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INVESTIGATION OF SYSTEM READINESS WHEN SOME DEFECT TYPES UNKNOWN

Edwin R. Huber John E, Walsh*
U. S. Naval Torpedo Station, Keyport Southern Methodist University**
ABSTRACT

A system consists of subsystems and performs satisfactorily when
defects in subsystems do not cause its failure. For each subsystem, de-
fect types are identified by their nature and by their level of probabil-
istic influence on system failure (finite number of levels). The sub-
systems and possible defect types are so defined that, for satisfactory
system performance, a defect type can occur at most once in a subsystem.
Also, for this conditional case, probabilities for a defect type are not
influenced by occurrence of other defect types. Moreover, the defect
types are independent and have small probabilities with respect to occur-
rence. System ability is represented by the Readiness Index (RI), which
is the probability of no defect that causes system failure. Statistical
investigation of the RI is complicated by possible existence of defect
types which have not yet been identified. Suitable data are available
for each combination of subsystem and level of probabilistic influence on
system failure. For every combination, the number of defect types occur-
ring is observed over some repetitions. Unbiased estimation, also approx-
imate tests and confidence intervals, are developed (some results are

conservative and/or apply to at least moderately large RI values .

*Based on work performed at the Quality Evaluation Laboratory, U. S.
Naval Torpedo Station, Keyport, Washington.

**Regearch partially supported by ONR Contract N00014-68-A~0515 and by
Mobil Research and Development Corporation. Based on some methods
developed under NASA Grant NGR 44-007-028.
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INTRODUCTION AND DISCUSSION

Considered is the ability of a system (for example, a torpedo) to
perform satisfactorily over an operation. This system is composed of
subsystems and performs satisfactorily (does not fail) when occurrence
of defects in subsystems does not cause its failure.

Within subsystems, types of defects are identified by their nature
and also by the probability that the defect does not cause system failure.
Only a finite number of levels are considered to occur for the probability
that a defect does not cause system failure. The number of levels and
the values for these probabilities are known and can change with the
subsytem.

The ability of a system is respresented by its Readiness Index (RI),
which is the probability that no defect type occurs whose influence causes
system failure. Methods are developed for investigating the RI from obser-
vational data. Observations are obtained for every possible combination
of subsystem and probability level (for not causing system failure). For
a given subsystem, an observation furnishes the observed number of defect
types that have the specified probability level.

A complication in investigation of the RI is that there may be defect
types whose existence has not yet been identified. Moreover, the number
of undiscovered defect types, and their correspondence with the possible

probability levels, are unknown for each subsystem.

The results are based on some assumptions that are to hold for the

conditional case of no system failure. These are:
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(a) Any given defect type can occur at most once in a subsystem.

(b} For any defect type, the probability that it does not cause system
failure is not influenced by occurrence of other defect types in
its subsystem or of defect types in other subsystems.

(c) With respect to occurrence, all defect types (over all subsystems)
are statistically independent.

(d) No probabilities for occurrence of defect types are of more than
moderate size and almost all of these probabilities are small.

(e) The observational data are statistically independent and data for
the same subsystem and probability level combination constitute a
random sample. Also, these data are obtained under conditions thau
correspond to the case of a system that has not failed.

(f) Consideration of only a finite (almost always small) number of
probability levels (for not causing system failure) for each sub-
system yields acceptable accuracy for the RI and its investigation.

In a number of cases, the subsystems and defect types can be defined so
that assumptions (a) - (e) are met to a reasonable approximation. For
example, this seems to be the case for many situations involving torpedoes .
Now, consider assumption (f). Often, there are limitations on the accu-
racy to which the probability of not causing system failure can be deter-
mined for & defect of a given nature. Use of a small set of representa-
tive values, each of which corresponds to an interval of values, is about
as good as can be done under these circumstances. Of course, use of

enough levels (say, equally spaced) should provide sufficient accuracy.
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However, too many levels may not be warranted and also can introduce

difficulties in the collection of enough data for use of some of the

approximate results that are developed. With these assumptions, especially

(b) , the RI becomes the probability that the system does not fail due to
defects.

