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ABSTRACT 

T h i s  paper represents an analytical and experimental investigation 

of the duc t i le  fracture of polymers. The analytical portion represents 

an adaptation of the Dugdale model to include the ef fec t  o f  a uniform 

shear stress a t  the e las t ic -p las t ic  interface.  

lated u s i n g  a complex variable approach. 

The solution is  formu- 

The e f f ec t  o f  assuming the 

existence of a uniform shear stress along the p l a s t i c  zone boundary i s  

t o  introduce a weak logarithmic s ingular i ty  a t  the t i p  of  the p l a s t i c  

zone. 

along the e las t ic -p las t ic  boundary other than tha t  normally assumed for 

the Dugdale model. The resu l t s  of the modified problem are compared t o  

Dugdale 's  predictions. 

The solution demonstrates the admissibil i ty o f  s t r e s s  s t a t e s  

The experimental aspect represents an evaluation of an e a r l i e r  

investigation extending the Dugdale mathematical model t o  include 

material anisotropy. Experiments were conducted on orthotropic sheets 

of polycarbonate i n  which the desired preorientation was produced by a 

rol l ing process. Crack opening displacements were measured as a means 

of  qual i ta t ively verifying the theory. 

t o  deviate from the original crack l ine  depending on i n i t i a l  crack 

orientation w i t h  respect to material orthotropy. 

Crack extension was observed 
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PREFACE 

T h i  s report deals w i t h  three seemingly unrelated i nvesti gati ons 

into the behavior of polymers. These areas can be identified as: 

1 .  The adaptation of the Dugdale model t o  include shear s t resses  

a t  the e las t ic -p las t ic  interface. 

An experimental evaluation o f  the extension of the Dugdale 2. 

model t o  include materi a1 anisotropy. 

3. A new interpretation o f  the ine las t ic  birefringence of 

polycarbonate. 

The f i r s t  topic is  discussed i n  Chapters 2 and 4 and the second topic  

i s  discussed in Chapters 3 and 4. These two Mpics represent selected 

portions of the Ph.D. research o f  the two junior authors of this report. 

The t h i r d  topic i s  presented i n  appendix A and represents a separate 

investigation by the senior author o f  this report which was conducted 

during a 12 week stay a t  NASA-Ames d u r i n g  the summer of 1969. 

Even though these three areas may seem unrelated, there i s  a unique 

and unifying thread. 

e f for t  i s  related t o  an attempt t o  obtain a bet ter  understanding of fracture 

mechanics as related to  ducti le polymers. 

this  work will give considerable i n s i g h t  in to  the ductile fracture of 

metals as well. 

As i s  well known, the Dugdale model presupposes a p las t ic  zone to  

As the t i t l e  of this report suggests the ent i re  

We, of course, also feel that  

ex is t  i n  front of a crack. 

a t h i n  extension o f  the crack l ine.  

have experimentally shown that  the p las t ic  zone has a w i d t h  which 

closely approximates the thickness of the plate being tested. In  

Normally this plast ic  zone i s  assumed to be 

However, a number of investigators 

v i  i 



polycarbonate as well as some other materials the shape of  the p las t ic  

zone resembles a candle-flame and appears to begin adjacent t o ,  b u t  n o t  

a t ,  the crack t i p  and proceeds i n i t i a l l y  i n  a direction other than the 

crack line. Also a number of researchers have reported on and discussed 

the fac t  tha t  different materials have variously shaped p las t ic  zones in 

front of the crack t i p .  The f i r s t  two topics itemized above represent 

an e f fo r t  t o  develop mathematical models which will predict the s ize ,  

shape, and direction o f  plast ic  zone growth i n  front of cracks using the 

Dugdale model as a p o i n t  o f  departure. 

In attempting t o  answer questions regarding the size and i n i t i a l  

shape of plastic zones i n  various materials, i t  i s  f e l t  t h a t  possible 

influences are the properties o f  the material and the s t ress  s t a t e  near 

a crack t i p .  

might ex is t  other than the s t ress  s t a t e  normally assumed for the Dugdale 

model (a tensi le  yield s t ress  normal to the crack l ine  on the elast ic-  

p las t ic  interface).  

on the e las t ic -p las t ic  boundary as well as the tensi le  yield s t ress  of 

the material. I t  was f e l t  tha t  this modification o f  the s t r e s s  and 

displacement f i e l d  migh t  give r i s e  to  a p las t ic  zone t h a t  d i f fers  from 

that  predicted by the normal Dugdale model. 

If the cause were the l a t t e r ,  then admissible s t ress  s ta tes  

Thus a uniform shear s t ress  was assumed t o  ex is t  

The other approach which has been used herein assumed t h a t  various 

i .e. , shaped plast ic  zones occur due to  the properties of the material 

local anisotropy. 

anisotropy and a portion of the present e f f o r t  was directed toward 

experimentally verifying the anisotropic Dugdale model. 

objective w i t h  this approach was to  predict p las t ic  zone s ize  and shape 

f rom a knowledge o f  the local anisotropy of a material-polymer or m t a l .  

T h u s  the Dugdale model was adapted t o  include material 

The ultimate 

v i i i  



The t h i r d  i n v e s t i g a t i o n  which i s  repor ted i n  appendix A i s  an attempt 

t o  ob ta in  an understanding o f  the  meaning o f  isochromat ic f r inges  i n  

y i e l d e d  regions. As i s  we1 1 known photoel a s t i  c i  ty i s  one experimental 

technique which can be used t o  measure the s t ress  f i e l d s  i n  f r o n t  o f  

cracks. 

develop p h o t o p l a s t i c i t y  t o  an ex ten t  t h a t  would a l low the experimental 

evalbration of s t ress  f i e l d s  i n s i d e  the  p l a s t i c  zones which occur i n  f r o n t  

o f  cracks. 

A valuable extension o f  the photoe las t ic  technique would be t o  

The t h i r d  endeavor i s  a f i r s t  step i n  t h i s  d i r e c t i o n .  

Por t ions o f  t h i s  r e p o r t  have been presented a t  semi-annual meetings 

o f  the Society f o r  Experimental Stress Analysis, i .e. ,  the an iso t rop ic  

study and the p h o t o p l a s t i c i t y  study. The l a t t e r  has been accepted fo r  

p u b l i c a t i o n  and w i l l  s h o r t l y  appear i n  Experimental Mechanics. 

i x  



CHAPTER I 

-. INTRODUCTION AND REVIEW 

1.1 General 

I t  i s  generally assumed that  fracture in i t ia t ion  i n  solids i s  

caused by some imperfection or flaw, such as a microcrack, which 

causes a locally h i g h  elevation o f  s t ress  upon the application of a 

load. 

soli d requi res the s i  mu1 taneous consi deration o f  both the macroscopi c 

effects  such as environmental and loading conditions, the nature and 

composi ti on of the materi a1 and the mi croscopi c phenomena occurri ng 

a t  the s i t e  where the fracture in i t i a t e s  and grows. A t  one end of 

The complete study of the fracture process for  a particular 

these two di verse v i  ewpoi nts , the fracture process i nvol ves the 

r u p t u r i n g  of atomic bonds. 

ena taking place in the material w i t h i n  a region o f  diameter on the 

order of 

of  approach to  the problem. 

involving material response w i t h i n  a region o f  diameter on the order 

of lom2 cm. and greater, the tools of continuum mechanics may be used 

t o  study the phenomenon of fracture,  A model to  describe atomic 

behavior i s  beset by severe mthematical d i f f icu l t ies ,  and these 

d i  f f i  cul t i e s  are commonly avoided by resorting t o  continuum mechanics. 

T h i s  i s  a generally accepted way t o  integrate the complexities o f  

the microstructure of real materials i n  si tuations where such complex- 

i t i e s  are not believed to  be essential t o  the question under 

In this  range, one is  interested i n  phenom- 

cm, o r  less and molecular theories provide the avenue 

On the opposite end of the scale,  

1 
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consideration [I I*. 
Since fracture in i t ia t ion  involves the formation of cracks from 

imperfections, the microstructure of the materi a1 and the 1 o a d i n g  

conditions appear essential i n  studying the process. 

dealing with crack in i t i a t ion  and growth have been discussed by a 

number of investigators for  crystal l ine materials [2] and for  

amorphous polymers [3]. 

theories i s  on understanding the mechanism o f  fracture i n i t i a t i o n  

and they tend t o  be primarily quali tative i n  nature. 

Various theories 

The principal emphasis o f  these microstructural 

On the other hand,  the macroscopic theories o f  fracture assume 

the existence o f  microcracks or  other flaws which may readily ac t  as 

fracture nuclei, 

suff ic ient ly  large compared to the character is t ic  dimensions o f  the 

microstructure t o  warrant the use of a continuum mechanics viewpoint. 

T h i s  l a t t e r  approach will be adopted throughout this investigation. 

The fracture o f  solids will be constdered as the formatiorr of 

The size o f  such imperfections is assumed t o  be 

new surfaces i n  the material i n  a thermodynamically i r revers ible  manner. 

The essential aspect of the phenomenon i s  the rupture of cohesive 

bonds of the medium. 

i n g  the nucleation and growth of imperfections such as v o i d s  o r  cracks, 

In simplified terms, fracture is  a process i n v o l v -  

Hateri a1 response under time-independent isothermal conditions 

can be generally classified as ducti le o r  b r i t t l e ;  however, many 

materials can be made to  undergo a transit ion from the ducti le s ta te  

to  the br i t t le  s t a t e  o r  vice versa. I t  i s  known that  the same material 

* Numbers i s  brackets [ ] refer  t o  bibliography. 
I 
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my behave i n  a b r i t t l e  or ducti le fashion depending on such factors 

as rate  of loading ,  temperature, pressure, e tc .  [4]. From the macro- 

scopic or continuum standpoint, the fracture of solids can be generally 

c lassi f ied tr?to these same two broad categories of b r i t t l e  and ducti le 

even though the detai 1s may vary with the material, the type of 

external loading, and the environmental conditions. Br i t t l e  fracture 

i s  a low energy fa i lure  and, fo r  unstable loading conditions, takes 

place i n  a catastrophic manner, meaning that  the fracture velocit ies 

are usually high [5]. Ductile fracture on the other hand i s  usually 

associated w i t h  large deformations, high rates of energy dissipation, 

and slow fracture velocit ies.  

ducti le fracture,  is  the primary concern of this investigation. 

A study of this second aspect, namely 

1 e 2 L i  terature Review 

The importance of the localized concentration o f  stress i n  the 

neighborhood o f  sharp notches was emphasized by Inglis [E;]. He found 

tha t  the s t ress  near the t i p  o f  a notch or flaw can be much greater 

than the remotely applied s t r e s s .  

dimensional configuration o f  an e l l i p t i ca l  hole i n  a plate under an 

appl-ied tensi le  s t r e s s  P as depicted i n  F ig .  1. Inglis obtained an 

exact solution for  this problem and his expression for  the maximum 

stress a t  the apex o f  the major axis of the e l l i p se  is given by 

As a model Inglis used the two 

(1.2.1) 

where 2a and 2b are the major and minor diameters o f  the e l l i p t i ca l  

hole. In addition he showed tha t  i f  the flaw i s  i n  the shape o f  a 
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P 

F i g .  1 Uniaxial Tension of Elliptical Hole. 
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very narrow el'iipse o r  crack o f  length 2a having a notch radius of 

curvature R = b-/d,  the stress concentration is approximtely given 

bY 

? 

(1.2.2) 

Since R i s  very small when compared t o  a,  the actual stress a t  the 

root of the crack could be suff ic ient ly  large t o  cause fracture.  

