@ https://ntrs.nasa.gov/search.jsp?R=19710024696 2020-03-11T22:05:53+00:00Z

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND
L] find L _ bd ., -

7 .,. = ____m__._____ﬂ
. iV '
- 3 {ACCE T) (THRU)
-2 (PAGES} = o0t
E & —/ 2/ éﬁ (cmg é
: e R) aproduced b <y .
L& T ONAL TECHNICAL |

 FINFORMATION SERVICE |
F SR I e

Technical Report TR=E55 May 1971
NGR-21+002-197 ' :

Simulation of a Paging Drum Channel

Zby

Geeryin Kwok

This research was sppported by Grant NGR-21-002-197
from the National Aeronautics and Space Administration to
thé Computer Science Center of the University of Maryland.

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM

THE BEST COPY FURNISHED US BY THE SPONSORING
AGENCY, ALTHOUGH IT IS RECOGNIZED THAT CER-
TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN THE INTEREST OF MAKING-AVAILABLE
AS MUCH INFORMATION AS POSSIBLE,

Table of Contents

Abstract

Organization

1.1 Paging drum memorv
1.2 rage table memot y
1.3 Main memorvy

Paging—~drum Channel

2.1 Configuration

2.1.1 Memories
2.1.2 Registers

2.2 Formats

2.2.1 Channel command words
2.2.2 Listheads words

2.3 The handllng of queues

2.3.1 LlStS in the PAGETABLE Memory -
. 2.3.2 Channel command words in -the COM memory
2.3.3 The Page-transfer requests

]

i

2.4 The Paging Sequence

2.4.1 Main sequence

2.4.2 Drum read/write subsequence
2.4.3 Updating subsequence

2.4.4 Request accept subseqguence

An Example of Sector—Queue Manipulation

3.1 Initial linkage of the Sector-Queues in the PTM

2 Manipulation or Sectur-Gueues in tne rirst drum revolutlon

3 Manipulation of Sector-uueues during the second drum revolution
4 Manipulation ot Sector-Uueues during the 3rd drum revolution

5 Page transter during the 4th drum revolution

3.
3.
3.
3.

Simulation by Algol

4.1 $imulation inputs
4.2 Samulation program
4.3 Simulation outpurs
4.4 Discussion

Simulation by Simula

5.1 Simulation inputs
5.2 Simulation program
5.3 Simulation results

Acknowledgement

References

Appendix A, Listing of Algol Simulation Program
Appendix B, Listing of Simula Simulation Program

Abstract

This report describes the simulation of a paging drum chan-.
nel system by Algol and Simula programs on the UNIVAC 1108 in ovder
to ascertain the paging algorithms. The paging drum channel system
consists of five system units: paging drum channel, central process-—
ing unit, paging drum memory, main memory, and page table memory.
They are described by block diagrams and in CDL (computer design lan-
guage) statements. The algorithms for the paging sequences and ghe
sequential operation of the systeﬁ units are presented in flow charts

and described in detail.

Simulation of a Paging Drum Channel

1. Organization

A paging drum channel may be regarded as a processor which'pages—in
and pages—out ﬁain memory pages. Paging-in Fransfers a page of words from
the drum through the paging drum channel-to the main memory, while paging-
out transfers a page of words from the main memory through the paging drum
channel to the drum, ‘

Figure 1 is a block diagram which shows a part of a computer sys-
tem. There are five system units: paging drum channel PDQR,ceptral pro=
cessing unit CPU, paging drum memory PDRUM, main memory MM, and page ta-
ble memory PTM. Except the CPU, these system units constitute 'a-part of
the virtual memory that has been described elsewhere (8). This P;rt func—
tions briefly as follows. When the CRU needsxa page not in the #M, Jt.
initiates the PDC to fetch the page. The PDC generates an interrupt ‘hen
the page transfer is completed or when there is an error: Systém unit;

PDRUM, PTM and MM are now described.

1.1 Paging drum memory (PDRUM)

The words, tracks, pages, sectors and fields on the drum surface
are shown in Fig. 2. The drum surface is divided along the civcumference
into 16 sectors. It is also divided along the axis into 64 Fields. The
intersection of a sector and a field is a drum page. There arc 64 lields.
16 sectors, and 1024 pages on the drum. There are 36 tra?ks in each field
with one read/write head for each track. The 36 bits parallel with the

axis form a word. There are 1024 words in each page. The data Is trans-

Page Table Memory
PTM

Paging Drum Memory
PDRUM

paging~in

S N

|

N

Central Processing
Unit CPU

-} Paging Drum Chammel’ ;

PDO

')

raging-out

m
o

vt

oY

Main Memory ;
MEI

Fig. 1 Eystem Units of a

Computer System

[

ferred one word at a time.

The configuration of the PDRUM is shown in Fig. 3. The PDRUM is
addressed by both registers FIELD and CWORD. Register CWORD contains two
subregisters, CWORD(SECT) and CWORD(COUNT). CWORD(SECT) is the sector
address and CWORD(COUNT) the word address cf the current drum page. There
are four single-bit registers, namely, DACTV, RW, BS, and PAGEL 1in addi-
tion to drum buffer }egister DBR.- Register DACTV, when 1, indicates a

request for a page transfer. Register BS, when 1, indicates that DBR is

1

available. Register PAGETI is set to 1 when the drum is at the beginmning

-

of a'drum sector. The configuration of the PPRUM is’described by ﬁhe CDL

declaration statements as follows:

Comment, paging drum conﬁiguxation {1)
Memory, PDRUM (FIELD, CWORD)=PDRUM(0~63,0-16383,1-36)

Register, FIELD(1-6), Sdrum field register

CWORD(1-14), Sdrum field word address

DBR(1-36), Sdrum buffer reg?ster

DACTV, Sdrum request when 1

RW, - S$drum write when 1; else, drum read

BS, ; $drum buffer is available when 1

PAGEI, Sdrum at the beginning of a sector vhen |

Subregister, CWORD(SECT)-CWORD(1-4),

CWORD (COUNT)=CWORD (5-14)

drum sector-

; 0
i ‘ \ i 3
[\ | ~

pre TR A\ TR r,p- w?‘ ; - e 6.3
| 4 - e 63
page 0‘) page 3/ . i v pag :
G R AN AN i N A 1 Emd wrend o of ,,j.., Eiop ~aeakHanatedaty b oe F s slowm o, 3 " '

20 of« S -,
! 13
7 St “wer . J . .
E: —_— —

2304 heads

36 bits/word
64 pages/sector
16 pages/field
1024 pages on the drum

Fig. 2 Pages, Sectors, and Fields of a Paging Drum ~

FIELD) CWORD (SECT) CWORD (COUNT)

RN |

Paging Drum

PDRUM(0-63,0-16383,1-36)

M Ve ..

DBR{1-36)

[P PP VA P, e = e s wm b mame s e - - -

I

DACTV

ourm o mmvaed

PAGET

e prnia omim a

Fig. 3 Configuration of the Paging Drum Memcry

Ln

The operation of the paging drum is shown in the sequence chart of
Fig. 4. The PDRUM, after started, tests register DACIV. When DACIV is],
thege_is a page transfer request and the read/write control register RW is
examined. If RW is*l, a data word is transferted from the drum memory
buffer register DBR into the PDRUM which is addressed by both FIELD and
CWORD; this is called‘the Outpué sequence. Register BS, when 1, indicates
that register DBR is empty. If register RW is 0, a data word is transferred
from the PDRUM to register DBR; this is called the input sequence. Re-
gisﬁer BS, when 1, indicates that DBR is full. Next, the word count in
» register CWORD is incremented. If a whole page has been read or written,
CWORD (COUNT) contains 0, and register PAGEI is set to 1 to indicate the
transfer being complete, and register DACTIV is set to 0 to indicate that
the paging drum is ready for next page transfer. If a page has not yet
been read or written, CWORD(COUNT) is non-zero, so the read or write oper-

ation is repeated, depending on the contents of register RW.

1.2 Page table memory (PTM)

The configuration of the page table memory PTM is shown in Fig. 5.

The PTM consists of a memory PAGETABLE, address register PADR, buffer re-
gister PTR2, read/write cbontrol register RW3, and access control register
PTSEM. When PTSEM(1) is 1, the PTM is accessable by the CPU. When PTSEM(2)
is 1, the PTM is accessable by the fDC. The configuration of the PTIM is

described by the CDL statements below:
Comment, configuration of the paée table memory (2)

Memory, PAGETABLE (PADR)=PAGETABLE(0-63,1-64) Spage table memory

DACTV&~0 ‘
BS4=0 |

0 { pacTv ‘\
./

.
-~ {(no page transfer

g l{page transfer request)

. Lo
S .
0o/ . rw N S
! (read) \ e A:}“_ (write)

1

i
N ~fr

oo e e

DBR<PDRUM(FIELD, CWORD) , { PDRUM(YIELD,CHORD)é—DR?
BSe-1. . 4 BSel

o s e K ¢ rer ey e ——————

-

.

t CWORD¢{—countup CWORD
e Sty

#0

L -

a N,
CWORD (COUNT)
(./

e tmrs am g P an

.
page

transfer
complete

PAGET& 1
DACTVe—0 e e o

Fig. 4 Sequence Chart for Paging Drum Hemor:

PADR(1-6)

%, oy e

_.4[
Page Table Memory

PAGETABLE (0-63,1-64)

Nl ke Lt L oY P

T
S
PTR2 (1-64) :
i
RW3
" -
* PTSEM(1-2) i
: R

Fig.- 5 Configuration of ithe page. table memory

PADR(1-6), SPTM address register

PTR2(1-64), SPTM buffer register
PTSEM(1-2}, SPTM access control register
RW3, . . $PTM read/write control

?

Subregister, PTR2(CH,SEC,ROW)=PTR2 (56-61 ,60-63,64),
PTR2(LB,LF)=PTR2(3-8,9-14)},

The page table memory PAGETABLE contains 64 page descriptors which

link the 64 MM pages. The information in a page descriptor is listed below:

(a) the current status of the page,

(b) the task which the page is or was attached to,

{c) protection bits,

(d) utilization information,

(e} the corresponding virtual address of ﬁhe page,

(f) the drum address of the page, and

(g) list linkage information.

The page descriptor format is shown in Fig. 6. There are 12 {1elds
in a page descriptor. However, only fields LB, LF, DP, and ROW are needed
for this simulation. LB is the backward link pointing to the previcus rage
descriptor of the list of page descriptors. LF dis the forvard link ~ointing
to the next page descriptor of the list. Dé is a 10-bit drum page address;
the first 6 bits of DP specifies the field address of the drum »a;+ vhite
the other 4 bits of DP specifies the sector address. ROW is a readfviin

indicator. If ROW is 0, it is the read operation; else, write oneration.

10

PUSE LB § LF | WKEY |WP CHGE RES UTIL

TID

ROW

LB: backward lipk
LF: forward lirk
DP: drum address of this pagé

ROW: read/write indicator

Note.

Fig. 6 Page descriptoi format

16

The other fields are not used in the simulation.

10 10

See reference

~
~—

11

The operation of the PTM as shown in Fig. 7 starts by cﬁecking
PTSEM(2) for 1. 1If PTSEM(2) is Q, PIM stays in a wait loop. IF PTSEM(22
is 1, PTSEM(L) is set to 0 so that the CPU cannot access -the*PAGETABLE.-
memory. The read/write control register RW3 is mext examined. If RW3
is 1, it is the write sequence. A pége deseriptor is tranéferred from the
buffer register PDR2 in the PDC to the buffer register PTR2 in the PTI,
and the address of the PAGETABLE memofy is transferred from the address
register PADR? in the PDC to the PAGETALBE memory address register PADR
in the PIM. The page descriptor is then stored into the PAGETABLE mem;ry.
If RWB.is 0, it is the read sequence. The page descgiptor address is
transferred from PADR2 in the PDC to PADR in the PTH. The corresponding
page descriptor is fetched from the PAGETABLE memory into‘the:bgyfer
register PTR2. Next, the page descriptor is transferred to PDR2 in the
PDC. At the end of a read or a write sequence, PTSEM(2) is set to 2 to
indicate a complete operation and PTSEM(1) is set to 1 s; that the CFU
may access the PAGETABLE memory. The PTM then waits Until‘P?SEM(2)'is

set to 1 again.

1.3 Main memory (MM)

The main wmemory MM subsystem as shown in-Fig. 8 consists of a core
memory MEM, a memory address register MAR, and a memory buffer register iiiHE.
In addition, there are control registexrs MA and RW2. To access MM, the
PDC sets RW2 to 1 for a read or to O for a write; a memory accuss request
is made by setting MA(2) to 1. The configuration of the MM is now described

by the following CDL statements:

Comment, configuration of the main memory ()

-12

waiting

.y

e

Ry oo

Start Loon
l —M-—-‘.-‘—
SO -.3,;6.--—--— —— ke 4 e pmee———— --—-- = ™
b Lown
N SN
(' PTSEM(2) J s g e
- 1 ' request
5 accepted
PTSEM(1)<~0 3
PDC to PTM 1 m{ - ™ o - PTH to POC
[S
H
k i e 4Bt <o o
i et e A 48 A
.
PADR«~P
f PTR2&~PDR2 | TAPRePADRZ
ELPADRG-—PADRQ :
Y * PTR24-PAGETARLE (PADR)
- ‘ i
¥ ? -
PAGETABLE (PADR)&~PTP2 |
4.
{
i PDR2&PTR2
I
1
PTSEM(2)4&~0 |
| PTSEM(1)&-1 i

page descriptor

A

transfer complete

Fig. 7 Sequence Chart for the Page Table Memory

13

Memory, MEM (MAR) =MEM (0-65535,1-36)
Register, MAR(1-16), $MM address register
MA(1-3), $MM access register
READ, $read control
‘ WRITE, Swrite contr;l
RW2{ $MM read/write control register

Subregister, MAR(BLOCK,WRD)=MAR(1-6,7-16)

The operation of the MM as shown in-Fig. 9 begins by examin%ng
register MA. Whenever MA(2) is set to 1, the read/write control register
RW2 is next tested. TIf RW2 is 0, it is the input sequence. The MM buffer
register MBR receives déta from the auxiliary buffer register SBR2 in the
PDC while memory address register MAR obtains the MM address from the auxili-
ary register MADR2 in the PDC. The WRITE control is set to 1 to initiate
a write operation into the main memory proper. If RW2 is 1, it is the oukb-
put sequence. MM address is transferred from MADR2 in the PDC to MAR
in the MM and the READ cont%ol is set to 1 to initiate a read operation in-
to the buffer register MBR. Subsequently, the out-going data is transferred
into SBR2 in the PDC, and MA(2) is clear to notify the PDC that data has
been transferred. The MM unit stays in a wait loop until MA(2) is set to
1 again.

The characteristics of the MM and the PDRUM are summarized in

Table 1. So far we have described all the system units except the PD¢

which will indeed tie up all the units and perform paging.

14

Fig.

s ey

MAR(1-16)

N

Main Memory
MEM(0-65535, 1-36) °

S At

LY

MBR(1-36)

b reman o o

RW2

MA(1-3)

READ

! WRITE

8 Configuration of the Main Memory

start © waiting loov

r—h—-‘tu-ﬂ.-—-—— o Ao 2o T A "r -
e
s
e 0
™
LoMA@) -
e \
request accept
N)
e -,
0 2 co 1 . : T
(input to the MM) ‘"—é—**"*—*% RW2 _j”*"“““. -(read £rom the).
‘\‘q""\m.»a oty "'"”k N
i N - . : 3
°r H r i i) E
| wRITE+~1 | " READ=1
Ea ¢ MBRe-SBR2 § | “MAR&IADR2 :
| MAR&-MADR2 | { .
i ! b ,.M.r ’
MPBR&MEHM(MAR)
. N4 ' .
: MEM(MAR)<-MBR [-
= * SPRZ+1MBR }
e) . ~
MA(2)e0"
L
word
transfer
y - complete.

Fig. 9 Sequence Chart for Main Memory Operation

-46

Table 1 Characteristics of the Main Memory and the Drum Memory

Characteristics

Main Memory

Drum Memory

memory cycle time

1 microsecond

0.001 microsecond

data transfer width

36 bits or 1 word

36 bits or 1 word#*

(a) 36 bits per word (a) 36 bits per word
data units (b) 1X** words per page i(b) 16 pages per field
(c) 16-K bits ‘per track
(d) 64 bands
memory capacity (a) 64 K words {a) 1024 K words
: (b) 64 pages (b) 1024 pages
word address: (a) ‘field address: 6 bits
address register 16 bits (b)) sector address: & bits
(c¢) page address: 22 bits
(@) word address: 10 bits !

% there are 36 read/write heads per field

*% K represents a multiple of 1024

17

2, Paging-drum Channel (PDC)

The paging drum memory PDRUM which prqvides thelfacﬁing gtorage
of a virtual memory system is controlled by the PDC. A page of words is
transferred from the PDRUM through the PDC to the ﬁain memory MM when the
CPU needs a missing page, or a page of word is .transferred from the Mf
through the PDC to the PDRUM when the CPU needs the space of‘a page for a
new page. This section describes the configuration pf tﬁetPDqg and the
formats of the channel command word and the listheads for 16 sector gueues
in the PTM. It also describes the handling of the lists and ﬁuéhe% in the
page table memory both by the CPU and by the PDC, and the 'paging se-

quence which .consists of a main sequence, a drum read/write subseqience,

an updating subsequence, and a regquest—-accept subsequence.

2.1 Configuration

The configuration of the PDC is shown in the block diagram of Fig.
10. There are two memories. Memory COM with address register SEC and
buffer register COMMAND has a capacity of 16 52-bit words. Memory LISTS
with address register SECTORS and buffer register PTL has a capacity of
16 12-bit words. Register PAGINT contains the MM page which causes the
interrupt. Register INTERRUPT is a 10-bit interrupt reéister regularly
tested by the CPU. If the fourth bit of register INTERRUPT is set, inter-
rupt is a result of a successful page transfer; if the 10th bit is set,
interrupt is a result of an unsuccessful page transfer. Register FIELD
contains the field address of a drum page. Register POST is an indicator
which i1s set to 1 when the CPU requests a MM page. Register PC contains the
current MM page address. Whenever the drum heads are at the beginning of

a drum sector, register PAGEI is set to 1. Register PTRAN may contain 9.

| SEC(1-4) , . SECTORS (1-4)
i : 3
{ command memory listhead {ne;no'ry :
H . ,
i COM(0-15,1-52) _ LISTS (0-15,1-12)
COMMAND(1-52) | 4 PTL(1-12)
. -1
MADR2 (1-16) SBR2 (1-36) PC(1-6) |
x b ':i # j T :{
PADR2 (1-6)] PDR2 (1-64) : . PAGEPOST(1-6) i
r . ' —
FIELD(1-6) . COUNT(1-10) -PTRAN(1-2) |
i INTERRUPT(1-10)
.xM “.._.—--—ow-m-—'z P]
POST | PAGINT g PAGET
__;...'._-———--'f——é -__...‘..—-v--————---—; :e---'a-:—;n-'mm—-—:—
— .
z . |
PTM1 - PTM2 i PTM3 ;
)) i g R—

Fig. 10 Configuration of the Paging Drum Channel

19

1, 2, or 3. If it contains 0, there is no page transfer.. IE if-contains -

1, it is the read operation. If it contains 2, it is the write operation.