The principal results consist of an unbiased estimate for the RI,
some conservative one-sided confidence intervals and significance tests
for the RI, some approximate one-sided intervals and tests for the RI,
and same two-sided intervals and tests for the RI (conservative and
approximate) . In some cases, the RI is assumed to be at least moderately
large or the expected number of defects that cause failure is assumed to
be small. Here, a conservative interval has a confidence coefficient at
least equal to a determined value that is appropriate for intervals. A
conservative test has a significance level that is at most equal to a
determined value that is suitable for tests.

Notation and some basic expressions are given in the next section.
The following section contains the unbiased estimate for the RI, including
an expression for the variance of this estimate and an unbiased estimate
of this variance. Inequalities and approximations that are used in de-
veloping the intervals and tests are stated in the next following section,
The final three sections contain the material on conservative one-sided
intervals and tests, approximate one-sided intervals and tests, and two-
sided intervals and tests, respectively. Additional material, associated
principally with the results for intervals and tests, is given in two

appendices.
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NOTATION AND BASIC EXPRESSIONS

Most of the notation used is introduced here.

conditional probability that if defect type j occurs in subsystem
i, (i=1l,...,n), failure of the system does not happen because of
the occurrence of this defect. The defect types for which pij <1
are designated by j = 1,...,m(i) and only these types receive
consideration. The value of n is known but the value of m(i) is
unknown,

u-th of a set of U(i) possible values that are considered to occur
for the pij that are less than unity. U(i) and all the pi(u)

have known values.

Probability that defect type j occurs in subsystem i.

dij when j is such that pij = pi(u), and equals zero otherwise.
(Any defect type corresponds to exactly one value of u.)

m(i)

jfl dij ()

observed number of defect types with conditional probability level
pi(u) that occur for the v-th observation on the combination of
this probability level and system i, where v = 1,..,,V(i,u) 2 1,

V(i,u)

E Yiv (u) /V(i,u)

v=l

n  U(i) V{i,u) .
LY - p @ v v} Ty, e - 8 )8

i=1 y=1 v=l



(6]

n u(d) Ca
5@ =¢) ) [-p @I, @Mvim, (©<es
i=1 u=l

xy j (u,v) = random variable that equals 1 if defect type j occurs for the

v-th observation on the combination of probability level 1 (a)
and subsystem i, where pi(u) = pij' and equals O if defect type
J does not occur for this cbservation, v = 1,...,v(i,u).

K = deviate of standardized normal distribution (zerv mean, unit
variance) that is exceeded with Probability a.

n

M= Zm(i) . The value of M is unknown.
i=] .

R ™= the RI = probability that the system does not fail due to

occurrence of any of the defect types

n m(i)
=0 T [1-4,.(1-p,.)].
i=1 je1 1377 743

The expression for R follows from assumptions {(a) - (c) and from the
consideration that the probability cf no system failure due to defect
type j of system i equals
(prob. type j does not occur)+(prob. type j occurs but does not cause failure)

The random variable x, 5 (u,v) is introduced for use in derivations and need
not be observed. In all cases, the observed data are the yiv(u) . Often,
in practice, all the defects that occur for a given subsystem are cbserved
at the same time during the subsystem operation, and are later subdivided

to obtainr the Yiv (v) for different u and this value of v. Such a procedure
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is permissible since assumption (¢) guarantees independence, with respect

to occurrence, of all defect types. Of course, V(i,u) has the same value

for all u when the data are obtained in this manner.

UNBIASED ESTIMATE

An exactly unbiased estimate of R is given by

~ n U v{i,u) Y, ()
R= 1 1 [L— Y @t

im1 gy V(L0 vel

The unbiased nature of this estimate follows from the relation

Y, (u) V(i,u) y, (u)
iv - 1 iw
Epi (u) E[V(iw E P, (u) ] '

we=l

which holds for all v on the basis of assumption (e), and the relation

m(i)[ Yiv (u)
i I [1-x,.(u,v) (1-p, )] = p, (u) .
juy A 13 i

Combined with assumptions (a) - (c) and (e), these relations imply that

R n  yi) Yiv(u)
ER= I I Epi(u)
i=] y=)
n U(i) m(i) ]
= I 0 n ell-x,, (u,v) (1-p,,)] = R,
i=1 u=1l §=1 13 i3

