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ABSTRACT

This paper reports on observations of a new type of
ELF noise band which is closely associated with low-energy
electron precipitation events and auroral arcs. These ob-
servations have been made at relatively low altitudes (<3000
km) with the polar orbiting satellite Injun 5. These noise
bands typically have a center freaquency of from 100 to 300 Hz
and often appear to consist of many nearly monochromatic
bursts, typically of a few seconds duration, superimposed to
give the observed spectrum of the emission. These ELF noise
bands are only observed in a relatively narrow (few degree)
latitudinal region in the auroral zone. The local time distri-
bution of these ELF noise bands has not been investigated
in detail, however ELF noise bands of this type have been ob-
served throughout the local time range from 12:00 to 22:00.

In considering the possible explanations of these ELF
noise bands, it is noted that the spectral characteristics
of this noise are very similar to a type of narrow-band mag-
netic noise called 'lion's roar' which has beén observed
at much higher altitudes in the magnetosheath with the satellite
0GO-5. It is suggested that the ELF noise bands observed at
low altitudes with Injun 5 are produced by lion's roar emissions
vhich have propagated down 'open' magnetic field lines from

the magnetosheath region to the Injun 5 altitude.



I. OBSERVATIONS

Intense bands of extremely-low-frequency (ELF)
electromagnetic noise are frequently observed with the
low-altitude polar orbiting satellite Injun 5 in association
with low-energy electron precipitation events and suroral
arcs. A frequency-time spectrogram illustrating the
spectral characteristics of this type of ELF noise is shown
in Figure 1 [see Gurnett et al., 1969, for a discussion of
the Injun 5 spacecraft and VLF instrumentation]. These
ELF emissions usually have a bandwidth of 100 Hz or less
and a center frequency which is remarkably similar from
event to event, seldom greater than 300 Hz or less than
100 Hz. Typical broad-band magnetic field strengths for
these events are about 10 to 30 milligammas. The duration
of these ELF noise bands varies considerably from event to
event, from a few seconds to several tens of seconds. The
frequency-time spectra of these emissions often appear to
consist of many nearly monochromatic bursts, typically of
a few seconds duration, superimposed to give the observed
bandwidth for the emission. These individual quasi-mono-
chrbmatic bursts are evident as 'fine structure' in the ELF

noise band shown in Figure 1.



ELF noise bands of the type shown in Figure 1 are
only observed in a narrow latitudinal region a few degrees
wide in the auroral zone, typically at about T70° to 80°
invariant latitude. Although a complete study of the local
time distribution of these ELF noise bands has not yet been
performed, most of the cases investigated in this study
occurred from about 12:00 to 22:00 local time. To our
knowledge the ELF noise bands do not correspond to any of
the well-known categories of magnetospheric VLF emissions
[Helliwell, 1965] and are clearly distinguishable from
chorus and ELF hiss because of their distinectly different
fregquency spectra and region of occurrence.

ELF noise bands of the type shown in Figure 1 are
found to be closely associated with inverted 'V' electron
precipitation events of the type described by Frank and
Ackerson [1971]. This association is illustrated by
Figure 2 which shows the electron energy-time spectrogram
for the same pass as the ELF noise band shown in Figure 1.
(See Frank and Ackerson [1971] for a description of the
charged particle instrumentation on Injun 5.) The inverted
'V' energy-time structure occurring from 01:49:30 to
01:50:10 UT in Figure 2 corresponds almost exactly with the
location of the ELF noise band shown in Figure 1. Similar,
but less distinct, ELF noise bands are also observed in

association with the multiple inverted 'V' events from



01:48:00 to 01:49:00 UT. The trapping boundary for
electrons E > 45 keV is located at 01:50:10 UT on this pass
and, as discussed by Frank and Gurnett [1971] and Gurnett
and Frank [1971], the inverted 'V' electron precipitation
events are believed to occur on 'open' field lines which
connect into the magnetosheath. ELF noise bands of the
type illustrated in Figure 1 are frequently, but not
always, observed in association with inverted 'V' electron
precipitation events. Of a total of nine inverted 'V’
events investigated, six were found to be associated with
ELF noise bands qualitatively similar to the example shown
in Figure 1. However, in every case investigated having
an ELF noise band, a corresponding inverted 'V' electron
precipitation event could be found.

