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1. The study performed under this grant began on May 1, 1969, Most of

the ressarch was carsried out during the summers of 1969 eand 1970.

A study of the nresent status of non-linear optimization techniques in

dynamic programming, especially algebraic, combinatorial, and enumerative

methods in integer programming was carvied out. This field is very impor-

tant and broad and in it only limite . crogress has been\made. A bibliography
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5,

of books examined and studied in this effort are listed next.

Bibliography

Mathematics of the Decision Sciences, Part I; Lectures in Appiied

‘Mathematics Volume II} George B. Dantzig and Arthur F. Veinott, Jr.,

Editors; 1968 AMS, Providence, Rhode Island; Especially Section

. IIT and IV.

III. Convex Polyhedra and Integer Progrsms.

IV. Combinatories.

Progress in Oper. Res. Vol III; Publications in Operations Research

No. 16; Edited by Julius S. Aronofsky; John Wiley and Sons, Inc.;

_Especially Chap. T, Methods for Integer Programming Algebraic, Com-

binatorial and Enumerative.

Mathematics in Science and Engineering, Vol. 37; Dynamic Program-
ming; Edited by A. Ksufmann and R. Cruon; 1967 Academic Press,

New York, London.

Mathematics of Automatic Contrcl; Edited by George M. Kranc;

Editor is Toshie Takahashi; Holt, Rinehart, and Winston, Inc.

D&namic Programming; Richard Bellman, Editor; 1957, Princeton
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University Press, Princeton, New Jersey.

6. Management Science, Vol 5, 1958-59; C. West Churchman, Fditor-in-
Chief; Frinted by the Waverly Press, Inc.; Especially twn articles:
I. B8equencing n Jobs on Two Machines with Arbitrary Time
Lags; Edited by L. G. Mitten, p. 293-298.
II. Discussion: Sequencing n Jobs on Two Machines with Ar-

bitrary Time Lags; Edited by S. M. Johuson, p. 292-303.

2. More effort and research was carried on in the area of sciving or-
dinary, non~linear differential'equations, especially by Runge-Kutta type
methods as reported earlier by the author. In this area, progress was made
in optimizing such formulas that use nine, ten, or eleven evaluations.
Specifically, there was developéd for the first time a formula of this type
of the eighth order with only eleven svaluations. This formula (S 8-11) also
hes a built-in error control (regulator). These formulss sre more efficient,
according to tests that are reported, than any known to exist and will be

described next.

3. NOTATION. Consider the snalytic function f£(x,y) and the differen-

tial equation y' = £(x,y) at the initial point (xb,yo) . Let f, be de-

- fined by the equation

=1

£, = f(xo +ah , ¥y +oh

[N S

{B; T
= 1373

vhere £ _ = r(xb,yb) . Consider the finite series '

‘ n
Y=y +h g . LAY



It is immediate that & necessary and sufficient condition that the Taylor

series for Y end the Taylor series for the seiutien y(xo + h) orf the

given diflerential equation agree through terms in 1 is that

n
(f(k—l))o =k §=0 Yi(fi(k-l))o

for k = 1,24¢4.,m , where the symbol f(k) is used for the kih- derivative of

the function f(xo +h , y(xo +h)) .

In order to. specify a given formula, one may detach the coefficients as

followa:
Formuls
, o %P0
O | 0By * ayByy
%n O‘anO toBg t et anan,n-l

] Y0+‘Yl+ ¢ e +Yn

To meke this clear, consider a third order formula with three evaluations

of the function. The detached coefficients are’

4y “f10
) % %Pag Y %fp
Yot Yt

This arrsy would imply the formula



Y=y, Hhly £+ vy + )

where

f = f(xo,yo)

H
I

1 f(xo + alh ’ yo + halBlofo)

fp = £lxg + azh 5y + hlagyfy + By fy))

- I Y
If the expression a2820 + aeeal == B + = 821 s this will be written

% (m820_+ pBel). In other words, common factors msy be factored out.

