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1. INTRODUCTION 

Unsteady  motion  of r a t e  dependent  materials  under  high  speed of 

loading is of  fundamental  theoretical and p r a c t i c a l   i n t e r e s t .  Such a 

medium i s  inherent ly   diss ipat ive so t ha t   t he  waves propagating i n  the 

material   are  both  attenuated and dispersed. 

To study  the phenomena of wave propagation,  a  thorough knowledge 

of the  behavior of the  material  under invest igat ion is essential.,  One 

of the drawbacks  of the  exis t ing  theories   in   thermoviscoelast ic i ty  and 

thermoelasticity is the  predict ion of infinite  thermal  speed of 

propagation.  Various  investigators1 have  attempted t o  modify the 

classical  heat  conduction law t o   a l l e v i a t e  t h i s  paradoxial   resul t .  

Bogy and Naghdi (1969) considered  a  generalized  axiomatic  theory of heat 

conduction i n  r i g id   so l id s  by al lowing  the  const i tut ive  re la t ions  to  

depend on the  temperature-rate. I n  this t reat ise ,   a   general   nonl inear  

thermomechanical  theory  of  a  temperature-rate  dependent  thermoviscoelastic 

material  i s  formulated  using  the modern techniques of axiomatic  continuum 

mechanics and laws  of  thermodynamics. The formulation  for  a  temperature- 

r a t e  dependent  thermoelastic medium is  eas i ly  deduced  from the  general  

theory by neglect ing  cer ta in   s t ra in-rate   effects .  

One-dimensional l i nea r   spa t i a l   g rad ien t   cons t i t u t ive   r e l a t ions  

are   presented  to   i l lustrate   the  basic   concepts ,   Dispersion  re la t ions 

and asymptotic  behaviors of the  l inear ized  longi tudinal  waves w i l l  be 

discussed, and the   resu l t s   i l lus t ra ted   g raphica l ly .  I t  w i l l  a l so  be 

shown that  the  temperature-rate  dependent  theories  presented  here 

pred ic t   f in i te   speeds  of propagation due to  heat  conduction. 

'See, e.g.,  Chester (19631, Gurtin and Pipkin (1969) , Horie  (1970) , 
Kaliski (19651,  and U l b r i c h  (1961) . 



2. THEROMODYNAMIC FORMULATION 

The fundamental  equations of  mechanics and thermodynamics2, i n  

Lagrangian  formp are  the  continuity  equation 

the  Kirchoff-Piola  equation of  motion 

equation of balance of  energy 

and moment of momentum equation 

' i ,A A j  ' j ,A A i  
c =  c (2.4) 

where p ( Y A , t )  denotes  the  material  density, p = p ( Y A , t O ) ,  yi (YA, t) i s  

the  deformation f i e l d ,  J ( Y  t)  = IyilA1 > 0,  qi - yi(YA,t) is the 

par t ic le   ve loc i ty  , ( Y  ,t) is the  Kirchoff-Piola  stress  tensor, 

F .  (Y , t) i s  the body force  per  unit  mass,  e ( Y A , t )  is the   spec i f ic  

i n t e rna l  energy  per  unit mass, B ( Y  ,t) is the  heat  f lux  vector  per unit 

original   area due t o  conduction, C is the  internal  heat  generation  per 

A 
0 

A A *  
A' 

- 

'Ai A 

1 A  

A M  

unit mass per  unit  time, comma and superposed  dot  denote p a r t i a l  

differential  with  respect  to  the  reference  coordinate  system Y and A 

time t, respectively,  and t is the  or iginal  time  of reference. 0 

2See, e . g . ,  Green and  Naghdi (1968)- 

2 



We now postulate   the  local   entropy  inequal i ty ,  deduced  from the 

Clausius-Duhem inequal i ty ,  i n  the  following form: 

where s is the  specific  entropy  per unit mass.  Using the  conservation 

of energy (2.3) , the  inequality (2.5) may be re-written  as 

where 

a = e - T s  

is  the  specif ic  Helmholtz free  energy  per  Unit mass. 

To complete the thermodynamic formulation  for a  given mater ia l ,  

spec i f i c  knowledge of the  const i tut ive  re la t ions  character iz ing  the 

behavior  of  the medium is required. I n  the  following  section we w i l l  

introduce  such  phenomenological  relations  for a temperature-rate 

dependent  thermoviscoelastic  material. 

3 



3, THE THFSE-DIMENSIONAL TEMPERATUM-RATE DEPENDENT 

THERMOVISCOELASTIC CONSTITUTIVE RELATIONS 

The thermoviscoelast ic   mater ia l   considered  in   this   t reat ise  may be 

characterized by the  response  functions:  Helmholtz.  free  energy  a, 

entropy s, i n t e rna l  energy e ,   heat   f lux  vector  B and the  Kirchoff- 

Piola   s t ress   tensor  C The response  functions, i n  turn,   are  assumed 

t o  depend on the  generalized thermodynamic variables:  temperature T ,  

temperature-rate T ,  temperature  gradient T ,  deformation  gradient y 

and velocity  gradient q Therefore, we  may write 

A' 

A i  

A '  i ,A' 

i ,A' 

a = a (T,  4, T , ~ ,  Y ~ , ~ ~  qi,A) 

s =  S 

B =  A 

- 
'Ai - CAi(T, T, T B ,  'j ,B, 'j ,B) 

where we have made use  of the  pr inciple  of equipresence3 which s t a t e s  

t h a t  an independent  variable  present i n  one consti tutive  relation  should 

appear i n   a l l   u n l e s s  it is  excluded by the   p r inc ip les  of continuum 

mechanics  and  laws  of  thermodynamics. 

3.1.  Consequences  of the Second Law of Thermodynamics 

For  a thermoviscoelastic  material whose const i tut ive  re la t ions  are  

characterized by (3.1) , the  entropy  inequality  (2.6) becomes 

3See, e . g . ,  Truesdell and Toupin  (1960) e 

4 



aa aa . 1 < 
+ P o  aT,A 
- 

T r A  + '0 5 ' i ,A T A + - B  T , A - O  . 

Following  the  procedure of Coleman and No11 (19631, w e  r equ i r e   t h i s  

inequal i ty  t o  hold for a l l  thermodynamically admissible processes and 

independent  variations of T, T,At and <i,A which appear l inear ly   with 
.. 0 

coef f ic ien ts  that  are independent of these  variables.  Therefore, 

Hence, the Helmholtz f r ee  energy a i s  independent of G, T R A ,  

and the  entropy  inequality  (3.2)  reduces t o  

and ' i ,A 

The cons t i tu t ive   re la t ions  ( 3 1) become , i n  view of (3.3 1 I 



3.2 e Invariance  Requirements Under Superposed  Rigid Body Moti.on 

I n   t h i s  treatise, it w i l l  be assumed tha t   the   cons t i tu t ive   re la t ions  

are form invariant  with  respect   to  a r i g i d  body motion  superposed on the 

s p a t i a l  frame  of  reference.  If Qi j  denotes a time-dependent  proper 

orthogonal  transformation,  then 

where y and y t  denote  the  spatial   coordinates  in  the two reference 

frames,  respectively, and pi denotes  the  translation of the 0-frame with 

respect   to   the 0*-frame (Figure  3.1) 

i 

Figure 3.1. Change of the  coordinate  systems 

By definition,  the  proper  orthogonal  tensor Q s a t i f i e s   t h e  i j  

following  relations 

4See, e . g .  , Green and Rivlin  (1957) . It should  be  noted  that  this 
form of the  invariance  pr inciple  under  superposed r i g i d  body motion is  
s l igh t ly   d i f f e ren t  from the  so-called  principle of  frame indifference 
proposed by No11 (1955) who included  inversion  in  the  admissible 
orthogonal  transformations 

6 



Consequently, 

A quant i ty  is said t o  be  frame ind i f f e ren t  or objective i f  it i s  

independent of t he   r i g id  body motion of the  reference frame, For a 

scalar S, a vector  V and a second-order  tensor T i n  the  0-frame, w e  i '  i j  

must have i n   t h e  0*-frame 

S* = S Vz = Q i j  V , Tij* = Q i m  Qjn Tmn 0 (3.9) 

Consider 

by ( 3 . 6 )  , and form the  following 

upon using ( 3 . 7 ) .  Thus, the  so-called Cauchy-Green s t r a in   t enso r  G 

defined by 

AB 

- A 
GAB '- ' i ,A  ' i ,B 

7 

(3.12) 