The ELF noise band and associated inverted 'V’
event in Figures 1 and 2 also occur simultaneously with a
region of VLF hiss which extends from about 01:47:30 to
01:51:00 UT. This VLF hiss emission consists of & series
of V-shaped VLF hiss events of the type described by
Gurnett [1966]. VLF hiss events of this type are commonly
observed in the same region as the ELF noise bands. This
association between VLF hiss and the ELF noise bands is
not unexpected since Gurnett and Frank [1971] have shown
thet VLF hiss emissions are also closely correlated with

inverted 'V' electron precipitation events.



IT. DISCUSSION

In comparing these observations with data from other
satellites, it is evident that the ELF noise bands observed
at low altitudes with Injun 5 have certain spectral charac-
teristics similar to the narrow-band magnetic emissions
observed by Smith et al. [1969] in the magnetosheath with
the eccentric orbiting OGO satellites. These magneto-
sheath emissions consist of tone-like bursts with freguencies
typically between 50 and 200 Hz, lasting from 1 to 10
seconds, and are referred to as 'lion's roar'. A frequency-
time spectrogram of lion's roar observed in the magnetosheath
with 0GO-5 is shown in Figure 3 [from Smith et al., 1969].
Note the difference in time scale between Figures 1 and 3.

In comparing the spectral characteristics of lion's roar

with the ELF noise bands observed with Injun 5, the following
relationships are noted (1) the typical center frequencies

and relative bandwidth for the two phenomena are very similar,
(2) both phenomena are made up of nearly monochromatic bursts
with durations of a few seconds, (3) the period between the
individual bursts is usually shorter for the ELF noise bands
observed by Injun 5 than for the lion's roar, sometimes so
short as to make the burst fine structure in the ELF noise

band essentially unresolvable.



Because of the similarity in the spectral charac-
teristics of these two phenomena, the question naturally
arises as to whether the ELF noise bands observed with
Injun 5 are in fact lion's roar emissions which have propa-
gated downward from the magnetosheath region to the
Injun 5 altitude. This possibility is even more suggestive
in view of the recent evidence by Frank and Gurnett [1971]
that the inverted 'V' electron precipitation events, which
occur in the same region as the ELF noise bands, occur
on 'open' magnetic field lines which extend into the magneto-
sheath region. This geometry is illustrated in Figure k4,
from Frank and Gurnett [1971], which shows open magnetic
field lines, B-B for example, extending from the magneto-
sheath, through the magnetopause, and down to low altitudes
in the auroral zone. Since the ELF noise bands are only
observed over a narrow range of latitudes, it appears that
the lion's roar emissions must be guided very nearly along
the magnetic field from the magnetosheath to low altitudes.

As discussed by Smith et al. [1969], the lion's roar emissions
are believed to be propagating in the right hand polarized
whistler mode. Although whistler mode waves do not necessarily
follow the magnetic field lines due to magnetoionic guiding
alone, it is well known from terrestrial whistler observations
thaf vhen suitable field-aligned density gradients are present

