. With these 

expressions, the ratio ro/po can be shown to be 

If the approximate solutions obtained above are inserted into the control equation 

we get 



4 2  2 
2 .rr %: sin TTX 

L (x) " 
4 2 2 

1 + n  C 5 sin TTX 
1 

It ca-a be shown that this solution for  t(x) is symmetric about x = P/2 and reaches 

i-rs rna:t~murn value there. If t(1/2) = t then the solution for 6: becomes 
max9 

Fcr a given value of 6 and for an assunaption that t 1-0 a good set 
1 max 

ss arpcax~mations for p(O) and r(O) are: 

7x cere b; i~ determined from equation (4.3.18). 

It will be noteed that the approximations for the state variables have an 

2 ~ D i i r 2 r y  modal constant multiplier @. However, once these approximations 

are ;:~.sed ini the expression for t(x) anad the value of t i s  set ,  the arbitrary 
max 

constant C is determined, This can be seen to be parallel to the discussion 

of the csnstai~t A encountered in the previous discussion, With tjx) not equal 

to a ft~r~ctio.n of the state variables, the state variable equations a r e  linear in the 

skate variables, However, once t(x) becomes a definite fmction of .the state 

variables the equations become nonlinear. Thus, for the nonlinear state 

variable equations, the solutions a r e  unique and have no arbitrary constant 

rn-dcip d ie c. 
2 

When 6 >> at and P >> crw , an approximate sollution can also be 

cbiair e$ in 8 mlanner similar to that shown in Section 4,2. If the above assump- 

tions hs ld ,  the nonlinear state variable equations become: 

w' - p (4.3.2Oa) 

p' = q/t &z I@ 0 (4,3.2Ob) 

q t  -zr (4 .3 ,20~)  

r q  = (at + p)w r pw (4.3-2Od) 



with boundary conditions 

w(0) = q(0) = w(1) = q(1) = 0 

The solutions to the above equations are:  

The solutions in equations (4.3.21a, b, c, d) a re  symmetric about x = 1/2 and the 

maximum value of t(x) also occurs at  x = 1/2 and is 

Although the above solution for thickness was obtained assuming that 

t = 0.0, that is, no thickness constraint, i t  compares rather closely with the 
m in 

exact solution obtained numerically for which 6 = . I  and t = .01, These 
1 min 

two solutions a r e  plotted in Figure 4.5 for comparison. 

The effect on the thickness distribution of varying 6 can be seen in 
1 

Figure 4.6. This figure shows three different distributions for equal to 

0.9, 0.5 and 0.1 and a minimum-thickness constraint of t = 0,10, The 
min 

mass  ratio for these configurations is also shown on the figure. 

The mass ratio M is shown vs. 6 in Figure 4.7 for several values of 
1 

6 and a thickness constraint t = . 10. The weight savings for the pinned- 
1 min 

pinned beam a r e  seen to be in the area  of six to ten percent. This result differs 

greatly from the large savings seen to be possible for the cantilever beam, 

The effect of varying the minimum thickness of a beam with a fixed value of 

6 is shown in Figure 4.8. A s  t -1 it is seen that the thickness distribution 
1 m in 

begins to approach t(x) = 1 a s  i t  should. 

Table 4.2 lists, for reference, the values of the control constants obtained 

for the cases shown in the figures, together with the ratio ro/po. These control 

constants exhibit a continuous behavior when plotted vs. 6 or  tmin. This 1 



behavicsr is extremely useful because once one or more solutions a r e  known we may 

extrapalate to find others. 

This completes the discussion of the pinned-pinned sandwich beam for the 

mornect, More will be said about this confimration in Chapter 5 as  regards the 

uniquecess af the t k c h e s s  distributions found and the solution formulation when 

~ n e  or more eigenvalues other than the fundamental frequency a r e  held fixed. The 

final port ion of this section will t reat  the problem of optimizing a pinned-pinned 

bean whose cross-section is a rectangular solid. Thus, the bending stiffness will 
3 

be fo~md to be proportional to t . 
4 , 4  Least - Weight Optimization of a Pinned-Pinned Beam of Solid Rectangular 

Cross Seetion With its Fundamental Flexural Frequency Held Constant 

T3e previous sections have dealt with beams for which the structural 

stiffness was a linear function of the nondimensional thickness and the thickness 

enters linearly in the equilibrium equation. If a beam has a solid rec tanp la r  cross- 

section, then the bending stiffness is given by 

where b is the cross-sectional width. Since the ratio of a variable bending 

stiffness tea a reference bending stiffness can be written as  

o 

iir.  em^ be shown, with reference to equation 44.2,7) that the state variable eigenvalue 

constraint equations can be written as: 

r= P (4.4-3a) 

3 
P' = g/t o r x r l  (4.4.3b) 

q\= r ( 4 . 4 , 3~ )  

r' = (at + P)w (4.4.3d) 

In the above equations, a! and P have the same values as  in Section 4.3. 

For a pinned-pinned beam the boundary conditions and values for a, and P are: 



An interesting facet of this problem i s  that a solution for 6 = I, 0 e:an be 
1 

obtained, that is, an optimum beam can be found for which there i s  no nonstruetural 

mass. This occurs because the frequency of a solid section beam depends upon the 

thickness. For a uniform beam, the square of the frequency is  given by: 

where p is the density/unit volume. Although the expression for the frequency of 

a nonuniform beam will differ from equation (4.4.4), it  i s  reasonable that the 

dependence of the frequency on beam thickness i s  similar to equation (4,4,4), 

Thus, the frequency will not be independent of thickness as  i t  was for the sandwich 

beam for p = 0, and t(x) = 0 will not be an allowable solution. 

The merit function to be minimized i s  again written as  

and, therefore, the Hamiltonian may be written a s  
=I H = t + h  p + h  - + h  r + h r ( a t + p ) w  

w P t 3  q 

The adjoint equations become 

- hf = - h (at + (3) - - -  a~ w r 



~ i k h  boundary conditions 

:t $0) = ,il. (I) = A (0) = A. (1) = 0 
P ' P r r 

The control equation for this problem is 

A eon~pasison of these equations with the state variable and adjoint 

equatiom in Section 4,3 reveals a marked similarity, A s  in Section 4.3, it can 

oe shown :hat a solution exists for which the relation between the state variables 

If the state variables a r e  chosen a s  the dependent variables, and A = 1, the 

control equai,ion can be written as: 

my 7 

1 nen, for  this problem, it is necessary only to find that solution to the set of state 

variable @qs;sations (4,4.3a, b, c, d) together with equation (4.4.8) which satisfies the 

boundary condi"cons given in equation (4.4.3e). 

The n u e s i c a l  solution process for this problem is nearly identical to 

that shown for the sandwich b a r n  in Section 4-3. The state variable and perturba- 

tion equaxions differ slightly from those in Section 4.3 but the trarasition matrix 

relation is of the same form. The perturbation equations are:  



(6q)' = 6r 

(6r)' = (at + P)(6w) +aw(6t) 

with 

The above perturbation equations and the nonlinear state variable equations 

were used with a transition matrix procedure exactly like that in Section 4-3,  This 

method was used to generate optimal thickness distributions for several problems, 

Because of the control equation, this problem is highly nonlinear, a fact which 

makes the accuracy of the numerical techniques critical. The slope of the 

thickness distribution is very high near x = 0 and x = P causing additional 

numerical problems. To remedy these problems, a large minimum t l~ichess  

constraint was used in the examples shown in Figure 4.9. 

Figure 4.9 shows two cases solved using the transition matrix method, 

These cases have 6 = 1 and 6 = 0.5; t = 0.50. There i s  little differesacs 
1 1 m in 

between the distributions having the same t but different values of 61. 
min 

4.5 Summary of Results 

Much has already been said regarding the quantitative results of the 

analyses in Chapter 4. There are ,  however, several topics which remain to be 

explored. The subject of the uniqueness of these solutions is very interesting, 

It would be well to ask; "are there any solutions other than those already found 

which also satisfy the constraints placed on the problem?" The related quesltian 

is "what does the application of additional frequency constraints do to the problem Y '  

Suppose, for instance, that the f i rs t  two frequencies a r e  held fixed o r  that oaxilg' the 

second frequency is held fixed - what results may we expect? These are i~nteresting 

and important problems that will be discussed in the next section, Chapter 5, 



-4 s regards qualitative comments on the previous studies, probably the 

most ireeresting observation to be made is one regarding weight savings for the 

same slruetasral configuration with different boundary conditions, It appears that 

quite sizable savings can be realized when clamped-free conditions a r e  enforced 

a d  O C ~ Y  the vibration frequency is held constant, This is of particular en@neering 

interest since these a r e  the type structures co only encountered in aircraft wing 

design, Tkiu~s, if there a re  no constraints such a s  s t renab ,  a great savings can be 

~ea l ized  for  cantilever structures, The results for pinned-pimed structures a r e  

less impresrsive but a r e  still significant and a r e  seen to be of the order of 10%. 
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TABLE 4.1 

Control Constants - Clamped-Free Beam. Comparison 

t =0.0 
rnin 

Estimated value of r /q = -1.37734 
0 0 



TABLE 4.2 

Control Constants - Pinned-Pinned Beam Comparison 

t =0 .10  
m in 

r 
0 2 

Estimated value of - is: -.rr = -9.86960 



5, MULTIPLE FREQUENCY CONSTRAINTS AND CONSTRAINTS ON - 
FREQUENCIES OTHER THAN THE FUNDAMENTAL 

5 , l  Introduction -- 
This section will examine problems where constraints a re  placed on natural 

frequencies other than the fundamental frequency. In addition, the question of 

optimizing weight while holding two o r  more natural frequencies fixed simultaneously 

will be considered. The results of these studies will provide valuable insight into 

the question of the uniqueness of the solutions found in the preceding sections. In 

addition, it  will be shown that, in certain cases, once one solution has been found 

holding a single frequency constant, solutions involving other frequency constraints 

may be constructed. 

A simple example of multiple frequency constraints can be illustrated 

with a torsional vibration example. As shown in Chapter 3,  the nondimensional 

eigenqfalue equilibrium equation for free torsional vibration can be written as: 

O 0  = s/t (5.2. l a )  

with 

a(o)  = = o 

For the mth eigenvalue, a! and 63 a re  equal to m m 

(5,2, l c )  

Therefore, any thickness distribution which satisfies the eigenvalue equations 

(5.2. ].a, b) with one o r  more values of a and pm prescribed by equations 
m 

(5,,2,2a, b) is an admissible candidate in the search for a least weight confimration. 

Let us fix the lowest two eigenvallues (given by m = 1 and m = 2) and apply 

optimization theory to find a least weight thickness distribution with the f irst  two 



natural frequencies of torsional vibration equal to those of a given reference 

structure. The nondimensional thickness distribution t(x) is constrained to 

satisfy - two eigenvalue equations given by 

8' = s /t 
1 1  

(5,2,3a) 

s t  = -@,t +P )8 
1 1 1  

(5,Z 3b) 

8' = s2/t 2 Q5.2,3e) 

S' = - (a2t + p ) e  
2 2 2 

(5,2,3d) 

with 

el(o) = e2(o) = s (1) = s (1) = o 
1 2 

(5,2,3e) 

and 

Note that the differential equations above have the control variable t$x) in 

common, a s  well as  the structural mass ratio, 
61* 

We wish to minimize the 

merit function, J, given by 

Therefore, the Hamiltonian for this problem may be expressed as: 

The multiplier equations a re  found to be: 



(5,2,6b) 

(5,2,6c) 

(5*2, Sd) 

A (0) = h (0) = h (1) = A (1) = 0. The control equation is found to be: 
s 

2 1 I!3 2 

These equations a r e  consistent with the previous torsional vibration problem 

which had only one frequency held fixed. In fact, this problem may be generalized to 

"a" frequency constraints with the result that we have "z" sets  of state variable 

equations Hike 45.2.3a, b) with "z" adjoint o r  multiplier equations similar to 

equations (5,2.6a, b) and a control equation of the form 

The boundary conditions for this general problem would be 

1. 