The classical treatment o f  the fracture problem i s  due t o  Griffi th 

171 who approached the question by appealing t o  the f i r s t  law o f  

thermodynamics. He postulated t h a t  a necessary condition for  a crack 

t o  extend under the influence of external loads is  t h a t  the energy Q 

used i n  creating new fracture surface is supplied from the released 

s t ra in  energy W i n  the e l a s t i c  sol id  and tha t  W > - Q i n  order for  the 

crack to extend. Griffi th assumed that  the free  surface of a solid 

possessed a swface energy i n  proportion t o  i t s  area just as l iquids  

possess surface tension. The knowledge o f  the e l a s t i c  energy stored 

i n  a loaded cracked sol id  was a prerequisite for determining the 

ins tab i l i ty  condition fo r  crack propagation. 

for the change i n  s t ra jn  energy W of an e l a s t i c  body due t o  the presence 

o f  a crack was based on Inglis '  solution fo r  an e l l i p t i ca l  hole i n  a 

stressed body. 

the  size  of the crack. According to  Griffith, the stationary value 

o f  the free energy F = Q - W corresponds t o  a certain c r i t i ca l  crack 

length acr. 

that  crack extension takes p'race when a ,  the ha l f  crack length, exceeds 

the c r i t i ca l  value acre 

Gr i f f i th ' s  calculation 

I t  should be mentioned that  both Q and W depend on 

Referring t o  Fig .  2, Grif f i th ' s  energy criterion assumes 

In addition i f  the surface energy of the 
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Elastic s t ra in  
energy increase, M 

Fig. 2 Energy Balance of Crack i n  Inf ini te  Plate. 
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material and crack s ize  are known, the fa i lure  cr i ter ion can yield an 

inequa'lity defining the minimum load for  f racture ,  The resul ts  of 

Gr i f f i th ' s  theory were well supported by his own experiments on hard 

glass, b u t  he specifically excluded ductile materials. 

Subsequent theories have largely dea l t  w i t h  modifications and 

generalizations of Gr i f f i th ' s  work. In general termso the energy 

Izalance c r i t e r i a  are based on the thermodynamic notion that when the 

ra te  o f  release o f  stored s t ra in  energy exceeds the sum of the rates of  

absorption of energy i n  producing p las t ic  deformation and newly created 

fracture surface, then the crack will extend [SI. 

and f l ex ib i l i t y  as well as the physical soundness of this underlying 

principle, the energy balance approach forms the basis for  the most 

widely used theories of fracture. 

Due t o  the generality 

Sack [8] i n  1946 extended Griffith's work t o  the three dimensional 

case, He calculated the conditions of fracture fo r  a sol id  containing 

a circular o r  penny-shaped crack when one of the principal s t resses  i s  

acting normal t o  the plane of the crack. 

polar coordinates and the theory of Hanke'l transforms arrived a t  the 

displacements arid s t resses  around a c i rcular  crack o f  the type introduced 

by Sack. 

Sneddon [9] u s i n g  cylindrical 

In the l a t e  1940's and early 1950's Irwin [lo] and Orowan [ l l ]  

independently o f f e r e d  a modification of the Gri f f i  th-type energy balance 

to  include p l a s t i c  work as an additional source o f  energy dissipation. 

They pointed out that  the energy balance approach must include not only 

the s t ra in  energy stored i n  the specimen and the surface energy b u t  a l s o  

the work i n  p las t ic  deformation. They recognized tha t  f o r  relatively 
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ductile materials the work done against surface tension i s  generally 

n o t  s ignif icant  i n  comparison w i t h  the work done against p las t ic  

deformation. This rriodi f ication extended the usefulness o f  the theory 

t o  the fractiire of metallic materials. 

In the energy balance theories, the ra te  of release of s t ra in  

energy with respect t o  fracture area called tear energy, fracture 

energy or fracture toughness plays an important role. 

ed to  be an in t r in s i c  property o f  the material and i s  dependent on 

erivironmental conditions, type o f  loading, as well as the nature and 

composition of the material. 

I t  i s  consider- 

Between 1955 and 1957 Irwin [12, 131 demonstrated that  the energy 

balance approach is equivalent t o  a stress-intensi ty approach. Instead 

o f  considering the energy of the en t i re  crack system, Irwin proposed 

to  examine the s t r e s s  f i e l d  immediately i n  the vicinity of the crack. 

IJsing Sneddon's resu l t  [9] fo r  the s t r e s s  distribution around a circular 

crack, he pointed out that  the crack t i p  s t resses  due to the conditions 

of generalized Diane s t r e s s  or plane s t r a in  can be expressed by a 

parametric set  of equations. The parameter, called stress-intensi  ty 

factor,  is a function of the crack dimensions and external loads. The 

c r i t i ca l  value of the stress-intensi  ty factor (determined experimentally 

fo r  different  materials) governs the condition of unstable crack prop- 

agat.ican, P, typ.ical curve i 1 lustrating those combinations of applied 

stress and crack length  a t  the onset of rapid crack extension is  shown 

in F i g .  3 .  

Sanders El41 in 1960, i n  an attempt to  establish the equivalence of 

the energy and s t r e s s  c r i t e r i a  f o r  fracture, reformulated the two- 
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Crac'c 1 ength 

F i  g . 3 Stress- Intensity Factor Curve. 
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dimensional theory o f  Grjffith and obtained an equivalent criterion 

involving a particular integral around any contour enclosing the crack 

t i p .  His result suggests tha t  for crack growth t o  occur, the energy 

criterion for fracture is potentially equivalent t o  postulating the 

existence of a critical strength of an inverse square root stress 

s i ng u l a r i t y  [ 1 5 1 
I t  should be mentioned t h a t  a mathematical solution for a sharp 

crack in a plate using linear elasticity theory predicts singular 

stresses a t  the crack t i p  where the radius o f  curvature is  assumed t o  

be zero. Of course in reality, the deformed shape of the crack adopts 

a small b u t  f ini te  curvature a t  the t i p ,  and the stress levels are 

smaller in magnitude t h a n  some ultimate stress. 

occurrence o f  local plastic flow also tends t o  reduce the stress-con- 

centrating effect of the crack. 

In addition, the 

Barenblatt [16], objecting t o  the idea o f  infinite stresses a t  

the crack tip, has introduced the effect of cohesive forces acting 

across the faces o f  the crack close t o  i t s  tips. He formulated the 

following hypotheses: 

(1 )  The end region in which the cohesive forces a c t  i s  "very 

small" i n  comparison w i t h  the crack length. 

(2)  The stresses a t  the crack t i p  are finite.  

(3)  The crack surfaces close smoothly, i n  other words the 

crack t i p  has a cusp shape as depicted in Fig .  4 rather 

than being parabolic as predicted by the elastic theory. 

The cohesive farces pull the crack faces together, and taken by them- 

selves ( i  .e. no remote tension applied), they induce compressive stress 
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Fig .  4 Cohesive Forces a t  Crack T i p  i n  the Barenblatt Theory. 
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singularities a t  the ends. On the other hand the remote tension alone 

induces a tensile singularity, and the superposition of the two stress 

states results in a final stress state t h a t  is  non-singular. Barenblatt 

thus obtains a fracture criterion by writing the combined stress 

intensity factor equal t o  zero. The result i s  the comparison of the 

stress intensity factor  calculated from the external loads w i t h  a 

material parameter called the modulus of cohesion. The cohesive modulus 

N i s  given by 

G ( t )  d t  N =  (1.2.3) 

where G ( t )  is  the cohesive force distribution, d i s  the distance over 

which this distribution acts (d < < a ) ,  and t is  a running coordinate 

along the x-axis, see Fig. 4. Barenblatt never specified the particular 

form o f  G ( t ) .  

leads t o  identical results differing only i n  i t s  interpretation of the 

stress and deformation states a t  the crack tip. 

Barenblatt's theory i s  similar t o  that of Griffith's and 

In the theories o f  Griffitk and Barenblatt, the idealized media 

remain linearly elastic as the crack extends, and there i s  no real 

expectation t h a t  they can represent crack extension i n  normally ductile 

materials. A crack in a ductile material has zones of plastic flow a t  

each end during an early stage of loading, and these zones grow as the 

load is  increased. The corresponding problems o f  the elastic-plastic 

continuum are very formidable, and only a few results are available 

(see Hutchinson [17, 181, and Rice and Rosengren [19]). 

An important step towards a description o f  plastic yielding a t  a 
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crack t i p  was introduced by Dugdale [ZO]. 

be detailed subsequently, was similar t o  tha t  of Barenblatt, b u t  he 

rep1 aced the unknown cohesi ve force d i  s tri b u t i  on G( t) by the known 

uniaxial yield s t ress  of the material, His experimental resul ts  on 

mild steel for the s ize  and shape of the p las t ic  zone indicate good 

correlation w i t h  theory. Utilizing the resul ts  of Dugdale, Goodier 

and Field [21] were able t o  evaluate the p las t ic  energy dissipation 

Dugdale's approach, as will  

using the methods of e l a s t i c  perfectly-plastic continuum mechanics. 

As i s  evidenced by the nature of the l i t e ra ture  cited thus far, 

considerable e f fo r t  has been expended i n  studying the b r i t t l e  and 

ductile fracture af metals. 

review of the analytical and experimental techniques, as well as an 

extensive bibliography on the fracture of metals. 

written about the fracture of metals, relatively l i t t l e  attention has 

been directed toward studying the fracture of polymers. 

Reference [22] offers  a comprehensive 

While much has been 

There is  an abundance of sc ien t i f ic  l i t e ra ture  concerning the 

synthesis and structure of polymers, b u t  the physics of the i r  properties 

has not been dealt  w i t h  as extensively. 

engineers are becoming increasingly interested i n  structural  applications 

for polymers that  the gaps i n  our physical understanding of  these 

materials are being exposed. I t  i s  n o t  suff ic ient  to  rely on p a s t  

experience w i t h  other solids such as metals because polymers often 

exhi bi t unfami 1 i a r  and unexpected properties. 

I t  i s  only recently, as 

As previously mentioned, the energy balance approach serves as a 

basis fo r  much of the work t h a t  has been accomplished i n  fracture 

mechanics. In an e f fo r t  to  extend this concept t o  polymeric materials, 



1 4  

the logical place t o  begin is w i t h  glassy polymers since they behave 

in a b r i t t l e  fashion and viscoelastic effects  can be minimized due to  

thei.r high glass transit ion temperatures. Berry [23, 241 has inves- 

ti gated the behavior of polymethyl methacryl a te  and polystyrene and 

found that the fa i lure  s t r e s s  as  a function of crack length  obeyed the 

inverse square root law of b r i t t l e  fracture.  Broutrnan and McGarry 

[25, 261 have studied the effects  o f  temperature, cross linking, and 

preorientation on the fracture energy of glassy polymers. 

and Andrews [28] offer  well documented sources on the fracture of 

polymers. Very 1 i t t l e  research has been conducted on ducti l e  polymers. 

I t  has only recently been demonstrated by Brinson [29] tha t  the Dugdale 

mathematical model can be applied to  the ductile fracture of polymers. 

Lindsey [27] 

1.3 Scope of this Investigation 

This investigation i s  basically divided into two parts,  an ana- 

lyt ical  portion and an experimental portion. These aspects will be 

br ief ly  indicated a t  this point and then detailed subsequently. 

The analytical portion concerns an extension o f  the isotropic 

Gugdale mathematical model [20]. The fami l i a r  Dugdale model assumes 

a plast ic  zone to ex i s t  i n  f ront  of the crack that i s  a t h i n  extension 

of the crack l ine.  Experimental investigations [29] [30] on certain 

materials reveal t h a t  the p las t ic  zone is  candle-flame shaped and appears 

t o  originate, not a t  the crack t i p ,  b u t  s l igh t ly  adjacent t o  i t ,  and 

proceed i n i t i a l l y  i n  a direction other than the crack l ine.  

f e l t  that  a possible cause for  the i n i t i a l  shape of the p las t ic  zone 

is the s t ress  state near a crack t i p .  