-

T - .
. v 3
' L2 £

If it contains 3, an error occurs in the transfer. Register COUNT stores
the word address of .the page being transferred. In order that the PDC

and the MM can operate asynchronously, registers SBR2Z and MADR2 greAneeded

. K
~ T

for transferring”the MM address ° from the PDC. to the ﬁﬁ. gBRZ cérresponds
to the MM buffer register and MADR? corresponds to the MM addréssufegister.
In order that.the PDC and the PTM can operate asynchronously, fégisteré

PDR2 and PAD?Z.;;E ﬁéeded*for transfering data between the'PDC and the PTM.

PDR2 corresponds to the PTM buffer register and PADR? corresponds to the

PTM address register. .

The PDC configuration is now described in the following CDL

Statements.

Comment, configuration of the paging drum channél

Memory, COM(SEG)=COM(0-15,1-52), --§command memory *
Register, SEC(1-4}, Scommand -memory-address regisief‘
COMMAND(1-52), Scommand - memory buffer register;

Subregister, COMMAND(C,RWC,CHAN) = COMMAND(1,2;3-10),

COMMAND (PGE ,FIRSTWORD) = COMMAND{11-16,17-52),

Memoty ;= ¢ . LISTS((SEGTORS)=LISTS(0-15,1-12}, ‘$listhead mémoty
Register, SECTORS{(1-4), $listhead memory address register
- e PTIH(1-12), $listhead memory buffer register

.
- AR LY 3
R Enre Al

-)

Subregister, PTL(?P,LP)=PTL(1—6,7~12), Slistheads for the sector list in PTHM

20

Comment, registers for a page transfer operation

Register,

FIELD(1-6),

POST,

»

PAGEPOST(1-6),

. Pc(1-6),

PAGEIL,

PTRAN(1-2),

COUNT(1-10),

SBR2 (1-36),

MADR2(1-16),
- PDR2(1-16),

PADR2 (1-6),

PTIMI,

PTMZ ,

PTM3,

$field address register

$page transfer request when I by the CPU
$MM page address for a page-transfer re-
quest-by the GPU

Scurrent MM page-address register

$indicates when 1 that drum heads are at
the beginning of a sector
$page-transfer status register

Sword address of the current page

$MM buffer register

$MM address register

$PTM buffer register

SPTM address register

$initiates when 1 procedure 1

$initiates when 1 .procedure 2

$initiates when 1 procedure 3

In the above description, there are three single-bit register PTM1,

PTM2, PTM3 for imnitiating three page~table procedures to maintain the sec-

tor queues. When PTM 1 is 1, the page table procedure 1 is activated.

This procedure as shown in Fig. 11 detaches the first page descriptor fromw

the list pointed to by the listheads in PTL, places-the MM page address in

register PC, and leaves a copy of the page descriptor in the buffer regis-
ter PDR2. When PTM2 is 1, the page éégle procédure 2 is activated. This
procedure as shown in Fig. 12 loads PDR2 from the lééa;ipﬁ'specivicd by
register PAGEPOST in the page table mémory PAGETAﬁiE. When PTM3 is 1, the
page table procedure 3 is activated. This procedure as shown in Fig. 13
adds the page descriptor addressed ;;;PAGEPOST to the list of page descrip-
tors addressed by the listheads in fTL while PDR2 i%iﬁséduas the buffer

register.
2,2 Formats

The channel commu£i.mo£d CCW"fomat is shown in Fig. 14. The 52
bits of a CCW are partitioned as failbws: i bit for the C field, 1 bit
for the RWC field, 8 bits for the CHAN field, 6 bits for the PGE field
and 36 bits for the FIRSTWORD field. WhénjC‘is~0, therngézﬁq.ﬁége trans—
fer between the PDRUM and the MM. When RWC is 0, a drum page is to be
transferred from the PDRUM to ihe.MﬁlthéougH-éhe PDC:E'Whgnﬂﬁwgyis‘l, a
MM page is to be transferred from the MM to the PDRUM thro;éﬂft;élPDC.
Only 6 bits of the 8-bit CHAN field ;;eiﬁééd because there.are 64 fields
per drum sector. The 6-bit PGE fielﬁ'égﬁtains the MM page address.
However, PGE is non-zero since we assume that MM page 0 is not available.
The 36-bit FIRSTWORD field contains 'the- first actual woxrd of MM page just
in case the transfer is from the MM to the PDRUM.

The format of an entry in the listhead memory is shown in Fig. 15.
There are two 6-bit fields. The first 6 bits specify the location of the
fron node of the doubly linked sector queue in the PAGETABLE memory. The
last 6 bigsnspecify the location of thg_rear npﬁe of the:douply-1§nked see—

tor queue.

22

entry
PTM linitiates < i1
procedure 1 Lauﬂ“L‘_ﬁ___i
when 1 PIMI=1)

) —
Is page (rPTSEM(l)= . j}“d‘“

table memory 4
free? . : -
| cpTrerTL i
i PTM1 &0 g
H :
% PADR~GPTL(FP) 5
! PC&GPTL(FP) :
Fetch a page PTR2&~PAGETABLE (PADR)
descriptor ° -
Get the address GPTL(FP)&PTR2 (LF)
cf the next +
page descriptor §
f “~PTL&CPTL ™ T
i PDR2<—PTR2
© PTSEM(2)&-0

!

i

Fig. 11 Flow Chart of Procedure 1 which Fetches the Page
Descriptor from the list addressed by PTL

ol
PIM2 Initiates N SESSY %:
procedure 2 PTM2=1
when 1 o
- -—émwj
A
Is page ! t
table memory PTSEM(l)i£;>Jiw
free? -
d '
: :
§ PIM2&~0 ;
§ PADRS~PAGEPQST }
L4

—

Y,
N 1

2 PTR2¢—PAGETABLE (PADR) :

i

tfansferring a page descriptq
from the PIM to the{ PDR2&~PTR2
PDC PTSEN(2)<-0 !

£
H
3

Fig. 12 TFlow Chart of Procedure 2 which transfers a page descriptor
to the PDC

24

entry
PTM3 Initiates 3
procedure 3 (: PTM3=1
when 1 :
Is page =\ N |
table memory - P =
free? GTSEM(]_)' L. J
_# [
TTPTM3E-0 {
PTR2<-PDR2 |
GPTL&~PTL !

© A

'
(sector list is empty)=/ _)
- L GPTL (FP)=0

(sector list is not empty)

PADR&-GPTL (LP) i

-

PTR2 ¢-PAGETABLE (PADR) l

~

PTR2 (LF)¢-PAGEPOST :
GPTL(¥P)&-PAGEPOST (LE)¢ adjusting the

forward link

il)

PAGETABLE (PADR)¢-PTR2

Y
I
.
PADR€-PAGEPOST 3
N ‘
PTR24-PAGETABLE (PADR) §
H ‘adj usting the backward
¥ . link and
PTR2 (LB) <-GPTL(LP) | grounding of
PTR2 (LF) <0 ! the forward link

e

PAGETABLE (PADR) ¢~PTR2
GPTL (LP)<-PADR
PDR2£~PTR2

he e rote) smemmrnrm 8 =

adjustment of links

—G
PIL<-CPTL - ; completed

PTSEM(2)<-0

Fig. 13 Flow chart of procedure 3 which stores
~ and updates a page descriptor lists

[
wn

i 2 3 10 11 16 17 52

¢ | rRWG CHAN . PGE TIRSTWORD

11 8 6 Co 36

C: no page transfer when C=0; else, there is a page transfgr_
RWC: page to be read when 0; else, page to be written
CHAN: drum field address.
PGE: MM page address

FIRSTWORD: first word of the transferring page

Fig. 14 Channel Command Word Format

rp LP

FP: the listhead for the front of the doubly linked list in the
PAGETARLE memory when an element of the list is detached.

LP: the listhead for the rear of the doubl& linked list when an
element of the list is inserted

Fig.1l5 TFormat of an Entry in the Listhead Memory

26

2.3 The handling of queues

This section outlines the ﬁaﬁner in which the lists and queues in
the page table memory "ate manipulated. ‘Sixteen sector queueé are handled
by the PDC while the other lists are maintained by the CPU. In the follow-
ing, the lists in the Page table memory are first described in detail;
the contentg of the CCW's in the command memory are'exp;ained; and the
interaction between the CPU and the PDC during a paging operation is

described.

2.3.1 The Lists in the PAGETABLE Memory

There are 64 pages in the MM. Each ﬁage is pointed by a page
descriptor stored in the PAGETABLE memory. Fach PAGETABLE memory address
of the page descriptor corresponds to one MM page address. Thus, 64
PAGETABLE memory words store 64 page descriptors for 64 MM pages. The
format of the page descriptor has been shown in Fig. 6. As shown, there
are two 6-bit fields LB and LF(backward link and forward link} in the page
descriptar. By means of these backward and forw?rd links, the 64 MM
pages can be linked into one or more lists in the PAGETABLE memory. Each
node of the list is doubly linked with one link pointing in the forward
direction by the forward links LF's and the other link pointing in the
backward direction by the backward links LB's.

There are many ligts of the MM pages linked by fields LB and LF
of the page descriptors as_fo;lows:

(a) one available-page list which links those pages of the MM that are

available to the CPU;

(b) one swappable-page list which links those pages in the MM that are re~

leased by the CPU to be transferred from the MM to the drum;

27

(c) one or more users' lists, each of which links those pages of the MH

that belong to a particular user;,

3

(d) sixteen sector lists, each of which Iinks those pages of the MM that

are waiting (i.e. already in the queue) to be transferred either from
the MM to the drum or vice versa. Simce these 16 lists are used as

queues, they are also called sector queues.

To enable a quick access of the, first entry and the last entry in
each sector list, two 6—~bit listheads are provided for each sector list.
The 16 listheads for the 16 sector lists are stored in the 16 words of the
LISTS memory. The listheads for the available-page list and the swappable-
page list are stored in register LAVP(lHlZ) and LSP(1-12), respectively.
These registers are not included in this simulation, since these lists are
handled by the CPU. 'The listheads for the curxrent user s storad in
register PTLIST(1-12) or register GPTL(1-12); the listheads for,the users'
lists are stored in the system table permanently resident in the:MM

deseribed elsewhere (8).

'2.3.2 The Channel Command Words in the COM'Memory‘

The words in the COM memory are called Channel Command Words,
CCW's, Each GCW stores the following pertinent information for initiating
a drum-memory transfer:
(a) ¥ page address,
(b)_drum field address,
(¢) read/write operation,
(d) transfer request, and
(e) the first actual words of the MM page in case the transfer is from tho

MM to the PDRUM.

28

There are 16'CCW's each of which is for one secto?'of‘the drum,
The PDC constructs the CCW's using the information from the listhead§ and
page descriptors in the sector lists.

There is an Important exception to the way that the first page
descriptor of every sector list is linked: this first page descriptor is
deleted froﬁ its sector list, affer its pertinent information for initia-
ting the data transfer is used to construct the CCW for that sector. The
page descriptor of this page can be located in the PAGETABRLE memory by
the CCW whose field PGE holds the MM page address of this page. The
reason for not linking the first MM page to its sector list ?s to enable
the immediate accessability of the COM memory in the PDC, s}nce the COM
memory is:exclusively accessable by the PDC while the PAGETABLE memory
is accessable by the PDC and the CPU. As a result, the PDC can rapidly
respond to the drum each time when a new drum sector begins-to be scanned.
. In other words, as the drum heads reach the beginning of each sector,
the CCW of this sector is accessed from the COM memory and the data transfer,
if called for, is initiated right away. After the initiation, the current
CCW is of no further use; this COM memory location can now be refilled
with the pertinent information for initiating the next page transfer for
the same sector which occurs when the drum completes another revolution
and again begins to scan this sector. This refilling is accomplished as
follows. While a page is being transferred to or from a drum sector, the
next page descriptor is detached from the sector list in the PAGETABLE
memory and the pertinent information of the page obtained from the page
descriptor is used to construct a CCW for the current drum sector. This
CCW will be used after one drum revolution. -

There are 16 CCW's in the COM memory. Thus, there can be as many

as 16 pages in the MM that are not linked at all by the page descriptors

29

in the PAGETABLE memory, though they are pointed by (and thus indirectly
linked by) the CCW's as mentioned above. In fact, the 16 pairs of list-
heads-in the LISTS memory are pointers-which point to the second MM

pages of these 16 sector lists in the PAGETABLE memory.

2.3.3 The Page-transfer Requests

As mentioned previously,- the swappable-page list links those pages
in the main memory that are released by the CPU to be transferred to- the
drum, while each of the sector lists links those MM pages queued to be
paged-in or paged-out. The reason why two kinds of lists are required is
that the computer operating system has to schedule alterpately tﬁe read
and write page transfers in the sector lists.

Fig. 16 is a block diagram showing the flow of page transfer re-
quests. The 16 sector lists are maintained by the PDC; the available-page
list and the swappable-page list are maintained by the CPU. When a page
is requested by the CPU and found missing in the main menmory, a page—fault
interrupt is generated; this interrupt signifies that a new page is to be
paged-in., The CPU allocates a page descriptor from the available-page list
and posts a read page—transfer request to the PDC. The PDC responds by
placing the request in the appropriate sector list for the drum sector
where the page is stored. The CPU next posts a write page-~transfer request
to the PDC for swapping out a page from the swapping-page list. In this
mannef, thé read and write page transfers are scheduled alternately, as
also indicated in Fig. 16.

Fig. 17 is a block diagram showing handiing of the lists. As
mentioned before, the CPU posts a read page-transfer request owing to a page

fault or posts a write page-transfer request owing to a swapping. The

30

PDC queues these requests.in the appropriate sector lists. Whenever a page
transfer is completed, the PDC notifies the CPU by means of the signals

in registers PTRAN and PAGiNT. The CPU then makes a note in the users'
lists and resumes the execution of a previous program, or it attaches the
page descriptor now not needed to the available list. The CPU posts page-
transfers one after another, while the PDC initiate; and completes the
transfers in an order which optimizes the drum transfer operation. Note
that the CPU handles all the lists including the users' lists except the
sector lists which is handled by the PDC. Manipulations of the available-
page list, the swappable-page list, dnd the users' list.are not included
in this simulation. Only the manipulation of the ‘16 sector lists by the.

PDC is included in the simulaticn.

31

16 sector lists queuing read and write page-transfer requests

v
read
write S e R A TR - — ——— —
read
write
| Pagepost post PDC
R RO PEER
VR
read write
page—transfer page-transfer
request request
CPU
Available Swaprable
page list page list
L ——

Fig. 16 Block Diagram Showing the Read and Write Page-Transfer Requests

32

PAGINT PTRAN

FDG

sector

i PDCa! list

- A - -

available
page list

swappable
page list

Fig. 17 Block Diagram showing handling of the Lists

33

2.4 The paging sequence

The paging sequence of the PDC:is first described by 2 f}ow chart
in Fig. 18 and then by.sequence charts in Figs. 19 through 22. As shown
in Fig. 18, when the PDC is initiated, there is one single process., Later
at‘FORK, this single process splits iptg two ﬁarallel processes. The
left—haqﬁ_ﬁ;oces§ transfers data between the PDRUM and’;hg MM, and signals
the CPU\by setting appropriate bits in the CPU interrupt register INTERRUPT
yhen g page transfer is completed. The right-hand procé;s updates the
channel command words -CCW's in tlie chénnel command memory, the listheads of
- the séctor queues in the listheads memory, and the pageqdescriptors in
éhe PfM. fhe right-hand process Whén it is completed merges with the lefe-
hand_procéss at JOINT, if the drum heads are at the beéinniné of a drum

sector. But, if the drum heads are inside of a sector, the PDC is free to

test if the requested page has been found and then updates the page

descriptors and listheads. If not found, the PDC renains in a wait loop.

. 2.4.1 Main sequence

- The paging sequence may be considered as a main Sequence together_
with the drum read/write subsequence,‘tﬁe'ﬁpdating subsequence, and the
request accept subsequence. The sequence chart of the main sequence with
the paraliel processes is shown in Fig, 19. When PDC d4s initiated, the page

" interrupt register PAGEL is tested for 1. The PDC waits until PAGEL is
set to 1 ﬁﬂiéh indicates that the drum is at the beginning of a page. The

- PDé’acknowledges it by setting PAGEi.to 0. The drum sector address in the
_subregister CWORD(SECT) is put into the command memory address register
SEC to fetch the corresponding CCW. "When the next drum page is ready to

be transferred, the word count in register COUNT is set to O and the CCW is

34

interrupt
PDC

Dot AT ST g, T,

'

initialize next
drum transfer

¢ FORK

transfer
. indicated?

yes

was a
complete pag
transfered?

.the beginning

L 2

5

current sector
queue empty

no

waiting for yes

post error
interrupt

of a page

JOINT A\ 14

A

post page
transfer

A

yes) < b 1 no
* mark
sector fetch and update
data transfer command page descriptor
between drum entry < e
and main memory
update current
waiting for \no increment chammel coszi:d
the beginning p memory address N P S
of a page i o

waiting for
the beginning
of a nate -

L Y % ot o e s

page ifound?

|

Yeqg -
update cur-—
rent vage

I descrintor
and listhest
heads
b

611& ue emptv?

Sector commancd p#
empty .

- e atm e trane

res |
ves!

Fg. 18 Flow Chart of the Paging Sequence of the nQ

wait for the
beginning of
a drum page

E?trz

Lo

e

.
PAGEL&~C
SEG€—CWORD (SECT)

il

. - 4
\ pacrr-1)"j'-
e

i COMMANT€=~COM (SECT)
: COUNT &0

¥

DBRR4%~COMMAND(F IRSTWORD)

Drum read/write
subsequence

transfer the CCW's

35

- DACTV-COMMAND (CY) to the approprepriate
MADRZ (BLOCK) €~ COMMAND (PGE) registers
FIELD€~COMMAND (CHAN)
RV~ COMMAND (RWC)
W FORK N
updating Request-
{ subsequence accepnt
h subsequence
l -
S =
JOINT A
j =
: < PAGEI=0 POST=0 .
& »
PAGINT $eMADR2 (BLOCK) walting
INTERRUPT)PAGE y =1 Joop.

J

Fig. 19

Main Sequence With Parallel Processes

36

transferred into the command memory buffer register COMMAND. The PDC

then decodes the control information in the CCW and transfers them to
appropriate registers as follows. FIRSTWORD enters the drum buffer
register DBR (writing 1-word ahead); C enters DACTV; PGE enters subregister
MADR? (BLOCK) ; CHAN -enters register FIELD; and RWC enters RW. Then the
main process splits at FORK into the drum read/write subsequence and the
updating subéequence. At the end af the updating subsequence, register
PAGEI is tested. If PAGEIL is 1, then the two subsequences joints into a ,
single process. ILf PAGEL is 0, register POST is next examined. If POST

is 0, the PDC loops back to check register PAGEI again. If POST is 1,

the PDC enters the request-accept subsequence and then enters the updating
subsequence again. Finally, the MM page address is put into register PAGINT
and the 4th bit of the register INTERRUPT is set to 1. Now the PDC is

ready for a new request.

2.4.2 Drum read/write subsequence

The drum read/write subsequence is shown in Fig. 20. When this sub-
sequ;nce is initiated, either there is a page transfer or there is no page
transfer between the MM and the PDRUM through the PDC. The sequential
operation starts by testing DACTV. If DACTV is 0, the PDC tests PAGET
for 1, and it waits until PAGEI is set to 1 by the paging drum. Ié PAGEI
is 1, then PTRAN is set to 0 since no page has been transferred. If DACTV
is 1, the read/write control register RW is next examined.