If z = 2 ,  it can be shown, a s  in the case of the single frequency constraint, 

$hat an algebraic relation exists between the state variables and the multipliers, 



Thus, the solution for the optimum thickness distribution involves solving the 

state variable equations (5.2.3a, b, c ,  d )  with the thickness given a s  a funetiol? 

of these state variables. If we choose A = -1, then 

To obtain a numerical solution we must solve the state variable differential 

equations with assumed initial conditions for s (O), s (0) and with the specified 1 2 
initial conditions 8 (0) = 9 (0) = 0. The control constants s (0) and s (0) then 

1 2 1 2 
must be perturbed, using a transition matrix, in a way such that a solutiog to  the 

state variable differential equations will be obtained for which t(x) is given by 

equation (5.2.9) and for which the boundary conditions a t  x = 1 a re  @ven by.: 

e (0) = 0 (0) = 0; s (1) s (1) r 0 
1 2 1 2 

The transition matrix relation which specifies the relation between initial and 

final perturbations is given by 

The results of a numerical computation for the above case with = 0.5 is 

compared with a problem for which only the fundamental is held fixed, These 



~ e s u l ;  s a-e shown in Figure 5-1. The state variable behavior for the 'two fixed 

irequenu;iesq' problem is shown in Figure 5,2, These mode shapes a r e  seen to be 

similar to those which a re  found for the miform reference case, A close look at 
-- * 
z'ligures 5,l and 5 - 2  t o g e t h r  with equation (5.2,s) for t(x) reveals that the 

thickness frrst decreases with x and then, because of s (x), increases again 
2 

before Iirvlaily falling to t Thus, a "hump" in the thichess distribution is 
mine 

f-;lrmed because of the inf8uence of the second frequency constraint, 

Once the n u e r i c a l  m e t b d  has been p rogammed for the computer it is 

sasji to numd3rically vary each of the parameters in the problem, An extremely 

iaterest?ng result is found by varying w and PI. These parameters a re  functions 
1 

-6 -. e . i v 0  - o t ~ e r  parameters, the nondimensional frequency the structural mass 

ratiq hl. If w and P2 a r e  held fixed and a and P a r e  reduced by one 
2 1 1 

fourth, then the problem posed is one in which weight is minimized while holding 

the f~mdamental frequency equal to one half the fundamental frequency 
2 1 2 1 2 = (--/dl 

e 2 -  old) = 2*lold ) ) of the reference structure and holding the second 

frequency equal to the second frequency of the reference structure. A s  we decrease 

the r sines of a and PI, the influence on t(x) of the f irst  set of state variables be- 
1 

r m c s  less and less. In fact, with ol = = 0, the numerical solution gives 
1 

8 {x) and s (x) equal to zero. With a = p = 8 (x) = s (x) = 0, we no longer 
4 1 1 1  1 1 

have a multipEe constraint but instead have only a constraint involving the second 

frequency, The mode shapes for 8 (x) and s (x) in this problem a r e  similar to 
2 2 

:hose shown in Figure 5.2. The thickness distribution for this case, shown in 

Figure 5-3, has a m i n i m u  t h i c h e s s  constraint for an obvious reason, ]if only 

the second frequency is held fixed, the nondimensional torque, s, is zero at two 

places in the region 0 5 x r 1. For this reason, in the absence of thickness in- 

equality constraints the thickness will also be zero because of equation (5,2.99, 

Figure 5,3 shows two thickness distributions, one with only the fmdamental 

frequeaegr held fixed and the other with only the second frequency held fixed. Both 

have the same minimaslrn thickness constraint, The mass ratios, M , are  shown 

for each problem and a r e  seen to be identical to each other, This fact, when 

first encsun2;ered, was believed to be coincidence. However, after a close study, 



i t  was proven to be true for this and certain other classes of problems, A proof 

for this will be given in Section 5.4. Notice too that there is a similarity between 

the thickness distributions shown in Figure 5,3, and that the m a x i m u  value of 

t(x) in each case i s  identical. This will also prove to be true for certain classes of 

problems. Also, the ratio between the control constants in each case is equal to 

unity. 

It will be shown later that, if the optimal thickness distribution has been found for  a. 

problem in which only the fundamental frequency i s  held fixed, one may construct 

the solution to a problem in which any single eigenvalue is held fixed, The saving in 

weight for any single frequency constraint, having the same t and 6 is 
min 1" 

invariant. This is truly a surprising result and will be studied in Section 5,4, 

In the absence of a thickness inequality constraint, holding the second 

frequency fixed while optimizing weight will cause the thickness to go to zero  

between x = 0 and x = 1 as  well a s  at x = 1. At the point where t = 0 ,  the rota- 

tion 6(x) is continuous but, its f irst  derivative 8' (x) is discontinuous and takes a 

value, in the limit a s  t(x) -+O, of plus or minus one. Thus the op t imm eonfiwra- 

tion has a discontinuity in the mode shape where the reference structure has none, 

In addition, the f i rs t  elastic frequency of the optimal structure i s  equal to the second 

elastic frequency of the reference structure. 

A counter-example for a solution uniqueness proof can readily be seen 

from the above discussion. Once we have obtained a "two humpedw solution of the 

type shown in Figure 5.3 we can reduce the parameter a! until it  becomes 
2 

numerically equal to a! The resulting thickness distribution will have a vi.br;a- 
1' 

tional frequency numerically equal to the fundamental frequency of the reference 

structure. However, the mode shape 6 (x) for the reference structure never 1 
crosses the x axis while the thickness distribution in the counter-example has 

an elastic mode shape B1(x) which does cross the x axis. The mass ratio in 

the counter-example i s  substantially less than the classic optimal distribution as 

shown in Figure 5.3. 
7 9 



If the  problem statement is of the form: "Find a minimum weight t h i ches s  

dLskibatisn which has i ts  lowest frequency identical to the of a. 

l-niforxL reference structure, " then the counter-exmple is not acceptable, The 

counter-example has a rigid body frequency and thus its is 

identiza! Lo the lowest frequency of the reference structure, Thus the crucial 

words are ynderliined above, Bf the words " " are  substituted for those 

first ~~~qdeslilaed then  he problem solution is nonunique. 

To suimmarize, it seems apparent from nuerical results that the optimiza- 

tdo: prabl-er~ is unique only if one insists that the ordering of the constrained fre- 

queccies in the, o p t i m m  c o d i a r a t i o n  is identical to that of the reference structcare, 

If we wish to hold the nth frequency fixed then the optimum structure will have its 

I;", hequency identical to the nth frequency of the reference structure, The 

phenoirrnerron in which the (n + l ) s t  frequency for the optimal structure is equal to 

the n9t lrequency in the reference structure has been termed by Ashley as  

'"irequency dippage" and by the author a s  "solution slppage, " W e n  frequency 

~lippstge o r  solution slippage occurs, the solution obtained is said to be ?'super- 

opti:1-3l, " Guarding against superoptimall solutions is elraGremely important in 

p tact- cal erlgineering work, particularly in such work a s  flutter analigrsis , since one 

obtains many flutter speeds o r  instability pojmts, Although many instability points 

occur, only the lowehjt speed is of interest because it will1 be the f i rs t  encomtesed 

by the a i r c rd t ,  If one is minimizing weight while holding this lowest flutter speed 

or eigenvak~e constant3 he must p a r d  against superoptimal solutions, These 

sc;l.uLio~s not only have a flutter speed equal to the lowest flutter speed of the 

re fersnee structure, but also have sen even lower fluuer speed wEch will be en- 

eougtsred in flight first,  T h s ,  it is usuall j~ important that not only the eigen- 

value itself be fixed during optimization but also the eigenvalue ordering must be 

preserved, Thus, the superoptimall flutter solutions a r e  not only light weight but 

also less scatble and do not satisfy the design requirement, An excellent e x m p l e  

of this phenomenon, for wing torsional divergence, is given by Armand and Vitte 

(Ref, E?\, 



Torsional Vibration 

The nondimensional equilibrium equations for free flexural (bending) vibra- 

tion of a sandwich beam have been shown to be 

w' = P (5,3, la) 

P' = q/t (5,3,l!b) 

q' = r  (5,3, lie) 

r1 = (amt +Pm)w ( 5 , 3 ,  Id) 

The boundary conditions a re  determined by the type of end restraints, as are the 

values of or and p If l ' ~ t r  of the frequencies are  held fixed, while the 
m me 

weight is minimized, the Hamiltonian becomes 

The multiplier equations become 

The multiplier variables will have q'z" boundary conditions determined by the 

"zU state variable boundary conditions. The control equation can be written 



An algebraic: relation between the state variables and the adjoint or  multiplier 

variables can be s h o w  to be similar to that given in Section 4.3. 

No ~m~ultiple frequency examples for BXemral vibration have been attempted. 

However, typical solutions for  which the second elastic frequency was held fixed 

are snown in Figures 5.4 and 5.5 for  the cantilever beam and the pinned-pinned 

sandix;ieh beam, For comparison, the solutions for cornfigurations having the same 

values of 6 and t 
1 

are  shown which have only their fmdamental frequencies held 
m in 

fixed, 'The two solutions for the cantilever a r e  seen to be dissimilar, whereas, the 

solutii ons for the pinned-pinned beam a r e  markedly similar in f ~ r m .  They both 

have the same t and the same mass  ratio and, in fact, they appear to be peri- 
m a  

odic 809ution6 with one solution having twice the period in x as  the other. 

The pinned-pimed beam solutions will be shorn to be related to each other 

just  as the  sohtions for torsional vibration were, and the a r  

miquisness, unless the problem is correctly stated, will also apply. The solution 

similarity also w i l  be discussed in Section 5.4. 

Let us return to the beam on simple supports, for which a single frequency 

is he12 fixed, We have previously shown that there is a relation between the state 

variables and the multipliers given by: 

A similar relation using the independent variable 1: = (1 - x) may be found to be 



if, and only if, one also assumes that 

t(x) = t (1 - x) = t(L) (5,3,7$ 

The relation in equation ( 5 . 3 . 7 )  states that the thickness astribution is symmketric 

about the coordinate x = 1/2. 

Unlike the modal constant A ,  which was required to be positive if a ssliu- 

Lion was to exist, the constant B may take on both positive and negative val!ues, 

If B > 0, it can be shown that the state variables w(x) and q(x) a re  symmetric 

about x = 1/2 while p(x) and r(x) a r e  antisymmetric about this point, If 

B < 0, it can also be shown that w(x) and p(x) must be antisymmetric whf.le 

p(x) and r(x) a r e  symmetric in order for a solution for t(x) to exist, 

A s  a final example of multiple frequency constraints, let us fearmulate $he 

problem, without actually solving it, for a cantilever beam whose bending stiff- 

ness and torsional stiffness a r e  linear functions of the nondimensional Q;fmicIaqess - 
parameter t(x), Tne nondimensional equilibrium equations for uncoupled bending 

and torsion may be expressed as: 

8' = s/t 

st = - (att +Pt)S 

where 

the boundary conditions for the problem a r e  

w(0) = p(0) = 8(0) = q( l )  = r ( l )  = s(1) = 0 

The performance index, o r  meri t  function is, 

J =J1 tax 



so thaa. %he Hamilkonian becomes: 

8 = t t;\wP +Apq/t+A r +A (G t + P ) w  
q r t  t 

+Ags/t +A&-(a,t + pt)e) 

The ~13ltipcDliier equations become 

__ _.- "- -- A, = ( a , t + p ) h  
ae s t s  

~ P ~ l l e  the bomdary conditions a re  

A (0) = A (0) = h (0) = h (1) = h (1) = h (1) = O 
q '  r s w P 8 

The eqcationis a re  coupled together by the control equation: 

2 
t (x) = ( A  q + h s ) / ( l  +a A w - atAs8) (5.3.14b) 

P 8 b r 

Therefore, the solution to this problem involves a 12th order nonlinear 

cystern of &fferential equations with six boundary conditions specified a t  x = 0 

dad six at x = 1. A s  in all the other cases studied involving conservative 

vibration problems, there is an algebraic relation between the state variables 

and the Lauange multipliers. 



where A > 0. Thus, the control equation becomes, with A = 1, 

and one need only consider the set  of coupled state variable equations and 

boundary conditions to find a solution to the problem, 

The numerical solution method for the problem is quite similar to those 

shown previously* 4 linear relation between the changes in the control constants, 

in this case q(O), r(O), s ( O ) ,  and changes in the specified boundary conditions at 

x = 1, q(l), r ( l ) ,  s(1) is postulated to be: 

Although this problem has not been programmed for the computer, be- 

cause of budget considerations, it  is felt that the solution is not difficult. This 

problem and related problems of coupled bending and torsion are  of interest in 

solving wing bending-torsion flutter optimization problems. 

