
(\t.

N4

UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

U (NASA CROR TMX OR AD NUMBER) tCATEGORY) tONA TEHI

0fNORMWATlONRSERViqCE'W'V crormortft.&sof
-S5 ingfiad VA 22151

L

https://ntrs.nasa.gov/search.jsp?R=19710024696 2020-03-11T22:05:53+00:00Z

TerhnialRep6rtTR455 May 1971

NGR-21002-I97

Simulation of a Paging.Drum Channel

:by

Gee-yin Kwok

This research'was smpported by Grant NGR-21-002-197

from the National Adronautics and Space 'dministration to

the Cpmputer Science Center of the University -of Maryland.

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM

THE BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING -AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

Table of Contents

Abstract

1. 	Organization

1.1 	Paging drum memorv

1.2 	rage table memojy

1.3 	Main memory

2. 	Paging-drum Channel

2.1 	Configuration

2.1.1 Memories

2.1.2 Registers

2.2 	Formats

2.2.1 Channel command words

2.2.2 Listheads words

2.3 	The handling of queues

2.3.1 Lists in the PAGETABLE Memory

2.3.2 Channel command ,words inthe COM memory

2.3.3 The Page-transfer requests

2.4 The Paging Sequence

2.4.1 Main sequence

2.4.2 Drum read/write subsequence

2.4.3 Updating subsequence

2.4.4 Request accept subsequence

3. 	An Example of Sector-Queue Manipulation

3.1 	Initial linkage of the Sector-Queues in the PTM

3.2 	Manipulation or Sectur-Queues in tne tirst drum revolution

3.3 	Manipulation of Sector-vueues during the second drum revolution

3.4 	Manipulation ot Sector-oueues during the 3rd drum revolution

3.5 	Page transter during the 4th drum revolution

4. 	Simulation by Algol

4.1 	Simulation inputs

4.2 	Simulation program

4.3 	Simulation outputs

4.4 	Discussion

5. 	Simulation by Simula

5.1 	Simulation inputs

5.2 	Simulation program

5.3 	Simulation results

6. 	Acknowledgement

7. 	References

Appendix A, Listing of Algol Simulation Program

Appendix B, Listing of Simula Simulation Program

Abstract

This report describes the simulation of a paging drumn chan-.

nel system by Algol and Simula programs on the UNIVAC 1108 in order

to ascettain the paging algorithms. The paging drum channel system

consists of five system units: paging drum channel, central procuss

ing unit, paging drum memory, main memory, and page table memory.

They are described by block diagrams and in CDL (computer design lan

guage) statements. The algorithms for the paging sequences and the

sequential operation of the system units are presented in flow charts

and described in detail.

Simulation of a Paging Drum Channel

1. Organization

A paging drum channel may be regarded as a processor which pages-in

and pages-out main memory pages. Paging-in transfers a page of words from

the drum through the paging drum channel to the main memory, while paging

out transfers a page of words from the main memory through the paging drum

channel to the drum.

Figure 1 is a block diagram which shows a part of a bomputer'sys

tem. There are five system units: paging drum channel PDC,, central pro

cessing unit CPU, paging drum memory PDRUM, main memory 1i, and page ta

ble memory PTM. Except the CPU, these system units constitute -apart of

the virtual memory that has been described elsewhere (8). This part func

tions briefly as follows. When the CPU needs a page not in the MM, it

initiates the PDC to fetch the page. The PIC generates an interrupt ;hen

the page transfer is completed or when there is an error. System units

PDRUM, PTM and MA.hare now described.

1.1 Paging drum memory (PDRUM)

The words, tracks, pages, sectors and fields on the drum surface

are shown in Fig. 2. The drum surface is divided along the circumference

into 16 sectors. It is also divided along the axis into 64 Fields. Tbe

intersection of a sector and a field is a drum page. There ar, 64 fields.

16 sectors, and 1024 pages on the drum. There are 36 tracks in each field

with one read/write head for each track. The 36 bits parallel with the

axis form a word. There are 1024 words in each page' The data is tran;

2

- Paging Drum Memory
P DRUM

paging-in

PagP Table Memory

PTM

- Paging Drum Channel-

PD1K

I -aging-out

Central Processing
Ui CMain Memory

Fig. 1 System Units of a Computer System

ferred one word at a time.

The configuration of the PDRUM is shown in Fig. 3. The PDRUN is

addressed by both registers FIELD and CWORD. Register CWORD contains two

subregisters, CWORD(SECT) and.CWORD(COUNT). CWORD(SECT) is the sector

address and CWORD(COUNT) the word address of the current drum page. There

are four single-bit registers, namely, DACTV, RW, BS, and PAGEI in addi

tion to drum buffer register DBR. Register DACTV, when 1, indicates a

request for a page transfer. Register BS, when 1, indicates that DBR is

available. Register PAGEI is set to 1 when the drum is at the beginning

of a'drum sector. The configuration of the PDRUM is'described by the CDL

declaration statements as follows:

Comment, paging drum configuration (1)

Memory, PDRUM(FIELD,CWORD)=PDRUM0-63.,0-16383,1-36)

Register, FIELD(1-6), $drum field register

CWORD(1-14), $drum field word address

DBR(I-36), $drum buffer register

DACTV, $drum request when 1

RW, $drum write when 1; else, drum read

BS, $drum buffer is available when I

PAGEI, $drum at the beginning of a sector when I

Subregister, CWORD(SECT)-CWORD(l-4),

CWORD(COUNT)=CWORD(5-14)

4

drum sector

drum page

I
- £Eiel

track

page 0 pagel

word

page 6

2304 heads

36 bits/word
64 pages/sector
16 pages/field

1024 pages on the drum

Fig. 2 Pages, Sectors, and Fields of a Paging Drum

CWORD (SECT) CWORD (COUNT)7

Paging Drum

PDRUM(0-63,0-16383,1-36)

BS

FDACTV

Fig. 3 Configuration of the Paging Drum Memry

The operation of the paging drum is shown in the sequence chart of

Fig. 4. The PDRUM, after started, tests register DACTV. When DACTV is 1,

there-is a page transfer request and the read/write control register RW is

examined. If RW is 1, a data word is transferted from the drum memory

buffer register DBR into the PDRUM which is addressed by both FIELD and

CWORD; this is called the output sequence. Register BS, when 1, indicates

that register DBR is empty. If register RW is 0, a data word is transferred

from the PDRUM to register DBR; this is called the input sequence. Re

gister BS, when 1, indicates that DBR is full., Next, the word count in

register CWORD is incremented. If a whole page has been read or written,

CWORD(COUNT) contains 0, and register PAGEI is set to 1 to indicate the

transfer being complete, and register DACTV is set to 0 to indicate that

the paging drum is ready for next page transfer. If a page has not yet

been read or written, CWORD(COUNT) is non-zero, so the read or write oper

ation is repeated, depending on the contents of register RW.

1.2 Page table memory (PTM)

The configuration of the page table memory PTM is shown in Fig. 5.

The PTM consists of a memory PAGETABLE, address register PADR, buffer re

gister PTR2, read/write cbntrol register R13, and access control register

PTSEM. When PTSEM(l) is 1, the PTM is accessable by the CPU. When PTSEM(2)

is 1, the PTM is accessable by the PDC. The configuration of the PTM is

described by the CDL statements below:

Comment, configuration of the page table memory (2)

Memory, PAGETABLE(PADR)=PAGETABLE(-63,1-64) $page table memory

start

DACTV-O
BS&-O

0 DACTV h page transfer7

(t l(page transfer request)

...- '-no

0 4TR. 1

(write)(read)

DBR-PDRkI4(FIELD,CWORD) , PDRUM(FIELD, CW0RD) e-DB]'!
BS<-1. . BS4-1

>1:

CWORD-countup CWORD

--- - io
GWORD (COUNT)

page r
transfer =0
complete

PAGE I- 1
DACT'_ 0 .

Fig. 4 Sequence Chart for Paging, Drum .4emor'.

PADR(1-6)

Page Table Memory

PAGETABLE(O-63,1-64)

PTR2(1-64)

PTSEM(l-2)

Fig.- 5 Configuration of the page, table memory

PADR(1-6), $PTM address register

PTR2(l-64), $PTIM buffer register

PTSEM(l-2), $PTM access control register

,RW3, . . $PTM read/write control

Subrejister, PTR2(CH,SEC,ROW)=PTR2(56-61,60-63,64),

PTR2(LB,LF)=PTR2(3-8,9-14),

The page table memory PAGETABLE contains 64 page descriptors which

link the 64 M pages. The information in a page descriptor is listed bulou:

(a) the current status of the page,

(b) the task which the page is or was attached to,

(c) protection bits,

(d) utilization information,

(e) the corresponding virtual address of the page,

(f) the drum address of the page, and

(g) list linkage information.

The page descriptor format is shown in Fig. 6. There are 12 fjelds

in a page descriptor. However, only fields LB, LF, DP, and ROW are ileeded

for this simulation. LB is the backward link pointing to the previou , na;we

descriptor of the list of page descriptors. LF is the foruaxd link -'-,inting

to the next page descriptor-of the list. DP is a 10-bit drum page address;

the first 6 bits of DP specifies the field address of the drum ,a' 'we

the other 4 bits of DP specifies the sector address. ROW is a rond/t.i it<

indicator. If ROW is 0, it is the read operation; else, write oneraitinI.

10

jLBj 12 IWE IF ICHOB TILFUSE REj TInjEP DP Ri
2 6 6 4 1 1 1 6 16 10 10 1

LB: backward link

LF: forward link

DP: drum address of this page

ROW: read/write indicator

Note. The other fields are not used in the simulation. See reference ""

Fig. 6 Page descriptor format

The operation of the PTM as shown in Fig. 7 starts by checking

PTSEM(2) for 1. If PTSEM(2) is 0, PTM stays in a wait loop. If PTSEM(2)

is 1, PTSEM(l) is set to 0 so that the CPU cannot access -the-PAGET-ABLE-

memory. The read/write control register RW3 is next examined. If RW3

is 1, it is the write sequence. A page descriptor is transferred from the

buffer register PDR2 in the PDC to the buffer register PTR2 in the PTM,

and the address of the PAGETABLE memory is transferred from the address

register PADR2 in the PDC to the PAGETALBE memory address ,register PADR

in the PTM. The page descriptor is then stored into the PAGETABLE memory.

If RW3 is 0, it is the read sequence. The page descriptor address is

transferred from PADR2 in the PDC to PADR in the FTM. The corresponding

page descriptor is fetched from the PAGETABLE memory into the buffer

register PTR2. Next, the page descriptor is transferred to PDR2 in the

PDC. At the end of a read or a write sequence, PTSEM(2) is set to 0 to

indicate a complete operation and PTSEM(1) is set to I so that the CPU

may access the PAGETABLE memory. The PTM then waits until"PTSEM(2)" is

set to 1 again.

1.3 Main memory (MM)

The main memory MM subsystem as shown in Fig. 8 consists of a core

memory MEM, a memory address register MAR, and a memory buffer register 'HMt.

In addition, there are control registers MA and RW2. To access Mm, the

PDC sets RW2 to 1 for a read or to 0 for a write; a memory access request

is made by setting MA(2) to 1. The configuration of the 2'4 is now descr.ibed

by the following CDL statements:

Comment, configuration of the main memory (3)

12

wait in?
Start

loop

1-

PTSEM(2)

1 	 request

accepted

PTSEM(1)<--O

PDC to Fr
 R30 TMt PVC(

P-TR24--PDR2 PADR-PADR2

PADR<--PADR2

PTR2,-PAGETABLE(PArR)

PAGETABLE"(PADR)<--PTD

PDRP2--PTR2

'It

PTSEM.(2)E-0

PTSEII()4t-1

... page descriptor

transfer complete

Fig. 7 Sequence Chart for the Page Table Memory

13

Memory, MEM(MAR)=M (O-65535,1-36)

Register, MAR(l-16), $MM address register

MA(l-3), $14M access register

READ; $read control

WRITE, $write control

RW2, $MM read/write control register

Subregister, MAR(BLOCK,WRD)=MAR(l-6,7-16)

The operation of the MM as shown in- Fig. 9 begins by examining

register MA. Whenever MA(2) is set to 1, the read/write control register

RW2 is next tested. If RW2 is 0, it is the input sequence. The NM buffer

register MBR receives data from the auxiliary buffer register SBR2 in the

PDC while memory address register MAR obtains the MM address from the auxili

ary register MADR2 in the PIC.
The WRITE control is set to 1 to initiate

a write operation into the main memory proper. If RW2 is 1, it is the out

put sequence. NM address is transferred from MADR2 in the PDC to MAR

in the MM and the READ control is set to 1 to initiate a read operation in

to the buffer register MBR. Subsequently, the out-going data is transferred

into SBR2 in the PDC, and MA(2) is clear to notify the PDC that data has

been transferred. The MM unit stays in a wait loop until NA(2) is set to

1 again.

The characteiistics of the 11M and the PDRUM are summarized in

Table 1. So far we have described all the system units except the PDC

which will indeed tie up all the units and perform paging.

14

" . MAR(1-16)

Main Memory

MEM(O-65535, 1-36)'

O R (o-36) i

Fig. 8 Configuration of the Main Memory

start waiting Too

r0 7
j -b---,o

-

E MA(2)

request accept

0!

(input to the MM) ... -(readfrom the ,M).

""RF D+1~WIRITE'-

roI
2

RW2AR*-MAD

_____________.....~...--

word
transfer
complet e.

Fig. 9 Sequence Chart for 'Plain Memory Operation

-16

Table 1 Characteristics of the Main Memory and the Drum Memory

Characteristics Main Memory Drum Memory

memory cycle time 1 microsecond 10.001 microsecond

Idata transfer width 36 bits or 1 word j36 bits or 1 word*

(a) 36 bits per word (a) 36 bits per word

data units (b) IK** words per page 1(b) 16 pages per field

(c) 16-K bits per track

(d) 64 bands

memory capacity (a) 64 K words (a) 1024 K words
" _ _ _ _ (b) 64 pages (b) 1024 pages

word address: (a) 'field address: 6 bits
address register 16 bits (b) sector address: 4 bits (c) page address: 22 bits

(d) word address: 10 bits

-* there are 36 read/write heads per field

** K represents a multiple of 1024

17

2. Paging-drum Channel (PDC)

The paging drum memory PDRUM which provides the backing storage

of a virtual memory system is controlled by the PDC. A page of words is

transferred from the PDRUM through the PDC to the main memory AM when the

CPU needs a missing page, or a page of word is transferred from the Ni

through the PDC to the PDRUM when the CPU needs the space of a page for a

new page. This section describes the configuration of the PDC, and the

formats of the channel command word and the listheads for 16 sector queues

in the PTM. It also describes the handling of the lists and queues in the

page table memory both by the CPU" and by the PIC, and the paging se

quence,which ,consists of a main sequence, a drum read/write subsequence,

an updating subsequence, and a request-accept subsequence.

2.1 Configuration

The configuration of the PDC is shown in the block diagram of Fig.

10. There are two memories. Memory CON with address register SEC and

buffer register COMMAND has a capacity of 16 52-bit words. Memory LISTS

with address register SECTORS and buffer register PTL has a capacity of

16 12-bit words. Register PAGINT contains the 10i page which causes the

interrupt. Register INTERRUPT is a 10-bit interrupt register regularly

tested by the CPU. If the fourth bit of register INTERRUPT is set, inter

rupt is a result of a successful page transfer; if the 10th bit is set,

interrupt is a result of an unsuccessful page transfer. Register FIELD

contains the field address of a drum page. Register POST is an indicator

which is set to 1 when the CPU requests a MH page. Register PC contafns the

current MM page address. Whenever the drum heads are at the beginning of

a drum sector, register PAGEI is set to 1. Register PTRAN may contain 0.

-- -

18

Lziii§4) SECTORS(I4)
-

Ilisthead memorycommand memory

ILISTS (0-15,1-12)
SOMl(0-15,1-52)

PTL(1-12)
CON ND-52)

SBR2 (1-36)P(1)

--PAGEPOST(1-6)
-PDI2(1-64)
-
-
-

]

FIB OUNT (1-10) S-1-

INTERRTPT(1-10)

PAGINTPAEPOST

Tim3

Fig . 10

mChannel
Dru

Pagingtheof

10Configuration
Fig.

19

1, 2, or 3. If it contains 0, there is no page transfer.- IfZit-d'onf5fhs

1, it is the read operation. If it contains 2, it is the write operation.

If it contains 3, an error occurs in the transfer. Register COUNT stores

the word-address of the page being transferred. In order that the PDC

and the MM can operate asynchronously, registers SBR2 and MADR2 are needed

for transferring the MM address from the PDC-to the MM. SBR2 corresponds

to the MM buffer register and MADR2 corresponds to the MM address',register.

In order that-the PDC and the PTM can operate asynchronously, registers

PDR2 and PADR2 are needed-for transfering data between the FDC and the PTM.

PDR2 corresponds to the PTM buffer register and PADR2 coriesponds to the

PTM address register.

The PDC configuration is now described in the following CDL

statements.