I t  i s  

:f this i s  the case, then 
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admissible s t r e s s  s t a t e s  migh t  ex i s t  other than tha t  normally assumed 

for  the Dugdale model (a  tensi le  yield s t r e s s  normal t o  the crack l ine 

on the e las t ic -p las t ic  interface).  

model by assuming the existence of a uniform shear s t ress  acting along 

the p las t ic  zone boundary. Such a modification might a l t e r  the s t ress  

distribution suff ic ient ly  to cause p las t ic  zones t o  be different  t h a n  

thase predicted by the Dugdale model. A solution t o  this problem has 

been obtained, and a comparison between Dugdale's work and the results 

of this solution i s  presented. 

I t  is  proposed t o  modify the Dugdale 

The experimental aspect deals w i t h  a verification of the Dugdale 

model applied t o  an anisotropic plate as presented by Gonzalez [31]. 

This approach assumes that  differing p las t ic  zone shapes occur due to  

material properties, i .e. local anisotropy. Gonzalez's analytical 

solution also discusses the e f fec t  of the Mises yield cr i ter ion on the 

anisotropic problem and presents l imits on the applicabili ty of the 

yield cr i ter ion depending on the anisotropic properties of the materi a1 . 
The experimental e f fo r t  has been directed towards verifying some of 

the predi c t i  ons o f  Gonzalez ' s sol u t i  on. 

The unifying consideration that prompted both the analytical and 

experimental portions of this  investigation was t o  study the p las t ic  

behavior t ha t  i s  characterist ic i n  the fracture o f  ductile materials. 

The analytical so lu t ions  o f  Gonzalez and the modified Dugdale model 

that  i s  presented subsequently were motivated by a desire to  more 

fully understand the nature of the p las t ic  flow that  has been observed 

i n  ducti le materials. 

shapes vary from material t o  material? For example, the localized 

In other words, why do plast ic  zone sizes and 
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yielding o f  the Dugdale type appears t o  be valid only for  materials 

whose stress-strain behavior is  closely approximated as r i g i d  perfect- 

ly-plastic while other materials e x h i b i t  more diffuse f low patterns. 

i t  is hoped t h a t  this e f for t  will assist i n  answering some of the 

questions associated with these problems. 



CHAPTER I1 

MODIFIED DUGDALE MODEL 

While investigating the yielding of steel  sheets containing s l i t s ,  

Dugdale [20] observed t h a t  the yielded region was shaped as a t h i n  

extension of the crack. He formulated the following three hypotheses: 

1. The material i n  the yielded zone i s  under a uniform tens i le  

yield s t ress  Y ,  see F i g .  5. 

The yielded zone is a t h i n  extension o f  the crack l i ne  such 

that  the material outside the zone i s  e l a s t i c  and i s  bounded 

2. 

by a flattened ellipse o f  length 2a = 2(R + s ) ,  where R is  

the half crack length and s is  the length of the p las t ic  

zone, see Fig .  6. 

The length s i s  such tha t  there is  no s t ress  singularity a t  

the ends of the flattened e l l ipse .  

In addition t o  these hypotheses, i t  is  proposed that :  

3, 

4. The material i n  the yielded zone is  under a uniform shear 

s t ress  T, see F ig .  7. 

I t  might be wise to  briefly p o i n t  out some jus t i f ica t ion  for  the 

fourth assumption stated above. 

If one examines the work o f  Brinson [29], i t  i s  noted tha t  the 

f n i t i a l  yielding tha t  occurs i n  polycarbonate appears t o  s t a r t  a t  some 

point s l igh t ly  removed from the crack t i p ,  see F i g .  8. I t  was t h o u g h t  

" ca t  the introduction of a uniform shear stress along the yielded 

zane i n  the Dugdale model might  give r i s e  to  a si tuation where the 

17 
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Y 

X 

Fig. 5 P l a s t i c  Zone Replaced by Y i e l d  Stress. 
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X 

Fig. 6 Dugdale Model . 
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a 

F i g .  7 Qugdale  Model wi th  Shear Stress. 
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P 

I P  

In i  ti a1 yiel  ding 

Crack t i p  

Fig ,  E! I n i t i a l  Yielding i n  Polycarbonate.  
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maximum s t r e s s  state d i d  n o t  occur a t  the crack t i p  b u t  a t  some adja-  

cent point and thereby obtain a plastic zone of a different  shape than  

Dugdale‘s. 

ceed i n  a dir.ect:iori other than the crack line. As previously mentioned 

other investigators have reported p las t ic  zone shapes t h a t  resemble 

P candle flame. I f  the s t a t e  of s t r e s s  i n  the neighborhood of a crack 

t i p  i s  responsible for  the in i t ia l  shape o f  the p las t ic  zone, then the 

proposed modi f ication migh t  a1 t e r  the s t r e s s  d i s t r i b u t i o n  sufficient:y 

so as t o  predict a p las t ic  zone t h a t  d i f fe rs  from the Dugdale type. 

Another reason f o r  the add i t ion  of the uniform shear stress to  

In Gther words, yielding would presumably i n i t i a l l y  pro- 

the Dugdale model was the desire to  realize more complex stress s t a t e s  

a1 ong the e las t ic -p las t ic  boundary other than just uniaxial tension. 

This i s  i n  contrast  t o  the ligament type model adopted by Goodier and 

Kanninen [32]. 

model would i l l u s t r a t e  the poss ib i l i ty  o f  a more complex s t r e s s  s t a t e  

existing along the elast ie-plast ic  boundary. 

I t  was hoped tha t  this modification of the Dugdale 

A solution t o  this boundary value problem can be obtained using 

the cornplex variab?e formulation of Muskhelishvili [33]. 

far  solution irivolves the stnperposi t i o n  o f  several s t ress  functions 

corresponding t o  the component s t ress  s t a t e s  for  the modified Dugdale 

crack, see Fig- 9. The problem then reduces to  the following: Given 

an i r j f i i i i  Lely large e l a s t i c  isotropic  sheet containing an e l l i p t i c a l  

hole w i t h  spoc-if ied forces acting on the contour of the hole, what 

are the s t r e s s  functions fo r  this par t icular  geometry? Superposing 

the s t r e s s  states showfi i n  F%g. 9, and taking the l imit  as the e l l i p se  

f la t tcns  to 3 w a c k  gives the stress dis t r ibut ion fo r  our model. 

The technique 
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S t a t e  1 

S t a t e  3 

S t a t e  2 

S t a t e  4 

Fig. 9 Component S t r e s s  S t a t e s  f o r  Modified Dugdale Crack. 



24 

Muskhelishvili 1331 gives the following s t r e s s  functions t o  solve 

the problem of an i n f i n i t e  sheet containing an e l l i p t i c a l  hole which  

i s  loaded over a portion of its boundary by a uniform normal stress as 

shown i n  F ig .  10. 

where 

K = -  3 - v  (for  plane stress) l + v  

t = x + i y  

For s t a t e  2 as shown i n  F i g .  9, the stress functions i n  (2.1) reduce 

t o  
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t y  
- x  

Real plane 

Conformal pl ane 

Fig .  10 Coordinate Systems. 
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fo r  the l i m i t i n g  case where the ellipse f l a t t ens  to  a crack (in = 1 ) .  

The above reduction i s  eas i ly  made from (2.1) by taking z1 = z2. For 

s t a t e  3 i n  Fig. 9 the stress functions i n  (2.11 lead t o  

i e2 
for  the limiting case (m = l ) ,  where a2 = e and 2/a = cos 02. 

In order t o  determine the s t r e s s  functions fo r  s t a t e  4 as pictured 

i n  F ig .  9 ,  which corresponds t o  an i n f i n i t e  sheet containing an 

e l l i p t i c a l  hole loaded over a portion of its boundary by a uniform 

shear stress, i t  was necessary t o  derive them i n  a general form us ing  

the method presented by Muskhel i s h v i  1 i [33]. The appropriate stress 

functions a re  
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where the variables z, z,, z2, and the constant K are defined i n  

equation (2.2).  

desired stress functions it m i g h t  be helpful t o  refer t o  F ig .  11 where 

the variables t h a t  define the limits o f  application o f  the uniform 

shear stress are shown. Upon making the appropriate substitutions 

i n t o  equations (2.5) for the loading shown i n  F i g .  11, the corresponding 

stress functions are given by 

In order t o  arrive a t  the par t icu lar  form of the 
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E 

U R  
= 1  9 

“2 - O 2  

U L  - 
- 

U R  

dl = -G2 

U ’  L 
= -1 “i 

F i g .  11 Loading i n  Conformal Plane.  
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f o r  the limiting case (m = 11, and where cr2 and R are as previously 

defined. 

Superposing the s t ress  functions i n  ( 2 . 3 ) ,  (2.4), and (2.6) 

which correspond to  s t r e s s  s t a t e s  2 ,  3,  and 4 i n  F ig .  9 yields the 

f o l  1 owing 
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I t  i s  noted t h a t  the expressions for the stress funct ions above 

contain singular por t ions  t h a t  violate Dugdale’s t h i r d  hypothesis. The 

lead ing  term corresponds t o  a dominant singularity of  the inverse 

square root type t h a t  i s  characteristic o f  linear elastic fracture 

mechanics, 

i t y  t h a t  influences the effect of the assumed shear stress. Following 

Dugdale’s approach, the dominant s ingu la r  term is a n n i h i l a t e d  and t h i s  

Each expression also contains a ueakcr logarithmic singular- 

requires t h a t  

In order t o  evaluate 

weaker logarithmic s 

t ions corresponding 

the influence o f  the assumed shear stress the 

ngularity is retained; therefore, the stress func- 

o the modified Dugdale crack (exclusive o f  the 

uniform tension field 0 = P )  reduce t o  
Y 
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The displacement components u ,  Y are related by the following 

equation 

(2.10) 

We consider next some o f  the detai ls  o f  the substitution o f  the stress 

functions o f  (2.9) i n to  (2.10) t o  determine the displacements a t  the 

surface o f  the crack and the elast ic-plast ic  interface on which 5 = e i 0  . 
I t  i s  convenient t o  consider the terms of (2.10) separately. 

a2 = e we have 

Since 
i e2 

9 + 5 1 
-I i cot 'i (e - e2) 
"2 - 5 

-. 
02 + z; 1 

a2 - 3 
= i cot (e + e2) 

1 - C Q S ~  (e + e2) 
I -i e2 
02 + 3 2 

i e2 1 

1 + 5  cos 

aZ + r " T ~ ~ ~  (e - e2) 
0 = e  

cos 0 l + r  = e  

(2.11)  



32 

1 - -i e2 
“ 2 - 5  2 s i n  (e - e2) - .sin F(B + e2) 42 - r 2 

e 1 - 5  sin -z- 

1 

sin 

i e2 

= e  0 l - r a e  

S u b s t i t u t i n g  (2.11) i n t o  t h e  express ion  for  $ ( g )  i n  (2.9) and t ak ing  the 

conjugate we f i n d  

2 

s i n  8 - s i n  e2 
. I  Ta sin 8 

2 f - I cos 8 log  1 2 7T (2.12) 

8 

s i n h  2 
cos e2 COS e - COS e2 cos 

1 + log 1 i e  1 1  2 log  [ cos 8 + cos e2 + 

The expression f o r  @(<) i n  (2.9) becomes 
.I 

I 

= - % I  2 i  e2 cos e + (cos e + cis e2) log I: cos -, ( e  - 82) 1 
cos (e + e*) 

sin 1 ( 8  - e2) 
+ (COS e - COS e2) l o g  I: 

+ 3 c cos e log  I: 

1 1  
s i n  $ (e + e2) 

sin 2 e - sin 2 e2 
3 (2.13) 2 sin  0 27l 
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Now, 

(2.14) 

so from (2.13) we have 

-i e sin (e - e,) 
f 2 i  e2 s i n  e t sin 8 l o g  1 sin e + e2 ) I 1  - 'Yae $'(GI - -r 

2 2 sin e - sin e2 
2 sin 8 

1 1  (2.15) c sin e log 1 27T 

The conjugate  of t h i s  i s  

sin (e - e2) 
1 - 2 i  sin e t s i n  e log 1 sin e 82 ) I 1  

m=--2;;- yaeie 

2 2 i o ,  sin e - sin e2 - -  Taie I sin e log  1 1 1  (2.16) 
sin' e 27T 

From the d e f i n i t i o n  o f  w(<)  

(2.17) 

for 5 = eie. 

