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ABSTRACT

This paper represents an analytical and experimental investigation
of the ductile fracture of polymers. The analytical portion represents
an adaptation of the Dugdale model to include the effect of a uniform
shear stress at the elastic-plastic interface. The solution is formu-
lated using a complex variable approach. The effect of assuming the
existence of a uniform shear stress along the plastic zone boundary is
to introduce a weak logarithmic singularity at the tip of the plastic
zone. The solution demonstrates the admissibility of stress states
along the elastic-plastic boundary other than that normally assumed for
the Dugdale model. The results of the modified problem are compared to
Dugdale's predictions.

The experimental aspect represents an evaluation of an earlier
investigation extending the Dugdale mathematical model to include
material anisotropy. Experiments were conducted on orthotropic sheets
of polycarbonate in which the desired preorientation was produced by a
rolling process. Crack opening displacements were measured as a means
of qualitatively verifying the theory. Crack extension was observed
to deviate from the original crack line depending on initial crack

orientation with respect to material orthotropy.
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PREFACE

This report deals With three seemingly unrelated investigations
into the behavior of polymers. These areas can be identified as:

1. The adaptation of the Dugdale model to include shear stresses

at the elastic-plastic interface.

2. An experimental evaluation of the extension of the Dugdale

model to include material anisotropy.

3. A new interpretation of the inelastic birefringence of

polycarbonate.
The first topic is discussed in Chapters 2 and 4 and the second topic
is discussed in Chapters 3 and 4. Thése two tppici,represent selected
portions of the Ph.D. research of the two junidr authors of this report.
The third topic is presented in appendix A and represents a separate
investigation by the senior author of this report which was conducted
during a 12 week stay at NASA-Ames during the summer of 1969.

Even though these three areas may seem unrelated, there is a unique
and unifying thread. As the title of this report nggests the entire
effort is related to an attempt to obtain a better understanding of fracture
mechanics as related to ductile polymers. We, of course, also feel that
this work will give considerable insight into the ductile fracture of
metals as well.

As is well known, the Dugdale model presupposes a plastic zone to
exist in front of a crack. Normally this plastic zone is assumed to be
a thin extension of the crack 1ine. However, a number of investigators
have experimentally shown that the plastic zone has a width which

closely approximates the thickness of the plate being tested. In

vii



polycarbonate as well as some other materials the shape of the plastic
zone resembles a candle-flame and appears to begin adjacent to, but not
at, the crack tip and proceeds initially in a direction other than the
crack line. Also a number of researchers have reported on and discussed
the fact that different materials have variously shaped plastic zones in
front of the crack tip. The first two topics itemized above represent
an effort to develop mathematical models which will predict the size,
shape, and direction of plastic zone growth in front of cracks using the
Dugdale model as a point of departure.

In attempting to answer questions regarding the size and initial
shape of plastic zones in various materials, it is felt that possible
influences are the pkoperties of the material and the stress state near
a crack tip. If the cause were the latter, then admissible stress states
might exist other than the stress state normally assumed for the Dugdale
model (a tensile yield stress normal to the crack Tine on the elastic-
plastic interface). Thus a uniform shear stress was assumed to exist
on the elastic-plastic boundary as well as the tensile yield stress of
the material. It was felt that this modification of the stress and
displacement field might give rise to a plastic zone that differs from
that predicted by the normal Dugdale model.

The other approach which has been used herein assumed that various
shaped plastic zones occur due to the properties of the material, i.e.,
Tocal anisotropy. Thus the Dugdale model was adapted to include material
anisotropy and a portion of the present effort was directed toward
experimentally verifying the anisotropic Dugdale model. The ultimate
objective with this approach was to predict piastic zone size and shape

from a knowledge of the local anisotropy of a material-polymer or metal.
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The third investigation which is reported in appendix A is an attempt
to obtain an understanding of the meaning of isochromatic fringes in
yielded regions. As is well known, photoelasticity is one experimental
technique which can be used to measure the stress fields in front of
cracks. A valuable extension of the photoelastic technique would be to
develop photoplasticity to an extent that would allow the experimental
evaluation of stress fields inside the plastic zones which occur in front
of cracks. The third endeavor is a first step in this direction.

Portions of this report have been presented at semi-annual meetings
of the Society for Experimental Stress Analysis, i.e., the anisotropic
study and the photoplasticity study. The latter has been accepted for

publication and will shortly appear in Experimental Mechanics.

ix



CHAPTER I

INTRODUCTION AND REVIEW

1.1 General

It is generally assumed that fracture initiation in solids is
caused by some imperfection or flaw, such as a microcrack, which
causes a 1oca11y high elevation of stress upon the application of a
load. The complete study of the fracture process for a particular
solid requires the simultaneous consideration of both the macroscopic
effects such as environmental and loading conditions, the nature and
composition of the material, and the microscopic phenomena occurring -
at the site where the fracture initiates and grows. At one end of
these two diverse viewpoints, the fracture process involves the
rupturing of atomic bonds. In this range, one is interested in phenom-
ena taking place in the material within a region of diameter on the
order of 10"7 cm. or less and molecular theories provide the avenue
of approach to the problem. On the opposite end of the scale,
involving material response within a region of diameter on the order
of 10"2 cm. and greater, the tools of continuum mechanics may be used
to study the phenomenon of fracture. A model to describe atomic
behavior is beset by severe mathematical difficulties, and these
difficulties are commonly avoided by resorting to continuum mechanics.
This is a generally accepted way to integrate the complexities of
the microstructure of real materials in situations where such complex-

ities are not believed to be essential to the question under



consideration [1]*.

Since fracture initiation involves the formation of cracks from
imperfections, the microstructure of the material and the loading
conditions appear essential in studying the process. Various theories
dealing with crack initiation and growth have been discussed by a
number of investigators for crystalline materials [2] and for
amorphous polymers [3]. The principal emphasis of these microstructural
theories is on understanding the mechanism of fracture initiation
and they tend to be primarily qualitative in nature.

On the other hand, the macroscopic theories of fracture assume
the existence of microcracks or other flaws which may readily act as
fracture nuclei. The size of such imperfections is assumed to be
sufficiently large compared to the characteristic dimensions of the
microstructure to warrant the use of a continuum mechanics viewpoint.
This Tatter approach will be adopted throughout this investigation.

The fracture of solids will be considered as the formation of
new surfaces in the material in a thermodynamically irreversible manner.
The essential aspect of the phenomenon is the rupture of cohesive
bonds of the medium. In simplified terms, fracture is a process involv-
ing the nucleation and growth of imperfections such as voids or cracks.

Material response undér time-independent, isothermal conditions
can be generally classified as ductile or brittie; however, many
materials can be made to undergo a transition from the ductile state

to the brittie state or vice versa. It is known that the same material

* Numbers is brackets [ ] refer to bibliography.
‘



may behave in a brittle or ductile fashion depending on such factors
as rate of loading, temperature, pressure, etc. [4]. From the macro-
scopic or contihuum standpoint, the fracture of solids can be generally
classified into these same two broad categories of briftle and ductile
even though the details may vary with the material, the type of
external loading, and the environmental conditions. Brittle fracture
is a low energy failure and, for unstable loading conditions, takes
place in a catastrophic manner, meaning that the fracture velocities
are usually high [56]. Ductile fracture on the other hand is usually
associated with large deformations, high rates of energy dissipation,
and slow fracture velocities. A study of this second aspect, namely

ductile fracture, is the primary concern of this investigation.

1.2 Literature Review

The importance of the localized concentration of stress in the
neighborhood of sharp notches was emphasized by Inglis [6]. He found
that the stress near the tip of a notch or flaw can be much greater
than the remotely applied stress. As a model Inglis used the two
dimensional configuration of an elliptical hole in a plate under an
applied tensile stress P as depicted in Fig. 1. 1Inglis obtained an
exact solution for this problem and his expression for the maximum

stress at the apex of the major axis of the ellipse is given by

max - P[1 + (2a/b)] (1.2.1)

(Gy)

where 2a and 2b are the major and minor diameters of the elliptical

hole. In addition he showed that if the flaw is in the shape of a



Fig. 1

Uniaxial Tension of Elliptical Hole.



very narrow eliipse or crack of length 2a having a notch radius of
curvature R = bz/d, the stress concentration is approximately given

by

(o) . = 2P(a/R) /2 (1.2.2)

y/max
Since R is very small when compared to a, the actual stress at the
root of the crack could be sufficiently large to cause fracture.