Comment, configuration of the paging drum channel

Memory, COM(SEC)=COM(0-15,1-52), -$bommand memory

Register, SEC(1-4), $command-memory--address register'

COMMAND(I-52), $command-memory buffer register'

Subregister, COMMAND(C,RWC,CHAN) = COMMAND(l,2;3-10),

CONMAND(PGE,-FIRSTWORD) = CONMAND(1l-16,17-52),

Memory- ' . LISTS(SECTORS)=LSTS.(0-15,1-125, '$-listhead memory

Register, SECTORS(-4), $listhead memory address register

- YP-TL(l-12), $iisthead memory buffer register

Subregister, PTL(FP,LP)=PTL(l-6,7-12), $listheads for the sector list in !'TM

20

Comment, registers for a page transfer operation

Register, 	 FIELD(1-6), $field address register

POST, $page transfer request when I by the CPU

PAGEPOST(1-6), $MM page address for a page-transfer re
quest-by the CPU

PC(1-6), $current MM page-address register

PAGEI, $indicates when 1 that drum heads are at

the beginning of a sector

PTRAN(1-2), $page-transfer status register

COUNT(1-10), $word address of the current page

SBR2(1-36), $MM buffer register

MADR2(1-16), $MM address register

PDR2(1-16), $PTM buffer register

PADR2(-6), o$PTM address register

PTM1, $initiates when 1 procedure 1

PTM2, $initiates when 1 ,procedure 2

PTM3, $initiates when 1 prohedure 3

In the above description, there are three single-bit register PTM1,

PTM2, PTM3 for initiating three page-table procedures to maintain the sec

tor queues. When PM 1 is 1, the page table procedure 1 is activated.

This procedure as shown in Fig. 11 detaches the first page descriptor from

the list pointed to by the listheads in PTL, places-the MM page address in

register PC, and leaves a copy of the page descriptor in the buffer regis

ter PDR2. When PTM2 is 1, the page Eable procedure 2 is activated. This

procedure as shown in Fig. 12 loads PDR2 from the locatipn specivied by

register PAGEPOST in the page table niemory PAGETABLE. When PTM3 is 1, the

page table procedure 3 is-activate'a. This procedure as shown in Fig. 13

adds the page descriptor addressed :jy"PAGEPOST to the list of page descrip

tors addressed by the listheads in PTL while PDR2 is used as the buffer

register.

2.2 Formats

The channel coin.ar.c 'ord CCW'*fdimat is shown in Fig. 14. The 52

bits of a CGW are partitioned as f6lrows: 1 bit for the C field, 1 bit

for the RWC field, 8 bits for the CHAN field, 6 bits for the PGE field

and 36 bits for the FIRSTWORD field. When C is, 0, there is-no page trans

fer between the PDRUM and the MM. When RWC is 0, a drum page is to be

transferred from the PDRIJM to the MI4.througli the PDC.--When RtJC is'l, a

M page is to be transferred from the 104 to the PDRUM th.rough' tie PDC.

Only 6 bits of the 8-bit CHAN field are used because there are 64 fields

per drum sector. The 6-bit PGE field-contains the MM page address.

However, PGE is non-zero since we assume that MM page 0 is not available.

The 36-bit FIRSTWORD field contains 'the-first actual word of 0m page just

in case the transfer is from the MM to the PDRUM.

The format of an entry in the listhead memory is shown in Fig. 15.

There are two 6-bit fields. The first 6 bits specify the location of the

fron node of the doubly linked sector queue in the PAGETABLE memory. The

last 6 bits specify the location of the rear node of the -doubly linked sec

tor queue.

22

entry

PTH linitiates

prbcedure 1

when 1
 PTMl

-

Is page PTSEM(1)= 1

table memory

GPTL<-PTL

SPTMI E-0

PADR(--GFTL(FP)
PC <-GP TL (F P)

Fetch a page PTR2<-PAGETABLE(PADR)

descriptor

Get the address FGPTL (FP)e--PTR2(LF)
of the nextI
page descriptor

I PDR2<-PTR2

PTSEM(2).--0

Fig. 11 Flow Chart of Procedure 1 which Fetches the Page
Descriptor from the list addressed by PTL

23

entry

PTM2 Initiates

procedure 2 FTh21 5

when 1

Is page

table memory

free?

PTM2t-O

PADR-PAGEPOST

PTR2<--PAGETABLE (PADr)

transferring a page descript

from the PTM to the FDR2-PTR2
PIC - PTSEII(2)E(-O

SExit

Fig. 12 Flow Chart of Procedure 2 which transfers a page descriptor

to the PDC

24 etr
C

PTM3 Initiates

procedure 3 PT143=l
when 1

Is page
table memory 'PTSEM(l)=l =

free? /

PTR2A-PDR2*
GPTLE-PTL

(sector list is empty)=-pT (FP)--

F not empty)I _(sector list is

1PADP<-CPTL(LP)-

I PTR24--PAGETABL IE(PADR) lin

PTR (LF)<-PAGEFOSadutnth
LGPTL(FF)4-PACEPOST
-- '1forward
.	 link

PAGETABLE(PADR)<-PTR2

PADRE--PAGEPOST

PTR2-PAGETABLE(PADR)

adjusting the backward

link and

PTR2 (LB) 4-GPTL(LP) 1 grounding of
PTR2(LF)<--O the forward link

PAGETABLE(PADR)&-PTR2
GPTL (LP) --PADR
PDR-PTR2 , ,

PTL&-GPTL 	 adjustment of links
PTSEM(2)-0
 completed

(Exit

Fig. 13 	Flow chart of procedure 3 which stores
and undates a naqe descrintor lists

1 2 3 10 11 16 17 32

1 1 8 6 36

C: no page transfer when C=0; else, there is a page transfer

RWC: page to be read when 0; else, page to be written

CHAN: drum field address.

PGE: M14 page address

FIRSTWORD: first word of the transferring page

Fig. 14 Channel Command Word Format

1 6 7 12

FP LP

6 6

FP:

LP:

the listhead for the front of the doubly linked list in the
PAGETABLE memory when an element of the list is detached.

the listhead for the rear of the doubly linked list when an

element of the list is inserted

Fig.15 Format of an Entry in the Listhead Memory

26

2.3 The handling of queues

This section outlines the manner in which the lists and queues in

the page table memory aie manipulated. 'Sixteen sector queues are handled

by the PDC while the other lists are maintained by the CPU. In the follow

ing, the lists in the Page table memory are first described in detail;

the contents of the CCW's in the command memory are: explained; and the

interaction between the CPU and the PDC during a paging operation is

described.

2.3.1 The Lists in the PAGETABLE Memory

There are 64 pages in the MM. Each page is pointed by a page

descriptor stored in the PAGETABLE memory. Each PAGETABLE memory address

of the page descriptor corresponds to one M page address. Thus, 64

PAGETABLE memory words store 64 page descriptors for 64 MM pages. The

format of the page descriptor has been shown in Fig. 6. As shown, there

are two 6-bit fields LB and LF(backward link and forward link) in the page

descriptor. By means of these backward and forward links,, the 64 MM

pages can be linked into one or more lists in the PACETABLE memory. Each

node of the list is doubly .lihkedwith one link pointing in the forward

direction by the forward links LF's and the other link pointing in the

backward direction by the backward links LB's.

There are many lists of the MM pages linked by fields LB and LF

of the page descriptors as follows:

(a) one available-page list which"links those pages of the MM that are

available to the CPU;

(b) one swappable-pagd list which links those pages in the MM that are re

leased by the CPU to be transferred from the MM to the drum;

27

(c) one or more users' lists, each of which links those pages of the MI

that belong to a particular user;,

(d) sixteen sector lists, each of which links those pages of the MM that

are waiting (i.e. already in the queue) to be transferred either from

the MM to the drum or vice versa. Since these 16 lists are used as

queues, they are also called sector queues.

To enable a quick access of the first entry and the last entry in

each sector list, two 6-bit listheads are provided for each sector list.

The 16 listheads for the 16 sector lists are stored in the 16 words of the

LISTS memory. The listheads for the available-page list and the swappable

page list are stored in register LAVP(l-lZ) and LSP(l-12), respectively.

These registers are not included in this simulation, since these lists are

handled by the CPU. The listheads for the current user is stored in

register PTLIST(I-12) or register GPTL(I-12); the listheads for~the users'

lists are stored in the system table permanently resident in thedlfr

described elsewhere (8).

2.3.2 The Channel Command Words in the CoMMemory-

The words in the COM memory are called Channel Command Words,

CCW's. Each CCW stores the following pertinent information for initiating

a drum-memory transfer:

(a) NM page address,

(b) drum field address,

(c) read/write operation,

(d) transfer request, and

(e) the first actual words of the MM page in case the transfer is from th-e

MM to the PDRUM.

28

There are 16 CCW's each of which is for one sector of the drum.

The PDC .constructs the CCW's using the information from the listheads and

page descriptors in the sector lists.

There is an important exception to the way that the first page

descriptor of every sector list is linked: this first page descriptor is

deleted from its sector list, after its pertinent information for initia

ting the data transfer is used to construct the CCW for that sector. The

page descriptor of this page can be located in the PAGETABLE memory by

the CCW whose field PGE holds the M page address of this page. The

reason for not linking the first MM page to its sector list is to enable

the immediate accessability of ,the COM memory in the PDC, since the COM

memory is exclusively accessable by the PDC while the PAGETABLE memory

is accessable by the PDC and the CPU. As a result, the PDC can rapidly

respond to the drum each time when a new drum sector begins -to be scanned.

In other words, as the drum heads reach the beginning of each sector,

the CCW of this sector is accessed from the COM memory and the data transfer,

if called for, is initiated right away. After the initiation, the current

CCW is of no further use; this COM memory location can now be refilled

with the pertinent information for initiating the next page transfer for

the same sector which occurs when the drum completes another revolution

and again begins to scan this sector. This refilling is accomplished as

follows. While a page is being transferred to or from a drum sector, the

next page descriptor is detached from the sector list in the PAGETABLE

memory and the pertinent information of the page obtained from the page

descriptor is used to construct a CCW for the current drum sector. This

CCW will be used after one drum revolution. -

There are 16 CCW's in the COM memory. Thus, there can be as many

as 16 pages in the MM that are not linked at all by the page descriptors

29

in the PAGETABLE memory, though they are pointed by (and thus indirectly

linked by) the CCW's as mentioned above. In, fact, the 16,-patrs of list

heads-in the LISTS memory are pointers-which point to the second M.,

pages of these 16 sector lists in the PAGETABLE memory.

2.3.3 The Page-transfer Requests

- As mentioned previously,- the swappable-page list links those pages

in the main memory that are released by the CPU to be transferred to, the

drum, while each of the sector lists links those MK pages queued to be

paged-in or paged-out. The reason why two kinds of lists are required is

that the computer operating system has to schedule alternately the read

and write page transfers in the sector lists.

Fig. 16 is a block diagram showing the flow of page transfer re

quests. The 16 sector lists are maintained by the PDC; the available-page

list and the swappable-page list are maintained by the CPU. When ,apage

is r&quested by the CPU and found missing in the main memory, a page-fault

interrupt is generated; this interrupt signifies that a new page is to be

paged-in. The CPU allocates a page descriptor from the available-page list

and posts a read page-transfer request to the PDC. The PDC responds by

placing the request in the appropriate sector list for the drum sector

where the page is stored. The CPU next posts a write page-transfer request

to the PDC for swapping out a page from the swapping-page list. In this

manner, the read and write page transfers are scheduled alternately, as

also indicated in Fig. 16.

Fig. 17 is a block diagram showing handling of the lists. As

mentioned before, the CPU posts a read page-transfer request owing to a page

fault or posts a write page-transfer request owing to a swapping. The

30

PDC queues these requestsin the appropriate sector lists. Whenever a page

transfer is completed, the PDC notifies the CPU by means of the signals

in registers PTRAN and PAGINT. The CPU then makes a note in the users'

lists and resumes the execution of a previous program, or it attaches the

page descriptor now not needed to the available list. The CPU posts page

transfers one after another, while the PDC initiates and completes the

transfers in an order which optimizes the drum transfei operation. Note

that the CPU handles all the lists including the users' lists except the

sector lists which is handled by the PDC. Manipulations of the available

page list, the swappable-page list, And the users'. list-are not included

in this simulation. Only the manipulation of "the 16 sector lists by the

PDC is included in the simulation.

31

16 sector lists queuing read and write page-transfer requests

read - "
write - -

read

write

G

ost.vD

PageposLp

read write

page-transfer plage-transfer

request request

CPU

Available Swappable

page list page list

Fig. 16 Block Diagram Showing the Read and Write Page-Transfer Requests

32

CPU

.. _ . - -- CPP

userlistv " list

PD

° Postsector

CP PD---C- lis t

pavailable
page
pglit fault

page list

Fig. 17 Block Diagram showing handling of the Lists

33

2.4 The paging sequence

The paging sequence of the PDC :is first described by a flow chart

in Fig. 18 and then by.sequence charts in Figs. 19 through 22. As shown

in Fig. 18, when the PDC is initiated, there is one single process. Later

at FORK, this single process splits into two parallel processes. The

left-hand process transfers data between the PDRUM and the MM, and signals

the CPU by setting appropriate bits in the CPU interrupt register INTERRUPT

when a page transfer is completed. The right-hand process updates the

channel command words-CCW's in the channel command memory, the listheads of

-the sector queues in the listheads memory, and the page descriptors in

the PTM. The right-hand process when it is completed merges with the left

hand.process at JOINT, if the drum heads are at the beginning of a drum

sector. But, if the drum heads are inside: of a sector, the PDC is free to

test if the requested page has been found and then updates the page

descriptors and listheads. If not found, the PDC remains in a wait loop.

2.4.1 Main sequence

- The paging sequence may be considered as a main sequence together

with the drum read/write subsequence, the updating subsequence, and the

request accept subsequence. The sequence chart of the main sequence with

the parallel processes is shown in Fig. 19. When PDC is initiated, the page

interrupt register PAGEI is tested for i.. The PDC waits until PAGEI is

set to I which indicates that the drum is at the beginning of a page. The

PDC acknowledges it by setting PAGEI to 0. The drum sector address in the

subregister CWORD(SEGT) is put into the command memory address register

SEC to fetch the corresponding COW.'"When the next drum page is ready to

be transferred, the word count in register COUNT is set to 0 and the CCW is

34
Entry

0

interrupt

?DC

Y initialize next I

drum transfer

It
no tr n ry s cu rn et.o

indicated? ret etr
imearckl i queue empty

or fetch and update

data transfer comn page descriptor

btenduentry _

and main memory

increment. channel conmand
watn o o memory address - wrd thebining

theginningnc

' ~~of a page "

was a
Complete pg n
nowatingioriyenposterro

transferedn

page found

ye
no waiting fr yes update cur

errorretae

pageinterrupt descri-tor

the ~post

post page empty

transafer " ye .

yes I

18 Flow Chart of the pig.Paging Sequence of tile Pty

35

wait for the
beginning of .
a drum page tPAGEI=I

SPAGEIA-0

SPCrCWORn)(SEOT)

CO ANDt"CO (SECT)

COUtNT&-O

DBR-CO MMND(FIRSTWORD) transfer the CCW's
LDACTV(-COIAND(C)' to the appropropriate

MADR2 (BLOCK)tG CO-IIAND (PGE) registers
FIELD<-COMMAND (CHAN)

RW-COlAND (RWC)

rAead/writeBOCK n waDru uai " uein

JON

INTERRUPT)PAGE) *i- loop

Fig. 19 Main Sequence With Parallel Processes

36

transferred into the command memory buffer register COMMAND. The PDC

then decodes the control information in the COW and transfers them to

appropriate registers as follows. FIRSTWORD enters the drum buffer

register DBR (writing 1 word ahead); C enters DACTV; PGE enters subregister

MADR2(BLOCK); CHAN enters register FIELD; and RWC enters RW. Then the

main process splits at FORK into the drum read/write subsequence and the

updating subsequence. At the end of the updating subsequence, register

PAGEI is tested. If PACE is 1, then the two subsequences joints into a

single process. If PAGEI is 0, register POST is next examined. If POST

is 0, the PDC loops back to check register PAGEI again. If POST is 1,

the PDC enters the request-accept subsequence and then enters the updating

subsequence again.' Finally, the MM page address is put into register PAGINT

and the 4th bit of the register INTERRUPT is set to 1. Now the PDC is

ready for a new request.

2.4.2 Drum read/write subsequence

The drum read/write subsequence is shown in Fig. 20. When this sub

sequence is initiated, either there is a page transfer or there is no page

transfer between the MM and the PDRUM through the PDC. The sequential

operation starts by testing DACTV. If DACTV is 0, the PDC tests FAGEI

for 1, and it waits until PAGEI is set to 1 by the paging drum. If PAGET

is 1, then PTRAN is set to 0 since no page has been transferred. If DACTV

is 1, the read/write control register RW is next examined.

When RW is 1, it is the output sequence; a page is paged-out. The

PDC waits until MA(2) is set to 0 by the MM. Output indicator enters RW2;

word count enters MADR2(WRD); and MA(2) is set to 1 to make a transfer

request to the MM. The PDC is held waiting until a word is transferred

from the MM to the auxiliary MM buffer register SBR2 in the PDC and MA(2)

37

En#vt

C P EA1
I

-I

SI
(natransfersfer

I
/

M to PRDT-et N ready

| ~~RW2--RWI S ?
I MADR2 (WRDJ) - countup COUNIT I"- J -

N"(2)--1 =- PDready

waiting for 14I ADR2 (WRD)4-COUJNTword trans- A(2)= chSeR2-DBR
trnffer iRW2-RW

w - - II M 2 -

J - COUT -c~u~tup OI ,T, , J __COUN23

a "block" B4- PA"ETI

Fig.20 -INTERRUPT(DRUtPAGE)-Irumread/wieSbsqec

ed traereT- 'Pwhen 1eady

/ rsewn

eise wrtrase rawrite -nfer

error

s

in page

38

is cleared by the MM. Register BS is next tested for I and if BS is 1,

the drum buffer register DBR is ready and a data word is transferred from

SBR2 into DBR. Next, the word count COUNT is examined to see if it is

1022; if so, a whole page has been transferred. If COUNT is not 1022,

PAGEI is checked. If PAGEI is 1 and the whole page has not been paged-out,

the PDC sets INTERRUPT(10) to 1 and indicates error condition by setting

PTRAN to 3. If PAGEI is 0, and the whole page has not been paged out, BS

is set to 0 and the word count is stepped up. If COUNT is 1022, then a

page has been paged-out. Next, the sum of COUNT and ROW is compared with

1023 to make sure that there is no error in paging. If the sum is 1023,

PTRAN is set to 0. The PDC goes to JOINT.