I 



is objective  under  (3.6) It  is  well known t h a t  for J > 0 any objective 

function which  depends on  y can a t  most be a function of t h e   s i x  

elements  of G In  a similar fashion w e  may demonstrate  that 6 is 

the  object ive  quant i ty   replacing q Consider 

i ,A 

AB" AB 

i ,A' 

and 

Multiplying  the first equation by y*  and the  second one by  yt: and 

adding y i e lds ,  upon using (3.10) , 
i , B  1. ,A  

':,A '2,B + ';,A '?,B Q i j  'j , B  ( Q i m  'mPA + Q i m  ',,A) + 

+ Q i j  Y j  ,A ( Q i m  Y m p B  + Q i m  qm,B) 

- - 

- - Q i j  Q i m  ',,A ' j , B  -k ' i , B  'i ,A + 

-E Q i j  Q i m  ' j ,A 'm,B + ' i , A  ' i ,B ' (3.13) 

by employing (3.7) . And f i n a l l y ,   i n  view of  (3.8) , t he   r i gh t  hand side 

of  (3.13) i s  fur ther   s impl i f ied   to   g ive  

which simply states 

G L  - - GAB 

8 

(3.14) 

(3.15) 



I 

One may verify  Equation (3,151 by d i r e c t   d i f f e r e n t i a t i o n  of (3.12) In 

view of   the   res t r ic t ions  imposed by the  invariance  principle  of  superposed 

r i g i d  body motion,  the  consti tutive  relations (3.5) reduce t o  

where for  convenience we have introduced  the  Piola   s t ress   tensor  PAB 

defined by the  following  relation 

3 . 3  Material Symmetry Restr ic t ions 

Solid-like  materials may possess  certain symmetry properties  such 

that  their  constitutive  response  functions  are  form-invariant ( i n  some 

reference  frame)  with  respect t o  a  time-independent  group S which is a 

subgroup  of the f u l l  orthogonal  group of transformations Q. This  imposes 

ce r t a in   r e s t r i c t ions  on the  response  functions.  For example, the  response 

functions  a(T, GAB), s ( T ,  T, T g A ,  GAB' G AB 1 and e ( T ,  T ,  T t A ,  GAB, GAB) 

should be scalar  invariants  under  the symmetry group S. According t o  

Wineman and Pipkin (1964) each of these  scalar  invariant  functions can 

always be expressed  explicit ly  as a single-valued  scalar  function of  an 

i r reducib le   in tegr i ty   bas i s  of i t s  arguments  under s. For an i so t rop ic  

9 



material ,  S is the  ful l   or thogonal  group Q and the   i r reducib le   in tegr i ty  

bases5  for  each  of  the  sets (T, GAB) and (T, c1  T,A, GAB, under Q 

are : 

and 

T 1 6  ' GAA 

G~ G~~ ' GAB GBC GCA # I 

GAB BC CA 
6 '  

' GAB 'BC  'CA 

I 

I 

GAB GBC GCA ' GAB GBC CD DA G G  I 

(3.19) 

respectively 

The canonical form of t he  heat  f lux  vector B ( T ,   T I  T ,MP Gml Gm) 
A 

and Pio la   s t ress   t ensor  PAB(T, T ,  T," 6 1 may a l so  be obtained 

using  the  procedure  suggested by  Wineman and Pipkin (1964) They have 

sham  tha t  a tensor-valued  response  function of a rb i t ra ry  rank, depending 

GMN MN 

on an arb i t ra ry  number of tensor  variables of arbitrary  ranksI can be 

expressed  as a l i nea r  combination of the  basic  form-invariants under S o  

5The minimum iso t ropic   in tegr i ty   bas i s   for  an arb i t ra ry  number of 
three-dimensional  second-order  symmetric and skew-symmetric tensors, and 
ax ia l  and absolute  vectors, under the  full  orthogonal  group,  are  given 
by S m i t h  (1965). 



We shal l   adapt ,  hcrwever, the procedure  of  Rivlin (1959) i n  imposing 

material isotropy on the  forms of B ~ ( T ,  T, T I M I  Gm, G ~ )  and 

Consider an arbitrary,  second-order, symmetric tensor Y and AB 

define a sca la r   quant i ty  Y by 

A 1 = Ym PAB (3.20) 

According t o  Wineman and Pipkin (19641, the  scalar   funct ion Y can be 

expressed by 

N 

I=  1 F G 

B= 1 
B B '  (3.21) 

where G are the elements ( l i n e a r   i n  Y-1 of the   i r reducib le   in tegr i ty  B 
basis  of T ,  6, T I A ,  GAB, GAB, Ym under Q, and F are  single-valued 

functions of the  i r reducible   integri ty   basis  of T I  T, T,A, 

under Q. Therefore, 

8 . 
GAB' GAB 

(3.22) 

One  may also  obtain  the  const i tut ive  re la t ion  for   the  heat   f lux 

vector B (T, T I  TIMI  6 ) by forming the  scalar  product of BA with 

an arbi t rary  vector  and then follow the above procedure i n  a similar 

A GMN MN 

manner. 

In  the  subsequent  sections w e  make use  of  the  polynomial  canonical 

form of the  const i tut ive  re la t ions when w e  consider  the  one-dimensional 

l i nea r  spatial gradient  theory. 11 - 



4. THE ONE-DIMENSIONAL, LINEAR SPATIAL GRADIENT, TEMPERATURE- 

RATE DEPENDENT, THERMOVISCOELASTICITY 

Since we are  primarily  interested  in  small   amplitude,   longitudinal 

wave propagations, we consider ,   in   this   sect ion,  a one-dimensional 

l inear   spat ia l   gradient   theory of the  thermoviscoelastic  meterial 

formulated i n  the  previous  section. 

4.1. Linear  Gradient Assumption 

T o  the first order  approximation i n  the  spat ia l   gradient   quant i t ies ,  

the  one-dimensional  polynomial  canonical  representation  of  the 

const i tut ive  re la t ions (3.161, using (3.171, reduce t o  

p0  e ( T ,  T,   TX, Gll, Gll)  = eo (T, $) + e ( T ,  6) E + e2 (T,  $) E , (4 .1)  1 

where 

A ayl 
E = - -  l = v q - l = - -  A ax 

ayl 
ax 1 ,  

and 

are  the Lagrangian s t r a i n  and s t ra in   ra te ,   respect ively,   the   coordinate  

systems x and X correspond t o  y1 and Y1, respectively,   the  subscript  X 

1 2  



denotes par t ia l  d i f fe ren t ia t ion   wi th  respect to   t he   spa t i a l   coo rd ina te ,  

B denotes the heat   f lux  vector   in   the  X-direct ionI  and C is  the 

longitudinal stress. 

One may show t h a t  IT and 1.1 are independent of T. Let us  subst i tute  

(4.2)  through  (4.3) i n  the one-dimensional form of  the  entropy 

inequality  (3.4) : 

( - l T + 1 . I € -  &) a €  l - p 0 ( s + = )  aa T + n i 2 + L  T X  K T ~ Z O  (4.5) 

This inequal i ty  must hold for  a l l  thermodynamically  admissible  processes 

and independent  variations  of d ,  I ,  and T Therefore, w e  conclude that  X’ 

and 

n - 0  
> 

I I C - 0  
> 

(4.7) 

But a i s  independent  of $ and thus IT and p must also be independent of 

T. The entropy  inequality  (4.5) I i n  view of (4.6) I reduces t o  

Equation  (4.61, upon integrat ion  with  respect  to E: and t o  the f i r s t  

order,   yields  the  following 

where $ is  the  constant  of  integration. Using  Equations  (4.1)  and  (4.9) 

i n  (2.71, w e  get 

13 



1 
T O  s = - p  (e - a) 

= - {eo(T, 'i") - $(TI + [el (T, 4) + IT(T) 1 E + e2 (T, TI E )  . (4.10) 1 
T 

. .  

The set  (4.1)  through  (4.3) and (4.8)  through  (4.10)  represents  the 

thermodynamic formulation  of  the  one-dimensional  temperature-rate 

dependent thermoviscoelastic problem  under  consideration. 

4.2. Basic  Equations 

The eqdations of  motion  and balance of energy ( 2  e 2 )  through ( 2  3 )  

i n  the one  dimensional  form and i n   t h e  absence  of internal   heat   generat ion 

and body forces  are, 

(4.11) 

P o  9 = cx 

0 X BX p e = q C -  

Substituting  (4.1)  through  (4.3)  into  (4.11)  gives, t o  the f i rs t  order 

of approximation, 

P o  Utt - lJ uxx - U X X t  
+ I T  T = O  , 

T X  

(4 .12 )  

(el + T T )  uXt + e uXtt + eOT Tt + eo+ Ttt - K T = 0 , xx 

where u is the  longitudinal  displacement and subscripts denote p a r t i a l  

d i f fe ren t ia t ion .  