The variance of ﬁ, on the basis of assumptions (a) - (c), (e) and

use of ref, 1, equals

n i) Y. (W V.. (u)
T 1 (varlp,w ¥ v, + (2lp, @ ¥ 1)
{=1 u=1 i i
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n Ui y, (u g
- 10 {elp v g},
i=] y=1
When V(i,u) 2 2 for all i and u, this variance is unbiasedly estimated

by

n um vid y,, @7
I [v(i,u) : P (W)

i=1 u

V{i,u)

n U(i) (u)
V(i,u) iv
-0 {V(i.u>-1|_v(i,u) Z pi‘“’ ]

i=] y=1

V(i w
2y, (u)
V(i,u) iv
T V(L,w-1 Z Py (W) }'

since
vii pu)

y, m7? Y, ()
1 iv - iv ]/V(ilu)
E[’(i,u) P p; (u) ] vu'[pi (u)

Yi (u) [ ]

+{E[pi(u) Vo)

Y, (0 g
and {E[pi(u) iv 1} equals

Vi, -1 V(i,u)

Yy, (u)|® 2y (u)}
V{i,u) iv vV(i,u) iv
E{vu,u)-l[ _; Py (w) ] < V(i,u)-1 ‘Z.; p; (W) '

which follows from material in ref. 1.
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INEQUALITIES AND APPROXIMATIONS

First, suppose that the largest of the dij(l"pij) does not exceed
.08 and that their arithmetic average dces not exceed .02. This assump-
tion is somewhat (but not much) more stringent than assumption (d). The
value of dij(l'Pij) is the probability that defect j occurs in system i
and causes system failure. Consider failure and nonfailure as the
outcomes of binomial events for each of the M combinations for i and j.
From ref. 2, the Poisson approximation is applicable to these binomial

events and

.n m(i)
P(no failures) = R = exp[-'; 2 dij(l'Pij)]' (1)
= J-

Thus, with this somewhat stronger assumption, approximate confidence in-
tervals and significance tests for R are directly obtainable from inter-

vals and tests for

Lk

Moreover, this approximate expression for R also applies when a mild

n U(d)
dyy-pyy) = 3~ 3~ [1-p ] (2)

i=1 u=1

u[.,]A

form of m-dependence occurs for the data (so that assumption (e) is
violated) .
Second, suppose that (2) is less than unity. Then (see ref, 3, for

case of independence), the sharp inequalities

n m(i) M
)3

(1)
a (l-p)SRS[ a,,(1-p, )
1317Pyy G5 o u] (3

3

i=] j=1

n

!l""
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hold. Also, by expansion, the upper bound is at most equal to

n i) n
=

U(i) 2
1 - E di(u)[l-pi(u)] + % [‘Z Z di(u) [l-pi(u)]] ' (4)
i u=1

i=1 i=1

c

[~
[

which is not a sharp upper limit but one that requires no knowledge of M.
When the value of (2) is at most .2, the sharp upper and lower bounds

are nearly equal to each other and to (4). Then

n U(1i)

R [1-1,2: 2. 4, 1-pi(u)1J

i=]l u=1

]
’ (5)
where this expression for R approximately minimizes its maximum deviation
from the upper and lower bounds. Conservative intervals and tests for R
can be obtained by use of the sharp lower bound and by use of (4). These
are based on the assumption that (2) has a value less than unity. Approx-
imate intervals and tests can be obtained from (5) for cases where the
value of (2) is believed to be at most .2.

Sometimes, more information is available about R than is available
about the d;,(1-p,,) or about (2). If R>e™" < 368, the value of (2)
is less than unity and both of the inequalities (3) hold for R (see
Appendix A) . That is,both of the inequalities (3) and (4) are usable when
the RI is of at least moderate size. If R 2 .8, the approximation (5) is
also usable.