When RW is 1, it is the output sequence; a2 page is paged-out. The
PDC waits until MA(2) is set to 0 by the MM. Output indipator enters RW2;
word count enters MADR2 (WRD):; and MA(2) is set to 1 to make a transfer
request to.the MM. The PDC is held waiting until a word is transferred

from the MM to the auxiliary MM buffer register SBR2 in the PDC and MA(2)

Entrz

(no page transfer) #

. check
j{ : %LPACTV—I j) transfer option
(PAGEI=1
>
{page’ transfer)
- A) PDRUM to 1ff
F RW=1 ‘, o '»
MM to PRDUM 4 M ready ’
N = s
{0)=} -E { MA(@—")
MM is free #) e p
RW2--RW { Bs=1 ____}_
MADRZ (WRD) ——countup COUNT L
MA(2)--1 = | PDRUM
¥ ready
waiting for, MADR2 (WRD)€~COUNT
a word trans- SBR2E—DBR
fer RW2¢—RW
MA(2)é—1
COUNT€—countup COWMT. . el
~ PDRUM 4:
ready? * S & Y
N/ ——(counr-1023)
: DBR--SBR2 T
. i
" ~ 1
no (COUNT=1022 D) 3
transfer . i
H
set up) ;
a "block"}] BS€-0 !
- £ V¥
) (N a——
- QOUNT and RW=1023)
- - %\l’
INTERRUPT (DRUMPAGE)€~1
y ' ,
PTRAN4-countup RW ‘ - PTRAN&-3
W read t%ansfer when 1 ~ | error in page
eise yrite transfer R

37

page

transfer

JOINT

Fig., 20 Drum read/write Subsequence

38

is ecleared by the MM. Registér BS is next tested for 1 and 1f BS is 1,
the drum buffer register DBR_isiready and a data word is transferred from
SBRZ into DBR. Next, the word count COUNT is examined to see if it is
1022; if so, a whole page has been transferred. If COUNT is not 1022,
PAGEI is checked. If PAGEIL is 1 and thé whole page has not been paged-out,
the PDC sets INTERRUPT(10) to 1 and indicates error condition by setting
PTRAN to 3. Tf PAGEI is 0, and the whole page has not been paged out, BS
is set to 0 and the word count is stepped up. If GOUNT is 1022, themn a
page has been paged-out. Next, the sum of COUNT and ROW is compared with
1023 to make sure that there is no error in paging. If the sum is 1023,
. PTRAN is set to 0. The PDC goes to JOINT.

When RW is 0, it is the Input sequence. A page is to be paged-in.
The PDC waits until MA(2) is set to 0 by the MM. If MA(2) is O and BS is
1, a data word is transferred from DBR to SBR2. Next, input command enters
RW2; word count enters subregister MADR2{WRD) to form the main memory
address; and MA(2) to 1 to make a transfer request to the MM. The PDC
waits until the word ié transferred into the main memory. WNext, the word
COUNT is examined to see if it is 1023; if it is 1023, a whole page has
been paged-in. If COUNT is not 1023, PAGEI is next tested, If PAGEI
is 1 and the page‘has not been paged-in, the PDC generates an interrupt
as before fo indicate an error condition. If PAGEL is 0 and page transfer
is not yet complete, BS is set to 0 for a word transfer and the word count
is incremented by 1 so that next word of the page may be transferred.
If COUNT is 1023, the sum of COUNT and ROW is compared with 1023, If

the sum is 1023, PTRAN is set to 1. The PDC goes to JOINT.

2.4.3 Updating subsequence,

The updating subsequence as shown in Fig. 21 updates the channel

39

En tEZ

SECTORS<~SEC

PTI4-LISTS (SECTORS)
(sector list empty) 'k n

——APTL(FP)=0) ‘

4 (sector 1list not empty)_

initialize PTMié-1
page table PTSEM(2)&~1 '
procedure 1 PTSEM(1) &0

n
(PTSEM(2)=0)-—i}——
page descriptor

transfer completed

COMMAND(C ,PGE, CHAN ,RWC) €~1~PC~FDR2 (CH) -PDRZ (ROW)

LISTS (SECTORS)(—PTL
¥ - X
| COMMAND(C) €0 (read)(writzl))R:A# OW)=
?:2&E2%Zr (MA(Z)=0 }—%ﬁ— M ready?

glz)gi-{’c-() make a MM reauest

MA(2)&-1
i
N 4 -

(HA(Z)=O >———>-' word transfer completed?
i/

COMMAND (FIRSTWORD)&~SBR2

N
COM (SEC) &~ COMMAND
L
b N wait loop for
- M/ page posted
JOINT }g KPAGEI;I

@Spo }_‘;_

Fig, 21 Updating Subsequence for 3 Memories

40

command memory. The listheads memory, and the page table memory accord-
ing to the current channel command. The updatiﬁg subsequence for the 3
memories starts by entering the drum sector address into the listheads memory
address register SECTORS to fetch listheads for the sector queue. If a
sector queue in the PTM is empty, the sector command is marked "empty" and
the marked CCW is returned to the -channel command memory. If the sector
queue in the PTM is not empty, then procedure 1 is called in by setting
PTM 1 tc 1 to make the front pointer of the sector queue point to the
current page descriptor. The modified listheads are returned to the list-
head memory. The subfields of a éCW are modified as follows: the C field
is set to 1; the PGE field is set to PC; the CHAN field is set to CH

field of the page descriptor; the RWC field is set to the ROW field of

the page descriptor.

Next, the ROW figld of the page descriptor in register PDR2 is
examined. If PDRZ(ROW) is 0, it is the read operation and the FIRSTWORD
field of the‘CCW‘is not modified. When PDR2(ROW) is 1, it is the write
operation, the firstword of the page transfers from'the MM buffer register
into the FIRSTWORD field of the CCW. For either read or write, the CCW
is put back into the channel command memory. If PAGEIL is 1 at this pcint,
control goes to JOINT: else, if PAGET is 0, register POST is tested. If
POST is 0, then the reqﬁested page is not yet posted, and it is necessary

to wait by looping back to the ﬁrevious micro—-operation that checks PAGEI.

2.4.4 Request-accept 'subsequence

The request—accept subsequence as shown in Fig. 22 starts at
point (C). When POST is set to 1, procedure 2 is called in by setting
PTM2 to 1 to fetch the page descriptor of the posted page into PDR2.

The sector queue number as indicated by the subregister PDR2(SEC) is

41

transferred to register SECTORS to fetch the next set of listheads.

If PTL(FP) is 0, the sector queue in the PTM.is.empfg;_anﬁ the
CCW for this sector queue is unchanged. If the C field of the command is
0, then there is no page transfer., In thig case, the PDC sets PC to
PAGEPOST, sets POST to 0 and loops back to take care of the CCW for the
next drum sector. If PTL(¥P) is not 0, the sector queue in the PTM

corresponding to the current drum sector is not empty. Procedure 3 is

activated by setting PTM3 to 1 to add the page descriptor addressed by
PAGEPOST to the list of page descriptors addressed by PTL. ‘The updated
listheads PTL(FP) and PTL(LP) are then stored into the listhead memory
and registexr POST is clear. The PDC waits until PAGEI is set to 1 and

then goes to JOINT.

42

wait loop
for page posted

initiate
page table
procedure 2

page descrip
transfer comp

"

PTM2é=1
PTSEM(1) €0
PTSEM(2)¢~1

L

NZ.

tor
lete

4

ATPPTSEM(2)=O :)._ii__;,.,

SECTORS€~PDR2 (SEC)

R

PTL€-LISTS (SECTORS)

Y

= (sector list empt/)

A
G’TL(FP_)-—»O _J

(sector list not empty) ;&‘L

POSTe-0
PC€-PAGEPOST

" SEC€-SECTORS

R

COMMAND&~COM(SEC)

_k (no page

transfer)

transfer - . T4
completed? LISTS (SECTORS) 4-PTL
POSTE0
2 4

£
Y

PTM3e1
PTSEM(1) €0
PTSEM(2)€~1

initiate page
table procedure 2

L -

GESEM @0 Jds

page descriptor

Fig. 22 Request-~accept subsequence

.43

3. An Example of Sector-Queue Manipulation

For each drum sesctor, thefe is a_seétor queue‘in;the nge?table
memory. These sector queues are doubly lirked lists pf page—descrip-
Eo?s whose MM pages are to be tranéfer;ed by the PDC. 'A; example is now
presented to show how the 16 sector queues are‘ﬁanipul;;ed as the 'paging
drum rotates, Four drum revolutions_are traced through one drum .sector
at a time, and 48 MM pages are transferred by the PDC during these re-
volutions.)

The MM page addresses lie between 1 through 63. Consecutive
numbers are chosen for MM page addresses in order to make the examplé
easier to understand; however, in actual operation the MM page address
in a sector queue are not consecutive. It is- assumed that, initially,

the drum read/write head starts at drum sector O, and-the channel com—

mand memory ig empty.

3.1 TInitial linkage of the sector-queues in the PTM C.

The initial linkage of the 16 sector queues are showﬁ by the
arrowheads in Fig. 23. Let each sector queue have Fhree ﬁodes; each
no&e‘represents a page descriptor and contains a number.. This number
is the MM page address which this page descriptor répre;entsf There
are 16 pairs of listheads for the 16 sector queues. The first.page
FP field contains the MM page address of the first page and the last
page LP field contains the MM page address of the 1ést'page:'

Corresp;ﬁding to drum sector 0, thé sectar quéue hés nqde L,
node 2, node 3 while the listheads are 1 and 3. Corresponding to drum sec
tor 1, the sector queue has node &4, node 5, node 6 while the listheads

are 4 and 6. Similarly, corresponding to drum sector 15, the sector

Brum
sentor

Tinkaee of the 16 Sechor Oueués in the PTY

10

11

12

13

14

15

in PTM

in LIS

Listheads. .

I3

Pt D1 R SN 2 Y B OO L T s o
|] e
~ 1 o] e 121 517l R I T e 4 6
. ey o
,.-m \" i1 p oy
Pl B R s R NS R S B I 1 e e AN
) | ety | o
i P A e 2R FE S R T T F O B e A R
V.
P I K . Y e tejrsler= 11 311 5
»Mi &-ME‘ B
o el e iy "’t;m 18y |1 611 8
- ﬁ,m;_: L
L7 {19 “/sz__._..g/" 20] ka2 1] T L1 912]
sty ety 1 -
o 22| e Do a3 e S fa s T (2 202 4
; —

g , doa-_.-:- .-..\::}_“ p d:-ﬂr-“"" e BN P I 2 5 " -
S 25 T L 2 5 N e e LA b Z /
I nd P Rl oa gl P "“z;:.,._.:. |~ ia 0] T 2 8{3 0O

.—'""““"'-3-‘5, .. —-q.mr
E .
AR o |32 Mo (330 T {3 L} 3 3
-y | 1T 1
et] “Te 2l 35 v L2 36| ~t= |3 4]3 ¢
I -"\""?-MW 4 \‘W'.‘-"..—‘ . I e B R -y
'ﬁﬂmnm;i{ e ;5 9 ey a 2 0
-g:--—--ﬂ 37 f ‘;.*_,_“,,}:.»"’r 38 s marn} 36 ﬁ e] 7 > ...‘:-’.
o el PR I S N A I SO PR L R e R
. .‘,4__ - L L e Yt R X
o o !
e D R S e P A% B PR B e IR I
i 1
g ot e | NN i 1

! > - —“\;" 3 ,.VJ'— ™ ke { | VIR F—"

Nyl IR Rt S Eog U0 S B XU R0 L3S st g WA TR

Fig. 23 Linkage of page descriptors wrthich links

16 socter quaues in the

aliad

mea

queuwe has node 46, node 47, node 48 vhile the listheads are 46 and 48.
The forward link LF and backward link LB of each sector queue are
shown in Fig. 24. Corresponding to drum‘sector 0, the LB of node] is
0 (grounded) and the LF of node 1 is 2 (pointing to node 2); the LB of
node 2 is 1 {(pointing to nede 1), and the LF of node 2 is 3 (pointing
to node 3); the LB of node 3 is 2 (pointing to ﬁode 2), and the LF of
node 3 is 0 (grounded). Corresponding to drum sector 1, the LB of
node 4 1s.0, and the LF of node 4 is 5 (pointing to node 5); the LB of
node 5 is 4 (pointing to node 4), and the LF of node 5 is 6 (pointing
to node 6); the LB of node 6 is 5 (pointing to node 5) and the LF of
node 6 is 0. Similarly, corresponding t; drum sector 15, the LB of
node 46 is 0, and the LF of node 46 is 47; the LB of node 47 is 46
and the LF of node 47 is 48; the LB of node 48 is 47 and the LF of node

48 is 0.

3.2 Manipulation of Sector«Queues during the First Drum Revolution

The head of each sector queue will be deleted by the PDC to
construct a channel command word for the coresponding drum sector. Thus,
no page—transfer can occur during the first drum revoluticon. The manlp-
_ulation of sector queues is shown in Fig. 25.

After 1/16 of a drum revolution, node 1 is removed and the channel
command word CCW for drum sector 0 is constructed using the information
in the page-descriptor. The head of the sector queue for drum sector
0 is deleted. Therefore, the FP of the listheads point to node Z while
the LP of the listheads is unchanged. After 2/16 of a drum revolution,
the CCW for drum secteor 1 is comstructed according to the information in
the page-descriptor which is node 4. The head of the sector queue for

drum sector 1 is deleted. Therefore, the FP of the listheads points to

Lt al2 .
L

tial Sector Queues

B
w
s
1

?.f -
-]:-3- . A \

PR (oo e

Drum 2 i Second Third

Sml- .) hﬁdé ' R - node node.

LB - LF 2 IR~ LI 3 LB L3

Ty

ot
5

Y
(R
e

[wn]

Y
AN
k]
‘t
x
Y,

10 11 12 —

% "m"f’u -
3 0 i1 + - 10%2 12 11 m‘l")

13 14 o i5 e

14 13724 15 14 |5

16 <17 o 118 =

17§ 16 7258 184 - 17 [EFa| o

19 20 . 21
7 2 P
3 i o

22 —pre 23 — 24

7 0 EZ) 23 2F54 24 03 1774 o

28 29 - - 30 =

. 31 T 32 k-
10 0 7] 32 31F’ 33 B2 .. 1 0

3. . 35 I
11 0 E/’%‘; 35 34 E{:—% a6 b5 {_::_::-é"—" n

37 38 ' 39 -

12 0 {7 38 37 §Zi) 39 38 |52 0

40

o
o Y
L

41 - 42 4
13 41 40%:- 42 41 ¥..51 0

43 45

44

(v
LN

45 44

14 44

46

47 48 e
It . e
“i¥ -48 7 177

e

o) :\F
1
a‘\‘. 1{*
e
o
5N
5
[em]

15 0 47

I

Fig. 24 Initial Forward and Backward Links in the Page Descriptors
Which Form the 16 Sector Queues

Sector Queue 0

r P

initial condition -

AT T
'; -

1 1
gt o

node 1

after l/}6 drum ~ N
revolution i i ~ e,
- -
Y ot
ko1 TR B e s o = s v et e e et =
H S !
IR U IR IR S S Y B
e ad " - . sanda v
. B o

Sector Queue 1 ‘g

initial condition Jﬂrf¥"‘“ T //53

after 2/16 drum

N

. o s R
revolution : -

¢ . s
pA oy "y

\u' - I {_.. a—-—nrv::ushr-@#] ‘-V-—?

TR S Y. T a f >t

f i st hme %1 6 i

.-wﬁo‘ - = b

Sector Qucue 15

initial condition e .
el
e ¥
ot Ta
1 ‘,.,n-—-—-..._._‘. -y i 7 .
) i e A i
b6 Th e L L ag VT T s

1
T

node 46

Ty W
after one drum O
revolution IR SVUUS SUVHPERS S £
' ! Y
<1 .
s -r-n---—c—-v‘--: _\>|§-_-.._--[.—.-—w— : e o
W I . [P H P H
AR YA Ay R C-
YN -t

tanry

Fig. 25 Manipulation of the recter gucue Jduring L.
{only the first, the sccond and the last are shown)

e Lirot Srus iy voluaison
S

48

node 5 while the LP of the iiétheads is unchanged. After 1 full drum
revolution the GCW for &?um secéér 15 is constructed according to the
information in the page descriptor which is node 46. The head of the
sector queue for drum sector 15 is deleted. Therefore, the FP of the
listheads points to node 47 while the LP of the listheads is unchanged.
Up to this point, the channel command memory is completely loaded

with CCW's, The 16 sector gqueues after the first drum revolution are
summarized in Fig. 26. The forward link LF and backward link LB of

each sector queue are summarized in Fig. 27.

3.3 Manipulation of Sector~Queues during the Second Drum Revolution

Since the channel command memory is loaded with CCW's and the drum
read/write heads are at drum sector 0, page—transfer can now begin. The
manipulation of sector queues in the second drum revolution is presented
in Fig. 28,

After 1-1/16 drum revolution, the MM page 1 has been transferred
by the PDC, and a new CCW for drum sector 0 is constructed according
to the page-descriptor which is node 2. Consequently, node 2 is de-
leted from the sector queue and the FP of the listheads points to node
3. After 1-2/16 drum revolution, the MM page 4 has been transferred
by the PDC, and a new CCW for drum sector 1 is construeted according to
the page-descriptor which_is node 5. Consequently, node 5 is deleted
from the sector queue and the FP of the listheads points to node 6. After
2 full drum revolutions, the MM page 46 has been transferred by the FDC
and a new CCH for drum sector 15 is constructed according to the page-

descriptor which is node-47. Consequently, node 47 is deleted from the

Drum
Sectors . Linkage) Listhealds

e

P ~ e e = e

IR B
i <] ‘(r -1 ~ - 1 1
S - 8 9
2 g _ 8 N— 9 L8, 5]
[S, e e —————— e

£~

f‘—--‘-‘ ~ i.-
L0 ’M\; i1 s TPTL | 141 s

ta
fod
~d
a
5
1
L
s
I,_:
(o]
o
1!
Aah
i
1y

. - %)
—_ 3 -_ ,-¢!’f\ 15 B /Q
6 NamB P Rl N A 1. [20! 21 /S
Q-
l-"""'\/ i H '/Lf;
7 ot I N O R S 231 24 ;) x

-

& - : CR S P
10 g | 3 1, - 3 3y - 32. 33

o

11 i3S el 3l s | 358 36

12 ofmi3sl 39t | 38, 39

! . |
13 ot A R e R,

[AU .

© ! i
14 e I I L T N S et AR S A S

R N Y
15 S o N T I SO I | M e l il e

Fig. 26 Linkage of pape deserintors whiiech link the 16 Sector cuenss o bor
one druaw revolution

S
u&zb'ﬁrum Revolution

50
Drum :.":' N
Sector - - Second Node

3~LlB— L

0 2 A o

:6 e
1 5 BZ4 o
-9 i
2 8 P2 o
12 .
v
3 _ 11 #7751 0
14 . 15 —
I zas
4 0 % 15 16 =1 0
173 .1 -
. aris
5 0 B2 1s 17 B o
20 - 21 :
6 0 ¥l a1 20 E,»f 0
23 : 24 -
£ -
7 o B 23 Eil o
$ = g
26 3 27 o
8 0. 7 211 - 126 Eidd] o
29, 30 L
,:. !
9 0 ffg; 30 29 [rid o
32 3.2 N
10 0 &4 33 32 E/;f 0
33 . 36
t [& = 35 Ealo
3 3 -
1 r:r‘: ot
2 0 fr] 39 38 [2#] o
41z 4 .
13 O%f}i 42 i1 B
by 4 —
14 0 45 4 1o
Ny — 4
vt
L 0 @ 48 47 0

Fig. 27 Forward and backward links in the page descriptors which
form the 16 sector queues after ome drum revolution

Sector Queuc D

after 1L/16 drum
revolution

after 1-1/16 drum
revolutions

Sector Queue 1

after 2/16 drum
revolution

after 1-2/16
revolutions

Sector Queue 15

after 1 drum
revolution

after 2 drum
revolutions

e

LP
e

"
- “r..-. v ——
BT
BUUIN Nl -

¥pP LP
-1
A H
N ' “\l
T~ SRS
] I R 1
Lid 214
i .
FP L.P
!
7 oy
- B S B
3 - i,
A os| el as 611 |
- R i SE
FP LP
C? &=
\“\ Y
T~ grovmesenps s e g
-M“_-:ﬁ ¢ 6 1° |
- w-—}a-w— SR N
i - b
P L?
N
-~ £+ e
. ! .
; -
A “,

* 471 °
FP LP
T
T S I wud “"‘-\
~&_%E\“ \ﬂ

Fig. 28 Manipulation of Sector Queues 0, 1, and 15

52

sector gqueue and the ¥P of ghe listheads poinés to node 48.
Up to this point, MM pages 1, 4, 7, 10, 13, 16, 19, 22, 25,
28, 31, 34, 37, 40, 43, 46 have been transferred by the PDC and the channel
command memory is again Fully loaded with CCW's for transferring MM
pages 2, 5, 8, 11, 14, 17, 20, 23, 263 29, 32, 35, 38, 41, &4, 47.
The 16 sector queues after the second drum revolution are summarized
in Fig. 29. The forward link LF and backward LB of each sector queue

are summarized in Fig. 30.