4.3. Charac te r i s t ic  Motions 

To ob ta in   the   charac te r i s t ic  wave speeds,  consider a discontinu .i t y  , 

represented by the curve S ,  propagating  with the speed c i n  the Xt-plane 

14 



(Figure 4.11, and l e t  @ ( X ,  t) denote any f ie ld   var iable   having  the 

values @+ and @ - across  the  curve S with @+ = @ - whenever @ is continuous. 

I X 

Figure 4.1. Discontinuous  front 

We fur ther  assume that  although @ may be  discontinuous  across S, 

the  time  rate of  change @+ (or  @ - ) along S may be evaluated  according  to 

Hadamard's lemma6 as  follows 

Therefore, 

where [ I  denotes  the jump across S 

[ @ I  = @+ - @ . A - 

(4.13) 

(4.14) 

%ee, e.g . ,  Truesdell  and  Toupin (1960). 
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Let the  temperature T and its first order   der ivat ives ,  and the 

displacement u along with its first and  second order derivatives,   be 

continuous across S, i .e. , 

[TI = [ul = 0 I 

[Ttl  = [Txl [ut] = [u,] = 0 , 

and 

[uttl = [Utx1 = rum] = 0 

Applying  (4.14) t o  (4.15) gives 

[Ut t t I  + c [Uttx1 = 0 I 

[UXXt1 + c ruxxxl = 0 9 

(4.15) 

(4.16) 

(4.17) 

( 4  18) 

(4.19) 

(4.20) 

Using  (4.15) I Equations (4.12) across S gives : 

- n [UXXt1 = 0 I (4.21) 

eoc ITtt] - K [TXXl + e2 [u 3 = 0 . X t t  (4.22) 

Therefore a l l  the third-order   der ivat ives  of the displacement, i n   l i g h t  

of Equations  (4.18)  through  (4.21) , are continuous across S. Equations 

(4.16)  through  (4.17)  and  (4.22) may be  re-written as: 

16 



2 
ITtt] - c ITXX] = 0 , 

(4.23) 

ITXX] = 0 

For nontrivial   solutions,   the  determinant of the  coefficient8 must 

vanish.  Therefore, 

2 eo,i,c - K = O  ? 

Expression (4.24) represents  the  characteristic  speed of wave 

propagation  in  the  temperature-rate  dependent  thermoviscoelastic  material 

under consideration.  Furthermore,  this  characteristic  speed becomes 

inf in i te   as  e approaches  zero, a well-known classical  heat  conduction 

result .   Later on, w e  w i l l  a lso show that   the   character is t ic   speed c 

corresponds to  the  asymptotic  phase  velocity  at  high  frequency. 

06 

2 

4.4. Dispersion  Relations of Linearized  Longitudinal Wave Propagation 
i n  an Initially  Unstrained  Thennoviscoelastic  Material 

I n  this   sect ion,  we w i l l  employ the  small  perturbation  technique  to 

l inearize  the  basic  equations (4 .12) .  Consider  small  perturbations T'  

and u'  about some uniform  equilibrium s t a t e  ?. and u of the  material  such 

t h a t  

T = ? . + T '  , 
(4.25) 

u = u + u '  . - 

Using (4.25) in  the  equations of  motion and balance of  energy  (4.121, it 

can be shown t o   t h e  first order of TI and u': 

17 



- 
IT T' + Po u ; ~  - p - 0 U' = o  , - - 

T X  xx t 
(4.26) 

where "bar"  denotes  quantities  evaluated a t  the equilibrium state. 

The se t  of l i nea r   pa r t i a l   d i f f e ren t i a l   equa t ions  (4.26), with 

appropr i a t e   i n i t i a l  and  boundary conditions, may be  solved  using  standard 

transform  techniques  or  Fourier  analysis.  Instead of solving (4.26) f o r  

specif ic   values  of i n i t i a l  and  boundary conditions, w e   w i l l  derive  the 

dispersion  relations and conditions  under which s t ab le  waves may e x i s t  

and propagate  in the positive  X-direction. 

Consider  longitudinal  propagation of planar  disturbances of the 

form 

TI = T exp ( i w t  - kX) , 
0 

(4.27) 

u '  = u exp ( i w t  - kX) , 
0 

where w is  the  frequency, k i s  the complex wave number, and To and u 

are complex amplitudes.  Substituting (4.27) i n t o  (4.26) yields 

0 

- k To + {po ( w i )  - p k2 - TI k wi) u = 0 2 -   - 2  
0 ? 

(4.28) 

+ e o + w i )  w i  - ~ k  ) T o -  (e + m + e  w i )  k w i  u = O  . - - 2  " 

1 2 0 

For  non-trivial  solutions,  the  determinant of the  coeff ic ients  m u s t  

vanish: 

18 



which .yields  

+ eo$ wi) + - 

" +  IT^ (e, + IT + e wi))  k w i  + p o  (eoT + eo6 w i )   ( w i )  = 0 . (4.29) 
" 2 - - 3 

2 

Considering  a r e a l  frequency w of propagation i n  the  posi t ive 

X-direction,  the complex wave number k may be expressed  as  follows: 

k = a + - i  , w 
C 

(4.30) 

where the  a t tenuat ion  factor  a and the  phase  velocity c are  functions 

of w .  These are  the  dispersion  relations.   For a s t ab le  wave propagation 

both a and  c must, hawever, be pos i t ive .  

Equation (4.29) i s  s a t i s f i e d  i f  

(1 4- F i )  H4 - [ $ ( F i )  + (1 + 5 + $ + x) F i  + y + 2;] F i  H2 + 

3 

2 

+ ( c  + 4 F i )  (F i )  = 0 , 
(4.31) 

where 

(4.32) 

= o  , 

are  the  dimensionless  frequency and complex wave number; and, 
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A TI eOT c = -  - 

” 

A ‘T e2 x = -  - 

(4.33) 

(4.34) 

(4.36) 

are dimensionless material constants.  Equation  (4.31)  yields 

(4.37) f 

The- dimensionless form of  (4.30) is 

H = A + - i  , F 
V (4.38) 

where A and V are the non-dimensional a t tenuat ion factor and phase 

velocity,   respectively.  Upon separat ion  of   the real and  imaginary parts 

of the Equations  (4.37) + one may obtain - 

(4.39) f 

20 



(4.40) f 

where only  propagation  in  the  poaitive  X-direction  has  been  considered, 

(+) corresponds to   the  s ign  preceding  the  radical   in  (4.37) *, and H+ i s  

given by (4.371,. 

- 

4.4.1. Asymptotic  Expansions 

Attenuation  factor A and phase  velocity V must be   pos i t i ve   a t  a l l  

real frequencies  for a stable  propagation  in  the  positive  X-direction. 

To f u l f i l l  this requirement,   certain  restrictions can be imposed on the 

dimensionless  material  constants y, 5, 0, and x by studying  the  asymptotic 

behaviors of A and V. 

(1) In the  case of low frequency  waves, when F << 1, Equations 

(4.37) + can be approximated as follows: - 

Hence, i n  view  of (4.39)? and (4.40) +, - 

(4.41) 

(4.42) 

provided 
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(4 .43)  

and 

provided 

A = 0 + o(F2) , 

1 + -  0 .  5 

(4 .44)  

(4 .45)  

(4 .46)  

Combining (4 .43)  and (4 .46)  I it follows that 

5'0 . (4 .47)  

In view of the d e f i n i t i o n s   ( 4 . 3 2 )  through (4 .36)  and ( 4 . 3 9 ) - ( 4 . 4 0 ) ,  

the dimensional form of the express ions   (4 .41) - (4 .42)  and ( 4 . 4 4 ) - ( 4 . 4 5 )  

are 

(4 .49)  

(4 .50)  

and 
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(4.51) 

We note  that  expressions  (4.48)  through  (4.51)  are  independent of 

the  material  constants n , eo i ,  and This i s  i n  accordance  with  the 

physical   in tui t ion  as  one may expect   that   the   effects  of the   ra te  of 

" 

2'  

s t r a i n  and temperature  are  negligible  at  low frequency  oscillation. 

We also  observe  that c- given by Equation  (4.51) i s  independent  of 

the  frequency w (asymptotic  value) and may be  expressed  as  follows: 

- ;T(el + .rr) 
c- = - 1.1. 

P O  '0 eOT 
- 

L 2 + c  2 1 3 l  

where  c i s  the e l a s t i c  wave speed ( i / p  and c denotes  the wave 

speed due to  the dependence on temperature  of  the  constitutive  relations. 