(2.10) and equat ing  the real and imaginary p a r t s ,  we f i n d  

S u b s t i t u t i n g  (2.12), (2.13), (2.16),  and (2.17) i n t o  

2 sin e 
sin e + sin e2 

l2 1 - 9 I cos e log IT 
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sin (e + 0,) Ya cos 0 
27T 2 2 u V = -  (1 + K ) -  f -  

cos e2 sin 8 -. sin 62 
+ 2 l o g  I sin 0 + sin o2 1 b - T  (K - 1 )  (2.19) 

The stress components a long t h e  e l a s t i c - p l a s t i c  boundary Mhere 

5 = eie and p = 1 are determined by s u b s t i t u t i n g  t h e  stress functions 

i n  (2.9) i n t o  t h e  fol lowing equat ions .  

u + o  = 4 R e Q  (2.20) 
P o  

where 

Now 

t h e r e f o r e ,  s u b s t i t u t i n g  (2.15) and (2.23) i n t o  (2.22) gives 

2 2 sin 8 - sin e2 
4-1 ( l o g [  1 1  

IT sin* 8 

(2.221 

(2.23) 

(2.24) 
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Since,  

(2.25) 

then 
2 -i 8 sin 2e2 T i e - i B  2 cos e sin e2 

1 - -  I 1 - Ye * I  
21T sin *(s in2  e -  sin2 e2) 

(2.26) 

i ' (d  - 2 2 sin 0 - sin e2 

A1 so 
2 2 yae-i8 -sin 202 cos 0 iTae-ie -sin O2 cos e 

$'(d = y i 2 1 - 7  2 sin e(sin2 e - sin 02) sin2 e - sin e2 

2 sin 0 1 1  (2.27) - sin 8 log 1 
sin e - sin2 e2 

S u b s t i t u t i n g  (2.24) i n t o  (2.20) y i e l d s  

sin (e i. e2) 
cr f cre = Re 1 - % IT1 C 2i e2 - log  1 sin (e  - e2) 3 1  P 

2 2 sin e - sin e2 
2 sin e 

3 1 1  (2.28) 2T + - I  log 1 7T 

Subs t i t u t ion  of  (2.26) and (2.27) in to  (2.21) g iver  
n 

3 1 (2.29) sinL e 
- 0  P + 0 8 + 2 i  -c PO = - 2 T - i  IT 

log sin 2 0 - sin 2 e2 

In o r d e r  t o  determine t h e  f ina l  form for the  stresses i t  i s  convenient 

t o  examine two separate cases, namely e c e2 and 6 > 

def ined  by equat ion (2.8). 

where i s  
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Case I 

Case 11 

0- = y - p  P (2.30) 
2 

2 2 sin 8 - sin e2 
l2 1 T sin 8 a@ = Y - P ' T I  log I: 

T = o  
PO 

cr = - P  
P 

(2.31 ) 2 '  
2 2 sin e - sin e2 

l2 1 T sin 0 a0 = - P  - - I  log I: IT 

I t  should be recalled t h a t  equations (2.30) and (2.31) do n o t  include 

the remote uniform tensfon field u = P. Y 
This  solution represents an effort t o  develop a mathematical 

model which will predict the size, shape, and direction of plastic zone 

growth in front of  cracks using the Dugdale model as a p o i n t  of 

departure. The present solution indicates t h a t  Dugdale's finiteness 

condition (equation (2.8)) remains unchanged only i f  the logari thmic 

singularity due to  the assumed shear stress is retained i n  the stress 

functions. 

states along the elastic-plastic boundary of a crack. A comparison 

for the stresses and displacements along the elastic-plastic interface 

bebeen Dugdale's solution and t h e  predictions of the modified problem 

was formulated and these results are presented i n  Chapter IV. 

I t  also demonstrates the admissibility o f  other stress 



CHAPTER I I l  

. - .  . . . .  

EXPERDENTAL PROGRAM 

The impetus f o r  tfie experimental program was rovided by Gonz 1 Z ' S  

a n a l y t i c a l  s o l u t i o n  dea l ing  wi th  t h e  adapta t ion  o f  the Dugdale model 

t o  an a n i s o t r o p i c  p l a t e  1311. This a n a l y t i c a l  approach assumes t h a t  

var ious  shaped plast ic  zones might occur  due  t o  the p r o p e r t i e s  o f  the 

m a t e r i a l ,  Le. l o c a l  anisotropy.  The fo l lowing  experimental  effort 

has been d i r e c t e d  toward a q u a l i t a t i v e  v e r i f i c a t i o n  o f  some of the 

results o f  t h i s  solution. The d e t a i l s  o f  Gonzalez's s o l u t i o n  will n o t  

be presented  here.  Perfiaps it would s u f f i c e  t o  say t h a t  t h e  method 

i s  q u i t e  similar t o  t h e  procedure o u t l i n e d  i n  Chapter 11. I n  o t h e r  

words, t h e  principle o f  superpos i t ion  was employed t o  obta in  t h e  com- 

plete stress func t ions  f o r  t he  problem by combining the stress functions 

( tak ing  i n t o  account an iso t ropy]  corresponding t o  the component stress 

s t a t e s  for the Dugdale model. The desired stress funct ions  were obtained 

from Savin [341 where he adapted the complex v a r i a b l e  approach o f  

Muskhel ishvi l i  [333 t o  the a n i s o t r o p i c  case.  Some o f  the s a l i e n t  

f e a t u r e s  o f  the s o l u t i o n  will be presented a s  they d i c t a t e  t h e  n a t u r e  

o f  t h e  experimental i n v e s t i g a t i o n .  

Examination o f  the Gonzalez s o l u t i o n  r e v e a l s  t h a t  t he  effect o f  

aniso t ropy  is t o  modify each  i s o t r o p i c  f i e l d  equat ion  by a m u l t i p l i c a t i v e  

cons t an t  t h a t  i s  a func t ion  o f  the a n i s o t r o p i c  mater ia l  cons tan ts .  

For example t h e  f i n i t e n e s s  condi t ion f o r  the a n i s o t r o p i c  case  can be 

written as 

37 
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where Y i s  some cons tan t  having t h e  u n i t s  of stress (not  n e c e s s a r i l y  

t h e  t e n s i l e  yield s t r e s s )  a c t i n g  on t h e  p l a s t i c  zone boundary t h a t  is 

r e l a t e d  t o  the a n i s o t r o p i c  y i e l d  properties o f  the material and the 

o t h e r  terms are a s  previously defined. This  is s i rn t la r  t o  tfie f ini te-  

ness condi t ion t h a t  results i n  the i s o t r o p i c  case where Y is  u s u a l l y  

assumed t o  be the tensile y i e l d  stress of  the m a t e r i a l .  

The stresses along t h e  line o f  t h e  c rack  y 5 0 for t h e  a n i s o t r o p i c  

case are given by 

2y (B182 - a p 2 )  sin 2B2 
OX T tan-' ( 1 (3 .2)  - - 

c2 - cos 2e2 

sin 202 2Y cr = ;T" tan-' ( 
Y E - COS 2e2 

(3.3) 

a 1 where x = ?(E + -1, and the stresses a t  the  t i p  o f  t h e  p l a s t i c  zone a r e  
E 

CT = Y  (3 .5 )  Y 

where P is  ~e e x t e r n a l  load. For the i s o t r o p i c  case t h e  stresses along 

t h e  line o f  t h e  crack are 

si,n . 2e2 
-- f 

E2 - cos 2e2 
(3.61 
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and t h e  stresses a t  t h e  t i p  o f  t h e  p l a s t i c  zone are 

s , = Y - P  (3.71 

The cons tan t s  ai and Bi appearing i n  equat ion (3.21 are related t o  t h e  

a n i s o t r o p i c  e l a s t i c  cons t an t s  a 

the c h a r a c t e r i s t i c  equat ion  for  p lane  stress 

a s  def ined hy Leknn i t sk i i  1351 through 
i j  

4 3 2 a l l  m - 2a16 rn + (2a12 -t aC6)rn - 2aZ6 m + aZ2 = O (3 .9)  

whose r o o t s  mi take t h e  form 

mi = a i t i p i  (3.10) 

The corresponding express ions  f o r  the d i sp l  a c m n t s  for the  a n i s o t r o p i c  

case  a r e  noted t o  be s i g n i f i c a n t l y  a f f ec t ed  by  the an i so t ropy  of the 

mater ia l  as seen below. 
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n n 

2 + 2 cos e l o g  sin (e + e2) * cos e2 l og  (sin e2 - sin e)  

(3.12) 2 2 2  COS e2 + COS e - l og  (COS e2 - COS e] J 1 

In add i t ion  t o  obta in ing  t h e  f i e l d  equa t ions  for t h e  stresses and 

displacements,  Gonzalez a l s o  discusses the e f f e c t  o f  t h e  Mises y i e l d  

c r i t e r i o n  for  a Dugdale type  s o l u t i o n  and p resen t s  limits on the v a l i d i t y  

of the s o l u t i o n  depending on ma te r i a l  p r o p e r t i e s .  The limits on the 

app l i ca t ion  o f  t h e  s o l u t i o n  can be illustrated i n  t h e  following manner. 

In t h e  i s o t r o p i c  Dugdale s o l u t i o n  cs is  always the maximum pr inc ipa l  
Y 

stress a t  t he  t i p  o f  the p l a s t i c  zone and experiments v e r i f y  t h a t  

Dugdale’s second assumption ( t h e  p l a s t i c  zone i s  a t h i n  ex tens ion  o f  

the  c rack)  i s  va l id .  However f o r  an a n i s o t r o p i c  mater ia l  i t  i s  con- 

ce ivab le  t h a t  ux might become g r e a t e r  than a a t  the p l a s t i c  zone t i p  

depending on t h e  value of t h e  q u a n t i t y  (elf$ - a la2 )  i n  equat ion (3 .4);  

hence, ox could become the maximum pr inc ipa l  stress. 

t h e  Dugdale m d e l  as, normally def ined  is  not  a p p l i c a b l e  t o  an an i so t rop fc  

material a The v a l i d i t y  of 

Y 

For such a case, 

Dugdale type  solutior! for  an a n i s o t r o p i c  
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mater ia l  thus depends on t h e  condi t ion  CT > ax which can he r e s t a t e d  

i n  terms of mater ia l  properties us ing  equati.ons (3,4) and (3.5) as 
Y 

(3.13) 

where ai and Bi a r e  def ined by equat ions  (3.92 and (3,101, P i s  t h e  

external load ,  and Y i's a cons t an t  stress a i c h ,  a s  def ined by 

Gonzalez, is re1 a t e d  t o  t he  a n i s o t r o p i c  yield p r o p e r t i e s  o f  t h e  m a t e r i a l .  

Lf t h e  i n e q u a l i t y  i n  equat ion  (3.13) i s  n o t  s a t i s f i e d ,  a Dugdale t y p e  

s o l u t i o n  is no longer  v a l i d  and i t  i s  thought t h a t  t h e  mater ia l  will 

tend t o  y i e l d  i n  some d i r e c t i o n  o t h e r  than along t h e  crack l i n e .  

Condition (3.131 is illustrated g r a p h i c a l l y  i n  Fig. 12 wi th  t h e  shaded 

region being t h e  region where t h e  Dugdale model i s  s a t i s f i e d .  