5.4 Similarity Transformations in the Construetion of Higher Eigenvalue -- Constraint 
Solutions From a Known Optimal Solution 

Several of the solutions found in Sections 5.2 and 5 . 3  appear to be similar, 

This similarity will be shown to occur a when the structure has reference 

eigenvalues which a re  integer multiples of one another. For a structural eon- 

figuration of this type, the following statement will be shown to be true: 



' T o r  a given %;hichess  constraint and value of 6 the total possible 
1" 

weight savings for a structure, when my single frequency is  held fixed during 

optimL-,i zatisn, is a constant, independent of the fixed frequency. Furthermore, 

the .3ptim al t h f ehes s  &stribution for any fixed frequency can be shorn to be a 

2 e ~ 5 0 d i ~  sxtension of the &s tribution found holding the fhandmenlal frequency 

2 x 5  Finally9 the control conatants md state variables for m y  fixed frequency 
* * 

1L9."e.r -r ,on~ Qmse obtained while holding the funhmen td  frequency constant by a 

432s&:a,s: mulltiplieative factor which is a function of the ratio between the h i a e r  

>igs,.n va2~re and the fundamental eigenval~eae~ q q  

Now let us prove this Ien@hy statement and bmonstra te  the ideas to which 

.L c s f c ~ s  Suppose that we h o w  the solution to the optimization problem for the 

'cmearn on stm,plie supports with its fmdamental frequency held Bxed, Such a 

aolutlon has been shown to satis@ the equations: 

(5.4, l a )  

(5.4, Ib) 

(5.4, PC) 

4 0 ~ x 4 1  = 5 s r  p = ( I - 6 ) ~  
4 

1 1  1 1 

Rye wash to fhd a solution to a problem which has it8 of free 

w3brataon held fked. The equations which s p c i b  this problem are: 



q1 (x) = r9 (x) (5,4,2c) n n 

rv  (x) = (a t (x) -t p )w (x) n n n n n 

tn(x) 5 t 
min 

w (0) = w (I) = q (0) = q (1) = 0 
n n n n 

4 O r x r l  a =61(nir) Pn=(l-S1)(nn) 4 
n 

X Let us define a new dependent variable p = - and let the r a g e  of x be 
n 

extended 

0 S x 5 n  

so  that 

o p r i  

and 

Now, assume that the solution given by equations (5.4. l a ,  b, c, d, e, f,  g) ,  caliled 

the fundamental solution for 0 5 x 5 1, can be extended periodically for O ": x 5 n 

so  that w (x) and q (x) will be equal to zero for x = 0,1,2,3,. . . . n, Since 
1 1 

t (x) is a function of the squares of the state variables, it too will be periodac 1 
and always positive. 

Now, assume that 

w (c) = Cw (x) 0 ( X  5 n  
n 1 

where C is, a s  yet, an undetermined constant. From equations (5,4, la) and 

45.4.2a) we get the following 



1. 1 cw: (x) = CP1(~) = ;wn(p) = ,P,(P) 

Thus, we see that, because of the definition in equation (5.4.5) 

1 
C P , ( ~ )  = ;P,(P) (5.4.6b) 

O.;:x5n; 0 5 p r 1  

S imi l a r l~~*  using the state variable equations for p (x) and p (x), 1 n 

Csl@) 1 1 s n (P) 
~ p ;  (x) = ---- = -b (p) = t-) - 

-. tl(x) n2 n 
n 
2 tn(p) 

A s sume , for  the moment, that 

tl(x) = t , (~ )  

then, from equation (5.5.7) we find that 

2 
Cql(x) = (5.4.9) 

Using the state variable equations for  q (x) and q (p) we find 
1 n 

2 1 
r 

2 n 
n Cp;(x) = n Crl(x) = -a (p) = -(p) 

n n n 

Thus, from equation (5.4.10) we get 

Finally, using relation (5,4.11) we get 

1. 1 
=. '-r Qp) = -(a t + p )w (p) n n n n n  n n 

Thus, we are left with the relation 

4 
For a pinned-pinned beam, a = n a! n 1 

4 
while pn = n PI 



Substituting these relations into equation (5.4.13) and remembering that w n (p) = 

Cwl(x) we get 

'Mre have postulated that t (x) = t (p) and, if this is true, equation (5.4,15$ i~s an 
1 n 

2 identity. Let us now calculate t (p) in terms of the fundamental soliution, From n 
the above identities 

Thus, if: 

we will have the relation 

0 i p 5 1  0 S x  5 n  

Now, exactly what has this long derivation shown? If we have the solu- 

tion to the fundamental problem and if this solution is periodic from x = 0 l.o n, 

where n is an integer, then the solution 



:s a ~oiut i r -n to the weight optimization problem where the nth natural frequency 

i e  heid fixed, Since the solution is periodic, the &&ches s  will take on values of 

i 
9 

at x = 0, x = -,, . . ., 1, and all the bomdary conditions will be satisfied. m in aa 
&lacs  because the modal deflection shapes of the optimal distribution will have 

the 3% 7;e number of crossing points on the x-ads, we can a s sme  ourselves that 

'l ,:else u l l l  l a s t  be "frequency slippage. " This then itr an optimal solution and not a 

sup&lacpti~al solution, 

'3 hs above resultrr were, in fact, tested numerically and found to be correct, 

For ~ n ~ t a r c t ? ~  the control constagnLs for the problem with only the third ellastis: 

f~ex:ce*-ey helid f k e d  were fomd to be: 

P,, P1(0) 
c = p3(0) = 3= - 
* 30 3 

'3 h~ key to the above demonstration was the fact that w (x) and ql(x) 
B 

-%;.rere r&riodic such that they took on values of zero at x = 0,1,2,3,. . . . nz, This 

\vilB csa"iy hal~pen ii the ratio between the eigenvalues a re  integer multiples of one 

mother, For this reason, the a b v e  statements do mot hold for the cantilever beam 

pr o ~ ~ e r n ~  

The invariance of the ma@s ratio lJDt can be seen from the folowing: 
A 

Chmgblg variables @ves 

Beea~~se of p e r i o d i ~ i t y ~  of period unity, of t (nx), we find 1 



Thus, 

If we have the solution to the f m d m e n t d  torsional vibration weight 

optimization problem, then, for the nth free  brati ion frequency held fixed, 

the state variables a re  given by 

1 
6 (x) = - e (mx) 
n m 1 

t (x) = t (mx) O 5 x 5 1 
1 

(5,4,236) 
n 

Qm = 2n - 1) (5,4,20d) 

where the state variables el and s a re  the fundamental solutions. 
1 

This section has discussed a gro up of solutions involvhg multiple eigs;nval.de 

constrdnts and constraints on single eigenvalues other than the lowest, These 

solutions and their behavior are  of more than passing academic interest, The;- 

show, for instance, that, using numerical techniques which are available, the 

solution may not be unique. Thus, if an estimate of control constants is in- 

correctly chosen, one might obtain a superoptimal solution. In practical 

engheerimg work this could be dangerous where the eigenvallues involtre rn~Ft8biBjtg 

parmeters .  

An observation which will be of great importance for the panel flutter 

optimization problem in Chapter 6 is that the shape of the optimal tEchess  d i s t ~ i b u -  

tion for a particular fixed frequency is similar to that obtained by substitutiieg the 

reference structure mode shapes into the control equation. For instance, be- 

cause the modal deflection and bending moment go to zero at x = 1/2 for t h e  

second elastic frequency for the reference structure, one expects similar be-- 

havior for the optimal structure. Thus, by exmining the control equation, one 

can predict the qualitative behavior of the thickness distribution. In all cases 

studied in this thesis, the reference mode shapes always gave an accurate 



aual&Lati~ie indication of the t h i c h e s s  distribution bhav is r .  'Thus, if one has a 

p%~me,d-parm~ed beam to be optimized, an examimtion of the mode shapes for w(x) 

and q(x) for the f i r s t  frequency should indieale that the t"ni@kness distribution he 

wiS18 Ilna4ly obtain will have only one m a x i m u  and that it will occur at  x = 1/2. 

The next section will exarnfne a problem which involves a structure with 

nsneo-loi.rvative aerodynamic loading. This solution evaded researchers for 

~ s v e r s l  years because little was Bunown about the basic bhav ior  of solutions such 

qs xt$a~e @ h o w  in this section, Finally, the exp r i snce  wi;th problems such a s  

~hesa pr~vit ied the pomdwork  necessary to solve this difficult problem. 
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6. OPTIMIZATION OF A N  INITIALLY FIAT PANEL IN 
HIGH MACH NUMBER SUPERSONIC FLOW WITH ITS 

A ERODYNANPIC FLUTTER PARAMETER HELD CONSTANT 

6.1 Introduction 

This chapter will discuss panel flutter optimization, the search for a 

least-weight thickness distribution for an initially flat plate-beam with the con- 

straint that its critical flutter parameter in supersonic flow i s  held eonstaalt during 

the optimization, Only the simplest case of panel flutter will be discussed, that 

i s ,  one for which the following assumptions a r e  made. 

(a) The panel i s  initially flat. 

(b) There are no inplane stresses.  

(c) The panel res t s  on simple supports. 

(d) The aerodynamic forces act on only one side of the panel* 

(e) The Mach number is sufficiently high so that quasi-steady linearlzsd 

supersonic flow may be used (M > 1.6). 

(f) The panel is of infinite dimension in a direction perpendicular to the 

free stream direction (spanwise), i. e. the problem is one--dimensional. 

(g) The panel i s  of sandwich construction with thin face sheets top and 

bottom and a nonstructural core in between. 

Figure 6 ,1  shows the structural configuration and nomenclature for t h i s  

problem. The general problem of panel flutter is discussed fully in Ref, 15, 

The following section will discuss numerical techniques used to determir~e 

the instability parameter for this type of problem. In addition, othe~r sections 

will illustrate methods for obtaining initial estimates of the thickness distribution 

before finally using a modified transition matrix procedure to solve the neces- 

sary optimization equations. The end result of this study will  he a thickness 

distribution for a sandwich panel which has a least total weight. 

6 -2  The Determination of the Critical Aerodynamic Parameter For Panel Flutter 

Before beginning the discussion of the panel flutter optjimization problem, 

it would be well to review the method of solution for simple panel flutter problems, 



Far the panel configuration shown in Figure 6.1, the governing nondimensional 

differential (:quation of equilibrium with quasi-steady linearized sklpersonie aero- 

dg~namics and simple harmonic motion can be written as  

Equsiirsn (6,2.P) is written using the variables 

x = ~ / a  

D = reference plate stiffness (constant thickness panel) 
0 

= 2, a 3 b  M2 - 1 ' (aerodynamic parameter) 
0 0 0 

qo = dynamic pressure 

If the  assumptions listed in Section 6.1 a r e  to be applied, then we must 

have 

R = o  
Xx  

For a panell on simple supports, the boundary conditions will be 

~ ( 0 )  = w(1) = 0 

twW(0) = &"(l) = 0 



Equation (6.2. 1) i s  a complex equation because of the aerodynamic damping term 

(bracketed in equation (6.2.1)). Studies have shown (Ref. 15) that this term may be 

neglected without great loss of accuracy in a great number of cases. Therefore, 

this study will neglect this damping term in order to simplgy the calculations, 

With aerodynamic damping neglected, equation (6.2.1) can be written as 

where 

Relation (6.2.3b) occurs because 

where w i s  the fundamental frequency of free vibration of the panel, Thus, 
o 

the variable zo is seen to be 

If = 0 and z = 1, equation (6.2.2) reduces to the nondimensional equa- 
0 0 

tion for free flexural vibration in the fundamental mode that we encountered in 

Chapter 4. If 1 = 0 and z = 2, the constraint equation corresponds to the equa- 
0 0 

tion for free vibration with the second frequency fixed. 