When RW is 0, it is the input sequence. A page is to be paged-in.

The PDC waits until MA(2) is set to 0 by the MM. If MA(2) is 0 and BS is

1, a data word is transferred from DBR to SBR2. Next, input command enters

RW2; word count enters subregister MADR2(WRD) to form the main memory

address; and MA(2) to I to make a transfer request to the Mi. The PDC

waits until the word is transferred into the main memory. Next, the word

COUNT is examined to see if it is 1023; if it is 1023, a whole page has

been paged-in. If COUNT is not 1023, PAGEI is next tested, If PAGEI

is 1 and the page has not been paged-in, the PDC generates an interrupt

as before to indicate an error condition. If PAGEI is 0 and page transfer

is not yet complete, BS is set to 0 for a word transfer and the word count

is incremented by 1 so that next word of the page may be transferred.

If COUNT is 1023, the sum of COUNT and ROW is compared with 1023. If

the sum is 1023, PTRAN is set to 1. The PDC goes to JOINT.

2.4.3 Updating subsequence,

The updating subsequence as shown in Fig. 21 updates the channel

39

SECTORS4-SEC

PTIl-LISTS (SECTORS)

(sector list empty)

PTL(FP)=O
(sector list not empty)

initialize PTMI4--I "

page tab,: PTSEM(2)4--l

procedure 1

PTSEM(2)=O

page descriptor

transfer completed a

COMAND(C,PGE,CHAN,RWC)e---PC-PDR2 (CH)-PDR2 (ROW)
LISTS (SECTORS)--PTL

CF121ND (C) -0O (read) PDR2 OW....... (write) #
.

no page

transfer NMX(2)0ready?
MI

reauest
MADR2--PC-0 make a MM
MA (2)4-1 I

(fA(2)-0 word transfer comple'ted?

wait loop for
PAGEI _ 4o page posted

Fig. 21 Updating Subsequence for 3 Memories

40

command memory. The listheads memory, and the page table memory accord

ing to the current channel command. The updating subsequence for the 3

memories starts by entering the drum sector address into the listheads memory

address register SECTORS to fetch listheads for the sector queue. If a

sector queue in the PTM is empty, the sector command is marked "empty" and

the marked CCW is returned to the -channel command memory. If the sector

queue in the PTM is not empty, then procedure 1 is called in by setting

PTM 1 to 1 to make the front pointer of the sector queue point to the

current page descriptor. The modified listheads are returned to the list

head memory. The subfields of a CCW are modified as follows: the C field

is set to 1; the PGE field is set to PC; the CRAN field is set to CH

field of the page descriptor; the RWC field is set to the ROW field of

the page descriptor.

Next, the ROW field of the page descriptor in register PDR2 is

examined. If PDR2(ROW) is 0, it is the read operation and the FIRSTWORD

field of the CCW is not modified. When PDR2(ROW) is 1, it is the write

operation, the firstword of the page transfers from the MM buffer register

into the FIRSTWORD field of the CCW. For either read or write, the CCW

is put back into the channel command memory. If PAGEI is 1 at this point,

control goes to JOINT: else, if PAGEI is 0, register POST is tested. If

POST is 0, then the requested page is not yet posted, and it is necessary

to wait by looping back to the previous micro-operation that checks PAGEI.

2.4.4 Request-accept 'subsequence

The request-accept subsequence as shown in Fig. 22 starts at

point (C). When POST is set to 1, procedure 2 is called in by setting

PTM2 to 1 to fetch the page descriptor of the posted page into PDR2.

The sector queue number as indicated by the subregister PDR2(SEC) is

41

transferred to register SECTORS to fetch the next set of listheads.

If PTL(FP) is 0, the sector queue in the PTM.is.empty, and the

CCW for this sector queue is unchanged. If the C field of the command is

0, then there is no page transfer. In this case, the PDC sets PC to

PAGEPOST, sets POST to 0 and loops back to take care of the COW for the

next drum sector. If PTL(FP) is not 0, the sector queue in the PTM

corresponding to the current drum sector is not empty. Procedure 3 is

activated by setting PTM3 to 1 to add the page descriptbr addressed by

PAGEPOST to the list of page descriptors addressed by PTL. The updated

listheads PTL(FP) and PTL(LP) are then stored into the listhead memory

and register POST is clear. The PDC waits until PAGEI is set to 1 and

then goes to JOINT.

Entrwait loop42

for page posted

JOINT

initiate PTM2 1
pagea table PT1SEH(1)<-O
procedure 2 PTSEM(2)<-l

page descriptor P (
transfer complete=

SECTORS,-PDR2 (SEC)

PTL<-LISTS (SECTORS)

- (sector empt/)

PTL(FP)=O

(sector list not empty) 6

SEOC-SECTORS

COMNDE-COM (SEC)

PC-PAGEPOST (no page

transfer) PT3

etch next, aPTSM(1-0 initiate page
CCW PTSE(l)-O table procedure 3

PTSM (2), -I

P TSEM (2) =0

p ag e de c ip o
transfer

completed? [LISTS(SECTORS),(-PTL

Fi.22qesit-acet useuec
POST4-0

Fig. 22 Request-accept subsequence

43

3. An Example of Sector-Queue Manipulation

For each drum sector, there 's a sector queue in'the pageItable

memory. hinese sector queues are doubly linked lists of page-descrip

tors whose MK pages are to be transferred by the PDC. "An example is now

presented to show how the 16 sector queues are manipulated as the'paging

drum rotates. Four drum revolutions are traced through one-drum.sector

at a time, and 48 MM pages are transferred by the PDC during these re

volutions.

The MM page addresses lie between 1 through 63. Consecutive

numbers are chosen for MM page addresses in order to make the example

easier to understand; however, in actual operation the MM page address

-
in a sector queue are not consecutive. It is assumed that, initially,

the drum read/write head starts at drum sector 0, and the channel com

mand memory is empty.

3.1 Initial linkage of the sector-queues in the PTM

The initial linkage of the 16 sector queues are shown by the

arrowheads in Fig. 23. Let each sector queue have three nodes; each

node represents a page descriptor and contains a number.- This number

is the MM page address which this page descriptor represents. There

are 16 pairs of listheads for the 16 sector queues. The first page

FP field contains the MM page address of the first page and the last

page LP field contains the MM page address of the last page.

Corresponding to drum sector 0, the sector queue has node 1,

node 2, node 3 while the listheads are 1 and 3. Corresponding to drum sec

tor 1, the sector queue has node 4, node 5, node 6 while the listheads

are 4 and 6. Similarly, corresponding to drum sector 15, the sector

44

Drum~piL~ec

3

2

5-8--

8

12

Fig.

Tk-Ia-Lnkage nf the_ 16 Sco ~e.. i IT
4 in ISTSin PTI!

1-EUEcZ-ihl 2I2 E m1 -3

F 1Io!Z--L7E1f4iiF} -- EIII

oIT
4= '7 [h2

--

-E
-

T.±-2,- _
ff[I-Jt'j 4, .2." -l.-l . 1-I

_S0
J, H.73 & Z j--....., .- . 2 2...r--f---r2-I

E_.T_77I zzf 11I31i3' ;3
-.1-2I8

i__j 13 0 3 9

46 ! 4 614 J

links qu2u2523 Linkage of pae descriptors rhich 16 sectc o in he P:.

15

45

queue has node 46, node 47, node 48 while the listheads are 46 and 48.

The forward link LF and backward link LB of each sector queue are

shown in Fig. 24. Corresponding to drum sector 0, the LB of node I is

0 (grounded) and the LF of node 1 is 2 (pointing to node 2); the LB of

node 2 is 1 (pointing to node 1), and the LF of node 2 is 3 (pointing

to node 3); the LB of node 3 is 2 (pointing to node 2), and the LF of

node 3 is 0 (grounded). Corresponding to drum sector 1, the LB of

node 4 is0, and the LF of node 4 is 5 (pointing to node 5); the LB of

node 5 is 4 (pointing to node 4), and the LF of node 5 is 6 (pointing

to node 6); the LB of node 6 is 5 (pointing to node 5) and the LF of

node 6 is 0. Similarly, corresponding to drum sector 15, the LB of

node 46 is 0, and the LF of node 46 is 47; the LB of node 47 is 46

and the LF of node 47 is 48; the LB of node 48 is 47 and the LF of node

48 is 0.

3.2 Manipulation of Sector-Queues during the First Drum Revolution

The head of each sector queue will be deleted by the PDC to

construct a channel command word for the coresponding drum sector. Thhs,

no page-transfer can occur during the first drum revolution. The manip

ulation of sector queues is shown in Fig. 25.

After 1/16 of a drum revolution, node 1 is removed and the channel

command word CCW for drum sector 0 is constructed using the information

in the page-descriptor. The head of the sector queue for drum sector

0 is deleted. Therefore, the FP of the listheads point to node 2 while

the LP of the listheads is unchanged. After 2/16 of a drum revolution,

the CCW for drum sector 1 is constructed according to the information in

the page-descriptor which is node 4. The head of the sector queue for

drum sector 1 is deleted. Therefore, the FP of the listheads points to

46 iti
.- iii Sector Queues

Drum First j 1 Second Third

o* ~ -L -: 'i-'dIL'I n: -od- p
2LB LF 2 LB LI 3 LB 0

Sector

4 ~ 56
6
1 I:Er 869

2

0 11 10

1032J~i 12

13 0i 14 1 is.15 I0

16 17 IZ 18 tE~
6 19 .~Zt20 21 2 1LL

22. 23 24

8 25. 26 26 1127 277

9 28 29] 0 30

10 320-i~ 33

11 11163

39

12 3 073 8 378 I.

40 41 42

13 .'1j 4

4 3 4. J.;4 '; 4544.

15 4II46 8p~~

Fig. 24 Initial Forward and" Backward Links in ,the Page Descriptors
Which Form the 16 Sector Queues

Sector Queue 0

initial condition
/

Fp LP

node 1

after 1/16 drum
revolution

U' LP

2 1 ...- I

Sector9ueue 1

initial condition

F?

~I

LP'

nfode 4

after 2/16 drum
revolution

SFP LP

V6

Sector Qiueue 15
FE LIP

initial condition _.___

"17

- .

"',. ,o" 48

after one drum
revolution

•node 46

FP

L

I'

-

Fig. 25 Hanipulation of the rector queue duri lie irst 1..ru. Col

(only the first, the second amd tle. last are shown)

48

node 5 while the LP of the listheads is unchanged. After 1 full drum

revolution the CCW for drum sector 15 is constructed according to the

information in the page descriptor which is node 46. The head of the

sector queue for drum sector 15 is deleted. Therefore, the FP of the

listheads points to node 47 while the LP of the listheads is unchanged.

Up to this point, the channel command memory is completely loaded

with CCW's. The 16 sector queues after the first drum revolution are

summarized in Fig. 26. The forward link LF and backward link LB of

each sector queue are summarized in Fig. 27.

3.3 Manipulation of Sector-Queues during the Second Drum Revolution

Since the channel command memory is loaded with CCW's and the drum

read/write heads are at drum sector 0, page-transfer can now begin. The

manipulation of sector queues in the second drum revolution is presented

in Fig. 28.

After 1-1/16 drum revolution, the MM page 1 has been transferred

by the PDC, and a new CCW for drum sector 0 is constructed according

to the page-descriptor which is node 2. Consequently, node 2 is de

leted from the sector queue and the FP of the listheads points to node

3. After 1-2/16 drum revolution, the MM page 4 has been transferred

by the PDC, and a new CCW for drum sector 1 is constructed according to

the page-descriptor which is node 5. Consequently, node 5 is deleted

from the sector queue and the FP of the listheads points to node 6. After

2 full drum revolutions, the MM page 46 has been transferred by the PDC

and a new CCW for drum sector 15 is constructed according to the page

descriptor which is node'47. Consequently, node 47 is deleted from the

--

Drum
Sectors 	 Linkage

0 	 --- _2JIJC

o 	 :3--f_*_3 1j2

4 14 i5

-. 5- '
hO~ I4L 	 16 2f 	 --. F21
5 	 LL- _L.S ,

7 	 2_4z2 2 133Jt 	 4-]:- : -- q t , i-5 _{ -4. 4.-., & I I0... j . !. . !___

11 j &j 3 3
151 	 45
" . 226! 	 2 7Jtl 4.- - J sI .. -..... -t-- --,...1

6ori -- I 'n- --- 3 8 I
1 j 	 J 1 121-4..

14 	 4 4 " , ._ .- . , 4 4 4 5 [

15I-- . F"- .4 . 4 - 4 8

Fig. 26 Lin2a7' of pa2e de-cri7toi-, whl.ch Iinl the 16 2ctor UI ,,';

on7e2 dr"umimre-,_o3ution

50
Revolution

Drum
Sector

~lL
38ij-

,.-

Second Node

5 0

8 9.
2

V. 15,;

5 17 . u . 1

20 21

2 3•24.

26 27

29 30
9 O--F0 29j 01

32I . 33 Z i

11 I3
3 39 . , ,

13 14 4Z' 1 2 45 . • .

14

15 4

Fig. 27 Forward and backward links in the page descriptors which
form the 16 sector queues after one drum revolution

Sector Queue 0

FP LP

after 1/16 drum ._

revolutions

-V\

FP LP

after 1-1/16 drum Lh- -

revolutions

Sector Queue ±

FP LP

after 2/16 drum

revolutions

FP LP

after 11ru

after 2 drum

revolutions -[- h

FPFP LPLP

after 1 drum *- ...

revolutions -- t -

Fig. 28 Manipulation of Sector Queues 0, 1, and 15

52

sector queue and the FP of the listheads points to node 48.

Up to this point, M pages 1, 4, 7, 10, 13, 16, 19,, 22, 25,

28, 31, 34, 37, 40, 43, 46 have been transferred by the PDC and the channel

command memory is again fully loaded with COWs for transferring MM

pages 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47.

The 16 sector queues after the second drum revolution are summarized

in Fig. 29. The forward link LF and backward LB of each sector queue

are summarized in Fig. 30.

3.4 Manipulation of Sector-Queues during the 3rd Drum Revolution

During the 3rd drum revolution, MM pages 2, 5, 8, 11, 14, 17,

20, 23, 26, 29, 32 , 35, 38, 41, 44, 47 are transferred by PDC, the channel

command memory is again fully loaded with CCW's for transferring MM pages

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48. The 16 list

heads
are all grounded at the end of the 3rd drum revolution.

At this point, all the sector queues in the page table memory

are empty as shown in Fig. 30. Therefore, there is no forward link or

backward link for the empty queues. This fact is expressed by the word

EMPTY in Fig. 31.

3.5 Page transfer during the 4th drum revolution

During the fourth drum revolution, MM page 3, '6,9, 12, 15, 18,

21, 24, 27, 30, 33, 36, 39, 42, 45, 48 are transferred by the PDC.

However, the channel command memory is completely empty at the end of

the 4th drum revolution. There is no sector queue in the page table

memory, and all the listheads are grounded. Hence, during the next drum

revolution, no page-transfer occurs.

- - -

After 2nd Drum Revolution'.. After 31rd Druit, l'ov,1.t oi,

Drum
Sector Linkage 2i _ Li.nkag_ .

0 - 1r5jE3J TY .MP

l2--T2]
1..
oF

- - - ... ---.- I i
5 -.---" EIMTY .

F-o-o

=9 EMPTY 0 0

7 4! 2 4i 1 2 4I T 0 0

7 3 -WF32 0 4 M0TY 0

- - ----, it .----- --...

II I -

J7ti 4MT

3] 3 3 o nTTY '1--10 f--=t+I !iEzL i 2 0 0
40t.L"-46 3 6 EIMTY 01 0

12 .. 3 I"-j39 0 0:EI '

15 -TY-54 i 5- 1 51 IIr - 0 0

.'1

Fg 29 LMkPTY l p 0

12 Ei --- 3 8! 3K8 i E M.PTY i o o,
30 ro0t"14r the o 0 EthMTY 0

1,

Fig. 29 Linkage of page descriptors which links 16 sector queues

after the two and three drum revolutions

54

Drum
Sector Linkdg-Afpjtcy cT.*apd Three Drum Revolutions

... ,.
. L-,
•• . -I - -:..

.; *-T. .

1

2 Ri
3 7
4

5
6

8

10

11 >
12EI

'3

14 0I 0

15

Fig. 30 Forward and backward links in the page descriptors which form

the sector queues after two and three drum revolutions

Sector
Queue

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 31

Number of lru.
Status of Revolutions at

Sectoin'_uejs which the__atm.nJ: C

EMPTY 2-1/16

EmpY 2-2/16

EMPTY 2-3/1L6

EMPTY 2-4/16

FPTY 2-5/16

EAPTY 2-6/16

EMPTY 2-7/16'

EIPTY 2-8/06

EMPTY 2-9/16

2-10/6

EMPTY 2-11/16

EMPTY 2-12/16

EMPTY 2-13/16

EHPTY 2-14/26

EIM TY 2-1/16

EMPTY

Emptying the sector queues during
the third drum revolution

3

56

4. Simulation by Algol

- This simulation is to test theacorrect operations ofthe PDC. The

algorithm for the paging sequence presented in section 2.4 are now described

by an Algol program; this program is shown in Appendix A.