The p r inc ipa l  d i f f i c u l  ty i n  applying the preceeding a n a l y t i c a l  

results t o  real m a t e r i a l s  is i n  f i n d i n g  real m a t e r i a l s  t h a t  a r e  both 

a n i s o t r o p i c  and homogeneous. Composite m a t e r i a l s  c e r t a i n l y  provide 

the r equ i r ed  an iso t ropy  b u t  they a r e  inhomogeneous i n  general .  

[36] i n d i c a t e s  t h a t  uniaxial  s t r e t c h i n g  o f  a polymer inc reases  the 

elastic modulus i n  the d i r e c t i o n  of s t re tch  and decreases  i t  i n  the 

Nielsen 

0 

t r a n s v e r s e  d i r ec t ion .  Since the preceeding a n a l y t i c a l  ana lysfs  can 

be s p e c i a l i z e d  t o  the  o r t h o t r o p i c  case, i t  was a n t i c i p a t e d  t h a t  a 

homogeneous o r t h o t r o p i c  mater ia l  could be produced by means o f  u n i -  

ax i a l  s t r e t c h i n g  of  a polymer. Or thot ropic  refers t o  a body which 

possesses  t h r e e  orthogonal p lanes  o f  e l a s t i c  symmetry a t  each p o i n t  

i n  the body as  opposed t o  an i s o t r o p i c  mater ia l  whose p r o p e r t i e s  do 

no t  vary  wi th  d i r e c t i o n  o r  o r i e n t a t i o n  o f  the axes a t  t h a t  po in t .  
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Fig.. 12 L i m i t  on Anisotropy for Anisotropic Dugdale Model. 
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In studyi.ng the  d u c t i l e  fracture of nonmetal1 i c  m a t e r i a l s ,  polycar- 

bonate  appears  t o  b e  a very s u i t a b l e  polymer f o r  s eve ra l  reasons.  Xt 

is a know d u c t i l e  polymer and tts s t r e s s - s t r a i n - o p t i c  properties a r e  

a v a i l a b l e  i n  t h e  l i t e r a t u r e  1291, 1371, 1381, and 1391. I t  i s  h ighly  

h i r e f r i n g e n t  thus  lending  itself t o  p h o t o e l a s t i c  ana lys i s .  

finds important  t echn ica l  app l i ca t ion  p a r t i c u l a r l y  i n  the a i r c r a f t  

industry v&ere i t  is used a s  a g laz ing  mater ia l  for a i r c r a f t  canopies ,  

windows, windshields ,  etc. because o f  -its s t r e n g t h  t o  weight r a t i o .  

The s t r e s s - s t r a i n  behavior  is q u i t e  s i m i l a r  to t h a t  o f  m i l d  steel and 

i t  i s  one of t h e  few polymers t h a t  can be co ld  formed. 

i t  is fe l t  t h a t  polycarbonate  holds  some promise f o r  use as  a modeling 

mater ia l  i n  a t tempt ing  t o  analyze t echno log ica l ly  important problems 

t h a t  arise concerning t h e  behavior o f  steels and other metals .  

Polycarbonate  

For these r e a s m s  

The experimental  effort can be div ided  i n t o  two general  phases. 

The first por t ion  concerns the production o f  an o r t h o t r o p i c  mater ia l  and 

the c h a r a c t e r i z a t i o n  of i ts e l a s t i c  p r o p e r t i e s .  

wi th  a comparison o f  experimental  results and t h e  a n a l y t i c a l  theory 

presented by Gonnalez. 

untaxial  s t r e t c h i n g  a s  a means o f  achieving molecular o r i e n t a t i o n  so 

as t o  produce an o r t h o t r o p i c  ma te r i a l .  Since polycarbonate i s  a know 

d u c t i l e  polymer, i t  was a n t i c i p a t e d  t h a t  an o r t h o t r o p i c  mater ia l  could 

be nianufactured by means o f  un iax ia l  s t r e t c h i n g .  

was expended i n  a t tempting t o  produce t h e  des i red  g r e o r i e n t a t i o n  inc luding  

s t r e t c h i n g  a t  e l eva ted  temperatures (temperatures i n  the neighborhood o f  

t he  g i  a s s  t r a n s i t i o n  temperature) ,  a t  roolli temperature, and  COI d r o l l  ing . 
The most successfu l  technique appears t o  be cold  r o l l i n g  as i t  resuftz 

The second p a r t  dea l s  

As previous ly  ind ica t ed  t h e  l i t e r a t u r e  sugges ts  

Considerable e f f o r t  
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i n  a ra t io  of approximately 2: l  f o r  the e l a s t i c  moduli in the two 

principal directions. The actual procedure employed was t o  take an 

as recei ved sheet of polycarbonate*, 0.020 inch nominal t h i  ckness, and 

make successive passes through a ro l l ing  mill until the thickness had  

been reduced by approximately one-half. A 50% reduction in thickness 

was found to  be the maximum achievable before crazing occurred i n  the 

roll  i n g  process. 

In order to  describe the behavior of an orthotropic material in 

a plane stress situation i t  i s  necessary to  determine five e l a s t i c  

constants: Young's moduli and Poisson's ratios in the two principal 

Ey, vxs  u , G ) together with di rections and the shear modulus (Ex, 

information regarding the yield properties of the materi a1 . 
phase of the experimental program dealt with the characterization of 

the e l a s t i c  properties of the orthotropic material produced by the 

Y W  
The next 

rol l  i n g  process. 

Tensile specimens approximately 1 i n .  X 5 in. X 0.010 i n .  were cut 

from the rolled sheets using a template i n  conjunction with a h i g h  

speed router. The tensi le  specimens were oriented parallel t o  the 

direction o f  roll ing or perpendicular t o  i t  so as to  permit determination 

o f  the el as t i  c properties corresponding t o  the principal d i  rections. 

TWG, sets  o f  parallel lines approximately 0.900 inch apart were then 

l i g h t l y  scribed on each specimen, one s e t  being parallel tcr t h e  direction 

o f  roll ing and the other s e t  perpendicular t o  i t .  The tensi le  tes ts  

* 
Manufactured by the General Electric Corporation under the trade name Lexan. 
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were performed w i t h  the a i d  o f  an Ins t ron  Universal  Testing Machine 

(Model TT-D-L, rns t ron  Corporation Can tori, Masscchusctts 1 opera ted  

a t  a cons t an t  e longa t ion  r a t e  of  0.005 in. /mi.~.i .  A series o f  photographs 

was taken a t  prescr ibed  load increments for each tensile test  t o  

determine t h e  e longat ion  o r  con t r ac t ion  between the two sets of parallel. 

lines on the specimen. 

graphs using a Unitron Universal Measuring Microscope (Ser ies  TM, Un i  t ron  

Instrument Company, Newton High1 ands,  Massachusetts 1 e The microscope 

is  equipped wi th  a t r a v e l i n g  s t a g e  t o  be used i n  conjunct ion Ivn'th micro- 

meter type  screws t h a t  permit one t o  make l i n e a r  measurements accu ra t e  

t o  0.0001 inch. The measured deformation was then converted t o  the 

corresponding s t r a i n  va lue  thus  permi t t ing  determinat ion o f  Young's 

moduli and Poisson ' s  r a t i o s  f o r  the p r inc ipa l  d i r e c t i o n s .  

modulus was determined by assuming t h e  add i t iona l  r e l a t i o n  ( see  r e fe rence  

C35N 

The deformation was deteaotnined from t h e  photo- 

The shea r  

--,xaC,-,, 1 2v 1 1 
GxY E Y Ey Ex 

(3 .74)  

The yield p r o p e r t i e s  o f  the mater ia l  were a l s o  determined from the tensile 

tests descr ibed  above. 

s t r a i n .  The equat ions  o f  t ransformat ion  (see reference 1351) were used 

t o  determine t h e  e l a s t i c  cons t an t s  i n  s i t u a t i o n s  where i t  was necessary 

to know t h e  e las t ic  p r o p e r t i e s  a t  some angular  o r i e n t a t i o n  o t h e r  than a 

pr inc ipa l  d i r e c t i o n .  

e s t a b l i s h e a  by means o f  tensile tests,  

properties determined fr3m tkese tests were: 

Yielding was presumed t o  occur  a t  0.4% o f f s e t  

7r. such c a s e s  t h e  yield p r o p e r t i e s  were again 

Typical va'itie: f o r  mater ia l  

Ex = 396,000 psi, 
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= 244,000 ps i ,  G = 114,000 ps i ,  vx = 0.43, u = 0.26, y i e l d  s t reng th  

i n  x -d i rec t i on  = 6200 ps i ,  and y i e l d  s t rength  i n  y - d i r e c t i o n  = 4200 p s i .  
EY 4Y Y 

I n  order  t o  q u a l i t a t i v e l y  v e r i f y  some o f  the  p red ic t i ons  o f  Gonzalez's 

so lu t i on ,  t e n s i l e  specimens w i t h  a geometry s i m i l a r  t o  t h a t  shown i n  Fig.  

13 were machined from c o l d  r o l l e d  sheets of polycarbonate. The t e n s i l e  

speciinens were prepared using a template i n  conjunct ion w i t h  a h igh  

speed rou ter .  

s l o t  i n  each specimen and each end o f  the s l o t  was then notched w i t h  a 

razor  blade. The notch measured approximately 0.015 i n .  i n  leng th  and 

had a r o o t  radius estimated w i t h  the a i d  o f  a microscope t o  be no l a r g e r  

than 0.0002 i n .  

o r i en ted  a t  angles o f  O o ,  30°, 45O, and 90" w i t h  the  d i r e c t i o n  o f  r o l l i n g  

(strong mater ia l  p r i n c i p a l  d i r e c t i o n )  so as t o  observe the behavior o f  

the mater ia l  w i t h  a crack a t  various i n c l i n a t i o n s  t o  the s t a t e  of 

orthotropy. 

Machine operated a t  a constant elongat ion r a t e  o f  0.005 .in./min. 

e l a s t i c  photographs were taken a t  various l oad  l e v e l s  throughout the 

tes ts  e 

A crack was simulated by machining a 0.180 i n .  X 0.020 i n .  

Specimens were prepared w i t h  the l i n e  o f  the crack 

The t e s t s  were conducted on a I n s t r o n  Universal  TestSng 

Photo- 

The purposes o f  the f r a c t u r e  t e s t s  were twofo ld :  (a)  t o  observe 

i f  the crack proceeded i n  a d i r e c t i o n  o the r  than along the o r i g i n a l  

crack l i n e  depending on mater ia l  o r tho t ropy  and (b) t o  measure the 

crack opening displacements a t  the  center o f  the crack i n  o rder  t o  

provide a q u a n t i t a t i v e  eva lua t ion  o f  the theory. 

t es ts  are presented subsequently. 

The r e s u l t s  o f  such 
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CHAPTER IY 

'RESULTS 'AND CONCLUSIONS 

4.1 Analy t ica l  

In comparing the results o f  t h e  modified problem presented i n  

Chapter I1 t o  those  obtained by Dugdale t h e  follow-ng similarities are 

noted. The four assumptions l isted e a r l y  i n  Chapter TT l ead  t o  t h e  

fol lowing equat ion  for p las t ic  zone size. 

In o t h e r  words, t h e  f i n i t e n e s s  condi t ion  of  Dugdale (equat ion (2.8)) 

remains unchanged only  as l o n g  a s  t h e  loga r i thmic  s i n g u l a r i t y  is 

r e t a i n e d  i n  t h e  stress funct ions .  

a n a l y t i c a l  problem was t o  i n v e s t i g a t e  the in f luence  of t h e  assumed 

shea r  stress on t h e  stress s t a t e  i n  the v i c i n i t y  of t h e  crack t i p ,  i t  

was deemed important  t o  retain t h i s  weak s i n g u l a r i t y .  

