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1. The study performed Linder this grant began on May 1, 1969. Most of

the research was carried out during the summers of 1969 mid 1970.

A study, of the present status of non-linear optimization techniques in

dynamic programming, especially algebraic, combinatorial, and enumerative

methods in integer programming was car-ied out. This field is very impor-

tant and broad and in it only limits progress has been ?made. A bibliography

of books examined and studied in this effort are listed next.

Bibliography

1. Mathematics of the Decision Sciences, Part I; Lectures in Applied

-Mathematics Volume II; George B. Dantzig and Arthur F. Veinott, Jr.,

E3itors e 1968 AMS, Providence, Rhode Island; Especially Section

III and IV.

III. Convex Polyhedra and Integer Programs.

IV. Combinatories.

2. Progress in Oper. Res. Vol III; Publications in Operations Research

Flo. 16; Edited by Julius S. Aronofsky; John Wiley and Sons, Inc.;

.Especially Chap. 7, Methods for Integer Programming Algebraic, Com-

binatorial and Enumerative.

Mathematics in Science and Engineerl.ng, Vol, 37; Dynamic Program--

wing; Edited by A. Kaufmann and R. Cruon; 1967 Academic Press,

New York, London.

4.- Mathematics of Automatic Contrcl; Edited by George M. Kranc;

Editor in Toshie Takahashi; Holt, Rinehart, and Wiaiston, Inc.

5, Dynamic Programming; Richard, Bellman, Editor; 1957, Princeton

2-



0

r

Tr •	 D

4

I"

•r

3

University Press, Princeton, New Jersey.

6, Management Science, Vol 5, 1958-59; C. West Churchman, Editor-in-

Chief; Fainted by the Waverly Press, Inc.; Especially two articles:

1. Sequencing n Jobs on Two Machines with Arbitrary Time

Lags; Edited by L. G. Mitten, p. 293-298.

II. Discussion! Sequencing n Jobs on Two Machines with Ar-

bitrary Time Lags; Edited by S. M. Johnson, p. 29--303.

2. More effort and research was carried on in the area of solv i ng or-

dinary, non-linear differential-equations, especially by Runge-Kutta type

methods as reported earlier by the author. In this area, progress was made

in optimizing such formulas that use nine, ten, or eleven evaluations.

Specifically, there was developed for the first time a formula of this type

of the eighth order with only eleven evaluations. This formula (S 8-11) also

has a built-in error control (regulator). These formulas are more efficient,

according to tests that are reported, than any known to exist and will be

described next.

3. NOTATION. Consider the analytic function f(x,y) and the differen-

tial equation y' = f(x,y) at the initial. point ( o,yv )	 Let fi be de-

fined by the equation

itr-1

f i = f (xo + aih ' yo + aih G ' Si^f^J=0	 ),

where f 	 f( o,yo )	 Consider the finite series
n

Y'^yo+h
i=O 

Xifi .r
-	 _
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It is immediate that a necessary and sufficient condition that the Taylor

5	 series for Y and the Taylor series for the solutien y(xo * h) of the

given difZerential equation agree through terms in h' is that

(k-1)	 _ n	 (k-1)f(	 )o
a	 i=0
a

for k = 1,2,...,m , where the symbol f (k) is used for the kth derivative of

the function f(xo + h , y(xo + h)) .

In order to.-specify a given formula, one may. detach the coefficients as

follows:

Formula

'	 r	
al	

a1S10

a2	
a2S20 + a2s21

an	 anOnO anonl	 ... + 01non,n-1

r
YO + Y1 +	 + -Yn

To make this clear, consider a third order formula with three evaluations

of the function. The detached coefficients are

al	
x1010

a2 	 x2020 + a2021

YO+Y1+Y2

This array would imply the formula
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Y = Yo + h(Yofo + Y 1 f 1 + Y2f2 ) 9

where

f  = f (xo 'yo )

fl M f(xo + alh , yo + halllofo)

f2 = f(X0 + o2h ' yo + h(a2020f0 + Y21fl))

If the expression 
a2020 + a2021 _ n 020 + n 021 , this will be written

n (mS20 + ps2l)' In other words, common factors may be factored out.