The classical treatment of the fracture problem is due to Griffith
[7] who approached the question by appealing to the first law of
thermodynamics. -He postulated that a necessary condition for a crack
to extend under the influence of external loads is that the energy Q
used in creating new fracture surface is supplied from the released
strain energy W in the elastic solid and that W > Q in order for the
crack to extend. Griffith assumed that the free surface of a solid
possessed a surface energy in proportion to its area just as liquids
possess surface tension. The knowledge of the elastic energy stored
in a loaded cracked solid was a prerequisite for determining the
instability condition for crack propagation. Griffith's calculation
for the change in strain energy W of an elastic body due to the presence
of a crack was based on Inglis' solution for an elliptical hole in a
stressed body. It should be mentioned that both Q and W depend on
the size of the crack. According to Griffith, the stationary value
of the free energy F = Q - W corresponds to a certain critical crack

Tength a. Referring to Fig. 2, Griffith's energy criterion assumes

r'
that crack extension takes piace when a, the half crack length, exceeds

the critical value g In addition, if the surface energy of the
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Fig. 2 Energy Balance of Crack in Infinite Plate.



material and crack size are known, the failure criterion can yield an
inequality defining the minimum load for fracture. The results of
Griffith's theory were well supported by his own experiments on hard
glass, but he specifically excluded ductile materials.

Subsequent theories have largely dealt with modifications and
generalizations of Griffith's work. In general terms, the energy
halance criteria are based on the thermodynamic notion that when the
rate of release of stored strain energy exceeds the sum of the rates of
absorption of energy in producing plastic deformation and newly created
fracture surface, then the crack will extend [5]. Due to the generality
and flexibility as well as the physical soundness of this underlying
principle, the energy balance approach forms the basis for the most
widely used theories of fracture.

Sack [8] in 1946 extended Griffith's work to the three dimensional
case. He cé}culated the conditions of fracture for a solid containing
a circular or penny-shaped crack when one of the principal stresses is
acting normal to the plane of the crack. Sneddon [9] using cylindrical
polar coordinates and the theory of Hankel transforms arrived at the
displacements and stresses around a circular crack of the type introduced
by Sack.

In the Tate 1940's and early 1950's Irwin [10] and Orowan [11]
independently offered a modification of the Griffith-type energy balance
to include plastic work as an additional source of energy dissipation.
They pointed out that the energy balance approach must include not only
the strain energy stored in the specimen and the surface energy but aiso

the work in plastic deformation. They recognized that for relatively



ductile materials the work done against surface tension is generally
not significant in comparison with the work done against plastic
deformation. This modification extended the usefulness of the theory
to the fracture of metallic materials.

In the energy balance theories, the rate of release of strain
energy with respect to fracture area called tear energy, fracture
energy or fracture toughness plays an important role. It is consider-
ed to be an intrinsic property of the material and is dependent on
environmental conditions, type of loading, as well as the nature and
composition of the material.

Between 1955 and 1957 Irwin [12, 13] demonstrated that the energy
balance approach is equivalent to a stress-intensity approach. Instead
of considering the energy of the entire crack system, Irwin proposed
to examine the stress field immediately in the vicfnity of the crack.
Using Sneddon's result [9] for the stress distribution around a circular
crack, he pointed out that the crack tip stresses due to the conditions
of generalized plane stress or plane strain can be expressed by a
parametric set of equations. The parameter, called stress-intensity
factor, is a function of the crack dimensions and external loads. The
critical value of the stress-intensity factor (determined experimentally
for different materials) governs the condition of unstable crack prop-
agation. A typical curve illustrating those combinations of applied
stress and crack length at the onset of rapid crack extension is shown
in Fig. 3.

Sanders [14] in 1960, in an attempt to establish the equivalence of

the energy and stress criteria for fracture, reformulated the two-
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Fig. 3 Stress-Intensity Factor Curve.
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dimensional theory of Griffith and obtained an equivalent criterion
involving a particular integral around any contour enclosing the crack
' tip. His result suggests that for crack growth to occur, the energy
criterion for fracture is potentially equivalent to postulating the
existence of a critical strength of an inverse square root stress
singularity [15].

It should be mentioned that a mathematical solution for a sharp
crack in a plate using linear elasticity theory predicts singular
stresses at the crack tip where the radius of curvature is assumed to
be zero. Of course in reality, the deformed shape of the crack adopts
a small but finite curvature at the tip, and the stress levels are
smaller in magnitude than some ultimate stress. In addition, the
occurrence of local plastic flow also tends to reduce the stress-con-
centrating effect of the crack.

Barenblatt [16], objecting to the idea of infinite stresses at
the crack tip, has introduced the effect of cohesive forces acting
across the faces of the crack close to its tips. He formulated the
following hypotheses:

(1) The end region in which the cohesive forces act is "very

small" in comparison with the crack length.

(2) The stresses at the crack tip are finite.

(3) The crack surfaces close smoothly, in other words the

crack tip has a cusp shape as depicted in Fig. 4 rather
than being parabolic as predicted by the elastic theory.
The cohesive farces pull the crack faces together, and taken by them-

selves (i.e. no remote tension applied), they induce compressive stress



il

| l .

Fig. 4 Cohesive Forces at Crack Tip in the Barenblatt Theory.
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singularities at the ends. On the other hand the remote tension alone
induces a tensile singularity, and the superposition of the two stress
states results in a final stress state that is non-singular. Barenblatt
-~thus obtains a fracture criterion by writing the combined stress
intensity factor equal to zero. The result is the comparison of the
stress intensity factor calculated from the external loads with a
material parameter called the modulus of cohesion. The cohesive modulus

N is given by

d
N =j 6(t) dt (1.2.3)
0

where G(t) is the cohesive force distribution, d is the distance over
which this distribution acts (d < < a), and t is a running coordinate
along the x-axis, see Fig. 4. Barenblatt never specified the particular
form of G(t). Barenblatt's theory is similar to that of Griffith's and
leads to 1dent1ca1 results differing only in its interpretation of the
stress and deformation states at the crack tip.

In the theories of Griffith and Barenblatt, the idealized media
remain linearly elastic as the crack extends, and there is no real
expectation that they can represent crack extension in normally ductile
materials. A crack in a ductile material has zones of plastic flow at
each end during an early stage of loading, and these zones grow as the
load is increased. The corresponding problems of the elastic-plastic
continuum are very formidable, and only a few results are available
(see Hutchinson [17, 18], and Rice and Rosengren [19]).

An important step towards a description of plastic yielding at a
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crack tip was introduced by Dugdale [20]. Dugdale's approach, as will
be detailed subsequently, was similar to that of Barenbiatt, but he
replaced the unknown cohesive force distribution G(t) by the known
uniaxial yield stress of the material. His experimental results on
mild steel for the size and shape of the plastic zone indicate good
correlation with theory. Utilizing the results of Dugdale, Goodier
and Field [21] were able to evaluate the plastic energy dissipation
using the methods of elastic perfectly-plastic continuum mechanics.

As is evidenced by the nature of the literature cited thus far,
considerable effort has been expended in studying the brittle and
ductile fracture of metals. Reference [22] offers a comprehensive
review of thevana]ytical and experimental techniques, as well as an
extensivé bibafography on the fracture of metals. While much has been
written about the fracture of metals, relatively little attention has
been directed toward studying the fracture of polymers.

There is an abundance of scientific literature concerning the
synthesis and structure of polymers, but the physics of their properties
has not been dealt with as extensively. It is only recently, as
engineers are becoming increasingly interested in structural applications
for polymers that the gaps in our physical understanding of these
materials are being exposed. It is not sufficient to rely on past
experience with other solids such as metals because‘polymers often
exhibit unfamiliar and unexpected properties.

As previously mentioned, the energy balance approach serves as a
basis for much of the work that has been accomplished in fracture

mechanics. In an effort to extend this concept to polymeric materials,
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the logical place to begin is with glassy polymers since they behave

in a brittle fashion and viscoelastic effects can be minimized due to
their high glass transition temperatures. Berry [23, 24] has inves-
tigated the behavier of polymethyl methacrylate and polystyrene and
found that the failure stress as a function of crack length obeyed the
inverse square root law of brittle fracture. Broutman and McGarry

[25, 26] have studied the effects of temperature, cross linking, and
preorientation on the fracture energy of glassy polymers. Lindsey [27]
and Andrews [28] offer well documented sources on the fracture of
polymers. Very little research has been conducted on ductile polymers.
It has only recently been demonstrated by Brinson [29] that the Dugdale

mathematical model can be applied to the ductile fracture of polymers.

1.3 Scope of this Investigation

This investigation is basically divided into two parts, an ana-
lytical portion and an experimental portion. These aspects will be
briefly indicated at this point and then detailed subsequently.

The analytical portion concerns an extension of the isotropic
Dugdale mathematical model [20]. The familiar Dugdale model assumes
a plastic zone to exist in front of the crack that is a thin extension
of the crack line. Experimental investigations [29] [30] on certain
materials reveal that the plastic zone is candle-flame shaped and appears
to originate, not at the crack tip, but slightly adjacent to it, and
proceed initially in a direction other than the crack line. It is
felt that a possible cause for the initial shape of the plastic zone

is the stress state near a crack tip. If this is the case, then
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admissible stress states might exist other than that normally assumed
for the Dugdale model (a tensile yield stress normal to the crack line
on the elastic-plastic interface). It is proposed to modify the Dugdale
model by assuming the existence of a uniform shear stress acting along
the plastic zone boundary. Such a modification might alter the stress
distribution sufficiently to cause plastic zones to be different than
those predicted by the Dugdale model. A solution to this problem has
been obtained, and a comparison between Dugdale's work and the results
of this solution is presented.