These formulas, of course, are used als2 for systems of differential

equations y{ = fi(x;lyi) at the initial point (xo,ylo,...,ypo) .

b, Listed next are the new formulas with nine, tén,.and-eleven evalu-
ations, respectively. With each formula there is included an approximation
to the error. This approximation is of high order and its absolute value
is called the regulator and dehoted by R. At éach stép of the integration;
R -is easily calculated since it uses only evaluations calculatéd already
for that step. The stepsize for the next step is determined to be 2h, h,
ork g s where h is the current stepsize, according to whether R < m ,
m<R<M,or M<R, respectively, where the interval [m, M] is
appropristely chosen to give the tolerance desired. By éxperience, an inter-

val [1o‘n‘h

, 10°%] for an appropriate positive integer n works well,
vhere n is chosen to give the desired tclerancel Oncé n is chosen, it
usually remaina constant for a givén aeriés of steps in an integration prob-
tlem;quhe larger n is chosen, thé more accurate will bé the integration

(at the cobt of more computational effort, of course). The comparative data

Ll



given below will illustrate this relationship between accuracy and time

- adequately. In the designation of each formula, the author's initial will
be used, followed by two numbérs séparated by a dash, the first number gives
the order of the formula and the second the number of evaluations required

~ for one step.

Formula S T-9

Yoo b,
27 27 .
| '3' flL-g (1 + 3)
| %' %é (1+0 +‘3)
é}- 3%:(-5 (109 + 0 + 135 - 18)
n " trg (206 + 0 + 594 - 1k1 - 147)
| 1 %-0 (-97 + 0 '+ 189 + 462 + 490 - 1024)
%- 75%§5§ (~356391 + 0 - 137781 + 2357630 + zszhheo.- 53581hh + 21280)

1
1 Tholgs (359879 + 0 + 68229 - 19hL726 - 2013753 + 3526656 - 23940 + 177147)

1;;9%1;5-5 (65664 + 0 + 0 + LO7219h + 2235331 - 3670016 + 0 + 1594323 + 29898L)

h l
R = W(faﬁ'fG)l



Formula 8 T=~10 .

o= Mk ow e o\

g
16 (1 + 3)
-1-5 (3+0+9)
%8 (2+ 0+ 3+ L)
5—}@(73+0-120+200-81)
' % ‘ 'i%'a'é' (~933 + 0 + 168 - 194k + 1469 + 2320)
1 1107 (18870 + 0 - 5604 + 5702k - 39839 ~ 37660 + 8316)
%- ~5-9%%- (106442 + 0 - 523¢5 + 340648 - 222390;- 188280 + 66528 + 1107)
1 7155 (-40083 + 0 + 22830 - 131472 + 94610 + T8T60 - 21672 - 738 + 4920)
13230 (WTT + 0 + 0 + L032 - 1036 + 2624 + 4032 + 0 + 2624 + L7T)

13230

-
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Formulas S 8-11

e
9

1

I (1+3)

1 . _
g(1+o+3)

1 .
-2-.-r—(h+o+6+8)

gho (548 + 0 + 687 - 116 + B1)

3%55'(313 + 0 + 1767 - 956 + 171 - 900)

E%ﬁ (=103 + 0 - 420 + 208 - 33 + T68 - 38k4)
%5 (63 + 0 + 228~ 232 + 73 ~ 3632 + 3400 + 120)

Thps (20 + 0 = 285 + 70 +:345 = 5586 + 5916 + Lo5 + 15)

5%5 (35 + 0 + buk + 1616 - 1107 + 21816 ~ 21384 - 1260 - 60 + T20)

;%55-(205 + 0 +.0 + 1360 + 135 + 972 + 108 + 135 + 0 + 1080 + 205) !

| n
R= | 5250 (f10 = g)



5. Listed in this section sre some formulas previously published by the
. author, usually without regulators. The regulator for each formulas is includ-
ed as was done for the formulas in the previous section. The prefix O (old)

will be added to distinguish these from the previous ones.