In order to restrict the program size for simulation,on the UNIVAC

1108, it is assumed that there are 8 words per main memory page. Initially,

the maih memory pages are loaded with data to be transfered to the empty

paging'drum memory....

There are two sets of test data: the first set is for paging-out

8 Mfpages, and the second set is for paging-in 8 MM pages. They are shown

in Tables 2-7. The output from the simulation is shown in Table 8 and 9.

The Algol program is summarized in the flow chart of Fig. 34.

4.1 Simulation inputs

Two sets of test data are chosen for simulation. Each set contains

three elements: 8 page descriptors, 8 listheads, and 8 CCW's. These test

data zdeal with 8 M pages, 32 throughb39. The initial contents of these MM

pages are shown in Table 2. In Table 2, page 32 contains 8 words with each

word set to 32, page 33 consists of 8,words with each word set to 33, etc.

With test data 1, we shall pagerout 8 MM pages to Field 1 of the drum

as shown in Fig. 32. In this figure, page 32 goes through the PDC and becomes

the first drum page of sector 0; page 33 goes through the PDC and becomes the

first drum page of sector 1; and page 39 goes through the PDC and becomes the

first drum page of sector 7.- The contents of the 8 page descriptors are shown

in Table 3. The ROW fields in the page descriptors are set to 1 to indicate

paging-out. Since 'only 8'pages are going into 8 drum sectors, the backward

link and the forward link of every page descriptor are set to 0 to indicate

57

Table 2 Test data 1: 8 Mai Memory Pages

M M Contents MM MM Contents

page number Iword number of words page number word number of words

32 	 0 32 36 0 36
1 32 1 36
2 32 2 36
3 32 Ii.3 36

324 36
5 32 5 36
6 32 6 36
7 32 	 7 36

33 	 0 33 37 0 37
1 33 1 37
2 33 2 37
3 33 i 3 37
4 33 4 37
5 33 5 37
6 33 6 37
7 33 	 7 37'

34 	 0 34 38 0 38
1 34 1 38
2 34 2 38
3 34 	 3 38

4 34 	 4 38
5 34 5 38

6 34 6 38
7 34 7 38

35 	 0 35 39 0 39
1 35 1 39
2 35 2 39
3 35 •3 	 39

4 35 4 39
5 35 5 39
6 35 6 39
7 35 7 39

58

MAIN MEMORY

I - r/ \

31

-

162 634i
/: / / I \ \ \

• l I/I LkI '. I A A-

PAGING DRUM CHANNEL

I/ / /

/ le ,

/ \ \

/ 1

C ',7

j1 ~ 11

2 11 - ,_10 -

PAGING DRUM MEMORY

into 8 drum sectorsFigure 32 Paging-out 8 pages from main memory

(Test data 1)

Table 3 Page Descriptors for Test Data 1:
(for paging-out 8 MM pages to 8 drum sectors)

PTM I Field (in binary)

address ILBI LF DP ROW

32 0 10- 0000010000 1

33 0 10. 0000010601 i

34 0 0 00000100101 1

35 0 0 000001Q011 1

36 0 0 0000010100 i

37 0 0 0000010101 1

38 0 0 0000010110 1

39 0 "!10 '0000010111 1

* Decimal

Note: 	 Other fields of the page descriptor

are not needed and thus not shown.

60

-Tab'le A, "Chianel, Comanad Words*for, Text Data 1:
-(for-pi'glng-out--8 MM--pages--to--8 drum s-eht6tb)

Command Field
memory
address C RWC CHAN PGE FIRSTWORD

0 1 l 1 32 32

1 1 1 1 33 33

21 1,.... 1 34 34

"3 1 . 1 -35 35

4 1 .1 1 36, 36

5 1 1 1 37 37

6 1 " 38" 138

7 1 1 1 39 ".39

8

"- . nbt ,used

* Decimal Number

__

61

Table 5 Test Data 2: 8 Drum Sectors

(after 8 MM Pages are Paged to 8 Drum Sectors)

Drum Field Word Contents Drum Field Word Contents
Sector Number of I Sector Number :address of
Number Word Number Word

0 1 32 4 1 0 36
0 1 32 4 1 1 36
0 1 2 32 4 1 2 36
0 1 3 32 4 1 3 36
0 1 4 32 4 1 4 36

32 4 5 36
0 1 6 32 4 i 6 36
o 1 7 32 4 1 7 36

1 133 .3 5 1 0 37
1 1 j 1 33 fI 5 1 1 37
1 1 2 1 33 5 1 2 37
1 1 3 1 33 5 1 3 37
1 I1 4 1 33 5 1 4 37
1 1 5 33 -5 1 5 37
1 1 6 , 33 5 6 37

7 33~ 7 37

2 1 0 34 P 6 1 0 38
2 1 1 34 6 1 1 38
2 1 2 34 6 1 2 38
2 1 3 34 V 6 1 3 38
2 1 4 34 6 1 4 38
2 1 5 34 6 1 5 38
2 1 6 34 6 1 6 .38
2 1 7 34 6 1 7 38

3 1 0 35 0 39
3 1 1 35 7 5 1 1 39
3 1 2 35 7 1 2 39
3 1 3 35 7 1 3 39
3 1 4 ! 35 7. 1 4 39
3 1 5 35 7 1 5 39
3 1 6 35 7 1 6 39
3 1 7 35 7 1 7 39

62

.-
.. l ii....-s..J

.....
., 32_.3

6 2 63

I, . ,. \/

'3 2, 7/

.,AGING DRUM MEMNNEY

5.
 8o..

PAGING DRUMt ME11ORY

Fig-3 Paging-in 8 Pages intp Main Memory from 8
sectors
 (test data 2)

63

that the 8 page descriptors are not linked.

The 10-bit DP field in the page descriptor specifies the drum page

address. The DP field of the page descriptor for MM page 32 is 0000010000

in binary which represents field 1 of drum sector 0. The DP field of the

page descriptor for MM page 39 is 0000010111 in binary which represents field

1 of drum sector 7. Thus MM page 32 goes to sector 0, MM page 33 goes to

sector 1, and MM page 39 goes to sector 7.

The contents of the listheads of the sector queues in PTM are all

set to 0 since the simulation model deals only with the heads of 8 sector queues

assuming that the 8 CCW's for the corresponding 8 MM pages have already been

constructed by the PDC.

The contents of the CCW's for paging-out 8 pages to 8 drum sectors

are shown in Table 4. The C fields are all set to 1 to indicate that the 8

MM pages are to be transferred. The RWC fields are all set to 1 to indicate

a paging-out operation. The CHAN fields are all set to 1 since only Field 1

is used for paging. The first MM page to be paged-out is page 32 whose first

word is also 32. The second MM page to be paged-out is 33 whose first word

is also 32. The second MM page to be paged-out is 33 whose first word is 33,

etc. Thus, the PGE field and the FIRSTWORD field of each CCW contain the same

number.

After the paging-out operations, the contents of drum sector 0

through 7 are tabulated in Table 5. As shown, in drum sector 1, there are

eight 32's; in drum sector 2, there are eight 33's, etc. These eight drum pages

are then paged-in by test data 2 to be discussed immediately.

With test data 2, we shall page-in 8 drum pages as shown in Fig. 33.

In the figure, the first drum page of sector 0 goes through the PUC and be

comes the 32nd MM page; the first drum page of sector 1 goes through the PDC

and becomes the 33rd MM page; and the first drum page sector 7 goes through

64

the PDC.and becomes the,39th MM page. The contents of the 8 page descriptors

arenshown in.Table 6. The ROW fields are all set to 0 to indicate paging-in.

,The remaining bitsetting of the page descriptors are the same as those of

the p ging-outcase.described in Table 4.

,--The contents of the listhead memory are again set to 0. The contents

of the 8 CCW's for paging-in 8 MM pages are shown in Table 7 which is to be

comparedwith.Table,4..In Table 7, the RWC field of each CCW is set to 0

instead of I.- The rest-of the contents of the COW's in Table 7 remain the

same as those.in Table 4.

65

Table 6 Page Descriptors for Test Data 2:

(for paging-in 8 pages from 8 drum sectors)

PTM Field (in binary)

jaddress* LB LF DP ROW

32 0 0 0000010000 i 0

331 0 0000010001 0

3 4 0 0 0000010010 0

35 0 0 0000010011 o0

36 0 0 0000010100 O

37 "0 0 0000010101 i

38 0 0 0000010110 0
i 39 0 0 0000010111

* Decimal

Table 7 Channel Command Words* for Test Data 2:

(for paging-in 8 pages from 8 drum sectors)

Command Field

memory
address C RWC CHAN I PAG I FIRST1ORD

0 1 0 1 32 32

1 1 0 1 33 33

2 1 0 1 -34 34

3 1 0 1 35 35

4 11 0 1 36 36

5 1 0 1 37 37

6 1 1 0 1 38 38

7 1 0 1 39 39

not used

66

4.2 Simulat-ion'-Program

The-Algal simulation ,program is-described in the flow chart shown

in Fig. 34.' At the beginniig, counter I is set to 1 and the initial contents

of MM pages 32 through 39 are set as shown in Table 2. 8 page descriptors,

8 listheads, and 8 CCW'sare initialized for paging-out the 8MM pages. These

page descriptors, listheads,' and CCW's are printed in-octal before any page

transfer. After the above initialization, the paging algorithm starts. The

paging algorithm .consists of the-main sequence, the drum read/write subse

quence, the updating subsequenhce, and the request-accept subsequence (see Figs.

19-22). As data words'dte transferred, the contents of important registers

are printed. The paging algorithm is repeated 8 times for paging-out 8 MM

pages.

After 8 MM pages have been transferred to the drum memory, their

corresponding 8.page descriptors, 8 pairs' of listheads, and 8 CCW's in octal

are printed: Neit, counter I is tested. Since I is 1, I is incremented by 1,

and 8 page descriptors as well as 8 CCW's for paging-in 8 drum pages are initial

ized. The listheads are set to 0. Then the 8 page descriptors, the 8 list

heads, andrhe 8 CCW's for paging-in S drum pages are printed in octal. The

paging algorithm is employed 8 times for paging-in 8 drum pages. After 8

drum pages are'paged-in, the 8 page descriptors, 8 pairs of listheads, and the

8 COW's are printed in octal. Counter I is tested. Since now I is 2, the

program terminates.

This simulation 'programis so designed that logic can flow through

all parts of the program. Thus,.some flipflops are set and reset whenever it

is necessary- to-enter a loop-or-skip a loop.

An assembly language function DECODE is incorporated for extract

67

Set counter I to 1.

Store data words into MM page 32 through

39. Initialize 8 page descriptors, 8

listheads, 	dnd 8"CCW's "for paging-out

8 MM pages.

Irint z page descriptors,
8 listheads, an,8alorth

ransferred.
Sno

Initialize 8 page

tors, 8 listheads,

CCW's for paging-in 8

drum pages

desc

and

rip-

8

/ Pgn
agithg

(Figs:19-2

I Print inter-i

, _,mediate
Sresut

Fig. 34 Flow chart for the Algol Simulation Program

68

ing control information from the page descriptors, CCW's, and listheads.

The calling sequence for DECODE.Is as follows:

FLDA(I,J,K),.

where FLDA is the function name of the function, I is the starting position

of the controtinformation, J is the total number of bits to be extracted,

and K is the 36-bit data word to be operated upon.

The following steps are taken'by the function when it is called:

(a) Fetch the word K,

(b) Fetch the bit position I,

(c) Get rid of the upper bits by first shift left.I bit positions and

then shift right I bit positions,

(d) Compute: (36-1-J) which is the number of lower bits to be shifted,

(e) Get rid of the lower bits by shifting right (36-I-J) bit positions,

(f) Return to the Algol simulation program.

4.3 Simulation outputs

The output for the simulation is classified into 3 types as follows:

(a)After a word is transferred, print out contents of'main memory buffer

register, drum buffer register, word count in the page, and page

transfer direction.

(b) After a page is transferred, print out the modified channel command

word, listheads, drum field address, and drum sector address of the

page.

(c) After 8 pages are transferred, print out channel command words,

page descriptors, and listheads to check the number of pages in a

drum sector there are, how the page descriptors and the CCW's are set.

http:DECODE.Is

69

The outputs by test data 1 for paging-out 8 MM pages to 8 drum

sectors are sumarized in Table 8-(a) through 8-(e). The output, after the

first page (MM page 408) is transferred,"is shown in Table .8-(a). The vari

ables in the Algol program correspond to the registers of the PDC described

in the sections 1 anid 2. In Table 8-(a), PAGEPOST is 40 When a word of

the first page is transferred, SBR2 is 408 and88DBR is 40 8. COUNT keeps the

word counter of the first page and it varies from 0 to 7. RW is I indicating

a paging-out operation. SECTOR is 0 and FIELD is 1 so that the first page

is transferred td drum sector 0 and field 1 of the sector.

After the first page is paged-out, the print out of the correspond

ing CCW, listheads for sector queue 0, the page transfer interrupt signal,

and the page transfer status are summarized in Table 8-(b). Since a page

descriptor requires two 36-bit computer word to represent, the page table

memory PAGETABLE is represented by a two dimensional array. For the same reason,

the channel command memory is also represented by a two-dimensional array.

In Table 8-(b), COM(0,1) is 140140 where the underlined portion 1401 is

-8 -8

1100000001 in binary which is interpreted as follows: (a) the C field of the

CCW is 1 implying that there is a page transfer, (b) the RW field is 1 implying

that there is a paging-out operation, (c) the drum field address is 1; and the

remaining 408 not underlined is the MM page address of the current page COM(0,2)

contains 408 which is the first actual word of the first page. The listheads

of sector queue 0 are 408 and 408 and thus LISTS(0) is 4040 . INTERRUPT(PAGE)

is 1 indicating that page transfer is successfully completed. PTRAN is 2 indi

cating a paging-out operation.

The output, after a word of the last page (MM page 478) is shown in
,

Table 8-(c). In this Table, PAGEPOST is 47 . Each time when there is a word

70

Table 8 .TestData 1: Output in Octal

(for paging-out 8 main memory pages)

8-(a) Print out when the first p ge is being transferred

PAGEPOST RW SECTOR FIELD SBR2

I
DBRi

I
COUNT

40 1 0 1 40 40 0

40 1 0 1 40 40 1

40 1 0 1 40 40 2

40 1 0 1 40 40 I 3

40 1 0 1 40 40 4

40 1 0 1 40 40 5

40 1 0 1 40 40 6

40 1 0 1 40 40 7

8-(b) Print out after the first page is transferred

COM(0,1) COM(0,2) LISTS(0) INTERRUPT(PAGE) PTRAN

j
140140 40 4040 1 2

8-(c) Print-out when the last page is being transferred

AGEPOST RW SECTOR FIELD SBR2 DER COUNT

47 1 7 1 47 47 0

47 1 7 1 47 47 1

47 1 7 1 47 47 2

47 1 7 1 47 427 3

47 1. 7 1 47 47 4
47 1 7 1 47 1 47 5

47 1 7 1 47 47 6
47 1 7- 1 47 47 7

71

8-(d) Print-out after the last page is transferred

COM(7,1) COM(7',2) LISTS(7) INTERRUPT(PAGE) f. PTRAN
=
140147 47 4747 1 2'

8- (e Print-out after 8 pages are transferred

PAGETABLE(40,1) 0 PAGETABLE(40,2) 4100

PAGETABLE(41,1) 0 PAGETABLE(41,2) 4300

PAGETABLE(42,1) 0 PAGETABLE(42,2) 4500

PAGETABLE(43,1) 0 PAGETABLE(43,2) 4700

PAGETABLE(44,1) 0 PAGETABLE(44,2) I 5100.

PAGETABLE(45,1) 0 PAGETABLE(45,2) 5300j
PAGETABLE(46,1) 0 PAGETABLE(46,2) 5500

PAGETABLE(47,1) 0 PAGETABLE(47,2) 1 5700 i

COM(0,1) 1 140140 1 COM(0,2) 40

COM(0,0) 140141 COM(1,2) 41
COM(2,1) 140142 COM(2,2) 42COM(3,1) 140143 4

COM(4,1) 140144 COM(4,2) 44

COM(5,1) 140145 COM(5,2) 45

0OM(6,1) 140146 1 COM(6,2) i 46
CO(,)140147 I I 00COM(7,2) -- I _I_ 47 _

LISTS(0) 4040

LISTS(l) 4141 1

LISTS(2) 4242

LISTS(3) 4343

.LISTS(4) 4444

LISTS(5) 4545

LISTS(6) 4646

LISTS(7) 4747

72

transfer, SBR2 is 478 and DBR is also 47 COUNT contains 0 through 7. PW

is 1 indicating a paging-out operation. SECTOR.is 7 and FIELD is 1 so that

the last page is transferred to the drum sector 7 and field 1 of this sector.

After paging-out the last page, the print out of the corresponding

page descriptor, COW, listheads for sector queue 7, the page transfer inter

rupt signal, and the page transfer status are summarized in Table 8-(d).

COM(7,1) is 1401478 where the 1401 underlined portion has the same meaning

as that for the first page, and the remaining 47 not underlined is the MM

8

page address of the current page. The listheads of sector queue 7 are 478

and 478; therefore, LISTS(7) is 4747 The settings for INTERRUPT(PAGE)

and PTRAN are the same as those for the first page.