The experimental aspect deals with a verification of the Dugdale
model applied to an anisotropic plate as presented by Gonzalez [31].
This approach assumes that differing plastic zone shapes occur due to
material properties, i.e. local anisotropy. Gonzalez's analytical
solution also discusses the effect of the Mises yield criterion on the
anisotropic problem and presents limits on the applicability of the
yield criterion depending on the anisotropic properties of the material.
The experimental effort has been directed towards verifying some of
the predictions of Gonzalez's solution.

The unifying consideration that prompted both the analytical and
experimental portions of this investigation was to study the plastic
behavior that is characteristic in the fracture of ductile materials.
The analytical solutions of Gonzalez and the modified Dugdale model
that is presented subsequently were motivated by a desire to more
fully understand the nature of the plastic flow that has been observed
in ductile materials. In other words,lwhy do plastic zone sizes and

shapes vary from material to material? For example, the localized
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yielding of the Dugdale type appears to be valid only for materials
whose stress-strain behavior is closely approximated as rigid perfect-
ly-plastic while other materials exhibit more diffuse flow patterns.

It is hoped that this effort will assist in answering some of the

qguestions associated with these problems.



CHAPTER II

MODIFIED DUGDALE MODEL

While investigating the yielding of steel sheets containing slits,
Dugdale [20] observed that the yielded region was shaped as a thin
extension of the crack. He formulated the following three hypotheses:

1. The material in the yielded zone is under a uniform tensile
yield stress Y, see Fig. 5.

2. The yielded zone is a thin extension of the crack line such
that the meterial outside the zone is e]astic and is bounded
by a flattened ellipse of length 2a = 2(2 + 5), where £ is
the half crack length and s is the length of the plastic
zone, see Fig. 6.

3. The length s is such that there is no stress singularity at
the ends of the flattened ellipse.

In addition to these hypotheses, it is proposed that:

4, The material in the yielded zone is under a uniform shear
stress T, see Fig. 7.

Tt might be wise to briefly point out some justification for the
fourth assumption stated above.

If one examines the work of Brinson [29], it is noted that the
initial yielding that occurs in polycarbonate appears to start at some
point slightly removed from the crack tip, see Fig. 8. It was thought
that the introduction of a uniform shear stress along the yielded

zone in the Dugdale model might give rise to a situation where the

17
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Fig. 5 Plastic Zone Replaced by Yield Stress.
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Fig. 6 Dugdale Model .
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maximum stress state did not occur at the crack tip but at some adja-
cent point and thereby obtain a plastic zone of a different shape than
Dugdale‘s. In cther words, yielding would presumably initially pro-
ceed in a direction other than the crack 1ine. As previously mentioned
other investigators have reported plastic zone shapes that resemble

e candle flame. If the state of stress in the neighborhood of a crack
tip is responsible for the initial shape of the plastic zone, then the
proposed modification might alter the stress distribution sufficientily
so as to predict a plastic zone that differs from the Dugdale type.

Another reascn for the addition of the uniform shear stress to
the Dugdale model was the desire to realize more complex stress states
along the elastic-plastic boundary other than just uniaxial tension.
This is in contrast to the ligament type model adopted by Goodier and
Kanninen [32]. It was hoped that this modification of the Dugdale
model would illustrate the possibility of a more complex stress state
existing along the elastic-plastic boundary.

A solution to this boundary value problem can be obtained using
the complex variable formulation of Muskhelishvili [33]. The technique
for solution involves the superposition of several stress functions
corvesponding to the component stress states for the modified Dugdale
crack, see Fig. 9. The problem then reduces to the following: Given
an infinitely large elastic isotropic sheet containing an elliptical
hole with specified forces acting on the contour of the hole, what
are the stress functions for this particular geometry? Superposing
the stress states shiown in Fig. 9, and taking the limit as the ellipse

flattens to 2 rrack gives the stress distribution for our model.
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Fig. 9 Component Stress States for Modified Dugdale Crack.
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Muskhelishvili [33] gives the following stress functions to solve
the problem of an infinite sheet containing an elliptical hole which
is loaded over a portion of its boundary by a uniform normal stress as

shown in Fig. 10.

a
¢(c)=§-.',3;f{-%§—1og;,-f-+[g-(c+-’g)-zleog (0, - 7)
g (z7 = 2,)
“L3 G+ D -2 109 (0 - ) - ——FTog ¢ }
(2.1)
2 (o 2
+ +
W) = e (-3 L2 ooy 208 (5 o) LM
Z -m 1 - -m
- = (z) - 7))
-z, log (02 -z) + Z, log (c] -z) - T
(z, - z,) 2
1 2 1 +nm
log ¢ - }
1+« §2 -
where
= =4 m
Z"“(C)'z(g*’c)
= a m_ =& m_
2y = 7 (o Yot R272 ("2*02)
(2.2)
K = ? — 3 (for plane stress)
zZ =X+ iy

For state 2 as shown in Fig. 9, the stress functions in (2.1) reduce

to
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9, () = 2;
‘ (2.3)
= _ _Pag
RS

for the limiting case where the ellipse flattens to a crack (m = 1).

The above reduction is easily made from (2.1) by taking 2y = z,. For
state 3 in Fig. 9 the stress functions in (2.1} lead to
21a0 (o5 = T) (o, + T)
by (5) = g { - =2+ 3 (c + 1) 10g —2 2
Gz - C)(‘OTZ + C)
Gz"_”g)(o'z + 2;)
+ L log
(02 h C)(a—z + C)
(2.4)
Y 4120,z (0, - t){a, + )
11’3(2)'2,“1{-7 +210g
A ‘] (UZ—C)(EZ+C)

i0
for the 1imiting case (m = 1), where g, = e 2 and 2/a = cos 6,.

In order to determine the stress functions for state 4 as pictured
in Fig. 9, which corresponds to an infinite sheet containing an
elliptical hole loaded over a portion of its boundary by a uniform
shear stress, it was necessary to derive them in a general form using
the method presented by Muskhelishvili [33]. The appropriate stress

functions are
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. g . .
L poamy, 2,18 my . -
¢(z) = - 5 1 - 57 log 7 ! [5@&+3) -2, 11009 (g, - )

(z; - z,)
LS D -z T0g (0 - ) Sl 0g £ )
(2.5)
. (0, - z)
- - ___ am (1 + mg 2 1 2
We) =51 [ +2§(; )]1og]+a(mc+)1ogr—fzy
- ?m( - g‘) zl—i—mg—L Tog (0 - ) + Ei log (U] -z)
i
TR 9!

where the variables z, 215 255 and the constant x are defined in
equation (2.2). In order to arrive at the particular form of the
desired stress functions it might be helpful to refer to Fig. 11 where
the variables that define the 1imits of application of the uniform
shear stress are shown. Upon making the appropriate substitutions

into equations (2.5) for the loading shown in Fig. 11, the corresponding

stress functions are given by
- t)(a, - g)(o, + £)(a, + z)
(1+ )2 (1 - 1)

.o (o, + 2)(5, + ) 2a Tog AL=2) |
Sl A | A B I

 _ T a 1 (02
¢4 (§)"§‘7}‘{-2-(C+E) log

(2.6)
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Lila(z+ -2:-) Tog (+g)® (1-2)°
(@, + 5)(g, ~ £){o, + £)(o, -2)

(o, = ¢)(o, - ) 1w
+ 2 log 2 2 + 2a log {%42—%} }
(52 + C)(Ez + C)

for the Timiting case (m = 1), and where d, and % are as previously

defined.