These formulas, of course, are used als .c for systems of differentia].

equations y' = fi (x; - • yd at the initial point (X0 'y10' 0 " 'yp0 )

4. Listed next are the new formulas with nine, ten, and eleven evalu--

ations) respectively. With each formula there is included an approximation

to the error. This approximation is of high order and its absolute value

is called the regulator and denoted by R. At each step of the integrations

R--is easily Calculated since it uses only evaluations calculated already

for that step. The stepsize for the next step is determined to be 2h, h,

orb , where h is the Current stepsize, according to whether R < m

m < R < M , or M < R , respectively, where the interval [m. M] is

appropriately chosen to give the tolerance desired. By experience, an inter-

Val [10n 4 , 10n] for an appropriate positive integer n works well,

where n is chosen to give the desired tolerance. Once n is chosen, it

usu&32y remains constant for a< given series of steps in an integration prob-

lem. The larger n is chosen, the more accurate will be the integration

(at the coast of more computational effort, of course). The comparative data
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given below will illustrate this relationship between accuracy and time

adequately. In the designation of each formula, the author's initial will

be used, followed by two numbers separated by a dash, the first number gives

the order of the formula and the second the number of evaluations required

for one step

Formula	 S 7-9

4 4
,I 27 27.

29 1(1 + 3)

{

a
3 i2 (1+0+3)

1
7

1
1372 (109 + 

0 +x.35 - 48)

20048 
(2o6 + o + 594 - 141 - 147)

.: 1 1	 (-97 + o + 189 +20 462 + 490 - 1024)

79 ----1708568 (-356391 + 0 - 137781 + 285768o + 252448o - 4358144 + 21280)

1 1	 (359879 + o + 68229 - 1944726 - 2013753 + 3526656 - 2394o + 177147)
r ,

e
(65664 + o + o + 4072194 + 2235331 - 3670016 + 0 + 1594323 + 298984)

••y Y .,h	 (f	 f
45994 	 ii 8	 b 6	 i `
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Formula 8 10 -

1	 1

16 (^. + 3 )

8	 32 (3 + 0 9)

2	 l8 (2+0+3+4)

18 	 57T
 

(73 + o - 120 + 200 - 81)

8	 1728 ("933 +
- o  + 168 - 1944 + 1469 + 2320)

1	 1107 (18870 + 0 - 56o4 + 57024 39839
-W
 3766o + 8316)

71 
(106442 + 0 - 523,^5 + 340648 - 222390 - 188280 + 66528 + i107)

^	 5959 

l	 7 - (-40083 + 0 +,22830 - 131472 + 94610 + 78760 -'21672-738 + 4920)

^— - (477 + 0 + o + 4032 1036 + 2624 + -4032 + 0 + 2624 + 477)13230
Y

R 
h ^ -

13230
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l Formula 8 8-11

2 2

^ 3 12 (1 + 3)

2 1 (1+0.+3)

3 27 ( 4 +o +6 +8)

1 ---- ( 548 + o
5 oo

+ 687 416 + 81)

5 00 (818 + o + 1767 - 956 + 171 - 900)

3 11	
(-103 + o - 420 + 208 - 33 + 768 - 384)

1 20 (63 + 0 + 228 , - 232 + 73 - 3632 + 3400 + 120)

5' 10- (20 + 0 -^ 285 + 70 + '345 - 5586 + 59i6 + 405 + 15)

1 X20 (35 + o + 444 + 1616	 1107 + 21816 - 21384 - 126o - 6o + 720)

r
1
02 0

(205 + 0 +.0 +.136o + 135 + 972 + 108 + 135 + 0 + 1080 + 205)

R °206 (^10 - f8)
M	 .