S ince  one o f  t h e  purposes o f  t h e  

The stress components CT and T on t h e  e l a s t i c - p l a s t i c  boundary 

obtained from t h e  modified problem a r e  t he  same a s  those p r e d i c t e d  by 

Dugdale's so lu t ion .  The effect  of imposing a uniform shea r  stress on 

t h e  p las t ic  zone i s  t o  modify t h e  stress component a8 on t h e  e l a s t i c -  

p l a s t i c  houndary as well as the displacements  u and Y a t  the s u r f a c e  

P P9 

o f  t h e  crack and t h e  el astic-pl a s t i c  

stress and displacement components d 

an added term t h a t  i s  dependent upon 

boundary. rn both cases  t h e  

f f er  from Dugdal e I s resul ts by 

the imposed s h e a r  stress. Typ ca 1 

48 
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results o f  a comparison between Dugdale 's  results q n d  t h e  modified prob- 

lem a r e  presented  i n  F tgures  1 4  and 15. 

differ on ly  i n  the v i c i n i t y  o f  t h e  c rack  t i p  (e = Oo i n  Flg.  14) and 

t h i s  is a consequence o f  r e t a i n i n g  t h e  weak loga r t thmic  s i n g u l a r i t y  i n  

the  stress func t ions .  The displacements a r e  n o t  markedly d i f f e r e n t  as 

evidenced i n  Fig.  15. It is thought  t h a t  the small difference would be 

d i f f icu l t  to  detect exper imenta l ly ;  fur thermore,  experimental  verification 

would be compounded by the  a n t i c i p a t e d  d i f f i c u l t y  i n  measuring the shea r  

stress t h a t  is presumed t o  exist along the p l a s t i c  zone boundary. 

T t  is noted t h a t  the stresses 

A t  t h i s  p o i n t  it would appear  w o r t h h i l e  t o  examine the resul ts 

of t h e  modified problem i n  terms o f  the  j u s t i f i c a t i o n  cited i n  Chapter 

11. The p r inc ipa l  motivat ion f o r  t h e  modif icat ion of the stress and 

displacement field as soc ia t ed  w i t h  the Dugdale mathematical model was 

an attempt t o  r e a l i z e  a s i t u a t i o n  where the maximum stress and con- 

sequent ly  t h e  d i r e c t i o n  o f  p l a s t i c  zone propagation would n o t  coincide. 

w i t h  t h e  line o f  t h e  crack. The s o l u t i o n  t o  t h e  modified problem does 

demonstrate t h e  admissibility o f  stress s t a t e s  o t h e r  than just uniax ia l  

t ens ion  along t h e  e l a s t i c - p l a s t i c  boundary and t h i s  i s  i n  c o n t r a s t  t o  

models adopted by o t h e r  i n v e s t i g a t o r s .  However, the maximum stress 

occurs  a t  t h e  c rack  t i p  and n o t  a t  some ad jacen t  po in t ;  t h u s ,  i t  is 

assumed t h a t  y i e l d i n g  would proceed along the crack line and n o t  i n  some 

o t h e r  d i r ec t ion .  Of course  there was no knsidledge a p r i o r i  t h a t  the 

proposed m d i f i c a t t o n  would lead t o  the desired result. 

i t  would appear  prudent  t o  examine t h e  n a t u r e  o f  t h e  analytical problem 

t h a t  was solved. The boundary va lue  problem, mathematical ly speaking,  

cons is ted  o f  a s t r a i g h t  cut (the crack)  loaded w i t h  normal and shear ing  

In retrospect 



50 

F , - n  a 0  
U L  o a  

a a  = u  
F 

? .I- 
m + -  0 
U 'I- 
m u  ll 
3 0 .I- 

P 
n = v) I-la 

0 
0 
Q, 
a3 
It 

>- 

M 
0 

I1 

a I>- 

0 
0 n 

0 
0 
u3 

0 
0 
m 

t 
w 
a, 
3 
c, 
aJ rn 
U 

0 

O E  
u w  
E " .  

n - w  
€ 0  
0 0  
u E  

0 



51 

d 

0 

a 
S 
0 
N 

V 

C, 
v) rn 
a 

*I- 

- 

Y 
U 
CCI 
L 
0 

al 
al 
L 
LL 

n 
Y 
v u  m a  
L -I- 
Uci- 



52 

forces .  The r e s u l t s  o f  this  problem were used t o  c a l c u l a t e  t he  stresses 

and displacements a t  the edge of t h e  p l a s t i c  zone boundary, and these 

c a l c u l a t i o n s  were based on the mathematfcal so lu t ton  t h a t  was, s t r ic t ly  

speaking, Yalid o n l y  f o r  the  problem o f  a s t r a i g h t  cut. Of course i n  

a real  mater ia l  the  p l a s t i c  zone boundary does n o t  co inc ide  w i t h  the 

crack. 

a t h i n  b u t  finite elll'pse with the presumed boundary loads  r a t h e r  than 

a s t r a i g h t  cut.  

to  c a l c u l a t e  t h e  na tu re  of t he  stresses some small d i s t ance  away from 

the crack line (where the p l a s t i c  zone boundary has been observed i n  

real  ma te r i a l s  [ZSJ), bu t  t h i s  problem is more formidable than the one 

Perhaps a more phys ica l ly  r e a l i s t i c  problem would be t o  consider  

I t  would be poss ib l e  t o  use t h e  e x i s t i n g  stress funct ions  

solved i n  t h i s  i nves t iga t ion .  This observat ion i s  made simply t o  p o i n t  

o u t  the  f a c t  t h a t  if the stresses were ca lcu la t ed  some d i s t ance  away 

from the crack  line, then a maximum stress s t a t e  might occur a t  a po in t  

removed from the crack t i p .  

The physical motivation f o r  assuming a cons tan t  shear  stress along 

the p l a s t i c  zone boundary was provided by Brinson's work [29] where i t  

was observed t h a t  isochromatic  fringes i n  the e l a s t i c  region t ended  t o  

turn and proceed p a r a l l e l  t o  t he  d i r e c t i o n  of the  crack and p l a s t i c  

zone d i r ec t ion .  Brinson a l so  noted l a r g e  deformations as well as l a r g e  

thickness changes occurr ing  i n  the plastic zone. 

a1 toge ther  s u r p r i s i n g  t h a t  p lane  1 i n e a r  e l a s t i c f t y  does not  completely 

provide an accura te  desc r ip t ion  of the  phenomena occurr ing a t  the crack 

t i p  i n  a ducti le ma te r i a l .  

Perhaps i t  is n o t  



4.2 Experimental 

As previously mentioned, the experimental e f for t  was directed 

toward a qualitative verification of the Dugdale model applied t o  an 

anisotropic plate as presented by Gonzalez [31], and for the experi- 

mental investigation the above results were specialized t o  the 

orthotropic case. 

solution was the application of the Mises yield cri terion for  a Dugdale 

type solution and the corresponding l imits  on the validity of the 

so lu t ion .  There is  perhaps some question as t o  the soundness of t h i s  

approach. According t o  Foreman [40] the isotropic Dugdale model 

presupposes a Tresca yield cr i ter ion (yielding normal t o  the l ine  of 

the crack). 

zone i s  candle-flame shaped which migh t  lead one to  consider the Mises 

yield cri terion as Gonzalez d i d  for the anisotropic case. According 

t o  Gonzalez's resul ts  one might expect some s o r t  of branching of the 

p las t ic  zone t o  occur depending on material anisotropy. 

the material might tend to  deform in some direction other than along 

the original crack l ine.  The goal of the experimental investigation 

was to  verify i f  t h i s  i s  indeed the case. 

One o f  the most interesting aspects of  Gonzalez's 

However Brinson [29] noted experimental ly t h a t  the pl as t i  c 

I n  other words 

The fundamental question 

that this problem poses i s :  what i s  the correct form of the flow rule 

t o  employ f o r  an anisotropic si tuation? 

results will lend some i n s i g h t  i n  seeking an answer t o  this question. 

In comparing the experimental results of Gonzalez's solution one 

I t  i s  hoped tha t  the experimental 

particular parameter o f  primary in t e re s t  was the crack-opening di  s- 

placement a t  the center o f  the crack. For an orthotropic material when 

53 
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the axis of t h e  crack is a l igned  with one of t h e  p r inc ipa l  material 

directions, t h e  cons t an t s  at and Bi def ined  by equations (3.91 and 
r.. 

~ reduce t o  the  fol lowing 

a1 = (32 = Q (4.21 

(4.31 

(4.4) 

* ‘ A  - C 11/2 8, = (7 

8 2 = ( 7  - A  + C )1/2 

u here 

A t  t h e  center o f  the crack ,  the crack-opening displacement equat ion 

(see equat ion (3.12)) can be written a s  

where Y i s  the d i s p l a c e m n t .  The i n e q u a l i t y  o f  equat ion (.3.13) t h a t  

must be satisfied if the theory  i s  applicable simplifies t o  

(4.91 ’ -  Y 
BIB2 < w 



55 

"62 = E +- (4. I a) 

As seen  from equat ion  (4.10) if the  crack -is a l tgned  w i t h  the weak 

material d i r e c t i o n  (3 .( E 1, t h e  inequality will always be s a t i s f i e d  

and t h e  theory  p r e d i c t s  t h a t  Dugdale befiavior should be observed. 

conclusion was supported by experiments  on a specimen wi th  the  c rack  

a l igned  i n  the weak material d i r e c t i o n .  As seen i n  Fig. 16A y i e l d i n g  

is confined t o  the o r i g i n a l  c r ack  line and no branching of t h e  crack 

is observed. 

Y 
This 

On the o t h e r  kana when t h e  c rack  is a l igned  d t h  the s t r o n g  material 

d i r e c t i o n  (5( > E I for small  va lues  o f  the ex te rna l  load P ,  t h e  

i n e q u a l i t y  o f  equation (4.101 will  be v i o l a t e d  and it is  thought t h a t  

branching o f  t h e  crack might be poss ib le .  As t h e  ex te rna l  load increases 

t h e  i n e q u a l i t y  o f  equat ton  (4.101 may o r  may n o t  be satisfied depending 

on t h e  r a t i o  E /E 

t h e  crack is a l igned  wi th  t h e  s t r o n g  material direction a r e  presented 

i n  F igures  168 and 17. In Fig. 17 equat ion  (4.8) has been p l o t t e d  and 

i t  is  noted t h a t  t h e  displacements  p red ic t ed  by the o r t h o t r o p i c  theory 

a r e  always less than those  predicted by t h e  i s o t r o p i c  theory.  Experi- 

mental va lues  f o r  the  crack opening displacements  a t  the c e n t e r  of t h e  

c rack  were measured with the a i d  of a microscope from photographs taken 

du r ing  the fracture tests. These results are also p l o t t e d  on Fig .  17 

and t h e  q u a l f t a t i v e  agreement between theo ry  and experiment appears t o  

be quite good. The val ues f o r  t h e  crack-opening displacements  determined 

Y 

Typical results o f  experiments on specimens where 
x Yo  



A .  Specimen a f t e r  loading B. Specimen a f t e r  loading 
when the axis of the crack when the axis of the crack 
was i n i t i a l l y  aligned w i t h  was i n i t i a l l y  aligned w i t h  
the weak material direction. the strong material direction. 

C. Specimen a f t e r  loading D. Specimen a f t e r  loading 
when the axis of the crack when the axis of the crack 
was i n i t i a l l y  aligned a t  an 
angle o f  30' w i t h  the strong 
material direction. materi a1 d i  rec t i  on. 

was i n i t i a l l y  aligned a t  an 
angle of 45' with the strong 

F i g .  16 Experimental Results. 
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experimentally are consistently 'lower than those predicted by the 

analytical results and t h i s  leads one t o  conclude that  the qua l i ta t  

theoretical predictions are valid. 