With h f 0, equation (6.2.2) belongs to a class of equations termed 
0 

lfnon-self-adjoint. " These equations arise in nonconservative elastic systenras, 

that is ,  systems where the work done during any single cycle of oseillatioa is a 

function of the path taken during that cycle. Free  vibration systems, in the 

absence of damping, a re  termed conservative because the energy of the system iis 



conserved over any cycle of oscillation. A characteristic of nonconservative 

systems such as the panel, a s  discussed by Bolotin ((Ref, 171, is that, as the 

pirmeter causing the system to be nonconservative is increased, the vibration 

frequencies - which a r e  rea l  - a r e  changed in such a way that they approach 

eaek o:h?aes in pairs. At a certain critical point, if there is no damping, one set 

of ma': frequencies will "merge" o r  become equal to each other, B the parameter is 

raised further, these merged frequencies no longer remain real ,  but become complex 

conjuyates of one another. Because the motion is a s s u e d  to be of the form 

and il there is no system damping present,if w = a ? iP, then the behavior of 

w(x;"\ will be divergent and thus unstable, If the nonconservative p a r m e t e s  is 

increased further, additional pairs of frequencies will merge, In physical problems, 

the nonconservative p a r m e t e r  is often equal to an airspeed o r  a follower load, 

therefore, we a r e  usually only hteres ted in the lowest value of the parameter which 

causes B;,se system to become unstable. 

For the panel flutter problem, it is expected that, for a given value of A 
0 )  

(A* = critical value of k for instability) 
0 o 

2 
the frequencies in equation (6.2.2) a r e  rea l  and distinct - in this case z is 

0 

seal, For srdues of A > A*, no solution to eqiuakion (6.2.2) with the prescribed 
0 0 

boundary conditions is possible - unless the equation and the variables a re  assumed 

complex, i, e, 

One method of solution, given a khicbess distribution, is to fix h and 
0 

solve for  z Since z is a free vibration frequency p a r m e t e r  it is multivalued, 
0' 0 

B several values of h a r e  chosen, a graph can be drawn showing the behavior of 
0 

1 v s ,  z and eventually a point will be found where z = z12) where z (n) 
0 o9 0 (4 0 

refers to the nth value of the frequency parameter for a fixed k . B, on the 
0 

other band, we choose z and choose it to be a rea l  number, then we may solve 
0 

for the corresponding h and construct a graph of ho vs. zo. This latter 
0 



t ecb ique  has the advantage that, for a fixed value of z the parameter will 
0) 0 

be single valued Also, since we a r e  concerned only with the merging of real h e -  

quencies, the merging point can be seen to be the point at  which h reaches its 
dh " - O at this maximum value for rea l  values of z It can further be shown that - - 

0' dz, 
merging point. A graph such a s  that described above is shown in Fistre 6,2, 

There a r e  many ways to solve the eigenvalue problem posed in equation 

(6.2.2), but one numerical method which will give an exact solution (exa.ee in the 

numerical sense) was used by the author in this study. This method uses the unit 

solutions to equation (6.2,2) to generate a determinant which must be forced to zero 

if boundary conditions a r e  to be met. The solution technique begins by defia~ing 

awriliary variables a s  : 

p = ~ r ?  (6,2,4a) 

q = twl' (6,2,4b) 

r = (twn)' (6,2,4e) 

Equation (6.2.2) then can be written a s  four simultaneous, first-order, linear 

differential equations. 

w' = P $6,2, 5a) 

P' = q/t $6,2,, ,5b) 

qv = r  (6,2,, 5e) 

r' = (at +P)w - 
hop 

(6,2, 5d) 

o s x r 1  

where 

;end 

w(0) = w(1) = q(0) = q( l )  = 0 

Assume, for the moment, that t(x) is known analytically; equations (6,2,5a, 5, e, d) 

a r e  then linear functions of the boundary conditions p(0) = p 0 and r(0) = r 0 

since w(0) = q(0) = 0. The solutions for w(x) and q(x) may be symbolically 

written, by linear superposition, a s  
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The :funcliosns vv (x), w (x), q (x), q (x) a r e  called unit solutions for the following 
P r P r 

reason, The function w (x) is the solution for w(x) in equation (6,2,5a) with 
P 

initial conditions 

while q (x) 1s equal to q(x) in equation (6.2,5c) for the r ; m e  boundary conditions, 
P 

The fe~netions w (x) and q (x) a r e  similarly formed using the bomdary conditions r r 
r(0) = I; w(0) = p(0) = q(0) = 0 

'The solutions (6.2. Cia, b) must satisfy the boundary conditions w( l )  = q(B) = O or  

For a. nontrivial solution, p f 0, ro f 0 ,  the determinant of the m a t r k  in 
0 

equation (6,2,7) must be zero. Thus 

A p a p h  of A vs, z can easily be constructed in the following msenner: 
0 0 

(a) For a given function t(x) and fixed parameters z and 6 guess 
Cl I* 

a value of A . 
0 

(b) Obtain ---- numerically - the unit solution values necessary to 

construct the determinmt in equation (6.2.8) - in general 

f(t(x), Ao, zo) = f(Ao) f 0. 

(a71 Perturb h in such a way a s  to reduce the value of fQA ). 
0 0 

(dl Begin again at  step (b) and iterate on the value A. until f(Ao) is close 

enough to zero that h may be considered exact, This gives a 
0 

(5, z ) point for the configuration. 
0 

No~s that since the determinant is a function f(t(x), bl, Ao, zo), we could choose 

mgr .- one of the parameters to force the unit solution determinant to zero. 



Figure 6.2 shows two typical plots of h vs. z . The solid curve is that for  
0 o 

a uniform thickness panel (t(x) = 1) while the broken line i s  a plot showing the h 
0 

vs. z behavior of an optimum panel to be shorn later. Note that the frequency 
0 

dAo mer@ng occurs a t  a point where = 0. The classic paper by Hedgepeth (Ref, 16) 
0 

shows, for a un ihrm thickness panel, that ha = 343.2. This present sbdy has 
0 

found h* = 343.2 and z*  = 1.82. 
o o 

a1 to -"- 
that of a Uniform Thickness Reference Panel 

The formulation of the constraints for the panel flutter optimiza,tion problem 

is different than that encountered in the fixed frequency problems disicussetl in 

previous sections. One of the necessary conditions for the flutter problem is that 

the t h i ches s  astribution satisfy equations (6.2.5a, b, c, d) with the associated 

bomdary conditions and with = 343.2. The constraint equation set is a two 
0 

parameter eigenvalue problem but z i s  not explicitly required to assume any fixed 
0 

value. The satisfaction of equations (6.2.5a, b, c, d) is, however, only a ceeessarg 

condition and is not sufficient to specify the flutter problem constraints, 

If we set  = 343.2 andlet  z take on a set  of values near z*  tlrasn, 
0 0 0 

using equations (6.2.5a, b, c, d) a s  the constraint conditions, we can solve a series 

of optimization problems each having h = 343.2 but with different values of a; 
o 0 

The distributions found in each of these optimization problems will a11 have one 

characteristic in common. If we construct the (b, zo) curves for each sf then ,  
d h  

they will have flutter parameters - places where -2. = 0 - which are equal 
dz, * 

to or  greater than A* = 343.2. This must occur because of the general shape of 
0 

the ( h  , z ) curve. By picking h = 343.2 we thus ensure the fact that a co~n- 
o 0 0 

figuration has a point on its ( A  , z ) curve where h is at least 343,2, Each of 
0 o 0 

these optimal solutions will have a mass ratio associated with it. Sinice A. = 343,2 
0 

i s  a esmlnon characteristic of each solution, the mass ratio, for a given t 
m i n  

and 6 is a function only of z 
1" on 

E the problem is to have a solution, there will be a well defined minimum 

value of rvff for a certain z = z This configuration for (A z ) will have a 
0 opt" o2 opt 

(Ao, z ) curve tangent to the line h = 343.2. Thus, the f ree  parameter z 
opt 0 a3 



in the constraint equations is adjusted to find an optimum solution which has 
d;i, A = 343-2 and = 0. This then is the true s p t i m m  solution. If should be 

0 Zn 

noted flat this procidure only applies for a system with no dmping,  that is, one 

which has merging frequencies. 

To s m m a r i z e ,  the optimum thickness distribution satisfies the constraint 

~quat ions  {6,2.5a9 b, e, d) with A = 343.2 and with z determined such that the 
o - 0 

r e s d t ~ n g  $A , z $ p a p h  is 
0 63 

to the line h = 343,2, TMs parameter z 
0 o 

~ T U S ~ ,  be determined through a ser ies  of suboptimal problems which have 

A"" 2 343,2, until one value z i s  found for which the mass ratio i s  a minimum, 
0 opt 

Any h~r the r  increase or  decrease in z will result in configurations with larger 
o 

snass ratios and with h* > 343,2, 
0 

03- 4 - 
Sicce our panel model has infinite span, the term " m i n i m u  weight" has 

no meaning, If, however, we choose to minimize the weigM of a str ip of panel 

of unit spanwise width, the merit  function may be written as: 

With equatilons (6,2.5a, b, c ,  d) as  the constraint equations, the Hmi l ton im be- 

comes 

F I = t  +APq/t +A r + h  [(at + p)w - hop] 
4 r 

(6* 4* 2) 

The alultiplier equations are: 



The control equation is 

with the boundary conditions 

h (0) = h (I) = h (0 )  = (1) = 0 
P P r r 

Except for  the term in brackets in equation (6.4.3b), these adjoint equations are 

identical to those seen previously in fixed frequency optimization problems, These 

equations were f i rs t  presented by Ashley and McIntosh (Ref. 7) and are, by now, 

well-known. IVhile the equations a r e  well-known, their solution is not well- 

knowri and has been the subject of a great deal of discussion since 1968, Fol- 

lowing a suggestion by Turner, Armand (Ref. 8) has shown that, with the above 

aaeessary conditions for an extremum, there will be at least one solution %GI the 

problem in which t(x} is symmetric, that i s  

t(x) = t (1 - X) (6,4,, 4 )  

It follows that, if the solution is unique, then this type of solution is - the solution, 

At this time, no rigorous mathematical proof exists which shows that there is or is 

not a unique solution. Also, since optimal control theory only guarantees an 

extremum, this solution may lead to a maximum or a minimum. If t(x) = t ( B  - x), 
a relation between the state variables and the multipliers exists and is found to be 

where B i s  a modal constant, which apparently may be positive or  negative, it 

may be noted that, if h = 0, our constraint equations reduce to the beam free 
0 

vibration equations. Equation (6.4.5) is identical to equation (5,4,6) if h. o = 0, 

It will be remembered that, for h = 0, and B > 0, the state variables w(x) 
0 



q(x) never cross  the x-axis and the solution corresponds to the fixed funda- 

me;:ia! frequency problem. If B < 0 and lo = 0, both w(x) and q(x) change 

sagns when they cross  the axis and the solution corresponds to the fixed second 

freqv~ency problem. This observation will  be of great  importance when solving 

t3.c psr~biem later on. 