I

9

r
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5• Listed in this section sire some formulas previously published by the

author, usually without regulators, The regulator for each formula is includ-

ed as was done for the formulas in the previous section. 11he prefix 0 (old)

'will be added to distinguish these from the previous ones,

Formula Oa 7-9

4	 4
27	 27

	

a	
1(1 + 3)

1 (1 + 0 +,3)-3	 12

l	 1
7 12 (109 + 0 + 135 - 48)

rl (206+0+594-141_147)
€	 2`0

T
	 78732  (-1247ig + 0 —,15309 + 6048o0 + 686000 — 1089536)

9

	

^'	 l (-15279 + 0 — 15309 + 173880 + 138572 - 229376 + 8748)9	 7̀732

(227278 + 0 + 136458 — 980742 — 1153509 + 1892352 — 177147 + 354294)

1	
(65664 + 0 + 0 + 4072194 + 2235331 — 3670ol6'+ o + 1594323 + 298984)

96480

R° 5` 9 o ( f7 " f6 )

. .
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w ,Formula	 OS 7-10

4 4
27 27

2
9 l8 (1 + 3)

3 72

2 $ (1+0+0+3)

3 5(13+0-27 +42+8)

4320 ( 389 + , 0  - 54 + 966 - 824 + 243)

I
1 20 (-231 + o + 81 - 1164 + 656--. 122 + 800)

28 `-127+0 +18"678 ♦456 '9 +576+4)

1 H2O (1481 + o - 81 + 7104 - 3376 + 72 a 5040 - 60 + 720)

o (41 + 0 + 0 + 27 + 2-T2 + 27 + 216 ++ 0 + 216 + 41)

(f9

•f

10

t

{w
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• Formula	 OS 8-12
a

'	 ;,I 1 1

'•
{

9 9

I' 72(1+3) 

V
IT

1
71(1+0+3) 

10 500 (^9 + 0 + 33 - 12)

,
i

'1• 972 (33 + 0 +,.0 + 4 + 125)

2 1	
(-21 + 0 + 0 + - 76 + 125 -- 162)

2
3

1 O + 0 + 0 ;- 32 + 125 + 0 + 99)WY
•

' '1

3

1

3`2^+ 
(1175 + 0 + 0 — 3456 — 6250 + 8424 + 242 — 27)

e. 5 32	
( 293 + 0 + 0 ,^ 852 - 1'375 + 1836 - 118 + 162• + 324)

.^ 1

-162-0  (1303 + 0 + 0 - 4260 - 68T5 + 9990 + 1040 + 0 + 0 +x.62)

l (-8595.+ 0 + 0 + 30720 + 48750 — 66096 + 378 — 729 — 1944 — 1296 + 3240)

i (41+0+0+0+0+216 +2-T2+27+ 27 +36+180 + 41;

pt f.
h	

nO (f to 
.r f g )
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6. Error control procedure. In addition to the procedure for e..•ror

control already outlined, it is usually useful to limit the steps ze h 	 In

'he examples programmed for this paper, h has been required to be between

.0025 and .80	 Other bounds could be used if desired. The entire procedure

will be recapitulated at this point.

a. Choose bounds for the regulator R . These will be positive num-

bers L and U , L < U , rather small (for exarlle L = 10
-n-4 

and U = 10-n

may be used as suggested above, where n is a suitable integer). The choice

of U will greatly influence the size of the error and will vary from one
M

formula to another. It is suggested that a trial rim on a known differential

equation be made to adjust these differences.

b. Choose convenient bounds for the step size h (for example,

.0025 < h < .80).

c. Choose an initial h between there bounds for the first step

(for example, h0 w .01 or h0 = 1 ).

d. Calculate the first step, using the initial values and the de-

sired formula,, in the usual way.

e. After each step has been calculated, before proceeding to the

next step, ca:i.c-ulate R. If R < L and h < .40, double the current step size

and use the result for the nest step size.- If R > U and h > .005 halve the

"urgent step size and use the result for the new step size. In all other cases,

use the wyxrent step size for the nee,* step size.

f. Proceed to calculate the next step and continue as far as desired.

r

i
1
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Comparative data. The data here will pertain to the solution of the

system of two dif'ferentiai. equations:

-2xy log z , z' 2xz log y
R

Initial values: x0 - 0, y0 = e, z0 = 1

Exact solution: y ecos (x2)	 z = esin (x2)

Integration interval: x = 0 to x = 5 .