1 0 3 

This analysis  suggests  that   the law frequency  asymptotic wave speed i n  

a  thermoviscoelastic  material is always greater   than  that  of t h e   e l a s t i c  

one. 

(2 ) I n  the  case of high  frequency waves, when F >> 1, then 

Equations (4.37) +c can be approximated a s   f o l l m s :  

I 
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Hence, i n  view of (4.391, - (4.40) - +' 

-"+ O(F ) , - 1  -1 

provided 

(4.52) 

(4.53) 

and 

V - 2 (2F) 112 + o(F-1/2) (4.56) 

The dimensional form of (4.52) - (4.53)  and  (4.55)-(4.56) may be 

obtained by  employing definitions  (4.32) - (4.36)  and  (4.39) - (4.40), 

=+ = (Z/Z0+) li2 + O(u-l) , (4.58) 

(4.59) 

(4.60) 
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It  is clear that expressions (4.57) through (4.60) depend on n, e and 

eo{, which are  the coef f ic ien ts  of the s t ra in- ra te  and temperature-rate. 

They are, however,  independent  of  the e l a s t i c  modulus 11. Expression 

(4 .58) ,  i n   l i g h t  of (4.71, yie lds  that 

" 

2 '  - 

- 
eo+ > 0 . (4.61) 

We note   tha t  c given by (4.58) is due to  the  temperature-rate + 
e f fec t s  and is i d e n t i c a l   t o  the characterist ic  speed (4.24) obtained 

earlier. Furthermore,  the classical r e s u l t  of i n f i n i t e  wave speed due 

to  heat  conduction may be deduced by simply se t t i ng  e equal  to  zero.  

One  may also  observe  that  although c- given by (4.51) is  an 

0% 

asymptotic  value, it is  not a characterist ic  speed of the wave 

propagation. 

In  carrying  out  these  asymptotic  expansions w e  t rea ted  H as a real 

function  of  the  variable (F i )  such that  formally  the  expression  for 

H (F i )  contains  only  real   coefficients.  

4.4 .2 .  Possible  Physical  Limitations 

There  might  be cer ta in   phys ica l   res t r ic t ions  on the material 

constants.  This may be bes t  accomplished by drawing an analogy  between 

the thermoviscoelastic medium considered  here and those  of the classical 

thermodynamics. 

If one chooses C t o  correspond t o  the thermodynamic pressure p, 

then 
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and Comparison with  a  thermally 

= p~ -- ind ica tes   tha t  ,rT 
P 

(2) = "(3) 
avT a T v - P  

= o  

perfect   mater ia l ;  e .g . ,  fo r  an ideal  gas 

> 0. Also from  thermodynamics 

fo r  any substance I 

for  an i dea l  gas I 

= posit ive  constant  for van der Waals gas . 

Therefore,  using (4.1) and one dimensional form of the  continuity 

equation (2 .1 )  , one obtains,  applying  the above argument, 

(4.62) 

NOW since TT - 0, ,rT > 0, K - 0, and el - 0, the  def ini t ion (4.33) yields  
> > > 

y - 0  . > 
(4.63) 

The specif ic   heat   a t   constant  volume is defined by 

and is a posi t ive  quant i ty   for  most materials  (cv > R for   gases) .  

Therefore,  the  constitutive  equation (4.1)  y ie lds ,   to   the  zeroth  order  

of the  gradients ,  

Po(%) = > 0 

26 
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I 

Employing (4.64) i n  the def in i t ion  of 5 given by (4.341, w e  g e t  

5 > 0  . (4.65) 

Incorporating  the  results (4.431,  (4.461,  (4.471,  (4.541,  (4.63), 

and (4.65) i n t o  one se t ,  w e  obtain  that  

Y - 0  I 

> 

5 > 0  I 

4 > 0  I (4.66) 

and 

fo r  a stable wave propagation. 

These restrictions were used i n  numerical  computations aimed a t  

obtaining  graphical   i l lust rat ions  of  the dispersion  relations.  

4.4.3. Numerical Resul ts  and  Graphs 

Logarithmic  values  of  the  non-dimensional  attentuation  factor A and 

the  non-dimensional  phase  velocity V were cross-plotted  against   the 

dimensionless  frequency F (Figures 4.2 through 4.17).  The following 

behaviors were observed: 

(1) For the  case of F < lom3: 

(a) Both at tentuat ion factors A+ and A - , and the  phase 

velocity V+ are direct ly   proport ional   to   the  square 

root of the  frequency F . The phase  velocity V - , 

however, is independent of the frequency F. 
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Figure 4.2.  Effec t  of material constant y on at tenuat ion factor 
A+ of longi tudinal  waves i n  a temperature-rate 
dependent  thermoviscoelastic material fo r  
c = 4l = 0.01, x = 100 
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Figure 4 . 3 .  Effect  of  material  constant y on dispersion of 
phase velocity V+ of longitudinal waves i n  a 
temperature-rate dependent thennoviscoelastic 
material  for 5 = 9 = 0.01, x = 100 
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Figure 4.4. Effec t  of material constant 5 on a t tenuat ion   fac tor  
A+ of  longitudinal waves i n  a temperature-rate 
dependent  thermoviscoelastic material for 
y = (#I = 0.01, x = 100 
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Figure 4 .6 .  Effect  of  material  constant I$ on attenuation  factor 
A+ of  longitudinal waves i n  a  temperature-rate 
dependent thermoviscoelastic  material  for 
y = < = l ,  x = 1 0 0  
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Figure 4 . 7 .  Effect  of  material  constant 4 on dispersion  of 
phase velocity V+ of  longitudinal waves i n  a 
temperature-rate dependent thermoviscoelastic 
material  for y = 5 = 1,  x = 100 
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Figure 4.8. Effect  of material constant x on at tenuat ion  factor  
Pq of   longi tudinal  waves i n  a temperature-rate 
dependent thennoviscoelastic material fo r  
y = 5 = 1, I$ = 0.01 
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Figure 4.9. Effect  of material  constant x on dispersion of 
phase  velocity V+ of longitudinal waves i n  a 
temperature-rate  dependent  thermoviscoelastic 
material  for  y = 5 = 1, I+ = 0.01 
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Figure 4.10. Effect   of   mater ia l   constant  Y on at tenuat ion factor 
A- of longi tudinal  waves i n  a temperature-rate 
dependent  thennoviscoelastic material for  
5 = 1, I$ = 0.01, x = 100 
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Figure 4.11. Effect  of  material  constant y on dispersion  of 
phase velocity V- of  longitudinal waves i n  a 
temperature-rate dependent thermoviscoelastic 
material  for 5 = 1, 4 = 0.01, x = 100 
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Figure 4.12. Effect of material  constant 5 on attenuation  factor 
A- of longitudinal waves i n  a temperature-rate 
dependent  thermoviscoelastic  material  for 
y = 1, #I = 0.01, x = 100 
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Figure 4.13. Effect of material constant 5 on dispersion of 
phase  valocity V- of longitudinal waves i n  a 
temperature-rate  dependent  thermoviscoelastic 
mater ia l  for  y = 1, 0 = 0.01, x = 100 
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Figure 4.14.  Effect  of  material  constant I$ on attenuation  factor 
A, of  longitudinal waves i n  a  temperature-rate 
dependent thermoviscoelastic  material  for 
y = ~ = l , x = l O O  
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Figure 4.15.  Effect  of  material  constant 4 on dispersion  of 
phase velocity V-. of  longitudinal waves i n  a 
temperature-rate dependent thermoviscoelastic 
material  for y = 5 = 1, x = 100 
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Figure 4.16. Ef fec t  of mater ia l   constant  x on a t tenuat ion   fac tor  
A- of longi tudinal  waves i n  a temperature-rate 
dependent  thermoviscoelastic material for  
y = 5 = 1, 4 = 0.01 
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Figure 4 .17 .  Effect of material  constant x on dispersion of 
phase velocity V- of  longitudinal waves i n  a 
temperature-rate dependent thermoviscoelastic 
material  for y = 5 = 1, r$ = 0.01 
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(b) The at tenuat ion  factor  A+ and the  phase  velocity V - 
increase while A - and V+ decrease  with  the material 

constant y (Figures 4.2,  4.3,  4.10,  and 4.11). 

(c) The attenuation  factors A+ and A increase  while  the - 
phase  velocit ies V+ and V - decrease  with  the material 

constant 5 (Figures 4.4, 4.5, 4.12, and 4.13). 

(d) The attenuation  factors A+, A - , and the  phase  velocit ies 

V+ and V - are independent  of  the  material  constant 9 

(Figures  4.6, 4.7,  4.14, and 4.15). 