3.4 Manipulation of Sector-Queues during the 3rd Drum Revolution

During the 3rd drum revolution, MM pages 2, 5, 8, 11, 14, 17,
20, 23, 26, 29, 32, 35, 38, 41, 44, 47 are transferred by PDC, the channel
command memory is again fully loaded with CCW's for transferring MM pages
3, 6,9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48. The 16 list=-
heads are all grounded at the énd of the 3rd drum revolution.

At this point, all the sector qu;ues in the page table memory
are empty as shown in Fig. 30, Therefore, there is no forward link or
backward link for the empty queues. This fact is expressed by the word

EMPTY in Fig. 31.

3.5 Page transfer during the 4th drum revolution

During the fourth drum revolution, MM page 3, %, 9, 12, 15, 18,
21, 24, 27, 30, 33, 36, 39, 42, 45, 48 are transferred by the PDC.
However, the channel command memory is completely empty at the end of
the 4th drum revolution. There is no sector queue in the page table
memory, and all the listheads are grounded. Hence, during the next drum

revolution, no page-~transfer occurs.

Drum
Sector

10

i1

12

13

14

15

After 2nd Drum Revolution -- After 3rd Prum Yevolat:on

Linkage __Lisrheads _Linkage .

-
T~

= R 1 3 ' EMPTY

T T
: °ol - { =3 9 g IMPTY

N i }
e 1218~ 1215221 EMPTY

!
..T
i
o]
o~
|
!
NS
ol
N..
o~
i
g
]
vG

——

< | 2 7] sy 271 27 EMPTY
|30, | 30! 30] BPTY

i
13 3] e 33§ 33 EIPTY

ot

=t 1 3 9] i 391 39 : EKPTY

[T,

t
el b2l e | b2 42

[P e S Sy

-~ PRI VORI

[e et e e a1 '{

e il I R et 450 45 X EMPTY
' E
1 : :

ot &8 pn 48 48 ii EMPTY
e |
f
[

o

- Listheady

H
o.’ 0o

I e

i
1 0 o,

B R

A — —

prow e ey
fool ol

[[U,
[r! PUTTS
0! 0!

* e f et e aa
!
0: 0

.-+

0 - 0

e w8

o -+

0 C

¥ig. 29 Linkage of page descriptors which links 16 sector gueucs

(=]

after the two and threes drum revolutions

54

SEZiﬁf -Liﬁkﬁ??%ﬁﬁtbf*&hﬂ#qand_Three Drum Revolutions
vt
Al
0 = T
1
2
3
4
5
6
7
8
9
10
11 o]0
12 LoPiilo
13 o Fid] o
14 0 @fv 0
15 0%@: 0

Fig. 30 Torward and backward links in the page descriptors which form
the sector queues after two and three drum revolutions

Humber of D,

Sector Statu‘s o-f Revolutions at
Queue _Sectoy Queyes whicl Lhr::,_c.x%w.of.'_,i:s v
0 EMPTY T 2-1/16
1 EMPTY 2-2/16
2 . EMPTY 2-3/L6
3 EMPTY 2-4/16
4 RMPTY ‘ 2-5/16
5 _ EMPTY 2-6/16
6 EMPTY 2-7/16"
7 EMPTY 2-8/16
8 EMPTY 2-9/16
9 EMPTY 2-10/1¢
10 EMPTY 2-11/16
11 EMPTY 2-12/16
12 ‘ EMPTY 2-13/16
13 EMPTY 2-14/16
14 BETY . 2-13/16
15 EMPTY 3

Fig. 31 Twptying the sector qureues during
the third drum revolution

2 &

56

4. Simulation by Algol

R This simulation is toitest_;hg;éorrect operations of-the PDC. The
algorithm for the paging sequence presented in section 2.4 are now described
by an Algol program; this program is shown in Appendix A.

In order to restrict the program size for simulation.on the UNIVAC

Lo

1108, it is assumed that there are 8 words per main memory page. Initially,

the main memory pages are loaded with data to be transfered to the empty

13 LI I

~

pggipg:drum memory. - .
. There are two sets of test data: the first set is er paging-out

8 MMéﬁéées, and the second set is for ;ﬁging—in g MM pages. They are shown

in:Tab;gs 2~7. The output from the simulation is shown in Table 8 and 9.

The Algol program is summarized in the flow chart of Fig. 34.

4.1 Simulation inputs

"

Two sets of test data are chosen for simulation. Each set contains

tﬁr;é elements: 8 page descriptors, é iiétheads, and 8 CCW's.' These test
data ‘deal with 8 MM pages, 32 through®39. The initial contents of these MM
pages:are shown in Table 2. 1In Table 2, page 32 contains 8 words with each
W;;é‘3é£ to 32, page 33 consists of 8 words with each word set‘;o 33, etc.

., With test data 1, we shall page-out 8 MM pages to Fieid 1 of the drum
as shown in Fig. 32. In this figure, page 32 goes through the PDC and becomes
the first drum page of sector 03 pageiééﬁgoes through the PDC and becomes the
first drum page of sector 1; and page 39 goes through the PDC and becomes the
first drum page. of sector 7. . The contents qf the 8 page descriptors are shown
in Table 3. The ROW figid; in‘thé-ﬁggé“descri?tors are set to 1 to indicate
paging-out. Since only 8 pages are going inéo 8 drum sectors, the backward

link and the forward link of every page descriptor are set to 0 to indicate

Table 2

Test data 1: 8 Main Memory Pages
! MM MM Contents | MM ! MM Contents
| page number |word number of words page number | word number of words -
: {
E 32 0 32 : 36 , 0 36
1 32 % L1 36
2 32 : 2 36
3 32 i3 36
| | 4 32 ;) 4 36
; 5 32 ; 5 36
: 6 32 6 36
: 7 32 7 36
33 0 33 ; 37 0 37
1 33) 1 37
2 33 \ 2 37
3 33 ! 3 37
4 33 ; 4 37
3 33 i 5 37
6 33 5 6 37
7 33 ; 7 37
34 0 34 ; 38 0 38
1 34 : 1 38
2 34 : 2 38
"3 34 ; 3 38
4 34 ; 4 38
5 34 : 5 38
6 34 § 6 38
7 34 i 7 38
1
| 35 0 35 : 39 0 39
i 1 35 ‘ 1 39
! 2 35 { 2 39
| 3 35 : 3 39 .
; 4 35 4 39
; 5 35 5 39
: 6 35 6 39
7 35 7 39

57

58

MAIN MEMORY

e T b i

i
Tt
."\5‘%“

[y
L%)
PRkl Hae S
i

?:“,_‘g;gm\;&w"?"' O Sy .
—v“""w’ ey,
i
<
"1‘&1
gt

L % .
\‘l ‘ Sz, P P
N ‘%%h % K -
i T % N -

%, 13 b, : el 10

e

Dy TR P ‘___,7
- .
o, 12 11 \4 '

- T
et

.
== oL Y,

PAGING DRUM MEMORY

Figure 32 Paging-out 8 pages from main memory inte 8 drum sectors
fest data 1)

Table 3 Page Descriptors for Test Data 1:
(for paging-out 8 MM pages to 8 drum sectors)

PTM ' Field (in binary) o
address” | 1B | iF DP____ROW {
i . :

32 0 0- | 06000010000 1 .;
33 0 0. oopoblobol 1 é
34 0 0 | 0000010010 | 1 i
35 0 0 % 000001Q011 { 1 é
36 0 o | ooopaiol00 | 1 E
37 0 0 | 0000010101 1 §
38 0 0 ! 0000010110 1 §
39 0 10 | 0000010121 1 4j

* Decimal

Note: Other fields of the page descriptor
are not needed and thus not shown.

60

cnegn b

" Table 4. ‘Ch'.a‘.ﬁnél . Gorﬁm;a'

4{: 2

fid Words*for Text Data 1:

~{(for- paging-out--8 MM pages-to-8 drum Sectors)

™

L, i -
'

Command = Fieid =

memory < = - =

address c RWC CHAN PGE FIRSTWORD
0 1 1. 1 32 32
17 jr T 1 33 33
2 A EEE TS B “34 34
3 11 1 35 :35
4 O S N A T 36, 36
5 1 1 11 37 37
6. frihabon s | ose
7 1 1 1 39 "39

* Decimal Number

61

H

of

COntentéi
Word

Word

-

38
38
38
38
38
38
38
38
39
39
39
39
39
39
39
39

o T e
NN 0N) O N

[—————————— _EFWRTNRCRIRE LI Sl s v e e o e e v v

F oMMt~]l oAt~ oMo~ Ol o

i P ——

Numbexr : address
P

" Field

%
i

8 Drum Sec¢tors

Sector
Number

‘ Drum

|

o e L B B B B B B B L e M B B B B B B B T B I B B

[N A Vit el v AR AT $1v_ﬁ... AR 4V vy M e raad » frrrte ™ LR

T T F LT T [ONNAININNN | DWW OO OO | P PSP

¥
1
H
i
i

iy b e £ T ey T P e e
- o v mn 4 ——

of

| Contents
Word

|
|

Table 5 Test Data 2:

(after 8 MM Pages are Paged to 8 Drum Sectors)
Word

R R R E SRR R o o0 N ON N o O M
o) M OO0 NN M [2 Ao T oa B 1 TR 1 TR 10 L 40

R IR ety Tad I B N S LA S €5 e E s e

O - NN O O = NN S NN D P O N SN

y Field

Sector é Number {address

Drum
Number |,

i

L B B B B B P B B e B B e I L B B e I e B B B | L B B B B B B B

A s 4 arg b g swrey b an]

[T T e L R T el i)

OO0 OO0 OO o B S M B B B B NN NN Mmoo Mmoo

R it b i S B i VAR e —err Ty R e et e v £ T St g e

!

-.\]

o

e o
ety SINVI S o .

PAGING DRUM MEMORY

Fig33 Paging-in 8 Pages into Main Memory from 8
(test data 2)

", Yo
= ol -
“"“u,‘.“ 1 A W -
k“"-"‘*%‘i«’": fomnres, (v 3 4 3
» “

-

63

that the 8 page descriptors are not linked.

The lO-b&t DP field in the page descfiptor specifies the drum page
address. The DP field of the page descriptor for MM page 32 is 0000010000
in binary which represents field 1 of drum sector 0. The DP field of the
page descriptor for MM page 39 is 0000010111 in binary which‘represents field
1 of drum sector 7. Thus MM page 32 goes to sector 0, MM page 33 goes to
sector 1, and MM page 39 goes to sector 7.

The contents of the listheads of the'sectorlqueues in PTM are all
set to 0 since the simulation model deals only with the heads of 8 secter queues
assuming that the 8 CCW's for the corresponding 8 MM p_a'ges have already been
constructed by the PDC.

The contents of the GCCW's for paging-out 8 pages to 8 drum sectors
are shown in Table 4. The C fields are all set to 1 to indicate that the §
MM pages are to be transferred. The RWC fields are all set to 1 to indicate
a paging-out operation. The CHAN fields are all sét to 1 since only Field 1
is used for paging. The first MM page to be paged-out is page 32 whose first
word is also 32. The second MM page to be paged-out is 33 whose first word
is also 32. The second MM page to be paged-out is 33 whose first word is 33,
etc. Thus, the PGE field and the FIRSTWORD field of each CCW contain the same
number .

After the paging-out operations, the contents of drum sector 0
through 7 are tabulated in Table 5. As shown, in drum sector 1,-there are
eight 32's; in drum sector 2, there are eight 33's, ete, These eight drum pages
are then paged-in by test data 2 to be discussed immediately.

With test data 2, we shall page-in 8 drum pages as shown in Fig. 33.
In the figure, the first drum page of sector 0 goes througﬁ the PDC and be-
comes the 32nd MM page; the first drum page of sector 1 goes through the PDC

and becomes the 33rd MM page; and the first drum page sector 7 goes through

64

the,PDC.and,begomesNthe.39th MM page. The contents of the 8 page descriptors
are:shown in Table 6. The ROW fields are all set to 0 to indicate paging-in.
'The remaining bit.setting of the page descriptors are the same as those of
. the paging-out.case.described in Table 4. .
. :;‘.The contents of the listhead memory are again set to 0. The contents
of the 8 COW's for paging-in 8 MM pages are shown in Table 7 which is to be
compared.with. Table, 4. .In Table 7, the RWC field of each CCW is set to 0

instead of 1. The res;-of the contents of the CCW's in Table 7 remain the

game as those.in Table 4. .

Table 6 Page Descriptors for Test Data 2:

(for paging-in 8 pages from 8 drum sectors)

PTM Field (in binary)
address¥® LB LE pDP ! ROW
32 0 % 0° | 0000010000 | 0
33 o 1 o |ooooo10001 § o
34 o § o 0000010010 { ©
35 o | o {ooo0010011 | .0
36 o ! o {oo00010100 | ©
37 0 1 0 }ooooowolor | o
38 o { o }{oooool01l0 { o0 i
B o { o }oooootorzr ! o ;
#* Decimal

Table 7 Channel Command Words® for Test Data 2:

(for paging-in 8 pages from 8 drum sectors)

Command Field
MEMOTY T *
address ¢ | Rwc | cmaw | PAG | FIRSTWORD !
0 1 0 1 32 . 32 |
1 1 0 1 33 | 33
3
2 1| o 1 % 3%
M]
3 1 0 1 35 ¢ 35 :
4 1 0 1 36 36 ;
5 1 0 1 37 37 |
6 1 0 1 38 38 ;
7 1] 0 1 39 9
i i i
8 \L g
not used E
:]
15 i
b BN s A Lo 7o 3 wrersr Lo . S

65

66

4.2 Simulatsion-Program

The Algol simulation program is- described in the flow chart shown

in Fig. 34." At ‘the Bééinniﬁg; counter I is set to 1 and the initial contents

of MM pagesf32 through 59 are set as shown in'%éble 2. 8 page descriptors,

] listheadsi and é CCW{gtére ipiﬁialized for paging-out the 8MM pages. These
page describtors,’listheads;-and CCW's are printed in-octal before any page
transfer. After'khe abové ini;ializatién, the paging algo%ithm startsg. The
paging algorithm;gonsigfg éf:php‘main sequence; the drum read/write subse-
quence, theeupdating subsequence, and tée requést—accept subsequence (see Figs.
19-22). As data ﬁo;ﬁs:éferfpangfer;eh, the contents of important registers
are printed. The paging algoéithm is repeated 8 times for paging-out 8 MM
pages.

After $ MM pages have been transferred to the drum memory, their
corresponding 8 .page descriptors,.8 pairs of listheads, and 8 CCW's in octal
are printed:'dNeXf, cbﬁntérnI is teséed. 'Since‘I is 1, I is incremented by 1,
and 8 page descriptors as well as 8 CCW's for paging-in 8 drum pages are initial-
ized. Thé lgéthead; are sgt-to 0. ThenAthe_é page descriptors, the 8 list-
heads, andéfﬁé;é éCW's for paging—in 8 drum pages aré printed in octal. The
paging algorithm is employed 8 times for paging—in 8 drum pages. After 8
drum pages are paged-in, ;he 8 page descriptors, 8 pairs of listheads, and the
8 CCW's are pri;ted in oétal. Counter I is tested. Since now 1 is 2, the

program terminates.

This simulation program is so designed that logic can flow through
all parts of the program. Thus, .some flipflops are set and reset whenever it

is necessary- to-enter a loop-or-skip a loop.

An assembly language function DECODE is incorporated for extract-—

Set

Store data-words into MM page 32 through
Initialize 8 page descriptors, 8
listheads, and 8 CCW's “for paging-out

39.

counter I to 1.

8 MM pages.

\/

N

Print 8 page descriptors,
8 listheads, and 8 CCW's.

Initialize 8 page descrip-
tors, & listheads, and 8
CCW's for paging-in 8
drum pages

8 pages
ransferred,

no

Paging
algorithm

(Figs.19-2

Print dinter-
-.mediate
results

3

Y

—

Print 8 page déscriptors, 8 list-

heads, and 8 CCW's

|

Fig. 34 Flow chart for the Algol Simulation Program

67

68

ing control information from tﬁe page descriptors, CCWfs, and listheads.
The calling sequence for DECODE is as follows:
FLDA(I,J,K), -
where FLDA ig theﬁ%u;gtion néﬁe of the fupction; I is the séarting position
of the control information, J is the total number of bits to be extracted,
and K is the 36-bit data word to be opgr;téd upon.
The following"éteps are tgken'by‘the function when it is called:
(a) Fetch the word K,
(b) Fetch'fhe.bit'pqsition I,
(c) Get rid of the upper bits by first shift Jeft T bit positions and
then shift right I bit positions,
(d) Gomgute: (36—IfJ) which is theigumber of lower bits to be shifted,
‘(e) Get rid of the lower bits by shifting right (36-I-J) bit positions,

Y

(f) Return to the Algol simulation program.

4,3 Simulation outputs

The output for the simulation is classified into 3 types as follows:

(a) After a word is transferred, pfinF out contents of main memory buffer
register, drum buffer register, word count in the page, and page
transfer directidn..

(b) After a page is transferred, print out the modified channel command
word, listheads, drum field address, and drum sector address of the
page.

(c) After 8 pages are transferred, print out channel command words,
page descriptors, and listheads to check the number of pages in a

drum sector there are, how the page descriptors and the CCW's are set.

http:DECODE.Is

69

The outputs by test data 1 for paging-out 8 MM pages to 8 drum
sectors are summarized in Table 8-(a) through 8—(e). The output, after the
first page (MM page'408) is transferred, is shown in Table 8-~(a). The vari-
ables in the Algol program correspond to the registers of the PDC described

in the sections 1 and 2. In Table 8-(a), PAGEPOST is 40 When a word of

g
the first page is transferred, SﬁRZ is 408 and DBR is 408. COUNT keeps the
word counter‘of the first page and it varies from 0 to 7. RW is 1 indicating
a paging-out operation. SECTICR is 0 and FIELD is 1 so that the first page
is transferred t6 drum sector O and field 1 of the, sector.