Formula 08 T-9

8=
N

7555 (109 + 0 + 135 - 48)

E%EE (206 + 0 + 504 ~ 141 = 147)

=R e wie v
[

- %32 (-124719 + 0 = 15309 + 604800 + 686000 - 1089536)

75%32 (-15279 + 0 - 15309 + 173880 + 138572 - 229376 + 8748)

VR Ol

1 1 _ i ~
1 59858% (227278 + 0+ 136&58 - 9807k2 ~ 1153509 + 1892352 - 177147 + 35L29kL)

&t

| TSstugg (65664 + 0 + 0 + hoT219k + 2235331 - 3670016 + 0 + 1594323 + 29898k)

h
R = | 150880 (r7 - r6)



Formule .0S T-10

) L

2 27

'S‘ ‘%@'(1-&»3)

%'- %—5(1+0+3)

%_- %(1+o+o+3)

2 H3+o0-27+k2+8)

% %5(389*'0-51&*966-821&4-2143)

1 %’0‘ -231 + 0 + 81 -~ 116k + 656 -~ 122 + 800)

% ‘?g'g‘(‘127*0+13~678+-h56-9+576+h)

1 F;'b' (1481 + 0 - 81 + T1Ok - 3376 + T2 - ;eho- 60 + T20)

Elro-(h1+o+o+27+2',[2+27+216‘+0+216+1&l)

‘R = | gﬁ-o-(rg - ) |

10
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Formuls 08 8.12

N L
9 9
2 ’23:11' (1 + 3)
%- %-g (1 +0+ 3)
%6‘ ’5”61'6'(29*0_+33'12)
3 -9-,175(33+o+._o+h+125)
-% | | %‘g‘(-m + 0+ 0+ 76+ 125 - 162)
% ”'-5%(..3o+o+oz-32+125+o+99)
| %. 3%5 (1175 + 0 + 0 = 3456 - 6250 + 8hzk + 2u2 - 27)
| % | .3’.%[;(293+0+o,852-1375+1836—118+162+32h)
g‘ 5_%2—0- (1303 + 0+ 0~ k260 - 6875 + 9990 + 1030 + 0 + 0 + 162)
1 K%'z‘é' (~8595 + 0 + 0 + 30720 + LBT50 - 66096 + 378 ~ T29 - 194k ~ 1295 + 32L40)

'8%—0‘(“1*0*0*'0*'0"'216+272+27+27+36+150+h1}

h ,, ‘
Re= g (£ 1g)



6. Error contrcl procedure. In addition to the procedure for e.ror

control elready outlined, it is ususlly useful to iimit the stepsize h . In
“he examples progremmed for this paper, h has been required to be between
.0025 and .80 . Other bounds could be used if desired. The entire procedure

will be recapitulated at this point.

a. Choose bounds for the regulator R . These will be positive num-

n-b 4 U= 107D

bers L and U, L < U, rather small (for exarple L = 10
may be used as suggested above, where n is a suitable integer). The choice
of U will greatly influence the size of the error and will vary from one
formula to another. It is suggested that a trial run on & known differential
equation be made to adjust these differences.

b, éhoose convenient bounds for the step size h (for example,
.0025 < h < .83). \

¢. Choose an initlal h between these bounds for the first step
(for example, hy = .0L or hy= E%E ).

d. Calculate the first step, using the initiel values and the de-
sired formula, in the usual way.

e. After each step has been calculated, before proceeding to the
" next step, calculate R. If R<Land h < 40, double the current step size
and use the result for the new step size.” If R > U and h > .005 halve the

. current step size and use the result for the new step size. In all other cgaes,

use the cvrrent step sise for the nev step size.

£, ‘Proce§d to calculate the next step and continue as far as desired.



T+ Comparative data., The data here will pertain to the solution of the
system of two differential equations: '
y!' = -2xy log z , 2' = 2xz log ¥y
Initial values: Xq = o, Yo =€ Z5 = 1

2
Exact solution: y = eCO8 (x2)

. 2
, g = eiD (x2) .