After 8 MM pages have been paged-out for the 8 MM pages, their corres

ponding page descriptors, channel command words, and listheads for the sector

queues are shown in Table 8-(e). In the table PAGETABLE (408 ,1).is 0

and PAGETABLE(478,1) is . '0. ; PAGETABLE(40 8 ,2) is 41008 and PAGETABLE(47 8 ,2)

is 5700 8; COM(0,1) is 1401408 and COM(7,1) is 1401478; COM(0,2) is 408

and COM(7,2) is 478. For MM page 408, LIST(O) is 40408' and for MM page 47.

LISTS(7) is 47478.

The outputs by test data 2 for paging-in the 8 MM pages mentioned

in the previous section are summarized in Table 9-(a) to 9-(e). Table 9-(a)

and 9-(b) differ only by the value for RW. In Table 9-(a), RW is 0 indicating

a paging-in operation. Table 9-(b) and 8-(b) differ only by the values for

COM(O,l), and PTRAN. In Table 9-(b), COM(0,1) is 1001408 where the 10018

is 1000000001 in binary which is interpreted as follows: (a) the C field of

the CCW is 1 and there is a page transfer; (b) it is paging-in; and (c) the

drum field address is 1; and the remaining 408 not underlined is the M page

address of the current page. In Table 9-(b), PTRAN is set to 1 for paging-in.

http:SECTOR.is

73

Table 9 Test Data 2: Output in Octal

(for paging=in 8 drum pages from 8 drum sectors)

Print-out when the first page is being transferred
9-(a)

PAGEPOST RW SECTOR IFELD SIBR2 DBR COUNT

40 0 0 1 i 40 40 0

40 0 0 1 40 440 1:

40 0 0 I1 40 '40 2

40 0 0 1 140 40 3

40 0 0 1 1 40 40
40 3

4

-40 0o 0 l ~40U 405
40 0 0 1 40 40

40 0 "0i 1 40 1 40j 7

9-(b) Print-out after the first page is transferred

Variables

COM(0,1) COM(0,2) LISTS(0) INTERRUPT(PAGE) PTRAN

1
100140 40 4040 1

9-(c) Print-out when the last page is being transferred

PAGEPOST RW SECTOR FIELD SBR2 DBR COUN

47 7 47 0 :71 47

47 0 7 1 47 47 1
47 07147 47 2

47 0 7 1 47 47 3
47 0 7 1 47 47 4

47 7 1 47 47 _5

47 0 7 1 47 47 6

47 0 7 0i 1 47 47 7 I

74

9-(d) Print-out after the last page is trandferred

COM(7,1) COM(7,2) LISTS(7) INTERRUPT(PAGE)(PTRAN

100147 74 4747 1 1

9-(e) Print-out after 8 pages are transferred

PAGETABLE(40,1) 0 PAGETABLE(40,2) 4000

PAGETABLE(41,1) 0 PAGETABLE(41,2) 4200

PAGETABLE(42,1) 0 PAGETABLE(42,2) 4400

PAGETABLE(43,1) 0 PAGETABLE(43,2) 4600

PAGETABLE(44,1) 0 PAGETABLE(44,2) 5000

PAGETABLE(45,1) 0 PAGETABLE(45,2) 5200

PAGETABLE(46,1) 0 PAGETABLE(46,2) 5400

PAGETABLE(47,1) 0 PAGETABLE(47,2) 5600

EO_

COM(0,l) 100140 COM(0,2) 40

COM(l,1) 100141 COM(1,2) 41

COM(2,1) 100142 COM(2,2) 42

COM(3,1) 100143 COM(3,2) 43

COM(4,1 100144______ 44

COM(4,1)

_

100144
__

COM(4,2) 44

COM(5,1) 100145 COM(5,2) 45

COM(6,1) 100146 COM(6,2) 46
GOM(7,l) 100147 COM(7,2) 47

LISTS(0) 4040

LISTS(l) 4141

LISTS (2) 4242

LISTS(S)

4343

LISTS(4)

4444

LISTS(5) 4545

LISTS (6) 4646

LISTS (7) 4747

I

75

Table 9-(c) and Table 8-(c) differ only by the 'alue for RW. In

Table 9-(c), RW is 0 indicating a paging-in operation.

Table 9-(d) and Table 8-(d) differ by the values for.COM(7,1),

and PTRAN. In Table 9-(d), COM(7,1) is 1001478 where the 10018 underlined has

the same meaning as that for the first page. In Table 9-(d), PTRAN is set to

I for paging-in.

After 8 MM pages have been paged-in, for the 8 MM pages, their cor

responding page descriptors, CCW's, and listheads for the sector queues are

shown in Table 9-(e). In the table PAGETABLE(408,1) is 0 and PAGETABLE(478 ,2)

is 56008; COM(0,1) is 1001408 and COM(7,1) is 1001478; COM(0,2) is 408 and

COM(7,2) is 478; for MM page 408, LISTS(O) is 40408' and for MM page 47., LISTS(7)

is 47478.

4.4 	Discussions

As a result of this simulation study of the paging drum channel system,

we have found that the PDC system design can be improved as follows:

(a) Instead of having a channel command word and a listheads word for each

drum sector, these two words are preferrable to be combined into one 64-bit

word. Thus, only one memory is needed to store both 16 CCW's and 16 listheads

'words. These are several advantages of having one memoiy instead of

two memories. First, it is more economical to have one memory. Second,

only one memory access is needed to obtain all the control information

for a page transfer at a particular drum sector. Lastly, the number of

micro-operations and registers can be reduced.

(b) 	 The page table memory should become a part of the PDC; this reduces the

number of registers, the time for fetching a page descriptor, and the time

for updating the sector queues in the page table memory.

76

5. Simulation by Simula

The Simula language can be considered as a super set of the Algol-60

since all the attributes ofi Algol-60 are available'in a Simula program.

Therefore, the conversion of a given Algol program into a Simula program is

relatively easy. Simulation by Simula provides the user with the capability

of simulating parallel processes in the sense that these processes all start

at the same simulated time. Furthermore, a Simula program provides execu

tion holding time for various processes in addition to the output gathered

from the original Algol program (7).

A-Simula user may view a large system as a number of smaller subsys

tems called processes. These processes are logically separable although

they can interact with one another. Besides, these processes may change

their states in parallel or asynchronously (7). A process described in code

is called an activity which is syntactically equivalent to an Algol pro

cedure. There is a timing chain in Simula called Sequencing set which is

a list of ordered pairs: (event identification, event time). The event

time of any activity can be changed by means of HOLD Statements (9).

The conversion of the Algol simulation program mentioned in the

previous section to a Simula simulation program is done in the following

three steps:

(a) isolate the drum input-output subsequence and make it an activity by

inserting execution holding time and Simula keywords.

(b) isolate the updating subsequence and the request-accept subsequence

and make it an activity as in step (a),

(c) convert the remaining Algol program into a Simula program by rearrang

ing the program statements and by inserting keywords into appropriate

places.

77

Some HOLD statements are added to the Simula program at the end

of each process to simulate execution holding time of each process. In order

to add the HOLD statements, the following assumptions are made as shown in

Fig. 35: initialization takes 10 units of time from the beginning to the

point of the main program with label LO; decoding of a CCW takes 40 units

of time from LO to the point of the main program with label Fork; the

drum read/write process takes 320 units of time; and the updating process

takes 50 units of time. These assumptions are based upon the number of micro

operations to be executed in each process. For example, the drum read/write

process takes more time because it contains a loop for read and a loop for

write; for one page transfer by our simulation model, it is necessary to

stay in one of these loops 8 (number of words per page) times for write or

7 times for read.

5.1 Simulation Inputs

The two sets of test data designed for the Algol simulation are

again used as the input data for the Simula simulation for comparison of

the outputsi However, in Simula simulation here, the relative time among

different processes can be shown and compared.

5.2 Simulation Program

The Simula simulation program is described in the flow chart shown

in Fig. 36. At the beginning of the program, the drum read/write subse

quence is declared as activity LEFT, while the updating subsequence together

with the request-accept subsequence are declared as activity RIGHT. Counter I

is first set to 1 so that when I is 1, it is paging-out, and when I is 2, it

is paging-in operation. Next, data words are stored into MM pages 32 through

78

BEGIN

begin main

10 units

at LO Main

process
40 units

at Fork

begin

LEFT
begin-~

begin-
Right

Left 320 units Right 50 unit

Process 3 i Process

LE T E d
End

Right n
En d./

Fig. 35 Simulated execution time-units for

the 3 processes in paging one page

79

ST

Declare activity LEFT as the drum read/write sub
sequence.

Declare activity RIGHT as the updating subsequence

and the request-accept subsequence.

Set counter I to 1.

Store data words into M page 32 through 39.

Initialize 8 page descriptors, 8 listheads, and 8

CCW's for paging-out 8 MM pages.

Initialize 8 page descrip- "

tors, 8 CGCWs for paging-i

the same 8 pages; list- print 8 page descriptors,

heads are set to 0 8 listheads, and 8 CCW's

8 pages yes

no

I activate LEFT (Fig. 20) .

yes Sn

] Print 8 page descriptors,

I =1+ 1 8 listheads, and 8 CCW's

Fig. 36 Flow Chart for the Simula Simulation Program

80

39; 8 page descriptors, 8 listheads, and 8 COW's are initialized to page-out

the 8 MM pages. After the initialization, the main sequence is initiated

and the 8 page descriptors, 8 listheads, and 8 CCW's are printed. To

page-out an M page, activity LEFT and activity RIGHT are activated at the

same simulation time but are terminated at different simulation time. Never

theless, whenever an MM page is to be paged-out, these two activities are

reactivated at the same simulation time. After the 8 pages have been

transferred, the octal representation of 8 descriptors, 8 listheads, and 8

COW's are printed. Counter I is next tested. Since I is not 2, I is in

cremented by 1 and initialization for paging-in the 8 MM pages is done. 8

page descriptors and 8 COW's are reset for paging-in the same 8 pages. The

listheads are set to zero. The main sequence is again reactivated and the

8 page descriptors, 8 listheads, and 8 CCW's are printed. To page-in an MM

page, activity LEFT and activity RIGHT are activated at the same simulation

time but are terminated at different simulation time. However, whenever

a drum page is to be paged-in, these two activities are reactivated simul

taneously. After 8 drum pages have been transferred to the MM, the 8 page

descriptors, 8 listheads, and 8 CCW's are printed. Counter I is next tested.

Since I is 2, the program ends.

A listing of the Simula simulation program is included in Appendix

B.

5.3 Simulation Results

In addition to the output of the Algol simulation program, we also

get the simulation time for the three processes during paging. The timing

of activities at the SQS have been obtained from the Simula simulation program

and summarized in Table 10. There are three events in this simulation, namely,

81

main process, LEFT process, and RIGHT process. LEFT process and RIGHT

process are parallel processes in the sense that they start at the same

event time.

In Table 10, MM page 32 is the first page to be paged-out. There

fore, the main process starts at time 0. At LO, the time is incremented

to 10, and at Fork, the time is incremented to 50. Now the main process

is held 1000 time units to allow other events to occur. Thus the MM page

33 is paged-out at time 1050 which is incremented to 1060 at LO and to 1100

at Fork. Next, the main process is held 1000 units and the old MM page

33 is paged-in at time 9450. At LO, the time is incremented to 9460 and at

Fork, the time is incremented to 9500. The time for paging other pages

are obtained similarly.

Next, we consider the LEFT process in Table 10. M page 32 starts

transferring to the drum at time 50 and ends transferring at time 370

since we allow 320 time units for paging-out an MM page. MM page 32 starts

transferring to the drum at time 1100 and stops transferring at time 1420.

After MM page 39 ends transferring to the drum, paging-in operation starts.

Old page 32 starts transferring from the drum to the MM at time 8450 and

ends transferring at time 8770 since we allow 320 time units for paging-in

a drum page. Old page 33 starts transferring to the MM at time 9500 and

ends transferring at time 9820. The timing in the LEFT process for other

pages are obtained similarly.

Finally, we consider the RIGHT process in Table 10. RIGHT process

for MM page 32 starts at 50 which is the same as the starting time of the

LEFT process for MM page 32. Since we allow 50 time units to update the

page-table memory, the channel command memory, and the listheads memory

the RIGHT process terminates at time 100. The RIGHT process for NM page

32 starts at time 1100 and ends at time 1150. After the paging-out of

82

Table 10 Begin and end time units of the activities at the SQS

(Paging-out 8 Pages and Paging-in 8 Pages)

Page Main process T.REFTp'-r RIGHT process .
Number begin at LO at Fork begin end begin end

32 0 10 50 50 370 50 1i00

33 1050 1060 1100 1100 1420 1100 1150

34 2100 2110 2150 2150 2470 2150 4 2200
35 3150 3160 3200 3200 3520 3200 3250

36 4200 4210 4250 4250 4570 4250 4300

37 5250 5260 5300 5300 5620 5300 5350

38 ! 6300 6310 6350 6350 6670 6350 6400

39 .7350 7360 7400 7400 7720 7400 7450

32 8400 8410 '8450 8450 8770 8450 8500
33 9450 9460 9500 9500 9820 9500 9550

34 10500 10510 10550 10550 10870 10550 10600

35 11550 11560 11600 11600 11920 11600 11650

36 12600 12610 12650 12650 12970 12650 12700

37 13650 13660 13700 13700 14020 13700 13750

38 14700 14710 14750 14750 15070 14750 14800
39

I ______15_

1576 800 1 815750 16120 15800 15850

1580580085

83

8 DM pages, the paging-in operation starts. The RIGHT process for old

MM page 32 starts at time 8450 and ends at time 8500. The RIGHT process

for old MM page 39 starts at time 15800 and ends at time 15850. The

timing in the RIGHT process for other pages are obtained similarly.

However, the sequencing of activities in the SQS could be very

complicated if many processes of various execution time are activated random

ly. In this case, we must know the first event of the sequencing set at

all time, which process will be activated next, and the reactivation

point of the next process.

84

6. 	Acknowledgement

The author wishes to express his thanks to Professor Yaohan Chu

for his inspiring advice, helpful suggestions, and guidance as well as

for his writing of the section on handling of queues; to his wife Marion

Kwok for her patience and encouragement; to Mr. R. Pardo and Mr. J. Yeh

for their helpful discussions and suggestions; and to Miss N. Nowell for

her typing of the entire manuscript.

7. 	References

1. 	Chu, Y., "Introduction to Computer Organization", Prentice-Hall,

Inc., 1970.

2. 	Chu, Y., "Notes on Channel Organization", Computer Science Center,

University of Maryland, November, 1970.

3. 	Coffman, E. G., Jr., "Analysis of a Drum Input/Output Queue Under

Scheduled Operation in a Paged Computer System", Journal of the ACM,

Vol. 16, No. 1, January 1969, pp. 73-90.

4. 	Denning, Peter J., "The Working Set Model for Program Behavior",

CACM, Vol. 11, No. 5, May 1968, pp. 323-333.

5. 	Gordon, Geoffrey, "System Simulation", Prentice-Hall, Inc., Englewood

Cliffs, N.J., 1969.

6. 	Knuth, D.E., "Fundamental Algorithms" (The Art of Programming), Vol. 1,
Addison-Wesley, 1969.

5. 	McCredic, J. W., Jr., SIMULA--AN ALGOL BASED SIMULATION LANGUAGE,

Computer Science, Carnegie-Mellon University, pp. 315-322.

8. 	Pardo, 0. R., "A Virtual Memory System Design", Technical Report

71-144, Computer Science Center, University of Maryland, January

1971.

9. Simula Manual, UNIVAC 1108 programmers reference, UP-7556 Rev. 1,

1970.