After the first page is paged-out, the.print o;t of the correspond-
ing CCW, listheads for sector queue 0, the page traﬁsfer interrupt signal,
and the page transfer status are summarized in Table 8-(b). Since a page
describtor:requires two 36-bit computer Wérd to represent, the page table
memory PAGETABLE is represented by a two dimensional array. For the same reason,
the channel command memory is also represented by a two-dimensional array.
In Table 8-(b){ CoM(0,1) is ;ﬁg;goa where the underlined pcn:tionlég_;_8 is
1100000001 in binary which is interpreted as follows: (a) the C field of the
CCW is 1 implying that there is a page transfer, (b) the RW field is 1 implying-
that there is a paging-out operation, (c) the drum field address is 1; and the
remaining 408 not underlined is the MM page address of the current page COM(O,Z)

contains 40, which is the first actual word of thé first page. The listheads

8
of sector queue 0 are 408 and 408 and thus LISTS(0) is 40408. INTERRUPT (PAGE)
is 1 indicating that page transfer is successfully completed. PTRAN is 2 indi-
cating a paging-out operation.

The output, after a word of the last page tMﬁ page 478), is shown in

Table 8-(c). In this Table, PAGEPOST is 47 Each time when there is a word

g

70

Table 8 Test Data 1l: Output in Octal

. 8~(a) Print out when the first pa

ge is being transferred
' 1

(for paging-out 8 main memory pages)

PAGEPOST RW FSECTGR FIELD SBR2 DBR : COUNT {
50 1 0 1 5 1 40 o
40 1 0 1 50 | 40 1
40 1 0 1 s | 40 2
50 1 0 1 w o |w |3
40 v 0 1 o | 40 4
40 1 0 1 6w | 40 5
40 1 0 1 4 | 40 6
40 1 0 1 w140 7

8—-(b) Print out after the first page ig tramsferred

COM(0,1)

I
2

COM(0,2)

LISTS(O)

INTERRUPT (PAGE)

PTRAN

140140

40

4040

1

8-(c) Print-out when the last page is being transferred

[PAGEPOST RW‘ SECTOR FIELD SBR2 DBR . COUNT g
47 1 7 1 a7 4 a7 "0 !
47 1 7 1 47§ 47, 1 |
47 1 7 1 a7 | owr b2
&7 1 7 1 47 a7 03|
47 1. 7 1 47 47 1 4
47 i 7 1 47 47 1 s
47 1 7 1 47 1 47 1 6 |
47 1 7- L 47 1 47 | 7 _}

8~(d) Print-out after the last page is transferred

]

COM(7,1) | GOM(7,2) | LISTS(7) | INTERRUPT(PAGE) | PTRAN |
1
140147 47 4747 1 2"
!
8- (9 Print-out after 8 pages are transferred
PAGETABLE(40,1) 0 PAGETABLE(40,2) %100
“PAGETABLE (41,1) 0 PAGETABLE (41,2) 4300
PAGETABLE (42,1) 0 PAGETABLE(42,2) 4500
PAGETABLE (43,1) 0 PAGETABLE (43,2) 4700 -
PAGETABLE (44,1) 0 PAGETABLE (44 ,2) 5100
PAGETABLE (45, 1) 0 PAGETABLE(45,2) 5300
PAGETABLE (46,1) 0 PAGETABLE (46,2) 5500
PAGETABLE(47, 1) 0 PAGETABLE(47,2) 5700
CoM(0, 1) 140140 COM(0,2) 40
COM(L, 1) 140141 COM(1,2) T4l
COM(Z, 1) 140142 CoM(2,2) 47
COM (3, 1) 140143 CoM(3,2) %3
COM (4, 1) 140144 CoM (%, 2) 5
CoM(5,1) 140145 COM(5,2) 45
CoM(5,1) 150146 COM(6, 2) %6
coM(7,1) 140147 COM(7,2) 7
LISTS (0) 4640
TISTS (1) 3141
LISTS(2) 4242
TISTS (3) 4343
TISTS) YA
TISTS(5) 4555
1ISTS(8) 5656
LISTS(7) 57547

71

72

COUNT contains O through 7. RW

transfer, SBR2 is 47, and DBR 1is also 47

8 8"
ig 1 indicating a paging—-out operation. SECTOR.ié 7 and FIELD is 1 so that
the last page is transferred to the drum sector 7 and field 1 of this sector.
After paging-out the last page, the print out of the corresponding
page descriptor, CCW, listheads for secFor queue 7, the page transfer inter-
rupt signal, and the page transfer status are summarized in Table 8-(d).
coM{7,1) is lﬁQ}A?S where the ;59;8 underlined portion has the same\meaning
as that for the first page, and tbe remaining 478 not underlined is the MM
page address of the current page. The listheads of sector queue 7 are 478

and 478; thereforé, LISTS(7) is 4747 The settings for INTERRUPT (PAGE)

8
and PTRAN are the same as those for the first page.

After 8 MM pages have been paged-out for the 8 MM pages, their corres-
ponding'page descriptors, chapnel command words, and listheads for the sector
queues are shown in Table 8-(e). In the table PAGETABLE (408,1).15 0

and PAGETABLE(&TS,l) is . 0. ; PAGETABLE(éOS,Z) is 4100, and PAGETABLE(478,2)

8

and COM(7,1) is 1ﬁ01478; COM(0,2) is 408

LIST(0) is 40408, and for MM page 478,

8
and COM(7,2) is 478" For MM page 40

is 57008; COM(0,1) is 140140

g8°

LISTS(7) is 47478.
Thé ou£puts by test data 2 for paging-in the 8 MM pages mentioned

in the previous section are summarized in Table 9-(a) to 9-(e). Table 9-(a)

and 9-(b) differ only by the value for RW. 1In Table 9=(a), RW is 0 indicating

a paging—in operation. Table 9-(b) and 8-(b) differ only by the values for

COM{0,1), and PTRAN. In Table 9-(b), COM(0,1) is ;gg;ﬁos where the ;gg;a

is 1000000001 in binary which is interpreted as follows: (a) the C field of

the CCW is 1 and there is a page transfer; (b) it is paging-in; and (c) the

drum field address is 1; and the remaining 408 not underiined is the MM page

address of the current page. In Table 9-(b), PTRAN is set to 1 for paging-in.

http:SECTOR.is

Table 9 Test Data 2:

Output im Octal

(for paging=in 8 drum pages from 8 drum sectors)

9-(a) Print—out when the first page is being transferred

PAGEPOST ! RW SECTOR 1 FIELD SBR2 DBR COUNT:
40 % 0 0 f 1t 40 40 0
oo o 1 - P
40 % 0 o 11 4 1 40 % 2
0 10 0 i 1 5 i 40 13
w 1o 0 1 w40 boa
0w 1o 0 L I % 05
40 0 0 1§ 40 % 40 ; % 3
40 0 -0 1 0 p MG 7

9~(b) Print-out after the first page is transferred

Variables
COM(0,1) coM(0,2) LISTS(0) INTERRUPT (PAGE) | PTRAN -
100140 40 4040 1 1

9~(c) Print-out when the last page is being transferred

!
!

PAGEPOST | RW - SECTOR | FIELD | SBR2 | DBR { COUNT
47 o i 7 1 47 47 | o
47 0o i 7 1 47 47] 1
47 o 7 1 47 47 2
47 o | 7 1 47 47 7 3
47 0 7 1 47 47 | 4
47 0 7 1 47 | &7 | s
47 0 7 1 47 47 | 6
47 0 7 1 47 47 7

73

74

9-(d) Print—out after the last page is transferred

COM(7,1) | coM(7,2) | LISTS(7) | INTERRUPT (PAGE)| PTRAN
100147 74 1 1
9-(e) Print—out after 8§ pages are transferred

PAGETABLE (40,1) 0 PAGETABLE (40,2) | 4000 §
PAGETABLE(41,1) 0 PAGETABLE(41,2) 4200
PAGETABLE (42,1) 0 PAGETABLE (42,2) 4400
PAGETABLE(43,1) 0 PAGETABLE(43,2) 4600
PAGETABLE (44,1) 0 PAGETABLE (44 ,2) 5000
PAGETABLE(45,1) 0 PAGETABLE(45,2) 5200
PAGETABLE(46,1) 0 PAGETABLE(46,2) 5400
PAGETABLE (47,1) 0 PAGETABLE (47,2) 5600
coM(D,1) 100140 COM(0,2) 40
coM(1,1) 100141 COM(1,2) 41
coM(2,1) 100142 CcoM(2,2) 42
COM(3,1) 100143 COM(3,2) 43
COM(4,1) 100144 COM(4,2) 44
coM(5,1) 100145 coM(5,2) 45
coM(6,1) 100146 CoM(6,2) 46
CoM(7,1) 100147 coM(7,2) 47

LISTS(0) 4040

LISTS(1) 4141

LISTS(2) 4242

LISTS(3) 4343

LISTS (4) 4444

LISTS(5) 4545

LISTS (6) 4646

LISTS (7) 4747

75

Table 9-(c) and Table 8-(c) differ only by the value for RW. In

Table 9-(c), RW is 0 indicating a paging-in operation.

Table 9-(d) and Table 8-(d) differ by the:values for.COM(7,1),

and PTRAN. In Table 9-(d), COM(7,1) is 1001473 vhere the 10018 underlined has

the same meaning as that for the first page. In Table 9-(d), PTRAN is set to

1 for paging-in.

After 8 MM pages have been paged-in, for the 8 MM pages, their cor-

respunding page descriptors, CCW's, and listheads for the sector quéues are

shown in Table 9-(e)}. In the table PAGETABLE(&OS,lj is 0 and PAGETABLE(A?S,Z)

is 5600

COM(7,2) is 478; for MM page 40

g5 COM(0,1) is 100140, and COM(7,1) is 1001475 €OM(0,2) is 40, and

8’ LISTS(0) is 40405, and for MM page 47, LISTS(7)

is 47478.

4.4 Discussions

As a result of this simulation study of the paging drum channel system,

we have found that the PDC system design can be improved as follows:

(2)

(b)

P

Instead of having a channel command word and a listheads word for each

drum sector, these two words are preferrable to be combined into one 64-bit
word. Thus, only one memory is needed to store both 16 CCW's and 16 listheads
words. These are several advantages of having one memoxy instead of

two memories. First, it is more economical to have one memory. Second,

only one memory access is needed to obtain all the control information

for a page transfer at a particular drum sector. Lastly, the number of
micro-operations and registers can be reduced.

The page table memory should become a part of the PDC; this reduces the
number of registers, the time for fetching a page descripter, and the time

for updating the sector queues in the page table memory.

76

5. Simulation by Simula

The Simula language can be considered as a super set of the Algol-60
since all the attributes of Algol-60 are available'in.a Simula program.
Therefore, the conversion of a given Algol program into a Simula program is
:relatively easy. Simulation by Simula provides the user with the capability
of simulating paralliel processes In the sense that these processes all start
at the same simulated time. Furthermore, a Simula program provides execu-—
tion holding time for various processes in addition to the output gathered
from the priginal Algol program (7).

A-Simula user may view a large system as a number of smaller subsys-
tems called processes. These processes are logically separable although
they can interact with one snother. Besides, these processes may change
their states in parallel or asynchronously (7). A process described in code
is called an activity which is syntactically equivalent to an Algol pro-

cedure. There is a timing chain in Simula called Sequencing set which is

a list of ordered pairs: (event identification, event time). The event

time of any activity can be changed by means of HOLD Statements (9).

The conversion of the Algol simulation pr.ogram mentioned in the
previous section to a Simula simulation program is done in the following
three steps:

(a) isolate the drum input-—output subsequence and make it an activity by
inserting execution holding time and Simula keywords.
(b) isolate the updating subsequence and the request-accept subsequence
 and make it an activity as in step (a),
(¢) convert the rgmaining Algol program into a Simula prograﬁ by rearrang-
ing the progrém statements and by inserting keywords into appropriate

places,

77

Some HOLD statements are added to thé‘Simula program at the end
of each process to simulate execution holding tiﬁe of each process. In order
to add the HOLD statements, the following assumptions are made as shown in
Fig. 35: dnitiglization takes 10 units of time from the beginning to the
point of the main program with label LO; decoding of z CCW takes 40 units
of time from LO to the point of the main program with label Fork; the
drum read/write process tgkes 320 units of time; and the updating process
takes 50 units of timé. These asswumptions are based upon the numberrof micro—
operations to be executed in each process. TFor example, the drum read/write
process takes more time because it contains a loop for read and a loop for
write; for one page transfer by our simulation model, it is necessary to
stay in one of these loops 8 (number of words per page) times for write or

7 times for read.

5.1 Simpulation Inputs

The two sets of test data designed for the Algol simulation are
again used as the input data for the Simula simulation for comparison of
the outputs: However, in Simuls simulation here, the relative time among

different processes can be shown and compared.

5.2 Simulation Program

The Simula simulation program is described in the flow chart shown
in Fig. 36. At the beginning of the program, the drum read/write subse-
quence is declared as activity LEFT, while the updating subseguence together
.With the request-~accept subsequence are declared as activity RIGHT. Counter I
is first set to 1 so that when I is 1, it is paging—out, and when I is 2, it

is paging-in operatiﬁn. Next, data words are stored intc MM pages 32 through

78

begin
LEET

end
LEFT

begin main

— o mn e -

at LO

at Fork

Main

process

Left 320 units
Process

Fig. 35

the 3 processes in paging one page

-

10 units

40 wnits

begin
Right

end

Right = — —

Simulated execution time—units for

Right

Process

End

[._,_.__71'

50 unit

Y

Declare activity LEFT as the drum read/write sub-
sequence.

Declare activity RIGHT as the upddting subsequence
and the request—accept subsequence.

Set counter 1 to 1.

Store data words into MM page 32 through 39.

Tnitialize 8 page descriptors, 8 listheads, and 8

CCW's for paging—out 8 MM pages.

N

main sequence (Fig, 19)

Initialize 8 page descrip-
tors, & CCW's for paging-if N
the same 8 pages; list-
heads are set to 0

print 8 page déscriptors,
8§ listheads, and 8 CCW's

Fig. 36 Flow Chart for the Simula Simulation Program

b -
/ —
8 pages \ vyes
transferred - '
A
.) no
s N
activate LEFT (Fig. 2Q) J v
\ o
activate RIGHT (Fig. 22) j)
>
<
!
< !
yes !
Print 8 page descriptors,
I=T1+1 8 listheads, and 8 CCW's
7

79

80

39; 8 page descriptors, 8 listheads, and 8 CCW's are initialized to page-out
the 8 MM pages. After the initiafization, the main sequence is initiated
and the 8 page descriptors, 8 listheads, and 8 CCW's are printed. To
prage-out an MM page, activity LEFT and activity RIGHT are activated at the
same simulation time but are terminated at different simulation time. Never-
.theless,‘whenEVerﬂan MM page 1s to be paged-cut, these two activities are
reactivated aé the same simulation time. After the 8 pages have been
transferred, the octal representation of 8 descriptors, 8 listheads, and 8
CCW's are printed. Counter I is mext tested. Since I is not 2, I is in-
cremented by 1 and initialization for paging-in the 8 MM pages is done. 8
page descriptors and 8 CCW's are reset for paging-in the same 8 pages. The
listheads are set to zero. The main sequence is again reactivated and the
8 page descriptors, 8 listheads, and 8 CCW's are printed. To page~in an MM
page, activity LEFT and aétivity RIGHT are activated at the same simulation
time but are terminated at different simulation time. However, whenever
a drum page is to be paged-in, these two activities are reactivated simul-
taneously. After 8 drum pages have been transferred to the MM, the 8 page
desqriptorg, 8 listheads, and 8 CCW's are printed. Counter I is next tested.
Since I is 2, the program ends.

A listing of the Simula simulation program is included in Appendix

B,

5.3 Simulation Results

In addition to the output of the Algol simulation program, we also
get the simulation time for the three processes during paging. The timing
of activities at the SQS have been obtained from the Simula simulation program

and summarized in Table 10. There are three events in this simulation, namely,

81

main process, LEFT process, and RIGHT process. LEFT process. and RIGHT
process are parallel processes in the sense that they start at the same
event time.

In Table 10, MM page 32 is the first page to be paged-out. There-
fore, the main process starts at time 0. At L0, the time is incremented
to 10, and at Fork, the time is incremented to 50. Now the main process
is held 1000 time units to allow other events to occur. Thus the MM page
33 is paged-out ét time 1050 which is incremented to 1060 at LO and to 1100
at Fork. Next, the main process is held 1000 units and the old MM page
33 is paged-in at time 9450. At L0, the time is incremented to §460 and at
Fork, the time is incremented to 9500. The time for paging other pages
are obtained similarly.

Next, we consider the LEFT process in Table 10. MM page 32 starts
transferring to the drum at time 50 and ends transferring at time 370
since we allow 320 time units for paging-out an MM page. MM page 32 starts
trangferring to the drum at time 1100 and sfops transferring at time 1420.
After MM page 39 ends transferring to the drum, paging-in operation starts.
01d page 32 starts transferring {rom the drum to the MM at time 8450 and
ends transferring at time 8770 since we allow 320 time units for paging-in
a drum page. 014 page 33 starts transferring to the MM at time 9500 and
ends transferring at time 9820. The timing\in the LEFT process for other
pages are obtained similarly.

Finally, we consider the RIGHT process in Table 10. RIGHT process
for MM page 32 starts at 50 which is the same as the starting time of the
LEFT process for MM page 32. Since we allow 50 time units to 'update the
page—table memory, the channel command memory, and the listheads memory ,
the RIGHT process terminates at time 100. The RIGHT process for Mﬂ page

32 starts at time 1100 and ends at time 1150. After the paging-out of

82

Table 10 Begin and end time units of the activities at the SQS

(Paging—~out 8 Pages and Paging-in 8 Pages)

Page

Main

_ process LEFT _process) RIGHT _process
Number begin at 10 at Fork begin end g begin end :
32 0 10 50 50 370 i 50 100
33 1050 1060 1100 1100 | 1420 § 1100 | 1150 |
34 2100 210 | 2150 | 2150 | 2470 § 2150 ! 2200
35 3150 3160 § 3200 | 3200 | 3520 % 3200 §- 3250
36 4200 4210 | 4250 | 4250 | 4570 L 4250 : 4300
37 5250 5260 1 5300 | 5300 | 5620 i 5300 - 5350 |
38 6300 6310 § 6350 6350 6670 3 6350 : 6400
39 7350 7360 § 7400 | 7400 | 7720)} 7400 . 7450 |
32 8400 8410 i 8450 8450 8770 1 8450 ¢ 8500
33 9450 9460 | 9500 | 9500 | 9820 | 9500 | 9550 |
34 10500 { 10510 § 10550 { 10550 } 10870 § 10550 | 10600 |
35 11550 11560 | 11600 | 11600 | 11920 3 11600 | 11650 |
36 12600 § 12610 § 12650 § 12650 { 12970 § 12650 ¢ 12700
37 13650 13660 { 13700 | 13700 | 14020 } 13700 } 13750 ;
38 14700 § 14710] 14750 | 14750 | 15070 |} 14750 i 14800}
39 15750 | 15760 § 15800 | 15800 | 16120 % 15800 § 15850 |
i 3 z

83

8 MM pages, the paging-in operation starts. The RIGHT précess for old
MM page 32 starts at time 5450 and ends at time 5500. The RIGHT process
for old MM page 39 starts at time 15800 and ends at time 15850. The
timing in the RIGHT process for other pages are obtained similarly.

However, the sequencing of activities in the 5QS gould be very
corplicated 1f many processes of various execution time are activated random-—
ly. In this case, we must know the first event of the sequencing set at
all time, which process will be activated next, and the reactivation

point of the next process.