Integration interval: x =0 to x=5.
This system is not the best one to bring out the advantages of integration
runs using the regulator (regulated runs) due to the rapid oscillation of the
solution, but it has already h=en used [1 ] to make comparisons that might
easily lead to erroneous conclusions.
On page 66 [ 1], Fehlberg writes
"58, For the numerical comparison of our formuls RKT(8) with SHANKS's
formula we applied these férmulas again to our problem (53) in exactly
the same way as in Part I and Part II. We again used RICHARDSON's |
principle as stepsize control procedure for SHANKS's formule since no
other satisfactory stepsize control procedure seems to be known for

SHANK8's formulas. Table XI shows the results of our comparison.

Table XI: Comparison of seventh-order Methods for Exsmple (53)

Results for x = 5 and Tolerance 10-16
’ A
. | Number of < | Running Time | Accumulated Errors o
Method ‘ Number of | Total Number ! .
Substitutions on IBM-T09k4 in y and z
per Step Steps of Evaluations (min) by Az
SHANKS| 17 23 | 2k 101 2,49 ~0.1332-207 23 |0, 7377+ 10713
- |RxT(8)| a3 818 | 10 63% 1.12 -0.2509- 10”13 |-0, 5135+ 10723
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As 8 matter of fact, two years before publication of Fehlberg's article
in 1968, in 1966 (see [ 2] where a report to NASA for 1966 is included) and
in 1967, the author developed stepsize control procedures for all of his
published formulas and some of these were progremmed on the IBM TO94 at the
Computation Division of the Marshall Space I'light Center (MSFC) and at the
‘ Vanderbilt Computer Centgr and made available to personnel at MSFC.

The following example will illustrate the situation. Consider the table

RK 6(7) 10 ° oolis0 - 46 10713 .11 10712

3 1L

08 7-10 10 13640 .30 1071 .20 10~

where the first column names the method, the second column states the number
of evaluations per step, the third column states the total number of evalu-
ations for the run and the last two columns give the errors for y and =z
respectively (this order will be followed in all such tables). The first
row is given in [ l] and the second row was programmed at MSFC, Computation
Division. This constitutes a fair comparison since both formulas require 10
evaluations per step. Moreover, this very formule O08 T-10 with its regula-
tor given appeared in the 1966 resumé mentioned above., It gives a better
result than Fehlberg's formula and uses less than 61% of the eveluations used
in that formula.

Another example that will further illuminate Feh}berg's comparisons is

given next.
RK 7(8) 13 1063k .25 10713 .51 10713
b b 2072 gomth L

08 8-12 12 8268 .11 107
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The first line in the table is found on page 66 of [1] a8 mlready given
1k

above. The seecond line is a »un of Bhanks' 014 Bwle Trormuls with U = 10~

0 &= E%E- as the last two entries (this order will be followed hereaf-

ter). The formula OS 8-12 gives a much better approximation and uses less

and h

than T8% of the evaluations used in Fehlberg's formuls.

From these examples, one can easily see that Fehlberg's comparisons were
extremely distorted by his use of Richardson's principle only on the formulas
of others and not én his own formulas., It ie also obvious from the examples
that his formulas run a poor second. This is made dramatically evident when
it ig seen that the very best run in his whole report (made with a higher or-
der formula) comes in second to the 08 8-12 run just given. Note the com-
parison given next.,

14 3

.36 :Lo'_:L
-1k

RK 8(9) 17 8670 .18 10~

=1k -1L 1

10 158

08 8-12 12 8268 ,11 10 .1k 10

Listed below are other runs‘using the same system of equations. Regula-
ted runs programmed for this paper will indicate U and ho as mentioned
ahove. If one should decide to use one formla, it might well be S 8-11 as
the date shows. If one uses more than one formula, 8 T=9 &and S T-10 might
be used along with 8 8-11. In general, formulas of this type with regulators
are much better than formulas without regulators. |

 The formules below come from [1] or [2] or the present paper.

| RE 8(9) 17 16286  ,68 107+ .31 10'1“_ 10719
089-16 26 mek .30 g530l g9
08 8-12 12 12 532070 - a0t 30