Superposing the stress functions in (2.3); (2.4), and (2.6)

which correspond to stress states 2, 3; and 4 in Fig. 9 yields the

following

o(z) =

Yo
15
{ T

(0, = ¢)(o, + )
}.._.Y_..{.a. +l] 2 2
A A TR

ad -y
U

(o, - z)(o, + ).
+ ¢ log 2 2 3+ %F'{'%'(E + %0 :
(0, - 2)(o, + )

(0, - 2){o, - z)(o, + £)(o, + 1)

log
(1+0)?(-0g)f
LT CLL U
og a log
G, - t)lo, - 7 tre
(2.7)
Yo (o, - t)o, + )
W) =B 2k (g 109 2—F
g -1 (G, + t){o, - )
2 2
+ %Eé{ a (¢ + %9 log (+e) (-2

(0, + t)o, + 2o, - 2)(o, - )

(o, - ¢)(o, -~ )
+ 2 log 2 2 + 2a log {%—§—§}~}
(0, + ©) (G, * ¢)
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It is noted that the expressions for the stress functions above
contain singular portions that violate Dugdale's third hypothesis. The
leading term corresponds to a dominant singularity of the inverse
square root type that is characteristic of linear elastic fracture
mechanics. Each expression also contains a weaker logarithmic singular-
ity that influences the effect of the assumed shear stress. Following
Dugdale's approach, the dominant singular term is annihilated and this

requires that

Y92

-7 (2.8)

In order to evaluate the influence of the assumed shear stress the
weaker logarithmic singularity is retained; therefore, the stress func-
tions corresponding to the modified Dugdale crack (exclusive of the

uniform tension field o, = P) reduce to

(02 - C)(GZ + 1) + 2 Tog (62 - C)(OZ +z) )

¢(z) = {4 +-)1
2“‘ z* > (0, - 2)(0, + ) (0, - 2)(G5, + £

(0, - 2)(G, - t)o, + ) (5, + £)
1+ ) (1-1)?°
+
(0, + £)(5, + ¢) + 2 Tog } - 1)
(02 - C)(-U_Z - Q) ¢

+2~Tr 5 +-—) Tog

+ 2 log

(2.9)
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(o, - t)lla, t z)
¥(g) = - §XT;{ % log - 2 2 }+ I—-i a (g + =
" (a0, - ¢)(@, + t)

log _(+g)? - + 2 log (o, = 2)(g, - £)
(G + €15 - t)lop + elloy - ) (o, + ©)(5, + )

+ 2a 109‘{%4;—§%~}

The displacement components u, v are related by the following

equation
2u(u + 1 v) = x () - 2EL FET - u(z) (2.10)
w (g

We consider next some of the details of the substitution of the stress
functions of (2.9) into (2.10) to determine the displacements at the
surface of the crack and the elastic-plastic interface on which ¢ = e‘e.
It is convenient to consider the terms of (2.10) separately. Since

i@
g, = e , We have

, ] . ]
oy +_;= e162 cosy (6 - 8,) 0 -t e192 sin = (6 - 6,)
'62+r, cos%—(e+ez) Ez-r, sin—;—(ew‘ez)
G, +C G, + T
=icoti (-0, 2 - icotx(e+o,)
5, - ¢ 2 2 = 2 2
az"c
| 18, - -8,
ot it 7 087 (8- 6 ptt_ T sz (05
T+z cos-g- T+e cosg—

(2.11)
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%—%}£L= i cotg%

Substituting (2.11) into the expression for ¥(z) in (2.9) and taking the
conjugate we find

sin 6 + sin.6,
sin & - sin 6, 1}

¥(z) = - %%94{ cos 6, log [

2

+ %9-{ cos 8 log [ ZSi" 9 > ] (2.12)
. sin® 6 - sin 62
cos 62 . cos O - cos 6, ] [ cos %- 13
+ log + log
2 cos 6 + cos 62 sinh-%g

The expression for ¢(z) in (2.9) becomes

Ya cos %-(e - 62)

() = - 33— { 2i 6, cos © + (cos 6 + cos 6,) log [
2mi 2 2 cos %—(e +6,))

sin %-(e - 62)
+ (cos 6 - cos 62) log [ y
sin > (6 + 62)
. 2 . 2
Ta. sin® 8 - sin® 6,
+5-{cos ® Tog [ ] (2.13)
2m s1‘n2 5

cos 6 + cos 62
cos 6 - cos 92

+ cos 6, log [ J+27g [ ~itan g-] }
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Now,

PRORE 3 IR (2.14)

so from (2.13) we have

.

. Yae 1O L i i S0 (6 - 5]
¢'(g) = - 5= {21ezsme+sm91°9[sin(e+92)]}
. . 2 in2
R T sin® & - sin” §
# TR ¢ stn 6 Tog [ —F——21 1 (2.15)
sin™ 6

The conjugate of this is

3T = - - 1 =218, sine +sine log [ © 735, 11
i e { sin o8 Tog [ 5 — 1} (2.16)
sin® o
From the definition of w(g)
w(z) =ie 18 ot g (2.17)
w (C)
for ¢ = e'®. Substituting (2.12), (2.13), (2.16), and (2.17) into

(2.10) and equating the real and imaginary parts, we find

Ya 6, cos © cos B
2uu=(1-«) 2 -(1+|<)%9~{ 42
Cos 6 - Cos 6, o o
109 [ w55 cos 623 -log [ tan%11} (2.18)
3+k) Ta s*in2 ) 2
- + lcosglog [ — ‘ I}
sin” 8 + sin 6,
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= Ya -, cos 6 sin (0 99) 2
2uv—-(]+l<.)'é‘ﬁ'{ 2 ]-Og[sin(9*027

COS-BZ s1h €6 - sin 02

M) Tog [ sin 6 + sin 62

-1 (k-1) (2.9

The stress components along the elastic-plastic boundary where

g = e16 and p = 1 are determined by substituting the stress functions

in (2.9)}into the following equations.

a, +tog=4Re? (2.20)
-0 t+a. +2it, = -5253——-{ wlz) o' (z) +v'(z) ¥} (2.21)
p 6 0" Zory S ¢ '
where
2(z) = = 2 (2.22)
Now
w'(g) =1 a e 10 ¢in o (2.23)

therefore, substituting (2.15) and (2.23) into {2.22) gives

Y ... sin (8 + 6,)
2(z) =~y 1216 - Tog [ o= 5,)
T sin2 6 - sin2 6,
++ {log [ > 11 (2.24)

sin” 8



Since,
t = g—g-)- g—e- 2 o 7 -ie -qg.
2 (z) = 5 & e’ & (2.25)
then
.Ye-le sin 262 'Tie'ie .. .2 cos B sin2 62
&.(E) = Z‘r’ { " 2 2 ]' - 2’ﬂ' { 2 2 }
sin® 6 - sin 8, sin o(sin“ 6~ sin 92)
(2.26)
Also
@ Yae"is -sin 262 cos O , iTae'ie ; -sin2 62 cos2 3]
IP' z) = -
Zn sin2 6 - sin2 62 " sin e(sin2 6 - sin2 82)
' sin2 ¢]
- sin 8 log [ 5 5 11} (2.27)
sin® 6 - sin 62
Substituting (2.24) into (2.20) yields
. sin (8 + 6,)
a, + g, = Re [- FT'{ 21 8, - log [ ST (6 = 95;7] }
+ 2= { log [ > 111 (2.28)
sin® 8
Substitution of (2.26) and (2.27) into (2.21) gives
-0+ 0, + 2i =—-2—T-'{10 sinze 11 (2.29)
p 6 Tpe T 9 2 2 :

sin” 6 - s1in 92

In order to determine the final form for the stresses it is convenient
to examine two separate cases, namely 8 < 8, and 6 > 6, where 8, is

defined by equation (2.8).
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Case I B <8

2
c.=Y-P
P (2.30)
. 2
g =Y-P- %~{ Tog [ 251n 9 S ]2 }
sin® 8 = sin By
Tpe =0
Case II ¢ > 62
cp = « P
- T sin® 6 2
o, ==-P ~-={1Tog [ 17}
o T sin2 - sin2 62
Tpe =0

It should be recalled that equations (2.30) and (2.31) do not include
the remote uniform tension field a, = P.

This solution represents an effort to develop a mathematical
model which will predict the size, shape, and direction of plastic zone
growth in front of cracks using the Dugdale model as a point of
departure. The present solution indicates that Dugdale's finiteness
condition (equation (2.8)) remains unchanged only if the logarithmic
singularity due to the assumed shear stress is retained in the stress
functions. It also demonstrates the admissibility of other stress
states along the elastic-plastic boundary of a crack. A comparison
for the stresses and displacements along the elastic-plastic interface

between Dugdale's solution and the predictions of the modified problem

was formulated and these results are presented in Chapter IV.



CHAPTER ITL

"EXPERIMENTAL ' PROGRAM

The impetus for the experimental program was provided by Gonzalez's
analytical solution dealing with the adaptation of the Dugdale model
to an anisotropic plate [31]. This analytical approach assumes that
various shaped plastic zones might occur due to the properties of the
material, i.e. local anisotropy. The following experimental effort
has been directed toward a qualitative verification of some of the
results of this solution. The details of Gonzalez's solution will not
be presented here. Perhaps it would suffice to say that the method
is quite similar to the procedure outlined in Chapter II. In other
words, the principle of superposition was employed to obtain the com-
plete stress functions for the problem by comhining the stress functions
(taking into account anisotropy)} corresponding to the component stress
states for the Dugdale model. The desired stress functions were obtained
from Savin [34] where he adapted the complex variable approach of
Muskhelishvili [33] to the anisotropic case. Some of the salient
features of the solution will be presented as they dictate the nature
of the experimental investigation.