85

APPENDIX A. LISTING OT THE ALGOL SIMULATION PROGRAM

'RUN ALOt-11--768,KWOKI,1!00

tALGIS PDCHANPDCNAN

EXTERNAt. NON-RECURSIVE ImTEGER PRnCEDURE FLDA S

PFGIN

COMMENT ***A PAGING DRUM CHANNPL ***

COMMENT-FOR CONVENIENT SIMULATION 48 BIT DATA WORD IS CUT TO 36 BITS$
COMMENT FOR TESTING AND SIMULATION ON THE 1108 MEMORY*

PAGE SIZE'IS RFDUCrO TO S WORDS PER PAGE

64 PAGFS IN THE MAIN MEMORY

1024 PAGES IN THE PAGING DRuM WHICH HAS 16 SECTOR QUEUES

64 PAGES IN A QUEUE (OR LIST WITH A FRONT AMD REAR POINTER)$

COMMENT WE ASSUMF MAIN MeMORY PAGF 0 DOES NOT EXIST s

COMMNT I IS THC LOOP CONTPOL VAPI-APLF$

TNTrFP IS
COMM'NT MAIN MrMORY ANn RFLATED PFGTSTPRSS

CMMCNT MATN MrMnfYr

INTEGER ARRAY MEM(O..639.A.7)S

COMMENT MAIN MFMORY ADnFRES RFGTSTFRS

INTEGER MARS

COMMENT MAIN MEMORY BUFFER RFGISTERS

INTEGER MBR$

COMMENT MAIN MEMORY READ/WRITE CONTROL REGISTER$

INTFGER RW2$

COMMFNT MAIN MPMORY PAF AnfRFSSS

TNTFGFR MAnR2PLOCKS

COMMFNT MAIN MNMORY RUPFEP RFGTSTFRt

TNTrGFR SRR2S
COMMENT MA(2) IS MAIN MFMOPY ACCFSS RFG!STER$

INT!FrR MAP$

COMMENT MAOR2(WRD) IS MAIN MEMORY WORD ADDRESS$

INTEGER MADR2WRDS

COMMENT MAIN MEMORY PAGE ADDRESS OF THE POSTED PAGES

INTEGER PAGEPOST$

COMMENT PAGE-TAPLE MFMORY$

INTFGER ARRAY PAGETAfLFfPn.o6q l,7)$

COMMENT PAGE-TARLE MFMnRY ADDRFSS RFGTSTFR$

TNTrGFP PAMR-

COMMNT DAGF-TAPLF MFMORY oUFPFR RPrTSTPR$
INTrnP APPAY PTP2(C1.)c,
TNTFGFR PTR2rH$
INTEGER PTR2qFC$
TNTEGFR PTR2POW$
INTEGER PTR2LRS

INTEGER PTR2LP$
COMMFNT LISTHEAS MEMORYS

INTEGER ARRAY LISTS(n,,I)$
COMMFNT LTST~RA M=MORY ArnRFSS oPGTSTrR$

INTFGF SFCTnRSS
COMMFNT LUqTHPAn MrMOPY PtiJrFR RIRcT TrP$

TNTe(rQ PTIT
COMMENT POINTER THE FIPST OAGF Om A SP'TOR QUEUP IN THF DRUMS

INT;:R PTI.FDR
COMMENT POINTER THE LAST DAGF OF A SECTOR QUEUE IN THE DRUMS

86

INTEGER PTLLPS

COMMENT GPTL IS AN AUXILIAQY RFG!ST#RS

INTEGER GPTLS

INTEGER GPTLFPS

TNTFGFR SPTLLPS

COMMFNT PAGE TfRLE SEMAPHOR$

INTEGER PTSEMI$

TNTFFR PTSFM2S

COMMENT PAGING DRUM AND RFLATFD PEGISTFR$

COMMFNT PAGING DRUM MFMORYS

TNTFGFR ARRAY PfRUM(On*1,,o
'. qioAfl.i)$

COMMENT PAGING DRUM SECTOR ADDRFSS$

INTEGER CWORDSECT$

COMMENT PAGING DRUM CHANNEL ADDRFSS$

INTFGER CHNMMFLS

COMMENT PAGING DRUM CHANNEL WORD COUNTS

INTEGR CWORnCOUNT$

COMMENT DRUM RrAO/WRTTP CONTROL REGTSTFR$

TNT F(R RWt

COMMPNT DRUM RUFER RETSTCRS

INTFGFR IP$R

COMMENT DRUM ACTIVE INDICATORS

INTEGER OACTV$

COMMENT COMMAND MEMORY AND RFLATED REGTSTERS$

INTEGER ARRAY COMfO*.I.I*2)$

COMMENT COMMAND MEMORY ADDRESS REGISTERS

INTPGFP EC

COMMENT COMMAND MEMORY BUPPER REnTSTER$

INTEGER ARRAY COMMAND(1..2)$

COMMENT SURRrGTSTERS OF THr COMMAND WORDS

IMT FCR COMrS

INTFGFR COMRWC$

TNTFGFP COMCI4AN*

INTEGER COMPGE$ -

INTEGER COMFTRSTWORD$

COMMENT DRUM SUFFER STATUS REGITSERS

INTEGER PST

COMMENT INTERRUPT(DRUMDAGFI$

INTEGER TNTFRRUPTDPS

COMMENT MAIN MEMORY PAGE WHICH INTERRUPT OCCURED$

INTFGFR PASTNT$

COMMENT INTERRUPT(PAF)$

INTeGFR TNTFPRUPTPGPS

COMMENT CURRENT PAGr AhnRrcS$

INTEGFR PCS

COMMENT WORD COUNT OF THE PAGES

INTEgeR COUNTS

COMMENT PAGE TRANSFER DIRFCTIONO WHEN NO TRANSFERtI WHEN DRUM TO MEMORY.

2 WHEN MEMORY TO DRUM.1 WHEN ERROR OCCURS$

INTEGER PTRANS

COMMENT PAGE TRANSFER COMPLETF WHEN 1$

INTEGER PAnFTS

COMMENT PAGE POSTING INDICATORS

INTEGER POSTS

COMMENT COUNTER FOR THP NUMSPR Or PARALLFL PROCESSES$
INTFrnP NPPRnrrSSS
FORMAT Fl' C I ** TPANSrFR A PASq *************,%)
FORMAT F2(X8 ,'PAGF-n7SCOTPTORS IN OCTAL', A1.3)$

FORMAT FlC X9qT2RAX?,In*p, X9 I1O,A AIl)$

FORMAT F4 (' rOMMANn IN nCTAL =t TI1 .8A1.1)$

FORMAT F20(X8 o. LISTHFADS IN OCTAL', AI13)$

87

FORMAT F21 (XSI29X2,IlO.89 A1.11S

FORMAT F22X8 ,0 CHANNEL COMMAND WORDS IN OCTALIAI.3)S

FORMAT FP1 C Ft* * * STMULATTON P4OUT * * * '9A4.4)S

FORMAT F12 C F t* * * SIMULATION OUTPUT * * * &A/,4)$

LOCAL LAPFL LAST;'

LOCAL LAflrL JOINTS

LOCAL LAPFL FINISH$

COMMENT TNTTIALTZF COUNTPR'S

1e 1 %

COMMENT INITIALIZE THE MAIm MEMORYS
FOR MAR=O STFP 1 UNTIL 61 fO PtGIN

COMMENT THE I-TH PAGE CONTAINS ALL I'S$
FOR COUNT=O STEP 1 UNTIL 7 DO
MFMtMARCOUNT)= MAPS
FN$

COMMENT INITIALIZE THF COMMAND MFMORY FOR PAGING OUT $
COMMENT COMMANnS ARr TO WRTTF 8 PAGFSPAGE 32*33934,35,36937.38#39 S

FOR SPr0 4;TFP 1 UNTIL 7 r)O
COM(SEC,1)= P**5+4*8**a+S**2 + 4*q + SEC S

COMMENT SFT UP FIRST WORn IN THE CON MEMORY$

FOR SEC=O STFP 1 UNTIL 7 DO COM(SEC,2)= 32 + SEC$

COMMENT SET UP LINKAGES FOR THF PAGE-DESCRIPTORS IN THE PAGE -TABLES

PAGETARLF (3*,1)= 0 $

PAGETARL (3%,I): 0 $

PAGrTARLF (1491)= 0 S

PAGFTAqLF (3571)= 0 s

PAGF-TARLF (36#11- 0 t

PAGFTARLF (3IA1)= n 9

FOR PAnR = l STFP 1 UNTTL I(nO
COMMENT ROW = 1 WHEN WRTTF S
PAGETABLECPADR,2) = 8**3*4 + (PADR-32)*(8**2)*2 + 8**25
COMMENT INITIALIZATION Or LTST HEAD MEMORY TO ENTER GETPAGE S

COMMENT PUT 8 DAGES IN 8 SeCTOR OUEUE $
FOR SECTORS = 0 STEP I UMTIL 7 DO
LISTS(SECTORS) = 0 S

COMMENT *
START .. WRITEC FI)s
COMMFNT PRINT TITLFS
WRTTF(F22)$

FOR SEC =0 STFP 1 UNTIL 7 fO

WRITE(SECT COM(SFC,1), COM(SEr,2)9F3)

COMMENT PRINT TITLFS

WRITF(FIll$

COMMENT PRINT TITLES

WRITE(F2)$

FOR PADR = 32 STEP I UNTIL 39 no

WRITE(PADRPAGETARLF(PAI)P,1)/((S**7)*2),PAGETABLF(PADR,2),F3)$

COMMFNT PRINT TITLES

WRTTE(Pll)s

WPITECF11 I
FOR SECTORS = 0 STFP 1 UMTIL 7 DO
WRITE(SECTORS, LISTS(SFrTORS), FRM)$
CWOPnPCrT=-l T

COMMFNT PAGING fRUM CHANNeL OPWRATInNS START HFRE$
Pnr, PA(FI1S

IF PAGET EOL 0 THEN GOTO PDCS
LO.. PAGEI=0$
COMMENT SET PAGE TRANSFER INDICATOR$

NPPROCES =2$

http:XSI29X2,IlO.89

88

CWORDSECT= CWORDSECT+IS

COMMENT CHECK IF 8 MM PAGEC HAVT 8EFN TRANSFERRED BY THE PDC $

GOTO LASTS
IF CWORDSFCT POL A T$4FN

COMMFNT PRINT TTTLP$

WPTTr(P15)S

COMMFNT OPTAIM A .CHAMNFL rOMMANn WnRnS

SFr=CWOPrSrCTt

COMMENT INPUT FROM CARD IS A COMMAND WORDS

COUNT=O$

CWORnCOUNT=O

WRITE(Fl)$

COMMAND(1 =COM(SFCq1)$

WRTTFC COMMANn(1), F4)$

COMMAND(2)=COM(SFC,2)$

COMMPNT
WRTTF(f FIRSTWORD = rCOMMAND(2))S

COMMENT DECODING A COMMAND WORD AND PUT THE CONTROL INFORMATION
INTO THF APPROPPTATr RFGTSTPRSS

COMC=FLDA(20,1 COMMAND(I)$
COMMFNT INDICATE A PAGF HAS BEEN SWAPPED WHEN 1$

DACTV= COMC$

COMRWC=FLDA(21ltCOMMAND(1))S

RW= COMRWCS

COMCHANmFLDA(228COMMAN(1))S

CHANNEL = COMCHANS

COMPGE=FLrA(3O96,COMMAND(l1)$

MAnR2qLOCK=CnMPGFs

PAGEPOST = COMPGF$

WRTTF(t PAfF0OST ',PACW0n5T)$

CO!MFNT DATA TRANSFFP$

COMTRSTWORD = COMMANf(lS

COMMENT TRANSFER THE FIRST WORD OF A PAGE TO THE DRUMBUFFER REGISTERS

DPRt COMFIRSTWOPDS

WRITE(' CHANNFL = 1,CHANMML)$

IF RW EQL 1 THEN BEGIN

WRITE('WRITF OPFRATTON9QW= ,.PW)$

COMMFNT OUTPUT FIRST WORn TO DQUMS

WRITE(,**** ***** *** ************MEMORY TO DRUM')$

COMMENT FOR WRITE OPERATIO THE FIRST WORD IS ALRFADY IN THE BUFFER

RFFOR= PNTFRTNG TwP WRTTP LOOP $

WRTTE(tWORD COUNT =', COitNT)$

WRTTWC' OPP= 'qDRR)S

PDRUM(CWORDSrCTCHANNLon)= OPP$

END FLAF

WRITF(, READ OPPRATION, RW= '.RW)$

COMMENT PARALLFL PROCFSS CTARTS HERES
WRITE(# *** DRUM READ/WRTTE SURSEOUENCE ***')$

FORK *# NPPROCcSS =NPPROCrCS -1$
rOMM NT
WRITF(NPPROC"SS='qNOPROrFSS)S

COMMFNT BRANCH TO ANOTHFP PPOCFS$

IF NPPROCESS NEC 1 THEN '0 TO L10s

COMMmNT CIFCK OAfr SWAP TMnTCATRS

IF DACTV POL I THFN C4TO LI$

DAGPI=I$

PTRAN=O$

WRITEC(PTRAN='1PTRAN)$

GOTO JOINTS

L3 .. PAGTNT=MADR2RLOCKS
INTERRtIPPT (F:1S

WRITF(' INTFRQUPT(PAGF) = INTPRPUPTPGF)S

89

GOTO LOS

COMMFNT PhGF HAS NOT QFFN SWAPPrD rOMFS HERE$

COMMENT BRANCH PUT TO WRITE.$
IF PW FOL I T4PN nn Tn LrS
MA)=O$

COMMFNT
WRITF('RS= 4R5' RW= *9PW)$

COMMENT DRUM TO MAIN MEMORY TRAMSFFR(READ BRANCH)$

L4.. TF MA2 PQL I THEN GO TO L45

PS= 1.$
COMMFNT

WRITF(fMA(2)=,,MAPl RS= 0,.S)

L6.. IF- RS FOL n THFN rOTO L6$

MADR2WRD= COUNTS

WRITE(I INPUT WORD COUNT = I*MArRWRD)$

DBR = PDRUM(CWOROSFCTCHANNFLCWOPDCOUNT)$.

WRTTF(I DRR =09 DRR)s

COMMENT INPUT FROM THE PAGING DRUM fNF WORDS

SPR2=DRR$

RW2=RW$

MA2=15

WRIE(********#**********~r)UMTO MEMORY?)S

MBR= SBR2$

WRTTF(t MRR to MRR)S

MEM(MADR2BLOCKMADR2WRD)= MRR$

IF COUNT EOL 7 THFN rnTO L7 FLCF CnTO RPTURN$

L7., PAGFT~lt

DACTV=OS

RFTURN., IF 0AS 4 FOL 0 TNvN qPGTN

COUNT= CnIhNT+I$

CWORDCOUNT= CWORDCOUMT +JS

GOTO LI$

FND$

COUNT=OUNT+PW

TF COUNT cOL 7 TtrN prMTN

P5TPAM=QW+1 t

WRTTF('DTRAN = 1,PTPANW$

rMTn JOINT,

FND

ELSE BEGIN

COP!MFNT SFT PPRn TNfTCATnPT

INTERRUPTDO=1S

PTRAN=3$

WRTTE('PTRAN =', PTRAN)$

COTO JOTNTl

FND$

COMMENT MAIN MFMORY TO DRUIM TRANSFFP C WRITF RRANCH)$

L%.o MAO4"

IF MA2 FOL 1 TPFN rOTO LqS
RW2= RWS
MAfR2WRD= COIJNT+1$

WRTTF(I WORD COUNT = to MAORWRDN$

MA2=IS

L8.. MA?=O$

TF MA2 EOL 1 THEN GOTO LPS

Lq.. rtlS=IT

COMMFNT DATA TPANSFERS FROM MFMOPY PUFFER TO DRUM RUFFER$

SBR2= MFM(MAfR2RLOCVmAnpPWRnyT

WRTTF(tSRRP ='SRP29)

WR ITFC(*********************M~p TO DPUMI)5

90

DBR=SR2$

WRTTr(tMnQ= flftRlt

PDRUM(CWORDSPCTCHANNFLJCWORDCOUNT) D R$

COMMENT IN THE WRITE OPERATION THE WORD COUNT DOES NOT INCLUDE THE
FIRST WORD OP TH-F PAGE. IF EXACTLY 7 MORR,WORDS (0-6)
WERE WRITTEN9 AN-eNTIRE PAGE WILL BE COMPLETELY TRANSFFRRF)S

TF COUNT EOL 6 THEN GnTO L7 ELSE GOTO RETURNS
COMMENT MEMORIES UPDATING SUBSEQUENCE STARTS HERES
LIO * SPCTOnS = SECt

t
WRITE(*** MFMORIW- UPDATING SURSEQUENCF ***I)$

PTL= LTSTS(SFCTORS)S

PTLFP=rLDA(24,6,PTL)$

PTLLP= FLDA(qo,6,PTLj$

COMMFNT- FOR EMPTY QUEUE9 qT PAnE SWAPPING INDICATOR$

IF PTLFP EOL 0 THFN RFGTM

COMC=Os

GOTO L13$

ENDS

COMMENT GETTING A PAGES

Klee PTSEMI=O$

IF PTSEM1 POL 1 THEN GOTn Ki$

PTSEMZ=I$

COMMFNT PUT Tmc LIST HEAn INTO QFrTSTrR nPTL$

GPTL=PT.t

rPTLFP=FLOAC('4.6 ,PTL)$

CPTLLP= PLr)A-e'30,6,GrPL)S
WRI'TE('PTL(FP)='PGPTLPP,' GFTL(LP)-9, GPTLLP)S

PAt)ReGPTLPFP

PC= GPTLrPM

COMMENT GET A PAGE DESCRIPTOR FROM THE PAGE TABLE MEMORY$

"PTR2(1)= PAGFTABLF(PAORi)$
PTR2(21= PAGFTA6LE(PADRP)$
PTR2CH = FLOA(17o8APTR2(C))$
WRITE(' CHANNEL = '9 PTQ2CHI$
oTQPSmC= FLDA(25,4,PTP7(1))$
WRITF(I SFCTOQ = ', PT#1SWC)S
PTRROWm FLOA(7q,1,PTPr0(jfl$
PTR?LP= PLfMAC',6,PTQ~t(jp
PTR2L= FLfA(Aq6,PTRP(1)j$
GPTLFP= PTR2LFS

COMMFNT TRANSFER THE UPDATED LIST HFAl TO PTLS
PTL - GPTLS
PTSEM2= OS

COMMENT STORE THE UPDATED LISTHAD TO THF LISTS MFMORY$
L15 o. IF SECTORS GTR 16 THFN GOTO LASTS

LTSTSSFrCTORS)= OTLr
COMMFNT. SET UP A CHANNEL rOMMAN WnRns

C0mP(GF=PC%

COMCHAN PTCH$

COMRWCe PTP ROW$

COMMAND()i= COMC*8**5+COMRWC*4*8**4+COMCHAN*8**2+ COMPGF$

IF PTR2ROW EOL 0 THEN GOTO L13

COPMMNT WRITE MNTO DPUMS

LII. 	 MA2= 0S

IF MA2 FQL 1 THEN GOTO LllS

COMMENT 5T UP MAIN MEMORy ADDRFSS RFGCTSTERS

MAhPRLflKC O

MAI),IC

91

LI? .o MA2=OT

TF MA2 FOL 1 THEN GOTO L12$

COMMENT SET UP THE FIRST DATA WORD IN THE COMMAND REGISTERS

MBR= MFM(MADPRLOCKO)$

SAR2= MARS

COMMAND(2)= sRR25

COMMENT PUT THF NEW CHANNEL C6MMAND WORD INTO THE COMMAND MEMORYS

L13. COMfSAC.1)= COMMANn(,)$

COM(SECpl= COMMAND(I)s

WPTTF(COMMANh(1), t4)S

COMMENT THIS IS TO TEST THr PUTPT AND LOADPAGEDFSCRIPTOR ROUTTNFS

PA(*,CT = ml;