(e) The at tenuat ion  factor  A - increases  with  the material 

constant x while A+, V+, and V - remain  independent  of 

it (Figures  4.8, 4.9, 4.16, and 4.17).  

(2 )  For the  case of I lom3 < F < lo3: 

(a) I n   t h i s  range  of  frequency,  the  effects  of  the  material 

constants y , 5 ,  9, and and the  frequency F are  mixed 

and a universal  trend  cannot  be  concluded. 

(b) A more spec i f i c  knowledge of  the  values  of  the  parameters 

and range  of  the  frequency i s  requi red   in   o rder   to  

understand and establish  the  response of the material. 

( 3 )  For the case  of F 5 10 : 3 

(a )  The at tenuat ion  factor  A+ and the  phase  velocity V+ 

are independent  of the frequency F (Figures 4.2 through 

4.9) . A - and V - are direct ly   proport ional   to   the  sqaare  

root  of F and are independent  of a l l  four  material  

constants y , 5 ,  9 ,  and x as was  shown e a r l i e r   i n   t h e  

study of high  frequency waves (Figures 4.10 through 

4.17) . 
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(b) The phase velocity V+ is  independent of a l l  but one 

parameter. I t  decreases  as  the  material  constant 0 

increases  (Figure 4 .7 ) .  

( C )  The attenuation factor A+ increases  with 5 as w e l l  as 

with x, however, i t  decreases  with $ and is  independent 

of y (Figures  4.4,  4.6, and 4 .8 ) .  
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5. TEMPERATURE-RATE DEPENDENT THEpMOELASTIC CONSTITUTIVE RELATIONS 

The formulation of Section 3 i s  qui te   general .  One  may wish t o  

s implify  these  const i tut ive  re la t ions by reducing  the number of 

generalized thermodynamic va r i ab le s   i n  (3.1) . Such cons t i tu t ive  

re la t ions  must again  sat isfy  the  pr inciples  of continuum  mechanics and 

the laws of thermodynamics. One should  not expect these simplified 

const i tut ive  re la t ions  to   coincide  with  those  obtained from the 

thermoviscoelastic case by simply  reducing  the number of  generalized 

thermodynamic var iab les   in  (3.16) 

Several of these  cases were explored  during  the  course of t h i s  

research. Among the  ones  studied the temperature-rate  dependent 

thermoelasticity offers some in te res t ing   resu l t s .   For  such materials 

w e  may write, following the notation  of  Section 2 ,  

a a , 

e e 

Upon application  of  the  second l a w  of thermodynamics  and invariance 

pr inciple  of  superposed r i g i d  body motion, w e  obtain,   for  an i so t ropic  

temperature-rate  dependent  thermoelastic  material, 



I' 

Following  the  technique employed in   Sect ion 3.3,  each of the 

can  always  be expressed  as a single-valued  scalar  function  of  irreducible 

in t eg r i ty   bas i s  of i t s  arguments  under Q. For  the  isotropic,  temperature- 

r a t e  dependent,  thermoelastic  material  under  investigation, however, the 

i r reducible   integri ty   basis   for   each of the s e t s  (T, G,) and 

(T,  G, T , A ,  GAB) are  given by (3.18) and 

respectively 

Similarly,  we  may form the  scalar  function 'Y given by (3.20) , and 

note   that  i n  the  present  case  the  expression (3 .21 )  becomes 

M 

B= 1 

where L are   the  e lements   ( l inear   in  Y,) of the  i r reducible   integri ty  B 
bas is  of T, T, T ,  A ,  GAB, YAB under Q, and H are  single-valued  functions 

o f  the   i r reducible   integri ty   basis  of T, T, T,A, G, under Q. Thus 

B 
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M 
1 H (-+ aLB -) aLB . 

B a\ym a %A 
B= 1 

(5 .4 )  

One  may also obtain  the  consti tutive  expression  for  the  heat  f lux . 
vector B (T ,  T ,  T," G ) i n  a similar  fashion by forming the   sca la r  

product of B with an arbi t rary  vector .  

A MN 

A 

In  the  following  sections we w i l l  study the  one-dimensional  linear 

spat ia l   gradient   theory of such formulation i n  a manner s imi l a r   t o   t ha t  

of  Section 4. I n  addition, we w i l l  obtain a c lass  of se l f - s imi la r  

solut ions i n  such  a medium. 
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6. THE ONE-DIMENSIONAL LINEAR SPATIAL GRADIENT 

TEMPERATURE-RATE DEPENDENT THERMOELASTICITY 

Since the one-dimensional  theory  presented in   Sec t ion  4 has  been 

developed i n   d e t a i l ,  we sha l l   e l imina te  some of the  analogous  discussions 

to  avoid  unnecessary  repetitions. 

6 1. Linear  Gradient Assumption 

To the  f i rs t -order   approximation  in   the  spat ia l   gradient   quant i t ies  

we obtain 

where we have already  used  the  results of Section 4 i n  a r r i v i n g   a t   t h e  

las t   equa t ion .  Thus, the  entropy  inequality becomes 

K T  2 - p o T ( s + g ] T - O  * >  , 
X 

where again 

K - 0  . > 

Similarly,   the  free  energy may be expressed  as 

p0 a = $(TI - I T W )  E . 

Using Equations  (6.1) and (6.5) i n  (2.7) gives 
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The. set  of expressions (6.1) through (6.6) and  Equations (4.11) complete 

the thermodynamic formulation of the one-dimensional tenqerature-rate 

dependent  thermoelastic problem on hand. 

6 2 Basic Equations 

Subs t i tu t ing   the   cons t i tu t ive   re la t ions  (6,l) through (6 3 )  i n  t h e  

equations  of motion  and balance of energy (4.111, w e  o b t a i n   t o   t h e   f i r s t  

order of  approximation, 

(el + TI uXt + eOT Tt + eo$ Ttt - K T = 0 xx 

Comparing the  sets (6,7) and (4,121, w e  no te   tha t   the  former i s  f ree   o f  

t he   t h i rd  order der ivat ives  of the  displacement, 

6 3 Charac ter i s t ic  Motions 

We shal l   fol low the Hadamard.'s method and Section 4,3 with  the 

exception  that  the second  order  derivatives  of  the  displacement  are no 

longer assumed to be  continuous across S ., Therefore, w e  have 

yielding 



b t t 3  + c ruxt3 = 0 , 

b x t 1  + c ruxxl = 0 D 

- 

(6 11) 

(6.12) 

The set of Equations (6.7) across S give 

P o  b t t l  - 1-( [uxxl = 0 , (6.13) 

Therefore, we have obtained  s ix   l inear   a lgebraic  homogeneous equations 

i n  terms  of s i x  unknowns CT I ,  [TXtl , [TXXI ,  [utt3, [uxtl , and LUXXI 

For nontr ivial   solut ions I the  determinant of the  coefficients i n  (6.9) 

through (6.14) must vanish, 

tt 

which i s  s a t i s f i e d  i f  

Or' 

(6 15) 

(6 ., 16) 

I n  the  thermoelastic medium under  consideration, c and c2  are  the 1 

characterist ic  speeds of wave propagations, We note  that   c2 is the same 

as  that  given by Equation (4.24) for  the  thermoviscoelastic  case. 

Furthermore, c is the e l a s t i c  wave speed which was overwhelmed by the 

presence of the viscous  terms i n  the  thermoviscoelastic  case. We s h a l l  

1 
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show that   these speeds c1 and c2 correspond to the  high  frequency 

asymptotic  phase  velocities. We a lso   no te   tha t  c t ends   t o   i n f in i ty ,  2 

the classical heat  conduction wave speed, as e approaches  zero. OT 

6.4.  Dispersion  Relations  of  Linearized  Longitudinal Wave Propagation 
i n  an I n i t i a l l y  Uns t ra ined Thermoelas ti c Material 

Following  the  procedure  of  Section 4.4,  we obtain 

c (eoT + 

corresponding 

- IT k To + {po(wi) - IJ k uo = 0 , - 2 - 2  
T 

(6.17) 

e w i )   w i  - K k } To - (e, + IT) k w i  u = 0 , - - 2  - - 
06 0 

t o  (4.28). 