A fundamental statistic used for the confidence intervals and tests
is
n U(i)A

au) [ 1-p; (u) 1, (6)
i=1 y=1

o e ik ibe e e

T
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which is an unbiased estimate of (2). By expressing the yiv(u) in

terms of the xi.(u,v), the variance of (6) is easily seen to be

9 .
Z: ) Y (1-p; ) %a, (W [1-d, S @ 1/V (L) . (7

The distribution of (6) should be approximately normal when (7) is not
too small, which should often be the case. In deriving results, the dis-
tribution of (6) is considered to be approximately normal for cases where
the confidence coefficients are not too near unity (say, at most .995)

and the significance levels are not too small (say, at least .005).

On the basis of assumption (e), it is easily seen that s® is an
unbiased estimate of (7). A conservative estimate of (7), with a larger
expectation but smaller variation (can be much smaller) than s?, is

provided by S(1) 2,

n m(i)U(i)
Es)? = ¢ les(e® = ) )3 (1-p; ) %d, . (W /V(i),
i=1 371 u=1 >4

which, according to assumption (d), should at least roughly equal (7).

Use of S(€)? with an appropriate value for € should provide a satis-
factory approximate estimate for (7). In many cases, the value of (7)
can be assumed to be at least ES(.96)2. Then use of S(.98)? as the
estimate of (7) would seem suitable. The value of ES(.98)? would differ
from (7) by at most two percent, which implies that one percent is about
the maximum change that would be appropriate in the corresponding ex-

pression for the observed standard deviation that is used in intervals
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and tests. A one percent change in the statistics, through adjustment in
the probability level used, does not cause an important change in the
confidence coefficient and significance level values that are considered.
Similarly, the value of (7) nearly always should be at least ES(.92)2
when assumption (d) holds. Then, use of S(.96)% as the estimate would
call for a change of at most about two percent in the observed standard
deviation. A two percent change in this statistic can be accomplished
by a moderately unimportant change in a confidence coefficient or
significance level value.

In the intervals and tests presented, S(€)? is used as the estimate
of (7), so that S(e¢) is the observed standard deviation. The value for
€ is appropriately chosen (nearly always, so that .96 < € < 1). The
variance of S(€)? is obtained in Appendix B. Approximate estimation of
the variance of S(€)? is also considered in Appendix B.

CONSERVATIVE ONE-SIDED INTERVALS AND TESTS

The results of this and the following two sections are based on the
assumption that the value of (2) is less than unity or that R > ,368,
Also, the distribution of (6) is assumed to be acceptably near normality
for the confidence coefficient and significance level values that are
considered.

A conservative one-sided interval with random lower endpoint is
provided (approximately) by the relation

n U(i)

P[l' ZZ 31(11)(1- p;w] - S(c)xasxz‘z 1-0a.
i=1 u=1
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This follows from the lower bound of (3) and occurrence of a distribution

that is approximately standardized normal for the quantity

divided by S(€¢). Often, the true confidence coefficient value will be

n U(i)

di(u) (1 - Pi(u)]} - f1- Z 2 di(U)fl - Pi(u)”

i=1l u=1

.,MA.

definitely greater than 1 - &« when the value of (2) is not substantially
less than unity, since R will be substantially greater than its sharp
lower bound. However, the confidence coefficient should often be near
l - @ when (2) is at most .2.

A conservative one-sided interval with random upper endpoint is
provided (approximately) by

n U(i)

p%S1- ):Zd (1 -p @]+ s(axk,

i=1l uv=1

n U(i)
+ ”[Z Zal(u)fl -p, ] - S(e)K] }z 1-o.

i=1l u=l
This follows from the approximate normality for (6), the upper bound (4)
for R, and the fact that 1 - 2 + (1/2)2? is a strictly monotonically
decreasing function of 2 for 0 S Z < 1. Here, the true confidence coef-
ficient should be near 1 - a when the value of (1) is at most .4.

Direct use of these intervals provides conservative one-sided
significance tests. 1In all cases, the null hypothesis asserts that R = Ry,
where Ry is a specified value.

First, consider emphasis of the alternative hypothesis R > R,. For

this one-sided test, R ™ Ry is rejected in favor of R > Ry if and only if
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n U(i)
Rp <1 Z Z d;ll-p @] -s@x, .

i=]1 y=1
The significance level of this test is (approximately) at most & and the
value used for Ry is at least .368. Often, the true significance level
is substantially less than «. However, it is frequently near « when Rg
is at least .8.
Now, consider emphasis of R < Ry, For this one-sided test, R = Ry

is rejected in favor of R < Ry if and only if

n U(i)
R>1-) ) d@ll-pwl+s@x
i=1 uv=1
n U(i) °
+ & Z Z d; W1 - p, ] - s(eIK,
i=l uv=1

The significance level of this test is (approximately) at most o. The
true significance level should often be near o when Ry 2 .6.