POST =11

L14.. IF PAGe! FOL 1 THEN COTO JOINTS

IF POST FIL 0 THFN GnTO L14S

COMMENT LOAD PAGE DESCRIPTOR SEOUENCE STARTS HERE$

K2 o6 PTSFM1 = Ot

IF PTSEMI EQL 1 THFN GOTO KS

PTSFM?=IS

COMMFNT GFT A PArF DPCRTWTOR$

PAOR= PAGF0OrTS

DTR7(1)= PAGrTAPLP(PADP,1)S

PTR2(2)= PAGtTAALF(0ADRrf)S

COMMENT PREP THF PAGF-TALP MFMORY$

PTSEM2=0$

PTR2SEC= FLDA(2540TR2(7))

!FCTORS= 0TR?SFCS

PTL= LTSTS(SPCTORS)$

PTLFP= FLDA(74t69PTL)$

COMMENT BRANCH TO PUT HTF PAGE ON DRUM IF QUEUE IS FMPTY$

IF PTLFP NFQ 0 THFN GOTO K3$

COMMENT GET TwF NFXT CHANNEL COMMANn WORD$

SFC= -SFCTOQS,

COMMAND(l)= rOM(SPFC,1)$
COMMAND(2)= COM(SFC2)S

IF COMC FOL n THFN MmTN

PC= OAGFPOqT$

,WRITF('PC1. PC)$

PAGET = 1$

nMTO LIS

FNDS

COMMENT PUT A PAGE BACK TO THF SECTOR QUEUE ON THE PTM S
- K#* PTSPMJ~fl;

IF PTSFMI FOL I THFN fGfTm KqS

PTqPM2=IT

GPTL= PTL$

nPTLFP= rLmA(4A9Ar-PTL)1

COMMENT 	 IF THF SECTOR OUFUE IS FMPTY THE CURRENT PAGE PECOMES THE FIRS T

DAGP (FRONT OF THe OIWUF)$

IF GPTLFP POL 0 THFN RFSTN

GPTLFP = PAGFPOST$

GPTL = GPTLFP*s**2 + FLnA(30,69GPTLV$

GOTO K4$

ENDS

COMMENT INSERT THE NEW PACm AT TwF RFAP OF AN NON-EMPTY

LIST OF PAnF SFSCRTDTORQS

GPTLLP= FLfA(3O,6,g(PTL)$

DADR= r0 Tl.0r

PTR?(I)= PA(,TARLF(PAnR~i)$

PTR2(2)= PhrcTAALP(PAOR,9)$

COMMFNT UPDATF A PAP-F nFSrIPTORt

92

PTR2LF= MOD(PTR2(I),2**28)S

PTR2LB = PTR2(1) - PTR2LF* 2**P8-s

PTR2(1)=PTR2LB + PAGEPOST*2**,2$

PAGETABLF(PAOR,1)= PTR2(1$

PAGCTARLF(PAnt2)= PTR1Ci)$

COMMENT GFT TNF PAGE DESCRIPTOR OF THI POSTED PAGES

K4.. PAOP = D~e=OSTS

PTRP(i)= PAfTALFPA~l)S

PTR2(2)= PAGrThALF(PAfR9$ S

COMMENT LET TRF BACKWORD DOINTFP POINT TO THE REAR OF

THE LIST OF'PAGE DFSCRIPTORS$

PTR2LR= GPTLLP$

COMMFNT GROUNDING A LIST $

PTR2LF =05

PTR2(11= GPTLLP*2**28$

COMMENT RETURN THE NEW PArE DESCRIPTOR TO THE PAGE-TARLE MEMORY$
PAGPTASLF(PAtPI)= PTQ,(1)S
PArFTARtYF(PAO)P,2) 0P(=

COMMFNT UPrATE LTSTNFA.S$
nPTLtP= MOfl(r0OTL9A**?VT,
GPTLFP= GPTL - GPTLLP$
GPTL = (PTLFO + PAflRS
PTL= GPTL$
PTSFM2=0$

COMMENT STORE LISTHEAD$

LISTStSECTORS)= PTL$

WRITE(I SECTORS LISTHFADS')%

WRITE(SECTORS, LISTS(SEcTORS)gF21)$

POST=O'S

PAGF! = IS

GOTO L1';

JOINT*. IF NPPROCESS rOL 0 THFN rOTO L FLSF GOTO FORKs

COMMENT OUTPUT THE UPDATEI LISTSl

LAST.. WRTTr (F7l)
WRTT(F?)$
FOR SEC = 0 STEP 1 UNTIL 7 DO
WRITE(SEC. COM(SEC,1), COM(SEC.2)qF3)$
WRITE(F12)S

WRITE(F2)3

FOR PADR = 32 STEP 1 UNTIL 30 nO

WRTTF(PAORPA'CFTARLF(PADOP,)/((8**7)*2),PAGETARLE(PAR,2),E3)$

WRITF(F~fl);T
FOR SECTORS = 0 STFP 1 UTIL 7 DO
WRTTE(SECTORSLTSTS(SFCTORS),F'1)$
IF I FOL 2 THFN GOTO FINISHS

COMMENT SET UP CHANNEL COMMAND WORDS TO READ 8 PAGES$
I= 1+1$

COMMENT INITIALIZE THE COMMAND MFMORY FOR PAGING IN $
FOR SFC = 0 STEP 1 UNTIL 7 nc
COM(SECI)= 8**5+ R**2 + 4.1 + SEC $.

COMMENT INITIALIZE PAGF-DFmCRIPToRS FOR PAGING-INS
COMMENT POW 0 WHFN RAD t

POP PADR . 32 STEP I UNTIL 30 Do

PAGFTA3LEIPAO)R92) = R**1*4 + (PAOR-32)*(A**2)*2$
FOP SFCTORS = n STFP 1 NikTIL 7)O

LTST.4tSPCTOP ,) = 0 %

rOTO STPT~g

FINISH .. ENn$

'ASMTS nFCOOPtnFCOWF

$(I) AXR$,

93

* 	 ROUTINE FOR DECODING PAGE nESCRIPTORSCHANNEL COMMAND wOR-s
S4MNO LTSTHFADS FOQ THF PaGImG DRUM SECTOR OUFLJrS.
* INPUT FORmAT *** PLnA(TJ.K)
rLnA* LA A5.*tX 1 , * FrT- T r WOPPr K

LA AO*gX I , c=TC TIF RIT PfSITION r
;A#H2 AOiLi GCTTTN(RID'OF UPPFR RITS
CAH' AOL! 9

tl LSSL A4O * SHIFT LFFT I BIT POSITIONS
L? 5S1. c I BIT POSITIONSA290 SmTFT RTGHT

LAU 4106 C
CnMPUTF 16-I-J
AN A1g*2,X11
AN A1.AO
SAH2 A19L3 * GFTTING RID OF THE LOWER BITS

L3 	 SSL. A29O SHIFT RTGHT 36-T-J BIT POSITIfNS
J 4,X11 * RrTURN TO THE ALGOL SIMULATION PROGRAM
Prn

'MAP

I eT

94

APPENDIX B,' LISfTNG OF THE SIMULA SIMULATTON PROGRAM

'RUN ACOO1-11-7689KWOK,91,O0

'ALGqCTS PDCSIMPDCSTM

EXTERNAL NON-RECURSTVE INTEGER PROCEDURE FLDA $

CIMULA RFGTN

COMMFNT ***A PAGING DRUM CHANN=L ***

COMMENT FOR CONVENIENT SIMULATTIN 48 BIT DATA WORD IS CUT TO 36 BITSS

COMMENT FOR TErTING AND SIMULATIO4 ON THE 1108 MEMORY,

PAGr STZF IC RPDUrr TO R WORDS P R PAGE

64 PAGES IN THF MAIN MEMORY

1024 PAGES IN THE PAGING DRUM WHICH HAS 16 SECTOR QUEUES

64 PAGFS IN A QUEUE (OR LIST WITH A FRONT AND REAR POINTER)S

COMMENT I IS THF LOOP CONTQOL VAPIARLr$

INTEGER IS

COMMFNT MAIN MFMORY AND RELATED REGISTERS$

COMM=NT MATN MrMfRY

INTEGER ARRAY MEMiO*.63,n.,7)$
COMMENT MAIN MEMORY ADDRF.S; REGISTERS

TNTCGER MARS
COMMFNT MAIN MPMnRY RUFFFR PF TSTFRt

INTGEPR MRR$
COMMENT MAIN MPMORY PEAD/WPITF CONTROL REGISTERS

TNTrGFP PW7S
COMMENT MAIN MFMORY PAGF AnDRFSSS

INTEGER MAnR2SLOCKS
COMMENT MAIN MEMORY BUFFER REGISTERS

INTEGER SBR2$
COMMENT MA(2) IS MAIN MEMOPY ACCVSS REGISTERS

INTEGER MA2S
COMMENT MADR2(WRD) IS MAIN MEMORY WORD ADDRESS$

INTEGFR MA1hR WQD$
COMMENT MATN MrMnRY DAGF AnDRrSS OF THE POSTED PAGES
TNTF(nFP PArEbflSTS

COMMENT PAGE-TAPLE MPMORY$
INTEGER ARRAY PAGETABLE(,o.63, ..?)s

COMMENT PAGF-TAqLE MEMORY ADDRESS RMGISTFRS
INTEGER PADRS

COMMENT PAGE-TAgLE MEMORY PUFFER REGISTER$

INTEGER ARRAY PTR2(1.2)s

INTEGER PTR2CH$

INTEGER PTP2SFC$

INTEGER PTR2QoWS

INTEGER PTR2LR$

INTEGER PTRPLrS
COMMENT LISTHEAD MEMORY$

INTFGER ARRAY LISTSTO(n,,)$
COMMENT LTSTREAr MEMORY AnnRFSS REGTSTFR$

INTFGFR SECTnRS$
COMMENT LISTHFA) MEMORY PUrFFR REGICTFPS

TNTcnFR PTL$
COMMENT POINTER THE FIRST OAGE Or A SECTOR QUEUE IN THE DRUMS

INTEGER PTLFP
COMMENT POINTER THE LAST PAGE OF A SECTOR QUEUE IN THE DRUMS

TNTFGER OTt.L

http:PAGETABLE(,o.63

95

COMMENT GPTL Ic AN AUXILIARY RFGISTFRS

TNTrGFR SPTLz

INTEGER GPTLFP$

INTEGER GPTLLPS

COMMENT PAGE TAfLE SFMAPHOP$

INTEGER PTSEMIS

INTEGER PTSEM2$

COMMENT PAGING DRUM AND RELATED REGISTERS

COMMENT PAGING DPUM MFMOPY I

INTEGER ARRAY PDRUM(O..IA.O.. 1,O..7)$

COMMENT PAGING DRUM SECTOR ADDRESS$

TNTrrP ClfRncrCT$

COMMENT PAGING DRUM CHANNL Afl)RrSS "

INTEGER CHANNELS

COHMFNT PAGING DRUM CHANNrL WORD COUNT$

INTPGER CWORnCOUNT$

COMMENT DRUM RFAO/WRTTF COmTROL REGISTFR$

INTEGER RWS

COMMENT DRUM BUFFER REGISTrRS

INTEGER DBR$

COMMENT DRUM ACTIVE INDICATORS

TNTFtGR DACTV$

COMMENT COMMAND MEMORY ANn RFLATrD REGISTERS$

TNTFrFR ARAY COM(n..1CiA.oP$

COMMrNT COMMAND MFMORY AnnorSs RvrTqTvP(

TNT~nFR ;Pr$

COMMFNT COMMANn MEMORY PUFcFR RTISTFR$

INTEGWR ARRAY COMMANfl(1..215

COMMENT SUAREGISTERS OF THm COMMAND WORDS

INTEGER COMC$

INTEGER COMRWCS

INTEGER COmCMAN$

INTEGFR COMPGE$

INTFGER COMFIRSTWORDS

COMMENT DRUM BUrFFR STATUS RrGISTERt

INTFGFR PS$

COMMENT INTERRUPT(ORUMPAGL) $

TNTPRGP TNTFPRUPTnD$

COMMcNT MAIN M=MORY DAGF WHICH INTFPRUPT OCCURFDS

INTPGFR PAGTNTS

COMMENT INTERRUPT(PAGF)S

INTFGFR TNTERRUPTPGFT

COMMENT CURRENT PAGE AODRFSS$

INTEGER PC$

COMMENT WORD COUNT OF THE PAGES

INTFGER COUNTS

COMMENT PAGE TRANSFER nIRFrTIONO WHEN NO TRANSFFR91 WHFN DRUM TO MFMOPY,

2 WHFN M;MORY TO ORt)Mg WHFN FPROP OCCURS$

TNTFrFR OTPAMS

COMMFNT PArE TPaNSFrR COMPLtTE WIJN 1$

TNTFnP DArPTz

COMMENT PAnP PDSTTN INDICATORS

INTEGER POSTT

FORMAT Fl (t ** TRANSFER A PAGF ** * ** *A3.3)$

FORMAT F2(X6 ,IPAGE-DESCPIPTORC IN OCTAL', Al.3)$

FORMAT F3(X5,12*8,X2Iln.8, XP 110.8. A1l1)$

FORMAT F4 (f COMMAND IN OCTAL = I1n.SAl,1)$

rORMAT PO(XP .1 LISTHPADS TN.OCTALf, A1.q)$

VOPMAT F21 (XplxIXoji.g, AI.l)$

FORMAT F22CXP t CHANNrL rOMMAND WORnS IN OCTAL',A1.3}$

FORMAT F11 C P,'* * * SIMULATTON TNOUT * * * ',A4o4)$

96

FORMAT P1? (Eq' * * SyMULATyONOUTPUT * * * ',A4*4)$

LOCAL LARFL LASTS

LOCAL LAPEL FINISHS

LOCAL LABEL L3$

COMMENT ************* ** * *'* ** *

ACTIVITY LPFT$
REGIN
WRTTE(*** FIRST PROCFSq OF THE DARALLEL PROCFSS **)$
WRTTF(I IN LCPT TTMF TS * * * ',TTMF)$

COMMrNT CHECK PAGE SWAP ITEkfCATnRS

IF rACTV FOL I THFN GOTn LIS

COMMFNT
WRTTF(SDACTV = 'dYACTV,'PAtWT= *iPAflFt)S
PTRAN=OS

WRITE(CPTRAN=BPTRAN)S

HOLD(5.0)$

WRITE(' IN LFFT TTMF 5 * * * ',TIME)S

TERMINATE(CURRENT)$

COMMENT PAGE HAS NOT BEEN SWAPPFD COMES HERES

Li96 BStO$

COMMFNT BRANCH OUT TO WRITFS

IF RW EOL 1 THEN GO TO LrS

MA2=0$

COMMENT

=
WRITE('BS 98 5 9 t RW= ,QW)$

COMMENT DRUM TO MAIN MEMOPY TRANSFFR(READ BRANCH)$

L4.. IF MA2 FOL I THEN GO TO L4$

PSwlS

L6.* IF BS EQL 0 THEN GOTO L6$

MAVR2WRD= COUNTS

WRITE(' INPUT WORD COUMT = *,MADR2WRDIS

DBR = PDRUM(CWORDSECT,CHANNFL.CWORDCOUNT)S

WRITF(t nRR =t, DeP)S

COMMFNT INPUT rROM THE PAMTNG DRtIM 0N WORDS

RW2=RW$

MA;)%lS
WRITE(t********************f** DRUM TO MEMORY#)$

MRR= S9R2S

WRITE(' MRR 1, MAR1S

MEM(MADR2BLOCKMADR2WRD)= MBR$

IF COUNT EOL 7 THFN P GIN

PAGFT = 1$
DACTV=O$

ENDS
L7 .. IF PAnFT FOL n TFrN P#GTN

COUNT= COUNT+1$
CWOROCOUNT= CWORDCOUMT +1$

GOTO L1S
ENDS
COUNT=COUNT+Rw$

IF COUNT EOL 7 THEN ReGIN

PTRAN=RW+iS

WRITE(fPTRAN = ',PTRAN)S

HOLDo(C 0,O)s

WRTTP(' IN LFFT TTMr IS,* * * etTIMF)$

TEPMTNATF(CIIRPENT)S

COTO L3S

FrN

FLSE RFGTMN

COMMFNT SFT ERROR INOICATnR$

INTFQPRtPTDD IT

DTRAM=I3

WRITE('PTRAN =', PTRAN)$

HOL (I?01$

WRITE(' IN LrrT T1MI IS * * * *,TTMr$
TERMINATF(CURRENT)$

GOTO LIS

FND$

COMMENT MAIN MEMORY TO DRuM TRANSFrR (WRITE RRANCH)S

L3.. MA2=0$

IF MA2 EOL 1 THEN GOTO L $
RW2= RW$
MADR2WRD= COUNT+1$
WRITE(t WORD COUNT = ' MADR2WRD)$
MA2=1$

L8a. MA2=O$
IF MA2 FOL I TWPN GOTO LA$

Lq.. BS =1S
COMMENT DATA TRANSFERS FROM MFMOQY UFFTER Tn DRUM RUFFPRS

S8R2= MEM(MArp2qLOCKMADo2WRnIS
WRITF(tSPR2 =1,SRR2)$
WRITE(**************************Mf*************MEMORY TO DRUM#)$

DnR=SRR2S

WRITF('DRR= tDRR)$

PDRUM(CWORDSFCTCHANNFLtrWOROCUNT)= DBRS

COMMENT IN THE WRITE OPERATION THE WORD-COUNT DOES NOT INCLUDE THE

FIRST WORD OF THF PAGFo IF FXACTLY 7 MORE WORDS ('0-6)