Csirng equation (6.4,5) we can write the control equation as  

2 2 t (XI = t (1 - x) = Bq(x)q(B - x)/(B +cwBw(x)w(l - x)) (6,4.6) 

Note thaz t11e aerodynamic p a r m e t e r  does not enter explicitly into this expres- 

sion for t(x), With h f 0, no reduction in the n w b e r  of dependent variables can 
0 

be made since we can make no further assumption about the behavior oh w(x) 

and 1 1  - x (for lo = 0, w(x) = w(l - x) o r  w(x) = - w(l - x)). However, since 

x is the independent variable in the problem, we see that, a s  x goes from B to 

1/2, 3 == (1 - X) goes from 0 to 1/2 therefore we may reduce the integration 

interval on any numerical scheme by defining a new variable 0 5 p 5 1/2 where 

p = l - x ,  

The state variable equations a r e  

'kv {x) = p(x) (6.4,7a) 

PYX) = qq(x)/t (6,4.7b) 

q f  4x1 = r(x) (6 .4 .7~)  

r (r) = (at + P)w(x) - hOp(x) (6,4.7d) 

wit!! 

~ ( o )  = ~ 6 - i )  = q p )  = q ( ~ )  

Let 
- 
w = w ( l  - X) 
- 
p = 13(1 - X) 

- 
9 = q(1 - 
- r = rjP - x) 

and 



Therefore, from equations (6.4.7a,b, c, d) we get 

o r p  51 

qo) = W ( l )  = C(0) = q(1) = 0 

with 

Note that w(1) = w(O), etc. and that, at x = 1/2, w(1/2) = w(1/2); 5(1/2) = p(1/2), 
- 
q(l/2) = q(I/2); F(1/2) = r(1/2). (6,4,9) 

A s  the problem now i s  written, we have eight dependent variables with four 

independent boundary conditions. 

w(0) = W(0) = q(0) = q(0) = 0 

or  

~ 4 1 )  = E(n) = G(I) = q(l )  = o 
m d  four undetermined control constants 

~(0); FfO); r(0); W) 
or  

~ ( 1 ) ;  fiS(1b; r(1); 31) 

From continuity of the state variables, we must have the relations in equation 

(6.4,9) hold at x = 1/2. The transition matrix, to be discussed later, \ w i l l  then 

involve integrating equations (6.4.7a, b, c ,  d) and (6.4.8a, b, e ,  d) with eequatior 

(6,4,8@) and the boundary conditions over 0 r x r 1/2 and 0 r p -' 1/2 and 

forcing continuity at x = 1/2. This transition matrix will be a 4 x 4 matrix, 

klthouglul the observation that t =t has not reduced the number of variables, 



l"tw;ll! enaole us  to reduce the range of integration, 

Before begliming the ascuss ion of the transition matrix solution, it is 

neeepsaTlr to discuss techniques for the estimation of our u&om paramekrs ,  

LX previous sections this e s~mak ion  discussion centered on the estimation of the 

control constwts. In this section, for  reasons which will later becorn-e apparent, 

the dissussion will h e l l  on the estimation o r  approx"h&ion of the optimal 

thickmess d~stribution, t(x), 

The panel flutter problem was at  f i rs t  thought to be a mere extension of 

the pre\-~ot~sly solved beam problems. However, the eigenvalues in the problem, 
4 

X" = f i3,2, (%*TI 1100 a r e  far  larger than anything that had been previously 
6 8 

sncountered, Because of the size sf A* and z*, the constraint equations a r e  
o o 

extrerncly sensitive to initial conditions, In ad&tion,the paper by Turner 

(Ref, 12) .$resented a finite element solution wMch led the author to believe that the 

ewsnnal so1/ution for t(x) would be similar in form to that found holding the 

fundanaeztal frequency constant. In fact, several $lu&ter analyses were done on 

these configurations and it was found that b e m s  which were optimized while 

holding the fundamental frequency constant had f l u ~ e r  parameters of from 325 

to S35, depending on the values of 6 and t 
1 

In general, for values of 6 
min' 1 

close to 1, the flutter parameter A* was only three percent lower than that for the 
0 

uniform thickness reference case. Initial assaults on the problem using the s t a k  

variable equations - and the multiplier equations and with no assumptions as  to the 

of t ( x )  ended in failure for what was then a curious reason. No set  of 

estimated control constmts could be found which would keep the t h i ches s  diskribu- 

tion Iron1 equaling zero in the range O 5 x 5 1. For  my set of estimated control 

coir-stants, the resulting thickness &stribution given then by equation (6.4-3f) would 

f i r s t  rise to a maimurn  value near x = - 2 5 ,  then fall sharply in the vicinity of 

x = .45* Even with a m i n i m m  thickness constraint, the integration method 

would &\rerge because numbers would soon go out of range. Thf s skrmge bhav ior  

led to the adoption of the assumption that t(x) = t ( l  - x) and a reformulation of 

the problem as  it is presented in Section 6-4, 



After a great many tr ials  and failures, the thought came to mind that perhaps 

Turner7 s results, although obviously correct for the level of complexity that he 

chose, were inconclusive. Perhaps the optimum panel did have some straige, 

manticipated shape. If so, the task was to find this shape. Let us examine the 

expres sion for the thicknes s a s  given in equation (6.4.8e) 

In the absence of minimum thickness constraints, the optimum th i ches s  distribu- 

tj.on must be zero a t  x = 0 and at x = 1. This occurs because q(0) = q(l) = 0, 

In the language of variational calculus, an admissible t r ia l  function for t(x) must 

be such that t(0) = t(1) = 0, In addition, we have chosen t4x) = t ( l  - x), An 

obvious choice for a valid approximation for t(x) i s  seen to be 

(m odd) 

From our definition of the merit  function, this expression for t(x) yields 

(m odd) 

In addition, t(x) i s  also required to satisfy the constraint equations 

w' = p  

P' = g/t 

q*  = r  

rv = (at + ( 3 ) ~  - 
hbp 

with 

w(0) = w(1) = q(0) = q(1) (6,5,38) 

Section 6,2 described a numerical method for determining p a r m e t e r s  such that 

the above eigenvalue equations a r e  satisfied. This method involves forcing to 

zero a determinant, given symbolically by 



Siaee the reference panel flutters a t  h = 343.2 and z = 1.82 let us set  the 
o 0 

values of ( A  , z ) in the equation (6.5.3d) to these vdues. For a given value of 
0 o 

51, the eigenvalue determinant is now a function only of ( t  t . . . . t ). If we B Y  3 $  N 
set N - 3. of these thickness parameter values equal to specific numbers, 

then the remaining value t can be determined by choosing it in such a way that i 
:(a,) - o 
6tVith this logic, a preliminary study was done using a s  an approximation 

e(x) = . OB + t sin nx + t sin 3m 
1 3 (6-5.5) 

The consts:nt , Ol in equation (6.5.5) is added to ensure that equation (6.5,3b) 

is nest numerically indeterminate. Thus equation (6,s. 4) defines a function which 

is "yir!mnst admissible. " For any combination of values of t and t3, the mass 
1 

ratno for a strip of panel of unit spanwise width is given by: 

For the andysis,  the values 

'4. = 343,2 
0 

were ~ s e d ,  A value k was selected; then the value of t was determined by 1 3 
nuw~erieally forcing the determinant 

ARer t had been determined, the mass ratio was calculated with equation 
3 

(6,5* 61, This mass ratio is plotted a s  a function of t in Figure 6.3 and a s  a 
1 

function of t in Figure 6.4. Four typical tPNickness distributions found using 
3 

this method a re  shown in Figure 6.5. Two sirnineant conclusions can be drawn 

frssszl these figures. The f i rs t  conclusion can be drawn from the behavior of 

in Figures 6 , 3  and 6.4 where i t  is seen that mass ratio (and thus J) has a very 



smooth behavior and a well defined minimum. This well-behaved nature of 

led to the belief that the exact solution would be similarly well behaved and that 

an absolute minimum would be found without encomtering local minima in the 

process. A second and less favorable conclusion can be drawn from Figure 6,s- 

Although the mass ratio changes only slightly in the four cases showri, the --- shapes 
of the astributions change radically. From this, it was concluded that the problem 

might be slow to converge when an exact solution was attempted, The approxima- 

tion do the minimum weight distribution with two terms of a sine series shows 

very pronounced peaks in the vicinity of x = .2  and x = -8 ,  This behavior was 

compared to the results of initial attempts a t  the transition matrix preaeed~ire 

which had failed near x = .5. Perhaps the exact optimal thickness distribution 

has two maxima, instead of one maximum at x = 1/2 7 - 
Figure 6 ,6  shows a plot of the mode shapes (the amplitude is unspecified 

here) for q(x) and w(x) and also the products q(x)q(l - x) and w(x)w(l - x) 
obtained from the analysis of the minimum weight "sine panel" found in the: above 

study. Although the signs of w(x) and q(x) may be plus or minus times those 

shown in Figure 6.6, the signs of the products w(x)w(l - x) and q(x)q(P - rr) 
a r e  invariant because they a re  products. Since q(x)q(l - x) is the nurnera4,or 

in the expression for t(x) and because this product is negative while t(x) mus t  

be positive, one may tentatively conclude that, because of the behavior of the mode 

shapes in the thickness approximation, the arbitrary constant I3 in equation (6,4,8eE 

should be negative for a meaningful solution to exist. 

One may see that, with B < 0, the state variable q(x) will have to change 

signs somewhere over the range 0 5 x 5 1. If B c 0 and if the exact optirium 

value of q(x) is to be similar to the approximation shown in Figure 6-6, this 

sign change can only occur a t  x = 1/2 because of the symmetry of I;(@, If the 

product q(x)q(l - x) i s  positive with B < 0 then there must be a constraint 

t(x) 2 t otherwise a negative thickness would result. Therefore, a11 the 
min' 

evidence accumulated from the "sine panel" study pointed to a two-peaked panel 

a s  the final solution. With this evidence in mind, the study again returned do the 

transition matrix procedure which had earlier been abandoned. 



6,6 Trmsit ion Matrix Solutions for the Op t imm Panel With its Flutter Speed Fixed - 
Section 6.4 showed that a necessary condition for a t h i ches s  distribution 

for minimum weight is that the following differential equations a re  satisfied: 

7wV (x) = p(x) (6.6, l a )  

p ' (x) = q(x)/t (6,6. 1b) 

qyx) = r(x) (6.6. l c )  

r' (x) = (at + P)w(x) - Aop(x) (6.6. Id) 

- 
W(P) = - PBP) (6.6. Pe) 

with bomt%~zsy conditions 
- 
w ( 0 )  = w(0) = q(0) = q(0) = 0 

and the continuity condition 

(6,6. k i )  

Vi7c s\lspect9 from Section 6.5, that B = - 1, and therefore will use this value 

in all n~imerical  calculations. The problem above is a form of two-point 

bgaurldary value problem much like that encountered previously, with the ranges 

of x and 13 both being 0 to 1/2. Equation se t  (6.6.1) can be intemated 
- 

sim~~ltaneously,  using estimates of the control constants p(0) , p(O), r(0), s(0) , 
$0 generate tr ial  values of t(x), which has been forced to be symmetric, In 

general, for any numerical computation the values of the respective state 
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variables a t  x = 1/2 will not be equal, that i s ,  equation (6.6. Ik) will not be 
- - 

satisfied. Our solution technique will involve perturbing p,, ro, p,$ ro in such 

a way as  to force equation (6.6. lk)  to be approximately satisfied. 