Examination of the Gonzalez solution reveals that the effect of
anisotropy is to modify each isotropic field equation by a multiplicative
constant that is a function of the anisotropic material constants.

For example the finiteness condition for the anisotropic case can be

written as

37
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Y62‘

P _
--ﬂ—-—-é—-O (3.1)

where Y ié some constant having the units of stress (not necessarily
the tensile yleld stress) acting on the plastic zone boundary that is
related to the anisotropic yield properties of the material and the
other terms are as previously defined. This is similar to the finite-
ness condition that results in the isotropic case where Y is usually
assumed to be the tensile yield stress of the material.

The stresses along the Tine of the crack y = 0 for the anisotropic

case are given by

2Y (8,8, - aya,) 4  sin 26
gy = 1 i 12° tan’! (— 2 ) (3.2)
g ~ cos 262
2y -1 sin 262
o =T tan ' ( ) (3.3)

€ =~ COS 262

where x = %(s + %Q, and the stresses at the tip of the plastic zone are

o, = (8185 = 5;a,) (Y = P) (3.4)

g =Y (3.5)

where P is the external load. For the isotropic case the stresses along

the 1ine of the crack are

2Y

sin.20, ..
-n,tan-.] ( 2

) (3.6}
X y ez - COS 262
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and the stresses at the tip of the plastic zone are

ay = Y-P (3.7)
g, =Y (3.8)

The constants o and B; appearing in equation (3.2) are related to the
anisotropic elastic constants aij as defined by Lekhnitskii [35] through

the characteristic equation for plane stress

3y m4 - 2316 m3 + (Za]2 + a66)m2 - 2a26 m+as, = 0 (3.9)

whose roots mi take the form

me = oyt iBi (3.10)

The corresponding expressions for the displacements for the anisotropic
case are noted to be significantly affected by the anisotropy of the

material as seen below.

i 2y a62

——= [ a;7 (aqay - 8y85) - a;, ] cos 6 (3.11)

u
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= s —— Re [ (a,, [818, (B + 8,)
TR 22 1818, (8 + 8,

2 :
* 0By gy + 1L ag oy (g + ap) + (08" + 6y” 2p)

aye [ (0% + 8;%)(a,” + 8,71 11 ) [ 2 1 6, cos 6

+

2 cos © log sin (o + 62) + cos 8, log (sin 6, - sin 9)2

cos 6, + cos 6
- 22 Tog (cos2 8, - cos2 9)2 11 (3.12)

In addition to obtaining the field equations for the stresses and
displacements, Gonzalez also discusses the effect of the Mises yield
criterion for a Dugdale type solution and presents limits on the validity
of the solution depending on material properties. The limits on the
application of the solution can be illustrated in the following manner.
In the isotropic Dugdale solution Iy is always the maximum principal
stress at the tip of the plastic zone and experiments verify that
Dugdale's second assumption (the plastic zone is a thin extension of
the crack) is valid. However for an anisotropic material it is con-
ceivable that Iy might become greater than ay at the plastic zone tip
depending on the value of the quantity (8162 - a]uz) in equation (3.4);
hence, Oy could hecome the maximum principal stress. For such a case,
the Dugdale model as normally defined is not applicable to an anisotropic

material. The validity of : Dugdale type solution for an anisotropic
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material thus depends on the condition cy >y which can be restated

in terms of material properties using equations (3.4) and (3.5) as

Y
5132 = 0q0p < Y-F (3.13)

where o and B; are defined by equations (3.9) and (3.1Q), P is the
external load, and Y is a constant stress which, as defined by
Gonzalez, is related to the anisotropic yield properties of the material.
If the inequa1ity in equation (3.13) is not satisfied, a Dugdale type
solution is no longer valid and it is thought that the material will
tend to yield in some direction other than along the crack line.
Condition (3.13) is illustrated graphically in Fig. 12 with the shaded
region being the region where the Dugdale model is satisfied.

The principal difficulty in applying the preceeding analytical
results to real materials is in finding real materials that are both
anisotropic and homogeneous. Composite materials certainly provide
the required anisotropy but they are inhomogeneous in general. Nielsen
[36] indicates that uniaxial stretching of a polymer increases the
elastic n;du1us in the direction of stretch and decreases it in the
transverse direction. Since the preceeding analytical analysis can
be specialized to the orthotropic case, it was anticipated that a
homogeneous orthotropic material could be produced by means of uni-
axial stretching of a polymer. Orthotropic refers to a hedy which
possesses three orthogonal planes of elastic symmetry at each point
in the body as opposed to an isotropic material whose properties do

not vary with direction or orientation of the axes at that point.
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In studying the ductile fracture of nonmetallic materials, polycar-
bonate appears to be a very suitable polymer for several reasons. It
is a known ductile polymer and i{ts stress-strain-optic properties are
available in the Titerature [29], [37], 138], and [39]. It is highly
birefringent thus lending itself to photoelastic analysis. Polycarbaonate
finds important technical application particularly in the aircraft
industry where it is used as a glazing material for aircraft canopies,
windows, windshields, etc. because of its strength to weight ratio.
The stress-strain behavior is quite simiiar to that of mild steel and
it is one of the few polymers that can be cold formed. For these reasons
it is felt that polycarbonate holds some promise for use as a modeling
material in attempting to analyze technologically important problems
that arise concerning the behavior of steels and other metals.

The experimental effort can be divided into two general phases.
The first portion concerns the production of an orthotropic material and
the characterization of its elastic properties. The second part deals
with a comparison of experimental results and the analytical theory
presented by Gonzalez. As previously indicated the literature suggests
uniaxial stretching as a means of achieving molecular orientation so
as to produce an orthotropic material. Since polycarbonate is a known
ductile polymer, it was anticipated that an orthotropic material could
be manufactured by means of uniaxial stretching. Considerable effort
was expended in attempting to preduce the desired preorientation including
stretching at elevated temperatures (temperatures in the neighborhood of
the giass transition temperature), at room temperature, and coid rolling.

The most successful technique appears to be cold rolling as it results
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in a ratio of approximately 2:1 for the elastic moduli in the two
principal directions. The actual procedure employed was to take an
as received sheet of polycarbonate*, 0.020 inch nominal thickness, and
make successive passes through a rolling mi1l until the thickness had
been reduced by approximately one-half. A 50% reduction in thickness
was found to be the maximum achievable before crazing occurred in the
rolling process.

In order to describe the behavior of an orthotropic material in
a plane stress situation it is necessary to determine five elastic
constants: Young's moduli and Poisson's ratios in the two principal

directions and the shear modulus (Ex’ Ey, Vos V. ny) together with

X"y

information regarding the yield properties of the material. The next
phase of the experimental program dealt with the characterization of
the elastic properties of the orthotropic material produced by the
rolling process.

Tensile;specimens approximately 1 in. X 5 in. X 0.010 in. were cut
from the rolled sheets using a template in conjunction with a high
speed router. The tensile specimens were oriented parallel to the
direction of rolling or perpendicular to it so as to permit determination
of the elastic properties corresponding to the principal directions.
Two sets of parallel lines approximately 0.900 inch apart were then

lightly scribed on each specimen, one set being parallel to the direction

of rolling and the other set perpendicular to it. The tensile tests

*
Manufactured by the General Electric Corporation under the trade name Lexan.
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were performed with the aid of an Instron Universal Testing Machine
(Model TT-D-L, Instron Corporation, Canton, Massachusetts) operated

at a constant eiongation rate Qf 0.005 in./min. A series of photographs
was taken at prescribed Toad increments for each tensile test to
determine the elongation or contraction between the two sets of parallel
1ines on the specimen. The deformation was determined from the photo-
graphs using a Unitron Universal Measuring Microscope (Series TM, Unitron
Instrument Company, Newton Highlands, Massachusetts). The microscope

is equipped with a traveling stage to be used in conjunction with micro-
meter type screws that permit one to make Tinear measurements accurate
to 0.0001 inch. The measured deformation was then converted to the
corresponding strain value thus permitting determination Qf Young's
moduli and Poisson's ratios for the principal directions. The shear

modulus was determined by assuming the additional relation (see reference

[351)

Aoy 1.1
+ 3 (3.14)

The yield properties of the material were also determined from the tensile
tests described above. Yielding was presumed to occur at 0.4% offset
strain. The equations of transformation (see reference [35]) were used

to determine the elastic constants in situations where it was necessary

to know the elastic properties at some angular orientation other than a
principal direction. In such cases the yield properties were again
established by means of tensile tests. Typical vaiues for material

properties determined from these tests were: Ex = 396,000 psi,
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E.y = 244,000 psi, ny = 114,000 psi, v, = 0.43, vy = 0.26, yield'strength
in x-direction = 6200 psi, and yield strength in y-direction = 4200 psi.