This system is not the best one to bring out the advantages of integration

j	 runs using the regulator (regulated runs) due to the rapid oscillation of the
9

solution, but it has already been used [1	 to make comparisons that might

easily lead to erroneous conclusions.

On page 66 C 1], Fbhlberg writes

"58. For the numerical comparison of our formula R K7(8) with SHANKS's

formula we applied these formulas again to our problem (53) in exactly
!a

the same way as in part I and Part II. We again used RICHARDSON'S

principle as stepsize control procedure for SHANKS's formula since no

other satisfactory stepsize control procedure seems to be known for

SHANKS' s formulas. 'Table XI shows the results of our comparison.

Table XI: Comparison of seventh-order Methods for Example (53)

F
Results for x = 5 and Tolerance 10_1

Nlet^'iu d
Number of
Substitutions

Number of I Total Number ^ 
Running Time
on IEM-7094

Accumulated Errors
in	 and_z

per Step Steps of Lvaluations (min) Ay Az

SHANKS 17 1423 24 191 2.49 -0.1332 . 10-
13

_O-7377&10 
-13

RKT (8) 13 818 10 634 1.12 -0.2509.10-13 -0-5135-10-13
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As a matter of fact, two years before publication of Fehlberg's article

in 1966, in 1966 (see [ ? 3 where a report to NASA for 1966 is included) and

in 1967 9 the author developed stepsize control procedures for all of his

published formulas and some of these were programmed on the IBM 7094 at the

Computation Division of the Marshall Space Plight Center (MSFC) and at the

Vanderbilt Computer Center and made available to personnel at MSrC.

The following example will illustrate the situation. Consider the table

f

RK 6(7)	 10	 22450	 .46 10-13	 .11 10-12

OS 7-10	 10	 13640	 .30 10-13	 .20 10
-14

where the first column names the method, the second column states the number

of evaluations per step, the third column states the total number of evalu-

ations for the run and the last two columns give the errors for y and z

respectively (this order will be followed in all such tables). The first

row is given in [ 13 and the second row was programmed at MSFC, Computation

Division. This constitutes a fair comparison since both formulas require 10

evaluations per step. Moreover, this very formula OS 7-•10 with its regula-

tor given appeared in the 1966 resumd mentioned above. It gives abetter

result than Fehlberg's formula and uses less than 61% of the evaluations used

in that formula,.

Another example that will further illuminate Fehlberg's comparisons is

given next.

RAC 7(8)	 13	 10634	 .25 10-13

os 8-12	 12	 8268	 .11 10 14

51 10-13

.14 ...Q--14	 10-14 '1108

Y

A:
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The first line in the table is found on page 66 of C11 as already given

above. The second line is a run oe thanks I eia ® *,.ie re uI4 with u w io-14

and h0 128 as the last two entries (this order will be followed hereaf-

ter). The formula OS 8-12 gives a much better approximation and uses less

than 78% of the evaluations used in Fehlberg's formula.

From these examples,, one can easily see that Fehlberg's comparisons were

extremely distorted by his use of Richardson's principle only on the formulas

of others and not on his own formulas. It is as.so obvious from the examples

that his formulas run a poor second. This is made dramatically evident when

it is seen that the very best run in his whole report (made with a higher or-

der formula) comes in second to the OS 8-12 run just given. Note the com-
parison given next.

RK 8(9)	 17	 8670	 .18 10-14	 .36 lo-13

OS 8-12	 12	 8268	 ,11 10-14
	

. 14 10-i4	 10_14
	 1

128

Listed below are other runs using the same system of equations. Regula-

ted runs programmed for this paper will indicate U and h0 as mentioned

above. If one should decide to use one formula, it might well be S 8-11 as

the data shows. If one uses more than one formula, S 7-9 and S 7-10 might

be used along with s 8-11. In general, formulas of this type with regulators

are much better than formulas without regulators.