We begin by defining the quantities 

For any numerical integration cycle, the components of the column matrix in 

equation (6.6.2) will have numerical values. The object of the iteration is to 

reduce these A( ) quantities to zero. We postulate a f i rs t  order relation 

where each element T.. gives the change in one of these same quantities for 
13 

a unit perturbation in one of the control constants, with all other control eoastmt 

perturbations se t  zero. The elements of the matrix T.. a r e  obtainable from the 
1J 

perturbation equations of the system. These perturbation equations are  

(6r)' = (at + P)(6w) - ho(6p) +aw6t (6,6,4d) 



Element T will be the change in Aw for a unit perturb&ion in p (6p = 1) 
11 0 0 

with zaill other initial perturbations se t  equal to zero. The change in Aw i s  simply 

The other trmsition matrix elements have a similar obvious definition. The 

perturbatior~ equations may be integrated, with four different sets of initial perturba- 

tion boundary comditions, simultaneously with equation set  (6.6.1) for a given set  
- - 

of estimated control constants pop ro9 po, r * 
0 

Several interesting observations should be noted, By assuming the thick- 

ness symmetric about x = 1/2, the integration interval has been reduced by one- 

half. BLI~ ,  on the other hand, the number of dependent variables has not been 

reduced, having remained at eight. The transition matrix for this problem i s  

4 by 4 and is thus four times as  large as  any previously encountered, T h s ,  the 

simple incl~tsion of the airload p a r m e t e r  h into the beam problem has greatly 
0 

changed the complexity of the problem. 

Our previous discussion and analysis has led us to believe that the constant 

3 ffs negatcve, We must not however, disallow the fact that B may be positive. 

For thjs reason, two solutions were attempted, one with B = 1 and the other 

with. IE = - JL* The f i rs t  solution attempts with h = 343.2 and z = I. $2 were 
0 0 

failures, no matter what value of B was chosen, because the e r rors ,  Aw, etc., 

were ax$remely large for the estimated values of the control constants. Once 

agaira, the transition matrix method failed to be an effective approach. 

Previous experience with beam vikation problems and the torsional 

vibs2tion problem has shown that the control constants will be continuous functions 

of ths problem parameters such a s  6 and tmin. 
1 

It was safe to assume that the 

control cons t a t s  for the flutter problem should be eontimoues functions of the 



problem parameters h and z This, in fact, is the case and was finally the 
o 0' 

approach used to achieve the final answer. If B = - 1 and h = 0, Ithe problem 
0 

reduces to one in which we minimize the weight of a strip of panel of unit width 

while holding the second frequency of free vibration constant. The solution to 

this problem, a s  well a s  the control constants, was readily available from 

previous work. If h is made slightly positive, say h = 5, the control 
o o 

constants for A = 0 are  good initial estimates and can be used to solve this 
o 

problem. A s  the parameter i s  increased, we can graphically estimate the new 
0 

values of the control constants and obtain extremely accurate estimates, Thus, 

we can obtain a series of solutions to equation set  (6.6. I), each having A dif- 
0 

ferent, but with z = 2. 
o 

If z = 2, an increase in h results in a solution which has a higher MI . 
0 0 

At h = 200, NR was close to 1. At this point z was reduced to I., 99 and 
0 0 

equation set  (6.6.1) was solved using ( h  , z ) = (200,1. 99). This so lu t i~n  
0 0 

produced an NW which was less than that for (200,Z. 0). This technique was 

continued until a solution for (343.2,1. 96) was obtained. This solution had an 

NR = 1.231, meaning that it  weighed 23.1% more than a similar uniform thick- 

ness panel. It also had a higher value of h* than h = 343.2. Since the re- 
o o 

quirement that h* = 343.2 had been surpassed, z was varied to satisfy the 
o 0 

requirement that flutter occur a t  h = 343.2, that is, 343.2 will be the 
o 

maximum value taken on by the ( A  , z ) curve. A decrease in z and subse- 
0 0 o9 

quent solution of the optimization problem, resulted in a lower . The control 

constants for decreasing z were again easily estimated because they e~ibited 
0 

a continuous behavior for changes in z A graph of r v ~  with h = 343,2 and 
0' o 

for various values of z is presented in Figure 6 .7 .  From this f i p r e ,  it is 
o 

seen that a minimum value of rn is reached a t  (343.2,l. 87) for this confi~ration, 

The thickness distribution corresponding to this minimum vah~e  is shorn 

in Figure 6.8. For comparison, the nondimensional deflection w(x) and the 

nondimensional bending moment q(x) a re  shown in Figures 6.9 and 6,10 

respectively. 



Thi~i t h i c h e s s  distribution behavior is highly unorthodox, to say the least, 

and livas met, initiallyey, with suspicion by the author and his  advisor. There are, 

~i.o.iniever, several reasons for believing these results to be valid: 

(1) The flutter mode shape is similar to that encsuaa%ered in the analysis 

of the reference panel. 

(2) The sine ser ies  approximation for the optimal thickness distribution 

ef i ib i ts  similar behavior. 

93) The mass  ratio M is of the same order of m a p i b d e  as  that 

previously encountered in pinned-pinned beam fixed frequency 

problems and in the sine ser ies  approximation. 

(4) Finally, this t h i c h e s s  distribution shape has been shown to give a 

h , z curve similar to that for the reference panel. 
0 o 

Figure 6. I shows a h vs. z curve for a panel similar to that shorn in o 0 

Figure 6, PI, This panel was optimized using z = 1,87 with $1 = 343.2 and 
0 o 

5 = 1,0, t = 0,50, Next, the h vs. z curve shown in Figure 6.1 was generated 
1 rn in o o 
and it was found that A* for the panel was 343.22, slightly greater d;han the re-  

o 
guired value. A t  f i rst ,  it was thought that this distribution was close to the 

optimum, However, subsewent anallysis showed that for 6 = 1. O and t = 0,50, I min 
an additional weight savings of 1% could be found by reducing z from 1.87 to 

o 
1,824, This distribution is shown in Figure 6.11 and is the actual optimal distribu- 

tion, This study showed that for a given 6 and t 1 
and with A = 343.2 the 

m in o 
mass ratio was not very sensitive to changes in z A careful analysis is re-  

o ° 
quired to find the actual z* which yields the optimal thickness distribution, 

o 
Several distributions with varying structural parameters a r e  shown 

in Fig-re 6,12. An interesting characteristic of this problem is that an optimum 

beam, with its second frequency held fixed, weighs more than a similarly sup- 

ported optimum beam whose flutter parameter is fixed. A beam with 

5- = . a  P 

has mass ratios 



NR = 0.91138 (fixed frequency) 

IMZ = 0.88493 (fixed A*) 
0 

This difference of over 2.5% is seen to be too large to be attributable to any dif- 

ference in solution accuracy. Also, although the uniform th i ches s  panel flutters 

with A* = 343.2, and z* = 1.82 the optimum panels flutter with A* = 343,2 but 
0 0 o 

with z* from 1.82 to 1.87 for the cases analyzed. Although a case for w8-riel-p 
0 

t = 0 was not computed, it is expected that flutter for this limiting case wou1d 
min 

involve the coalescence of a rigid body frequency (z = 0) and the f i rs t  elastic 
0 

frequency, and that t(1/2) = 0, with the bending moment q(x) crossing the 

x-axis at  x = 1/2. 

The analysis above was carried out with the modal constant B = - 1, The 

optimization equations were also used with B = + 1, but with no meanaindul 

results. For A = 0 and z = 1 with B = +-I, the problem solution corresponds 
0 0 

to the minimum weight beam with its fundamental frequency held constant, If 

z is fixed a t  z = 1 and A is slowly increased, a ser ies  of solutions are obtained 
0 0 0 

with the mass  ratio,.NR , decreasing with increasing A . The nondimensional! 
0 

deflection w(x) and nondimensional bending moment q(x) keep their respective 

signs over 0 5 x 5 1. 

This technique was successful for low values of h . However, at a s:alue of 
0 

A near 50, convergence problems were encountered. These convergence problems 
0 

could only be remedied by raising the value of zo, with the result that M! 

also increased. The trouble was traced to the fact that at certain values of A 
0 

and z the solution apparently wanted to change form and let w(x) and q(x) 
0 

have a cross-over point similar to the cases encountered with B = - 1, However, 

because B = + 1, this is not possible. Thus, the only solutions obtainable with 

B = + 1 were very high M solutions. Because of this, the solution. with 13 = i- 1 

was abandoned. 

No theoretical reason can be offered for B = - 1 being a solution while 

B = + 1 is not. It may be remembered that the theory we a r e  using guarantees us 

an extremum of our meri t  function. Of course, it is hoped that this extremum is 

a minimum, but it may be that, with B = - 1, we get an extremum which is a 



n~inimurn,  while B = + 1 will also give us  an e ~ r e m u m  which corresponds to a 

maXircum* 

6,7 Summar2 ---- 
The panel flutter problem is by f a r  the most interesting problem solved 

d~urilrig th~s study because the behavior of the system of governing equations makes 

the ~olut ion (extremely difficult, For this season, a great deal of computer time 

was evpendeld studying the behavior of the system equations and s f  the optimization 

probkem. xtself, However, the greatest difficulty anad obstacle to overcome was 

the closed-mindehess of the author himself. IWhen one "knows intuitively" what 

the 3rswer should look like, he renders the problem doubly difficult. In this ease, 

the belief that the optimum must look like previously derived solutions with fixed 

freque..se:i constraints automatically disallowed the evern&uali and final solution, 

If there is any value in structural optimization at  all, i t  lies in discovering 

unantie~pated solutions, If we "know" the optimum solution, why go to the trouble of 

the generation of optimal solutions ? It is the author' s opinion that not even an 

experseneed aeroelastician could have anticipated this optimal panel solution, If 

for ao other reason, optimization has proven valuable in showing the trend o r  form 

of the panel shape. From the above solutions we can draw the conclusion that, to 

raise the flutter speed of a uniform panel with a small change in wei@t we should --- 
stifien the panel near x = .30 and x = -70. These positions correspond to places 

where the optimum panel is &ickest. We may also deduce that adding a stiffener 

3t m~id;:hord (x = 1/2) is not as  efficient a s  adding it elsewhere, 

The r3umericall difficulties encountered in this problem suggest that this 

size problem is a s  large as  can be eonveni;ently handled by a transition matrix 

method, Unless a sophisticated numerical scaling technique is used, one will 

sncoumter difficulties integrating the equations m d  inverting the transition matrix. 

Let it be noted, however, that the transition matrix procedure has never failed in 

any of the problems treated t h s  far. It would therefore be a great mistake to 

automa"iically dismiss it, 

The use of estimation techniques such a s  the sine ser ies  approdmation for 



t(x) appears to be an inexpensive, effective, easy-to-use technique for most 

eigenvalue constraint problems. It may be noted that although the shape of the 

"exact" optimal thickness distribution differs greatly from the two term sine 

ser ies  approximation, the mass ratios differ by only 2% to 3%. The results in 

this chapter should be qualified by a final remark. No damping was considered 

in these studies. It may well be that the addition of the aerodynamic damping 

term to the constraint equations will make a significant difference in the results, 

On the other hand, this zero damping solution is a limiting case and the author 

doubts that the addition of a slight bit of damping would substantially change the 

solution. This i s  certainly an area  for future research. 

This completes the treatment of sys tems which have differential equation 

constraints. The following section will discuss parameter optimization, that is, 

the optimization of a system described by a finite set  of structural parameters, 



























7 ,  LEAST-WEIGHT DESIGNS USING FIPgITE E L E M E N T  STRUCTmAL - 
!dODEEiS AND FIEST-ORDER GEADIEm OPTIMIZA TEON METHODS 

'7-1 6wLroduction --- 
This final chapter of analysis will concern itsell with realistic design 

methods such as might be used in actual engineering design problems, The 

strk;ewral ~?niodeBs for the studies will be obtained using finite element analysis 

techniques while the optimization technique will be patterned alter one described 

by Rubin (Ref, 13). For comparison with previous results found usirng continuous 

one-di~nensional structural models and optimal control theory, two problems will 

be ~tudied k n  this chapter. The first  problem discussed will be the least weight 

~ptirnnza%ion sf a beam on simple supports with a frequency constraint, The 

o$her study will involve solving the panel flutter optimization problem while con- 

straining the critical aerodynamic flutter parameter k? Both of these problems 

will. use I'inilte element techniques to describe the elastic and inertia properties 

cf the one-dimensional structures involved. 