In order to qualitatively verify some of the predictions of Gonzalez's
solution, tensile specimens with a geometry similar to that shown in Fig.
13 were machined from cold rolled sheets of polycarbonate. The tensile
specimens were prepared using a template in conjunction with a high
speed router. A crack was simulated by machining a 0.180 in. X 0.020 in.
slot in each specimen and each end of the slot was then notched with a
razor blade.  The notch measured approximately 0.015 in. in length and
had a root radius estimated with the aid of a microscope to be no larger
than 0.0002 in. Specimens were prepared with the line of the crack
oriented at angles of 0°, 30°, 45°, and 90° with the direction of rolling
(strong material principal direction) so as to observe the behavior of
the material with a crack at various inclinations to the state of
orthotropy. The tests were conducted on a Instron Universal Testing
Machine operated at a constant elongation rate of 0.005 in./min. Photo-
elastic photographs were taken at various load levels throughout the
tests.

The purposes of the fracture tests were twofold: (a) to observe
if the crack proceeded in a direction other than along the original
crack line depending on material orthotropy and (b) to measure the
crack opening displacements at the center of the crack in order to
provide a quantitative evaluation of the theory. The results of such

tests are presented subsequently.
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CHAPTER IV

"RESULTS "AND CONCLUSIONS

4.1 Analytical

In comparing the results of the modified problem presented in
Chapter II to those obtained by Dugdale the fo]1ow1ng similarities are
noted. The four assumptions listed early in Chapter IT lead to the
following eduation for plastic zone size.

=2 cine (I P
= 2 sin® ( T ¥ } (4.1)

o

In other words, the finiteness condition of Dugda]e (equation (2.8))
remains unchanged only as long as the logarithmic singularity is
retained in the stress functions. Since one of the purposes of the
analytical problem was to investigate the influence of the assumed
shear stress on the stress state in the vicinity of the Erack tip, it
was deemed important to retain this weak singularity.

The stress components a, and Top Of the elastic-plastic boundary
obtained from the modified problem are the same as those predicted by
Dugdale's solution. The affect of imposing a uniform shear stress on
the plastic zone is to modify the stress component o

0
plastic boundary as well as the displacements u and v at the surface

on the elastic-

of the crack and the elastic-plastic boundary. In both cases the
stress and displacement components differ from Dugdale's results by

an added term that is dependent upon the imposed shear stress. Typical

48
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results of a comparison between Dugdale's results and the modified prob-
lem are presented in Figures 14 and 15. It is noted that the stresses
differ only in the vicinity of the crack tip (e = Of in Fig. 14) and
this is a consequence of retaining the weak logarithmic singularity in
the stress functions. The displacements are not markedly different as
evidenced in Fig. 15. It is thought that the small difference would be
difficult to detect experimentally; furthermore, experimental verification
would be compounded by the anticipated difficulty in measuring the shear
stress that is presumed to exist along the plastic zone boundary.

At this point it would appear worthwhile to examine the results
of the modified problem in terms of the justification cited in Chapter
II. The principal motivation for the modification of the stress and
displacement field associated with the Dugdale mathematical model was
an attempt to realize a situation where the maximum stress and con-
sequently the direction of plastic zone propagation would not coincide
with the line of the crack. The solution to the modified problem does
demonstrate the admissibility of stress states other than just uniaxial
tension along the elastic-plastic boundary and this is in contrast to
models adopted by other investigators. However, the maximum stress
occurs at the crack tip and not at some adjacent point; thus, it is
assumed that yielding would proceed along the crack 1ine and not in some
other direction. Of course there was no knowledge a priori that the
proposed modification would lead to the desired result. In retrospect
it would appear prudent to examine the nature of the analytical problem
that was solved. The boundary value problem, mathematically speaking,

consisted of a straight cut (the crack) loaded with normal and shearing
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forces. The results of this problem were used to calculate the stresses
and displacements at the edge of the plastic zone boundary, and these
calculations were based on the mathematical solution that was, strictly
speaking, valid only for the problem of a straight cut. Of course in

a real material the plastic zone boundary does not coincide with the
crack. Perhaps a more physically realistic problem would be to consider
a thin but finite ellipse with the presumed boundary loads rather than

a straight cut. It would be possible to use the existing stress functions
to calculate the nature of the stresses some small distance away from
the crack 1ine (where the plastic zone boundary has been observed in
real materials [29]), but this problem is more formidable than the one
solved in this investigation. This observation'is made simply to point
out the fact that if the stresses were calculated some distance away
from the crack line, then a maximum stress state might occur at a point
removed from the crack tip.

The physical motivation for assuming a constant shear stress along
the plastic zone boundary was provided by Brinson's work [29] where it
was observed that isochromatic fringes in the e]asticiregion tended to
turn and proceed parallel to the direction of the crack and plastic
zone direction. Brinson also noted large deformations as well as large
thickness changes bccurring in the plastic zone. Perhaps it is not
altogether surprising that plane linear elasticity does not completely
proyide an accurate description of the phenomena occurring at the crack

tip in a ductile material.



4.2 Experimental

As previously mentioned, the experimental effort was directed
toward a qualitafive verification of the Dugdale model applied to an
anisotropic-plate as presented by Gonzalez [31], and for the experi-
mental investigation the above results were specialized to the
orthotropic'case. One of the most interesting aspects of Gonzalez's
solution was the application of the Mises yield criterion for a Dugdale
type solution and the corresponding limits on the va1idjty of the
solution. There is perhaps some question as to the soundness of this
approach. According to Foreman [40] the isotropic Dugdale model
presupposes a Tresca yield criterion (yielding normal to the line of
the crack). However Brinson [29] noted experimentally that the plastic
zone is candle-flame shaped which might lead one to consider the Mises
yield criterion as Gonzalez did for the anisotropic case. According
to Gonzalez's results one might expect some sort of branching of the
plastic zone to occur depending on material anisotropy. In other words
the material might tend to deform in some direction other than along
the original crack line. The goal of the experimental investigation
was to verify if this is indeed the case. The fundamental question
that this problem poses is: Qhat is the correct form of the flow rule
to employ for an anisotropic situation? It is hoped that the experimental
results will lend some insight in seeking an answer to this question.

In comparing the experimental results of Gonzalez's solution one
particular parameter of primary interest was the crack-opening dis-

placement at the center of the crack. For an orthotropic material when
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the axis of the crack is aligned with one of the principal material

directions, the constants Oy and Si defined hy‘equatfons.(3,9) and

{5 . reduce to the following
o =0y = 0 (4.2]
L (A=C g2
g = (A5%) (4.3)
_ AR C (172
where
..E. ( )
A=gf—-v 4.5
Zny Y
E v
B = .E.‘L= —I (4.6)
X Vx
c= (A - g)1/2 (4.7)

At the center of the crack, the crack-opening displacement equation

(see equation (3.12)) can be written as

E,v 8 +8, 5 1+ sin e,
%z " 7288, T8 [ = 6, ] (4.8)

where v {s the displacement. The inequality of equation (3.13) that

must be satisfied if the theory is applicable simplifies to

Y
8182 < 7p (4.9)
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or

e
B8, = ‘-E—;i S vr (4.10)

As seen from equation (4.10) if the crack is aligned with the weak
material direction (E < Ey); the inequality will always be satisfied
and the theory predicts that Dugdale behavior should be obseryed. This
conclusion was supported by experiments on a specimen with the crack
aligned in the weak materia1 direction. As seen in Fig. 16A yielding
is confined to the original crack Tine and no Branching of the crack

is obseryed.

On the other hand when the crack is aligned with the strong material
direction (Ex > Ey) for small values of the extérnal load P, the
inequality of equation (4.10) will be violated and it is thought that
branching of the crack might be possible. As the external load increases
the inequality of equation (4.10) may or may not be satisfied depending
on the ratio Ex/Ey‘ Typical results of experiments on specimens where
the crack is aligned with the strong material direction are presented
in Figures 16B and 17. In Fig. 17 equation (4.8) has heen plotted and
it is noted that the displacements predicted by the orthotropic theory
are always less than those predicted by the isotropic theory. Experi-
mental values for the crack opgning displacements at the center of the
crack were measured with the aid of a microscope from photographs taken
during the fracture tests. These results are also plotted on Fig. 17
and the qualitative agreement between theory and experiment appears to

be quite good. The values for the crack-opening displacements determined



A. Specimen after loading
when the axis of the crack
was initially aligned with
the weak material direction.

C. Specimen after loading
when the axis of the crack
was initially aligned at an
angle of 30° with the strong
material direction.

B. Specimen after loading
when the axis of the crack
was initially aligned with
the strong material direction,

D. Specimen after Toading
when the axis of the crack
was initially aligned at an
angle of 45° with the strong
material direction.

Fig. 16 Experimental Results.
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experimentally are consistently lower than those predicted by the
analytical results and this leads one to conclude that the qualitative
theoretical predictions are valid.