For  nontrivial  solutions,  the  determinant of the  coeff ic ients  must 

vanish. Again w e  consider a real frequency w of  propagation i n  the 

posit ive  X-direction, and express the complex wave  number  by Equation 

” 

K IJ k - {po  K w i  + ; ; (e ’  + eoG wi) + IT (IT + e,) k w i  4 - - - -  - 2 
OT T 

Equation  (6.18) i s  s a t i s f i e d   i f  

where 

(6 18) 

(6  19) 

(6 20) 
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are the  dimensionless.  frequency and complex wave-number with 52 as  a 

characterist ic  frequency of the   o sc i l l a t ion ;  and, 

and 

" 

A ' eOT 
5 '  I 

Po 52 K' 

(6.21) 

(6.22) 

(6.23) 

are  dimensionless  material  constants  defined i n  a fashion  s imilar   to  

t h a t  of the  thennoviscoelastic  case.  Equation (6.19) yie lds  

Separating  the  real  and imaginary p a r t s  of (6.24) ,, we have 

(6  26) , 

where only  propagation  in  the  posit ive  X-direction  has been  considered, 

( + I  corresponds to   the   s ign   preceding   the   rad ica l   in  (6.24),, and H, - is 

given by (6.24),. 
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6.4.1. Asymptotic  Expansions 

Once again we shall   follow  Section 4.4.1 to   der ive   cer ta in  

r e s t r i c t ions  on the  material  constants by  means of asymptotic  expansions 

of A and V. 

(1) I n  the  case of law frequency waves when F << 1, the  asymptotic 

expansions  are  identical to the  results  obtained  for  the 

thermoviscoelastic  case.  This i s  not  surprising  since  the 

viscous  effects   are   negl igible   a t  low frequency anyway. We 

omit the   de ta i l s  and s t a t e  dimensional r e s u l t s  of the 

attenuation  factors and phase  velocit ies:  

a = . O + O ( w )  
2 

- 

’0 eOT 

? 

(6.27) 

(6 28) 

(6 ., 29) 

(6 30) 

which are   ident ical   to   those  given by (4.48) through  (4.51) 

despite  the  differences  in y and r; of the two cases. The 

discussion on decompositon  of  c - w i l l  follow  just   the same  way. 

( 2 )  In  the  case of  high  frequency waves when F >> 1, then  Equations 

(6.241, can  be approximated as follows: - 
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(6.31) 

The absolute  value  sign is  placed on ( 4  - 1) wherever it represents 

square  root of a r e a l  number ( 4  - 1) since w e  do not  knm  whether I$ > 1 

o r  I$ < 1 If w e  nm  sepa ra t e   t he   r ea l  and imaginary p a r t s  of (6.31) f o r  

@ < 1 and $I > 1, w e  observe that only I$ < 1 w i l l  y ie ld   posi t ive  values  of 

A and V. Therefore, 

v+ 1 + O(F-l)  

(6.32) 

(6.33) 

provided 

(6 34) 

and 

provided 

A = - 1 (L; - e) + O(F-l)  , - 2 6  

V = - +  O ( F  ) 
1 -1 

- 6  

(6.35) 
0 

(6 36) 

(6 37) 
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The la t te r  condition may be re-written 

- > l + -  . 1 Y 
4 5 

(6.38) 

The dimensional  form  of  the expressions (6.32)  through  (6.33)  and 

(6.35)  through  (6.36) may be  obtained by employing definitions  (6.20) 

through  (6.23)  and  (6.25)  through  (6.26) . 

c + = E+O(U -1 ) = c 1 

I 

I 

-1 
2 

OT 

(6.39) 

(6.40) 

(6.41) 

(6 42)  

Expressions  (6.39)  and  (6.41)  depend on the   coef f ic ien t  of the 

temperature-rate e as w e l l  as on the   cha rac t e r i s t i c  frequency Q. 

The speed c given by (6.40) is the  e las t ic  wave speed  and c given 

by (6.42) i s  the d iss ipa t ive   hea t  wave speed.  Furthermore,  these wave 

OT 

+ - 

speeds are iden t i ca l  t o  the  character is t ic   speed c and c given by 

Equations  (6.15)  and (6 e 16) . A close look a t  the condition  (6.38) 

1 2 

reveals that 

56 



I - 
e O i  

- 
'0 eOT 

or 

2 2 2 
2 c > c 1 + c 3  . (6.43) 

Inequality  (6.43) states tha t   t he   hea t  wave speed is always 

greater  than the e las t ic  wave speed c and the non-dissipative (low 

frequency) hea t  wave speed c This  conclusion is b e s t   i l l u s t r a t e d  on 

the dispersion  curves  (Section  6.4.3,  pages  66,  68, and 70) .  Again, the 

classical i n f i n i t e  wave speed due t o  heat conduction may be deduced 

by s e t t i n g  e' equal t o  zero. 

1 

2 '  

OT 

6 .4 .2 .  Possible  Physical  Limitations 

We may employ the same technique  used in   Sec t ion  4.4.2  and thus 

conclude that f o r  most materials 

y - 0  and c > O  . > 
(6 44) 

Inequal i t ies  (6.44) are i n   p e r f e c t  agreement  with  the  results  obtained 

ear l ier  in  the  asymptotic  expansions. We thus  arr ive a t  the  following 

se t  of conditions  for a stable wave propagation i n  the temperature rate 

dependent thermoelastic material under  investigation: 

(6.45) 

and + + :  . 
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These restrictions were appropriately  introduced  in  the numerical 

computations  performed t o  obtain the graphica l   i l lus t ra t ions   o f   the  

dispers ion  re la t ions.  

6.4.3.  Numerical  Results and  Graphs 

Logarithmic  values of the non-dimensional a t tenuat ion factor A and 

the non-dimensional  phase  velocity V were cross-plot ted  against   the  

dimensionless  frequency F (Figures  6.1  through  6.12). The following 

behaviors are observed: 

(1) For the case of F 2 1: 

(a)  Both at tenuat ion  factors  A+ and A - , and the  phase 

veloci ty  V+ increase  with  the  frequency F (Figures 

6 1-6.6 , 6.7,  6.9, and 6.11) . The phase  velocity 

V - , however, is independent of the  frequency  (Figures 

6.8,  6.10, and 6.12). 

(b) The at tenuat ion  factor  A+ and the  phase  velocity V - 

increase  while A- and V decrease  with  the material 

constant y (Figures  6.1, 6 .2 ,  6.7, and 6.8) a 

+ 

(c) The at tenuat ion  factors  A+ and A - increase  while  the 

phase  veloci t ies  V+ and V- decrease  with the material 

constant 5 (Figures 6.3, 6,4,  6.9, and  6.10). 

(d) The at tenuat ion factor A+ and the  phase  veloci t ies  V+ 

and V are independent  of  the material constant $I 

(Figures 6.5 , 6.6, and 6 1 2 )  . The at tenuat ion factor 

A - decreases  with $ (Figure  6.11) 

- 
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Figure  6.1.  Effect of material constant y on a t tenuat ion   fac tor  
A+ of longi tudinal  waves i n  a temperature-rate 
dependent  thermoelastic material f o r  5 = 1, 
4 = 0.001 
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Figure 6 . 2 .  Effect of material  constant y on dispersion of 
phase velocity V+ of longitudinal waves i n  a 
temperature-rate dependent thermoelastic 
material for 5 = 1, 0 = 0.001 
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Figure 6 . 3 .  Effect  of  material  constant 5 on attenuation  factor 
+ of  longitudinal waves i n  a  temperature-rate 
dependent thermoelastic  material  for y = 5 ,  
9 = 0.8 
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Figure 6.4. Ef fec t  of material constant 5 on dispersion of 
phase  velocity V+ of longi tudinal  waves i n  a 
temperature-rate  dependent  thermoelas t i c  
material fo r  y = 5, I$ = 0.8 
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Figure 6 . 5 .  Effect  of  material  constant @ on attenuation  factor 
A+ of  longitudinal waves i n  a  temperature-rate 
dependent thermoelastic  material  for y = 5 ,  5 = 1 
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Figure 6.6. Effect  of  material  constant $ on dispersion  of 
phase velocity V+ of longitudinal waves i n  a 
temperature-rate dependent thermoelastic 
material  for y = 5, 5 = 1 
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Figure 6 . 7 .  Effect  of  material  constant y on attenuation  factor 
A- of  longitudinal waves i n  a  temperature-rate 
dependent thennoelastic  material  for 5 = 1 ,  
I$ = 0.001 
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Figure  6.8.  Effect of mater ia l   constant  y on dispersion of 
phase  velocity V- of longi tudinal  waves i n  a 
temperature-rate  dependent  thermoelastic 
material fo r  5 = 1, 41 = 0.001 
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Figure 6.9. Ef fec t  of material constant 5 on at tenuat ion factor 
A- of longi tudinal  waves i n  a temperature-rate 
dependent  thermoelastic material for  y = 500, 
9 = 0.001 
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Figure 6 . l o .  Effect  of material   constant 5 on dispersion  of 
phase  velocity V, of longitudinal waves i n  a 
temperature-rate  dependent  thennoelas t i c  
mater ia l   for  y = 500, I$ = 0.001 

68 



l o 2  -” 

9 = 0.008 

0 = 0.04 

10-1 - 0 = 0.25 

A - lo-* - 

- 

F 

Figure 6 . 1 1 .  Effect  of  material  constant 0 on attenuation  factor 
A- of  longitudinal waves i n  a  temperature-rate 
dependent thennoelastic  material  for y = 2 ,  
5’1 
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Figure 6.12. Ef fec t  of material constant $I on dispersion of 
phase  velocity V- of longi tudinal  waves i n  a 
temperature-rate  dependent  thermoelastic 
material f o r  y = 2, 5 = 1 
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(2) For the 'case  of 1 < F 2 lo2: 

(a) This is where the major difference between the 

thermoviscoelastic  case and the  thermoelastic  case 

exists s ince  there  is no interact ion between the 

material  constants y ,  S, and I$ as the  frequency F 

varies  (Figures  6.1  through  6.12). 