84

6. Acknowledgement

The author wishes to.express his thanks to Professor Yaohan Chu

for his inspiring advice, helpful suggestions, and guidance as well as

for his writing of the section on handling of queues; to his wife Marion

Kwok for her patience and encouragement; to Mr. R. Pardo and Mr. J. Yeh

for their helpful discussions and suggestions; and to Miss N, Nowell for

her typing of the entire manuscript.

7. References

1.

4.

8.

Chu, Y., "Introduction to Computer Organization", Prentice-Hall,
Ine., 1970.

Chu, Y., "Notes on Channel Organization', Computer Science Center,
University of Maryland, November, 1970.

Coffman, E. G., Jr., "Analysis of a Drum Input/Output Queue Under
Scheduled Operation in a Paged Computer System', Journal of the ACM,
Vol. 16, No. 1, January 1969, pp. 73-90.

Denning, Peter J., "The Working Set Model for Program Behavior",
CACM, Vol, 11, No. 5, May 1968, pp. 323-333.

Gordon, Geoffrey, "System Simulation", Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1969,

¥nuth, D.E., "Fundamental Algorithms" (The Art of Programming), Vol. 1,
Addison-Wesley, 1969.

McCredic, J. W., Jr., SIMULA--AN AT.GOL BASED SIMULATION LANGUAGE,
Computer Science, Carnegie-Mellon University, pp. 315-322.

Pardo, 0. R., "A Virtual Memory System Design", Technical Report
71-144, GComputer Science Center, University of Maryland, January
1971.

Simula Mznual, UNIVAC 1108 programmers reference, UP-7556 Rev. 1,
1970.

85

APPENDIX As LISTING OF THE ALGOL SIMULATION PROGRAM
FEBEREXENER XXX RERENE XX SXRERNEXNEEFAHEEERRFRRRERRNE

TRUN AL +001-11-768sKWOK 14100

TALGsIS PDCHAN 4 PDCHAN
EXTERNAL NON-RECURSIVE INMTEGER PRNCEDURE FLDA %
REGIN

COMMENT *%¥%A PAGING NDRUM CHANNEL *®%§
COMMENT- FOR CONVENTENT SIMULATION 48 BIT DATA WORD IS CUV TO 36 BITSS
COMMENT FOR TESTING AND SIMULATION ON THE 1108 MEMORY
PAGE ST7F° 1S RFDUCED TO 8 WORDS PFR PAGE
64 PAGFS IN THE MATN MEMORY
1024 PAGES IN THE PAGING DRUM WHICH HAS 16 SECTOR QUEUFS
64 PAGES IN A QUEyYE (OR LIST WITH A FRONT AMD REAR POINTER)S
COMMENT WE ASSUMF MATN MeMORY PAGF 0O DOES NOT EXIST $
COMMENT T 1S TH® LOOP CONTROL VARTARLF&
INTFGAFR 1%
COMMENT MATN MEMORY AND RFLATED RPFGTSTRRSS
COMMENT MATN MEMNRYS
INTEGER ARRAY MEM(D.eb39Nes7)8
COMMENT MATN MEMORY ADNDRESS RFGISTFRS
INTEGER MARS
COMMENT MATN MFEMORY BUFFER RFGISTERS
INTEGFR MRBRS
COMMENT MATIN MEMORY READ/WRITE COANTROL REGISTERS
INTFGER RW2%
COMMFNT MATIN MFMORY PAGF AMDRFSSS
INTEGFR MANR2RLOCKS
COMMFNT MATN MEMORY BUFFFR RFGISTFRS
INTFGFR SBR2S
COMMENT MA(2) 1S MAIN MFMORY ACCFSS RFGISTERS
INTFGER MA2S
COMMENT MADR2(WRD)Y IS MAIN MEMORY WORD ADDRESSS
INTEGER MANR2WRDS
COMMENT MAIN MEMORY PAGE ANDRESS OF THE POSTED PAGES
INTEGER PAGEPOSTS
COMMENT PAGE~TARLE MFMORYS
INTFGER ARRAY PAGETARLF{NeaET91¢e?1F
COMMENT PAGE-TARLE MFMARY aDDRFSS RFGISTERS
INTFGFR PANRE
COMMFENT PAGF-TARLF MFMNRY nUFFFR RFATSTFRS
INTFGFR ARRAY PTRD(1,4%)e
INTFGFR PTR2(HS
INTEGER PTR2GFC(CS
INTFGFR PTR2ROUWS
INTEGER PTR2LRS
INTEGER PTRZLF$
COMMFNT LISTHEANR MEMORYS
INTEGFR ARRAY LISTS(N,.15)8%
COMMENT LTSTHFAN MFMORY APNRFSS RFGISTFRS
INTFGFR SFCTNRSS
COMMENT LISTHFAN MEMORY RUEFFR REGTETFER$
INTEGFR PTI R
COMMENT POINTER THE FIRST PAGF OF A SFCTOR QUEUF TN THF DRUMS
INTFGFER PTLFbPS
COMMENT POINTER THE LAST PAGF OF A SECTOR QUEUE IN THE DRUMS

86

INTEGER PTLLPS :
COMMENT GPTL IS AN AUXILIARY RFGTSTFR$
INTEGER GPTLS
INTEGER GPTLFPS
INTFGFR GPTLLPS
COMMENT PAGE TARLE SFMAPHORs
INTEGER PTSEM1S .
INTFGFR PTSEM2S
COMMENT PAGING DRUM AND RFLATFD REGISTFRS
COMMFNT PAGING NRUM MFMORYe
ITNTFGFR ARRAY PDRUMIN, 4159000 21N, 7135
COMMENT PAGING DRUM SECTOR ADNDRFSSS
INTEGER CWORNDSECTS
COMMENT PAGING DRUM CHAMNFL ADDRESSS
INTEGER CHANNFLS
COMMENT PAGING PDRUM CHANNEL WORD COUNTS
INTEGER CWORNCOUNTS
COMMFNT DRUM RrEAD/WRTITFE COMTROL RESGTSTFRS
INTFGFR RWe
COMMFNT DRUM RHUFFFR REGISTrERS
INTFGFR NARS
COMMENT DRUM ACTIVF INDTCATORS
INTFGFR DACTYS
COMMENT COMMAND MEMORY AND RFLATED RFGTSTFRSS
INTFGFR ARRAY COM({N,e15391,4421%
COMMENT COMMAMND MEMORY ADDRESS REGISTERS
INTFGFR SECS
COMMENT COMMAND MEMORY BUFFER REGRISTERS
INTEGER ARRAY COMMAND(14:42)%)
COMMENT SURREGISTERS OF THe COMMAND WORDS
INTFGFR COMrs
INTFGFR COMRWCS
INTFGEFR COMCHAMNS
INTEGER COMEGES -
INTEGER COMFIRSTWORDS
COMMENT DRUM BUFFER STATUS RFGISTFRS
INTFGFER RS9
COMMENT INTERRUPT{DRUMPAGF4S
INTEGFR INTFRRUPTHPS
COMMENT MAIN MEMORY PAGE WHICH INTERRUPT OCCUREDS
INTFGFR PAGTNTS
COMMFNT INTERRUPT(PAGF)S
INTEGFR TNTFRRUPTPGFS
COMMENT CURRFNT PAGF ANNRFeSS
TNTFGFR PCS
COMMENT WORD COUNT OF THF PAGES
INTFGFR COUNTS
COMMENT PAGE TRANSFER DIRFCTIONsN WHEN NO TRANSFERs1 WHEN DRUM TO MEMORY.
2 WHEN MFMORY TO DRiMsd WHEN ERROR OCCURSS
INTEGER PTRANS
COMMENT PAGE TRANSFFR COMP{ETF WHEN 1%
INTFGFR PAGFTS
COMMENT PAGEF POSTING INDICATORS
INTFGER POSTS
COMMENT COUNTER FOR THF NUMRBFR Or PARALLFL PROCESSFSS
TNTFGAER NPPRNACESSS
FORMAT FT (1+ %% TRANSEFR 2 PASRE EARXRXXXAXEEXRXFEXEFERRENR L A73,2)1 5
FORMAT F2(X8 J'PAGF-NFECOTPTORSE IN OCTAL's Ale3)%
FORMAT Fa({ X59T2489X729T104Rs X229 T10,8y Ale11%
FORMAT F4 (t COMMAND TN NCTAL =ty T10,8sA141)5%
FORMAT F20(X8 ot LISTHFADS TN OCTAL'y Al,.31%

87

FORMAT F21 (X5+124X25110,8s Al,218
FORMAT F22(X8 +! CHANNFL COMMANMD WORDS IN OCTAL'sA1.43)%
FORMAT F11 (Fetx 2 % STMULATION INDUT * % % 15A4,4)%
FORMAT F12 (Fyt% % x STMULATION OUTPUT * % % . A&,4)8%
LOCAL LARFL LASTS '
LOCAL LARFL JNINTS
LOCAL LARFL FINTSHS
COMMENT TNITIALTZF COUNTFR' S
1= 1 %
COMMENT INTTIALIZE THF MAINM MEMORYS
FOR MAR=0 STFP 1 UNTIL 62 NO REGIN
COMMENT THE I~TH PAGE CONTAINS ALL 1'SS
FOR CNUNT=0 STEP 1 UNTIL 7 DO
MFMIMAR s COUNT)= MARS
FNDS
COMMENT INITTIALIZE THF COMMAND MrMORY FOR PAGING OUT $
COMMENT COMMANNS ARF TO WRTTF 8 PAGESIPAGF 32+33+34935436937438439 &
FOR SFC=N STEP 1 UNTTL 7 nO
COMISECs1) = RENRSLLXQENRALLBARD + 4ER + SEC %
COMMENT SET UP FIRST WORD IN THE COM MEMORYS
FOR SEC=0 STFP 1 UNTIL 7 DO COM{SECs2)= 32 + SFECS$
COMMENT SET UP LINKAGES FOR THF PAGE-DFSCRIPTORS IN THE DAGE ~TABRLES
PAGETABLF (37,1)=
PAGETARLE (31,1)=
PAGFTARLF (3441)=
PAGFTARLF (35,1)=
PAGFTARLFE (38,19 =
PAGFTARLF (3741 =
PAGFTARLF (38,11=
PAGFTARLF (30,1)=
FOR PARR = 32 STEP 1 UNTIL 20 nO
COMMENT ROW = 1 WHFEN WRTTF $
PAGETABLE(PADRy2) = 8%%¥3%4 + (PADR-32)#(8%%2)%2 4+ B*%2%
COMMENT INITIALIZATION OF LISTSHEAD MEMORY TO ENTER GETPAGE %
COMMENT PUT 8 DAGES IN 8 SeCTOR QUEUE $
FOR SECTORS = 0 STFP 1 UNTIL 7 D0
LISTS{SECTORSY = 0 %
COMMEN T 333030336963 3636 9 363 30 M35 90 30 F 6 I I 35 3696 I 36 26 36 26296 06 36 3 3690 96 30 N 26 6 XX X XXX ERERERXE
START .e WRITE(F111%
COMMFNT PRINT TITLFS
WRITF({ F223%
FOR SFC =0 STFP 1 UNTIL 7 DO
WRITE(SECs COMISFCsl)ls COM{SECs2)9sF2)$
COMMFNT PRINT TITLFS
WRITF(F11)5%
COMMENT PRINT TITLES
WRITE(F2)%)
FOR PADR = 32 STEP 1 UNTIL 39 nG
WRITE(PADRSPAGETARLF(PADRSI) /{(8%%7)%2) yPAGETARLE(PADR2) 9F31 6
COMMENT PRINT TITLRS
WRITE(F11Ys
WRITFIF2M g
FOR SFCTORS = 0 STFP 1 UNTIL 7 DA
WRITE{ SECTORSs LISTS(SErTORS)s F21)4
CWARNSF(CT=m] &
COMMFNT PAGING NRUM CHANNFL OPFRATINNS START HFRES
PNRre e PAAFT=1%
IF PAGEY! EQL n THEN GOTO PDCS
LO0ee PAGET=N%
COMMENT SET PAGE TRANSFFR INDICATORS
NPPROCESS =2%

D220003$2000
P A ARPAN AN

http:XSI29X2,IlO.89

88

CWORDSECT= CWORDSECT+1$
COMMENT CHECK TF 8 MM PAGE< HAV” BEFN TRANSFERRED BY THE PDC %
TF CWORNSFCT FQL R THFN GOTC LASTS
COMMFNT PRINT TITLF%
WRITE(F12})%
COMMFNT ORTATM A CHANNFL ~OMMANN Nan%
SEC=CWORNSFCTS
COMMENT INPUT FROM CARD IS A COMMANn WORDS
COUNT=0%
CWORDCOUNT=04%
WRITE(F1)S
COMMAND{11=CNM{SEC»11%
WRITF{ COMMANM{YI)s F4)E
COMMAND (2)=COM{SFC+2)8
COMMENT
WRITF(t FIRSTWORD = 'y COMMANN(Z2))S
COMMENT DECODING A COMMAND WORD aND PUT THE CONTROL INFORMATION
INTO THF APPROPRTIATF RFGTSTFRSS
COMC=FIDA(2041 s COMMAND(1Y) S
COMMFNT INDICATE A PAGF HAS BEEN SWAPPED WHEN 1%
DACTV= COMCS
COMRWC=FLDA{2191»COMMAND(1)})S .
RW= COMRWCS
COMCHAN=FLDA(22+8,COMMANN{1))S
CHANNEL = COMCHANS
COMPGE"FLDA(10969C0MMAND(11)5
MANRZRLOCK=CNMPGFS
PAGEPOST = COMPGES
WRITF(! PAGFPOST 1 4PAGFPNST)S
COMMENT DATA TRANMSFFRS
COMPTRSTWORD = COMMAND{?)%
COMMENT TRANSFFR THE FIRST WORD OF A PAGE To THE DRUM BUFFER REGISTERS
DRR=* COMFIRSTWORDS
WRITE(? CHARNFL = 'yCHAMNMFL)S
IF RW EQL 1 THEN BEGIN
WRITE(tWRITF OPFRATIONsRW= tpW)S
COMMENT OUTPUT FIRST WORN TO DRUMS
WR 1 TE(Y TS T R RSP I TN IR R A i X2 Y] EMCRY TO DRUM! 1%
COMMENT FOR WRITE OPERATIOM THFE FIRST WORD IS ALRFADY IN THE BUFFER
REFORE FNTFRING Tuf WRITF LOOP &
WRITE('WORD COUNT =ty COIINTYIS®
WRITF{!' DRR= 1,4DRR)S
PORUM{ CWORNSECT s CHANNEL 30) = DRRS
EMD FLSF
WRITF(+ RFAD OPFRATIONs RW= ',RW)S$
COMMENT PARALLFL PROCFSS &TARTS HERES
WRITE{(* *¥* DRUM REAN/WRTTE SURSEQUENCE *%%¥1)3
FORK o4 NPPROCESS =NPPROCFeS -1%
COMMENT
WRITE(tNPPROCFSS=1,NDPROFFSS)S
COMMENT RRANCH TO ANOTHFR PPOCFESS
IF NPPROCESS NFQ 1 THEN ~0 TN L10s
COMMENT CHFCK DAGF SWAP TMNTCATARS
IF NDACTYV FOL 1 THFN ~ROTO L1S
PAGFI=1%
PTRAN=0%
WRITE(tPTRAN=14PTRAN)S
GOTO JOINTS
L3 «s PAGINT=MANR2BLOCKS
INTERRUPTPAE=1S .
WRITF({ ' INTFRRUPT(PAGEY = 1y INTFRRUPTPGF)S

89

GOTO LOS
COMMFNT PAGF MAS NOT RFFN SWAPPFD COMFS HERES
1148 PS=208%
COMMENT RBRANMCH NUT TO WRITE.S
1F PW FNL 1 THEN o TN |Lee
MA2=0%
COMMENT
WRITF(!'RS=s T 4ASst RW= '3RWIS
COMMENT DRUM TO MAIN MEMORY TRANMSFFR{ READ BRANCH)S
Ligss TF MAZ2 FQL 1 THEN GO TO L4%
RS=1%
COMMENT
WRITF{*MA(2)=t MAD 41 RS= ¥ RSY4
LBes TF. RS FOL N THFN AOTO LES
MADRZWRD= COUNTS
WRITE(¢ INPUT WORD COUNT = ' MANRR2WRDYS
DBR = PDORUMICWORDSECT 2 CHANNFL s CWORDCOUNTYS
WRITF{ ¢ DRR =ty DRR}S
COMMENT TMPUT FROM THE PAGTNG DRUM ONF WORDS
SRR2Z2=DRRS%
RW2=RW$
MA2=1%
wRITE‘(l**************************DRUM T0O MEMORY!)$
MBRz SBR?2%
WRITF{ ¢ MRR 1, MRR)S
MEM(IMADRZ2BLOCK +MADRZ2WRND)I= MRRS
TF COUNT EQL 7 THEN aATH L7 FLSF anTO RETURNS
L7se PAGFT=1S
NACTV=0%
RETURN, s IF PAGFT FOL 0 THeN REFGTIN
COUNT= CnUNT+1%
CWORDCOUNT= CWORDCOUNT +1%
GOTO 1L1%
FND$
COUNT=COUNT4+RWS
TF COUNT FAL 7 THEN PerTN
PTRAM=RW+I®
WRITF{ftPTRAN = ¢ ,PTRANYS
GOTO JININMTS
FND
ELSE REGIN
COMMENT SFT FRPRNAR TNDICATARS
INTERRUPTDP=1%
PTRAN=3%
WRITE{tPTRAN =1, PTRANIS
GOTO JOINTS

FNDS
COMMENT MATIN MEMORY 70 DREM TRAMSFER [WRITF BRANCHYE
LB5¢a MAZ=0%

IF MAZ FQL 1 THEN cOTO Le%

RW2= RW$%

MADRZWRD= COUNT+1$%
WRITF{ ' WORND COUNT = ¢, MADBRPWRDYS
MA2=14%
LBes MAZ=0%
IF MA2 £OL 1 THEN GCTO La$
LGee RS =1%
COMMFNT DATA TRANSFFRS FROM MFMORY AUFFER TO DRUM BUFFFRS
SRR?= MEM({MANRIRLOCK yMANRPWRNYS
WRITF{t*SRR? =1,45RR2)8
WRITF(¢ ARFREAFRFXRRIHLFRARXRH XXX R XB AR XXX RZXRERXXMEMORY TO DRUMI IS