C,'n%ike the constraints imposed on the problems in previous chapters, 

the constraint requirements in this chapter will be imposed such that a parameter, 

either the frequency or  the aerodynamic flutter parameter, i s  held close to a 

reference parameter to within a specified tolermce. The optimization technique 

suggested by Rubin (Ref, 13) was chosen &cause of its simplicity and the ease of 

progamming it for the digjltal computer. 

7 , 2  F 
--" 

The field of structural modeling using discrete parameters or finite elements 

is e x t r e ~ ~ e l y  broad and complex. The end result of m y  finite elemernL method is, 

however, always the same, For problems involving dynmic  response, a mass 

matrix a d  a. stiffness matrix a r e  calculated to describe the inertia and elastic 

properties of the structure, Any structure i s  considered to be an assemblage of 

smaller structural elements which have their own elemental mass matrices and 

stiffrless =atrices. These elemental matrices a re  combined to form the total 



system matrices by enforcing a requirement of geometrical codinuity of displace- 

ment and slope a t  the boundary between each element. The analysis then pro- 

ceeds using only the displacements and rotations of a finite number of points on the 

structure as  variables. These variables a r e  termed "generalized di splacements " 
and the discrete points a re  termed "nodes. I T  

Within each element a continuous displacement pattern or fm~etlon is chosen 

which is a function only of the generalized displacements. This furaction is re-. 

stricted by the requirement that the satisfaction of geometric compatibility at the 

nodes must ensure geometric compatibility along any element boundary, Using 

the displacement pattern or  function, elemental mass and stiffness matrices are 

generated using energy methods similar to Rayleigh-Ritz techniques, These 

techniques a r e  well described in books such a s  Przemieniecki (Ref, 18) and 

Zienkiewicz (Ref. 19). It will be assumed that the reader has at least a 

rudimentary knowledge of matrix techniques for structural analysis, This study 

will be concerned only with simple beam elements. These elements are well 

known in the literature and, for this study, the author derived elemental mlass and 

stiffness matrices for a beam element whose bending sti££ness and mass varied 

linearly along the length of the element. These matrices a r e  listed in the Appendix, 

These beam elements a re  called "tapered elementsfT and a re  useful for  analyzing a 

beam whose mass  and stiffness properties change rapidly along its length, 

7.3 A First-Order Gradient Techniaue 

The description of the method which follows was described in detail by 

Rubin (Ref. 13) and belongs to a class of optimization schemes referred t o  as 

"first-order gradient techniques. l 1  While it does have some drawbacks which will! 

be discussed later, this method i s  an excellent technique for optimizing the type 

of structures to be studied. 

To begin, let us define the merit function (also called the l~olbjeetive 

function") as  the total nondimensional weight of the beam 



'The N va-m:iables t. a re  design parameters which define a beam dimension and 
1 

which are free to be varied to achieve an edremum. of W. In the simple beam 

cases which follow, t. i s  the nondimensional thickness at  a node point and w. 
1 1 

has values such that W is a nondimensional wei@t of the structure. W is 
0 

the total weigPlL of any nonstructural mass. The change in the total weight is  

expressed as a function of changes in the d e s i ~  variables At.. 
I 

N 

Let es multiply equation (7.3.2) by -1 to get 

If the right-hand side of equation ( 7 . 3 , 3 )  can be made to be positive, then 

AriV will be negative, that is, the change in total weight, for a given set of ehnges  

ins the design variables, will be negative. 

In the examples which will follow, an eigenvalue pasmeter ,  0, will be 

fixed, Since this eigenvalue i s  a function of the &s ip  variables, the total change 

in t h i s  eigenvalue parameter may be written as 

an d o =  -tit at. i 
i = l  11 

If slinalrd design variable changes a r e  used and only first-order terms a re  re- 

The eoastraint that i s  equal to a constant may then be written as 

where 



Thus, where there were originally N independent design variables, the con- 

straint equation (7.3.6) has reduced this number to N - 1. Let us consider the 

jth element in the above summation and solve for At 
j* 

N gi 
At. = - C -Ati 

g J i = 1  j 

Now, substitute equation (7.3.7) into equation (7.3.3) to get 

where 

Equation (7.3.9a) is an expression for the negative change in weight as  a function: 

of changes in ( N  - 1) design variables. Let us define these changes as 

where E is a positive constant and I Gi ( max is the maximum absolute value of 

the se t  of gradients Gi, i # j. If we substitute equation (7.3.10) into equation 

(7.3.9a) we get the following equation. 

1 
- A W = E ~  - t. = ES 

IGil 1 i = l  

i f j  
max 



where S is the value of the above summation. Since t. 2 0, the value of this 
1 

suirpam~ation can be seen to always be 

S 20 

and thus LAW 5 0, Furthermore, the value of E can be seen to be 

If a 2% decrease in weight is desired, then we must have 

A.V = - 0.02w 

and 

The above method will provide a se t  of At. which causes a decrease in W a s  
1 

long as there is a value G.ji j) which is non-zero. In turn, Gi will be 
a 

unequal to zero a s  long a s  g.w. g.w.. 
1 1  J l  

an The calcullation of the - te rms is essential Lo this method and is 
ati 

easily accomplished for the fixed frequency case, These terms a r e  gradients 

of S? with respect to the design variables, "c.. Although several other authors 
P an have det~led similar o r  more general teckaniques for calculating - when ati 

G is a frequency, a recent paper by Zarghamee (Ref. 20) gives a clear, concise, 

specialized e x m p l e  of an analytic expression which may be used to give these 

der~vatives, This frequency gradient generation method will be discussed in 

Section "$4, 

The continuous problems treated in previous chapters were constrained 

to have one olr more frequencies exactly equal to those of a given reference structure. 

Because of the slight inaccuracies and the assumptions of linearity of the optimiza- 

tion techiques ,  the frequency may qqc9jrift" o r  vary from that of the reference 

structure during the design process. Because of this, the frequency constraint 

is expressed a s  a frequency band constraint, that is, the frequency is constrained 

to be held witKn a certain tolerance or range on either side of a specified fre- 

quency, In the cases studied in this investigation the square of the frequency of 



the optimized structure was held to within f . 5 %  of the square of the frequency 

of the original or  reference structure. 

If the frequency drifts outside this tolerance band, the optimization 

design cycle must be stopped. A design cycle is then used to bring the frequency 

back to within the specified tolerances. Rubin also provides a scheme for 

performing this task using the least possible weight, that is, chan@ng the 

frequency a given amount using the least possible weight. 

If the frequency i s  to be modified, changes in the design variables equal 

At. = Kt.(+ 
l l g i l  - rnax 

a r e  used, where K is a positive o r  negative constant. The total change in 

frequency is seen to be 

N 
2 

2 N (gi) ti 
b = C giAti= K C 

i =  1 i = l  Igil 
rnax 

with 

N 
C [--ti] 
i=  1 lgil 

rnax 

7.4 Weight Minimization of a Finite-Element Beam on Simple Supports With. its 

Fundamental Frequency Constrained 

A beam composed of thin face-sheets (a sandwich beam) with a nonstructural 

core may be modeled a s  a finite element beam with Z equal segmients as shown 

in Figure 7.1. The beam res t s  on simple supports so  that the translational dis- 

placements at the beam ends a r e  zero. The total number of unrestrained generalized 

displacements is 

n = 2 Z  



~f [&I] is the mass  matrix for the structure while [K] is the stiffness m a t r k ,  the 

matrix equation of free vibration may be written a s  

where [MI and (Kj a r e  n x n symmetric matrices. The vector { q )  i s  n x l 

and represents the vector of generalized displacements as  shown in Figure 7,B. 

Equation (7.4.1) represents an eigenvalue problem and has n rea l  

eigenvalues and eigenvectors 

(P) From matrix Lheory, the eigenvectors { q 1 a r e  osGhogonal with respect to 

[Mi, That is 

is termed the generalized mass  for  the pth eigenvector. If equation (7.4.1) 

is nondbmensionalized, the eigenvectors and eigenvalues will be nondimensional 

also, For a sandwich structure, the system mass and stiffness matrices can 

IMI = [Mol + C t imi l  
i=l 

nxn n x n  n x n  

[B3 = k I + C 
0 

i = l  nxn n x n  n x n  

where ti is a nondimensional face-sheet th ichess .  The matrices [m.] o r  
1 

[ki] are matrices which give the mass  or  stiffness contribution to the system 

due to the design variable t.. Note that there will be many zero o r  null elements 
1 

i~ these matrices, Also, note that 



Using the technique described by Zarghamee (Ref. 20), let us differentiak 
2 

the matrix expression (7.4.1) (for a particular value of w ) with respect to a 
P 

design variable t., 
1 

aw * 
2 P 2 

[-wp[Ml + (K11 + [ - 3 [ M J  - P [mil + [kill = 0 ("a 4 7) 

Because the transpose of the eigenvalue problem posed in equation (7 ,4 ,P )  has 

the same eigenvalues and eigenvectors ([MI and [K] a r e  real  and symmetric), 

premultiplication of equation (7.4.7) by will eliminate the first mztrix 

term on the left-hand side of equation (7.4.7). It will reduce the second team 

to a scalar. 

The symbol refers to the result of the matrix operation 

Equation (7.4.8) &ay be rearranged to give 

Thus, the change in the square of the pth frequency with respect do t. L is given 

as  a function of the mode shape , the frequency and the referenee 
P 

matrices which describe the system. Expression (7.4.9) is "exact" in tke  
h2 

sense that - i s  a calculated matrix function of the system properties, eigenval~es 
ati 

and eigenvectors. 

For a fixed frequency beam vibration problem, the frequency constraint 

is expressed as  



F a r  a tapered-beam-element model, the total nondiimensfonal weight of a. beam 

~ i t f i  Z elements as  shown in F i p r e  7 .1  is 

The. tqesig~ variables t. a r e  discrete nondimensional t h i ches s  parameters at 
B 

each node, The parameter 6 i s ,  as  in the contintrum case, the initial ratio P 
of s?suctu~al  mass  to total mass  in the reference s"cructutare. U s h g  the definition 

iri eeqsion (7 ,3 .  1) 

P 
vjr == - 

i Z 
for  i = 2 , 3 , . .  .,Z 

In allidition to the constraint expressed in equation (7 -4 ,  BOB, a mi~inmearm th i ches s  

const~ain.d; can be added such that 

Using the method outlined in Section 7.3 and calculating the frequency 

gradients g. as  shorn previoua1y9 a computer p r o g r m  was written to search 
I 

for an optimal design variable vector ( ti 1. The initial numerical cases con- 

cerned themselves with testing the operation of the computer routine. A m s o r m  

t h i c h e ~ s  case was chosen a s  a starting point, that is, t = { 1 Using the 
B 

above tecaaiques with the fundmental  hequency c s n s t r ~ n e d  to be 
4 2 4 

0,993~ 5 1: 1 , 0 0 5 ~  , the method always drove design. variables t and 
1 1 

t to the value t A t  this point, no further changes in tl and t Z  + 
Z - s l  mine 

were  allowed, that is, At = At 
1 

Z -1-1 = 0, In addition, because of the symmetry 

of 1 q'l' ? about x = 1/2, the frequency padients  g. were symmetric about 
i 3. 

s p o t  Since t. = B , the des im cycles always yielded a symmetric 
4. initial 

structure, After tbese characteristics were dekrmined, the p r o p a m  was altered 



so that it automatically set  t and t 
9 

equal to t before beginlqing 
Z + I  min 

calculations. Only symmetric changes in t. were then allowed during each 
1 

optimization design cycle. To save computation time, initial estimated values 

of t.  which might be chosen in en@neering work were chosen so that the initial. 
1 

design had a weight less than the uniform reference structure, lf the fundame~~tal  

frequency of the initial design chosen was outside the frequency tolerar,ce baad, 

a design cycle was taken to alter 
ti 

to bring the frequency to within the 

alowable band, By doing this, the initial design, while not being a Beast v~eig5t 

design, satisfied the requirements of the problem and was a t  least a '"lesser weight" 

design a s  compared to the reference structure. This initial design estimation 

and modification technique usually saved ten or more design optimization cycles 

and resulted in an approximation which had a hndamental frequency within the 

tolerance band and a total weight or  mass ratio which differed from the exact 

minimum by only a few percent. 