(b)  Except  for a small  decrease i n  V+ w i t h  I$ (Figure 

6.61,  the  behavior  of t he  other  variables remain 

unchanged. 

(3)  For the  case of F 5 10 : 2 

(a )  Unlike the  thennoviscoelastic  case,   al l   quantit ies 

A+, V+, A_, and V - become independent of the  frequency 

F and approach their asymptotic  values  (Figures  6.1 

through  6.12). We r e c a l l   t h a t  i n  the  thermoviscoelastic 

case  only A+ and V+ had  asymptotic  values  while A- and 

V - increased  indefini te ly  w i t h  the  frequency F. 

(b) The at tenuat ion  factor  A+ increases  with  the  material 

constant y while A decreases., Both V+ and V- are  

independent  of y (Figures  6.1, 6.2,  6.7,  and 6.8) .  

- 

(c) The attenuation  factor A increases  with  the  material - 
constant 5 while A+, V+, and V- a r e   a l l  independent of 

5 (Figures  6.3,  6.4,  6.9, and 6.10) 

(dl The at tenuat ion  factor  A+ increases  with  the  material 

constant 4 while both A and V decrease. The phase 

velocity V+ is independent of $I (Figures  6.5,  6.6,  6.11, 

and 6.12) 

- - 
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6.5. A Class of Self-similar  Solutions 

I n  the  previous  sections we obtained  conditions  under which the 

par t ia l   d i f ferent ia l   equat ions  (6 .7)   could have  meaningful solut ion and 

s t ab le  wave propagations would exis t .   Character is t ic   speeds and typ ica l  

dispers ion  re la t ions were discussed i n  d e t a i l  and analytical   expressions 

describing  the  asymptotic  behaviors of the  a t tenuat ion  factor  and phase 

velocity  associated  with  both  high and low frequency osc i l l a t ions  were 

given. 

I n  this sec t ion ,  we w i l l  employ the  theory of  continuous  group of 

transformations  to  seek a c lass  of se l f - s imi la r   so lu t ions  of t h e   s e t  

(6.7) . 
Self-similar  solutions  are  obtained by using  appropriate 

transformations  that  reduce a  system  of pa r t i a l   d i f f e ren t i a l   equa t ions  

t o  a system of ordinary  different ia l   equat ions.   In   general ,   the  

solutions  are  not  unique and success of the method l i e s   g rea t ly  on the 

choice of the  transformation. Hansen (1964) discusses  several  methods 

for  obtaining  appropriate  transformations.  

We w i l l  follow the  theory  developed by  Morgan (1952) t o  seek 

so lu t ions   t o   t he   s e t  (6.7) . To begin  with, we must look for   possible  

transformation  groups so t ha t   t he   d i f f e ren t i a l  forms 

I 

(6.46) 

X2 - - (e + 7 ~ )  uXt + eOT Tt + e& Ttt - K T 1 xx 

are  conformally  invariant  under such transformations. The problem may 

be  simply  formulated by using a  one-parameter  group of transformations 

defined by 
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(X*, t * ,  T*, u*) = (AX, A-m t, An T I  Ar u) , (6.47) 

where A i s  the  parameter, (m, n, r) are  constants;   spatial   coordinate X 

and time t are  the  independent  variables, and temperature T and 

displacement u are  the  dependent  variables. We a l so  assume tha t   the  

coeff ic ients  T (T) , p (TI , eo (T, T I ,  el(T, T ) ,  and K (TI   T)  Can be expressed 

expl ic i t ly  i n  terms of the  products of the powers of their   respect ive 

arguments.  Consistent  with  our power law transformation, w e  consider 

bl 
T ( T )  = El T I 

(6.48) 

where E 1, ... , d are  constants.  Substituting (6.48) i n t o  (6.46) gives 5 

b2 bl-1 X1 - - po utt - Ea T u + El bl T xx Tx 
(6.49) 

d .b3-1 $3 

X2 
= (E1 Tbl + E Tb4 4 4, %t + E3 b3 T T T +  

4 t 

+ E3 d3 T T 
b3 .d3-1 

Ttt - E5 TXX - 

73 



Since w e  require A and A to be conformally inva r i an t  under the  1 2 

group  of transformations defined by (6.47) such t h a t  

aT* aT* a 2 ~ *  a T*. a u* a u* , = 2 2 2 2 
Xi[X*, t*; T*, u*; ax*' att' - - - 

ax*2' at*2' ax*2' at*ax* a t * 2  

aT a u  2 
aT 2 

= J i ( X ,  t; T ,  U ;  ax, -.. , -- A) Xi ( X I  t; . . . I 2) , (6.50) a u  
a t 2 '  

we  must have 

n b l = 2 m + r + 1  I 

n b2 = 2 m +  2 I 

n b3 + (rn + n)  d3 = 2m + 2 r  I 

n b4 + ( m  + n) d4 = 2m + r +  1 I 

(6.51) 

n b5 + ( m +  n) d5 = 3m - n + 2 r  + 2 . 

Therefore,  bl,  b2' , d are not  entirely  independent of one another. 

According t o  Morgan (19521, the   so lu t ion  t o  (6.49) may be  expressed 

5 

i n  terms of functions f ( 5 )  and g (5) of an absolute   invariant  5 of the 

subgroup  of  the  transformations  of  the  independent  variables.  Therefore, 

5 must sa t i s fy   the   condi t ion  

There a re  many ways t o  choose the form of 5 ;  several   of  which may 

y ie ld   sa t i s fac tory   resu l t s .   S ince  w e  have employed a power l a w  

transformation, w e  assume t h a t  5 is  a product  of  the powers of X and t 

also. Without loss of   general i ty ,  w e  choose 
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I -  

m 
< = t x  1 

r (6.52) 

where m may be determined by requir ing < t o  remain invariant .  Upon 

using  (6.47) , we obtain 

1 

m -m+m m 1 t* X* = A l t x  1 I 

which requires  

m = m  , 1 (6.53) 

to  insure  absolute  invariance.  The functions f and g are, as proven 

by  Morgan (19521, absolute   invariants  under the complete s e t  of 

transformations  (6.47) . Again, the  choice is unlimited as there  may 

be many forms  of f and g t h a t  would y i e ld   s a t i s f ac to ry  answers. 

Following the power law employed so far,  w e  assume 

m 
f ( c )  = T X 

2 
I 

(6  54) 

To determine m and m , w e  substi tute  the  transformations 2 3 (6 47) i n t o  

(6.54)  and se t  the  powers of A equal t o  zero t o  insure  absolute 

invariance of f and g. Thus, w e  o b t a i n  

(6  55) 
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Subs t i tu t ing  (6.53) i n t o  (6.52)  and  (6.55) i n t o  (6.54)  gives 

T = f ( c )  Xn , (6.56) 

u = g(S)  xr . 

The system  of par t ia l  d i f fe ren t ia l   equa t ions  (6.491, upon using 

(6.56)  and  the  restrictions imposed by (6.511,  simplify  to a system  of 

ord inary   d i f fe ren t ia l   equa t ions .  I t  i s  not  the  purpose of t h i s   t r e a t i s e  

t o  e x t r a c t   r e s u l t s  from t h i s  class of se l f - s imi la r   so lu t ions  which 

s a t i s f y   s p e c i f i c   i n i t i a l  and  boundary conditions. The de ta i l s   o f  such 

an analyis  , in  general ,   are  very  involved. 

As a simple example, l e t  us assume that   both IT and p are constant. 

This   requires   that  

b l = b 2 = 0  . 

Using (6.57) i n  (6.51)  gives 

m = - 1  and r = l  . 