BB



RK 8(9)
08 9-16

08 8-12

RK-8(9)

08 9-16

08 8-12

RK 8(9)
\

08 9-16

08 10-21

17
16

12

‘17
16

12

17

,16

2l

10982

10816

8268

LLo3
4000

bl76

2210

2080

9870
T6Ul
6006
4536
3759
3003
2079

1785

.19 10™
77 10748

W11 1o'lh

.12 10~10

.11 10712

.22 10

.11 1077

.13 10~

.11 10710
.31 107t

.1k 107

.10 10712

.38 10712

g 10712
W17 107

.29 10™7

.29 107

.58 10™+%

.1h 107

.97 10712

.21 10712

.95 10~13

.29 107

.22 1077

2 10713

.29 101!

A2 10™13

.60 10712
48 1074
.69 10™10
.18 10”

43 1077

10~17

10™+0

10"1h

10™13

1015

10-12

10—10

-13

16



08 9-16 . 16 1h20)

10816
T58L
5328
Looo
2880

© 2080
1536

1088

86l

08 8-12 12 ‘11ka2

8268

5844

hli76

3000

. 2256

08 7-10 10  1ks10
8760

2570

<11 10

.31 10717
.77 10713
.86 10~

.81 10~13

.11 10712

.19 10710

.11 10~7
.96 10"6

.18 1o“h

.53 10717

-14
.93 1013
.22 10
48 1077

.12 10-8

.70 207
.22 10712

.10 10™0

-11- -

.87 1071

75 10710

.58 10”13

.20 10~1°

.25 10™13

.21 10712

14 10711

.22 1077

.29 10'8

-6

011 71_0"h

7L 10715

.1l 10~1H
Ay 10713
.95 10™+3
0

.1k 1079

Joo10715

.35 10713

+15 10™

~10~19

_lo~16

-10~17

-10“16

~10"10

-1h

~10~13

_10~12

~10-11

_10-10

~15

- f—-‘( - - B[
WIE NE N e P ol
o © o

I

)
N
(8]

Bl
nﬂk* mbd
o (0o}
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I o o o &

=)
N
oo

= -
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BT-9 9 18720
; 17127
13329
9297
6210
k320
30k2

1962

8 79 9 . 1652

. 1283l
7839
2553
3204

1962

.10 10~14

A9 107

.18 10~k

Lo 10713

.k 10712

.39 10711

.90 10™10

-8

.1k 10™1Y
.60 10“lh
.15 10712
.59 101" |
.11 1079

.24 107

15

.18

.18

51

.27

17

41

.92
.18

.83

10~ 14

lo-lh

10714

10—13

lo-ll

10-10

10~
14

10

10~15

10-12

10-10

10~

_10-13

-12

_10-11

~-10

-10~7

-10"8

<10~7
-17

10

10716

10

10™13

10

B Bl R = . - F1 :J
L] B O R T SR o PR Y M
S~ Bl 8- B B 8- B
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8 T-16 . 10 17350
| 11990
7220
L520
3120
1800
s; 8-11 11 12738
7656

L7l

3355

947

.26 10~
A7 107t
.64 10712
7k 10712
.36 1079

76 1070

.59 10717

.29 1013

.1k 10712

43 10710

.16 10'8

.18 107

.20 10~14

7 10713

.99 10712

A7 1071

b2 1079

79 10713
43 107
.32 1072
A5 1071

43 1079

1

10-13

10712

lo-ll

lo«lO

1072

10

10~12

10-11

10-10

1079

10'8

s A oy [

g\_il—' gp gp @{t—' @ln-a
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APPENDIX

Other formulas programmed at the Computation Division at Marshall Space
Flight Center are given below. (Sincere thanks is given to Mr. Audie E.
Anderson for his help and cooperation in programming these and other formulas).
In general, the efficiency of these formulas are a little below those discussed

in {the main body of the paper.