APPROXIMATE ONE-SIDED INTERVALS AND TESTS

Results based on the Poisson approximation are considered first.
Here,. by assumption, the largest of the dij(l-pij) does not exceed .08
and their arithmetic average does not exceed .02, Also, the error in
approximating R through (1) is assumed to be small compared to variation
in the statistic (interval endpoint, or test statistic) involved.

An approximate one-sided interval with random lower endpoint is
provided by

n U(i)
P{exp['z: i di(u)[l - pi(u)] - s(e)xa]s R} =1 -q. (8)

i=1 u=1
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This follows from (1), the approximate normality that is assumed for (6),
and the fact that e—Z is a strictly monotonically decreasing function 2.
An approximate one-sided interval with random upper endpoint is

furnished by

n U(i)

{zs exp[ Z Z 4, jW-p, ] + S(e)x]}é 1-a. (9)

i=1 u=1
This too follows from (1) and the approximate normality assumed for (6).
Now, consider the case where the approximation (5) is used. The
error in using this approximation is assumed to be small compared to the
variation in the statistic involved when the value of (2) is at most .2,
which is the situation that is assumed to occur. Also, the additional

notation that La equals

(o]

(i)
di(u)[l - pi(u)] - [s(e)/zlka} .

"
u[“ja
[

max{?, 1- 5

u=l
is introduced.

An approximate one-sided interval with random lower endpoint is
provided by

PP <SR 21 -o0.
o
This follows from (5), the approximate normality assumed for (6), the
small probability of a negative value for

n U(i)

1- z ZG W1 -p @l - [ste)/2]x ,
i=1 u=1
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and the relation

= '
P(L, < VR PL) SR,

which is generally valid.
Likewise, an approximate one-sided interval with random upper endpoint

is furnished by

P(R < 18

1-a l - «,

)

and has the same kind of basis.

The null hypothesis is R = R, and direct use of the intervals provides
corresponding one-sided tests. Use of the Poisson approximation is
considered first.

For the one-sided test that emphasizes R > Ry, the null hypothesis is

rejected in favor of R > Ry if and only if

n U(i)

Ry < exp[— Z ai(u)[l-pi(u)] - S(e)K]

i=1 v=1 @

The significance level of this test is approximately & when the assumptions

for (8) are satisfied for the case of R = Ry. These assumptions become

more readily acceptable as the value used for Ry increases (for null uses).
For the one-sided test that emphasizes R < Ry, the null hypothesis

is rejected in favor of R < Ry if and only if

n_ U(i)
Ry > exp[- E Z: 4, (v (1 - Pi(U)] + S(G)KQ]-

i=] u=1
This test has a significance level of approximately o when the assumptions

for (9) hold with R = Ry, Here too the assumptions are more readily

P S

tdos;

e L
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acceptable as Ry increases (for null uses),

Finally, consider the one-sided tests that are based on (5). Here,
the values used for R, are at least .8.

For the one-sided test that emphasizes R > Ry, the null hypothesis is
rejected in favor of R > Ry if and only if Ry < Lda. For the test where
R < Ry is emphasized, R = Ry is rejected in favor of R < Ry if and only if
Ry > Ll % Each test has a significance-  level that approximately equals «.

-0 .
TWO-SIDED INTERVALS AND TESTS

The two-sided confidence intervals and significance tests are obtained
directly from the one-sided intervals and tests presented in the preceding
two sections. Consideration of their development is limited to intervals,
since the two-sided tests are obtained from the two-sided intervals.