In order t o  study the behavior of the material when the axis o 

ve 

the crack was rotated with respect to the principal axes o f  orthotropy, 

fracture tes t s  were conducted on specimens w i t h  the crack aligned a t  

angles o f  30" and 45" from the strong material direction. 

results of these tes t s  are shown in Figure 16C and 160. 

t h a t  for bo th  orientations the crack proceeded i n  a direction other 

than along the original crack l ine.  

the crack was oriented in a direction other t h a n  coincident with the 

weak material axis t h a t  yielding occurred i n  a direction other than 

along the original crack l ine.  Furthermore the crack extension always 

appeared t o  turn toward the weak material direction. 

Typical 

I t  i s  noted 

I t  was observed in a l l  cases when 

4 . 3  Conclusions and Recommendations 

One interesting aspect of the analytical problem for  future work 

would be to  give additional consideration to the logarithmic singularity 

t h a t  arises from the assumption o f  a shear s t ress  along the e las t ic -  

p las t ic  boundary. 

dominant singularity,  the resulting finiteness condition would certainly 

d i f f e r  from equation (2.8). 

p las t ic  zone s ize  would also be altered as well as the expressions fo r  

stresses and d i  spl acements . 

I f  t h i s  term was annihilated i n  conjunction w i t h  the 

Presumably, the resulting equation for  the 

I t  is f e l t  that  the principal u t i l i t y  o f  the analytical work 

previously presented i s  i n  i l lus t ra t ing  the possibil i ty o f  more ccmplex 
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stress s t a t e s  (other  than uniaxial  t ens ion1  e x i s t i n g  along t h e  elastic- 

plast ic  boundary i n  ductile materials containing cracks. Wtle progress  

has been made i n  the understanding o f  contained p l  asttcity, addi t iona l  

work needs t o  be done. 

d i t i o n s  present  a t  the  crack  t i p  i n  a stressed body, it w u l d  appear 

t h a t  f i n i t e  geometry cfianges should be  considered. Also the three- 

dimensional cha rac t e r  of “pl ane stress” yiel dtng I‘n pl a t e  problems i s  

s t i l l  n o t  resolved. rn polycarbonate for example, l a r g e  thickness  changes 

occur  i n  the. p las t ic  zone, b u t  t h i s  has  n o t  Geen incorporated i n  ana ly t i ca l  

models. Another a rea  of interest is mether d i f f e r i n g  yield condi t ions  

or three-dimensional a spec t s  are responsi  61 e f o r  the Dugdal e type  

p l a s t i c  zone obsemred i n  some materials and the more dtffuse f low p a t t e r n s  

seen i n  others .  

If one is to  accurately.  descrihe the loca l  con- 

The p resen t  effort appears t o  q u a l i t a t i v e l y  verify the an i so t rop ic  

theory o f  d u c t i l e  f r a c t u r e  presented by Gontalez. A more de t a i l ed  

evaluat ion o f  the ana ly t i ca l  model should e n t a i l  a comparison o f  stresses 

b u t  this i s  beyond the scope o f  t h i s  i nves t iga t ion .  Additional consid- 

e r a t i o n  o f  such a theory  may a l s o  he lp  .in understanding w h y  various types 

o f  p l a s t i c  zones dwelap i n  f r o n t  o f  cracks i n  d i f fe r ing  ma te r i a l s .  

Perhaps loca l  an iso t ropy  may be a means of i den t i fy ing  which type will 

occur i n  a given roater ia l .  

One endealror f o r  f u t u r e  considerat ion suggested by the expertmen ta l  

program would be t o  i n v e s t i g a t e  plastic zone sizes fn an i so t rop ic  materials. 

As evidenced i n  Fig. 1 6  there is no well defined p l a s t t c  zone occurr ing 

i n  any of t h e  f r a c t u r e  tests. I t  is n o t  c l e a r  whethey antsotropy,  t he  

r o l l i n g  process ,  or perhaps some combination o f  t h e  two i s  respons ib le  
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for the lack o f  a well defined plastic zone. 

I t  is f e l t  that the analytical theory should have a p p l i c a t i o n  i n  

studying the fracture behwior of metal’lic crystalline materials, 

oriented polyneric materials, and composites. T t  t s  hoped t h a t  the pre- 

sent effort will asstst  i n  clarifying some. of the problems associated 

with  the ductile fracture of isotropic and anisotropic materials. 
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AN INTERPRETATION OF INELASTIC BIREFRINGENCE 

Mechanical and optical measurements and discussion o f  gross 

yielding o f  polycarbonate i n  uniaxial tension. 

by H. F. Brinson" 

INTRODUCTI OF1 

For many years efforts have been made t o  extend the principles of photoelastic 

stress analysis t o  materials stressed beyond the elastic limit. 

Het'enyi [1] investigated the photoplastic effect i n  a nylon copolymer and compared 

plastic s l i p  band formation w i t h  theoretical results given by Nadai [2]. Several 

articles i n  reference [3] report on the basic optic laws of celluloid when stressed 

beyond the elastic limit, the use of birefringent coatings t o  investigate the 

In an early effort, 

z 

plastic behavior of metals, and the use of creep properties t o  determine arbitrary 

stress-strain re1 ations. The 1 atter process has been extensively investigated by 

Hunter [4] using epoxy and polycarbonate materials. Frocht and Thomson [5] propos- 

ed a stress-optic law for  celluloid which  was then measured using the creep 

behavior of this material. Bayoumi and Frank1 [SI proposed a general linear 

* Associate Professor of EngineerSng Mechanics, Vi rg in i a  Polytechnic Institute 
and State Universi tj 



"equation of s ta te"  re la i ing birefringence to  a conbination of s t r e s s  and s t r a i n ,  

and Fried and Shoup [73 proposed and measured a linear s t r a in  opt ic  law f o r  poly- 

ethelene. 

More recently,  a t m b e r  of  investigators have explored i n  depth the use of 

polycarbonate as a possible photoplastic material. 

[SI, and Whitfield [lo] have performed experiments t o  characterize the optical and 

mechanical behavior of polycarbonate (lexan) and have applied the properties so 

found t o  the experimental solutions o f  elasto-plast ic  boundary value problems. 

Brinson [ I l l  used the "ne1 astic birefringence of polycarbonate t o  measure Dugdale 

type p l a s t i c  zones i n  a uniaxial tensile strip containing an internal crack. 

The study of photoplasticity involves several factors o f  which the more 

Bri l l  [8J, Gurtman, e t  a l .  

important ones are;  material su i t ab i l i t y ,  the basic s t ress-s t ra in-opt ic  laws of 

a material stressed beyond the e l a s t i c  1 imit, mechanical and optical characteri-  

zation, application t o  boundary value problems, and model t o  prototype t ransi t ion.  

The f i r s t  two factors  seem t o  be the crux of successful photoplasticity. Inasmuch 

as many investigators have shown polycarbonate t o  be a sui table  material ,  t h i s  

investigation will explore certain aspects of the basic optic laws of polycarbonate 

when stressed beyond the e l a s t i c  limit. 

tharacterized by Grill, Gurtman and Whitfield [8,9,10] alleviating the need for  

fur ther  characterization f o r  this investigation. Typical stress-strain-optic 

behavl'or of polycarbonate i s  displayed i n  F ig .  9 .  

infomation on behavior up t o  s t r a ins  of 80% the reader is  referred t o  the excellent 

work o f  Brill [8] from which the information i n  F ig .  1 was obta-ined. 

Also, the material has been amply 

For more accurate and detailed 

In the e f fo r t s  previously c i ted ,  photoplasticity has been studied mainly for 

usage as a problem solving tool.  To this end l inear  s t ress  or s t r a in  optic laws 

have been proposed, time dependent behavior has been used and i n  some cases e f fo r t s  

have been limited t o  regions near the yield point of a material, i . c .  re lat ively 

small strains and linear s t r e s s  or strain opt ic  laws. As a r e su l t ,  rrlilch of the 



e a r l i e r  work could be explained on the basis of nonlinear e l a s t i c  or viscoelast ic  

material behavior. Howvcr material p l a s t i c i ty  i s  def in i te ly  involved when materials 

e x h i b i t  slip band form;t.i;ion such as those found i n  references [138,9,10]e 

information has been found which would aid a person i n  understanding the physical 

phenomenon represented by isochromatics i n  slip band or other regions of gross 

yielding. 

regions of gross yielding seem t o  be i n  qual i ta t ive agreement w i t h  l ines  of con- 

s t an t  thickness e The present investigation was undertaken to  verify these obser- 

vats'ons and  thereby t o  provide new i n s i g h t  i n t o  the interpretation of isochromatics 

f o r  polycarbonate i n  regions of gross p la s t i c  deformation. 

No 

Earl ier ,  the present author observed t h a t  isochromatic fringes i n  

EXPERIMENTAL PROCEDURES AN9 RESULTS 

Uniaxial tensile tests were used as a method o f  obtaining and relateing simul- 

taneous thickness and birefringence measurements. I n i t i a l  e f fo r t s  were made t o  

measure these variables d u r i n g  the progress of a uniaxial t e s t ,  b u t  i t  was found 

impractical t o  make i n  situ thickness measurements. As a resu l t ,  u n i a x i a l  specimens 

were loaded and unloaded i n  such a way tha t  permanent deformation, thickness change 

and isochromatics remained a f t e r  unloading. This process had the added advantage 

t h a t  el a s t i c  properties would automatically be eliminated. 

An isochromatic photograph of the residual fringes remaining a f t e r  unloading 

o f  a 0.040" x 0.5" t ens i le  specimen is shown i n  F i g .  2. To be more precise as t o  

the formation of the yield zone shown, the specimen was loaded axial ly  u n t i l  the 

point of t ens i l e  p las t ic  i n s t ab i l i t y  was reached. 

the sl ip band shown i n  Fig.  2 was formed, a f t e r  which  the load was removed. As i s  

Loading was continued u n t i l  

readily understandable,  various plastic deformation states remain i n  and around 

the sl ip band. 

change) were traced along the s t ress-s t ra in  diagram of F i g .  1, i t  would reach 

I f  the p o i n t  which undergoes the maximum deformation ( thickness 

approximately 20%.strain and then unload e l a s t i ca l ly  along the dashed l ine leavia-: 

residual s t r a in  of approximately 15% and the isochromatic pattern indicated. 



Thickness and I sochromati c. Measurements 

Thickness changes were measured ut i1  i z i n g  a modified Taylor-Hobson surface 

roughness measuring device (Tally-Surf). The specimen was placed on a microscope 

stage w i t h  x-y travel capabilities and the Tally-Surf s ty lus  was drawn across the 

qine long i tud ina l  s ta t ions  shown on the photograph of F ig .  2. Thickness var ia t ions 

we1-e thus measured a t  each of twenty-five po in t s  on each s ta t ion  l ine .  Accuracies 

of 9 x 

measurements taken represented actual thickness changes i n  the  specimen. ?he 

r e su l t s  of these measurements fo r  s t a t i o n  l i nes  0.05 i n . ,  0.20 i n . ,  and 0.40 i n .  

i n .  were eas i ly  obtainable and i t  was a l so  possible t o  insure t h a t  

are  shown i n  F i g .  3 .  

Residual fringe orders were counted along each s ta t ion  l i n e  and these are  a l so  

shown p l o t t e d  i n  F ig .  3 fo r  the same s ta t ions  as the thickness measurements a re  

indicated. Obviously, residual p l a s t i c  thickness changes and residual p l a s t i c  

isochromatics have the same qual i ta t ive  variation over the region of gross p la s t i c  

yielding. Interest ingly,  where thickness change and fr inge number are small, the  

two variables are nearly coincident, whereas when thickness change and fringe 

number are large,  the two variables diverge considerably even t h o u g h  t h e i r  trends 

are the same. These observations merely amplify the nonlinear nature of the 

relationship between thickness change and/or s t r a i n  and birefringence f o r  poly- 

carbonate as i s  also indicated i n  F ig .  1. 