Two results of the above optimization work a r e  shown in Figure 7.2, One 

model was composed of four elements while the other model used six elements, A s  

mentioned before, during the weight minimization search, a ser ies  of "lesser 

weightq' structures are  generated which satisfy the requirement that their lowest 

frequency i s  close to that of a uniform thickness reference structure, A s  the 

finite element design approaches the least weight design, the method outlined 

above is very sensitive to the variable E ,  defined in equation (7 .3 ,12) ,  If E 

is large, we a r e  in effect asking for large changes in the weight. A s  the value 

of the converged mass ratio, that is, the value of the mass ratio obtained using 

the differential equation model, is approached, the design variable distribution 

varies greatly. It appears that, near the optimum design, the merit o r  objective 

function is fairly insensitive to the constraint boundary while the design 

a re  very sensitive. For this reason, several designs of nearly the same weight 

a r e  found at the end of the optimization process. This i s  far  different from the 

differential equation approach where one and only one design satisfied the eoasr;rai;.;ks, 



Because of this, the author selected the design which most closely approximated the 

exact design shape, I3 E was kept large, that is, if we ask for large changes in 

weight at a point where we a r e  near the minimum mass ratio, the design variables 

began to increase near x = 0,25 and x = 0.75 and decrease near x = 0.50, Thus, 

i$. appeaseci that the design began to take the form of a superoptimal solution, W e n  

this began to occur, the computer calculations were terminated. 

From Figure 7.2 i t  can be seen that, while the finite element t M c h e s s  

distribution - for four elements - is in e r r o r  by large ameamls in some places, 

the mass ratio differs only slightly from the exact solution. The reader is cau- 

tioned, however, in drawing conclusions on the accuracy of this mass ratio since 

the nondimensional frequencies in the finite element case a r e  slightly lower than 
2 4 

that frcm the continuous model, that is, they differ from o = n . Also, if one 
B 

we re to build a b e m  in the exact shape of the finite element model, its frequency 

would differ from that shown in Figure 7,2 because of the inaccuracies of the finite 

element model. itself. Still, the general eonelusion that the discrete parameter 

model. for this problem is consistent with the exact solution can be drawn. A l -  

though the design variables do differ sezbst~t ia l ly  from the analytic solution, 

the minimum mass ratio is fairly accurate, It is interesting to note that the taper 

of the first and last  elements in Figure 7.2 decreases with the n m b e r  of elelmenb 

in the model, This occurs because of the m i n i m u  thiclusess constraint, t = 0,5, min 
This constraint was purposely chosen to demonstrate this characteristic. 

Fikare 7 . 3  shows a ten-element finite-element model of the exact optimal 

thichess distribution. Unlike the cases previously shown, this model is not the 

result oi an optimization process, but it shows the accuracy one may expect from 

a nlulti-element structural model of the exact solution. 

7 , s  Panel Flutter Optimization Using a Finite Element Structural Model -- 
The problem of finding a least weight t h i ehes s  distribution for a sandwich 

panel on simple supports which has an aerodynamic flutter parameter A* held 
0 

fixed has been discussed in Chapter 6. In Chapter 6, the constraint equations were 

expressed as  a se t  of first-order differential equations, Therefore, optimal 

eontro"%ecBaniques were used to formulate and solve the problem. The result of 

144 



this formulation was an optimal thickness distribu"con for a least-weigh"g.panel, 

This section will discuss the identical problem posed in Chapter 6,  bud will use 

finite element methods to describe a one-dimensional plate-beam on simple 

supports and also to describe the aerodynamic forces using quasi-steady 

linearized supersonic aerodynamics. 

The problem of finding a least-weight panel with a prescribed flutter 

parameter using finite element techniques was f i rs t  discussed by Turner (Ref, f 2)- 

His structuralZ model consisted of a series of equal length finite elements, each 

having a uniform thickness. In addition, his aerodynamic model included an 

aerodynamic damping term. The model used in this thesis consists of a series 

of equal length nondimensional tapered finite elements such as shown in Figure 

The aerodynamic forces a re  taken from a paper by Olson (Ref. 21). The nsn- 

dimeilsional matrix equilibrium equation for this system is written 

[A 3 i s  the aerodynamic generalized force matrix given by Olson and shown in the 

Appendix and ho is, a s  in Chapter 6, equal to 

A l l  aerodynamic damping is neglected in equation (7.5.1) and motion is assumed 

to be of the form 

A s  discussed in C&pter 6,  for a range of values 0 5 ho 6 A*, the frequencies 

a, as  determined from equation (7,5. I), will be real. At h = A* frequenlzies 
0 1 

w and o merge, and, for h > h*, ol 
1 2 o 2 

and o will be complex conjugates of 

each other, Thus, from, equation (7.5.2) at A = A*, the system is neutrally 
0 

stable and for h > h* the panel becomes unstable. Using a four equal finite- 
0 

element model with uniform thickness and neglecting damping, Olson found 

A* = 342,343, This value differed from the exact value of A* by 0,3% 



A c ~ ~ m p u t e r  progsam using the optimization logic de sc r i bd  in Section 4 , 2  

was written for  this problem, For this case, the constraint equaa;ion is written 

For easy  reference, the design variables t. may be expressed in vector form 
1 

The variable Z is the number of equal length elements used in the finite element 

-a:idel, These design variables represent nondimensional face-sheet %"anichesses 

a& node points along the panel x as  shorn in F i p r e  7,B, 
ah* 

Tlne calculation of the A* grpadients, --- was done n u e r i c a l l y ,  
at, 

B 

First, h* was determined for the initial d e s i p  panel. Next, the design 

vari.ablas were pertuffbed one by one. New flutter p a r m e t e r s  A T  were 

caio~?ated for each perturbation At. to give the gradient of A*, gi. 
1 

A? - A* 
ah* Ah* a R E F  - g, = --- ' ----- = 

1 ati at. a ati 

The design studied involved a case with 6 = P and t = 0,50. Four tapered 
1 min 

elenxect~ were used to model the plate-beam. An initial set  of design parameters 

was chosem using previous experience a s  a guide, This design had a sym- 

metrical shape with t = t(l/Z) a s  the greatest element and t = t(O), t5 = t( l)  
3 P 

eq~si$ t , ~  0,50, This initial design was found to have A* 335, a value which 

maas lower than the reference value of A* = 342,36. By using the gradient of 

A*, as calculated in equation (7.5,5), this initial design was modified so that the 

value A* became 343.68, This design was chosen a s  a starting point for the 

optimization search. Table 7.1 shows the results of four d e s i ~  cycles. The 

thickness distributions for these results a r e  shorn in F imres  4 . 4  and 7-5. 



Table 7.1 shows several interesting things. Fi rs t  of all, it shows that an initial 

design can be found with a mass ratio close to optimal by simply using the h* 

gradients to increase o r  decrease the A* of an initial design. More importantly 

however, the A* gradient elements a r e  symmetric about x = 112 as hypothesized 

by Turner (Ref. 12) and Armand (Ref. 8). The results also show that, in the absence 

of aerodynamic damping, the optimal one-dimensional panel shape for nainjrnum 

weight has a pronounced "dip" at  x = 1/2. 

The comparison of these results with those found using differential tech- 

niques is favorable and is shown in Figure 7.5. The exact value of is 

0.9020 while the finite element analysis gives 0.9151. The exact value sf the 

square of the flutter frequency is 1070.0 while the finite element analysis gives 

7.6 Summary 

The previous results using finite element analysis have only scratched 

the surface of the subject. They have, however, shown that excellent results 

may be obtained using finite element techniques in the problems ccsvered, They 

have also shown that the designer o r  researcher must be able to ixateract with the 

optimization design process. In this way, his experience becomes an added 

constraint on the design process. This analysis has also shown that the design 

parameters may be relatively sensitive to the design constraint but, the mass 

ratio in insensitive to changes in the design parameters near the least weight 

design. Therefore, the designer may choose his final design on the basis of 

factors other than least weight, 
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G CONCLUSIONS AND RECOMMENDATIONS FOR FUTmE brORM -- 

,f m e  has read the proceding chapters, he has by now formed his own 

concldsAoris, However, there a r e  several general conclusions which should be 

noted and discussed. Fi rs t  of all, the optimal control teehllliques used in 

struerurs; optimization a r e  limited to systems which a r e  easily described by a 

sn%aAl ncn:ler of first-order differential equations. This is not a method which one 

%vs;a~ld applly to the des im of a 7'47 or  SST, On the other hand, the use of .this 

?ee,~qique does provide use-ful idormation about the behavior of s imple systems 

suck as one-dimensional pmels. This information may be extrapolated to 

dstimato  he be$a7aior of larger systems, As seen in Chapter 7, the knowledge 

or how the c:ontinuous s y s b m  behaved proved very vahable in obtaining initial 

d e s i p  parameters which satisfied "cke constraiPlks. 

The field of p a a m e t e r  optimization was only briefly discussed, This 

area oairiously will be the most important and promising area of study for the 

s9ext few years, It is imporbnt to r ecop i ze  that many techniques such as  

Rubin" seslst in the literature. They a re  well documeakd and a r e  waiting for an 

enterprisnlg researcher to adapt them to the many problems in the field of 

vibration and a i r e r d t  flutter. The adaptation of some of these methods to flutter 

problems 'is already underway at Stanford, The main diBiculty with these 

parameter optimization problems i s  in calcubating the constraid gradients such 
Ell* as -"--- While this e m  be done by brute force methods for small problems, 
dk, 

iargcs problems require more sophistication because of eomptlter cost lmitations, 

There are several areas  for future research that a re  of great interest to 

atlthos, They a r e  listed below. 

1111 For the panel! flutter problem, add the aerodynmic damping term 

do the constraint equation, This i s  easily done for the finite element 

model. 

( 2 )  Add inplane s t resses  (I(= 0) to the panel flutter equation. This 

may be easily done using the differential equation model. 



(3) Extend the finite element technique to two-dimensional panel flutter 

by using triangular plate bending elements. 

(4) Using additional theory covered in Bryson and Ho (Ref. 9) ,  formulate 

and solve some simple beam problems having both static {~naxirnum 

s t ress  o r  deflection) and dynamic constraints. 

(5) Use a ser ies  approximation for t(x) to solve a bending-torsion- 

flutter weight-minimization problem such a s  covered in Ref, 22, 

Some of these and other similar problems a r e  under study by the author 

and others in the field. Their solution should prove not only interesting but 

helpful in the field of structural design. 



APPENDIX 

Elemental Mass, Stiffness, and Aerodynamic Matrices 
Used in Finite Element Studies 

Nondimensional Element 

Maee and stiffness per unit len@h are  proportional to the thickness 

which variee linearly with x. 

348s w Matrix: 

zt 
31 

~] = - 
IJ 420 

156 -222 

(Symmetric) 



Stiffness Matrix: 

6 32 -6 

(Symmetric) 

Aerodynamic Matrix: 

(anti-symmetric) 0 

Note that these elemental matrices a r e  not the same as defined in Chapter a,, 

These present matrices must be used to generate the matrices discussed in Chapter 
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of structures. By optimal design it is  meant that a structure performs the same function as 
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rnization problem then becomes a two-point boudnary value problem with 2N sjmultaneous nori- 
linear differential equations. The solution method used to solve these equations is an adaptiosl 
of a n m e r i c a l  technique used in optimal control theory which is referred to as  the "transitic.r?, 
matrix" procedure. This method involves perturbing the optimally equations and boundarv con- 
ditions to find successive neighboring extremal solutions until the optimum design is reached, 
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