S 7-10 A
& T fl1+3)
3‘7- —;—5 (L + 0+ 3)
?7- %‘— (L+0=3+14)
% :-ng-(..9+o+5h~h8+15) - :
.};_ 11‘:!‘5' (LT6 + 0 = 975 + 1162 ~ 317 + 21k)
2 gigs (12227 + 0 - 63765 + 6b26k ~ 1265k + 2008 + 1620)
-g- 33215 (<b5402 + 0 + 256230 ~ 246969 + 41829 + 30972 - 25935 + 1TT45)

[

-55—53- (563047 + 0 ~ 2942940 + 281h6hh - 3199 - 915152 + 944580 - 398580 +132860)

1 .
T7280 (T51 + 0 + 0 + 3577 + 1323 + 2989 + 2989 + 1323 + 3577 + T51)

Ko Regulator |

.
.
,



- B_T-10 3B

1L

9 9

¢ Epl1+3)

{;— -}5(1+0+3)“

-23-'- %(1-&0-34-1&)

%— %3(3+0+o+o+9)

2 735-( 242 + 0 = 540 + 528 + 288 - 32)

L gl (3434 0- 206 + 864 + 96 +126 - 243)

%-' 53(3734-0-&6-»288-62’4-6h+2h3+972

| 1 3%H“83 + 0 - 1176 + 3360 + 1963 + 1472 - 2187 + 2916 - 5832)

5535 (151 + 0 + 0 + 248 + 2496 + 2018 = 2167 + 0 - 2267 + 151)

h (fa -f
2520

. 7)

21
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wip Wl V[F Ve PE Wik VP

5 811 A

2

9

I (1 + 3)

F(1+0+3)

w25 (232 + 0 - 480 + 896)

558575 (15649 + 0 + LLLLS - 35302 + 5103)

KB%EG'(”97 + 0 + 2208 - 3488 + 729 + 5832)

zizss (~59143 + 0 + 79968 — 3104 + 20655 ~ 475416 + 6134ko)
1 i§%666 (422625 + 0 - 164640 + LO2LOO - 79785 + 3790152 - L292352 + 117600)
5 Tostioe (61005 + 0 - 305760 + 5U5hlo + 93555 - 52272 + 324L32 - 264600 - 49000)

1 333%555-(-152635 + 0 + 3126160 ~ 14486560 ~ 1228365 + 27162216 ~ 29232576
| + Th08800 + 588000 + 8467200)

335%355-(51695 + 0 + 0 + 158720 + 295245 + 150903 + 14h3k2 + 396900 + O + 396900
+ 51695)

[

1

h
R | Tenenee (fa0 - fe)
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5 B2
. 2.

o7 o :
gg %5 (5 + 15)

2 g (5+0+15)

%- 5%5-(29 +0 + 33 - 12) ‘ K

%‘- %‘5(1+0+0+lh“’+ 5)

%- E%? (2 +0 + 6 - 32 + 50 + 70)

& Zz (13 + 0 + 0 + 60 = 7 = 58 + 10)
| % 2[120 (<1197 + 0 + 0 - 13568 - TLO + 12780 - 2135 '+ 5400)

%. i%§6 (369 + 0 + 0 f 1156 - 785 - 2070 + 1060 + 0 + i62°)

% 1120 (207 + 0 +.o‘ + 1156 - 785 - 450 "f- 250 + 810 + 0 + 162)

1 E%K"“hl + 0 + o»- 384 + 212 + WBL - 207 + O - T2 - 48 % 120)

gﬁg (b2 + 0+ 0+0+ 0+ 272+ 27 + 216 + 2T + 36 + 180 + U1)

R=

h (rlo - f9) l
L0
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1
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. IE?ﬂﬁF"{§753 + 0

S _8-12

)
18

5 (5 + 15)
%g'(5“+ 0 + 15)

1 2
550 {29 + 0 + 33 - 12}

%5-(3 +0+0+12+1

1
-i-g-b-(lh+o+o+16+ 5)

=55 (W1 + 0 + 0 - 22k

1 . A
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