The formulze below come from [13 or [2] or the present paper.

PX 8(9)	 17	 16286 	 .. . 68 10-15	 .31 10-14	 10-^9
	

128

os 9-16	 ^.	 14224	 .31 10-15-	 .75 1Q-15	 10-3.9

08 8-j2	 12
	

n412	 -33' 10 
-15
	 .71 10 15	 10-15	

1

128
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RK 8(9) 17 10982 .1	 10`149
-14

.29 10 -17
10

1i
128

os 9-16 16 10816 .77 10~1.9
.56 10°"15 1©"^ 0

• 128

OS 8-12 12 8268 .11 10`i4 .14 10
-14 10-14 1

128

RK - 8 (9) 17 4403 .12 10-10 .97
10-12 10-13 1

y 12k3

Os 9-16 16 40o0 .11 10`12 .21 10`12 -15l0 1Y
128

05 8-12 12 4476 .22 10-11 -13 10-13 10-12 1
128

IRK 8(9) 17 2210 ,11 10`7 .29 10`9 10-10 Z

128
os 9-16 , z6 2080 .13 10

-8
022 10`9 10'13 1

128
s

.	 q

08 10-21 21 9870 .11 10`15 624 lo`15 -10-18

Y

1
128

7644 .31 10 14 .29 10`14 —10`17 1
o 128

6006 .14 10
`14

, 42 10-13 -10-16 11128

'
4536 .10:0-12 60 lo-12 -10`15 1

128

3759 .38 10`12 .48 10-11'
—10`14

I: 128

3003 .49 10`12 .69 10-10 —10`13 1
128

,. 2079 . 17 10 10 —1 —
`, 128

1785 029 10-7 .43 lOr7 -11
—10 1^

128
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M' I Ob' 9-16 	16	 14224 .31 10-15 -1575 10 -10-19 1^
12

10816 .77 10-15 .58 10-15 -10-16
12..

7584 .86 10
-14

.20 10-^5 _10-17 1
12

5328 . 81 10-13
. 25 10-13

-i6

..lq

1

128

4000 .11 10-12- .21 10-12
-10-15 1

128
2880 .19 10"10 .14 10-11

-10-14 1 .
128

2080 61 13 10-8 .22 10-9 -10-13 1
128

1536 .11 10-7 .29 10-8 -10-12 1

1088 .96 10-6 .17 10-6 -10-11

128

1
128

864 . 18 10-4 .11 10-4 -10-10
128

I

'' OS 8-12	 12	 13412 .53 10
-15

.71 10-15 -10-i5
 '

1
128

8268 .11 10
-14

.14 10
-14

-R1
0-11:

-1
128

} 5844 .93 10-13 .44 10-13 -10-13 .1
128

4476 .22 10"-11' 695 10
-13

-10-12

3
1

128

3000 .48 10 9 .87 10-10
-10

-11 1
128

• 2256 .12 10`8 .14 10-9 -10-10 1
128

08 7-10	 3.0	 14510 .70 10-11;
• 
4	 10-15 -10-10 1,

128

8T6a .221a_1
.35 10-13 -10-9 1

128
s 55TO .10 3.0' .a , 15 10'1'1 -8 1

1



128

3042 .90 10-10 .17 10-10 —10-8 1
128

3962 -17 10 —8 .41 10-9 —10-7 1
128

s	 7-9	 9	 16452	 s .14 io-14 .15 10-14 10-17 1
67

12834 60 3.o-14 4,89 "0-15
10-16 1

7839 -15 10-12 "43 10-13 10-15

5553 .59 —1110-11"0 t	 .92 10— 12 1410—

32o4 .11 10-9 .18 10-10 10-13

3962 .24 1o"8 .83 10-9 10-12

08 7-9	 9	 18720 .10 10-14 .15 10 -14 —10 —14 1
128

17127 .49 lo-16
.18 10-14 —10-13 1

13329 .18 j.0-14 .18 10-14 -10-12

9297 .4o 10-13 .27 10
-14

-10-11
128

6210 -74 10-12 .51 10-13 -10-10 1
128

4320 .39 10-11 27 10-11 -10-9 1
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8	 7-10 10	 17350 •26 10-i4 .18 10-14 10-13 1
64