Other differences between thickness change and birefringence are  noted i n  F ig .  

3 even when the variables are small. An obvious explanation r e su l t s  from consid- 

eration o f  i n i t i a l  local variation i n  the thickness of the material while i n  a 

s t ress - f ree  state.  

cer ta inly present and would not  necessarily be represented by subsequent iso- 

chromatics produced by gross yielding. 

produce s igni f icant  differences i n  the results shown i n  Fig.  3 .  

I n i t i a l  local variations of approximately 5 x i n .  were 

Thus ,  such local variations could eas i ly  



Hol ographi c Verification 
' While the qual -itativc relationship between p las t ic  thickness variation and 

p las t ic  isochromatics i s  clear ly  established as outlined in the foregoing com- 

ments, quantitative correlation was no t  possible. For this reason i t  was f e l t  

necessary to  have additional qual i ta t ive data to  reinforce the mechanical thick- 

ness measurements. In recent years holography has been shown t o  be an effective 

method of measuring and visaully observing thickness changes [12,13,14]. However, 

i n  the present case, a hologram of residual deformations of a permanently deformed 

specimen was desired, i . e . ,  the specinien shown i n  F i g .  2.  

changes involved represent larger variations than can be observed o r  recorded fn 

Also, the thickness 

conventional holography. 

cussed and shown i n  F i g .  2 was immersed i n  an o i l  b a t h  of nearly the same refract ive 

index.  

was taken. T h i s  procedure lowers the sens i t iv i ty  of the process such that  re la t ive ly  

large thickness changes can be ovserved [143. 

For this reason, the same specimen as previously d i s -  

A double exposure hologram of the o i l  bath w i t h  and w i t h o u t  the specimen 

The hologram obtained i n  the above manner is  shown i n  F i g .  4.  Comparison o f  

Fig .  4 and F i g .  2 indicates a g a i n  t ha t  isochromatics i n  a pemanently yielded 

region and holographic iqterference frtnges o f  permanent thickness changes i n  the 

same region are  vir tual ly  ident ical .  

holographic interference fringes shown i n  Fig .  4 were taken w i t h o u t  c i rcular ly  

polarized l i g h t  and, as will be subsequently demonstrated, the fringes d o  not 

represent isochromatic fringes whfch can be obtained u s i n g  holography [12,13,14]. 

The reader i s  advised t o  note tha t  the 

A second specimen of polycarbonate was machined t o  be wedge shaped. Care was 

taken to  insure t h a t  no residual isochromatic fringe pattern was induced by the 

machining process. A double exposure hologram of the o i l  tank w i t h  and  without 

this s t r e s s  f r ee ,  isochromatic f ree ,  machined wedge i s  shown i n  F i g .  5. Obviously 

the interference fringes displayed i n  F i g .  5 represent thickness change and can 



be used as a calibration 6f the holographic technique used. Using the calibration 

factor so obtained , thickness changes occurring i n  the specimen could be cal cul ated 

from the hologram o f  F i g .  4. T h i s  was accomplished a t  one point and the r e su l t  is 

plotted as p o i n t  A i n  F i g ,  3 and closely matches the previously recorded mechanical 

measurements. . 

ANALY T I CAL 06s E RVAT I ONS 

In the foregoing i t  is apparent t ha t  a close qua l i ta t ive  correlation between 

plast ic  thickness changes and p las t ic  isochromatics occur i n  a uniaxial speicnen 

o f  polycarbonate when stressed beyond the p o i n t  o f  t ens i l e  i'nstabil i t y .  However, 

no reference has been made to  the mechanism by which such behavior occurs nor has 

there been an attempt t o  analytically in te rpre t  these observations. 
c 

An anlytical  model has been presented by Nadai [2] t o  explain s l i p  band 
. *  

formation i n  metals, i .e. ,  Liiders' l ines .  Hetenyi [l] used the same model t o  

explain similar sl ip band formations i n  a nylon copolymer. This model can also be 

used i n  the present case. 

Fig.  6 represents a schematic diagram o f  the uniaxial specimen and i t s  pre- 

Using elementary e l a s t i c  dominate sl ip band which was previourly shown i n  F i g .  2. 

analysis i t  is eas i ly  shown tha t ,  

E; = 1 (0; - pa *. 1 = OO [l - cos 2a - ll(1 + cos ;In)] 
Y 

- OO and E; = Ex - -1.I E . OC9 Obviously, E; varies between the two  extremes 

There ex is t s  an intermediate position such tha t  E; = 0 and i f  Poisson's r a t io  is 
a taken up as 1-1 = - this position will occur on a plane where a = 35.3O. 2' 

ment o f  the orientation of the predominate slip plane i n  Fig.  2 yields  an angle 

a = 35.0". T h u s ,  s l ip  bands seem t o  occur on planes for which one component of 

the s t ra in  s zero. The explanation which has been given for  this phenomena is 

= E = - 
x Y E  

Measure- 



t h a t  yielding can take place on these planes w i t h o u t  constraint from the surround- 

ing  medium [1,2]. 

While the above explanation may tend t o  explain the.mechanics o f  sl ip  band 

formation, i t  does not  a j d  in the explanation of the accompanying opt ic  effect of 

the marked increase of fringe order number i n  s l ip  band regions. Quite obviously, 

from the earlier section on experimental results, thickness change i n  s l ip  band 

regions seem t o  have a great deal of influence on the observed opt ic  effect. In 

fact, these thickness changes require the existence of a three dimensional stress 

state i n  areas of gross yielding. However, us ing  normal arguments of photoelastic 

theory, i t  i s  reasonable t o  infer t h a t  the stress normal t o  the plane of the 

specimen, oz, does not  influence the op t i c  effect. Also, i t  is  apparent t h a t  the 

stress caused by permanent lateral contraction is nearly zero, ax = 0. As a result, 

the stress state i n  a s l ip  band can be t h o u g h t  of as uniaxial even beyond the yield 

p o i n t  of the material. Therefore i n  the following, a uniaxial stress state will 

be assumed. 

To aid further discussion idealized stress-strain-optic diagrams are shown i n  

A stress-optic law w h i c h  would be consistent w i t h  photoelasticity and F ig .  7. 

s t i l l  be valid beyond the elastic limit would be, 

fP 
C 

n 
a = f! (3) + a  (1 - s) Y * P *  (2) 

‘ C  

where o i s  the axial stress a t  a p o i n t ,  0 

order, d the thickness a t  the p o i n t  i n  question, f: the elastic material fringe 

value, and f! the plastic material fringe value. 

strain hardening stress-strain law of the type, 

i s  the yield stress, nc is the fringe 
Y - P o  

Equation ( 2 )  i s  analogous t o  a 

where E i s  the strain a t  a po in t ,  Ee i s  an elastic modulus and Ep i s  a plastic nodulas. 

The basic question t o  ask here i s  whether the idealized stress-strain-optic diagrams 



shown in Fig. 7 are realist ic representations of the behavior of polycarbonate. 

Froiii consideration of t-ig.  1 i t  is possible t o  infer t h a t  idealized stress-strain 

response is a close ayFroximation t o  the behavior of polycarbonate. The only 

question is the magnitGde of Ep. Here i t  i s  assumed t h a t  E p  > 0 b u t  i s  small 

compared t o  E e g  i .e., Ep  << Ee. 

assumed t o  take place, i t  is also assumed t o  be quite small. With  these assumptions 

In other words, while strain-hardening i s  

and w i t h  the a i d  o f  Fig. 1 i t  is possible t o  construct the idealized stress-optic 

response shown i n  Fig.  7 which would be quite similar t o  the idealized stress- 

strain response shown there also. Equation ( 2 )  i s  a logical consequence o f  this 

idealized response and can be rewritten as, 

The interpretation of the stress-optic effect represented by equation (4 )  

depends on whether the init ial  thickness, d i ,  o r  the current thickness, dc,  a t  a 

material point i s  used. 

mal photoelastic theory dictates, even though  i n  photoelasticity the initial thick- 

ness i s  most often used because there is l i t t l e  discrepancy between di  and dc ‘in 

the elastic range. 

observed t h a t  a small decrease i n  thickness represents a relatively large increase 

i n  (3) for the same stress level. In fact, i t  i s  intuitively obvious t h a t  should 

the thickness throughout  the t h r o a t  o f  a tensilve specimen remain uniform, t h e n  

the fringe order would also be uniform. 

region3 a multiple fringe pattern would be expected and fringes would then tend t o  

be associated w i t h  lines of constant thickness. The earlier experimental evidence 

of Fig.  2 and Fig. 3 reinforce these remarks. 

The proper choice i s  t o  use the current thickness as nor- 

Use of bo th  thicknesses are shown in F ig .  7 and i t  can be 

n 

If the thickness varies over a s l ip  band 

The residual fringe pattern of F i g .  2 after unloading can be predicted using 

equation (4 )  by assuming elastic unloading resulting in the equation, 



1 1 
)(- - -) Y - P -  fP .Fe 

2 * c  (3) = (a - a (5) 
' c  ' c  

A t  this p o i n t  i t  i s  also worth n o t i n g  t h a t  uniaxial tension holographic in te r -  

ference fringes of thsrkness change fo r  el a s t i c  deformation can be represented by 

the equation [12], 

when n is  the fringe order, d i s  the current thickness, and fe i s  the isopachic 

m t e r i a l  fringe value. 

to  include ine las t ic  deformations by rewriting i n  the form of (2),  i t  i s  c lear  

tha t  holographic fringes and isochromatic fringes would have the same character 

i n  uniaxial tension. Therefore, i t  i s  not surprising tha t  the hologram of F ig .  

4 i s  similar t o  the isochromatic pattern of F ig .  2. 

P P 
While i t  i s  not known whether equation (6) can be extended 

DI SCUSS I ON 

The experimental resu l t s  of the present investigation indicates good qualita- 

t ive  correlation between l ines  of constant thickness change and isochromatic fringes 

i n  a s l i p  band region o f  a uniaxial tensi 'le specfnien. The analytical observations 

presented also indicate tha t  such a relationship should ex is t .  

stress-optic law has only been used as  a means of explaining and discussing the 

re1 ationship between thickness and isochromatic measurements. 

could be used f o r  the same purpose, par t icular ly  since thickness changes a re  related 

t o  the s t a t e  o f  s t r a in  i n  a one- or two-dimensional s t r e s s  s t a t e .  However, due to  

the s imilar i ty  between the s t ress-opt ic  representation used herein and more 

r-igeirous elasto-plast ic  s t ress -s t ra in  equations, i t  would seem conceptually possible 

to  fornulate a theory of photoplasticity f o r  three dimensions which would closely 

The formulated 

A st rain-opt ic  law 

1 

parallel  the extensive theory o f  plas t ic i ty .  

The holographic resu l t s  may have possible future  application i n  e l a s t i c  and/or  

p las t ic  s t r e s s  analysis. As suggested by Hovanisian, e t  a1 [12], holographic 



interferometry could be used i n  conjunction w i t h  two o r  three dimensional s t ress  

freezing, even for the relat ively large deformations involved. This could be 

accomplished by using an o i l  ba th  of nearly the same refractive index t o  lower 

the sensi t ivi ty  of the process. 
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F i g .  A1 Mechanical and Optical  Behavior o f  Polycarbonate 
(From B r i l l  [SI). 
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Fig. A6 Ideal S l i p  Band i n  a T h i n  Uniaxial S t r i p .  



aJ 
0
,
 

c
 
L
 

LL 
*r- 

w 

c
 

fa 
L
 

c, 
v, .L

 

*
C

 

-P
 

n
 

0
 

I S
 

h
 

Q
 