90

PBR=SRR2%¥
URTITF{INRR= ¢ ,NHARYIS
PORUME CWORDSFECT s CHANNFL s CWORDCAUNT) = DRRS
COMMENT IN THE WRITE OPERATION THE WORD COUNT DOES MNOT INCLUDE THE
FIRST WORD OF THF PAGE. IF EXACTLY 7 MORF WORDS (0-8)
WERF WRITTENs AN NTIRE PAGE WILL BF COMPLETELY TRANSFFRRFND$
TF COUNT EQL 6 THEN GNTO. L7 ELSE GOTO RETURNS
COMMENT MFMORIES UPDATING SURSEQUENCE STARTS HERES
L10 ,e SFCTORS = SFECY]
WRITE(' »%x MEMNORIFS UPRATING SURSFQUENCF ##tx1)4
PTL= LISTS{SFCTORSYS
PTLFP=FLNA{244+64sPTL)S
PTLLP= FLDA(30464PTLIE .
COMMENT - FOR EMPTY QUFUFEs <FT PARE SWAPPING TNDICATORS
1F PTLFP FQL 0O THFN RFGIM
COMC=0$
GOTO L13%
ENDS
COMMENT GETTING A PAGES
Kleo PTSEM}=0S
TF PTSEM1 FOL 1 THEN GOTn K1%
PTSEM2=1%
COMMENT PUT Tt LTST HFANR INTO RFGTISTFR APTLS
GPTL=PTL%
rPTLFP-PLDA(?4:6;PPTL)$
GPTLLP= FLNA(30+6s6:PTLYS
WRITE(IGPTLIFEPYI= V2 GPTLFP, Y GFTLILP)=ry GPTLLP?)S
PANR=GPTLFPS
PC= GPTLFPS
COMMENT GET A PAGE DESCRIPTOR FROM THE PAGE TABLE MEMORYS
"PTR2(1)= PAGFTABLF(PADRY1YS
PTRZ2(2)1= PAGFTABLE(PADR)S
PTR2CH = FLDA{174+8,PTR2(2))8
WRITEL * CHANNEL = ty PTR2CHYS
DTRPSFC= FLDA(Z2G+44PTR2(2Y18
WRITE(' SECTNR = ty PTRHSFCY S
PTRPROW= FLDA(?9314PTR2 (2435
PTR?LR= FLOA{?2:8sPTR?{1)3} %
PTR2LF= FLRA(RsAsPTRY(1948
GPTLFP= PTR2LFS
COMMENT TRANSFER THFE UPDATED L18T HFAN TO PTLS
PTL = GPTLS
PTSEM2= 0%
COMMENT STORE THE UPDATER LISTHEAD TO THF LLISTS MEMORYS
LIB . IF SECTORS GTR 18 THFN GOTO LASTS
LISTS(SFCTNRS Y= BTLS
COMMENT SET UP A CHANNFL FOMMANN WORDS
CoOMC=1%
COMPGEF=P(CS
COMCHAN=PTR? CHE
COMRWC= PTRIPROWS
COMMAND (1Y = COMCHERXELCOMRWCH4XR X ¥4 LCOMCHAN® X %24 COMPGFS
IF PTRZROW EOL O THFN GOTO L1Z3%
COMMENT WRITE NNTO DRUMS
Lil,s MAZ2= 0%
IF MA2 FQL 1 THEN GOTO L11%
RW2=1%
COMMFENT SeT UP MAIN MFMORY ADDRESS RFGISTERS
MANRIA| Nri= OrS$
MARRSWRN= NS
MAY=1a

91

L1272 ¢¢ MA2=0%
IF MA2 EQL 1 THEN GOTO L12%
COMMENT SET UP THE FIRST DATA WORD IN THE COMMAND REGISTERS
MBRz MEM(MADRPRLOCK N} S .
SRR?2= MBR%
COMMAND(2)= SRR2%
COMMENT PUT THF NEW CHANNcL COMMAND WORD INTO THF COMMAND MFMORYS
L13e¢s COMISFCsTY= COMMAND(1YS
COMISECs 2 1= COMMANDI(2)S
WRITF{ COMMANNI1Yy F&4YE
COMMENT THIS IS TO TEST THr PUTPT AND LOADPAGEDFSCRIPTOR ROUTINFS
PAGET = Ng
POST = 1%
L14ee IF PAGFI FOL 1 THEN mOTO JOTINTS
IF POST FQIL N THFN GNTO 1L 14%
COMMENT LOAD PAGE DESCRIPTOR SEQUENCE STARTS HERES
K2 o6 PTSFM] = 0«
1F PTSEMT FQL 1 THFMN GOTH K2$
PTSFM?2=1%
COMMFNT GFT A PAGF DFRCRTDTORS
PADR= PAGFPORTS
PTR?2(1)= PAGETARLF({PANR,1)S
PTR2(2)= PARETARLF{PANRy2)S
COMMENT FREF TWF PAGF-TARLF MFMAORYS
PYSEMZ2=0%
PTRZSEC= FLDA(25444PTR2{2>)1) %
EFCTORS= PTRP2SFCS
PTL= LISTSISFCTORS)S
PTLFP= FLDA(P&36+PTLYS
COMMENT BRANCH TO PUT HTF PAGF nN NDRUM IF QUEUE IS EMPTYS
IF PTLFP NFQ 0 THFN GOTO K3%
COMMENT GFET THF NFXT CHANNEL COMMAND WORNDS
GF(C= SFCTORSe
COMMAND(1}= NM{SFC+1)%
COMMAND{2)= COM({SFCe2)%
IF COMC FQL 0 THEN REEIN
BC= PAGFPOSTS
WRITF('PCty PCHE

PAGET = 1%
GOTO L1Sss
FND$

COMMENT PUT A PAGE BACK Tn THF &ECTOR QUEUE ON THE PTM %
K2, PTSFM1=Ng

1F PTSFMY FOL 1 THFN G0OTN K3%

DPTEEM2=1%

GPTL= PTLS

GPTLFP= FLNA(244A4PTL)S ‘
COMMENT IF THF SECTOR QUFYF IS FMPTY THE CURRENT PAGF RECOMES THE FIRST

DAGE (FRONT OF THc QHFUFRYS

IF GPTLFP FQL 0O THFN BFG&TN

GPTLEP = PAGFPDSTS

GPTL = GPTLFP*8%%2 + FLDAL30+6,GPTLYS

GOTO X4%

ENDS
COMMENT TNSFRT THFE NFEW PAGe AT THF RFAR OF AN NON-EMPTY

LIST OF PARF SFSCRIPTORS:

GPTLLP= FLNA(3N6:GPTLYS

PANR= ~DTI | P&

PTR2?2 (1)Y= PAGFTARLF(PANR41)}S

PTR?{2)= PAGETARLE(PANR,21%
COMMENT UPDATF A PARF NFSrDTIPTORS

92

PTR2LF= MOD{ PTRZ(1)+2%%281%)
PTR2LB = PTR2(1) - PTRZLF¥* 2**?8 5
. PTR2(1)="PTR2LR + PAGEPOST®2%#%52%’
PAGETABLF(PANRy1)= PTR2{1)$%
PAGFTARLF{PANRs2}= PTRZI2)S
COMMENT GFT THF PAGE DESCRIPTOR OF THF POSTED PAGES
Khee PAPR = PAREPOSTS
PTRZ?2(1)= DAF#TARLF(D&DR;1)%
PTR2{2)1= PAGFTARLF(PANR,2}S
COMMENT LFT TuF BACKWORD POINTER POINT TO THE REAR OF
THE LIST OF PAGE NFSCRIPTORSS
PTRZLR= GPTLLPS
COMMFNT GROUNDING A LIST $
PTR2LF =0%
PTR2{1Y= GPTLLP*2¥%285%
COMMENT RETURN THE NEW PAGE DESCRIPTOR TO THE PAGE~TABLE MEMORYS
PAGFTARLF(PAMR,1 Y= PTR2{1)%
PAGFTAR|F(PANR, 2= DTR2{2}%
COMMENT UPDATE (LTISTHFANSS
GPTELP= MONT ADTL,A¥%2Y%
GPTLFP= GPTL - GPTLLPS
GPTL = GPTLFO 4 PAPRS
PTL= GPTLS
PTESEM2=0%
COMMENT STORE [ISTHEANS
LISTSISECTORSY= PTLS
WRITE!(v SECTORS LISTHFADSY) %
WRITE{ SECTORSe LISTSI{SFECTORSIF21)%
POST=0%
PAGFT = 1%
GOTO L14%
JOINTse IF NPPROCESS FAL 0 THFN fOTO L3 FLSF GOTO FORKs
COMMFNT OUTPUT THFE UPDATFD LTISTSs
LAST4e WRTITE {F12)%
WRITFIF221%
FOR SEC = 0 STEP 1 UNTIL 7 DO
WRITE(SECs COMISECs1Ye COM{SECs2)sF2)S
WRITE(F12}S
WRITE(F215%
FOR PADR = 32 STEP 1 UNTIL 39 po
WRITF{PADRPAGE TABLE(PADR1) /7 ((8%%7)%2) PAGETABLE (PANRy2)sF3)5
WRITE(FI2Ya’
WRITF(F2N) S .
FOR SECTORS = 0 STFP 1 YynTIL 7 DO
WRITE[(SECTORS G LISTS{&FCTARSY»F21)S
IF T FOL 2?2 THEN GOTO FINtTSHS
COMMENT SET UP CHANNEL COMMAMND WORDS TO READ 8 PAGESS
I= 1418
COMMENT INITTALIZE THF COMMAND MeMORY FOR PAGING IN &
FOR SFC = 0 STEP 1 UNTIL 7 ne
COMISECes1)= B%%5+ RAX? + 4%8 + SFC $.
COMMENT INITTALTIZE PAGF-DFSCRIPTORS FOR PAGING-INS
COMMENT ROW = O WHFN RFAD «
FOR PADR = 37 STEP 1 UNTIL 39 nO
PAGFTABLF(PADR;?] = A¥¥AR4 + (PADR-IPIX(BXX21%25%
FOR SFCTORS = N STFRP 1 IIMTIL 7 NN
LISTSEISFCTORSY = 0 &
GOTO STARTS
FINISH +6 ENNS
'ASM, IS BECONF 4 NFCONF
$(1 AXRS%,

.
FILDA*

L1
L2
L3

tMAD
' XNT

93

ROUTINE FOR DECODING PAGE NESCRIPTORSsCHANNEL COMMAND WORDS
AND LISTHFADS FOR THF PAGING PRUM SECTOR QUFUFS,
FLRA{T s Js K

INPUT FORMAT xxx

LA

LA
SAsH2
A $H?
LSS50
554,
LAsl)
AN

AN
SAsH2
SS51.

J

MR

A2+ %24%T1
AQs#T 4X11
ANsLY
ADLL?

A2 20

AZs0)
Als2é

AT e¥%2,%11
AlsAQ
AlsL3
AZs0
4L9X11

FeTCR THFE WORD K
SETCH THF RIT POSITION T
GETTING RID OF UPPFR RITS

SHIFT LFFT T BIT POSITINNS
SHIFT RYIGHT T RIT POSITICNS
COMPUTF 38—~

GETTING RID OF THE LOWER 8ITS
SHIFT RIGHT 36-T-J RIT POSITINNS
RETURN TO THE ALGOL STMULATION PROGRAM

94

APPENDIX Be' LISTING OF THF SIMULA STMULATTON PROGRAM
FEEXEREEERERREEERRERELRE R E X XL EX LR XL ELLELRREERERE

FRUN AC001=11-T768+sKWOK 14100
VALGCIS PDCSTMsPDCSTM
EXTERNAL NON-RECURSIVF INTEGER PROCEDURF FiLDA $
STMIILA RFGTN
COMMFENT %¥¥A PAGTNG NRUM CHANNeL *¥xg
COMMENT FOR CONVENTENT STMULATION 48 BIT DATA WORD 1S CUT TO 36 BITSS
COMMENT FOR TESTING AND SIMULATION ON THE 1108 MEMORY.,
PAGF ST7F 12 REDUren TO R WORNS PFR PAGFE
64 PAGFES IN THF MAIN MEMORY
1024 PAGES IN THE PAGING DRUM WHICH MAS 16 SECTOR QUEUES
64 PAGFS IN A QUEYUF {(OR LIST WITH A FRONT AND RFEAR PODINTER)S
COMMENT I IS THF LOOP CONTROL VARIARLFS .
INTEGER 1%
COMMENT MATN MFMORY AND RFLATED REGISTERSS
COMMENT MATN MEMNARY®
INTEGER ARRAY MEM{QDes834NesT)S
COMMENT MATN MFMORY ADDRFS< RFGISTERS
INTFGFR MARS
COMMENT MATN MFMORY RUFFFR RFATSTFRS
INTFGFR MRRS
COMMENT MATN MEMORY READ/WRITF CAMTROL REGISTERS
INTFGFP RW2S
COMMENT MATIN MEMORY PAGF ANDRFSSH
INTEGFR MANR2BLOCKS
COMMENT MAIN MEMORY BUFFER REGISTERS
INTEGER SBR2%
COMMENT MA(2) 1S MATN MEMORY ACCESS REGISTERS
INTEGER MAZS
COMMENT MADR2{WRD) IS MAIN MEMORY WORD ADDRESSS
INTEAFR MANMROSWRNSG
COMMFENT MATN MFMORY DAGF ANDRFSS OF THE POASTFD PAGES
INTFGFR DARFPNSTS
COMMFNT PAGF~-TARLE MFMORYS
TNTEGER ARRAY PAGETABLE(NG«46331ee?)%
COMMENT PAGF-TARLE MFMNRY ADDRESS REGISTFRS
INTEGER PADRS
COMMENT PAGE-TARLE MEMDRY eUFFER REGISTERS
INTFGFR ARRAY PTR2(1402)%
INTEGER PTR2CHS3
INTEGER PTR2SFCS
INTEGFR PTR2RNWS
INTEGFR PTR2LAS
INTEGER PTR2LFS
COMMENT LISTHEAD MEMORYS
INTFGER ARRAY LISTS(0N4e.153%
COMMFENT LISTHEAR MFMORY ANNRESS KRESTSTFRS
INTFGFR SECTNARSS
COMMENT LISTHFAN MFMORY RUrFER ReEGICTFRS
INTFGFR PTLS
COMMENT POINTER THE FIRST DAGE Or A SFCTOR QUEUE IN THE DRUMS
INTFGER DPTLERS
COMMENT POTNTFR THF LAST PAGE OF A SFCTOR QUFUF IN THF DRUMS
INTEGFR DTLLDS

http:PAGETABLE(,o.63

95

COMMENT GPTL T2 AN AUYTLIARY RFEGTSTFRS
INTFGFR GPTLS
INTEGER HRPTLFPS
INTEGER GPTLLPS
COMMENT PAGE TARLE SFMAPHDORS
INTEGER PTSEM1S
INTFGER PTSEM?2S
COMMENT PAGING DRUM ANND RFLATED REGISTERS
COMMENT PAGING NRUM MEMORYs ¢
INTEGER ARRAY pDRUM(Ooolﬂ’ooo 31§00.7)$
COMMSNT PAGING NDRUM SECTOR ADNRESSS
INTFARR CWARNSECTSR
COMMENT PAGING NRUM CHANNFL ANNDRESSY
INTEGER CHANNELS
COMMENT PAGING NRUM CHANNFL WORD COUNTS
INTFGER CWORNDCOQUNTS
COMMENT DRUM READ/WRITF COMTROL REFGISTFRS
INTEGER RWS
COMMENT DRUM BUFFER REGISTERS
INTEGER NDBRRS$
COMMENT DRUM ACTIVE INNICATORS
INTFGFR RACTVS
COMMENT COMMANN MEMORY AND RFLATFD RFGISTFRSS
INTFGFR ARRPAY COM{iN.al1®974421% T
COMMENT COMMAND MEMORY ARNBESS REGTATERS
INTERFR SFFS%
COMMFENT COMMAND MEMORY RUFEFR RETGISTEFRS
INTEGFR ARRAY COMMAND(1442)5
COMMENT SUBREGISTERS OF THr COMMAND WORNS
INTEGER COMCS
INTEGER COMRW(S
INTEGER COMCHANS
INTEGFR COMPGES
INTFGER COMFIRSTWORDS
COMMENT DRUM BUFFFR STATUS RFGISTERS
INTFGFR RSS
COMMENT INTERRUPTINDRUMPAGFEYS
INTEGFR TNTFRRUPTRADS
COMMPNT MAIN M=MORY PAGF WHICH INTFRRUPT OCCURFDS
INTFAFR PAGINTS
COMMENT INTERRUPTI(PAGEYS
INTFGFR TNTERRUPTPGFS
COMMENT CURRENT PAGE ANDRFaSS
INTEGER P{S
COMMENT WORD COUNT OF THE PAGES
INTFGER COUNTS
COMMENT PAGE TRANSFER NIRF-TIONSO WHEN NO TRANSFFRs1 WHFN DRUM TO MFMORY.,
. 2 WHFN MFEMORY TO DRUMe3 WHEN FRROR OQOCCURSE
TNTFGFR PTRAMS
COMMFNT PARE TRANSFFR COMP{FTF WHFN 1%
ITNTFGFR DARFTSR
COMMENT PAGF PNSTING TNNTCATORS
INTEGER POST®
FORMAT F1 ¢ ¢+ *% TRANSFER A DAGFE % #XERXRFXRFFEFFHARFHAXXAEL , 43,315
FORMAT F2(X8 s 'PAGE-DESCRIPTOR:s IN OCTAL's Al+3)S
FORMAT F3l X5+412484XZ2+11Nne8s X2 11048y Alel)S
FORMAT F4 (t COMMAND TN OCTAL ='s T1N,8+41s1)%
FORMAT F20{ XA o1 LISTHFADS IN.QCTAL s Al,%)}%
FORMAT F21 (XS5+]124X2471N,8s Al ,11)%
FORMAT F22{Xa ! CHANNFL COMMAND WORDS IN OCTAL'sAl.31%
FORMAT F11 (Fati ¥ 3 STMULATTION TNOUT ¥ ¥ # V1 4A8,4]%

96

FORMAT F12 (Est® % % STMULATION“OUTPUT * % % 33A444)%
LOCAL LAREL LASTS =
LOCAL LAREL FINISHS
LOCAL LABEL L3$,
COMM £ NT #%%E%XXEH%KX0HAFEHEEERFEXEERE TSI st 2o s it Lot s L2l LT S LN
ACTIVITY LFFTS

BEGIN
WRITE(t **% FTRST PROCFS< OF THE PARALLEL PROCFSS *%¥% t)%

WRITFI ¢ IN LFFT TIMF 1S % % % 1 ,TIMEYS
COMMENT CHECK PAGF SWAP INDICATHARS
IF PDACTV FOL 1 THFN GOTH LIS
DARET=1%
COMMFNT
WRITE(IDACTV = TeMACTVeIPAGFTI= t4PAGFT)S
PTRAN=0S
WRITE({*PTRAN=1,PTRAN}S
HOLD{5,0)%
WRITE(' IN LFFT TIMF 15 % % % 1,TIME}S
TERMINATE(CURRENTYS
COMMENT PAGE HAS NOT BEEN SWAPPFD COMFS HERES
Lles RS=0%
COMMENT RRANCH COUT TO WRITF.S
IF RW FQL 1 THEN GO TO Ls$
MA2=0%
COMMENT
WRITE('BS= ',RSs" RW= ,RW)S
COMMENT DRUM TO MATIN MEMORY TRANSFFR({ READ BRANCHYS
Légs IF MAZ2 FQL 1 THEN GO TO L4$
RS5=1%
Lées IF BS EQL 0O THEN GOTO L6%
MANR2WRD= COUNTS
WRITF(* TNPUT WORD COUMT = * MANR2WRNDIS
DBR = PDRUM{CWORDSECT s CHANNFL s CWORDCOUNT) S
WRITF(t DRR =ty DRRYS
COMMENT INPUT =ROM THF PAGTNG DRyYM ONF WORDS
SAR2=DRRE
RW2=RWS$
MA2=1%
WRITE(1 AXRZAXEXXRENEREXERXERE X BXHRUM TO MEMORY 1S
MRR= SBR2%
WRITE({ * MBR ty MBRRI)S
MEM({MADR2BLOCK yMADRZWRD} = MBRS
IF COUNT EQL 7 THEN RGN
PAGFI = 1%
DACTV=08%8
ENDS
L7 ee 1f PARFY FAL 0 TueN REGTN
COUNT= CHINT+1%
CWORDCOUNT= CWORDCOUNT +1%
GOTN L%
ENDS
COUNT=COUNT+RWS
IF COUNT EqQL 7 THEN ReGIN
PTRAN=RW+1%
WRITFI'PTRAN = 'sPTRAN)S
HOLD{ 220,05
WRITF{ ' M LFFT TIME 1S % % % 0, TIMF1%
TERMINATE(CUIRRENTIS
GOTO L3t
FND
FLSE RFGIN