Specifically, for intervals, let

P[R{ (¢,) < R], P[R < R} (ag) ] (9)
define one-sided intervals, where (approximately) the confidence coefficient
for the first interval is either 1 - o; or at least 1 - oy (depending on
whether the interval is approximate or conservative, respectively), and
for the second interval is either 1 - og or at least 1 - ag. In all cases,
R (0g) > R{ (@3) . Then by considering the complements of these intervals,
P[R < R{ ()], P[R§ (ag) < R]
define one-sided intervals, where (approximately) the confidence coefficient
for the first interval is either a3 or at most &;, and for the second
interval is either ag or at most oag.
Thus, a two-sided interval ard its confidence coefficient properties

are provided by
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P[R{ () S RS Ry(xg)] =1 -~ P[R<R{(n)] - P[R§(ag) < R].

If both the intervals of (9) are conservative, the confidence coefficient
is (approximately) at least 1 - & =~ ag, with P[R < R{ (a;)] at most o
and P[R§(xg) < R] at most d,l. When the first interval of (9) is conser-
vative and the second approximate, the confidence coefficient is (approx-
imately) at least 1 - @y - og, with P[R < R{ (@;)] at most a; and

P[R§ (wg < R] approximately og. If the first interval of (9) is approx-
imate and the second conservative, the confidence coefficient is (approx-
imately) at least 1 - o - &g, with P[R < R{ (;)] approximately &, and
P[R{ (0g) < R] at most ag. When both intervals of (9) are approximate,
the confidence coefficient is approximately 1 - a3 - ag, with P[R < R{ (03)]
approximately a; and P[R} (@g) < R] approximately og.

The assumptions for both of the intervals of (9) should be satisfied.
Also, when both intervals of (9) are approximate, it is desirable that
they both have the same basis for the approximation of R. Then, consider-
ations similar to those in ref. 4 indicate that close approximation to
the normality assumption is not so important, especially when intervals
with o; = g are used.

The null hypothesis for tests is still R = Ry. 1In all cases, the
alternative hypothesis is R ¥ Ry. Specifically, R*® Ry is rejected in
favor of R ¥ Rg if and only if either Ry < R{ (1) or Ry > R§(ad). The
significance level is

P[Ro < Rl (@) |Ro = R] + PIR}(ay) < Ro|Ro = R,
and its properties are determined from the properties of these two
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Probabilities. Asg an example, suppose that both intervals of (9) are

conservative. Then, P[Ry < R{ () |Ry = R] is at most oy and
P[R§ (g} < RQIRO = R] is at most Qg. As another example, suppose that
the first interval of (9) is conservative and the second is approximate,
Then, P[Ro < R{ (o) [Ro = R] is at nost oy and P[R (xg) < RolRo = R] is
approximately g .

In determining null properties of tests, it is only necessary that
the assumptions for the intervals (9) are‘ satisfied when the null hypotheses
holds. Thus, for assumptions expressed in terms of R, the null value R,
can be used for R in deciding whether the assumptions hold (as was done

for some one-sided tests in the pPreceding two sections).
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APPENDIX A
Here, it is shown that the value of (2) is less than unity when

R> e-l. From the sharp upper bound in (3)

n m(i) M
R S[l -3 )IDIY (1-913)]

i=1 §=1 1
so that (2) is at most M(1 RI/M) which can be e
- xpressed as
M1-[1-Q-R]Y™
=M1-1+(/MQ-R +(/2QA/MQ-1/M(L-RT?
+ (1/6) (/M (L - 1/M (2 - 1/M (1 - R34+ ]
S(1-R+(Y2)1-R*+ (VHAQ-R3+ ... = ~log R.

Thus, R > e”) implies that (2) is less than unity.

APPENDIX B
Development of the variance of S(¢)? and of an estimate for this
variance are considered here.
The same considerations that vielded (7), the variance of (6),

show that the variance of s(¢)® is

n
9 4 3
C Z ) a- P ta WL - a @IvEwS,

A conservative estimate for the variance is provided by

n U(1)

9 _ . )
. 1-2; “Z.:l [1 - p, 144, @ V(1,03

whose expected value is

¢ 1l - 4 3
; j=1 u=1 ( pj_j, dij )y vii,w?3,
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Using the same basis as that for estimating (7),
n U(i)

eaz: Z [1- pi(u) ]‘di(u)/V(i,u)"

i=]l u-1

is used as the estimate for the variance of S(g)®,

st s g e e A« R e ot

A s
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