In order to study the behavior of the material when the axis of
the crack was rotated with respect to the principal axes of orthotropy,
fracture tests were conducted on specimens with the crack aligned at
angles of 30° and 45° from the strong material direction. Typical
results of these tests are shown in Figure 16C and 16D. It is noted
that for both orientations the crack proceeded in a direction other
than along the original crack 1ine. It was observed in all cases when
the crack was oriented in a direction other than coincident with the
weak material axis that yielding occurred in a direction other than
along the original crack Tine. Furthermore the crack extension always

appeared to turn toward the weak material direction.

4.3 Conclusions and Recommendations

One interesting aspect of the analytical problem for future work
would be to give additional consideration to the logarithmic singularity
that arises from the assumption of a shear stress along the elastic-
plastic boundary. If this term was annihilated in conjunction with the
dominant singularity, the resulting finiteness condition would certainly
differ from equation (2.8). Presumably, the resulting equation for the
plastic zone size would also be altered as well as the expressions for
stresses and displacements.

It is felt that the principal utility of the analytical work

previously presented is in illustrating the possibility of more cemplex
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stress states (other than uniaxial tension) existing along the elastic-~
plastic boundary in ductile materials containing cracks;' Yhile progress
has been made in the understanding of contained plasticity, additional
work needs to be done. If one is to accurately describe the local con-
ditions present at the crack tip in a stressed body, it would appear

that finite geometry changes should be considered. Also the three-
dimensional character of “plane stress" yielding in plate problems is
still not resolved. In polycarbonate for examp1e; targe thickness changes
occur in the plastic zone, but this has not been incorporated in analytical
models. Another area of interest is whether differing yield conditions

or three-~dimensional aspects are responsible for the Dugdale type

plastic zone observed in some materials and the more diffuse flow patterns
seen in others.

The present effort appears to qualitatively vefify the anisotropic
theory of ductile fracture presented by Gonzalez. A more detailed
evaluation of the analytical model should entail a comparison of stresses
but this is beyond the scope of this investigation. Additional consid-
eration of such a theory may also help in understanding why various types
of plastic zones develop in front of cracks in differing materials.
Perhaps local anisotropy may be a means of identifying which type will
occur in a given material.

One endeayor for future consideration suggested by the experimental
program would be to inyestigatg plastic zone sizes in anisotropic materials.
As evidenced in Fig. 16 there is no well defined plastic zone occurring
in any of the fracture tests. It is not clear whether anisotropy, the

rolling process, or perhaps some combination of the two is responsible
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for the lack of a well dgfingd plastic zone.

It is felt that the analytical theory should have application in
studying the fracture behayvior of metallic crystalline materials,
oriented polymeric materials, and composites. It is hoped that the pre-
sent effort will assist in clarifying some of the problems associated

with the ductile fracture of {sotropic and anisotropic materials.
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AN INTERPRETATION OF INELASTIC BIREFRINGENCE

Mechanical and optical measurements and discussion of gross

yielding of polycarbonate in uniaxial tension.

by H. F. Brinson*

Abstract

The nelationship between plastic thickness change and plastic isochromatics
ocewuiing beyond the plastic temsile instability point of a uniaxial tensile
specimen {5 investigated, Mechanical thickness change measurements and a holo-
gham of thickness change are shown to be in close qualitative agreement with is0-
chromatics in a negion of ghoss plastic ylelding. Analytical observations are
discussed to aid the intenpretation of the experimental nesults obfained. Finally,
possible extensions and applications are discussed.

INTRODUCTION

For many years efforts have been made to extend the principles of photoelastic
stress analysis to materials stressed beyond the elastic Timit. In an early effort,
Hetényi [1] investigated the photoplastic effect in a nylon copolymer and compared
plastic s1ip band formation with theoretical results given by N;dai [2]. Several
articles in reference [3] report on the basic optic laws of celluloid when stressed
beyond the elastic 1imit, the use of birefringent coatings to investigate the
plastic behavior of metals, and the use of creep properties to determine arbitrary
stress-strain relations. The latter process has been extensively investigated by
Hunter [4] using epoxy and polycarbonate materials. Frocht and Thomson [5] propos-
ed a stress-optic law for celluloid which was then meésured using the creep

behavior of this material. Bayoumi and Frankl [6] proposed a general linear

* PAssociate Professor of Engineering Mechanics, Virginia Polytechnic Institute
and State University



“equation of state" re1at5ng birefringence to a combination of stress and strain,
and Fried and Shoup [7] proposed and measured a linear strain optic law for poly-
ethelene.

More recently, a rumber of investigators have explored in depth the use of
polycarbonate as a possible photoplastic material. Brill [8], Gurtman, et al.

[9], and Whitfield [10] have performed experiments to characterize the optical and
mechanical behavior of polycarbonate (lexan) and have applied the properties so
found to the experimental solutions of elasto-plastic boundary value problems.
Brinson [11] used the inelastic birefringence of polycarbonate to measure Dugdale
type plastic zones in a uniaxial tensile strip containing an internal crack.

The study of photoplasticity involves several factors of which the more
important ones are; material suitability, the basic stress-strain-optic laws of
a material stressed beyond the elastic 1imit, mechanical and optical characteri-
zation, application to boundary value problems, and model to prototype transition.
The first two factors seem to be the crux of successful photoplasticity. Iﬁaémuch
as many investigators have shown polycarbonate to be a suitable material, this
investigation will explore certain aspects of the basic optic laws of polycarbonate
when stressed beyond the elastic 1imit. Also, the material has been amply
characterized by Brill, Gurtman and Whitfield [8,9,10] alleviating the need for
further characterization for this investigation. Typical stress-strain-optic
behavior of polycarbonate is displayed in Fig. 1. For more accurate and detaijled
information on behavior up to strains of 80% the reader is referred to the excellent
viork of Brill [8] from which the information in Fig. 1 was obtained.

In the efforts previously cited, photoplasticity has been studied mainly for
usaje as a problem solving tool. To this end linear stress or strain optic laws
have been proposed, time dependent behavior has been used and in some cases efforts
have been limited to regions near the yield point of a material, i.e. relatively

small strains and iinear stress or strain optic laws. As a result, much of the



earlier work could be expiained on the basis of nonlinear elastic or viscoelastic
material behavior. However material plasticity is definitely involved when materials
exhibit s1ip band formation such as those found in references [1,8,9,10]. No
information has been found which would aid a person in understanding the physical
phenomenon represented by isochromatics in slip band or other regions of gross
yie]ding. Earlier, the present author observed that isochromatic fringes in

regions of gross yielding seem to be in qualitative agreement with lines of con-
stant thickness. The present investigation was undertaken to verify these obser-
vations and thereby to provide new insight into the interpretation of isochromatics

for polycarbonate in regions of gross plastic deformation.

EXPERIMENTAL PROCEDURES AND RESULTS

Uniaxial tensile tests were used as a method of obtaining and relating simul-
taneous thickness and birefringence measurements. Initial efforts were made to
measure these variables during the progress of a uniaxial test, but it was found
impractical to make in situ thickness measurements. As a result, uniaxial specimens
were loaded and unloaded in such a way that permanent deformation, thickness change
and isochromatics remained after un1oading; This process had the added advantage
that elastic properties would automatically be eliminated.

An isochromatic photograph of the residual fringes remaining after unloading
of a 0.040" x 0.5" tensile specimen is shown in Fig. 2. To be more precise as to
the formation of fhe yield zone shown, the specimen was loaded axially until the
point of tensile plastic instability was reached. Loading was continued until
the slip band shown in Fig. 2 was formed, after which the load was removed. As is
readily understandable, various plastic deformation states remain in and around
the siip band. If the point which undergoes thé maximum deformation (thickness
change) Qere traced along the stress-strain diagram of Fig. 1, it would reach
approximately 20% strain and then unload elastically along the dashed line leaving

a residual strain of approximately 15% and the isochromatic pattern indicated.



Thickness and Isochromatic Measurements

Thickness changes were measured utilizing a modified Taylor-Hobson surface
roughness measuring device (Tally-Surf). The specimen was placed on a microscope
stage Qith X=y trave] capabilities and the Tally-Surf stylus was drawn across the
nine longitudinal stations shown on the photograph of Fig. 2. Thickness variations
were thus measured at each of twenty-five points on each station Tine. Accuracies
of 1 x 10'4 in. were easily obtainable and it was also possible to insure that
rieasurements taken represented actual thickness changes in the specimen. The
results of these measurements for station Tines 0.05 in., 0.20 in., and 0.40 in.
are shown in Fig. 3.

Residual fringe orders were counted along each station 1ine and these are also
shown plotted in Fig. 3 for the same stations as the thickness measurements are
indicated. Obviously, residual plastic thicgness changes‘and residual plastic
isochromatics have the same qualitative variation over the region of gross plastic
yielding. Interestingly, where thickness change and fringe number are small, the
two variables are nearly coincident, whereas when thickness change and fringe
number are large, the two variables diverge considerably even though their trends
are the same. These observations merely amplify the nonlinear nature of the
relationship between thickness change and/or strain and birefringence for poly-
carbonate as is also indicated in Fig. 1.