-

COMMFNT SFT ERROR INDTCATARS
INTFRRUPTDD=1%
DTRAN=zZ3%
WRITE('PTRAN =ty PTRANIS
BOLN{320,018%
WRITF{ t IN LFFT TIMFE IS % % % t,TIMFS
TERMINATF{ CURRENT)S
GOTOH L3%
FNNRS
COMMENT MAIN MEMODRY TO DRUM TRANSFFR WRITE RRANCHYS
L54s MA2=0%
IF MAZ2 EQL. 1 THEN GOTO t.&%
RW2= RWS$
MADR2WRD= COUNT+1%
WRITE(' WORD COUNT = 'y MADRZWRDYS®
MAZ=1%
LBse MA2=0%
IF MAZ FQL 1 THFN GOTO La$s
LQQ. BS =1$ }
COMMENT DATA TRANSFERS FROM MEMORY RUFFER Tn DRUM RUFFFRS
SRR2= MEMIMANRZBRLOCK MANDIWRND &
WRITF{ISRR2 =1 ,4,SRR2)% ’
WRITE(1¥FXEXEXRERXERERARFRNR A XK XXX BRRFXAR AL EXRXEXMEMORY TO DRUMIS
NRR=SAR?2S
WRITF('DRR= 1t ,NRR)S
PODRUMICWORDSFCT s CHANNFL s rWORDCAUNT Y= DRRS
COMMENT 1IN THE WRITE OPERATION THE WORD- COUNT DOES NOT INCLUDE THE
FIRST WORD OF THF PAGF, IF FXACTLY 7 MORF WORDS (0-6)
WERE WRITTENs AM e©NTIRE PAGE WILL BE COMPLETESLY TRANSFERRFDS
1F COUNT EQL 5 THFN Re TN
PAGFT = 1%
NACTV= 0%
ENDS
GOTO L7 %
COMMENT THE SECOND PARALLFi PROCFSS STARTS HERFS
COMMENT CHECK "IF THE READ/WRITF LOOP NFEDED.S
ENDS
COMMENT **$
ACTIVITY RIGHT %
REGIN
WRITEL ¥ IN RIGHT TIME g Y,TIME)S
COMMENT MEMORIFS UPDATING SsURSFQUENCE STARTS HERFS
L1080 44 SFCTORS = SFCS)
WRITE ({1 *%% MFMORIFc UPDATINA SUARSFQUENCF *¥x%1)3%
PTL= LISTSISFCTNRY®
PTLEP=FILDA(2446sPTLIS
BTLLP= FLNA(2O46sPTLAS
COMMFNT FOR FMPTY QUFUFs <FT PARF SWAPPING TNNICATORS
TF PTLFP FOL O THFN AFGIM ’
COMC=0%
GOTO L13S
ENDS
COMMENT GFTTINAS A PAGFS
Kleo PTSFM1=0%
IF PTSFMI FQL 1 THFN &0TA K1%
ETarMo2=1%
COMMENT PUT THF LTST HFAD INTA oFGTSTFR GPTLS.
AP TL=PTL®
CPTLFP=FLNA{ P46 sGPTLYS
GPTLLP= FLOHA(ANIAAPTLYS
WRITE{'GPTLIFP=)*t4GPTLFP,! GPTL{LP)=1, GPTLLP)S

http:PTLFP=Ft.OA

98

PADR=GPTLFPS
PC= GPTLFPS%
COMMENT GET A PAGE DESCRIPTOR FROM THE PAGE TABLE MEMORYS
PTR2(1)= PAGFTABLF(PADR.11S
PTR2{2Y= PAGFTARLE(PADR32)S%
PTR2CH = FLDA(1I798sPTR2{21)S%
WRITE(v CHANNEL = 1, PTRPICHIS
PTR2SEC= FLDAI28504+PTR2(2)3S
WRITF(¢ SFCTNR = 4 PTR2SFCYS
PTR2ROW= FIDA(2G41,,PTRO(2))S
PTRZLB= FLDA(2:69PTR2{118
PTRZLF= FLDA(8+6sPTR2(1145
GPTLFP= PTRZLFS
COMMENT TRANSFRR THE UPDATED LIST MEAD TO PTLS
2TL = GPTLS
PT&FM2= 0%
COMMENT STORE THE UPDATED LISTHEAD TO THFE LISTS MEFMORYS
L1%0e LISTS{SFCTORSY= PTL®
COMMENT SFT UP A CHANNFL ~OMMANM WORDS
COM=14%
COMPGRF=P(SE
COMCHAR=PTR2CHS
COMRWC = BPTDIROWT
COMMAND (11 = COMCX8#%X54+COMRWCR 4 X3 X4 +COMCHANXBE %24 COMPGES
IF PTR2ZROW EOL O THEN GOTO L13%
COMMENT WRITE ONTO DRUMS
1110 MA2= 0%
IF MA2 FQL 1 THFN GOTO L1118
Rw2=1%
COMMFNT SFT UP MAIN MFMORy ANDRFESS REGISTFRS
MADRZRLOCK= PCS
MADRR2WRD= 0%
MaAZ=1%
L1? se¢ MA2=0%
IF MA2 EQL 1 THEN GOTO L12%
COMMENT SET UP THE FIRST DATA WORD IN THE COMMAND REGISTERS
MARR= MEM(MADRZBLOCKsD1S
SBRZ2= MBRS
COMMAND({2)= §RR?2%
COMMENT PUT THF NEW CHANN=L COMMAND WORD INTO THE COMMAND MEMORYS
L1%se COMISFCs1)= COMMANN{1YS
COMISECs?)= COMMAND(2)S
WRITEL COMMANR{1)s F4)S
COMMENT THIS IS TO TEST THr PUTPT AND LOADPAGEDESCRIPTOR ROUTTINES
DAGRFT = 0%
POST = 14
Lléoe IF PAGEI FQL 1 THEN REGIN
HOLD (501§
WRITE{ * IN RIGHT TIME 15 'y TIME)S
TERMINATFE (CURRENTYS
FND$
POST= 1%
IF POST FQL N THEN GOTO 1 14%
COMMENT LOAD PAGE DESCRIPTOR SENUENCE STARTS HERES
K? ., DTSFM] = Ng
IF PTAEMI FQL 1 THFN GOTn K2%
PTSEM2=1%
COMMENT AFT A PAGFE DFSCRIPTORS
PARR= PAGFDORTS
PTRZ(1)= PAGFTABLF(PADR:1)S
PTR2({?2)= PAGFTARLF{PADR»*YS

99

COMMFENT FRFF THF PAGF-TARLF MFMARYS .
DTCEM2=N%¢
PTR2SEC= FLDA(25+44PTR2(2))8
SECTORG= PTRPSFOS
PTL= LISTSISFCTORSYSE
BTLFP= FLDA(24+64PTLYS
COMMENT RRANCH TO PUT HTF PAGE NN NRUM IF QUFUE IS EMPTYS
TF PTLFP FNAL O THFN AOTN K2%
COMMENT GET THF NEXT CHANNEL COMMAND WORDS
SFC= SEFCTORSS
COMMAND(11= COMISFCs1)S
COMMAND(2)= COM(SFCs2) S
WRITF{ COMMANND{1)sF4\$
IF COMC- EQL 0 THEN RFGIN
PC= PAGEPOSTS
WRITF{ 1PCry PCY S

PAGFT = 1%
GOTO L15S
FMNDS

COMMFENT PUT A PAGF RACK Tn THF SFCTOR QUFUYF S -
K3,¢ PTSEM1=0%
IF PTSFMI FOL 1 THFN GOTH K25
PTSEM2=13%
GPTL= PTLS
GPTLFP= FLDA(24464GPTLYR)
COMMENT 1T THF SECTOR QUFUEF 15 FMPTY THF CURRENT PAGE BECOMES THE FIRST
PAGF (FRONT OF Turs QUFURYS
IF GPTLFP =QL D THEN RFETM
ADTLERD = PARCDONSTS
GPTL = CGPTILFOXRERD 4 FLMA(R046,6PTLI®
GOTH ¥4
FNNS$
COMMENT INSERT THE NEW PAGE AT THE REAR OF AN NON-EMPTY QUEUES
GPTLLP= FLDA(30s64GPTLYS
PADR= GPTLLPS
PTR?2({1)= PAGFTARLF(PANRs1)S
PTR2(2Y= PAGFTABLE(PADR,2)S
COMMENT UPNATE A PAGF NFSCRIPTORS
PTRZLF= MOB! PTR2(1}),2%%28)%
DTR?LAR = PTRO2(1) ~ PTR?lLc*® 2x%2R g
PTR2{1)= PTR2LR 4+ PAGFEDPACTHIXRXIDS
PAGETARLE(PARRS 1)Y= PTR?2 (1%
PAGFTARLF(DAMR, 2}z DTRO2(5)%
COMMFENT GFT THE PARFE NESERIPTOR OF THFE PQSTFD PAAFS
K4ee PADR = PAGFPOSTS
PTR2(1Y= PAGFTARLF(PANR,1)S
PTR2{2)= PAGFTABLF(PADR,»2)S% .
COMMENT LET THF BACKWORD POINTER PAINT TO THE REAR OF THE QUFUES
DTR?LR= GPTLLD®
PTRZLF =0%
PTR2{1Y= GPTLLP¥2¥%¥28%
COMMFENT RFTURN THF NFW PARF DFSCRIPTOR TO THE PAGF~TABRLE MFMORYS
PAGFTARLF{DPANR,1)= PTR2(11%
PAGFTARLF(PANR,2)= PTRZ (%)%
COMMFNT UPNATF LTSTHFARSH
GPTLLP= MON{ r~PTL,R%¥%21%
GPTLFP= GPTL - GPTLLPS
GPTL = GPTLFP + PADRS
PTL= GPTLS
PTSEM2=0% '
COMMENT STORE LISTHEANDS

http:COMMAND(1).F4

100

L1STS(SECTORSY= PTLS
WRITF(SECTORS LISTHEARSY)S -
WRITEL SFCTORSs LISTSISFrTORS)F2118
POCT=NR
PAGFT = 1%
GOTO L14%
FNDS
COMMENT 0 I T IR IE I IS IEIIE I MG RN R TN IR RN XX
COMMENT MAIN ACTIVITY STARTS HERE &
COMMENT INITIALIZE COUNTFR §
1= 1 % .
COMMENT SET UP LINKAGES FOR THf PAGE-DESCRIPTORS IN THE PAGE ~TABLES
COMMENT INITTALIZE THF COMMAND MFMORY FOR PAGING OUT $
COMMENT COMMANDS ARF TO WRITE 8 PAGFS.PAGE 32+33+34+35+356937438+39 8
FAR SFC=N QTEP T UNMTIL 7 N0
COM{SFCs1)= REAGLARAFRALARED 4+ 4¥R 4 SFC %
COMMENT ONLY CHANNEL 1 1S ACTIVATE IN THE RUNS
DAGETABLF {(32,1)=0 5
PAGETABLF {33.1)=
PAGETARLE (34,1}=
PAGFTARLF (3551)=
PAGFTARLE (3As1})=
PAGETABLE (37+¢1)=
PAGFTARIF (38,1)=
PAGFTARLF (39,1)=
FOR PADR = 32 STEP 1 UNTIL 29 nO
COMMENT ROW = 1 WHFN WRITF $
PAGETABLE(PADR2) = 8¥#3%4 + (PADR—=IZ)H{(BAXD) %2 + BEX2S
COMMFENT TNTTTALIZATION O LISTSHEAD MFMORY TO ENTER GFTPAGE $
COMMENT SFT UUP FIRST WORn IN TuF COM MFMORYS
FOR SEC=0 STFP 1 UNTIL 7 DO COMISECs2}= 32 <+ SECS
FOR SFCTORS = 0 STFP 1 UMTIL T DO
LISTS{SFCTORSY = 0 %
COMMFNT PUT 8 PAGES IN B SeCTOR QUEUE %
COMMENT INITIALIZE THE MATn MEMORYS
FOR MAR=(Q STFP 1 UNTIL 62 DO RFGIN
COMMENT THF T-~Ti4 PAGE COMTATINS ALL T'SS
FOR COUNT=0 STEP 1 UNTIL 7 DO
MEM(MAR,COUNT Y= MARS
ENDS)
COMMENT 3#3# 33 531603 R IR £ B X0 IR R LT R R X NERERREE R ER AR EFEXREERXRERELRRS
COMMFNT PRINT TITLES
START oo WRITF! *11)8
COMMENT PRINT TITLES
WRITE(F22)%
FOR SEC =0 STFP 1 UNTIL 7 DO
WRITE{ SFCs COM{SECs11s rOMISSrs2YsF3YS
COMMENT PRIMNT TITLFS
WRITE({ E2})%
FOR PAMR = 32 STFP 1 UNTTL =20 nn
WRITE(PADRsPAGETABLE(PADR 1)/ ((8%*xT71%2) yPAGETARLE(PADR,2)9F3)8
COMMENT "‘PRINT TITLFS
WRITF(F11)%
WRITE(F20)%
FOR SECTORS = 0 STEP 1 UNTIL 7 DO
WRTITE! SFCTORSs LISTS(SFrTORSYy F21131S$
CWORDSFCT=-1 %
COMMENT TIMINGR STARTS HFRES
PNCaes PAGFT=1%
IF PAGFT FQL 0 THEN RFGIM
HOILN(1,00%

OO0 Q0
PP AN AR

http:PAGFTA.LF

101

GOTO PNCS
FNND FLSF
L3 +e PAGINT=MANR2RLOCKS
INTERRUPTPGE=1S
L.Ose PAGFT=0%
CHORDSECT= CWORDSECT+1$
COMMENT CHECK IF 8 MM PAGES HAVE BEFN TRANSFERRFD BY THE PNC $
1F CWORDSEQT FaLs g THFN cg?o LAsrsﬁ.,, T
HOLPL (90,0 yg =T 27
WRITF{ t* 1IN MAIN TIMF 1€ % * % ¢, Trmﬁw$
COMMENT PRINT TITLFS e DL :
WRITF(F12})% A
COMMFNT ORTATN A CHANN=L rOMMANn wans
SFC=CWORNSFCTSY
COMMENT TNPUT" FROM CARE Iq A com»ann wnnns
COUNT=0% .
CWORDCOUNT=0% *
WRITF{F11%
COMMAND(l)-CﬂMfSEC91)$;
WRTITE(COMMEND (1Y T4y s
COMMAND (2 = cnmtsrc,2}$
COMMENT
WRITE(¢ rquTWbRo =iy, rnmuamnr2)is .
COMMENT DECODING A COMMAND WORD ANB PUT THF CONTROL TNFORMATION
INTA TIE APPRAPRTATF RFGTSTFRAR
COMC=FLNA[2041+COMMAND(14}S
COMMFENT INDICATE A PAGF HAS RFFN SWAPREFD WHEN 1%
NDACTV= COMCS
COMch-FLDAt?1,1,c0MMAnnc1)}s
v RW=s QOMRWCS: - MREN
COMCHAN%FLDA(?? 89COMMAND(1)7$
CHANNEL = COMCHANS . ed .
COMPGF-FLDAtaO;StCOMMANh(1?3%h=
MADRIRLOCK=CAMDERSG . ° .
DAGEPOST = CAMBars :
WRTTE(! PAGFROST F,PAGFPNST)S
COMMENT DATA TPENSE:RS“ L
COMFIRSTWORD =’ COMMANﬁ(st R
COMMENT TRANSEER THE 'FIRSTWORD OF A PAGF TO THE DRUM BUFFER RFGISTERS
DRR= COMFIRSTWORNDS
WRITF (' CHANNFL ‘= TyCHANNEL)YS
IF RW FQL 1.THEN BEGIN: - - .:
WRITE(. 1WRILTF OPERATION;QW-“'bRW)$
COMMENT -OUTPUT. FIRST WORN TO DRUMS
wRITE(|**MEMORY TO DRUMl)s
COMMENT FOR WRITE OPFRATIONM THE FIRST WORD IS ALRFADY TN THE BUFFER
RFFORF ENTFRING Tuf WRITF LOOP F
WRITFC ' WORN COUNT = 1ty COUNTYS
WRITF(' NBR= 1,DRR}%
PRRUM{CWORNSFECT s CHANNEL 9)= DRRS
FNM FLSF

"

a 3

-

WRITF(¢+ RFAD OPFRATION, RW= t,RW)$
COMMFNT PARALL®L PROCESS &TARTS HFRFS
COMMENT RN HFEHEREFEREEXRIERRX RN XN ER IR EX RN RRXFHR XXX R AL RXEET
HOLD (40,0}%
WRITE(' IN MAIN AT FORK TIME 1S % % * 1,TIME}S
ACTIVATE NFW LEFTS
ACTIVATE NFW RIGHTS
HOLD(1000}%
WRTITFC + IN MAIN TIMF IS 1,TIME)S
GO TO BhHC %

102

LAST.e WRTTF (F1298%
WRITEF{F22)S8 - .
FOR SEC = 0 STEP 1 UNTIL 7 PO
WRITE{ SFCs COMISECs1Y rOﬂISECQZi9P3)$
WRITE(F12)S
WRITE(F2)8
FOR PADR = 32 STEP 1 UNTTL K1) BO)
WRITE(PADRsPAGETABLE (PADR s 1) 2 (8ARTI#2) s PAGETABLE(PADRs 2} 4F2) 8
WRITF{FI2YS
WRITE{EZ20)S '
FOR SFCTORS = 0 STFP 1 UNTIL 7 DO
WRITF(SFCTORSSLISTS{SFLTARR)9F21)S
IE 1T £OL 2 THFN GOTHD FINTSHS)
COMMENT SFT.UP CHANNEL COMMAND- WORDS “TO REAN 8 PALKFSS
T= 1+1%
COMMENT INITIALIZE THE COMMAND MFMORY FOR PAGING IN § -
FOR SFC = 0O STEP 1 UNTIL 7 DO . -
COMISECe1)= BAX54 QER2 + 4%#8 + SFEC &
COMMENT TNITIALIZE PAGF-DFSCRIPTORS FOR PAGTNG-INS
COMMENT 20W = (0 WHFN RFAD ¢
FOR PADR = 32 STEP 1 UKMTIL 39 RO
PAGETARLF(PADR2) = 8%¥%324 + (DADR-3P)R{S##D)%2¢
FOR SECTNRS = 0 STERL T UNMTIL 7 DN
LISTSISFCTOREY = 0 %
GOTO STARTS®
FINISH s FND3

1ASMs IS NFCODF ¢ DFCORF
${1Y AXRE 4
» ROUTINE FOR DECCODING PAGE DESCRIPTORSQCHANNEL COMMAND WORDS
. . AND LISTHEADS FOR THE PAGING DRUM SFCTOR QUEUES-
N INPUT FORMAT #%% FLDA({IsJeK) - .
FLPA® LA AZs%34X11 o TETCH THF HORP K
LA AOs %1 ¢X11 o FETCH THE BIT POSITION' I
SAsHZ AfveLY o GETTING RID OF UPPFR RITS
- QAGKD ANgi D ® . ’ :
L1 LSS0 A240 o SMIFT LFFT 1 BIT POSITIONS
L2 55t A250 e SHIFT RIGHT 1 AT POSTITIONS
LA+U Als36 e CAMPUTFE A6=1=J
AN Als%2,X11 .
AN Al .AO . !
SAsH2 AlsL?3 e GFTTING RID OF THE LOWER BITS
L3 SsL AZ2s0 ¢ SHIFT RIGHT 36-1=J BIT POSITIONS
J 4eX11 s RETURN TO THE ALGOL SIMULATION PROGRAM
FND
TMAP

'XQT