WERE WRITTEN, AM rNTTRE PAGE WILL RE COMPLETELY TRANSFERRFDS

IF COUNT EOL 6 THN naTN

PAGFT = 1$

DACTV= 0$

ENDS

OTO L7 $

COMMENT THE SECOND PARALLFL PPOCrSS STARTS HERFS

COMMENT CHECK'TF THE READ/WRITF LOOP NFEDED$

FNOS

COMMENT

ACtIVITY RIGHT $

PEGIN

WRITE(I IN RIGHT TIME IS ,TIME})"

COMMENT MEMORIrS UPDATING SURSPOIJENCE STARTS HFRF$
Lln . SFCTORS = SErS

WRITE(*** MFMORIrP UPDATTNn cstUSFtJrFNCr ***t)$

DTL= LIST5(SPCTnRC)t

PTLFP=Ft.OA(24,6PTL)$

PTLLP= FLOA(qfl,%6,TL)l

COMMENT FOR EMPTY OUFUE, RET PArF SWAPPTNfl INDICATORS
IF PTLFP POL 0 THrN mFGTM
COMC=Os
GOTO L13$
ENDS

COMMENT GFTTING A PAGFS

Ki.. DT ,rM10(S

T1 PTSFM1 PQL I THFN C-OTn KIS

PTqFM?2IT

COMMmNT PUT TwF LIST HFAn IMT QrCGTSTFP GPTL$.

rPTLmPTt.t
GPTLPP=FLDA(?46,GPTL)$

C"PTLLP= WLCrA(109r#TL)*
WRITE('GPTL(FP=)',GPTLFPqe GPTL(LP)=t, GPTLLP)$

http:PTLFP=Ft.OA

98

PADR=GPTLFPS

PC= GPTLFP$

COMMENT GET A PAGE DESCRIDTOR FpROM'THE PAGE TABLE MEMORY$

PTR?(1)= DAGFTABLF(PADR lS

PTR2(21= PAGFTAPLF(PADRji)$

PTR2CH = FLDA(17989PTR2(0))$

WRITEF * CHANNEL = Is PTPCF44

PTR2SEC= FLDA(2594,PTR2(C>))

WRTTF(* SCTnR = 19 PTPOSFCI$

PTP2qOW= F!_DA(29s1,PTR2())$

PTR2LB= FLOA(296*PTR2(1)$

PTR2LF= FLDA(86sPTR2(1)$

GPTLFP= PTR2LF$

COMMFNT TRANSFER THE UPDATED LIST HEAD TO PTL$

PTL = GPTLS

PTSFM2= OS

COMMENT STORE THE UPDATED L!STHrAD TO THE LISTS MFMORY$

L15.. LISTS(FCTnRSI= PTLC

COMMFMT SFT UP A CHANNFL rOMMtANn WORnS

COMC=Ir .

COMPr"=Pc$

COMCHAN=PTR2CH$

COMRWC= PT02POWt

COMMAND(I= COMC*8**5+COMRWC*4*3**4+OMCHAN*8**2+ COMPGE$

IF PTR2ROW EOL 0 THEN GOTO L13$

COMMENT WRITE ONTO DRUMS

LIi., MA2= 0$

IT MA2 P0L I THEN GOTO L11$

RWP'=I$

COMMFNT SFT UP MAIN MEMORY AODRrSS RriTSTrS$

MADR2PLOCK= PC$

MAnR2WRD= 0$

MA2=1$

11 so MA2=0$

TF MA2 EOL 1 THEN GOTO Li2S

COMMENT SET UP THE FIRST DATA WOOD IN
THE COMMAND REGISTERS

MAR= MEM(.MADR28LOCK9o0$

SBR2= MBR$

COMMAND(2)= SqR2$

COMMENT PUT THF NEW CHANNEL COMMAND WORD INTO THE COMMAND MEMORY$

LT.oo COM(SFCP1)= COMMANM(I)S

COM(SEC0)= COMMAND()$

WRITE(COMMA n(I), F4)$

COMMENT THIS IS TO TEST THF PUTPT AND LOADPAGEDESCRIPTOR ROUTINES

DAtFT O

DOST 1=

L14.. IF PAGET FOL 1 THEN PEGIN

HOL(r0)1

WRITE(f IN RIGHT TIME IS Is TIME)$

TERMTNATF (CURRENT)$

POST= 1$
IF POST EQL 0 THEN GOTO L14$

COMMENT LOAD PAGE DESCRIPTOR SEOUENCF STARTS HERE$
'(2 s PTSPM1 = n

IF PTqrMI rOL 1 THEN (OT0 K2$
PTSFM2=1$

COMMeNT nPT A PAGF DrSCRtOTOR$

PAnR= PM~,FDO T$

PTR2(1)= PAGrTABLF(PADR,1)$

PTP2(2)= fAG9TARL('PADR,)'$

99

COMMFNT FREF THF PAGF-TAnLE MFMnRYS.

DTSFM2=nS

PTR2SEC= FLDA(25,4.PTR2(l))S

.s;TOR= 0TR srFC5;

PTL= LTSTS(SFCTOQS)S

OTLFP= FLfA(74,6,PTLI$

COMMENT ARANCH TO PUT HTP PAGE oN nRUM IF QUEUE IS EMPTY$

TF DTLPP PnL n THEN tOT KIS

COMMENT GET T$F NEXT CHANKEL COMMAND WORDS
SFC= SFCTORSS

COMMAND(l)= COM(SFCI)$

COMMAND(2)= COM(SFC,21$

WRITF(COMMAND(1).F4)$

IF COMC-EQL 0 THEN SEGIM

PC= PAGEPOSTS

WPTT('PC' PCI)!,

PAGFT = 1$

GOTO L15S

COMMFNT PUT A PAGF SACK Tn THF SPCTOR OUFUr $ -

K3,* PTSEMI=O$
IF PTSFMI PoL I THI-W GOTn K $
PTSEM2=1$
CPTL= PTLS
GPTLFP= P~A796CT)

COMMENT IF THP SECTOR OUFUE TS rMPTY THF CURRENT PAGE BECOMES THE rTRST
PAGF (FRONT 0m TPr OUFUr)$

IF GPTLrP rOt 0 THMN RFt-TN

rDTLPP = PArcmnST;

CPTL = (ZPTjFD*R**7 + FPr)A(1q,rGPTL)tr

COMMENT INSERT THE NEW PAG= AT THE REAR OF AN NON-EMPTY QUEUES

GPTLLP= FLDA(30,6,GPTL)$

PASR= GPTLLPS

PTR?(1)= PAG9TAALF(PARI)$

PTR?(2)= PAGFTARLF(PADR,9)$

COMMENT UPI)ATE A PAGF nFSCPTPTORs
PTR2LF= MOD(PTR2(1),2**98)S
PTR?LR = 0TR7(j5 - PTP7Ly* 7** n (
PTR2(11= PTR7LR - PAgrZFPfT*?**);f
PAGPTALF(PAfr P,)= PT7P(e)
OAGrTAnLFCOAlq2)= DTRp (.)T,

COMMFNT GZT THr PArF rFSroT0TOR OF THF POSTED PAnP$
K4*, PADR = PArFPOST$

PTR2(1)= PAGrTALF(PaoR,)$
PTR2(2)= PAG;TARLF(PADR,,)S

COMMENT LET THF BACKWORD POINTER POINT TO THE REAR OF THE QUEUES

PTPLR= GPTLLDS

PTR2LF =0$

PTR2()= GPTLLP*2**?P$

COMMFNT RFTURN THE NFW PAMF DFSCRIPTOR TO THE PAGF-TARLF MFMORY$

PAGFTAfl.c(PAflR,1) 0TP7(j)$

DAGFTARL.(PAnP,?)= T7())$

COMMrNT UPDATF LTSTWFAlT
GPTLLP= MOf{ MTL**P2)
GPTLFP= GPTL - GPTLLP$
GPTL = (PTLFP + PAlPS

PTL= GDTLS

PTSEM2=OS

COMMENT STOPE LISTHEADS

http:COMMAND(1).F4

100

LISTS(SFCTORSI= PTLS

WRTTF(4 SrCTORS LTSTWCAtS*) :

WRITE(SFCTOPS9 L!STS(SPtTORS)tF2l)

PO TeO'R

PA4SFT =I'

GOTO L14$

ENS
COMMENT * &,**-*-**4**#*.*N4 * -*********** **********

COMMENT MAIN ACTIVITY STARTS HERE $

COMMENT INITIALIZE COUNTER S

I= 1 $

COMMENT SET UP LINKAGES FOR THE PAGE-DESCRIPTORS IN THE PAGE -TABLES

COMMFNT INITIALIZE TtF COMAANt) MPMOPY FOR PAGING OUT $

COMMENT COMMANDS ARF TO WRITE 8 PAGFSPAGE 32,33934v35.36.37938939 $

COP q C=fl TP 1 UNTIL 7 1)0
COM(SClie P**ci+4*R*t+P**7 + 4*A + SPC S

COMMFNT ONLY CHANNEL 1 IS ACTIVATE IN THE RUNS
OA(ETARLr (17,1)=O

PAGETASLF (31l)= 0 $

PAGETA3LE (3491)= 0 S

PAGFTARL.F (3991)= 0 $

PAGFTARLE (3691)= 0 $

PAGETABLE (3791)= 0 s

=
PAGFTA.LF (3 Pl) 0 $

PAGFTARLF (3P,1)= 0 s

FOR PADR = 32 STEP I UNTIL Sq nO

COMMENT ROW = I WHEN WRITE $
PAGETABLE(PAOR92) = 8*3*4 + (PADR-32)*(8**2)*2 + 8**2$
COMMFNT TNYTTALIZATION OF LISTcHEAn MEMORY TO FNTER GFTPAGE $

COMMENT SFT U FIRST WORrt IN TmF OM MFMOPY$

FOR SEC=O STFP I UNTTL 7 DO COM(SEC2)= a2 + SEC$

FOR SFCTOR = 0 STFO I UMTIL 7 DO

LISTS(SFCTORS) = 0 $

COMMENT PUT A OAGES IN P SrCTO MUEUE s

COMMENT INITIALIZE THE MAIM MEMOPY$

FOR MAR=O STFP 1 UNTIL 61 DO RFGIN

COMMENT THE T-TH PAGE CONTA'INS ALL T'S$

FOR COUNT=O STEP 1 UNTIL 7 DO

MPM(MARCOUNT)= MAR$

FN"S

COMMENT **S
COMMFNT PRINT TITLES
START ea WRITF(ll)$
COMMENT PRINT TITLES
WRITE(F221$
FOR SEC =0 STEP 1 UNTIL 7 00
WRITF(SFC. COM(SFC11 rOM(S r,2),3)$

COMMFNT PRINT TITLES
WRITE(F2)T

FOR DAWR = q* STEP 1 UNTIL 10 fl

WRITE(PADRPAGETA9LE(PAI)DQ,/((8**7)*2),PAGETABLE(PAR,2).F3)S
COMMFNT PRINT TITLES

WPITFC(F11)
WRTTE(F20)$

FOR SECTORS = 0 STEP 1 UMTIL 7 DO

WRITE(SFCTORS. LISTS(SECTORS), F21)$

CWOROSFCT=-1 $

COMMPNT TIMINr% STARTS HFPFS

POC9, PAGFTIS

IF PAGFT ROL flT~rN MEGIM

ROLn (1.0)$

http:PAGFTA.LF

101

rOTO PlC$

FNr) ELSF

L3 to PAGINT=Mk')R2RLOCrS

INTERRUPTPGEI$

CWORDSECT= CWORDSECT+l$

COMMENT CHECK IF 8 MM PAGES AME BEFN TRANSFERRED BY THE PDC $

IF CWORDSFCT FOf -" Th-N QTO.'tAST.,

WRITF(I IN MAIN TTMF yc * * *&TTMF'j$
COMMFNT PRINT TITL,$

WRTTF(frl2)%
COMMFNT ORTATN A CHANNCL rOMMANh WARn$

srCWORflS CT 7" ,- -' "

COMMENT NPCYT:iF OM CARI" IS A COMM&Nr WORDS
COUNT=O$ -

CWORDCOUNT$ -"

WRITF(1)$.

COMMAND C)=COM fSF'C 1) $r-

WRITE(COMMA=jhcli4)s
COMMAMD(2)=CnMfSFC,2)s

COMMENT
WRITF(' FIRSTWMO ,=rhAN(2)4 ,; , -

COMMFNT DFCOOING A COMMAN) WORD ANDPUT THE CONTROL INFORMATION
INTO TMF APPnPQTAT PQFGTqTrP5T

COMC=FLDAC20ICOMMAND(1))$
COMMFNT INDICATE A PAGF HAS RPFN SWAPPPY.WHFN;.1$

OACTV= COMC$

COMRWCF.A.C'2. 1iCOMMANr v""

-RWteC0OMRWCs, t:

COMCHAJ4uFL-)A(2-2A-COMMAf~f(t)) $
CHANNEL = COMCHAN$.

COMPGE=FLDA(9OOt -S
MMAANMIM i

MA D)R RLOCK--C nlPb #0 ' . , . I. - ..

PAr-FPOST, -C70

WRTTFC' PArFPST ',PAr4PAST)S -

1,NtP
COMMFMT DATAl
i'$.

COMMENT TRANSFER THE'FIRST4 WOPD OF A PAGE TO THE DRUM RUFFER RFGISTERt

D3R= COMFTQSTWOROS

WRITF(' CHANNrL:= tCHANiFL)S

IF .RW EOL ITHEN EGIN.- - -

WRITE(zIWRtTE OPERATION.W=',PRW)s

COMMENT -OUTPUT FIRST WORD TO DRUMqS

WRITE(***MEMORY TO DRUMt)$

COMMENT FOR WRITE OPERATION THE FIRST WORD IS ALRcADY IN THE BUFFER

FFORF ENTFRTNG TwF WRTTP LOOP $

IWRITFC I WORnrOUNT = 1, CflUNTi$

WRITF(' 0R= ',ORR)$

PDRUM(CWORDSFCTCHANNELn)= OP$

PN) FLSF

WRITF(I READ OPPRATION, RW= ',RW)$

COMMFNT PARALLEL PROCPSS TARTS HFRF5

COMMENT **s

HOLD (40*0)$

WRITE(IN MAIN AT FORK TIME IS * * * ',TIME)$

ACTIVATE NPW LEFTS

ACTIVATE NPW RIGHTS

HOLD(1000)5

WRTTF(f IN MAIN TTMF IS ',TIMF)$

Go To PnC

COMFIRSTWORD'.=OMAAN-(2

102

LAST.. WRTT (=I?)$

WRITFF22)S

FOR SEC = 0 STEP I UNTIL 7 DO

WRITE(SFC, COM(SEC.I). COMCSEC2h9F3)S

WRITE(F12)S

WRITE(F2)$

FOR PADR 32 STEP 1 UNTIL 0 'YO

WRITE(PAORPAGETAPCF(PADnP)/f(8**7)*2)tPAGETASBE(PADR.21tF3)S

WRTTF(Fl12V

WRITF(F2l)

FOR SECTORS = 0 STEP 1 UNTIL 7-DO

WRITF(SFCTORSLISTStSFCTfl'),#,1)f$'
IF I FOL 2 THNN..GOTO FlN MSH

COMMFNT SET.UP CHANNEL COMqAND-WORDS ITO REAh 8 PAtS$
I= I+1S

COMMENT INITIALIZE THE COMMAND MFMORY 'FOR PAGING"1N $
FOR SEC = 0 STEP I UNTIL 7 DO
.COMCSEC*1)= 8**5+g4**2 +'4*3 + SEC S

COMMENT INITIALIZE PAGF-DFeCRIPTORS FOR PAGING-TNS-
COMMFNT tflW * 0 WHFN 'FADt

FOR PADR S3 STEP 1 UNTTL 30 MO

PAGETARLF(PAOR2) = P**1*4 + (PADR-S7)*(8**2|*2$

FOR SECTORS = 0 STEP I UNTIL 7 Om

LISTStSFCT0Pq w 0 S

GOTO STARTS

FINISH .* N$
.

'ASMoTS)FCOf)9rnFCOmF

$(1) AXR$

* ROUTINE FOR DECODING PAGE DESCRIPTORSoCHANNEL COMMAND WORDS

* AND LISTHEADS FOR THE PAGING DRUM SECTOR QU4UES.
* INPUT FORMAT *** FtDAI.J.K).
FLDA* 	 LA A2, 43,X1I * rTCH THF WORD K

LA AO.*1,Xll * FETCH TME'BITPOSITIONI
SAtH2 AOLI * GFTTING'RID'OF UPPFR SITS

Li 	 LSSL A2#0 *,SmIFT LFFT I BIT POSITIONS

L2 	 SSL- A2O * SHIFT RTGHT I SIT POSITTIONS

LAsU AlqI6 e CMMPIYTF 6-1-wJ
AN A14'*2,X11
AN AIAO

SAqH2 A1L3 o GFTTING RID OF THE LOWER BITS

L3 	 SSL A2.O * SHIFT RIGHT 36-I-J BIT POSITIONS

J 4.XII , RFTURN TO THE ALGOL SIMULATION PROGRAM

FNT)

'MAP

fXOT