11990 .47 10-14 .20 10x14 10-12 i

7220 .64 10-12 ,47 10-13 10-11 1

4520 .74 10-12
.99

10-12 10--10 1

i
3120 .36 10

-9
.47 10-11 10_9

1800 .76 10-9 .42 10-9 10
-8

64

t	 0	 8-11 11	 12738 .59 10`15 .79 10
-15 10-12 1

64

7656 .29 10-13 .43 10
-14 10-11 1

4̂' I

4741 ..14 10
-12

.32 10
-12 10-10 1

3355 .43 10-10 .45 10-. 10-9 1

1947 .16 10-8 .43 10-9 10-8 ^1,^
6	 ,

rrsr

3'I
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APPENDIX

f Other formulas programmed at the Computation Division at Marshall Space

Flight Center are given below. (Sincere thanks is given to Mr. Audie E.

Anderson for his help and cooperation in programing these and other formulas).

In general, the efficiency of these formulae are a little below those discussed

in the main body of the paper.

i	 S 7-10 A

4	 4
U U3

2	 l
21 	 U+3)

1	 l
7	

(1 +0+3)..

7-7 (1+0-3+4)

3	 1 (-9+0+5448+15)

4	
1 (176 + o 975 + 3.162 — 317 + 214)7	 l55

'`	 5	 1 (12227 + o - 63765 + 64264 - 12654 + 2008 + 1820)	
F

l	 7

7 	
33215 (-45402 + 0 + 256230 -• 246969 + 41829 + 30972 — 25935 + 17745)

l 195266'(563047 + 0 — 2942940 + 2814644 — 3199 -915152 + 944580 — 398580 +132860)

1	 8+ 101(75 + + 0 + 3577 	 323 + 299 + 2989 + 1323 + 3577 + 751) d ,

No Regulator
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S	 7-10 13

.I	 I
,{ 1 1

F

y (1+3)

b (1+0+3)

2 (1+0-3 +4)

3 ^(3+0+0 +0+ 9)

.
3

7^9 ( 242 + 6 - 540 + $28 + 288 - 32)

13 1	
(343 +2916 0 - 216 + 864 + 96 + . 128 - 243)

1
3

1	
(373 +291 0 — 216 + 288 — 624 - 64 + 243 + 9?2)

1 1	 (83 + 0 — 1176 + 3360 + 1968 + 1472 — 2187 + 2916 — 5832)

1
25 (151 + 0 + 0 + 2648 + 2496 + 2048 - 2187 + 0 - 2187 + 151)

R "...
2520

t

f

^o

1

i

I

1

r

6Ij

n I
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4 S 8-•11 A

2 2

a
1
3

l
12 (1 + 3)

1
2 (1 + 0 + 3)^

8
9

_1	
( 232 + o -^ 480 +

729
896)

1
9

1
268
	 (15649 + 0 + 44448 - 35392 + 5103)

1
'46656 (-97 + o + 2208 - 3488 + 729 + 5832)

2
3

1
20`0 (-59i43 + 0 + 79968 - 3104 + 2o655 - 475416 + 613440)

1 42262	 + o -
19 000 (	 5 16464o + 4024 -oo -	 8.97 5 +	 2 - 43790.5	 292352 +	 11 760„)

l
3

1
l05	

(61005 + 0 - 305760 + 545440 + 93555 - 52272 + 324432 - 264600 - 49000)

1•
1

(-152635 + 0l
 r+ 3128160 - 14486560 - 1228365 + 27162216 -^ 2923257r+ 6	 j
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