Other differences between thickness change and birefringence are noted in Fig.
3 even when the vafiab]es are small. An obvious explanation results from consid-
eration of initial local variation in the thickness of the material while in a
stress-free state., Initial local variations of approximately 5 x 10’4 in. were
certainly present and would not necessarily be represented by subsequent iso-
chromatics produced by gross yielding. Thus, such local variations could easily

produce significant differences in the results shown in Fig. 3.



Holographic Verification

P

* While the qualiteative relationship between plastic thickness variation and
plastic isochromatics is clearly established as outlined in the foregoing com-
ments, quantitatiye correlation was not possible. For this reason it was felt
necessary to have additional qualitative data to reinforce the mechanical thick-
ness measurements. In recent years holography has been shown to be an effective
method of measuring and visaully observing thickness changes [12,13,14]. However,
in the present case, a hologram of residual deformations of a permanently deformed
specimen was desired, i.e., the specimen shown in Fig. 2. Also, the thickness
changes involved represent larger variations than can be observed or recorded in
conventional holography. For this reason, the same specimen as previously dis-
cussed and shown in Fig. 2 was immersed in an oil bath of nearly the same refractive
index. A double exposure hologram of the 0i1 bath with and without the specimen
was taken. This procedure lowers the éensitivity of the process such that relatively
large thickness changes can be ovserved [14].

The hologram obtained in the above manner is shown in Fig. 4. Comparison of
Fig. 4 and Fig. 2 indicates again that isochromatics in a permanently yielded
region and holographic interference fringes of permanent thickness changes in the
same region are virtually identical. The reader is advised to note that the
holographic interference fringes shown in Fig. 4 were taken without circularly
polarized 1ight and, as will be subsequently demonstrated, the fringes dc not
represent isochromatic fringes which can be obtained using holography [12,13,14].

A second specimen of polycarbonate was machined to be wedge shaped. Care was
taken to insure that no residual isochromatic fringe pattern was induced by the
machining process. A double exposure hologram of the oil tank with and without
this stress free, isochromatic free, machined wedge is shown in Fig. 5. Obviously

the interference fringes displayed in Fig. 5 represent thickness change and can



be used as a calibration of the holographic technique used. Using the calibration
factor so obtained, thickness changes occurring in the specimen could be calculated
from the hologram of Fig. 4. This was accomplished at-one point and the result is

plotted as point A in Fig. 3 and closely matches the previously recorded mechanical

measurements.

ANALYTICAL OBSERVATIONS

In the foregoing it is apparent that a close qualitative correlation between
plastic thickness changes and plastic isochromatics occur in a uniaxial speicmen
of polycarbonate when stressed beyond the point of tensile instability. However,
no reference has been made to the mechanism by which such behavior occurs nor has
there been an attempt to analytically interpret these observations.

An anlytical model has been presented by N;dai [2] to explain slip band
formation in metals, i.e., Liders' lines. Hétényi [1j used the same model to
explain similar slip band formations in a nylon copolymer. This model can alsc be
used in the present case.

Fig. 6 represents a schematic diagram of the uniaxial specimen and its pre-
dominate s1ip band which was previously shown in Fig. 2. Using elementary elastic
analysis it is easily shown that,

[e)
(o5 - uo‘;) = 2% [1 - cos 20 - u{1 + cos 2a)] (1)

Ex-

Y| =

%
and €g € T HE -

E .
and if Poisson's ratio is

Obviously, e; varies between the two extremes e; = ey = 89-
There exists an intermediate position such that e; =0
taken up as u = %3 this position will occur on a plane where a = 35.3°. Measure-
ment of the orientation of the predominate slip plane in Fig. 2 yields an angle
a = 35.0°. Thus, slip bands seem to occur on planes for which one component of

the strain is zero. The explanation which has been given for this phenomena is



that yielding can take p1éce on thése pianes without constraint from the surround-
ing medium [1,2].

While the above explanation may tend to explain the.mechanics of slip band
formation, it does not aid in the explanation of the accompanying optic effect of
the marked increase of fringe order number in slip band regions. Quite obviously,
from the éarlier section on experimental results, thickness change in slip band
regions seem to have a great deal of influence on the observed optic effect. In
fact, these thickness changes require the existence of a three dimensional stress
state in areas of gross yielding. However, using normal arguments of photqe]astic
theory, it is reasonable to infer that the stress normal to the plane of the
specimen, g, does not influence the optic effect. Also, it is apparent that the
stress caused by permanent lateral contraction is nearly zero, o, = 0. As a result,
the stress state in a slip band can be thought of as uniaxial even beyond the yield
point of the material. Therefore in the following, a uniaxial stress state will |
be assumed.

To aid further discussion idealized stress-strain-optic diagrams are shown in
Fig. 7. A stress-optic law which would be consistent with photoelasticity and

still be valid beyond the elastic 1imit would be,

n fP

= ¢P (_C . ©
o= fc ( d) + %.p. 1 fe) (2)

c

where o is the axial stress at a point, Gy.p. is the yield stress, e is the fringe
order, d the thickness at the point in question, fi the elastic material fringe
value, and fz the plastic material fringe value. Equation (2) is analogous to a
strain hardening stress-strain law of the type,

c=EPe+g

gP
yop. (-5 (3)

where € is the strain at a point, E® is an elastic modulus and EP is a plastic modulus.

The basic question to ask here is whether the idealized stress-strain-optic diagrams



shown in Fig. 7 are realistic representations of the behavior of polycarbonate.

From consideration of rig. 1 it is possible to infer that idealized stress-strain
response is a c]ose approximation to the behavior of polycarbonate. The only
question is the magnitude of EP. Here it is assumed that EP > 0 but is small
compared to Ee, i.e., EP << E®. In other words, while strain-hardening is

assumed to take place, it is also assumed to be quite small. With these assumptions
and with the aid of Fig. 1 it is pogsib1e to construct the idealized stress-optic
response shown in Fig. 7 which would be quite similar to the idealized stress-
strain response shown there also. Equation (2) is a logical consequence of this

idealized response and can be rewritten as,

ey . 1 %.p.
-9 = ? (0 -0,,.) - e (4)

The interpretation of the stress-optic effect represented by equation (4)
depends on whether the initial thickness, di’ or the current thickness, dc’ at a
material point is used. The proper choice is to use the current thickness as nor-
mal photoelastic theory dictates, even though in photoelasticity the initial thick-
ness is most often used because there is 1ittle discrepancy between di and dc \n
the elastic range. Use of both thicknesses are shown in Fig. 7 and it can be
observed that a small decrease in thickness represents a relatively large increase
in (Sgé for the same stress level. In fact, it is intuitively obvious that should
the thickness throughout the throat of a tensilve specimen remain uniform, then
the fringe order would also be uniform. If the thickness varies over a slip band
region, a multiple fringe pattern would be expected and fringes would then tend to
he associated with lines of constant thickness. The earlier experimental evidence
of Fig. 2 and Fig. 3 reinforce these remarks.

The residual fringe pattern of Fig. 2 after unloading can be predicted using

equation (4) by assuming elastic unloading resulting in the equation,



5 = (oo, M- (5)
VPR T

At this point it is also worth noting that uniaxial tension holographic inter-
ference fringes of thirkness change for elastic deformation can be represented by
the equation [12],

o= (-H f (6)

vhen np is the fringe order, d is the current thickness, and f: is the isopachic
material fringe value. While it is not known whether equation (6) can be extended
to include inelastic deformations by rewriting in the form of (2), it is clear
that holographic fringes and isochromatic fringes would have the same character

in uniaxial tension. Therefore, it is not surprising that the hologram of Fig.

4 is similar to the isochromatic pattern of Fig. 2.

DISCUSSION

The experimental results of the present investigation indicates good qualita-
tive correlation between lines of constant thickness change and isochromatic fringes
in a slip band region of a uniaxial tensile specimen. The analytical observations
presented also indicate that such a relationship should exist. The formulated
stress-optic law has only been used as a means of explaining and discussing the
retationship between thickness and isochromatic measurements. A strain-optic law
could be used for the same purpose, particularly since thickness changes are related
to the state of strain in a one- or two-dimensional stress state. However, due to
the similarity between the stress-optic representation used herein and more .
rigorous elasto-plastic stress-strain equations, it would seem conceptually possible
to formulate a theory of photoplasticity for three dimensions which would closely
paraliel the extensive theory of plasticity.

The holographic results may have possible future application in elastic and/or

plastic stress analysis. As suggested by Hovanisian, et al [12], holographic



interferometry could be used in conjunction with two or three dimensional stress
freezing, even for the relatively large deformations involved. This could be
accomplished by using an oil bath of nearly the same refractive index to lower

the sensitivity of the process.
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Fig. 5 Hologram of Calibration Wedge.
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