whistler mode waves are guided (ducted) almost exactly along



the static magnetic field [Helliwell, 1965]. Therefore, if
the ELF noise bands observed by Injun 5 are due to lion's
roar emissions from the magnetosheath, then field-aligned
density gradients must play an essential role in guiding
these waves down to the Injun 5 altitudes. Since density
variations of only a few percent are required to produce
whistler mode ducting, it is virtually certain that the
required density variations are present on these auroral
zone field lines [Lund et 2l., 1967]. Even if whistler mode
ducting is ineffective over part of the path, the magneto-
ioniec guiding effect for whistler mode propagation will assure
that if the wave is initially propagating along the static
magnetic field toward the earth it must continue to do so
until the lower hybrid resonance frequency exceeds the wave
frequency, which can only occur at relatively low altitudes
(<2 earth radii). Since the wave frequency is less than the
electron gyrofrequency at all points along the path, there
is no propagation cutoff or resonance which could prevent
whistler mode propagation over this path. A possible exception
is the L=0 cutoff at low altitudes (<3000 km) discussed by
Gurnett and Burns [1968]. However, if the waves are being
ducted along the static magnetic field the wave normal
directions will be aligned nearly parallel to the static
magnetic field and mode coupling will prevent this cutoff

from being effective, much as for proton whistlers at high



latitudes (see Rodriguez and Gurnett [1971] and Wang [1971]).
The shorter period between individusl bursts, and the
tendency in some cases for the individual bursts to merge
into & nearly continuous noise band at the Injun 5 altitude,
mentioned earlier, can be accounted for by the 'funneling'
of lion's roar emission from a relatively large region of
the magnetosheath into a small latitudinal region at the
Injun 5 altitude. The direction of propagation of the
individual bursts in the ELF noise bands observed by Injun 5
has been determined using the Poynting flux sensing tech-
niques described by Gurnett et al. [1971]. Both downgoing

and upgoing bursts are observed. The upgoing bursts are

believed to be caused by the reflection of downgoing bursts
below the satellite.

Since lion's roar emissions are believed to be nearly
always present in the magnetosheath region, the question
arises as to why the corresponding ELF noise bands are not
always observed when an inverted 'V' electron precipitation
event occurs. At this time, the answer to this question is
not clearly understood although several possibilities occur.
(1) Since the ducting of the lion's roar emissions down to
low altitudes depends critically on the presence of field-
aligned density gradients, it is possible that in some cases
the necessary gradients have not been established from the

magnetosheath down to low altitudes. (2) The occurrence of
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lion's roar has not yet been thoroughly studied, particularly
at high latitudes; it may be that there are periods or
regions within the magnetosheath for which few, or no,
lion's roar emissions occur.

These considerations make it entirely plausible that
the ELF noise bands observed at low altitudes with Injun 5
in fact originate from the high altitude magnetosheath
region., Despite this considerable body of supporting evi-
dence it must be pointed out that without observations at

|

intermediate altitudes in the polar magnetosphere this
explanation cannot yet be regarded as totally conclusive
since it is always possible that some instability mechanism
associated with the inverted 'V' electron precipitation
events may also be able to account for all of the observed
characteristies. However, at the present time the inter-
pretation of these ELF noise bands as having originated from
the magnetosheath is considered the simplest and most likely

explanation of this new phenoménon.
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Figure 1

Figure 2

Figure 3

Figure U

1L

FIGURE CAPTIONS

Frequency-time spectrogram of a typical auroral
zone ELF noise band observed at an altitude

of 2471 kxm with Injun 5.

Energy-time spectrogram of precipitated
electrons observed simultaneousl& with the
radio noise data shown in Figure 1. ©Note
the inverted 'V' precipitation event from
01:49:30 to 01:50:10 UT which corresponds

to the ELF noise band in Figure 1.

Frequency-time spectrogram and waveform sig-
nature of 'lion's roar' observed in the mag-

netosheath with 0GO-5. From Smith et al. [1969].

Illustrative model showing the magnetic field
topology in the polar cusp/plasma sheet regions.
The ELF noise bands observed at low altitudes
by Injun 5 are believed to be lion's roar

which has prOpagatéd from the magnetosheath

down to low altitudes along magnetic field

lines B-B, for example.
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INTERIOR
FIELD
CONF IGURATION

SCHEMATIC DIAGRAM FOR
MAGNETOSPHERIC AND LOW-ALTITUDE CONVECTION
(LOCAL EVENING, LOCAL MORNING)

MAGNE TOPAUSE

POLAR CUSP, PLASMA SHEET
AT MAGNETOPAUSE
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Figure 4