(6.57) 

(6 58) 

Employing (6.56)  through  (6.58) i n  Equation  (6.49)  gives 

where ( I )  denotes  differentiation  with respect t o  5 .  The ordinary 

differential   equation  (6.59) is s a t i s f i e d   i f  

'See, e . g . ,  Burniston and Chang (1970). 
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(6.60) 

where D and D are constants of integrat ion.  1 2 

Using  (6.60) i n  (6.56)3 and not ing   tha t  

5 = t / X  I 

we obtain: 

u = D  t + D 2 X  . 1 

(6.61) 

(6.62) 

This  expression  denotes  that  the  displacement f i e ld  is l i n e a r  and thus 

r e s u l t i n g   i n  a constant s t r a i n  D2 and a constant particle veloci ty  D 1' 

To simplify  the  Equation  (6.49) 2, w e  fur ther  assume t h a t  

b 3 = b   = b 5 = 0  4 (6.63) 

NOW the set  (6.51) i s  s a t i s f i e d   i f  

n = l  , (6.64) 

and d3, dq, d are a rb i t r a ry   bu t  do not  vanish  simultaneously. Thus, 

using  (6.56)  through  (6.58) and (6.62)  through  (6.64) i n  Equation 

(6.49) 2 ,  w e  have the fo l lawing   ord inary   d i f fe ren t ia l   equa t ion   in  f: 

5 

(6.65) 

Equation  (6.65) is satisfied i f  f '  = 0 or f "  = 0 ,  both of which y i e l d  

a l i n e a r  temperature d i s t r ibu t ion ;  or i f  f '  # 0, f "  # 0,  then 



r- 

d -d -1 3 5  E3 d3 f' 2 
- E s E  = O  , (6.66) 

provided that d3 # 0. The ordinary first-order d i f fe ren t ia l   equa t ion  

(6.66) may be re-written as 

f '  = (E /E d 5 R 2R 
5 3 3  I 

where R s a t i s f i e s  the condition 

R(d3 - d5 - 1) = 1 . 

(6.67) 

(6.68) 

Integrating  (6.67)  for R # 0, R # - -, we obtain 
1 
2 

( E / E  d l  5 R 2R+1 
f ( 5 )  = 2R + 1 5 3 3 + D3 I (6.69) 

where D i s  a constant of integrat ion.  The temperature  distribution may 

be obtained by using (6.69) i n  (6.56) 

3 

2: 

T = D  X +  (E /E d 1' ( t / X )  2R+1 
3 2 R + 1  5 3 3 (6.70) 

Explicit   expressions may also be obtained for  the stress C, heat 

f lux  B, and internal  energy e, by subs t i t u t ing  the displacement f i e ld  

(6.62) , the  temperature  distribution (6.70) , and their der ivat ives  , i n  

the cons t i tu t ive   re la t ions  (6 1) through (6.3) : 



I 

(6.71) 

The set (6.71)  defines a constant .stress temperature-rate  dependent heat 

conducting thennoelastic medium. 
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7. CONCLUSIONS 

A thermodynamic theory  has been presented  describing  a  class  of 

temperature-rate  dependent  materials.  Principles of modern axiomatic 

continuum  mechanics were employed t o  impose ce r t a in   r e s t r i c t ions  on the 

cons ti tu t ive   re la t ions .  

One-dimensional l inear-gradient  theories  for  the  thermoviscoelastic 

and thermoelastic  cases  satisfying  the  general   theory were presented and 

compared. I t  was sham  tha t   there  is only one characterist ic  speed 

associated w i t h  the  thermoviscoelastic  case and i s  due t o  the  temperature 

r a t e   e f f e c t .  The thermoelastic medium,  on the  other  hand, possesses an 

addi t ional   character is t ic   speed of t h e   e l a s t i c  wave. This  difference is  

bel ieved  to  be due to   t he  overwhelming viscous  effects  which override 

the   e l a s t i c i ty  of the  material   at   high  frequency of o sc i l l a t ion  i n  a 

thermoviscoelastic medium. 

Dispersion  relations were presented i n  dimensionless forms and 

analytical  expressions  for  the  asymptotic  behaviors of the  attenuation 

factors  and phase  velocit ies were derived  for  each  case. I t  was 

demonstrated  that  the  high  frequency  asymptotic  phase  velocities  coincide 

with  the  character is t ic   speeds  obtained  ear l ier .   Physical   l imitat ions 

were placed on the  dimensionless  material  constants by us ing   c r i t e r i a  

for   s tab le  wave propagations a t   a l l  frequency  levels and by drawing 

analogy w i t h  r e su l t s  of the   c lass ica l  thermodynamics. 

A c lass  of se l f - s imi la r   so lu t ions  was obtained  for  the  thermoelastic 

problem  using  the method of  continuous  group  of  transformations. 

Explicit   expressions were obtained  for  the  consti tutive  relations i n  

the  case  of a constant-stress,  heat-conducting medium. 
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A 

A(F) 

B 

BA 

C 

D 
j 

j 
E 

F 

Fi 

F B 

GAB 

G B 

H (F) 

H 8 

J 

Ji 

L 8 

pAB 

Q 

Qi j 

S 

S 

8. LIST OF SYMBOLS 

Simi lar i ty  parameter appearing i n  (6 .47) .  

Non-dimensional a t tenuat ion  factor .  

Heat flux. 

Heat flux vector. 

Internal   heat   generat ion per u n i t  mass per u n i t  time. 

Integration  constants (j = 1, 2, 3). 

Constant  coefficients (j = 1, 2,  . . . , 5) - 
Non-dimensional  frequency. 

Body force per u n i t  mass. ' 

Functions  of  irreducible  integrity  basis.  

Cauchy-Green s t r a in   t enso r .  

Elements ( l i n e a r   i n  Y ) of i r r educ ib l e   i n t eg r i ty   bas i s .  AB 

Non-dimensional complex  wave-number. 

Functions of i r reducib le   in tegr i ty   bas i s .  

Jacobian of the deformation  gradient. 

Functions of transformation  variables and parameter. 

Elements ( l inear  Ym)  of i r r educ ib l e   i n t eg r i ty   bas i s .  

Piola stress tensor.  

Full  orthogonal  group. 

Time dependent proper orthogonal  transformations. 

Symmetry group  of material. 

A scalar-valued  function. 
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sAB Elements  of the symmetry group s. 

T 

TO 

X 

a 

C 

e 

Absolute  temperature. 

A complex amplitude  coefficient. 

A second-order  tensor-valued  function. 

Non-dimensional  phase velocity.  

A vector-valued  function. 

Spatial   coordinate.  

Reference  coordinate  system. 

Specif ic  Helmholtz free  energy  per  unit  mass. 

Constant  powers (i = 1, 2,  . . . , 5) . 
Wave velocity . 
Constant powers (i = 3 ,  4,  5). 

Spec i f i c   i n t e rna l  energy  per  unit mass. 

ei ( T ,  I) Coefficients  appearing i n  the  expression  for   the  internal  
energy a 

f ( 5 )  An absolute  invariant  function  defined by (6.56). 

g ( 5 )  An absolute  invariant  function  defined by (6.56) . 
i Square  root of (-1) . 
k Complex  wave-number. 

R Constant power defined by Equation  (6.68) . 
m Constant power . 
m Constant  pcwers (i = 1, 2 ,  3 ) .  i 

n Constant  power. 

P i  Posit ion  vector.  

'i Par t ic le   ve loc i ty .  
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r 

s 

t 

U 

U 0 

X 

K 

Y 

Y 

E 

Constant power. 

Specific  entropy  per unit mass. 

Time. 

Original time o f  reference. 

Displacement f i e ld .  

Complex amplitude  coefficient. 

Spatial   coordinate.  

Spatial  coordinate  system. 

Coefficient of heat  conductivity. 

Kirchoff-Piola  longitudinal  stress.  

Kirchoff-Piola  stress  tensor.  

Any f i e ld   va r i ab le .  

A scalar  invariant  given by (3.20) 

An arbitrary  second-order  symmetric  tensor. 

A characteristic  frequency. 

Attenuation  factor. 

Non-dimensional material  constant. 

Kronecker de l ta .  

Lagrangian s t r a i n .  

Non-dimensional material  constant. 

Coefficient  appearing i n  the  expression  for  the stress. 

Dif fe ren t ia l  forms defined by Equations (6.46) i = 1 I 2. 

Coefficient  appearing i n  the  expression  for  the  stress.  

Absolute  invariant  of  the  subgroup  of  transformations  defined 
by (6.52).  
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P 

P O  

Coefficient appearing i n  the expression for the stress. 

Density . 
Ini t ia l   dens i ty .  

Non-dimensional material constant. 

Non-dimensional material  constant. 

Coefficient appearing i n  the  expression for  the  specific 
Helmholtz free  energy. 

w Frequency. 
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